xref: /linux/drivers/tty/serial/ucc_uart.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Freescale QUICC Engine UART device driver
4  *
5  * Author: Timur Tabi <timur@freescale.com>
6  *
7  * Copyright 2007 Freescale Semiconductor, Inc.
8  *
9  * This driver adds support for UART devices via Freescale's QUICC Engine
10  * found on some Freescale SOCs.
11  *
12  * If Soft-UART support is needed but not already present, then this driver
13  * will request and upload the "Soft-UART" microcode upon probe.  The
14  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
15  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
16  * (e.g. "11" for 1.1).
17  */
18 
19 #include <linux/module.h>
20 #include <linux/serial.h>
21 #include <linux/serial_core.h>
22 #include <linux/slab.h>
23 #include <linux/tty.h>
24 #include <linux/tty_flip.h>
25 #include <linux/io.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_platform.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <linux/fs_uart_pd.h>
32 #include <soc/fsl/qe/ucc_slow.h>
33 
34 #include <linux/firmware.h>
35 #include <soc/fsl/cpm.h>
36 
37 #ifdef CONFIG_PPC32
38 #include <asm/reg.h> /* mfspr, SPRN_SVR */
39 #endif
40 
41 /*
42  * The GUMR flag for Soft UART.  This would normally be defined in qe.h,
43  * but Soft-UART is a hack and we want to keep everything related to it in
44  * this file.
45  */
46 #define UCC_SLOW_GUMR_H_SUART   	0x00004000      /* Soft-UART */
47 
48 /*
49  * soft_uart is 1 if we need to use Soft-UART mode
50  */
51 static int soft_uart;
52 /*
53  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
54  */
55 static int firmware_loaded;
56 
57 /* Enable this macro to configure all serial ports in internal loopback
58    mode */
59 /* #define LOOPBACK */
60 
61 /* The major and minor device numbers are defined in
62  * http://www.lanana.org/docs/device-list/devices-2.6+.txt.  For the QE
63  * UART, we have major number 204 and minor numbers 46 - 49, which are the
64  * same as for the CPM2.  This decision was made because no Freescale part
65  * has both a CPM and a QE.
66  */
67 #define SERIAL_QE_MAJOR 204
68 #define SERIAL_QE_MINOR 46
69 
70 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
71 #define UCC_MAX_UART    4
72 
73 /* The number of buffer descriptors for receiving characters. */
74 #define RX_NUM_FIFO     4
75 
76 /* The number of buffer descriptors for transmitting characters. */
77 #define TX_NUM_FIFO     4
78 
79 /* The maximum size of the character buffer for a single RX BD. */
80 #define RX_BUF_SIZE     32
81 
82 /* The maximum size of the character buffer for a single TX BD. */
83 #define TX_BUF_SIZE     32
84 
85 /*
86  * The number of jiffies to wait after receiving a close command before the
87  * device is actually closed.  This allows the last few characters to be
88  * sent over the wire.
89  */
90 #define UCC_WAIT_CLOSING 100
91 
92 struct ucc_uart_pram {
93 	struct ucc_slow_pram common;
94 	u8 res1[8];     	/* reserved */
95 	__be16 maxidl;  	/* Maximum idle chars */
96 	__be16 idlc;    	/* temp idle counter */
97 	__be16 brkcr;   	/* Break count register */
98 	__be16 parec;   	/* receive parity error counter */
99 	__be16 frmec;   	/* receive framing error counter */
100 	__be16 nosec;   	/* receive noise counter */
101 	__be16 brkec;   	/* receive break condition counter */
102 	__be16 brkln;   	/* last received break length */
103 	__be16 uaddr[2];	/* UART address character 1 & 2 */
104 	__be16 rtemp;   	/* Temp storage */
105 	__be16 toseq;   	/* Transmit out of sequence char */
106 	__be16 cchars[8];       /* control characters 1-8 */
107 	__be16 rccm;    	/* receive control character mask */
108 	__be16 rccr;    	/* receive control character register */
109 	__be16 rlbc;    	/* receive last break character */
110 	__be16 res2;    	/* reserved */
111 	__be32 res3;    	/* reserved, should be cleared */
112 	u8 res4;		/* reserved, should be cleared */
113 	u8 res5[3];     	/* reserved, should be cleared */
114 	__be32 res6;    	/* reserved, should be cleared */
115 	__be32 res7;    	/* reserved, should be cleared */
116 	__be32 res8;    	/* reserved, should be cleared */
117 	__be32 res9;    	/* reserved, should be cleared */
118 	__be32 res10;   	/* reserved, should be cleared */
119 	__be32 res11;   	/* reserved, should be cleared */
120 	__be32 res12;   	/* reserved, should be cleared */
121 	__be32 res13;   	/* reserved, should be cleared */
122 /* The rest is for Soft-UART only */
123 	__be16 supsmr;  	/* 0x90, Shadow UPSMR */
124 	__be16 res92;   	/* 0x92, reserved, initialize to 0 */
125 	__be32 rx_state;	/* 0x94, RX state, initialize to 0 */
126 	__be32 rx_cnt;  	/* 0x98, RX count, initialize to 0 */
127 	u8 rx_length;   	/* 0x9C, Char length, set to 1+CL+PEN+1+SL */
128 	u8 rx_bitmark;  	/* 0x9D, reserved, initialize to 0 */
129 	u8 rx_temp_dlst_qe;     /* 0x9E, reserved, initialize to 0 */
130 	u8 res14[0xBC - 0x9F];  /* reserved */
131 	__be32 dump_ptr;	/* 0xBC, Dump pointer */
132 	__be32 rx_frame_rem;    /* 0xC0, reserved, initialize to 0 */
133 	u8 rx_frame_rem_size;   /* 0xC4, reserved, initialize to 0 */
134 	u8 tx_mode;     	/* 0xC5, mode, 0=AHDLC, 1=UART */
135 	__be16 tx_state;	/* 0xC6, TX state */
136 	u8 res15[0xD0 - 0xC8];  /* reserved */
137 	__be32 resD0;   	/* 0xD0, reserved, initialize to 0 */
138 	u8 resD4;       	/* 0xD4, reserved, initialize to 0 */
139 	__be16 resD5;   	/* 0xD5, reserved, initialize to 0 */
140 } __attribute__ ((packed));
141 
142 /* SUPSMR definitions, for Soft-UART only */
143 #define UCC_UART_SUPSMR_SL      	0x8000
144 #define UCC_UART_SUPSMR_RPM_MASK	0x6000
145 #define UCC_UART_SUPSMR_RPM_ODD 	0x0000
146 #define UCC_UART_SUPSMR_RPM_LOW 	0x2000
147 #define UCC_UART_SUPSMR_RPM_EVEN	0x4000
148 #define UCC_UART_SUPSMR_RPM_HIGH	0x6000
149 #define UCC_UART_SUPSMR_PEN     	0x1000
150 #define UCC_UART_SUPSMR_TPM_MASK	0x0C00
151 #define UCC_UART_SUPSMR_TPM_ODD 	0x0000
152 #define UCC_UART_SUPSMR_TPM_LOW 	0x0400
153 #define UCC_UART_SUPSMR_TPM_EVEN	0x0800
154 #define UCC_UART_SUPSMR_TPM_HIGH	0x0C00
155 #define UCC_UART_SUPSMR_FRZ     	0x0100
156 #define UCC_UART_SUPSMR_UM_MASK 	0x00c0
157 #define UCC_UART_SUPSMR_UM_NORMAL       0x0000
158 #define UCC_UART_SUPSMR_UM_MAN_MULTI    0x0040
159 #define UCC_UART_SUPSMR_UM_AUTO_MULTI   0x00c0
160 #define UCC_UART_SUPSMR_CL_MASK 	0x0030
161 #define UCC_UART_SUPSMR_CL_8    	0x0030
162 #define UCC_UART_SUPSMR_CL_7    	0x0020
163 #define UCC_UART_SUPSMR_CL_6    	0x0010
164 #define UCC_UART_SUPSMR_CL_5    	0x0000
165 
166 #define UCC_UART_TX_STATE_AHDLC 	0x00
167 #define UCC_UART_TX_STATE_UART  	0x01
168 #define UCC_UART_TX_STATE_X1    	0x00
169 #define UCC_UART_TX_STATE_X16   	0x80
170 
171 #define UCC_UART_PRAM_ALIGNMENT 0x100
172 
173 #define UCC_UART_SIZE_OF_BD     UCC_SLOW_SIZE_OF_BD
174 #define NUM_CONTROL_CHARS       8
175 
176 /* Private per-port data structure */
177 struct uart_qe_port {
178 	struct uart_port port;
179 	struct ucc_slow __iomem *uccp;
180 	struct ucc_uart_pram __iomem *uccup;
181 	struct ucc_slow_info us_info;
182 	struct ucc_slow_private *us_private;
183 	struct device_node *np;
184 	unsigned int ucc_num;   /* First ucc is 0, not 1 */
185 
186 	u16 rx_nrfifos;
187 	u16 rx_fifosize;
188 	u16 tx_nrfifos;
189 	u16 tx_fifosize;
190 	int wait_closing;
191 	u32 flags;
192 	struct qe_bd *rx_bd_base;
193 	struct qe_bd *rx_cur;
194 	struct qe_bd *tx_bd_base;
195 	struct qe_bd *tx_cur;
196 	unsigned char *tx_buf;
197 	unsigned char *rx_buf;
198 	void *bd_virt;  	/* virtual address of the BD buffers */
199 	dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
200 	unsigned int bd_size;   /* size of BD buffer space */
201 };
202 
203 static struct uart_driver ucc_uart_driver = {
204 	.owner  	= THIS_MODULE,
205 	.driver_name    = "ucc_uart",
206 	.dev_name       = "ttyQE",
207 	.major  	= SERIAL_QE_MAJOR,
208 	.minor  	= SERIAL_QE_MINOR,
209 	.nr     	= UCC_MAX_UART,
210 };
211 
212 /*
213  * Virtual to physical address translation.
214  *
215  * Given the virtual address for a character buffer, this function returns
216  * the physical (DMA) equivalent.
217  */
218 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
219 {
220 	if (likely((addr >= qe_port->bd_virt)) &&
221 	    (addr < (qe_port->bd_virt + qe_port->bd_size)))
222 		return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
223 
224 	/* something nasty happened */
225 	printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
226 	BUG();
227 	return 0;
228 }
229 
230 /*
231  * Physical to virtual address translation.
232  *
233  * Given the physical (DMA) address for a character buffer, this function
234  * returns the virtual equivalent.
235  */
236 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
237 {
238 	/* sanity check */
239 	if (likely((addr >= qe_port->bd_dma_addr) &&
240 		   (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
241 		return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
242 
243 	/* something nasty happened */
244 	printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr);
245 	BUG();
246 	return NULL;
247 }
248 
249 /*
250  * Return 1 if the QE is done transmitting all buffers for this port
251  *
252  * This function scans each BD in sequence.  If we find a BD that is not
253  * ready (READY=1), then we return 0 indicating that the QE is still sending
254  * data.  If we reach the last BD (WRAP=1), then we know we've scanned
255  * the entire list, and all BDs are done.
256  */
257 static unsigned int qe_uart_tx_empty(struct uart_port *port)
258 {
259 	struct uart_qe_port *qe_port =
260 		container_of(port, struct uart_qe_port, port);
261 	struct qe_bd *bdp = qe_port->tx_bd_base;
262 
263 	while (1) {
264 		if (ioread16be(&bdp->status) & BD_SC_READY)
265 			/* This BD is not done, so return "not done" */
266 			return 0;
267 
268 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
269 			/*
270 			 * This BD is done and it's the last one, so return
271 			 * "done"
272 			 */
273 			return 1;
274 
275 		bdp++;
276 	}
277 }
278 
279 /*
280  * Set the modem control lines
281  *
282  * Although the QE can control the modem control lines (e.g. CTS), we
283  * don't need that support. This function must exist, however, otherwise
284  * the kernel will panic.
285  */
286 static void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
287 {
288 }
289 
290 /*
291  * Get the current modem control line status
292  *
293  * Although the QE can control the modem control lines (e.g. CTS), this
294  * driver currently doesn't support that, so we always return Carrier
295  * Detect, Data Set Ready, and Clear To Send.
296  */
297 static unsigned int qe_uart_get_mctrl(struct uart_port *port)
298 {
299 	return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
300 }
301 
302 /*
303  * Disable the transmit interrupt.
304  *
305  * Although this function is called "stop_tx", it does not actually stop
306  * transmission of data.  Instead, it tells the QE to not generate an
307  * interrupt when the UCC is finished sending characters.
308  */
309 static void qe_uart_stop_tx(struct uart_port *port)
310 {
311 	struct uart_qe_port *qe_port =
312 		container_of(port, struct uart_qe_port, port);
313 
314 	qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
315 }
316 
317 /*
318  * Transmit as many characters to the HW as possible.
319  *
320  * This function will attempt to stuff of all the characters from the
321  * kernel's transmit buffer into TX BDs.
322  *
323  * A return value of non-zero indicates that it successfully stuffed all
324  * characters from the kernel buffer.
325  *
326  * A return value of zero indicates that there are still characters in the
327  * kernel's buffer that have not been transmitted, but there are no more BDs
328  * available.  This function should be called again after a BD has been made
329  * available.
330  */
331 static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
332 {
333 	struct qe_bd *bdp;
334 	unsigned char *p;
335 	unsigned int count;
336 	struct uart_port *port = &qe_port->port;
337 	struct circ_buf *xmit = &port->state->xmit;
338 
339 	/* Handle xon/xoff */
340 	if (port->x_char) {
341 		/* Pick next descriptor and fill from buffer */
342 		bdp = qe_port->tx_cur;
343 
344 		p = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
345 
346 		*p++ = port->x_char;
347 		iowrite16be(1, &bdp->length);
348 		qe_setbits_be16(&bdp->status, BD_SC_READY);
349 		/* Get next BD. */
350 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
351 			bdp = qe_port->tx_bd_base;
352 		else
353 			bdp++;
354 		qe_port->tx_cur = bdp;
355 
356 		port->icount.tx++;
357 		port->x_char = 0;
358 		return 1;
359 	}
360 
361 	if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
362 		qe_uart_stop_tx(port);
363 		return 0;
364 	}
365 
366 	/* Pick next descriptor and fill from buffer */
367 	bdp = qe_port->tx_cur;
368 
369 	while (!(ioread16be(&bdp->status) & BD_SC_READY) &&
370 	       (xmit->tail != xmit->head)) {
371 		count = 0;
372 		p = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
373 		while (count < qe_port->tx_fifosize) {
374 			*p++ = xmit->buf[xmit->tail];
375 			uart_xmit_advance(port, 1);
376 			count++;
377 			if (xmit->head == xmit->tail)
378 				break;
379 		}
380 
381 		iowrite16be(count, &bdp->length);
382 		qe_setbits_be16(&bdp->status, BD_SC_READY);
383 
384 		/* Get next BD. */
385 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
386 			bdp = qe_port->tx_bd_base;
387 		else
388 			bdp++;
389 	}
390 	qe_port->tx_cur = bdp;
391 
392 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
393 		uart_write_wakeup(port);
394 
395 	if (uart_circ_empty(xmit)) {
396 		/* The kernel buffer is empty, so turn off TX interrupts.  We
397 		   don't need to be told when the QE is finished transmitting
398 		   the data. */
399 		qe_uart_stop_tx(port);
400 		return 0;
401 	}
402 
403 	return 1;
404 }
405 
406 /*
407  * Start transmitting data
408  *
409  * This function will start transmitting any available data, if the port
410  * isn't already transmitting data.
411  */
412 static void qe_uart_start_tx(struct uart_port *port)
413 {
414 	struct uart_qe_port *qe_port =
415 		container_of(port, struct uart_qe_port, port);
416 
417 	/* If we currently are transmitting, then just return */
418 	if (ioread16be(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
419 		return;
420 
421 	/* Otherwise, pump the port and start transmission */
422 	if (qe_uart_tx_pump(qe_port))
423 		qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
424 }
425 
426 /*
427  * Stop transmitting data
428  */
429 static void qe_uart_stop_rx(struct uart_port *port)
430 {
431 	struct uart_qe_port *qe_port =
432 		container_of(port, struct uart_qe_port, port);
433 
434 	qe_clrbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
435 }
436 
437 /* Start or stop sending  break signal
438  *
439  * This function controls the sending of a break signal.  If break_state=1,
440  * then we start sending a break signal.  If break_state=0, then we stop
441  * sending the break signal.
442  */
443 static void qe_uart_break_ctl(struct uart_port *port, int break_state)
444 {
445 	struct uart_qe_port *qe_port =
446 		container_of(port, struct uart_qe_port, port);
447 
448 	if (break_state)
449 		ucc_slow_stop_tx(qe_port->us_private);
450 	else
451 		ucc_slow_restart_tx(qe_port->us_private);
452 }
453 
454 /* ISR helper function for receiving character.
455  *
456  * This function is called by the ISR to handling receiving characters
457  */
458 static void qe_uart_int_rx(struct uart_qe_port *qe_port)
459 {
460 	int i;
461 	unsigned char ch, *cp;
462 	struct uart_port *port = &qe_port->port;
463 	struct tty_port *tport = &port->state->port;
464 	struct qe_bd *bdp;
465 	u16 status;
466 	unsigned int flg;
467 
468 	/* Just loop through the closed BDs and copy the characters into
469 	 * the buffer.
470 	 */
471 	bdp = qe_port->rx_cur;
472 	while (1) {
473 		status = ioread16be(&bdp->status);
474 
475 		/* If this one is empty, then we assume we've read them all */
476 		if (status & BD_SC_EMPTY)
477 			break;
478 
479 		/* get number of characters, and check space in RX buffer */
480 		i = ioread16be(&bdp->length);
481 
482 		/* If we don't have enough room in RX buffer for the entire BD,
483 		 * then we try later, which will be the next RX interrupt.
484 		 */
485 		if (tty_buffer_request_room(tport, i) < i) {
486 			dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
487 			return;
488 		}
489 
490 		/* get pointer */
491 		cp = qe2cpu_addr(be32_to_cpu(bdp->buf), qe_port);
492 
493 		/* loop through the buffer */
494 		while (i-- > 0) {
495 			ch = *cp++;
496 			port->icount.rx++;
497 			flg = TTY_NORMAL;
498 
499 			if (!i && status &
500 			    (BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV))
501 				goto handle_error;
502 			if (uart_handle_sysrq_char(port, ch))
503 				continue;
504 
505 error_return:
506 			tty_insert_flip_char(tport, ch, flg);
507 
508 		}
509 
510 		/* This BD is ready to be used again. Clear status. get next */
511 		qe_clrsetbits_be16(&bdp->status,
512 				   BD_SC_BR | BD_SC_FR | BD_SC_PR | BD_SC_OV | BD_SC_ID,
513 				   BD_SC_EMPTY);
514 		if (ioread16be(&bdp->status) & BD_SC_WRAP)
515 			bdp = qe_port->rx_bd_base;
516 		else
517 			bdp++;
518 
519 	}
520 
521 	/* Write back buffer pointer */
522 	qe_port->rx_cur = bdp;
523 
524 	/* Activate BH processing */
525 	tty_flip_buffer_push(tport);
526 
527 	return;
528 
529 	/* Error processing */
530 
531 handle_error:
532 	/* Statistics */
533 	if (status & BD_SC_BR)
534 		port->icount.brk++;
535 	if (status & BD_SC_PR)
536 		port->icount.parity++;
537 	if (status & BD_SC_FR)
538 		port->icount.frame++;
539 	if (status & BD_SC_OV)
540 		port->icount.overrun++;
541 
542 	/* Mask out ignored conditions */
543 	status &= port->read_status_mask;
544 
545 	/* Handle the remaining ones */
546 	if (status & BD_SC_BR)
547 		flg = TTY_BREAK;
548 	else if (status & BD_SC_PR)
549 		flg = TTY_PARITY;
550 	else if (status & BD_SC_FR)
551 		flg = TTY_FRAME;
552 
553 	/* Overrun does not affect the current character ! */
554 	if (status & BD_SC_OV)
555 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
556 	port->sysrq = 0;
557 	goto error_return;
558 }
559 
560 /* Interrupt handler
561  *
562  * This interrupt handler is called after a BD is processed.
563  */
564 static irqreturn_t qe_uart_int(int irq, void *data)
565 {
566 	struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
567 	struct ucc_slow __iomem *uccp = qe_port->uccp;
568 	u16 events;
569 
570 	/* Clear the interrupts */
571 	events = ioread16be(&uccp->ucce);
572 	iowrite16be(events, &uccp->ucce);
573 
574 	if (events & UCC_UART_UCCE_BRKE)
575 		uart_handle_break(&qe_port->port);
576 
577 	if (events & UCC_UART_UCCE_RX)
578 		qe_uart_int_rx(qe_port);
579 
580 	if (events & UCC_UART_UCCE_TX)
581 		qe_uart_tx_pump(qe_port);
582 
583 	return events ? IRQ_HANDLED : IRQ_NONE;
584 }
585 
586 /* Initialize buffer descriptors
587  *
588  * This function initializes all of the RX and TX buffer descriptors.
589  */
590 static void qe_uart_initbd(struct uart_qe_port *qe_port)
591 {
592 	int i;
593 	void *bd_virt;
594 	struct qe_bd *bdp;
595 
596 	/* Set the physical address of the host memory buffers in the buffer
597 	 * descriptors, and the virtual address for us to work with.
598 	 */
599 	bd_virt = qe_port->bd_virt;
600 	bdp = qe_port->rx_bd_base;
601 	qe_port->rx_cur = qe_port->rx_bd_base;
602 	for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
603 		iowrite16be(BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status);
604 		iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
605 		iowrite16be(0, &bdp->length);
606 		bd_virt += qe_port->rx_fifosize;
607 		bdp++;
608 	}
609 
610 	/* */
611 	iowrite16be(BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT, &bdp->status);
612 	iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
613 	iowrite16be(0, &bdp->length);
614 
615 	/* Set the physical address of the host memory
616 	 * buffers in the buffer descriptors, and the
617 	 * virtual address for us to work with.
618 	 */
619 	bd_virt = qe_port->bd_virt +
620 		L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
621 	qe_port->tx_cur = qe_port->tx_bd_base;
622 	bdp = qe_port->tx_bd_base;
623 	for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
624 		iowrite16be(BD_SC_INTRPT, &bdp->status);
625 		iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
626 		iowrite16be(0, &bdp->length);
627 		bd_virt += qe_port->tx_fifosize;
628 		bdp++;
629 	}
630 
631 	/* Loopback requires the preamble bit to be set on the first TX BD */
632 #ifdef LOOPBACK
633 	qe_setbits_be16(&qe_port->tx_cur->status, BD_SC_P);
634 #endif
635 
636 	iowrite16be(BD_SC_WRAP | BD_SC_INTRPT, &bdp->status);
637 	iowrite32be(cpu2qe_addr(bd_virt, qe_port), &bdp->buf);
638 	iowrite16be(0, &bdp->length);
639 }
640 
641 /*
642  * Initialize a UCC for UART.
643  *
644  * This function configures a given UCC to be used as a UART device. Basic
645  * UCC initialization is handled in qe_uart_request_port().  This function
646  * does all the UART-specific stuff.
647  */
648 static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
649 {
650 	u32 cecr_subblock;
651 	struct ucc_slow __iomem *uccp = qe_port->uccp;
652 	struct ucc_uart_pram *uccup = qe_port->uccup;
653 
654 	unsigned int i;
655 
656 	/* First, disable TX and RX in the UCC */
657 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
658 
659 	/* Program the UCC UART parameter RAM */
660 	iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.rbmr);
661 	iowrite8(UCC_BMR_GBL | UCC_BMR_BO_BE, &uccup->common.tbmr);
662 	iowrite16be(qe_port->rx_fifosize, &uccup->common.mrblr);
663 	iowrite16be(0x10, &uccup->maxidl);
664 	iowrite16be(1, &uccup->brkcr);
665 	iowrite16be(0, &uccup->parec);
666 	iowrite16be(0, &uccup->frmec);
667 	iowrite16be(0, &uccup->nosec);
668 	iowrite16be(0, &uccup->brkec);
669 	iowrite16be(0, &uccup->uaddr[0]);
670 	iowrite16be(0, &uccup->uaddr[1]);
671 	iowrite16be(0, &uccup->toseq);
672 	for (i = 0; i < 8; i++)
673 		iowrite16be(0xC000, &uccup->cchars[i]);
674 	iowrite16be(0xc0ff, &uccup->rccm);
675 
676 	/* Configure the GUMR registers for UART */
677 	if (soft_uart) {
678 		/* Soft-UART requires a 1X multiplier for TX */
679 		qe_clrsetbits_be32(&uccp->gumr_l,
680 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
681 				   UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 | UCC_SLOW_GUMR_L_RDCR_16);
682 
683 		qe_clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
684 				   UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
685 	} else {
686 		qe_clrsetbits_be32(&uccp->gumr_l,
687 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
688 				   UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16);
689 
690 		qe_clrsetbits_be32(&uccp->gumr_h,
691 				   UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
692 				   UCC_SLOW_GUMR_H_RFW);
693 	}
694 
695 #ifdef LOOPBACK
696 	qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
697 			   UCC_SLOW_GUMR_L_DIAG_LOOP);
698 	qe_clrsetbits_be32(&uccp->gumr_h,
699 			   UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
700 			   UCC_SLOW_GUMR_H_CDS);
701 #endif
702 
703 	/* Disable rx interrupts  and clear all pending events.  */
704 	iowrite16be(0, &uccp->uccm);
705 	iowrite16be(0xffff, &uccp->ucce);
706 	iowrite16be(0x7e7e, &uccp->udsr);
707 
708 	/* Initialize UPSMR */
709 	iowrite16be(0, &uccp->upsmr);
710 
711 	if (soft_uart) {
712 		iowrite16be(0x30, &uccup->supsmr);
713 		iowrite16be(0, &uccup->res92);
714 		iowrite32be(0, &uccup->rx_state);
715 		iowrite32be(0, &uccup->rx_cnt);
716 		iowrite8(0, &uccup->rx_bitmark);
717 		iowrite8(10, &uccup->rx_length);
718 		iowrite32be(0x4000, &uccup->dump_ptr);
719 		iowrite8(0, &uccup->rx_temp_dlst_qe);
720 		iowrite32be(0, &uccup->rx_frame_rem);
721 		iowrite8(0, &uccup->rx_frame_rem_size);
722 		/* Soft-UART requires TX to be 1X */
723 		iowrite8(UCC_UART_TX_STATE_UART | UCC_UART_TX_STATE_X1,
724 			    &uccup->tx_mode);
725 		iowrite16be(0, &uccup->tx_state);
726 		iowrite8(0, &uccup->resD4);
727 		iowrite16be(0, &uccup->resD5);
728 
729 		/* Set UART mode.
730 		 * Enable receive and transmit.
731 		 */
732 
733 		/* From the microcode errata:
734 		 * 1.GUMR_L register, set mode=0010 (QMC).
735 		 * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
736 		 * 3.Set GUMR_H[19:20] (Transparent mode)
737 		 * 4.Clear GUMR_H[26] (RFW)
738 		 * ...
739 		 * 6.Receiver must use 16x over sampling
740 		 */
741 		qe_clrsetbits_be32(&uccp->gumr_l,
742 				   UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK | UCC_SLOW_GUMR_L_RDCR_MASK,
743 				   UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 | UCC_SLOW_GUMR_L_RDCR_16);
744 
745 		qe_clrsetbits_be32(&uccp->gumr_h,
746 				   UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
747 				   UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
748 
749 #ifdef LOOPBACK
750 		qe_clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
751 				   UCC_SLOW_GUMR_L_DIAG_LOOP);
752 		qe_clrbits_be32(&uccp->gumr_h,
753 				UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_CDS);
754 #endif
755 
756 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
757 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
758 			QE_CR_PROTOCOL_UNSPECIFIED, 0);
759 	} else {
760 		cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
761 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
762 			QE_CR_PROTOCOL_UART, 0);
763 	}
764 }
765 
766 /*
767  * Initialize the port.
768  */
769 static int qe_uart_startup(struct uart_port *port)
770 {
771 	struct uart_qe_port *qe_port =
772 		container_of(port, struct uart_qe_port, port);
773 	int ret;
774 
775 	/*
776 	 * If we're using Soft-UART mode, then we need to make sure the
777 	 * firmware has been uploaded first.
778 	 */
779 	if (soft_uart && !firmware_loaded) {
780 		dev_err(port->dev, "Soft-UART firmware not uploaded\n");
781 		return -ENODEV;
782 	}
783 
784 	qe_uart_initbd(qe_port);
785 	qe_uart_init_ucc(qe_port);
786 
787 	/* Install interrupt handler. */
788 	ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
789 		qe_port);
790 	if (ret) {
791 		dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
792 		return ret;
793 	}
794 
795 	/* Startup rx-int */
796 	qe_setbits_be16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
797 	ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
798 
799 	return 0;
800 }
801 
802 /*
803  * Shutdown the port.
804  */
805 static void qe_uart_shutdown(struct uart_port *port)
806 {
807 	struct uart_qe_port *qe_port =
808 		container_of(port, struct uart_qe_port, port);
809 	struct ucc_slow __iomem *uccp = qe_port->uccp;
810 	unsigned int timeout = 20;
811 
812 	/* Disable RX and TX */
813 
814 	/* Wait for all the BDs marked sent */
815 	while (!qe_uart_tx_empty(port)) {
816 		if (!--timeout) {
817 			dev_warn(port->dev, "shutdown timeout\n");
818 			break;
819 		}
820 		set_current_state(TASK_UNINTERRUPTIBLE);
821 		schedule_timeout(2);
822 	}
823 
824 	if (qe_port->wait_closing) {
825 		/* Wait a bit longer */
826 		set_current_state(TASK_UNINTERRUPTIBLE);
827 		schedule_timeout(qe_port->wait_closing);
828 	}
829 
830 	/* Stop uarts */
831 	ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
832 	qe_clrbits_be16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
833 
834 	/* Shut them really down and reinit buffer descriptors */
835 	ucc_slow_graceful_stop_tx(qe_port->us_private);
836 	qe_uart_initbd(qe_port);
837 
838 	free_irq(port->irq, qe_port);
839 }
840 
841 /*
842  * Set the serial port parameters.
843  */
844 static void qe_uart_set_termios(struct uart_port *port,
845 				struct ktermios *termios,
846 				const struct ktermios *old)
847 {
848 	struct uart_qe_port *qe_port =
849 		container_of(port, struct uart_qe_port, port);
850 	struct ucc_slow __iomem *uccp = qe_port->uccp;
851 	unsigned int baud;
852 	unsigned long flags;
853 	u16 upsmr = ioread16be(&uccp->upsmr);
854 	struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
855 	u16 supsmr = ioread16be(&uccup->supsmr);
856 
857 	/* byte size */
858 	upsmr &= UCC_UART_UPSMR_CL_MASK;
859 	supsmr &= UCC_UART_SUPSMR_CL_MASK;
860 
861 	switch (termios->c_cflag & CSIZE) {
862 	case CS5:
863 		upsmr |= UCC_UART_UPSMR_CL_5;
864 		supsmr |= UCC_UART_SUPSMR_CL_5;
865 		break;
866 	case CS6:
867 		upsmr |= UCC_UART_UPSMR_CL_6;
868 		supsmr |= UCC_UART_SUPSMR_CL_6;
869 		break;
870 	case CS7:
871 		upsmr |= UCC_UART_UPSMR_CL_7;
872 		supsmr |= UCC_UART_SUPSMR_CL_7;
873 		break;
874 	default:	/* case CS8 */
875 		upsmr |= UCC_UART_UPSMR_CL_8;
876 		supsmr |= UCC_UART_SUPSMR_CL_8;
877 		break;
878 	}
879 
880 	/* If CSTOPB is set, we want two stop bits */
881 	if (termios->c_cflag & CSTOPB) {
882 		upsmr |= UCC_UART_UPSMR_SL;
883 		supsmr |= UCC_UART_SUPSMR_SL;
884 	}
885 
886 	if (termios->c_cflag & PARENB) {
887 		upsmr |= UCC_UART_UPSMR_PEN;
888 		supsmr |= UCC_UART_SUPSMR_PEN;
889 
890 		if (!(termios->c_cflag & PARODD)) {
891 			upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
892 				   UCC_UART_UPSMR_TPM_MASK);
893 			upsmr |= UCC_UART_UPSMR_RPM_EVEN |
894 				UCC_UART_UPSMR_TPM_EVEN;
895 			supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
896 				    UCC_UART_SUPSMR_TPM_MASK);
897 			supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
898 				UCC_UART_SUPSMR_TPM_EVEN;
899 		}
900 	}
901 
902 	/*
903 	 * Set up parity check flag
904 	 */
905 	port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
906 	if (termios->c_iflag & INPCK)
907 		port->read_status_mask |= BD_SC_FR | BD_SC_PR;
908 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
909 		port->read_status_mask |= BD_SC_BR;
910 
911 	/*
912 	 * Characters to ignore
913 	 */
914 	port->ignore_status_mask = 0;
915 	if (termios->c_iflag & IGNPAR)
916 		port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
917 	if (termios->c_iflag & IGNBRK) {
918 		port->ignore_status_mask |= BD_SC_BR;
919 		/*
920 		 * If we're ignore parity and break indicators, ignore
921 		 * overruns too.  (For real raw support).
922 		 */
923 		if (termios->c_iflag & IGNPAR)
924 			port->ignore_status_mask |= BD_SC_OV;
925 	}
926 	/*
927 	 * !!! ignore all characters if CREAD is not set
928 	 */
929 	if ((termios->c_cflag & CREAD) == 0)
930 		port->read_status_mask &= ~BD_SC_EMPTY;
931 
932 	baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
933 
934 	/* Do we really need a spinlock here? */
935 	spin_lock_irqsave(&port->lock, flags);
936 
937 	/* Update the per-port timeout. */
938 	uart_update_timeout(port, termios->c_cflag, baud);
939 
940 	iowrite16be(upsmr, &uccp->upsmr);
941 	if (soft_uart) {
942 		iowrite16be(supsmr, &uccup->supsmr);
943 		iowrite8(tty_get_frame_size(termios->c_cflag), &uccup->rx_length);
944 
945 		/* Soft-UART requires a 1X multiplier for TX */
946 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
947 		qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
948 	} else {
949 		qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
950 		qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
951 	}
952 
953 	spin_unlock_irqrestore(&port->lock, flags);
954 }
955 
956 /*
957  * Return a pointer to a string that describes what kind of port this is.
958  */
959 static const char *qe_uart_type(struct uart_port *port)
960 {
961 	return "QE";
962 }
963 
964 /*
965  * Allocate any memory and I/O resources required by the port.
966  */
967 static int qe_uart_request_port(struct uart_port *port)
968 {
969 	int ret;
970 	struct uart_qe_port *qe_port =
971 		container_of(port, struct uart_qe_port, port);
972 	struct ucc_slow_info *us_info = &qe_port->us_info;
973 	struct ucc_slow_private *uccs;
974 	unsigned int rx_size, tx_size;
975 	void *bd_virt;
976 	dma_addr_t bd_dma_addr = 0;
977 
978 	ret = ucc_slow_init(us_info, &uccs);
979 	if (ret) {
980 		dev_err(port->dev, "could not initialize UCC%u\n",
981 		       qe_port->ucc_num);
982 		return ret;
983 	}
984 
985 	qe_port->us_private = uccs;
986 	qe_port->uccp = uccs->us_regs;
987 	qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
988 	qe_port->rx_bd_base = uccs->rx_bd;
989 	qe_port->tx_bd_base = uccs->tx_bd;
990 
991 	/*
992 	 * Allocate the transmit and receive data buffers.
993 	 */
994 
995 	rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
996 	tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
997 
998 	bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
999 		GFP_KERNEL);
1000 	if (!bd_virt) {
1001 		dev_err(port->dev, "could not allocate buffer descriptors\n");
1002 		return -ENOMEM;
1003 	}
1004 
1005 	qe_port->bd_virt = bd_virt;
1006 	qe_port->bd_dma_addr = bd_dma_addr;
1007 	qe_port->bd_size = rx_size + tx_size;
1008 
1009 	qe_port->rx_buf = bd_virt;
1010 	qe_port->tx_buf = qe_port->rx_buf + rx_size;
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * Configure the port.
1017  *
1018  * We say we're a CPM-type port because that's mostly true.  Once the device
1019  * is configured, this driver operates almost identically to the CPM serial
1020  * driver.
1021  */
1022 static void qe_uart_config_port(struct uart_port *port, int flags)
1023 {
1024 	if (flags & UART_CONFIG_TYPE) {
1025 		port->type = PORT_CPM;
1026 		qe_uart_request_port(port);
1027 	}
1028 }
1029 
1030 /*
1031  * Release any memory and I/O resources that were allocated in
1032  * qe_uart_request_port().
1033  */
1034 static void qe_uart_release_port(struct uart_port *port)
1035 {
1036 	struct uart_qe_port *qe_port =
1037 		container_of(port, struct uart_qe_port, port);
1038 	struct ucc_slow_private *uccs = qe_port->us_private;
1039 
1040 	dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
1041 			  qe_port->bd_dma_addr);
1042 
1043 	ucc_slow_free(uccs);
1044 }
1045 
1046 /*
1047  * Verify that the data in serial_struct is suitable for this device.
1048  */
1049 static int qe_uart_verify_port(struct uart_port *port,
1050 			       struct serial_struct *ser)
1051 {
1052 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
1053 		return -EINVAL;
1054 
1055 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1056 		return -EINVAL;
1057 
1058 	if (ser->baud_base < 9600)
1059 		return -EINVAL;
1060 
1061 	return 0;
1062 }
1063 /* UART operations
1064  *
1065  * Details on these functions can be found in Documentation/driver-api/serial/driver.rst
1066  */
1067 static const struct uart_ops qe_uart_pops = {
1068 	.tx_empty       = qe_uart_tx_empty,
1069 	.set_mctrl      = qe_uart_set_mctrl,
1070 	.get_mctrl      = qe_uart_get_mctrl,
1071 	.stop_tx	= qe_uart_stop_tx,
1072 	.start_tx       = qe_uart_start_tx,
1073 	.stop_rx	= qe_uart_stop_rx,
1074 	.break_ctl      = qe_uart_break_ctl,
1075 	.startup	= qe_uart_startup,
1076 	.shutdown       = qe_uart_shutdown,
1077 	.set_termios    = qe_uart_set_termios,
1078 	.type   	= qe_uart_type,
1079 	.release_port   = qe_uart_release_port,
1080 	.request_port   = qe_uart_request_port,
1081 	.config_port    = qe_uart_config_port,
1082 	.verify_port    = qe_uart_verify_port,
1083 };
1084 
1085 
1086 #ifdef CONFIG_PPC32
1087 /*
1088  * Obtain the SOC model number and revision level
1089  *
1090  * This function parses the device tree to obtain the SOC model.  It then
1091  * reads the SVR register to the revision.
1092  *
1093  * The device tree stores the SOC model two different ways.
1094  *
1095  * The new way is:
1096  *
1097  *      	cpu@0 {
1098  *      		compatible = "PowerPC,8323";
1099  *      		device_type = "cpu";
1100  *      		...
1101  *
1102  *
1103  * The old way is:
1104  *      	 PowerPC,8323@0 {
1105  *      		device_type = "cpu";
1106  *      		...
1107  *
1108  * This code first checks the new way, and then the old way.
1109  */
1110 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
1111 {
1112 	struct device_node *np;
1113 	const char *soc_string;
1114 	unsigned int svr;
1115 	unsigned int soc;
1116 
1117 	/* Find the CPU node */
1118 	np = of_find_node_by_type(NULL, "cpu");
1119 	if (!np)
1120 		return 0;
1121 	/* Find the compatible property */
1122 	soc_string = of_get_property(np, "compatible", NULL);
1123 	if (!soc_string)
1124 		/* No compatible property, so try the name. */
1125 		soc_string = np->name;
1126 
1127 	of_node_put(np);
1128 
1129 	/* Extract the SOC number from the "PowerPC," string */
1130 	if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
1131 		return 0;
1132 
1133 	/* Get the revision from the SVR */
1134 	svr = mfspr(SPRN_SVR);
1135 	*rev_h = (svr >> 4) & 0xf;
1136 	*rev_l = svr & 0xf;
1137 
1138 	return soc;
1139 }
1140 
1141 /*
1142  * requst_firmware_nowait() callback function
1143  *
1144  * This function is called by the kernel when a firmware is made available,
1145  * or if it times out waiting for the firmware.
1146  */
1147 static void uart_firmware_cont(const struct firmware *fw, void *context)
1148 {
1149 	struct qe_firmware *firmware;
1150 	struct device *dev = context;
1151 	int ret;
1152 
1153 	if (!fw) {
1154 		dev_err(dev, "firmware not found\n");
1155 		return;
1156 	}
1157 
1158 	firmware = (struct qe_firmware *) fw->data;
1159 
1160 	if (firmware->header.length != fw->size) {
1161 		dev_err(dev, "invalid firmware\n");
1162 		goto out;
1163 	}
1164 
1165 	ret = qe_upload_firmware(firmware);
1166 	if (ret) {
1167 		dev_err(dev, "could not load firmware\n");
1168 		goto out;
1169 	}
1170 
1171 	firmware_loaded = 1;
1172  out:
1173 	release_firmware(fw);
1174 }
1175 
1176 static int soft_uart_init(struct platform_device *ofdev)
1177 {
1178 	struct device_node *np = ofdev->dev.of_node;
1179 	struct qe_firmware_info *qe_fw_info;
1180 	int ret;
1181 
1182 	if (of_find_property(np, "soft-uart", NULL)) {
1183 		dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
1184 		soft_uart = 1;
1185 	} else {
1186 		return 0;
1187 	}
1188 
1189 	qe_fw_info = qe_get_firmware_info();
1190 
1191 	/* Check if the firmware has been uploaded. */
1192 	if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
1193 		firmware_loaded = 1;
1194 	} else {
1195 		char filename[32];
1196 		unsigned int soc;
1197 		unsigned int rev_h;
1198 		unsigned int rev_l;
1199 
1200 		soc = soc_info(&rev_h, &rev_l);
1201 		if (!soc) {
1202 			dev_err(&ofdev->dev, "unknown CPU model\n");
1203 			return -ENXIO;
1204 		}
1205 		sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
1206 			soc, rev_h, rev_l);
1207 
1208 		dev_info(&ofdev->dev, "waiting for firmware %s\n",
1209 			 filename);
1210 
1211 		/*
1212 		 * We call request_firmware_nowait instead of
1213 		 * request_firmware so that the driver can load and
1214 		 * initialize the ports without holding up the rest of
1215 		 * the kernel.  If hotplug support is enabled in the
1216 		 * kernel, then we use it.
1217 		 */
1218 		ret = request_firmware_nowait(THIS_MODULE,
1219 					      FW_ACTION_UEVENT, filename, &ofdev->dev,
1220 					      GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
1221 		if (ret) {
1222 			dev_err(&ofdev->dev,
1223 				"could not load firmware %s\n",
1224 				filename);
1225 			return ret;
1226 		}
1227 	}
1228 	return 0;
1229 }
1230 
1231 #else /* !CONFIG_PPC32 */
1232 
1233 static int soft_uart_init(struct platform_device *ofdev)
1234 {
1235 	return 0;
1236 }
1237 
1238 #endif
1239 
1240 
1241 static int ucc_uart_probe(struct platform_device *ofdev)
1242 {
1243 	struct device_node *np = ofdev->dev.of_node;
1244 	const char *sprop;      /* String OF properties */
1245 	struct uart_qe_port *qe_port = NULL;
1246 	struct resource res;
1247 	u32 val;
1248 	int ret;
1249 
1250 	/*
1251 	 * Determine if we need Soft-UART mode
1252 	 */
1253 	ret = soft_uart_init(ofdev);
1254 	if (ret)
1255 		return ret;
1256 
1257 	qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
1258 	if (!qe_port) {
1259 		dev_err(&ofdev->dev, "can't allocate QE port structure\n");
1260 		return -ENOMEM;
1261 	}
1262 
1263 	/* Search for IRQ and mapbase */
1264 	ret = of_address_to_resource(np, 0, &res);
1265 	if (ret) {
1266 		dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
1267 		goto out_free;
1268 	}
1269 	if (!res.start) {
1270 		dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
1271 		ret = -EINVAL;
1272 		goto out_free;
1273 	}
1274 	qe_port->port.mapbase = res.start;
1275 
1276 	/* Get the UCC number (device ID) */
1277 	/* UCCs are numbered 1-7 */
1278 	if (of_property_read_u32(np, "cell-index", &val)) {
1279 		if (of_property_read_u32(np, "device-id", &val)) {
1280 			dev_err(&ofdev->dev, "UCC is unspecified in device tree\n");
1281 			ret = -EINVAL;
1282 			goto out_free;
1283 		}
1284 	}
1285 
1286 	if (val < 1 || val > UCC_MAX_NUM) {
1287 		dev_err(&ofdev->dev, "no support for UCC%u\n", val);
1288 		ret = -ENODEV;
1289 		goto out_free;
1290 	}
1291 	qe_port->ucc_num = val - 1;
1292 
1293 	/*
1294 	 * In the future, we should not require the BRG to be specified in the
1295 	 * device tree.  If no clock-source is specified, then just pick a BRG
1296 	 * to use.  This requires a new QE library function that manages BRG
1297 	 * assignments.
1298 	 */
1299 
1300 	sprop = of_get_property(np, "rx-clock-name", NULL);
1301 	if (!sprop) {
1302 		dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
1303 		ret = -ENODEV;
1304 		goto out_free;
1305 	}
1306 
1307 	qe_port->us_info.rx_clock = qe_clock_source(sprop);
1308 	if ((qe_port->us_info.rx_clock < QE_BRG1) ||
1309 	    (qe_port->us_info.rx_clock > QE_BRG16)) {
1310 		dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
1311 		ret = -ENODEV;
1312 		goto out_free;
1313 	}
1314 
1315 #ifdef LOOPBACK
1316 	/* In internal loopback mode, TX and RX must use the same clock */
1317 	qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
1318 #else
1319 	sprop = of_get_property(np, "tx-clock-name", NULL);
1320 	if (!sprop) {
1321 		dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
1322 		ret = -ENODEV;
1323 		goto out_free;
1324 	}
1325 	qe_port->us_info.tx_clock = qe_clock_source(sprop);
1326 #endif
1327 	if ((qe_port->us_info.tx_clock < QE_BRG1) ||
1328 	    (qe_port->us_info.tx_clock > QE_BRG16)) {
1329 		dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
1330 		ret = -ENODEV;
1331 		goto out_free;
1332 	}
1333 
1334 	/* Get the port number, numbered 0-3 */
1335 	if (of_property_read_u32(np, "port-number", &val)) {
1336 		dev_err(&ofdev->dev, "missing port-number in device tree\n");
1337 		ret = -EINVAL;
1338 		goto out_free;
1339 	}
1340 	qe_port->port.line = val;
1341 	if (qe_port->port.line >= UCC_MAX_UART) {
1342 		dev_err(&ofdev->dev, "port-number must be 0-%u\n",
1343 			UCC_MAX_UART - 1);
1344 		ret = -EINVAL;
1345 		goto out_free;
1346 	}
1347 
1348 	qe_port->port.irq = irq_of_parse_and_map(np, 0);
1349 	if (qe_port->port.irq == 0) {
1350 		dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
1351 		       qe_port->ucc_num + 1);
1352 		ret = -EINVAL;
1353 		goto out_free;
1354 	}
1355 
1356 	/*
1357 	 * Newer device trees have an "fsl,qe" compatible property for the QE
1358 	 * node, but we still need to support older device trees.
1359 	 */
1360 	np = of_find_compatible_node(NULL, NULL, "fsl,qe");
1361 	if (!np) {
1362 		np = of_find_node_by_type(NULL, "qe");
1363 		if (!np) {
1364 			dev_err(&ofdev->dev, "could not find 'qe' node\n");
1365 			ret = -EINVAL;
1366 			goto out_free;
1367 		}
1368 	}
1369 
1370 	if (of_property_read_u32(np, "brg-frequency", &val)) {
1371 		dev_err(&ofdev->dev,
1372 		       "missing brg-frequency in device tree\n");
1373 		ret = -EINVAL;
1374 		goto out_np;
1375 	}
1376 
1377 	if (val)
1378 		qe_port->port.uartclk = val;
1379 	else {
1380 		if (!IS_ENABLED(CONFIG_PPC32)) {
1381 			dev_err(&ofdev->dev,
1382 				"invalid brg-frequency in device tree\n");
1383 			ret = -EINVAL;
1384 			goto out_np;
1385 		}
1386 
1387 		/*
1388 		 * Older versions of U-Boot do not initialize the brg-frequency
1389 		 * property, so in this case we assume the BRG frequency is
1390 		 * half the QE bus frequency.
1391 		 */
1392 		if (of_property_read_u32(np, "bus-frequency", &val)) {
1393 			dev_err(&ofdev->dev,
1394 				"missing QE bus-frequency in device tree\n");
1395 			ret = -EINVAL;
1396 			goto out_np;
1397 		}
1398 		if (val)
1399 			qe_port->port.uartclk = val / 2;
1400 		else {
1401 			dev_err(&ofdev->dev,
1402 				"invalid QE bus-frequency in device tree\n");
1403 			ret = -EINVAL;
1404 			goto out_np;
1405 		}
1406 	}
1407 
1408 	spin_lock_init(&qe_port->port.lock);
1409 	qe_port->np = np;
1410 	qe_port->port.dev = &ofdev->dev;
1411 	qe_port->port.ops = &qe_uart_pops;
1412 	qe_port->port.iotype = UPIO_MEM;
1413 
1414 	qe_port->tx_nrfifos = TX_NUM_FIFO;
1415 	qe_port->tx_fifosize = TX_BUF_SIZE;
1416 	qe_port->rx_nrfifos = RX_NUM_FIFO;
1417 	qe_port->rx_fifosize = RX_BUF_SIZE;
1418 
1419 	qe_port->wait_closing = UCC_WAIT_CLOSING;
1420 	qe_port->port.fifosize = 512;
1421 	qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
1422 
1423 	qe_port->us_info.ucc_num = qe_port->ucc_num;
1424 	qe_port->us_info.regs = (phys_addr_t) res.start;
1425 	qe_port->us_info.irq = qe_port->port.irq;
1426 
1427 	qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
1428 	qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
1429 
1430 	/* Make sure ucc_slow_init() initializes both TX and RX */
1431 	qe_port->us_info.init_tx = 1;
1432 	qe_port->us_info.init_rx = 1;
1433 
1434 	/* Add the port to the uart sub-system.  This will cause
1435 	 * qe_uart_config_port() to be called, so the us_info structure must
1436 	 * be initialized.
1437 	 */
1438 	ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
1439 	if (ret) {
1440 		dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
1441 		       qe_port->port.line);
1442 		goto out_np;
1443 	}
1444 
1445 	platform_set_drvdata(ofdev, qe_port);
1446 
1447 	dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
1448 		qe_port->ucc_num + 1, qe_port->port.line);
1449 
1450 	/* Display the mknod command for this device */
1451 	dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
1452 	       qe_port->port.line, SERIAL_QE_MAJOR,
1453 	       SERIAL_QE_MINOR + qe_port->port.line);
1454 
1455 	return 0;
1456 out_np:
1457 	of_node_put(np);
1458 out_free:
1459 	kfree(qe_port);
1460 	return ret;
1461 }
1462 
1463 static int ucc_uart_remove(struct platform_device *ofdev)
1464 {
1465 	struct uart_qe_port *qe_port = platform_get_drvdata(ofdev);
1466 
1467 	dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
1468 
1469 	uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
1470 
1471 	of_node_put(qe_port->np);
1472 
1473 	kfree(qe_port);
1474 
1475 	return 0;
1476 }
1477 
1478 static const struct of_device_id ucc_uart_match[] = {
1479 	{
1480 		.type = "serial",
1481 		.compatible = "ucc_uart",
1482 	},
1483 	{
1484 		.compatible = "fsl,t1040-ucc-uart",
1485 	},
1486 	{},
1487 };
1488 MODULE_DEVICE_TABLE(of, ucc_uart_match);
1489 
1490 static struct platform_driver ucc_uart_of_driver = {
1491 	.driver = {
1492 		.name = "ucc_uart",
1493 		.of_match_table    = ucc_uart_match,
1494 	},
1495 	.probe  	= ucc_uart_probe,
1496 	.remove 	= ucc_uart_remove,
1497 };
1498 
1499 static int __init ucc_uart_init(void)
1500 {
1501 	int ret;
1502 
1503 	printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
1504 #ifdef LOOPBACK
1505 	printk(KERN_INFO "ucc-uart: Using loopback mode\n");
1506 #endif
1507 
1508 	ret = uart_register_driver(&ucc_uart_driver);
1509 	if (ret) {
1510 		printk(KERN_ERR "ucc-uart: could not register UART driver\n");
1511 		return ret;
1512 	}
1513 
1514 	ret = platform_driver_register(&ucc_uart_of_driver);
1515 	if (ret) {
1516 		printk(KERN_ERR
1517 		       "ucc-uart: could not register platform driver\n");
1518 		uart_unregister_driver(&ucc_uart_driver);
1519 	}
1520 
1521 	return ret;
1522 }
1523 
1524 static void __exit ucc_uart_exit(void)
1525 {
1526 	printk(KERN_INFO
1527 	       "Freescale QUICC Engine UART device driver unloading\n");
1528 
1529 	platform_driver_unregister(&ucc_uart_of_driver);
1530 	uart_unregister_driver(&ucc_uart_driver);
1531 }
1532 
1533 module_init(ucc_uart_init);
1534 module_exit(ucc_uart_exit);
1535 
1536 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
1537 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1538 MODULE_LICENSE("GPL v2");
1539 MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_QE_MAJOR);
1540 
1541