xref: /linux/drivers/tty/serial/sh-sci.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
19 #define SUPPORT_SYSRQ
20 #endif
21 
22 #undef DEBUG
23 
24 #include <linux/clk.h>
25 #include <linux/console.h>
26 #include <linux/ctype.h>
27 #include <linux/cpufreq.h>
28 #include <linux/delay.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/err.h>
32 #include <linux/errno.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/ktime.h>
37 #include <linux/major.h>
38 #include <linux/module.h>
39 #include <linux/mm.h>
40 #include <linux/of.h>
41 #include <linux/of_device.h>
42 #include <linux/platform_device.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/scatterlist.h>
45 #include <linux/serial.h>
46 #include <linux/serial_sci.h>
47 #include <linux/sh_dma.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/sysrq.h>
51 #include <linux/timer.h>
52 #include <linux/tty.h>
53 #include <linux/tty_flip.h>
54 
55 #ifdef CONFIG_SUPERH
56 #include <asm/sh_bios.h>
57 #endif
58 
59 #include "serial_mctrl_gpio.h"
60 #include "sh-sci.h"
61 
62 /* Offsets into the sci_port->irqs array */
63 enum {
64 	SCIx_ERI_IRQ,
65 	SCIx_RXI_IRQ,
66 	SCIx_TXI_IRQ,
67 	SCIx_BRI_IRQ,
68 	SCIx_DRI_IRQ,
69 	SCIx_TEI_IRQ,
70 	SCIx_NR_IRQS,
71 
72 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
73 };
74 
75 #define SCIx_IRQ_IS_MUXED(port)			\
76 	((port)->irqs[SCIx_ERI_IRQ] ==	\
77 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
78 	((port)->irqs[SCIx_ERI_IRQ] &&	\
79 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
80 
81 enum SCI_CLKS {
82 	SCI_FCK,		/* Functional Clock */
83 	SCI_SCK,		/* Optional External Clock */
84 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
85 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
86 	SCI_NUM_CLKS
87 };
88 
89 /* Bit x set means sampling rate x + 1 is supported */
90 #define SCI_SR(x)		BIT((x) - 1)
91 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
92 
93 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
94 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
95 				SCI_SR(19) | SCI_SR(27)
96 
97 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
98 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
99 
100 /* Iterate over all supported sampling rates, from high to low */
101 #define for_each_sr(_sr, _port)						\
102 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
103 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
104 
105 struct plat_sci_reg {
106 	u8 offset, size;
107 };
108 
109 struct sci_port_params {
110 	const struct plat_sci_reg regs[SCIx_NR_REGS];
111 	unsigned int fifosize;
112 	unsigned int overrun_reg;
113 	unsigned int overrun_mask;
114 	unsigned int sampling_rate_mask;
115 	unsigned int error_mask;
116 	unsigned int error_clear;
117 };
118 
119 struct sci_port {
120 	struct uart_port	port;
121 
122 	/* Platform configuration */
123 	const struct sci_port_params *params;
124 	const struct plat_sci_port *cfg;
125 	unsigned int		sampling_rate_mask;
126 	resource_size_t		reg_size;
127 	struct mctrl_gpios	*gpios;
128 
129 	/* Clocks */
130 	struct clk		*clks[SCI_NUM_CLKS];
131 	unsigned long		clk_rates[SCI_NUM_CLKS];
132 
133 	int			irqs[SCIx_NR_IRQS];
134 	char			*irqstr[SCIx_NR_IRQS];
135 
136 	struct dma_chan			*chan_tx;
137 	struct dma_chan			*chan_rx;
138 
139 #ifdef CONFIG_SERIAL_SH_SCI_DMA
140 	struct dma_chan			*chan_tx_saved;
141 	struct dma_chan			*chan_rx_saved;
142 	dma_cookie_t			cookie_tx;
143 	dma_cookie_t			cookie_rx[2];
144 	dma_cookie_t			active_rx;
145 	dma_addr_t			tx_dma_addr;
146 	unsigned int			tx_dma_len;
147 	struct scatterlist		sg_rx[2];
148 	void				*rx_buf[2];
149 	size_t				buf_len_rx;
150 	struct work_struct		work_tx;
151 	struct hrtimer			rx_timer;
152 	unsigned int			rx_timeout;	/* microseconds */
153 #endif
154 	unsigned int			rx_frame;
155 	int				rx_trigger;
156 	struct timer_list		rx_fifo_timer;
157 	int				rx_fifo_timeout;
158 	u16				hscif_tot;
159 
160 	bool has_rtscts;
161 	bool autorts;
162 };
163 
164 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
165 
166 static struct sci_port sci_ports[SCI_NPORTS];
167 static unsigned long sci_ports_in_use;
168 static struct uart_driver sci_uart_driver;
169 
170 static inline struct sci_port *
171 to_sci_port(struct uart_port *uart)
172 {
173 	return container_of(uart, struct sci_port, port);
174 }
175 
176 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
177 	/*
178 	 * Common SCI definitions, dependent on the port's regshift
179 	 * value.
180 	 */
181 	[SCIx_SCI_REGTYPE] = {
182 		.regs = {
183 			[SCSMR]		= { 0x00,  8 },
184 			[SCBRR]		= { 0x01,  8 },
185 			[SCSCR]		= { 0x02,  8 },
186 			[SCxTDR]	= { 0x03,  8 },
187 			[SCxSR]		= { 0x04,  8 },
188 			[SCxRDR]	= { 0x05,  8 },
189 		},
190 		.fifosize = 1,
191 		.overrun_reg = SCxSR,
192 		.overrun_mask = SCI_ORER,
193 		.sampling_rate_mask = SCI_SR(32),
194 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
195 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
196 	},
197 
198 	/*
199 	 * Common definitions for legacy IrDA ports.
200 	 */
201 	[SCIx_IRDA_REGTYPE] = {
202 		.regs = {
203 			[SCSMR]		= { 0x00,  8 },
204 			[SCBRR]		= { 0x02,  8 },
205 			[SCSCR]		= { 0x04,  8 },
206 			[SCxTDR]	= { 0x06,  8 },
207 			[SCxSR]		= { 0x08, 16 },
208 			[SCxRDR]	= { 0x0a,  8 },
209 			[SCFCR]		= { 0x0c,  8 },
210 			[SCFDR]		= { 0x0e, 16 },
211 		},
212 		.fifosize = 1,
213 		.overrun_reg = SCxSR,
214 		.overrun_mask = SCI_ORER,
215 		.sampling_rate_mask = SCI_SR(32),
216 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
217 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
218 	},
219 
220 	/*
221 	 * Common SCIFA definitions.
222 	 */
223 	[SCIx_SCIFA_REGTYPE] = {
224 		.regs = {
225 			[SCSMR]		= { 0x00, 16 },
226 			[SCBRR]		= { 0x04,  8 },
227 			[SCSCR]		= { 0x08, 16 },
228 			[SCxTDR]	= { 0x20,  8 },
229 			[SCxSR]		= { 0x14, 16 },
230 			[SCxRDR]	= { 0x24,  8 },
231 			[SCFCR]		= { 0x18, 16 },
232 			[SCFDR]		= { 0x1c, 16 },
233 			[SCPCR]		= { 0x30, 16 },
234 			[SCPDR]		= { 0x34, 16 },
235 		},
236 		.fifosize = 64,
237 		.overrun_reg = SCxSR,
238 		.overrun_mask = SCIFA_ORER,
239 		.sampling_rate_mask = SCI_SR_SCIFAB,
240 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
241 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
242 	},
243 
244 	/*
245 	 * Common SCIFB definitions.
246 	 */
247 	[SCIx_SCIFB_REGTYPE] = {
248 		.regs = {
249 			[SCSMR]		= { 0x00, 16 },
250 			[SCBRR]		= { 0x04,  8 },
251 			[SCSCR]		= { 0x08, 16 },
252 			[SCxTDR]	= { 0x40,  8 },
253 			[SCxSR]		= { 0x14, 16 },
254 			[SCxRDR]	= { 0x60,  8 },
255 			[SCFCR]		= { 0x18, 16 },
256 			[SCTFDR]	= { 0x38, 16 },
257 			[SCRFDR]	= { 0x3c, 16 },
258 			[SCPCR]		= { 0x30, 16 },
259 			[SCPDR]		= { 0x34, 16 },
260 		},
261 		.fifosize = 256,
262 		.overrun_reg = SCxSR,
263 		.overrun_mask = SCIFA_ORER,
264 		.sampling_rate_mask = SCI_SR_SCIFAB,
265 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
266 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
267 	},
268 
269 	/*
270 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
271 	 * count registers.
272 	 */
273 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
274 		.regs = {
275 			[SCSMR]		= { 0x00, 16 },
276 			[SCBRR]		= { 0x04,  8 },
277 			[SCSCR]		= { 0x08, 16 },
278 			[SCxTDR]	= { 0x0c,  8 },
279 			[SCxSR]		= { 0x10, 16 },
280 			[SCxRDR]	= { 0x14,  8 },
281 			[SCFCR]		= { 0x18, 16 },
282 			[SCFDR]		= { 0x1c, 16 },
283 			[SCSPTR]	= { 0x20, 16 },
284 			[SCLSR]		= { 0x24, 16 },
285 		},
286 		.fifosize = 16,
287 		.overrun_reg = SCLSR,
288 		.overrun_mask = SCLSR_ORER,
289 		.sampling_rate_mask = SCI_SR(32),
290 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
291 		.error_clear = SCIF_ERROR_CLEAR,
292 	},
293 
294 	/*
295 	 * The "SCIFA" that is in RZ/T and RZ/A2.
296 	 * It looks like a normal SCIF with FIFO data, but with a
297 	 * compressed address space. Also, the break out of interrupts
298 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
299 	 */
300 	[SCIx_RZ_SCIFA_REGTYPE] = {
301 		.regs = {
302 			[SCSMR]		= { 0x00, 16 },
303 			[SCBRR]		= { 0x02,  8 },
304 			[SCSCR]		= { 0x04, 16 },
305 			[SCxTDR]	= { 0x06,  8 },
306 			[SCxSR]		= { 0x08, 16 },
307 			[SCxRDR]	= { 0x0A,  8 },
308 			[SCFCR]		= { 0x0C, 16 },
309 			[SCFDR]		= { 0x0E, 16 },
310 			[SCSPTR]	= { 0x10, 16 },
311 			[SCLSR]		= { 0x12, 16 },
312 		},
313 		.fifosize = 16,
314 		.overrun_reg = SCLSR,
315 		.overrun_mask = SCLSR_ORER,
316 		.sampling_rate_mask = SCI_SR(32),
317 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
318 		.error_clear = SCIF_ERROR_CLEAR,
319 	},
320 
321 	/*
322 	 * Common SH-3 SCIF definitions.
323 	 */
324 	[SCIx_SH3_SCIF_REGTYPE] = {
325 		.regs = {
326 			[SCSMR]		= { 0x00,  8 },
327 			[SCBRR]		= { 0x02,  8 },
328 			[SCSCR]		= { 0x04,  8 },
329 			[SCxTDR]	= { 0x06,  8 },
330 			[SCxSR]		= { 0x08, 16 },
331 			[SCxRDR]	= { 0x0a,  8 },
332 			[SCFCR]		= { 0x0c,  8 },
333 			[SCFDR]		= { 0x0e, 16 },
334 		},
335 		.fifosize = 16,
336 		.overrun_reg = SCLSR,
337 		.overrun_mask = SCLSR_ORER,
338 		.sampling_rate_mask = SCI_SR(32),
339 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
340 		.error_clear = SCIF_ERROR_CLEAR,
341 	},
342 
343 	/*
344 	 * Common SH-4(A) SCIF(B) definitions.
345 	 */
346 	[SCIx_SH4_SCIF_REGTYPE] = {
347 		.regs = {
348 			[SCSMR]		= { 0x00, 16 },
349 			[SCBRR]		= { 0x04,  8 },
350 			[SCSCR]		= { 0x08, 16 },
351 			[SCxTDR]	= { 0x0c,  8 },
352 			[SCxSR]		= { 0x10, 16 },
353 			[SCxRDR]	= { 0x14,  8 },
354 			[SCFCR]		= { 0x18, 16 },
355 			[SCFDR]		= { 0x1c, 16 },
356 			[SCSPTR]	= { 0x20, 16 },
357 			[SCLSR]		= { 0x24, 16 },
358 		},
359 		.fifosize = 16,
360 		.overrun_reg = SCLSR,
361 		.overrun_mask = SCLSR_ORER,
362 		.sampling_rate_mask = SCI_SR(32),
363 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
364 		.error_clear = SCIF_ERROR_CLEAR,
365 	},
366 
367 	/*
368 	 * Common SCIF definitions for ports with a Baud Rate Generator for
369 	 * External Clock (BRG).
370 	 */
371 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
372 		.regs = {
373 			[SCSMR]		= { 0x00, 16 },
374 			[SCBRR]		= { 0x04,  8 },
375 			[SCSCR]		= { 0x08, 16 },
376 			[SCxTDR]	= { 0x0c,  8 },
377 			[SCxSR]		= { 0x10, 16 },
378 			[SCxRDR]	= { 0x14,  8 },
379 			[SCFCR]		= { 0x18, 16 },
380 			[SCFDR]		= { 0x1c, 16 },
381 			[SCSPTR]	= { 0x20, 16 },
382 			[SCLSR]		= { 0x24, 16 },
383 			[SCDL]		= { 0x30, 16 },
384 			[SCCKS]		= { 0x34, 16 },
385 		},
386 		.fifosize = 16,
387 		.overrun_reg = SCLSR,
388 		.overrun_mask = SCLSR_ORER,
389 		.sampling_rate_mask = SCI_SR(32),
390 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
391 		.error_clear = SCIF_ERROR_CLEAR,
392 	},
393 
394 	/*
395 	 * Common HSCIF definitions.
396 	 */
397 	[SCIx_HSCIF_REGTYPE] = {
398 		.regs = {
399 			[SCSMR]		= { 0x00, 16 },
400 			[SCBRR]		= { 0x04,  8 },
401 			[SCSCR]		= { 0x08, 16 },
402 			[SCxTDR]	= { 0x0c,  8 },
403 			[SCxSR]		= { 0x10, 16 },
404 			[SCxRDR]	= { 0x14,  8 },
405 			[SCFCR]		= { 0x18, 16 },
406 			[SCFDR]		= { 0x1c, 16 },
407 			[SCSPTR]	= { 0x20, 16 },
408 			[SCLSR]		= { 0x24, 16 },
409 			[HSSRR]		= { 0x40, 16 },
410 			[SCDL]		= { 0x30, 16 },
411 			[SCCKS]		= { 0x34, 16 },
412 			[HSRTRGR]	= { 0x54, 16 },
413 			[HSTTRGR]	= { 0x58, 16 },
414 		},
415 		.fifosize = 128,
416 		.overrun_reg = SCLSR,
417 		.overrun_mask = SCLSR_ORER,
418 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
419 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
420 		.error_clear = SCIF_ERROR_CLEAR,
421 	},
422 
423 	/*
424 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
425 	 * register.
426 	 */
427 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
428 		.regs = {
429 			[SCSMR]		= { 0x00, 16 },
430 			[SCBRR]		= { 0x04,  8 },
431 			[SCSCR]		= { 0x08, 16 },
432 			[SCxTDR]	= { 0x0c,  8 },
433 			[SCxSR]		= { 0x10, 16 },
434 			[SCxRDR]	= { 0x14,  8 },
435 			[SCFCR]		= { 0x18, 16 },
436 			[SCFDR]		= { 0x1c, 16 },
437 			[SCLSR]		= { 0x24, 16 },
438 		},
439 		.fifosize = 16,
440 		.overrun_reg = SCLSR,
441 		.overrun_mask = SCLSR_ORER,
442 		.sampling_rate_mask = SCI_SR(32),
443 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
444 		.error_clear = SCIF_ERROR_CLEAR,
445 	},
446 
447 	/*
448 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
449 	 * count registers.
450 	 */
451 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
452 		.regs = {
453 			[SCSMR]		= { 0x00, 16 },
454 			[SCBRR]		= { 0x04,  8 },
455 			[SCSCR]		= { 0x08, 16 },
456 			[SCxTDR]	= { 0x0c,  8 },
457 			[SCxSR]		= { 0x10, 16 },
458 			[SCxRDR]	= { 0x14,  8 },
459 			[SCFCR]		= { 0x18, 16 },
460 			[SCFDR]		= { 0x1c, 16 },
461 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
462 			[SCRFDR]	= { 0x20, 16 },
463 			[SCSPTR]	= { 0x24, 16 },
464 			[SCLSR]		= { 0x28, 16 },
465 		},
466 		.fifosize = 16,
467 		.overrun_reg = SCLSR,
468 		.overrun_mask = SCLSR_ORER,
469 		.sampling_rate_mask = SCI_SR(32),
470 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
471 		.error_clear = SCIF_ERROR_CLEAR,
472 	},
473 
474 	/*
475 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
476 	 * registers.
477 	 */
478 	[SCIx_SH7705_SCIF_REGTYPE] = {
479 		.regs = {
480 			[SCSMR]		= { 0x00, 16 },
481 			[SCBRR]		= { 0x04,  8 },
482 			[SCSCR]		= { 0x08, 16 },
483 			[SCxTDR]	= { 0x20,  8 },
484 			[SCxSR]		= { 0x14, 16 },
485 			[SCxRDR]	= { 0x24,  8 },
486 			[SCFCR]		= { 0x18, 16 },
487 			[SCFDR]		= { 0x1c, 16 },
488 		},
489 		.fifosize = 64,
490 		.overrun_reg = SCxSR,
491 		.overrun_mask = SCIFA_ORER,
492 		.sampling_rate_mask = SCI_SR(16),
493 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
494 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
495 	},
496 };
497 
498 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
499 
500 /*
501  * The "offset" here is rather misleading, in that it refers to an enum
502  * value relative to the port mapping rather than the fixed offset
503  * itself, which needs to be manually retrieved from the platform's
504  * register map for the given port.
505  */
506 static unsigned int sci_serial_in(struct uart_port *p, int offset)
507 {
508 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
509 
510 	if (reg->size == 8)
511 		return ioread8(p->membase + (reg->offset << p->regshift));
512 	else if (reg->size == 16)
513 		return ioread16(p->membase + (reg->offset << p->regshift));
514 	else
515 		WARN(1, "Invalid register access\n");
516 
517 	return 0;
518 }
519 
520 static void sci_serial_out(struct uart_port *p, int offset, int value)
521 {
522 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
523 
524 	if (reg->size == 8)
525 		iowrite8(value, p->membase + (reg->offset << p->regshift));
526 	else if (reg->size == 16)
527 		iowrite16(value, p->membase + (reg->offset << p->regshift));
528 	else
529 		WARN(1, "Invalid register access\n");
530 }
531 
532 static void sci_port_enable(struct sci_port *sci_port)
533 {
534 	unsigned int i;
535 
536 	if (!sci_port->port.dev)
537 		return;
538 
539 	pm_runtime_get_sync(sci_port->port.dev);
540 
541 	for (i = 0; i < SCI_NUM_CLKS; i++) {
542 		clk_prepare_enable(sci_port->clks[i]);
543 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
544 	}
545 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
546 }
547 
548 static void sci_port_disable(struct sci_port *sci_port)
549 {
550 	unsigned int i;
551 
552 	if (!sci_port->port.dev)
553 		return;
554 
555 	for (i = SCI_NUM_CLKS; i-- > 0; )
556 		clk_disable_unprepare(sci_port->clks[i]);
557 
558 	pm_runtime_put_sync(sci_port->port.dev);
559 }
560 
561 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
562 {
563 	/*
564 	 * Not all ports (such as SCIFA) will support REIE. Rather than
565 	 * special-casing the port type, we check the port initialization
566 	 * IRQ enable mask to see whether the IRQ is desired at all. If
567 	 * it's unset, it's logically inferred that there's no point in
568 	 * testing for it.
569 	 */
570 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
571 }
572 
573 static void sci_start_tx(struct uart_port *port)
574 {
575 	struct sci_port *s = to_sci_port(port);
576 	unsigned short ctrl;
577 
578 #ifdef CONFIG_SERIAL_SH_SCI_DMA
579 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
580 		u16 new, scr = serial_port_in(port, SCSCR);
581 		if (s->chan_tx)
582 			new = scr | SCSCR_TDRQE;
583 		else
584 			new = scr & ~SCSCR_TDRQE;
585 		if (new != scr)
586 			serial_port_out(port, SCSCR, new);
587 	}
588 
589 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
590 	    dma_submit_error(s->cookie_tx)) {
591 		s->cookie_tx = 0;
592 		schedule_work(&s->work_tx);
593 	}
594 #endif
595 
596 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
597 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
598 		ctrl = serial_port_in(port, SCSCR);
599 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
600 	}
601 }
602 
603 static void sci_stop_tx(struct uart_port *port)
604 {
605 	unsigned short ctrl;
606 
607 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
608 	ctrl = serial_port_in(port, SCSCR);
609 
610 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
611 		ctrl &= ~SCSCR_TDRQE;
612 
613 	ctrl &= ~SCSCR_TIE;
614 
615 	serial_port_out(port, SCSCR, ctrl);
616 }
617 
618 static void sci_start_rx(struct uart_port *port)
619 {
620 	unsigned short ctrl;
621 
622 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
623 
624 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
625 		ctrl &= ~SCSCR_RDRQE;
626 
627 	serial_port_out(port, SCSCR, ctrl);
628 }
629 
630 static void sci_stop_rx(struct uart_port *port)
631 {
632 	unsigned short ctrl;
633 
634 	ctrl = serial_port_in(port, SCSCR);
635 
636 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
637 		ctrl &= ~SCSCR_RDRQE;
638 
639 	ctrl &= ~port_rx_irq_mask(port);
640 
641 	serial_port_out(port, SCSCR, ctrl);
642 }
643 
644 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
645 {
646 	if (port->type == PORT_SCI) {
647 		/* Just store the mask */
648 		serial_port_out(port, SCxSR, mask);
649 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
650 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
651 		/* Only clear the status bits we want to clear */
652 		serial_port_out(port, SCxSR,
653 				serial_port_in(port, SCxSR) & mask);
654 	} else {
655 		/* Store the mask, clear parity/framing errors */
656 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
657 	}
658 }
659 
660 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
661     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
662 
663 #ifdef CONFIG_CONSOLE_POLL
664 static int sci_poll_get_char(struct uart_port *port)
665 {
666 	unsigned short status;
667 	int c;
668 
669 	do {
670 		status = serial_port_in(port, SCxSR);
671 		if (status & SCxSR_ERRORS(port)) {
672 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
673 			continue;
674 		}
675 		break;
676 	} while (1);
677 
678 	if (!(status & SCxSR_RDxF(port)))
679 		return NO_POLL_CHAR;
680 
681 	c = serial_port_in(port, SCxRDR);
682 
683 	/* Dummy read */
684 	serial_port_in(port, SCxSR);
685 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
686 
687 	return c;
688 }
689 #endif
690 
691 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
692 {
693 	unsigned short status;
694 
695 	do {
696 		status = serial_port_in(port, SCxSR);
697 	} while (!(status & SCxSR_TDxE(port)));
698 
699 	serial_port_out(port, SCxTDR, c);
700 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
701 }
702 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
703 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
704 
705 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
706 {
707 	struct sci_port *s = to_sci_port(port);
708 
709 	/*
710 	 * Use port-specific handler if provided.
711 	 */
712 	if (s->cfg->ops && s->cfg->ops->init_pins) {
713 		s->cfg->ops->init_pins(port, cflag);
714 		return;
715 	}
716 
717 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
718 		u16 data = serial_port_in(port, SCPDR);
719 		u16 ctrl = serial_port_in(port, SCPCR);
720 
721 		/* Enable RXD and TXD pin functions */
722 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
723 		if (to_sci_port(port)->has_rtscts) {
724 			/* RTS# is output, active low, unless autorts */
725 			if (!(port->mctrl & TIOCM_RTS)) {
726 				ctrl |= SCPCR_RTSC;
727 				data |= SCPDR_RTSD;
728 			} else if (!s->autorts) {
729 				ctrl |= SCPCR_RTSC;
730 				data &= ~SCPDR_RTSD;
731 			} else {
732 				/* Enable RTS# pin function */
733 				ctrl &= ~SCPCR_RTSC;
734 			}
735 			/* Enable CTS# pin function */
736 			ctrl &= ~SCPCR_CTSC;
737 		}
738 		serial_port_out(port, SCPDR, data);
739 		serial_port_out(port, SCPCR, ctrl);
740 	} else if (sci_getreg(port, SCSPTR)->size) {
741 		u16 status = serial_port_in(port, SCSPTR);
742 
743 		/* RTS# is always output; and active low, unless autorts */
744 		status |= SCSPTR_RTSIO;
745 		if (!(port->mctrl & TIOCM_RTS))
746 			status |= SCSPTR_RTSDT;
747 		else if (!s->autorts)
748 			status &= ~SCSPTR_RTSDT;
749 		/* CTS# and SCK are inputs */
750 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
751 		serial_port_out(port, SCSPTR, status);
752 	}
753 }
754 
755 static int sci_txfill(struct uart_port *port)
756 {
757 	struct sci_port *s = to_sci_port(port);
758 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
759 	const struct plat_sci_reg *reg;
760 
761 	reg = sci_getreg(port, SCTFDR);
762 	if (reg->size)
763 		return serial_port_in(port, SCTFDR) & fifo_mask;
764 
765 	reg = sci_getreg(port, SCFDR);
766 	if (reg->size)
767 		return serial_port_in(port, SCFDR) >> 8;
768 
769 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
770 }
771 
772 static int sci_txroom(struct uart_port *port)
773 {
774 	return port->fifosize - sci_txfill(port);
775 }
776 
777 static int sci_rxfill(struct uart_port *port)
778 {
779 	struct sci_port *s = to_sci_port(port);
780 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
781 	const struct plat_sci_reg *reg;
782 
783 	reg = sci_getreg(port, SCRFDR);
784 	if (reg->size)
785 		return serial_port_in(port, SCRFDR) & fifo_mask;
786 
787 	reg = sci_getreg(port, SCFDR);
788 	if (reg->size)
789 		return serial_port_in(port, SCFDR) & fifo_mask;
790 
791 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
792 }
793 
794 /* ********************************************************************** *
795  *                   the interrupt related routines                       *
796  * ********************************************************************** */
797 
798 static void sci_transmit_chars(struct uart_port *port)
799 {
800 	struct circ_buf *xmit = &port->state->xmit;
801 	unsigned int stopped = uart_tx_stopped(port);
802 	unsigned short status;
803 	unsigned short ctrl;
804 	int count;
805 
806 	status = serial_port_in(port, SCxSR);
807 	if (!(status & SCxSR_TDxE(port))) {
808 		ctrl = serial_port_in(port, SCSCR);
809 		if (uart_circ_empty(xmit))
810 			ctrl &= ~SCSCR_TIE;
811 		else
812 			ctrl |= SCSCR_TIE;
813 		serial_port_out(port, SCSCR, ctrl);
814 		return;
815 	}
816 
817 	count = sci_txroom(port);
818 
819 	do {
820 		unsigned char c;
821 
822 		if (port->x_char) {
823 			c = port->x_char;
824 			port->x_char = 0;
825 		} else if (!uart_circ_empty(xmit) && !stopped) {
826 			c = xmit->buf[xmit->tail];
827 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
828 		} else {
829 			break;
830 		}
831 
832 		serial_port_out(port, SCxTDR, c);
833 
834 		port->icount.tx++;
835 	} while (--count > 0);
836 
837 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
838 
839 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
840 		uart_write_wakeup(port);
841 	if (uart_circ_empty(xmit))
842 		sci_stop_tx(port);
843 
844 }
845 
846 /* On SH3, SCIF may read end-of-break as a space->mark char */
847 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
848 
849 static void sci_receive_chars(struct uart_port *port)
850 {
851 	struct tty_port *tport = &port->state->port;
852 	int i, count, copied = 0;
853 	unsigned short status;
854 	unsigned char flag;
855 
856 	status = serial_port_in(port, SCxSR);
857 	if (!(status & SCxSR_RDxF(port)))
858 		return;
859 
860 	while (1) {
861 		/* Don't copy more bytes than there is room for in the buffer */
862 		count = tty_buffer_request_room(tport, sci_rxfill(port));
863 
864 		/* If for any reason we can't copy more data, we're done! */
865 		if (count == 0)
866 			break;
867 
868 		if (port->type == PORT_SCI) {
869 			char c = serial_port_in(port, SCxRDR);
870 			if (uart_handle_sysrq_char(port, c))
871 				count = 0;
872 			else
873 				tty_insert_flip_char(tport, c, TTY_NORMAL);
874 		} else {
875 			for (i = 0; i < count; i++) {
876 				char c = serial_port_in(port, SCxRDR);
877 
878 				status = serial_port_in(port, SCxSR);
879 				if (uart_handle_sysrq_char(port, c)) {
880 					count--; i--;
881 					continue;
882 				}
883 
884 				/* Store data and status */
885 				if (status & SCxSR_FER(port)) {
886 					flag = TTY_FRAME;
887 					port->icount.frame++;
888 					dev_notice(port->dev, "frame error\n");
889 				} else if (status & SCxSR_PER(port)) {
890 					flag = TTY_PARITY;
891 					port->icount.parity++;
892 					dev_notice(port->dev, "parity error\n");
893 				} else
894 					flag = TTY_NORMAL;
895 
896 				tty_insert_flip_char(tport, c, flag);
897 			}
898 		}
899 
900 		serial_port_in(port, SCxSR); /* dummy read */
901 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
902 
903 		copied += count;
904 		port->icount.rx += count;
905 	}
906 
907 	if (copied) {
908 		/* Tell the rest of the system the news. New characters! */
909 		tty_flip_buffer_push(tport);
910 	} else {
911 		/* TTY buffers full; read from RX reg to prevent lockup */
912 		serial_port_in(port, SCxRDR);
913 		serial_port_in(port, SCxSR); /* dummy read */
914 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
915 	}
916 }
917 
918 static int sci_handle_errors(struct uart_port *port)
919 {
920 	int copied = 0;
921 	unsigned short status = serial_port_in(port, SCxSR);
922 	struct tty_port *tport = &port->state->port;
923 	struct sci_port *s = to_sci_port(port);
924 
925 	/* Handle overruns */
926 	if (status & s->params->overrun_mask) {
927 		port->icount.overrun++;
928 
929 		/* overrun error */
930 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
931 			copied++;
932 
933 		dev_notice(port->dev, "overrun error\n");
934 	}
935 
936 	if (status & SCxSR_FER(port)) {
937 		/* frame error */
938 		port->icount.frame++;
939 
940 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
941 			copied++;
942 
943 		dev_notice(port->dev, "frame error\n");
944 	}
945 
946 	if (status & SCxSR_PER(port)) {
947 		/* parity error */
948 		port->icount.parity++;
949 
950 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
951 			copied++;
952 
953 		dev_notice(port->dev, "parity error\n");
954 	}
955 
956 	if (copied)
957 		tty_flip_buffer_push(tport);
958 
959 	return copied;
960 }
961 
962 static int sci_handle_fifo_overrun(struct uart_port *port)
963 {
964 	struct tty_port *tport = &port->state->port;
965 	struct sci_port *s = to_sci_port(port);
966 	const struct plat_sci_reg *reg;
967 	int copied = 0;
968 	u16 status;
969 
970 	reg = sci_getreg(port, s->params->overrun_reg);
971 	if (!reg->size)
972 		return 0;
973 
974 	status = serial_port_in(port, s->params->overrun_reg);
975 	if (status & s->params->overrun_mask) {
976 		status &= ~s->params->overrun_mask;
977 		serial_port_out(port, s->params->overrun_reg, status);
978 
979 		port->icount.overrun++;
980 
981 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
982 		tty_flip_buffer_push(tport);
983 
984 		dev_dbg(port->dev, "overrun error\n");
985 		copied++;
986 	}
987 
988 	return copied;
989 }
990 
991 static int sci_handle_breaks(struct uart_port *port)
992 {
993 	int copied = 0;
994 	unsigned short status = serial_port_in(port, SCxSR);
995 	struct tty_port *tport = &port->state->port;
996 
997 	if (uart_handle_break(port))
998 		return 0;
999 
1000 	if (status & SCxSR_BRK(port)) {
1001 		port->icount.brk++;
1002 
1003 		/* Notify of BREAK */
1004 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1005 			copied++;
1006 
1007 		dev_dbg(port->dev, "BREAK detected\n");
1008 	}
1009 
1010 	if (copied)
1011 		tty_flip_buffer_push(tport);
1012 
1013 	copied += sci_handle_fifo_overrun(port);
1014 
1015 	return copied;
1016 }
1017 
1018 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1019 {
1020 	unsigned int bits;
1021 
1022 	if (rx_trig < 1)
1023 		rx_trig = 1;
1024 	if (rx_trig >= port->fifosize)
1025 		rx_trig = port->fifosize;
1026 
1027 	/* HSCIF can be set to an arbitrary level. */
1028 	if (sci_getreg(port, HSRTRGR)->size) {
1029 		serial_port_out(port, HSRTRGR, rx_trig);
1030 		return rx_trig;
1031 	}
1032 
1033 	switch (port->type) {
1034 	case PORT_SCIF:
1035 		if (rx_trig < 4) {
1036 			bits = 0;
1037 			rx_trig = 1;
1038 		} else if (rx_trig < 8) {
1039 			bits = SCFCR_RTRG0;
1040 			rx_trig = 4;
1041 		} else if (rx_trig < 14) {
1042 			bits = SCFCR_RTRG1;
1043 			rx_trig = 8;
1044 		} else {
1045 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1046 			rx_trig = 14;
1047 		}
1048 		break;
1049 	case PORT_SCIFA:
1050 	case PORT_SCIFB:
1051 		if (rx_trig < 16) {
1052 			bits = 0;
1053 			rx_trig = 1;
1054 		} else if (rx_trig < 32) {
1055 			bits = SCFCR_RTRG0;
1056 			rx_trig = 16;
1057 		} else if (rx_trig < 48) {
1058 			bits = SCFCR_RTRG1;
1059 			rx_trig = 32;
1060 		} else {
1061 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1062 			rx_trig = 48;
1063 		}
1064 		break;
1065 	default:
1066 		WARN(1, "unknown FIFO configuration");
1067 		return 1;
1068 	}
1069 
1070 	serial_port_out(port, SCFCR,
1071 		(serial_port_in(port, SCFCR) &
1072 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1073 
1074 	return rx_trig;
1075 }
1076 
1077 static int scif_rtrg_enabled(struct uart_port *port)
1078 {
1079 	if (sci_getreg(port, HSRTRGR)->size)
1080 		return serial_port_in(port, HSRTRGR) != 0;
1081 	else
1082 		return (serial_port_in(port, SCFCR) &
1083 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1084 }
1085 
1086 static void rx_fifo_timer_fn(struct timer_list *t)
1087 {
1088 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1089 	struct uart_port *port = &s->port;
1090 
1091 	dev_dbg(port->dev, "Rx timed out\n");
1092 	scif_set_rtrg(port, 1);
1093 }
1094 
1095 static ssize_t rx_trigger_show(struct device *dev,
1096 			       struct device_attribute *attr,
1097 			       char *buf)
1098 {
1099 	struct uart_port *port = dev_get_drvdata(dev);
1100 	struct sci_port *sci = to_sci_port(port);
1101 
1102 	return sprintf(buf, "%d\n", sci->rx_trigger);
1103 }
1104 
1105 static ssize_t rx_trigger_store(struct device *dev,
1106 				struct device_attribute *attr,
1107 				const char *buf,
1108 				size_t count)
1109 {
1110 	struct uart_port *port = dev_get_drvdata(dev);
1111 	struct sci_port *sci = to_sci_port(port);
1112 	int ret;
1113 	long r;
1114 
1115 	ret = kstrtol(buf, 0, &r);
1116 	if (ret)
1117 		return ret;
1118 
1119 	sci->rx_trigger = scif_set_rtrg(port, r);
1120 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1121 		scif_set_rtrg(port, 1);
1122 
1123 	return count;
1124 }
1125 
1126 static DEVICE_ATTR(rx_fifo_trigger, 0644, rx_trigger_show, rx_trigger_store);
1127 
1128 static ssize_t rx_fifo_timeout_show(struct device *dev,
1129 			       struct device_attribute *attr,
1130 			       char *buf)
1131 {
1132 	struct uart_port *port = dev_get_drvdata(dev);
1133 	struct sci_port *sci = to_sci_port(port);
1134 	int v;
1135 
1136 	if (port->type == PORT_HSCIF)
1137 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1138 	else
1139 		v = sci->rx_fifo_timeout;
1140 
1141 	return sprintf(buf, "%d\n", v);
1142 }
1143 
1144 static ssize_t rx_fifo_timeout_store(struct device *dev,
1145 				struct device_attribute *attr,
1146 				const char *buf,
1147 				size_t count)
1148 {
1149 	struct uart_port *port = dev_get_drvdata(dev);
1150 	struct sci_port *sci = to_sci_port(port);
1151 	int ret;
1152 	long r;
1153 
1154 	ret = kstrtol(buf, 0, &r);
1155 	if (ret)
1156 		return ret;
1157 
1158 	if (port->type == PORT_HSCIF) {
1159 		if (r < 0 || r > 3)
1160 			return -EINVAL;
1161 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1162 	} else {
1163 		sci->rx_fifo_timeout = r;
1164 		scif_set_rtrg(port, 1);
1165 		if (r > 0)
1166 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1167 	}
1168 
1169 	return count;
1170 }
1171 
1172 static DEVICE_ATTR_RW(rx_fifo_timeout);
1173 
1174 
1175 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1176 static void sci_dma_tx_complete(void *arg)
1177 {
1178 	struct sci_port *s = arg;
1179 	struct uart_port *port = &s->port;
1180 	struct circ_buf *xmit = &port->state->xmit;
1181 	unsigned long flags;
1182 
1183 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1184 
1185 	spin_lock_irqsave(&port->lock, flags);
1186 
1187 	xmit->tail += s->tx_dma_len;
1188 	xmit->tail &= UART_XMIT_SIZE - 1;
1189 
1190 	port->icount.tx += s->tx_dma_len;
1191 
1192 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1193 		uart_write_wakeup(port);
1194 
1195 	if (!uart_circ_empty(xmit)) {
1196 		s->cookie_tx = 0;
1197 		schedule_work(&s->work_tx);
1198 	} else {
1199 		s->cookie_tx = -EINVAL;
1200 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1201 			u16 ctrl = serial_port_in(port, SCSCR);
1202 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1203 		}
1204 	}
1205 
1206 	spin_unlock_irqrestore(&port->lock, flags);
1207 }
1208 
1209 /* Locking: called with port lock held */
1210 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1211 {
1212 	struct uart_port *port = &s->port;
1213 	struct tty_port *tport = &port->state->port;
1214 	int copied;
1215 
1216 	copied = tty_insert_flip_string(tport, buf, count);
1217 	if (copied < count)
1218 		port->icount.buf_overrun++;
1219 
1220 	port->icount.rx += copied;
1221 
1222 	return copied;
1223 }
1224 
1225 static int sci_dma_rx_find_active(struct sci_port *s)
1226 {
1227 	unsigned int i;
1228 
1229 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1230 		if (s->active_rx == s->cookie_rx[i])
1231 			return i;
1232 
1233 	return -1;
1234 }
1235 
1236 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1237 {
1238 	unsigned int i;
1239 
1240 	s->chan_rx = NULL;
1241 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1242 		s->cookie_rx[i] = -EINVAL;
1243 	s->active_rx = 0;
1244 }
1245 
1246 static void sci_dma_rx_release(struct sci_port *s)
1247 {
1248 	struct dma_chan *chan = s->chan_rx_saved;
1249 
1250 	s->chan_rx_saved = NULL;
1251 	sci_dma_rx_chan_invalidate(s);
1252 	dmaengine_terminate_sync(chan);
1253 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1254 			  sg_dma_address(&s->sg_rx[0]));
1255 	dma_release_channel(chan);
1256 }
1257 
1258 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1259 {
1260 	long sec = usec / 1000000;
1261 	long nsec = (usec % 1000000) * 1000;
1262 	ktime_t t = ktime_set(sec, nsec);
1263 
1264 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1265 }
1266 
1267 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1268 {
1269 	struct uart_port *port = &s->port;
1270 	u16 scr;
1271 
1272 	/* Direct new serial port interrupts back to CPU */
1273 	scr = serial_port_in(port, SCSCR);
1274 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1275 		scr &= ~SCSCR_RDRQE;
1276 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1277 	}
1278 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1279 }
1280 
1281 static void sci_dma_rx_complete(void *arg)
1282 {
1283 	struct sci_port *s = arg;
1284 	struct dma_chan *chan = s->chan_rx;
1285 	struct uart_port *port = &s->port;
1286 	struct dma_async_tx_descriptor *desc;
1287 	unsigned long flags;
1288 	int active, count = 0;
1289 
1290 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1291 		s->active_rx);
1292 
1293 	spin_lock_irqsave(&port->lock, flags);
1294 
1295 	active = sci_dma_rx_find_active(s);
1296 	if (active >= 0)
1297 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1298 
1299 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1300 
1301 	if (count)
1302 		tty_flip_buffer_push(&port->state->port);
1303 
1304 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1305 				       DMA_DEV_TO_MEM,
1306 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1307 	if (!desc)
1308 		goto fail;
1309 
1310 	desc->callback = sci_dma_rx_complete;
1311 	desc->callback_param = s;
1312 	s->cookie_rx[active] = dmaengine_submit(desc);
1313 	if (dma_submit_error(s->cookie_rx[active]))
1314 		goto fail;
1315 
1316 	s->active_rx = s->cookie_rx[!active];
1317 
1318 	dma_async_issue_pending(chan);
1319 
1320 	spin_unlock_irqrestore(&port->lock, flags);
1321 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1322 		__func__, s->cookie_rx[active], active, s->active_rx);
1323 	return;
1324 
1325 fail:
1326 	spin_unlock_irqrestore(&port->lock, flags);
1327 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1328 	/* Switch to PIO */
1329 	spin_lock_irqsave(&port->lock, flags);
1330 	dmaengine_terminate_async(chan);
1331 	sci_dma_rx_chan_invalidate(s);
1332 	sci_dma_rx_reenable_irq(s);
1333 	spin_unlock_irqrestore(&port->lock, flags);
1334 }
1335 
1336 static void sci_dma_tx_release(struct sci_port *s)
1337 {
1338 	struct dma_chan *chan = s->chan_tx_saved;
1339 
1340 	cancel_work_sync(&s->work_tx);
1341 	s->chan_tx_saved = s->chan_tx = NULL;
1342 	s->cookie_tx = -EINVAL;
1343 	dmaengine_terminate_sync(chan);
1344 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1345 			 DMA_TO_DEVICE);
1346 	dma_release_channel(chan);
1347 }
1348 
1349 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1350 {
1351 	struct dma_chan *chan = s->chan_rx;
1352 	struct uart_port *port = &s->port;
1353 	unsigned long flags;
1354 	int i;
1355 
1356 	for (i = 0; i < 2; i++) {
1357 		struct scatterlist *sg = &s->sg_rx[i];
1358 		struct dma_async_tx_descriptor *desc;
1359 
1360 		desc = dmaengine_prep_slave_sg(chan,
1361 			sg, 1, DMA_DEV_TO_MEM,
1362 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1363 		if (!desc)
1364 			goto fail;
1365 
1366 		desc->callback = sci_dma_rx_complete;
1367 		desc->callback_param = s;
1368 		s->cookie_rx[i] = dmaengine_submit(desc);
1369 		if (dma_submit_error(s->cookie_rx[i]))
1370 			goto fail;
1371 
1372 	}
1373 
1374 	s->active_rx = s->cookie_rx[0];
1375 
1376 	dma_async_issue_pending(chan);
1377 	return 0;
1378 
1379 fail:
1380 	/* Switch to PIO */
1381 	if (!port_lock_held)
1382 		spin_lock_irqsave(&port->lock, flags);
1383 	if (i)
1384 		dmaengine_terminate_async(chan);
1385 	sci_dma_rx_chan_invalidate(s);
1386 	sci_start_rx(port);
1387 	if (!port_lock_held)
1388 		spin_unlock_irqrestore(&port->lock, flags);
1389 	return -EAGAIN;
1390 }
1391 
1392 static void sci_dma_tx_work_fn(struct work_struct *work)
1393 {
1394 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1395 	struct dma_async_tx_descriptor *desc;
1396 	struct dma_chan *chan = s->chan_tx;
1397 	struct uart_port *port = &s->port;
1398 	struct circ_buf *xmit = &port->state->xmit;
1399 	unsigned long flags;
1400 	dma_addr_t buf;
1401 
1402 	/*
1403 	 * DMA is idle now.
1404 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1405 	 * offsets and lengths. Since it is a circular buffer, we have to
1406 	 * transmit till the end, and then the rest. Take the port lock to get a
1407 	 * consistent xmit buffer state.
1408 	 */
1409 	spin_lock_irq(&port->lock);
1410 	buf = s->tx_dma_addr + (xmit->tail & (UART_XMIT_SIZE - 1));
1411 	s->tx_dma_len = min_t(unsigned int,
1412 		CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1413 		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1414 	spin_unlock_irq(&port->lock);
1415 
1416 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1417 					   DMA_MEM_TO_DEV,
1418 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1419 	if (!desc) {
1420 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1421 		goto switch_to_pio;
1422 	}
1423 
1424 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1425 				   DMA_TO_DEVICE);
1426 
1427 	spin_lock_irq(&port->lock);
1428 	desc->callback = sci_dma_tx_complete;
1429 	desc->callback_param = s;
1430 	spin_unlock_irq(&port->lock);
1431 	s->cookie_tx = dmaengine_submit(desc);
1432 	if (dma_submit_error(s->cookie_tx)) {
1433 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1434 		goto switch_to_pio;
1435 	}
1436 
1437 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1438 		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1439 
1440 	dma_async_issue_pending(chan);
1441 	return;
1442 
1443 switch_to_pio:
1444 	spin_lock_irqsave(&port->lock, flags);
1445 	s->chan_tx = NULL;
1446 	sci_start_tx(port);
1447 	spin_unlock_irqrestore(&port->lock, flags);
1448 	return;
1449 }
1450 
1451 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1452 {
1453 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1454 	struct dma_chan *chan = s->chan_rx;
1455 	struct uart_port *port = &s->port;
1456 	struct dma_tx_state state;
1457 	enum dma_status status;
1458 	unsigned long flags;
1459 	unsigned int read;
1460 	int active, count;
1461 
1462 	dev_dbg(port->dev, "DMA Rx timed out\n");
1463 
1464 	spin_lock_irqsave(&port->lock, flags);
1465 
1466 	active = sci_dma_rx_find_active(s);
1467 	if (active < 0) {
1468 		spin_unlock_irqrestore(&port->lock, flags);
1469 		return HRTIMER_NORESTART;
1470 	}
1471 
1472 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1473 	if (status == DMA_COMPLETE) {
1474 		spin_unlock_irqrestore(&port->lock, flags);
1475 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1476 			s->active_rx, active);
1477 
1478 		/* Let packet complete handler take care of the packet */
1479 		return HRTIMER_NORESTART;
1480 	}
1481 
1482 	dmaengine_pause(chan);
1483 
1484 	/*
1485 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1486 	 * data keeps on coming until transaction is complete so check
1487 	 * for DMA_COMPLETE again
1488 	 * Let packet complete handler take care of the packet
1489 	 */
1490 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1491 	if (status == DMA_COMPLETE) {
1492 		spin_unlock_irqrestore(&port->lock, flags);
1493 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1494 		return HRTIMER_NORESTART;
1495 	}
1496 
1497 	/* Handle incomplete DMA receive */
1498 	dmaengine_terminate_async(s->chan_rx);
1499 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1500 
1501 	if (read) {
1502 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1503 		if (count)
1504 			tty_flip_buffer_push(&port->state->port);
1505 	}
1506 
1507 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1508 		sci_dma_rx_submit(s, true);
1509 
1510 	sci_dma_rx_reenable_irq(s);
1511 
1512 	spin_unlock_irqrestore(&port->lock, flags);
1513 
1514 	return HRTIMER_NORESTART;
1515 }
1516 
1517 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1518 					     enum dma_transfer_direction dir)
1519 {
1520 	struct dma_chan *chan;
1521 	struct dma_slave_config cfg;
1522 	int ret;
1523 
1524 	chan = dma_request_slave_channel(port->dev,
1525 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1526 	if (!chan) {
1527 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1528 		return NULL;
1529 	}
1530 
1531 	memset(&cfg, 0, sizeof(cfg));
1532 	cfg.direction = dir;
1533 	if (dir == DMA_MEM_TO_DEV) {
1534 		cfg.dst_addr = port->mapbase +
1535 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1536 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1537 	} else {
1538 		cfg.src_addr = port->mapbase +
1539 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1540 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1541 	}
1542 
1543 	ret = dmaengine_slave_config(chan, &cfg);
1544 	if (ret) {
1545 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1546 		dma_release_channel(chan);
1547 		return NULL;
1548 	}
1549 
1550 	return chan;
1551 }
1552 
1553 static void sci_request_dma(struct uart_port *port)
1554 {
1555 	struct sci_port *s = to_sci_port(port);
1556 	struct dma_chan *chan;
1557 
1558 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1559 
1560 	/*
1561 	 * DMA on console may interfere with Kernel log messages which use
1562 	 * plain putchar(). So, simply don't use it with a console.
1563 	 */
1564 	if (uart_console(port))
1565 		return;
1566 
1567 	if (!port->dev->of_node)
1568 		return;
1569 
1570 	s->cookie_tx = -EINVAL;
1571 
1572 	/*
1573 	 * Don't request a dma channel if no channel was specified
1574 	 * in the device tree.
1575 	 */
1576 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1577 		return;
1578 
1579 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1580 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1581 	if (chan) {
1582 		/* UART circular tx buffer is an aligned page. */
1583 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1584 						port->state->xmit.buf,
1585 						UART_XMIT_SIZE,
1586 						DMA_TO_DEVICE);
1587 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1588 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1589 			dma_release_channel(chan);
1590 		} else {
1591 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1592 				__func__, UART_XMIT_SIZE,
1593 				port->state->xmit.buf, &s->tx_dma_addr);
1594 
1595 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1596 			s->chan_tx_saved = s->chan_tx = chan;
1597 		}
1598 	}
1599 
1600 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1601 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1602 	if (chan) {
1603 		unsigned int i;
1604 		dma_addr_t dma;
1605 		void *buf;
1606 
1607 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1608 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1609 					 &dma, GFP_KERNEL);
1610 		if (!buf) {
1611 			dev_warn(port->dev,
1612 				 "Failed to allocate Rx dma buffer, using PIO\n");
1613 			dma_release_channel(chan);
1614 			return;
1615 		}
1616 
1617 		for (i = 0; i < 2; i++) {
1618 			struct scatterlist *sg = &s->sg_rx[i];
1619 
1620 			sg_init_table(sg, 1);
1621 			s->rx_buf[i] = buf;
1622 			sg_dma_address(sg) = dma;
1623 			sg_dma_len(sg) = s->buf_len_rx;
1624 
1625 			buf += s->buf_len_rx;
1626 			dma += s->buf_len_rx;
1627 		}
1628 
1629 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1630 		s->rx_timer.function = sci_dma_rx_timer_fn;
1631 
1632 		s->chan_rx_saved = s->chan_rx = chan;
1633 
1634 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1635 			sci_dma_rx_submit(s, false);
1636 	}
1637 }
1638 
1639 static void sci_free_dma(struct uart_port *port)
1640 {
1641 	struct sci_port *s = to_sci_port(port);
1642 
1643 	if (s->chan_tx_saved)
1644 		sci_dma_tx_release(s);
1645 	if (s->chan_rx_saved)
1646 		sci_dma_rx_release(s);
1647 }
1648 
1649 static void sci_flush_buffer(struct uart_port *port)
1650 {
1651 	/*
1652 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1653 	 * cleared, so we have to reset tx_dma_len accordingly.
1654 	 */
1655 	to_sci_port(port)->tx_dma_len = 0;
1656 }
1657 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
1658 static inline void sci_request_dma(struct uart_port *port)
1659 {
1660 }
1661 
1662 static inline void sci_free_dma(struct uart_port *port)
1663 {
1664 }
1665 
1666 #define sci_flush_buffer	NULL
1667 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1668 
1669 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1670 {
1671 	struct uart_port *port = ptr;
1672 	struct sci_port *s = to_sci_port(port);
1673 
1674 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1675 	if (s->chan_rx) {
1676 		u16 scr = serial_port_in(port, SCSCR);
1677 		u16 ssr = serial_port_in(port, SCxSR);
1678 
1679 		/* Disable future Rx interrupts */
1680 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1681 			disable_irq_nosync(irq);
1682 			scr |= SCSCR_RDRQE;
1683 		} else {
1684 			if (sci_dma_rx_submit(s, false) < 0)
1685 				goto handle_pio;
1686 
1687 			scr &= ~SCSCR_RIE;
1688 		}
1689 		serial_port_out(port, SCSCR, scr);
1690 		/* Clear current interrupt */
1691 		serial_port_out(port, SCxSR,
1692 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1693 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1694 			jiffies, s->rx_timeout);
1695 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1696 
1697 		return IRQ_HANDLED;
1698 	}
1699 
1700 handle_pio:
1701 #endif
1702 
1703 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1704 		if (!scif_rtrg_enabled(port))
1705 			scif_set_rtrg(port, s->rx_trigger);
1706 
1707 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1708 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1709 	}
1710 
1711 	/* I think sci_receive_chars has to be called irrespective
1712 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1713 	 * to be disabled?
1714 	 */
1715 	sci_receive_chars(port);
1716 
1717 	return IRQ_HANDLED;
1718 }
1719 
1720 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1721 {
1722 	struct uart_port *port = ptr;
1723 	unsigned long flags;
1724 
1725 	spin_lock_irqsave(&port->lock, flags);
1726 	sci_transmit_chars(port);
1727 	spin_unlock_irqrestore(&port->lock, flags);
1728 
1729 	return IRQ_HANDLED;
1730 }
1731 
1732 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1733 {
1734 	struct uart_port *port = ptr;
1735 
1736 	/* Handle BREAKs */
1737 	sci_handle_breaks(port);
1738 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1739 
1740 	return IRQ_HANDLED;
1741 }
1742 
1743 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1744 {
1745 	struct uart_port *port = ptr;
1746 	struct sci_port *s = to_sci_port(port);
1747 
1748 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1749 		/* Break and Error interrupts are muxed */
1750 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1751 
1752 		/* Break Interrupt */
1753 		if (ssr_status & SCxSR_BRK(port))
1754 			sci_br_interrupt(irq, ptr);
1755 
1756 		/* Break only? */
1757 		if (!(ssr_status & SCxSR_ERRORS(port)))
1758 			return IRQ_HANDLED;
1759 	}
1760 
1761 	/* Handle errors */
1762 	if (port->type == PORT_SCI) {
1763 		if (sci_handle_errors(port)) {
1764 			/* discard character in rx buffer */
1765 			serial_port_in(port, SCxSR);
1766 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1767 		}
1768 	} else {
1769 		sci_handle_fifo_overrun(port);
1770 		if (!s->chan_rx)
1771 			sci_receive_chars(port);
1772 	}
1773 
1774 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1775 
1776 	/* Kick the transmission */
1777 	if (!s->chan_tx)
1778 		sci_tx_interrupt(irq, ptr);
1779 
1780 	return IRQ_HANDLED;
1781 }
1782 
1783 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1784 {
1785 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1786 	struct uart_port *port = ptr;
1787 	struct sci_port *s = to_sci_port(port);
1788 	irqreturn_t ret = IRQ_NONE;
1789 
1790 	ssr_status = serial_port_in(port, SCxSR);
1791 	scr_status = serial_port_in(port, SCSCR);
1792 	if (s->params->overrun_reg == SCxSR)
1793 		orer_status = ssr_status;
1794 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1795 		orer_status = serial_port_in(port, s->params->overrun_reg);
1796 
1797 	err_enabled = scr_status & port_rx_irq_mask(port);
1798 
1799 	/* Tx Interrupt */
1800 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1801 	    !s->chan_tx)
1802 		ret = sci_tx_interrupt(irq, ptr);
1803 
1804 	/*
1805 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1806 	 * DR flags
1807 	 */
1808 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1809 	    (scr_status & SCSCR_RIE))
1810 		ret = sci_rx_interrupt(irq, ptr);
1811 
1812 	/* Error Interrupt */
1813 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1814 		ret = sci_er_interrupt(irq, ptr);
1815 
1816 	/* Break Interrupt */
1817 	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1818 		ret = sci_br_interrupt(irq, ptr);
1819 
1820 	/* Overrun Interrupt */
1821 	if (orer_status & s->params->overrun_mask) {
1822 		sci_handle_fifo_overrun(port);
1823 		ret = IRQ_HANDLED;
1824 	}
1825 
1826 	return ret;
1827 }
1828 
1829 static const struct sci_irq_desc {
1830 	const char	*desc;
1831 	irq_handler_t	handler;
1832 } sci_irq_desc[] = {
1833 	/*
1834 	 * Split out handlers, the default case.
1835 	 */
1836 	[SCIx_ERI_IRQ] = {
1837 		.desc = "rx err",
1838 		.handler = sci_er_interrupt,
1839 	},
1840 
1841 	[SCIx_RXI_IRQ] = {
1842 		.desc = "rx full",
1843 		.handler = sci_rx_interrupt,
1844 	},
1845 
1846 	[SCIx_TXI_IRQ] = {
1847 		.desc = "tx empty",
1848 		.handler = sci_tx_interrupt,
1849 	},
1850 
1851 	[SCIx_BRI_IRQ] = {
1852 		.desc = "break",
1853 		.handler = sci_br_interrupt,
1854 	},
1855 
1856 	[SCIx_DRI_IRQ] = {
1857 		.desc = "rx ready",
1858 		.handler = sci_rx_interrupt,
1859 	},
1860 
1861 	[SCIx_TEI_IRQ] = {
1862 		.desc = "tx end",
1863 		.handler = sci_tx_interrupt,
1864 	},
1865 
1866 	/*
1867 	 * Special muxed handler.
1868 	 */
1869 	[SCIx_MUX_IRQ] = {
1870 		.desc = "mux",
1871 		.handler = sci_mpxed_interrupt,
1872 	},
1873 };
1874 
1875 static int sci_request_irq(struct sci_port *port)
1876 {
1877 	struct uart_port *up = &port->port;
1878 	int i, j, w, ret = 0;
1879 
1880 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1881 		const struct sci_irq_desc *desc;
1882 		int irq;
1883 
1884 		/* Check if already registered (muxed) */
1885 		for (w = 0; w < i; w++)
1886 			if (port->irqs[w] == port->irqs[i])
1887 				w = i + 1;
1888 		if (w > i)
1889 			continue;
1890 
1891 		if (SCIx_IRQ_IS_MUXED(port)) {
1892 			i = SCIx_MUX_IRQ;
1893 			irq = up->irq;
1894 		} else {
1895 			irq = port->irqs[i];
1896 
1897 			/*
1898 			 * Certain port types won't support all of the
1899 			 * available interrupt sources.
1900 			 */
1901 			if (unlikely(irq < 0))
1902 				continue;
1903 		}
1904 
1905 		desc = sci_irq_desc + i;
1906 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1907 					    dev_name(up->dev), desc->desc);
1908 		if (!port->irqstr[j]) {
1909 			ret = -ENOMEM;
1910 			goto out_nomem;
1911 		}
1912 
1913 		ret = request_irq(irq, desc->handler, up->irqflags,
1914 				  port->irqstr[j], port);
1915 		if (unlikely(ret)) {
1916 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1917 			goto out_noirq;
1918 		}
1919 	}
1920 
1921 	return 0;
1922 
1923 out_noirq:
1924 	while (--i >= 0)
1925 		free_irq(port->irqs[i], port);
1926 
1927 out_nomem:
1928 	while (--j >= 0)
1929 		kfree(port->irqstr[j]);
1930 
1931 	return ret;
1932 }
1933 
1934 static void sci_free_irq(struct sci_port *port)
1935 {
1936 	int i, j;
1937 
1938 	/*
1939 	 * Intentionally in reverse order so we iterate over the muxed
1940 	 * IRQ first.
1941 	 */
1942 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1943 		int irq = port->irqs[i];
1944 
1945 		/*
1946 		 * Certain port types won't support all of the available
1947 		 * interrupt sources.
1948 		 */
1949 		if (unlikely(irq < 0))
1950 			continue;
1951 
1952 		/* Check if already freed (irq was muxed) */
1953 		for (j = 0; j < i; j++)
1954 			if (port->irqs[j] == irq)
1955 				j = i + 1;
1956 		if (j > i)
1957 			continue;
1958 
1959 		free_irq(port->irqs[i], port);
1960 		kfree(port->irqstr[i]);
1961 
1962 		if (SCIx_IRQ_IS_MUXED(port)) {
1963 			/* If there's only one IRQ, we're done. */
1964 			return;
1965 		}
1966 	}
1967 }
1968 
1969 static unsigned int sci_tx_empty(struct uart_port *port)
1970 {
1971 	unsigned short status = serial_port_in(port, SCxSR);
1972 	unsigned short in_tx_fifo = sci_txfill(port);
1973 
1974 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1975 }
1976 
1977 static void sci_set_rts(struct uart_port *port, bool state)
1978 {
1979 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1980 		u16 data = serial_port_in(port, SCPDR);
1981 
1982 		/* Active low */
1983 		if (state)
1984 			data &= ~SCPDR_RTSD;
1985 		else
1986 			data |= SCPDR_RTSD;
1987 		serial_port_out(port, SCPDR, data);
1988 
1989 		/* RTS# is output */
1990 		serial_port_out(port, SCPCR,
1991 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
1992 	} else if (sci_getreg(port, SCSPTR)->size) {
1993 		u16 ctrl = serial_port_in(port, SCSPTR);
1994 
1995 		/* Active low */
1996 		if (state)
1997 			ctrl &= ~SCSPTR_RTSDT;
1998 		else
1999 			ctrl |= SCSPTR_RTSDT;
2000 		serial_port_out(port, SCSPTR, ctrl);
2001 	}
2002 }
2003 
2004 static bool sci_get_cts(struct uart_port *port)
2005 {
2006 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2007 		/* Active low */
2008 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2009 	} else if (sci_getreg(port, SCSPTR)->size) {
2010 		/* Active low */
2011 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2012 	}
2013 
2014 	return true;
2015 }
2016 
2017 /*
2018  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2019  * CTS/RTS is supported in hardware by at least one port and controlled
2020  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2021  * handled via the ->init_pins() op, which is a bit of a one-way street,
2022  * lacking any ability to defer pin control -- this will later be
2023  * converted over to the GPIO framework).
2024  *
2025  * Other modes (such as loopback) are supported generically on certain
2026  * port types, but not others. For these it's sufficient to test for the
2027  * existence of the support register and simply ignore the port type.
2028  */
2029 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2030 {
2031 	struct sci_port *s = to_sci_port(port);
2032 
2033 	if (mctrl & TIOCM_LOOP) {
2034 		const struct plat_sci_reg *reg;
2035 
2036 		/*
2037 		 * Standard loopback mode for SCFCR ports.
2038 		 */
2039 		reg = sci_getreg(port, SCFCR);
2040 		if (reg->size)
2041 			serial_port_out(port, SCFCR,
2042 					serial_port_in(port, SCFCR) |
2043 					SCFCR_LOOP);
2044 	}
2045 
2046 	mctrl_gpio_set(s->gpios, mctrl);
2047 
2048 	if (!s->has_rtscts)
2049 		return;
2050 
2051 	if (!(mctrl & TIOCM_RTS)) {
2052 		/* Disable Auto RTS */
2053 		serial_port_out(port, SCFCR,
2054 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2055 
2056 		/* Clear RTS */
2057 		sci_set_rts(port, 0);
2058 	} else if (s->autorts) {
2059 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2060 			/* Enable RTS# pin function */
2061 			serial_port_out(port, SCPCR,
2062 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2063 		}
2064 
2065 		/* Enable Auto RTS */
2066 		serial_port_out(port, SCFCR,
2067 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2068 	} else {
2069 		/* Set RTS */
2070 		sci_set_rts(port, 1);
2071 	}
2072 }
2073 
2074 static unsigned int sci_get_mctrl(struct uart_port *port)
2075 {
2076 	struct sci_port *s = to_sci_port(port);
2077 	struct mctrl_gpios *gpios = s->gpios;
2078 	unsigned int mctrl = 0;
2079 
2080 	mctrl_gpio_get(gpios, &mctrl);
2081 
2082 	/*
2083 	 * CTS/RTS is handled in hardware when supported, while nothing
2084 	 * else is wired up.
2085 	 */
2086 	if (s->autorts) {
2087 		if (sci_get_cts(port))
2088 			mctrl |= TIOCM_CTS;
2089 	} else if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS))) {
2090 		mctrl |= TIOCM_CTS;
2091 	}
2092 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR)))
2093 		mctrl |= TIOCM_DSR;
2094 	if (IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD)))
2095 		mctrl |= TIOCM_CAR;
2096 
2097 	return mctrl;
2098 }
2099 
2100 static void sci_enable_ms(struct uart_port *port)
2101 {
2102 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2103 }
2104 
2105 static void sci_break_ctl(struct uart_port *port, int break_state)
2106 {
2107 	unsigned short scscr, scsptr;
2108 	unsigned long flags;
2109 
2110 	/* check wheter the port has SCSPTR */
2111 	if (!sci_getreg(port, SCSPTR)->size) {
2112 		/*
2113 		 * Not supported by hardware. Most parts couple break and rx
2114 		 * interrupts together, with break detection always enabled.
2115 		 */
2116 		return;
2117 	}
2118 
2119 	spin_lock_irqsave(&port->lock, flags);
2120 	scsptr = serial_port_in(port, SCSPTR);
2121 	scscr = serial_port_in(port, SCSCR);
2122 
2123 	if (break_state == -1) {
2124 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2125 		scscr &= ~SCSCR_TE;
2126 	} else {
2127 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2128 		scscr |= SCSCR_TE;
2129 	}
2130 
2131 	serial_port_out(port, SCSPTR, scsptr);
2132 	serial_port_out(port, SCSCR, scscr);
2133 	spin_unlock_irqrestore(&port->lock, flags);
2134 }
2135 
2136 static int sci_startup(struct uart_port *port)
2137 {
2138 	struct sci_port *s = to_sci_port(port);
2139 	int ret;
2140 
2141 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2142 
2143 	sci_request_dma(port);
2144 
2145 	ret = sci_request_irq(s);
2146 	if (unlikely(ret < 0)) {
2147 		sci_free_dma(port);
2148 		return ret;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static void sci_shutdown(struct uart_port *port)
2155 {
2156 	struct sci_port *s = to_sci_port(port);
2157 	unsigned long flags;
2158 	u16 scr;
2159 
2160 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2161 
2162 	s->autorts = false;
2163 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2164 
2165 	spin_lock_irqsave(&port->lock, flags);
2166 	sci_stop_rx(port);
2167 	sci_stop_tx(port);
2168 	/*
2169 	 * Stop RX and TX, disable related interrupts, keep clock source
2170 	 * and HSCIF TOT bits
2171 	 */
2172 	scr = serial_port_in(port, SCSCR);
2173 	serial_port_out(port, SCSCR, scr &
2174 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2175 	spin_unlock_irqrestore(&port->lock, flags);
2176 
2177 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2178 	if (s->chan_rx_saved) {
2179 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2180 			port->line);
2181 		hrtimer_cancel(&s->rx_timer);
2182 	}
2183 #endif
2184 
2185 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2186 		del_timer_sync(&s->rx_fifo_timer);
2187 	sci_free_irq(s);
2188 	sci_free_dma(port);
2189 }
2190 
2191 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2192 			unsigned int *srr)
2193 {
2194 	unsigned long freq = s->clk_rates[SCI_SCK];
2195 	int err, min_err = INT_MAX;
2196 	unsigned int sr;
2197 
2198 	if (s->port.type != PORT_HSCIF)
2199 		freq *= 2;
2200 
2201 	for_each_sr(sr, s) {
2202 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2203 		if (abs(err) >= abs(min_err))
2204 			continue;
2205 
2206 		min_err = err;
2207 		*srr = sr - 1;
2208 
2209 		if (!err)
2210 			break;
2211 	}
2212 
2213 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2214 		*srr + 1);
2215 	return min_err;
2216 }
2217 
2218 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2219 			unsigned long freq, unsigned int *dlr,
2220 			unsigned int *srr)
2221 {
2222 	int err, min_err = INT_MAX;
2223 	unsigned int sr, dl;
2224 
2225 	if (s->port.type != PORT_HSCIF)
2226 		freq *= 2;
2227 
2228 	for_each_sr(sr, s) {
2229 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2230 		dl = clamp(dl, 1U, 65535U);
2231 
2232 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2233 		if (abs(err) >= abs(min_err))
2234 			continue;
2235 
2236 		min_err = err;
2237 		*dlr = dl;
2238 		*srr = sr - 1;
2239 
2240 		if (!err)
2241 			break;
2242 	}
2243 
2244 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2245 		min_err, *dlr, *srr + 1);
2246 	return min_err;
2247 }
2248 
2249 /* calculate sample rate, BRR, and clock select */
2250 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2251 			  unsigned int *brr, unsigned int *srr,
2252 			  unsigned int *cks)
2253 {
2254 	unsigned long freq = s->clk_rates[SCI_FCK];
2255 	unsigned int sr, br, prediv, scrate, c;
2256 	int err, min_err = INT_MAX;
2257 
2258 	if (s->port.type != PORT_HSCIF)
2259 		freq *= 2;
2260 
2261 	/*
2262 	 * Find the combination of sample rate and clock select with the
2263 	 * smallest deviation from the desired baud rate.
2264 	 * Prefer high sample rates to maximise the receive margin.
2265 	 *
2266 	 * M: Receive margin (%)
2267 	 * N: Ratio of bit rate to clock (N = sampling rate)
2268 	 * D: Clock duty (D = 0 to 1.0)
2269 	 * L: Frame length (L = 9 to 12)
2270 	 * F: Absolute value of clock frequency deviation
2271 	 *
2272 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2273 	 *      (|D - 0.5| / N * (1 + F))|
2274 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2275 	 */
2276 	for_each_sr(sr, s) {
2277 		for (c = 0; c <= 3; c++) {
2278 			/* integerized formulas from HSCIF documentation */
2279 			prediv = sr * (1 << (2 * c + 1));
2280 
2281 			/*
2282 			 * We need to calculate:
2283 			 *
2284 			 *     br = freq / (prediv * bps) clamped to [1..256]
2285 			 *     err = freq / (br * prediv) - bps
2286 			 *
2287 			 * Watch out for overflow when calculating the desired
2288 			 * sampling clock rate!
2289 			 */
2290 			if (bps > UINT_MAX / prediv)
2291 				break;
2292 
2293 			scrate = prediv * bps;
2294 			br = DIV_ROUND_CLOSEST(freq, scrate);
2295 			br = clamp(br, 1U, 256U);
2296 
2297 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2298 			if (abs(err) >= abs(min_err))
2299 				continue;
2300 
2301 			min_err = err;
2302 			*brr = br - 1;
2303 			*srr = sr - 1;
2304 			*cks = c;
2305 
2306 			if (!err)
2307 				goto found;
2308 		}
2309 	}
2310 
2311 found:
2312 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2313 		min_err, *brr, *srr + 1, *cks);
2314 	return min_err;
2315 }
2316 
2317 static void sci_reset(struct uart_port *port)
2318 {
2319 	const struct plat_sci_reg *reg;
2320 	unsigned int status;
2321 	struct sci_port *s = to_sci_port(port);
2322 
2323 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2324 
2325 	reg = sci_getreg(port, SCFCR);
2326 	if (reg->size)
2327 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2328 
2329 	sci_clear_SCxSR(port,
2330 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2331 			SCxSR_BREAK_CLEAR(port));
2332 	if (sci_getreg(port, SCLSR)->size) {
2333 		status = serial_port_in(port, SCLSR);
2334 		status &= ~(SCLSR_TO | SCLSR_ORER);
2335 		serial_port_out(port, SCLSR, status);
2336 	}
2337 
2338 	if (s->rx_trigger > 1) {
2339 		if (s->rx_fifo_timeout) {
2340 			scif_set_rtrg(port, 1);
2341 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2342 		} else {
2343 			if (port->type == PORT_SCIFA ||
2344 			    port->type == PORT_SCIFB)
2345 				scif_set_rtrg(port, 1);
2346 			else
2347 				scif_set_rtrg(port, s->rx_trigger);
2348 		}
2349 	}
2350 }
2351 
2352 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2353 			    struct ktermios *old)
2354 {
2355 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2356 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2357 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2358 	struct sci_port *s = to_sci_port(port);
2359 	const struct plat_sci_reg *reg;
2360 	int min_err = INT_MAX, err;
2361 	unsigned long max_freq = 0;
2362 	int best_clk = -1;
2363 	unsigned long flags;
2364 
2365 	if ((termios->c_cflag & CSIZE) == CS7)
2366 		smr_val |= SCSMR_CHR;
2367 	if (termios->c_cflag & PARENB)
2368 		smr_val |= SCSMR_PE;
2369 	if (termios->c_cflag & PARODD)
2370 		smr_val |= SCSMR_PE | SCSMR_ODD;
2371 	if (termios->c_cflag & CSTOPB)
2372 		smr_val |= SCSMR_STOP;
2373 
2374 	/*
2375 	 * earlyprintk comes here early on with port->uartclk set to zero.
2376 	 * the clock framework is not up and running at this point so here
2377 	 * we assume that 115200 is the maximum baud rate. please note that
2378 	 * the baud rate is not programmed during earlyprintk - it is assumed
2379 	 * that the previous boot loader has enabled required clocks and
2380 	 * setup the baud rate generator hardware for us already.
2381 	 */
2382 	if (!port->uartclk) {
2383 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2384 		goto done;
2385 	}
2386 
2387 	for (i = 0; i < SCI_NUM_CLKS; i++)
2388 		max_freq = max(max_freq, s->clk_rates[i]);
2389 
2390 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2391 	if (!baud)
2392 		goto done;
2393 
2394 	/*
2395 	 * There can be multiple sources for the sampling clock.  Find the one
2396 	 * that gives us the smallest deviation from the desired baud rate.
2397 	 */
2398 
2399 	/* Optional Undivided External Clock */
2400 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2401 	    port->type != PORT_SCIFB) {
2402 		err = sci_sck_calc(s, baud, &srr1);
2403 		if (abs(err) < abs(min_err)) {
2404 			best_clk = SCI_SCK;
2405 			scr_val = SCSCR_CKE1;
2406 			sccks = SCCKS_CKS;
2407 			min_err = err;
2408 			srr = srr1;
2409 			if (!err)
2410 				goto done;
2411 		}
2412 	}
2413 
2414 	/* Optional BRG Frequency Divided External Clock */
2415 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2416 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2417 				   &srr1);
2418 		if (abs(err) < abs(min_err)) {
2419 			best_clk = SCI_SCIF_CLK;
2420 			scr_val = SCSCR_CKE1;
2421 			sccks = 0;
2422 			min_err = err;
2423 			dl = dl1;
2424 			srr = srr1;
2425 			if (!err)
2426 				goto done;
2427 		}
2428 	}
2429 
2430 	/* Optional BRG Frequency Divided Internal Clock */
2431 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2432 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2433 				   &srr1);
2434 		if (abs(err) < abs(min_err)) {
2435 			best_clk = SCI_BRG_INT;
2436 			scr_val = SCSCR_CKE1;
2437 			sccks = SCCKS_XIN;
2438 			min_err = err;
2439 			dl = dl1;
2440 			srr = srr1;
2441 			if (!min_err)
2442 				goto done;
2443 		}
2444 	}
2445 
2446 	/* Divided Functional Clock using standard Bit Rate Register */
2447 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2448 	if (abs(err) < abs(min_err)) {
2449 		best_clk = SCI_FCK;
2450 		scr_val = 0;
2451 		min_err = err;
2452 		brr = brr1;
2453 		srr = srr1;
2454 		cks = cks1;
2455 	}
2456 
2457 done:
2458 	if (best_clk >= 0)
2459 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2460 			s->clks[best_clk], baud, min_err);
2461 
2462 	sci_port_enable(s);
2463 
2464 	/*
2465 	 * Program the optional External Baud Rate Generator (BRG) first.
2466 	 * It controls the mux to select (H)SCK or frequency divided clock.
2467 	 */
2468 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2469 		serial_port_out(port, SCDL, dl);
2470 		serial_port_out(port, SCCKS, sccks);
2471 	}
2472 
2473 	spin_lock_irqsave(&port->lock, flags);
2474 
2475 	sci_reset(port);
2476 
2477 	uart_update_timeout(port, termios->c_cflag, baud);
2478 
2479 	/* byte size and parity */
2480 	switch (termios->c_cflag & CSIZE) {
2481 	case CS5:
2482 		bits = 7;
2483 		break;
2484 	case CS6:
2485 		bits = 8;
2486 		break;
2487 	case CS7:
2488 		bits = 9;
2489 		break;
2490 	default:
2491 		bits = 10;
2492 		break;
2493 	}
2494 
2495 	if (termios->c_cflag & CSTOPB)
2496 		bits++;
2497 	if (termios->c_cflag & PARENB)
2498 		bits++;
2499 
2500 	if (best_clk >= 0) {
2501 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2502 			switch (srr + 1) {
2503 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2504 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2505 			case 11: smr_val |= SCSMR_SRC_11; break;
2506 			case 13: smr_val |= SCSMR_SRC_13; break;
2507 			case 16: smr_val |= SCSMR_SRC_16; break;
2508 			case 17: smr_val |= SCSMR_SRC_17; break;
2509 			case 19: smr_val |= SCSMR_SRC_19; break;
2510 			case 27: smr_val |= SCSMR_SRC_27; break;
2511 			}
2512 		smr_val |= cks;
2513 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2514 		serial_port_out(port, SCSMR, smr_val);
2515 		serial_port_out(port, SCBRR, brr);
2516 		if (sci_getreg(port, HSSRR)->size) {
2517 			unsigned int hssrr = srr | HSCIF_SRE;
2518 			/* Calculate deviation from intended rate at the
2519 			 * center of the last stop bit in sampling clocks.
2520 			 */
2521 			int last_stop = bits * 2 - 1;
2522 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2523 							  (int)(srr + 1),
2524 							  2 * (int)baud);
2525 
2526 			if (abs(deviation) >= 2) {
2527 				/* At least two sampling clocks off at the
2528 				 * last stop bit; we can increase the error
2529 				 * margin by shifting the sampling point.
2530 				 */
2531 				int shift = clamp(deviation / 2, -8, 7);
2532 
2533 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2534 					 HSCIF_SRHP_MASK;
2535 				hssrr |= HSCIF_SRDE;
2536 			}
2537 			serial_port_out(port, HSSRR, hssrr);
2538 		}
2539 
2540 		/* Wait one bit interval */
2541 		udelay((1000000 + (baud - 1)) / baud);
2542 	} else {
2543 		/* Don't touch the bit rate configuration */
2544 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2545 		smr_val |= serial_port_in(port, SCSMR) &
2546 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2547 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2548 		serial_port_out(port, SCSMR, smr_val);
2549 	}
2550 
2551 	sci_init_pins(port, termios->c_cflag);
2552 
2553 	port->status &= ~UPSTAT_AUTOCTS;
2554 	s->autorts = false;
2555 	reg = sci_getreg(port, SCFCR);
2556 	if (reg->size) {
2557 		unsigned short ctrl = serial_port_in(port, SCFCR);
2558 
2559 		if ((port->flags & UPF_HARD_FLOW) &&
2560 		    (termios->c_cflag & CRTSCTS)) {
2561 			/* There is no CTS interrupt to restart the hardware */
2562 			port->status |= UPSTAT_AUTOCTS;
2563 			/* MCE is enabled when RTS is raised */
2564 			s->autorts = true;
2565 		}
2566 
2567 		/*
2568 		 * As we've done a sci_reset() above, ensure we don't
2569 		 * interfere with the FIFOs while toggling MCE. As the
2570 		 * reset values could still be set, simply mask them out.
2571 		 */
2572 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2573 
2574 		serial_port_out(port, SCFCR, ctrl);
2575 	}
2576 	if (port->flags & UPF_HARD_FLOW) {
2577 		/* Refresh (Auto) RTS */
2578 		sci_set_mctrl(port, port->mctrl);
2579 	}
2580 
2581 	scr_val |= SCSCR_RE | SCSCR_TE |
2582 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2583 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2584 	if ((srr + 1 == 5) &&
2585 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2586 		/*
2587 		 * In asynchronous mode, when the sampling rate is 1/5, first
2588 		 * received data may become invalid on some SCIFA and SCIFB.
2589 		 * To avoid this problem wait more than 1 serial data time (1
2590 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2591 		 */
2592 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2593 	}
2594 
2595 	/*
2596 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2597 	 * See serial_core.c::uart_update_timeout().
2598 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2599 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2600 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2601 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2602 	 * value obtained by this formula is too small. Therefore, if the value
2603 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2604 	 */
2605 	s->rx_frame = (10000 * bits) / (baud / 100);
2606 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2607 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2608 	if (s->rx_timeout < 20)
2609 		s->rx_timeout = 20;
2610 #endif
2611 
2612 	if ((termios->c_cflag & CREAD) != 0)
2613 		sci_start_rx(port);
2614 
2615 	spin_unlock_irqrestore(&port->lock, flags);
2616 
2617 	sci_port_disable(s);
2618 
2619 	if (UART_ENABLE_MS(port, termios->c_cflag))
2620 		sci_enable_ms(port);
2621 }
2622 
2623 static void sci_pm(struct uart_port *port, unsigned int state,
2624 		   unsigned int oldstate)
2625 {
2626 	struct sci_port *sci_port = to_sci_port(port);
2627 
2628 	switch (state) {
2629 	case UART_PM_STATE_OFF:
2630 		sci_port_disable(sci_port);
2631 		break;
2632 	default:
2633 		sci_port_enable(sci_port);
2634 		break;
2635 	}
2636 }
2637 
2638 static const char *sci_type(struct uart_port *port)
2639 {
2640 	switch (port->type) {
2641 	case PORT_IRDA:
2642 		return "irda";
2643 	case PORT_SCI:
2644 		return "sci";
2645 	case PORT_SCIF:
2646 		return "scif";
2647 	case PORT_SCIFA:
2648 		return "scifa";
2649 	case PORT_SCIFB:
2650 		return "scifb";
2651 	case PORT_HSCIF:
2652 		return "hscif";
2653 	}
2654 
2655 	return NULL;
2656 }
2657 
2658 static int sci_remap_port(struct uart_port *port)
2659 {
2660 	struct sci_port *sport = to_sci_port(port);
2661 
2662 	/*
2663 	 * Nothing to do if there's already an established membase.
2664 	 */
2665 	if (port->membase)
2666 		return 0;
2667 
2668 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2669 		port->membase = ioremap_nocache(port->mapbase, sport->reg_size);
2670 		if (unlikely(!port->membase)) {
2671 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2672 			return -ENXIO;
2673 		}
2674 	} else {
2675 		/*
2676 		 * For the simple (and majority of) cases where we don't
2677 		 * need to do any remapping, just cast the cookie
2678 		 * directly.
2679 		 */
2680 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static void sci_release_port(struct uart_port *port)
2687 {
2688 	struct sci_port *sport = to_sci_port(port);
2689 
2690 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2691 		iounmap(port->membase);
2692 		port->membase = NULL;
2693 	}
2694 
2695 	release_mem_region(port->mapbase, sport->reg_size);
2696 }
2697 
2698 static int sci_request_port(struct uart_port *port)
2699 {
2700 	struct resource *res;
2701 	struct sci_port *sport = to_sci_port(port);
2702 	int ret;
2703 
2704 	res = request_mem_region(port->mapbase, sport->reg_size,
2705 				 dev_name(port->dev));
2706 	if (unlikely(res == NULL)) {
2707 		dev_err(port->dev, "request_mem_region failed.");
2708 		return -EBUSY;
2709 	}
2710 
2711 	ret = sci_remap_port(port);
2712 	if (unlikely(ret != 0)) {
2713 		release_resource(res);
2714 		return ret;
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static void sci_config_port(struct uart_port *port, int flags)
2721 {
2722 	if (flags & UART_CONFIG_TYPE) {
2723 		struct sci_port *sport = to_sci_port(port);
2724 
2725 		port->type = sport->cfg->type;
2726 		sci_request_port(port);
2727 	}
2728 }
2729 
2730 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2731 {
2732 	if (ser->baud_base < 2400)
2733 		/* No paper tape reader for Mitch.. */
2734 		return -EINVAL;
2735 
2736 	return 0;
2737 }
2738 
2739 static const struct uart_ops sci_uart_ops = {
2740 	.tx_empty	= sci_tx_empty,
2741 	.set_mctrl	= sci_set_mctrl,
2742 	.get_mctrl	= sci_get_mctrl,
2743 	.start_tx	= sci_start_tx,
2744 	.stop_tx	= sci_stop_tx,
2745 	.stop_rx	= sci_stop_rx,
2746 	.enable_ms	= sci_enable_ms,
2747 	.break_ctl	= sci_break_ctl,
2748 	.startup	= sci_startup,
2749 	.shutdown	= sci_shutdown,
2750 	.flush_buffer	= sci_flush_buffer,
2751 	.set_termios	= sci_set_termios,
2752 	.pm		= sci_pm,
2753 	.type		= sci_type,
2754 	.release_port	= sci_release_port,
2755 	.request_port	= sci_request_port,
2756 	.config_port	= sci_config_port,
2757 	.verify_port	= sci_verify_port,
2758 #ifdef CONFIG_CONSOLE_POLL
2759 	.poll_get_char	= sci_poll_get_char,
2760 	.poll_put_char	= sci_poll_put_char,
2761 #endif
2762 };
2763 
2764 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2765 {
2766 	const char *clk_names[] = {
2767 		[SCI_FCK] = "fck",
2768 		[SCI_SCK] = "sck",
2769 		[SCI_BRG_INT] = "brg_int",
2770 		[SCI_SCIF_CLK] = "scif_clk",
2771 	};
2772 	struct clk *clk;
2773 	unsigned int i;
2774 
2775 	if (sci_port->cfg->type == PORT_HSCIF)
2776 		clk_names[SCI_SCK] = "hsck";
2777 
2778 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2779 		clk = devm_clk_get(dev, clk_names[i]);
2780 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2781 			return -EPROBE_DEFER;
2782 
2783 		if (IS_ERR(clk) && i == SCI_FCK) {
2784 			/*
2785 			 * "fck" used to be called "sci_ick", and we need to
2786 			 * maintain DT backward compatibility.
2787 			 */
2788 			clk = devm_clk_get(dev, "sci_ick");
2789 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2790 				return -EPROBE_DEFER;
2791 
2792 			if (!IS_ERR(clk))
2793 				goto found;
2794 
2795 			/*
2796 			 * Not all SH platforms declare a clock lookup entry
2797 			 * for SCI devices, in which case we need to get the
2798 			 * global "peripheral_clk" clock.
2799 			 */
2800 			clk = devm_clk_get(dev, "peripheral_clk");
2801 			if (!IS_ERR(clk))
2802 				goto found;
2803 
2804 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2805 				PTR_ERR(clk));
2806 			return PTR_ERR(clk);
2807 		}
2808 
2809 found:
2810 		if (IS_ERR(clk))
2811 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2812 				PTR_ERR(clk));
2813 		else
2814 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2815 				clk, clk_get_rate(clk));
2816 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2817 	}
2818 	return 0;
2819 }
2820 
2821 static const struct sci_port_params *
2822 sci_probe_regmap(const struct plat_sci_port *cfg)
2823 {
2824 	unsigned int regtype;
2825 
2826 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2827 		return &sci_port_params[cfg->regtype];
2828 
2829 	switch (cfg->type) {
2830 	case PORT_SCI:
2831 		regtype = SCIx_SCI_REGTYPE;
2832 		break;
2833 	case PORT_IRDA:
2834 		regtype = SCIx_IRDA_REGTYPE;
2835 		break;
2836 	case PORT_SCIFA:
2837 		regtype = SCIx_SCIFA_REGTYPE;
2838 		break;
2839 	case PORT_SCIFB:
2840 		regtype = SCIx_SCIFB_REGTYPE;
2841 		break;
2842 	case PORT_SCIF:
2843 		/*
2844 		 * The SH-4 is a bit of a misnomer here, although that's
2845 		 * where this particular port layout originated. This
2846 		 * configuration (or some slight variation thereof)
2847 		 * remains the dominant model for all SCIFs.
2848 		 */
2849 		regtype = SCIx_SH4_SCIF_REGTYPE;
2850 		break;
2851 	case PORT_HSCIF:
2852 		regtype = SCIx_HSCIF_REGTYPE;
2853 		break;
2854 	default:
2855 		pr_err("Can't probe register map for given port\n");
2856 		return NULL;
2857 	}
2858 
2859 	return &sci_port_params[regtype];
2860 }
2861 
2862 static int sci_init_single(struct platform_device *dev,
2863 			   struct sci_port *sci_port, unsigned int index,
2864 			   const struct plat_sci_port *p, bool early)
2865 {
2866 	struct uart_port *port = &sci_port->port;
2867 	const struct resource *res;
2868 	unsigned int i;
2869 	int ret;
2870 
2871 	sci_port->cfg	= p;
2872 
2873 	port->ops	= &sci_uart_ops;
2874 	port->iotype	= UPIO_MEM;
2875 	port->line	= index;
2876 
2877 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2878 	if (res == NULL)
2879 		return -ENOMEM;
2880 
2881 	port->mapbase = res->start;
2882 	sci_port->reg_size = resource_size(res);
2883 
2884 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2885 		sci_port->irqs[i] = platform_get_irq(dev, i);
2886 
2887 	/* The SCI generates several interrupts. They can be muxed together or
2888 	 * connected to different interrupt lines. In the muxed case only one
2889 	 * interrupt resource is specified as there is only one interrupt ID.
2890 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2891 	 * from the SCI, however those signals might have their own individual
2892 	 * interrupt ID numbers, or muxed together with another interrupt.
2893 	 */
2894 	if (sci_port->irqs[0] < 0)
2895 		return -ENXIO;
2896 
2897 	if (sci_port->irqs[1] < 0)
2898 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2899 			sci_port->irqs[i] = sci_port->irqs[0];
2900 
2901 	sci_port->params = sci_probe_regmap(p);
2902 	if (unlikely(sci_port->params == NULL))
2903 		return -EINVAL;
2904 
2905 	switch (p->type) {
2906 	case PORT_SCIFB:
2907 		sci_port->rx_trigger = 48;
2908 		break;
2909 	case PORT_HSCIF:
2910 		sci_port->rx_trigger = 64;
2911 		break;
2912 	case PORT_SCIFA:
2913 		sci_port->rx_trigger = 32;
2914 		break;
2915 	case PORT_SCIF:
2916 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2917 			/* RX triggering not implemented for this IP */
2918 			sci_port->rx_trigger = 1;
2919 		else
2920 			sci_port->rx_trigger = 8;
2921 		break;
2922 	default:
2923 		sci_port->rx_trigger = 1;
2924 		break;
2925 	}
2926 
2927 	sci_port->rx_fifo_timeout = 0;
2928 	sci_port->hscif_tot = 0;
2929 
2930 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2931 	 * match the SoC datasheet, this should be investigated. Let platform
2932 	 * data override the sampling rate for now.
2933 	 */
2934 	sci_port->sampling_rate_mask = p->sampling_rate
2935 				     ? SCI_SR(p->sampling_rate)
2936 				     : sci_port->params->sampling_rate_mask;
2937 
2938 	if (!early) {
2939 		ret = sci_init_clocks(sci_port, &dev->dev);
2940 		if (ret < 0)
2941 			return ret;
2942 
2943 		port->dev = &dev->dev;
2944 
2945 		pm_runtime_enable(&dev->dev);
2946 	}
2947 
2948 	port->type		= p->type;
2949 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2950 	port->fifosize		= sci_port->params->fifosize;
2951 
2952 	if (port->type == PORT_SCI) {
2953 		if (sci_port->reg_size >= 0x20)
2954 			port->regshift = 2;
2955 		else
2956 			port->regshift = 1;
2957 	}
2958 
2959 	/*
2960 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2961 	 * for the multi-IRQ ports, which is where we are primarily
2962 	 * concerned with the shutdown path synchronization.
2963 	 *
2964 	 * For the muxed case there's nothing more to do.
2965 	 */
2966 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2967 	port->irqflags		= 0;
2968 
2969 	port->serial_in		= sci_serial_in;
2970 	port->serial_out	= sci_serial_out;
2971 
2972 	return 0;
2973 }
2974 
2975 static void sci_cleanup_single(struct sci_port *port)
2976 {
2977 	pm_runtime_disable(port->port.dev);
2978 }
2979 
2980 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
2981     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
2982 static void serial_console_putchar(struct uart_port *port, int ch)
2983 {
2984 	sci_poll_put_char(port, ch);
2985 }
2986 
2987 /*
2988  *	Print a string to the serial port trying not to disturb
2989  *	any possible real use of the port...
2990  */
2991 static void serial_console_write(struct console *co, const char *s,
2992 				 unsigned count)
2993 {
2994 	struct sci_port *sci_port = &sci_ports[co->index];
2995 	struct uart_port *port = &sci_port->port;
2996 	unsigned short bits, ctrl, ctrl_temp;
2997 	unsigned long flags;
2998 	int locked = 1;
2999 
3000 #if defined(SUPPORT_SYSRQ)
3001 	if (port->sysrq)
3002 		locked = 0;
3003 	else
3004 #endif
3005 	if (oops_in_progress)
3006 		locked = spin_trylock_irqsave(&port->lock, flags);
3007 	else
3008 		spin_lock_irqsave(&port->lock, flags);
3009 
3010 	/* first save SCSCR then disable interrupts, keep clock source */
3011 	ctrl = serial_port_in(port, SCSCR);
3012 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3013 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3014 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3015 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3016 
3017 	uart_console_write(port, s, count, serial_console_putchar);
3018 
3019 	/* wait until fifo is empty and last bit has been transmitted */
3020 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3021 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3022 		cpu_relax();
3023 
3024 	/* restore the SCSCR */
3025 	serial_port_out(port, SCSCR, ctrl);
3026 
3027 	if (locked)
3028 		spin_unlock_irqrestore(&port->lock, flags);
3029 }
3030 
3031 static int serial_console_setup(struct console *co, char *options)
3032 {
3033 	struct sci_port *sci_port;
3034 	struct uart_port *port;
3035 	int baud = 115200;
3036 	int bits = 8;
3037 	int parity = 'n';
3038 	int flow = 'n';
3039 	int ret;
3040 
3041 	/*
3042 	 * Refuse to handle any bogus ports.
3043 	 */
3044 	if (co->index < 0 || co->index >= SCI_NPORTS)
3045 		return -ENODEV;
3046 
3047 	sci_port = &sci_ports[co->index];
3048 	port = &sci_port->port;
3049 
3050 	/*
3051 	 * Refuse to handle uninitialized ports.
3052 	 */
3053 	if (!port->ops)
3054 		return -ENODEV;
3055 
3056 	ret = sci_remap_port(port);
3057 	if (unlikely(ret != 0))
3058 		return ret;
3059 
3060 	if (options)
3061 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3062 
3063 	return uart_set_options(port, co, baud, parity, bits, flow);
3064 }
3065 
3066 static struct console serial_console = {
3067 	.name		= "ttySC",
3068 	.device		= uart_console_device,
3069 	.write		= serial_console_write,
3070 	.setup		= serial_console_setup,
3071 	.flags		= CON_PRINTBUFFER,
3072 	.index		= -1,
3073 	.data		= &sci_uart_driver,
3074 };
3075 
3076 static struct console early_serial_console = {
3077 	.name           = "early_ttySC",
3078 	.write          = serial_console_write,
3079 	.flags          = CON_PRINTBUFFER,
3080 	.index		= -1,
3081 };
3082 
3083 static char early_serial_buf[32];
3084 
3085 static int sci_probe_earlyprintk(struct platform_device *pdev)
3086 {
3087 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3088 
3089 	if (early_serial_console.data)
3090 		return -EEXIST;
3091 
3092 	early_serial_console.index = pdev->id;
3093 
3094 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3095 
3096 	serial_console_setup(&early_serial_console, early_serial_buf);
3097 
3098 	if (!strstr(early_serial_buf, "keep"))
3099 		early_serial_console.flags |= CON_BOOT;
3100 
3101 	register_console(&early_serial_console);
3102 	return 0;
3103 }
3104 
3105 #define SCI_CONSOLE	(&serial_console)
3106 
3107 #else
3108 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3109 {
3110 	return -EINVAL;
3111 }
3112 
3113 #define SCI_CONSOLE	NULL
3114 
3115 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3116 
3117 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3118 
3119 static DEFINE_MUTEX(sci_uart_registration_lock);
3120 static struct uart_driver sci_uart_driver = {
3121 	.owner		= THIS_MODULE,
3122 	.driver_name	= "sci",
3123 	.dev_name	= "ttySC",
3124 	.major		= SCI_MAJOR,
3125 	.minor		= SCI_MINOR_START,
3126 	.nr		= SCI_NPORTS,
3127 	.cons		= SCI_CONSOLE,
3128 };
3129 
3130 static int sci_remove(struct platform_device *dev)
3131 {
3132 	struct sci_port *port = platform_get_drvdata(dev);
3133 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3134 
3135 	sci_ports_in_use &= ~BIT(port->port.line);
3136 	uart_remove_one_port(&sci_uart_driver, &port->port);
3137 
3138 	sci_cleanup_single(port);
3139 
3140 	if (port->port.fifosize > 1) {
3141 		sysfs_remove_file(&dev->dev.kobj,
3142 				  &dev_attr_rx_fifo_trigger.attr);
3143 	}
3144 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF) {
3145 		sysfs_remove_file(&dev->dev.kobj,
3146 				  &dev_attr_rx_fifo_timeout.attr);
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 
3153 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3154 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3155 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3156 
3157 static const struct of_device_id of_sci_match[] = {
3158 	/* SoC-specific types */
3159 	{
3160 		.compatible = "renesas,scif-r7s72100",
3161 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3162 	},
3163 	{
3164 		.compatible = "renesas,scif-r7s9210",
3165 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3166 	},
3167 	/* Family-specific types */
3168 	{
3169 		.compatible = "renesas,rcar-gen1-scif",
3170 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3171 	}, {
3172 		.compatible = "renesas,rcar-gen2-scif",
3173 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3174 	}, {
3175 		.compatible = "renesas,rcar-gen3-scif",
3176 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3177 	},
3178 	/* Generic types */
3179 	{
3180 		.compatible = "renesas,scif",
3181 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3182 	}, {
3183 		.compatible = "renesas,scifa",
3184 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3185 	}, {
3186 		.compatible = "renesas,scifb",
3187 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3188 	}, {
3189 		.compatible = "renesas,hscif",
3190 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3191 	}, {
3192 		.compatible = "renesas,sci",
3193 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3194 	}, {
3195 		/* Terminator */
3196 	},
3197 };
3198 MODULE_DEVICE_TABLE(of, of_sci_match);
3199 
3200 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3201 					  unsigned int *dev_id)
3202 {
3203 	struct device_node *np = pdev->dev.of_node;
3204 	struct plat_sci_port *p;
3205 	struct sci_port *sp;
3206 	const void *data;
3207 	int id;
3208 
3209 	if (!IS_ENABLED(CONFIG_OF) || !np)
3210 		return NULL;
3211 
3212 	data = of_device_get_match_data(&pdev->dev);
3213 
3214 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3215 	if (!p)
3216 		return NULL;
3217 
3218 	/* Get the line number from the aliases node. */
3219 	id = of_alias_get_id(np, "serial");
3220 	if (id < 0 && ~sci_ports_in_use)
3221 		id = ffz(sci_ports_in_use);
3222 	if (id < 0) {
3223 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3224 		return NULL;
3225 	}
3226 	if (id >= ARRAY_SIZE(sci_ports)) {
3227 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3228 		return NULL;
3229 	}
3230 
3231 	sp = &sci_ports[id];
3232 	*dev_id = id;
3233 
3234 	p->type = SCI_OF_TYPE(data);
3235 	p->regtype = SCI_OF_REGTYPE(data);
3236 
3237 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3238 
3239 	return p;
3240 }
3241 
3242 static int sci_probe_single(struct platform_device *dev,
3243 				      unsigned int index,
3244 				      struct plat_sci_port *p,
3245 				      struct sci_port *sciport)
3246 {
3247 	int ret;
3248 
3249 	/* Sanity check */
3250 	if (unlikely(index >= SCI_NPORTS)) {
3251 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3252 			   index+1, SCI_NPORTS);
3253 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3254 		return -EINVAL;
3255 	}
3256 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3257 	if (sci_ports_in_use & BIT(index))
3258 		return -EBUSY;
3259 
3260 	mutex_lock(&sci_uart_registration_lock);
3261 	if (!sci_uart_driver.state) {
3262 		ret = uart_register_driver(&sci_uart_driver);
3263 		if (ret) {
3264 			mutex_unlock(&sci_uart_registration_lock);
3265 			return ret;
3266 		}
3267 	}
3268 	mutex_unlock(&sci_uart_registration_lock);
3269 
3270 	ret = sci_init_single(dev, sciport, index, p, false);
3271 	if (ret)
3272 		return ret;
3273 
3274 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3275 	if (IS_ERR(sciport->gpios) && PTR_ERR(sciport->gpios) != -ENOSYS)
3276 		return PTR_ERR(sciport->gpios);
3277 
3278 	if (sciport->has_rtscts) {
3279 		if (!IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3280 							UART_GPIO_CTS)) ||
3281 		    !IS_ERR_OR_NULL(mctrl_gpio_to_gpiod(sciport->gpios,
3282 							UART_GPIO_RTS))) {
3283 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3284 			return -EINVAL;
3285 		}
3286 		sciport->port.flags |= UPF_HARD_FLOW;
3287 	}
3288 
3289 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3290 	if (ret) {
3291 		sci_cleanup_single(sciport);
3292 		return ret;
3293 	}
3294 
3295 	return 0;
3296 }
3297 
3298 static int sci_probe(struct platform_device *dev)
3299 {
3300 	struct plat_sci_port *p;
3301 	struct sci_port *sp;
3302 	unsigned int dev_id;
3303 	int ret;
3304 
3305 	/*
3306 	 * If we've come here via earlyprintk initialization, head off to
3307 	 * the special early probe. We don't have sufficient device state
3308 	 * to make it beyond this yet.
3309 	 */
3310 	if (is_early_platform_device(dev))
3311 		return sci_probe_earlyprintk(dev);
3312 
3313 	if (dev->dev.of_node) {
3314 		p = sci_parse_dt(dev, &dev_id);
3315 		if (p == NULL)
3316 			return -EINVAL;
3317 	} else {
3318 		p = dev->dev.platform_data;
3319 		if (p == NULL) {
3320 			dev_err(&dev->dev, "no platform data supplied\n");
3321 			return -EINVAL;
3322 		}
3323 
3324 		dev_id = dev->id;
3325 	}
3326 
3327 	sp = &sci_ports[dev_id];
3328 	platform_set_drvdata(dev, sp);
3329 
3330 	ret = sci_probe_single(dev, dev_id, p, sp);
3331 	if (ret)
3332 		return ret;
3333 
3334 	if (sp->port.fifosize > 1) {
3335 		ret = sysfs_create_file(&dev->dev.kobj,
3336 				&dev_attr_rx_fifo_trigger.attr);
3337 		if (ret)
3338 			return ret;
3339 	}
3340 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3341 	    sp->port.type == PORT_HSCIF) {
3342 		ret = sysfs_create_file(&dev->dev.kobj,
3343 				&dev_attr_rx_fifo_timeout.attr);
3344 		if (ret) {
3345 			if (sp->port.fifosize > 1) {
3346 				sysfs_remove_file(&dev->dev.kobj,
3347 					&dev_attr_rx_fifo_trigger.attr);
3348 			}
3349 			return ret;
3350 		}
3351 	}
3352 
3353 #ifdef CONFIG_SH_STANDARD_BIOS
3354 	sh_bios_gdb_detach();
3355 #endif
3356 
3357 	sci_ports_in_use |= BIT(dev_id);
3358 	return 0;
3359 }
3360 
3361 static __maybe_unused int sci_suspend(struct device *dev)
3362 {
3363 	struct sci_port *sport = dev_get_drvdata(dev);
3364 
3365 	if (sport)
3366 		uart_suspend_port(&sci_uart_driver, &sport->port);
3367 
3368 	return 0;
3369 }
3370 
3371 static __maybe_unused int sci_resume(struct device *dev)
3372 {
3373 	struct sci_port *sport = dev_get_drvdata(dev);
3374 
3375 	if (sport)
3376 		uart_resume_port(&sci_uart_driver, &sport->port);
3377 
3378 	return 0;
3379 }
3380 
3381 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3382 
3383 static struct platform_driver sci_driver = {
3384 	.probe		= sci_probe,
3385 	.remove		= sci_remove,
3386 	.driver		= {
3387 		.name	= "sh-sci",
3388 		.pm	= &sci_dev_pm_ops,
3389 		.of_match_table = of_match_ptr(of_sci_match),
3390 	},
3391 };
3392 
3393 static int __init sci_init(void)
3394 {
3395 	pr_info("%s\n", banner);
3396 
3397 	return platform_driver_register(&sci_driver);
3398 }
3399 
3400 static void __exit sci_exit(void)
3401 {
3402 	platform_driver_unregister(&sci_driver);
3403 
3404 	if (sci_uart_driver.state)
3405 		uart_unregister_driver(&sci_uart_driver);
3406 }
3407 
3408 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
3409 early_platform_init_buffer("earlyprintk", &sci_driver,
3410 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3411 #endif
3412 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3413 static struct plat_sci_port port_cfg __initdata;
3414 
3415 static int __init early_console_setup(struct earlycon_device *device,
3416 				      int type)
3417 {
3418 	if (!device->port.membase)
3419 		return -ENODEV;
3420 
3421 	device->port.serial_in = sci_serial_in;
3422 	device->port.serial_out	= sci_serial_out;
3423 	device->port.type = type;
3424 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3425 	port_cfg.type = type;
3426 	sci_ports[0].cfg = &port_cfg;
3427 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3428 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3429 	sci_serial_out(&sci_ports[0].port, SCSCR,
3430 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3431 
3432 	device->con->write = serial_console_write;
3433 	return 0;
3434 }
3435 static int __init sci_early_console_setup(struct earlycon_device *device,
3436 					  const char *opt)
3437 {
3438 	return early_console_setup(device, PORT_SCI);
3439 }
3440 static int __init scif_early_console_setup(struct earlycon_device *device,
3441 					  const char *opt)
3442 {
3443 	return early_console_setup(device, PORT_SCIF);
3444 }
3445 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3446 					  const char *opt)
3447 {
3448 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3449 	return early_console_setup(device, PORT_SCIF);
3450 }
3451 static int __init scifa_early_console_setup(struct earlycon_device *device,
3452 					  const char *opt)
3453 {
3454 	return early_console_setup(device, PORT_SCIFA);
3455 }
3456 static int __init scifb_early_console_setup(struct earlycon_device *device,
3457 					  const char *opt)
3458 {
3459 	return early_console_setup(device, PORT_SCIFB);
3460 }
3461 static int __init hscif_early_console_setup(struct earlycon_device *device,
3462 					  const char *opt)
3463 {
3464 	return early_console_setup(device, PORT_HSCIF);
3465 }
3466 
3467 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3468 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3469 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3470 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3471 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3472 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3473 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3474 
3475 module_init(sci_init);
3476 module_exit(sci_exit);
3477 
3478 MODULE_LICENSE("GPL");
3479 MODULE_ALIAS("platform:sh-sci");
3480 MODULE_AUTHOR("Paul Mundt");
3481 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3482