xref: /linux/drivers/ufs/core/ufshcd.c (revision e91c37f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <asm/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/ufs.h>
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 #define UIC_CMD_TIMEOUT	500
55 
56 /* NOP OUT retries waiting for NOP IN response */
57 #define NOP_OUT_RETRIES    10
58 /* Timeout after 50 msecs if NOP OUT hangs without response */
59 #define NOP_OUT_TIMEOUT    50 /* msecs */
60 
61 /* Query request retries */
62 #define QUERY_REQ_RETRIES 3
63 /* Query request timeout */
64 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
65 
66 /* Advanced RPMB request timeout */
67 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
68 
69 /* Task management command timeout */
70 #define TM_CMD_TIMEOUT	100 /* msecs */
71 
72 /* maximum number of retries for a general UIC command  */
73 #define UFS_UIC_COMMAND_RETRIES 3
74 
75 /* maximum number of link-startup retries */
76 #define DME_LINKSTARTUP_RETRIES 3
77 
78 /* maximum number of reset retries before giving up */
79 #define MAX_HOST_RESET_RETRIES 5
80 
81 /* Maximum number of error handler retries before giving up */
82 #define MAX_ERR_HANDLER_RETRIES 5
83 
84 /* Expose the flag value from utp_upiu_query.value */
85 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
86 
87 /* Interrupt aggregation default timeout, unit: 40us */
88 #define INT_AGGR_DEF_TO	0x02
89 
90 /* default delay of autosuspend: 2000 ms */
91 #define RPM_AUTOSUSPEND_DELAY_MS 2000
92 
93 /* Default delay of RPM device flush delayed work */
94 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
95 
96 /* Default value of wait time before gating device ref clock */
97 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
98 
99 /* Polling time to wait for fDeviceInit */
100 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
101 
102 /* Default RTC update every 10 seconds */
103 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
104 
105 /* UFSHC 4.0 compliant HC support this mode. */
106 static bool use_mcq_mode = true;
107 
108 static bool is_mcq_supported(struct ufs_hba *hba)
109 {
110 	return hba->mcq_sup && use_mcq_mode;
111 }
112 
113 module_param(use_mcq_mode, bool, 0644);
114 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
115 
116 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
117 	({                                                              \
118 		int _ret;                                               \
119 		if (_on)                                                \
120 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
121 		else                                                    \
122 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
123 		_ret;                                                   \
124 	})
125 
126 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
127 	size_t __len = (len);                                            \
128 	print_hex_dump(KERN_ERR, prefix_str,                             \
129 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
130 		       16, 4, buf, __len, false);                        \
131 } while (0)
132 
133 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
134 		     const char *prefix)
135 {
136 	u32 *regs;
137 	size_t pos;
138 
139 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
140 		return -EINVAL;
141 
142 	regs = kzalloc(len, GFP_ATOMIC);
143 	if (!regs)
144 		return -ENOMEM;
145 
146 	for (pos = 0; pos < len; pos += 4) {
147 		if (offset == 0 &&
148 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
149 		    pos <= REG_UIC_ERROR_CODE_DME)
150 			continue;
151 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
152 	}
153 
154 	ufshcd_hex_dump(prefix, regs, len);
155 	kfree(regs);
156 
157 	return 0;
158 }
159 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
160 
161 enum {
162 	UFSHCD_MAX_CHANNEL	= 0,
163 	UFSHCD_MAX_ID		= 1,
164 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
165 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
166 };
167 
168 static const char *const ufshcd_state_name[] = {
169 	[UFSHCD_STATE_RESET]			= "reset",
170 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
171 	[UFSHCD_STATE_ERROR]			= "error",
172 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
173 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
174 };
175 
176 /* UFSHCD error handling flags */
177 enum {
178 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
179 };
180 
181 /* UFSHCD UIC layer error flags */
182 enum {
183 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
184 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
185 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
186 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
187 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
188 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
189 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
190 };
191 
192 #define ufshcd_set_eh_in_progress(h) \
193 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
194 #define ufshcd_eh_in_progress(h) \
195 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
196 #define ufshcd_clear_eh_in_progress(h) \
197 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
198 
199 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
200 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
201 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
203 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
205 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
206 	/*
207 	 * For DeepSleep, the link is first put in hibern8 and then off.
208 	 * Leaving the link in hibern8 is not supported.
209 	 */
210 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
211 };
212 
213 static inline enum ufs_dev_pwr_mode
214 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
215 {
216 	return ufs_pm_lvl_states[lvl].dev_state;
217 }
218 
219 static inline enum uic_link_state
220 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
221 {
222 	return ufs_pm_lvl_states[lvl].link_state;
223 }
224 
225 static inline enum ufs_pm_level
226 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
227 					enum uic_link_state link_state)
228 {
229 	enum ufs_pm_level lvl;
230 
231 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
232 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
233 			(ufs_pm_lvl_states[lvl].link_state == link_state))
234 			return lvl;
235 	}
236 
237 	/* if no match found, return the level 0 */
238 	return UFS_PM_LVL_0;
239 }
240 
241 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
242 {
243 	return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
244 		hba->active_uic_cmd || hba->uic_async_done);
245 }
246 
247 static const struct ufs_dev_quirk ufs_fixups[] = {
248 	/* UFS cards deviations table */
249 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
252 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
255 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
256 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
257 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
258 	  .model = UFS_ANY_MODEL,
259 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
260 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
261 	  .model = "hB8aL1" /*H28U62301AMR*/,
262 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
263 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
264 	  .model = UFS_ANY_MODEL,
265 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
266 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
267 	  .model = "THGLF2G9C8KBADG",
268 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
269 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
270 	  .model = "THGLF2G9D8KBADG",
271 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
272 	{}
273 };
274 
275 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
276 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
277 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
278 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
279 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
280 static void ufshcd_hba_exit(struct ufs_hba *hba);
281 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
282 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
283 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
284 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
285 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
286 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
287 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
288 			     bool scale_up);
289 static irqreturn_t ufshcd_intr(int irq, void *__hba);
290 static int ufshcd_change_power_mode(struct ufs_hba *hba,
291 			     struct ufs_pa_layer_attr *pwr_mode);
292 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
293 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
294 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
295 					 struct ufs_vreg *vreg);
296 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
297 						 bool enable);
298 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
299 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
300 
301 void ufshcd_enable_irq(struct ufs_hba *hba)
302 {
303 	if (!hba->is_irq_enabled) {
304 		enable_irq(hba->irq);
305 		hba->is_irq_enabled = true;
306 	}
307 }
308 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
309 
310 void ufshcd_disable_irq(struct ufs_hba *hba)
311 {
312 	if (hba->is_irq_enabled) {
313 		disable_irq(hba->irq);
314 		hba->is_irq_enabled = false;
315 	}
316 }
317 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
318 
319 static void ufshcd_configure_wb(struct ufs_hba *hba)
320 {
321 	if (!ufshcd_is_wb_allowed(hba))
322 		return;
323 
324 	ufshcd_wb_toggle(hba, true);
325 
326 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
327 
328 	if (ufshcd_is_wb_buf_flush_allowed(hba))
329 		ufshcd_wb_toggle_buf_flush(hba, true);
330 }
331 
332 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
333 {
334 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
335 		scsi_unblock_requests(hba->host);
336 }
337 
338 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
339 {
340 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
341 		scsi_block_requests(hba->host);
342 }
343 
344 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				      enum ufs_trace_str_t str_t)
346 {
347 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
348 	struct utp_upiu_header *header;
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_CMD_SEND)
354 		header = &rq->header;
355 	else
356 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
359 			  UFS_TSF_CDB);
360 }
361 
362 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
363 					enum ufs_trace_str_t str_t,
364 					struct utp_upiu_req *rq_rsp)
365 {
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
370 			  &rq_rsp->qr, UFS_TSF_OSF);
371 }
372 
373 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
374 				     enum ufs_trace_str_t str_t)
375 {
376 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
377 
378 	if (!trace_ufshcd_upiu_enabled())
379 		return;
380 
381 	if (str_t == UFS_TM_SEND)
382 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
383 				  &descp->upiu_req.req_header,
384 				  &descp->upiu_req.input_param1,
385 				  UFS_TSF_TM_INPUT);
386 	else
387 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
388 				  &descp->upiu_rsp.rsp_header,
389 				  &descp->upiu_rsp.output_param1,
390 				  UFS_TSF_TM_OUTPUT);
391 }
392 
393 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
394 					 const struct uic_command *ucmd,
395 					 enum ufs_trace_str_t str_t)
396 {
397 	u32 cmd;
398 
399 	if (!trace_ufshcd_uic_command_enabled())
400 		return;
401 
402 	if (str_t == UFS_CMD_SEND)
403 		cmd = ucmd->command;
404 	else
405 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
406 
407 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
408 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
409 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
411 }
412 
413 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
414 				     enum ufs_trace_str_t str_t)
415 {
416 	u64 lba = 0;
417 	u8 opcode = 0, group_id = 0;
418 	u32 doorbell = 0;
419 	u32 intr;
420 	int hwq_id = -1;
421 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
422 	struct scsi_cmnd *cmd = lrbp->cmd;
423 	struct request *rq = scsi_cmd_to_rq(cmd);
424 	int transfer_len = -1;
425 
426 	if (!cmd)
427 		return;
428 
429 	/* trace UPIU also */
430 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
431 	if (!trace_ufshcd_command_enabled())
432 		return;
433 
434 	opcode = cmd->cmnd[0];
435 
436 	if (opcode == READ_10 || opcode == WRITE_10) {
437 		/*
438 		 * Currently we only fully trace read(10) and write(10) commands
439 		 */
440 		transfer_len =
441 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
442 		lba = scsi_get_lba(cmd);
443 		if (opcode == WRITE_10)
444 			group_id = lrbp->cmd->cmnd[6];
445 	} else if (opcode == UNMAP) {
446 		/*
447 		 * The number of Bytes to be unmapped beginning with the lba.
448 		 */
449 		transfer_len = blk_rq_bytes(rq);
450 		lba = scsi_get_lba(cmd);
451 	}
452 
453 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
454 
455 	if (is_mcq_enabled(hba)) {
456 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
457 
458 		hwq_id = hwq->id;
459 	} else {
460 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
461 	}
462 	trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
463 			     transfer_len, intr, lba, opcode, group_id);
464 }
465 
466 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
467 {
468 	struct ufs_clk_info *clki;
469 	struct list_head *head = &hba->clk_list_head;
470 
471 	if (list_empty(head))
472 		return;
473 
474 	list_for_each_entry(clki, head, list) {
475 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
476 				clki->max_freq)
477 			dev_err(hba->dev, "clk: %s, rate: %u\n",
478 					clki->name, clki->curr_freq);
479 	}
480 }
481 
482 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
483 			     const char *err_name)
484 {
485 	int i;
486 	bool found = false;
487 	const struct ufs_event_hist *e;
488 
489 	if (id >= UFS_EVT_CNT)
490 		return;
491 
492 	e = &hba->ufs_stats.event[id];
493 
494 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
495 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
496 
497 		if (e->tstamp[p] == 0)
498 			continue;
499 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
500 			e->val[p], div_u64(e->tstamp[p], 1000));
501 		found = true;
502 	}
503 
504 	if (!found)
505 		dev_err(hba->dev, "No record of %s\n", err_name);
506 	else
507 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
508 }
509 
510 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
511 {
512 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
513 
514 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
515 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
517 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
519 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
520 			 "auto_hibern8_err");
521 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
522 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
523 			 "link_startup_fail");
524 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
526 			 "suspend_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
529 			 "wlun suspend_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
531 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
532 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
533 
534 	ufshcd_vops_dbg_register_dump(hba);
535 }
536 
537 static
538 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
539 {
540 	const struct ufshcd_lrb *lrbp;
541 	int prdt_length;
542 
543 	lrbp = &hba->lrb[tag];
544 
545 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev,
550 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 		tag, (u64)lrbp->utrd_dma_addr);
552 
553 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 			sizeof(struct utp_transfer_req_desc));
555 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 		(u64)lrbp->ucd_req_dma_addr);
557 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 			sizeof(struct utp_upiu_req));
559 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 		(u64)lrbp->ucd_rsp_dma_addr);
561 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 			sizeof(struct utp_upiu_rsp));
563 
564 	prdt_length = le16_to_cpu(
565 		lrbp->utr_descriptor_ptr->prd_table_length);
566 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 		prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 	dev_err(hba->dev,
570 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 		tag, prdt_length,
572 		(u64)lrbp->ucd_prdt_dma_addr);
573 
574 	if (pr_prdt)
575 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 			ufshcd_sg_entry_size(hba) * prdt_length);
577 }
578 
579 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
580 {
581 	struct scsi_device *sdev = req->q->queuedata;
582 	struct Scsi_Host *shost = sdev->host;
583 	struct ufs_hba *hba = shost_priv(shost);
584 
585 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
586 
587 	return true;
588 }
589 
590 /**
591  * ufshcd_print_trs_all - print trs for all started requests.
592  * @hba: per-adapter instance.
593  * @pr_prdt: need to print prdt or not.
594  */
595 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
596 {
597 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
598 }
599 
600 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
601 {
602 	int tag;
603 
604 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
605 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
606 
607 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
608 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
609 	}
610 }
611 
612 static void ufshcd_print_host_state(struct ufs_hba *hba)
613 {
614 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
615 
616 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
617 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
618 		hba->outstanding_reqs, hba->outstanding_tasks);
619 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
620 		hba->saved_err, hba->saved_uic_err);
621 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
622 		hba->curr_dev_pwr_mode, hba->uic_link_state);
623 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
624 		hba->pm_op_in_progress, hba->is_sys_suspended);
625 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
626 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
627 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
628 	dev_err(hba->dev,
629 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
630 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
631 		hba->ufs_stats.hibern8_exit_cnt);
632 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
633 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
634 		hba->ufs_stats.last_intr_status);
635 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
636 		hba->eh_flags, hba->req_abort_count);
637 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
638 		hba->ufs_version, hba->capabilities, hba->caps);
639 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
640 		hba->dev_quirks);
641 	if (sdev_ufs)
642 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
643 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
644 
645 	ufshcd_print_clk_freqs(hba);
646 }
647 
648 /**
649  * ufshcd_print_pwr_info - print power params as saved in hba
650  * power info
651  * @hba: per-adapter instance
652  */
653 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
654 {
655 	static const char * const names[] = {
656 		"INVALID MODE",
657 		"FAST MODE",
658 		"SLOW_MODE",
659 		"INVALID MODE",
660 		"FASTAUTO_MODE",
661 		"SLOWAUTO_MODE",
662 		"INVALID MODE",
663 	};
664 
665 	/*
666 	 * Using dev_dbg to avoid messages during runtime PM to avoid
667 	 * never-ending cycles of messages written back to storage by user space
668 	 * causing runtime resume, causing more messages and so on.
669 	 */
670 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
671 		 __func__,
672 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
673 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
674 		 names[hba->pwr_info.pwr_rx],
675 		 names[hba->pwr_info.pwr_tx],
676 		 hba->pwr_info.hs_rate);
677 }
678 
679 static void ufshcd_device_reset(struct ufs_hba *hba)
680 {
681 	int err;
682 
683 	err = ufshcd_vops_device_reset(hba);
684 
685 	if (!err) {
686 		ufshcd_set_ufs_dev_active(hba);
687 		if (ufshcd_is_wb_allowed(hba)) {
688 			hba->dev_info.wb_enabled = false;
689 			hba->dev_info.wb_buf_flush_enabled = false;
690 		}
691 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
692 			hba->dev_info.rtc_time_baseline = 0;
693 	}
694 	if (err != -EOPNOTSUPP)
695 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
696 }
697 
698 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
699 {
700 	if (!us)
701 		return;
702 
703 	if (us < 10)
704 		udelay(us);
705 	else
706 		usleep_range(us, us + tolerance);
707 }
708 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
709 
710 /**
711  * ufshcd_wait_for_register - wait for register value to change
712  * @hba: per-adapter interface
713  * @reg: mmio register offset
714  * @mask: mask to apply to the read register value
715  * @val: value to wait for
716  * @interval_us: polling interval in microseconds
717  * @timeout_ms: timeout in milliseconds
718  *
719  * Return: -ETIMEDOUT on error, zero on success.
720  */
721 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
722 				u32 val, unsigned long interval_us,
723 				unsigned long timeout_ms)
724 {
725 	int err = 0;
726 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
727 
728 	/* ignore bits that we don't intend to wait on */
729 	val = val & mask;
730 
731 	while ((ufshcd_readl(hba, reg) & mask) != val) {
732 		usleep_range(interval_us, interval_us + 50);
733 		if (time_after(jiffies, timeout)) {
734 			if ((ufshcd_readl(hba, reg) & mask) != val)
735 				err = -ETIMEDOUT;
736 			break;
737 		}
738 	}
739 
740 	return err;
741 }
742 
743 /**
744  * ufshcd_get_intr_mask - Get the interrupt bit mask
745  * @hba: Pointer to adapter instance
746  *
747  * Return: interrupt bit mask per version
748  */
749 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
750 {
751 	if (hba->ufs_version == ufshci_version(1, 0))
752 		return INTERRUPT_MASK_ALL_VER_10;
753 	if (hba->ufs_version <= ufshci_version(2, 0))
754 		return INTERRUPT_MASK_ALL_VER_11;
755 
756 	return INTERRUPT_MASK_ALL_VER_21;
757 }
758 
759 /**
760  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
761  * @hba: Pointer to adapter instance
762  *
763  * Return: UFSHCI version supported by the controller
764  */
765 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
766 {
767 	u32 ufshci_ver;
768 
769 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
770 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
771 	else
772 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
773 
774 	/*
775 	 * UFSHCI v1.x uses a different version scheme, in order
776 	 * to allow the use of comparisons with the ufshci_version
777 	 * function, we convert it to the same scheme as ufs 2.0+.
778 	 */
779 	if (ufshci_ver & 0x00010000)
780 		return ufshci_version(1, ufshci_ver & 0x00000100);
781 
782 	return ufshci_ver;
783 }
784 
785 /**
786  * ufshcd_is_device_present - Check if any device connected to
787  *			      the host controller
788  * @hba: pointer to adapter instance
789  *
790  * Return: true if device present, false if no device detected
791  */
792 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
793 {
794 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
795 }
796 
797 /**
798  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
799  * @lrbp: pointer to local command reference block
800  * @cqe: pointer to the completion queue entry
801  *
802  * This function is used to get the OCS field from UTRD
803  *
804  * Return: the OCS field in the UTRD.
805  */
806 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
807 				      struct cq_entry *cqe)
808 {
809 	if (cqe)
810 		return le32_to_cpu(cqe->status) & MASK_OCS;
811 
812 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
813 }
814 
815 /**
816  * ufshcd_utrl_clear() - Clear requests from the controller request list.
817  * @hba: per adapter instance
818  * @mask: mask with one bit set for each request to be cleared
819  */
820 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
821 {
822 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
823 		mask = ~mask;
824 	/*
825 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
826 	 * Register (UTRLCLR): This field is bit significant. Each bit
827 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
828 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
829 	 * by host software to indicate to the host controller that a transfer
830 	 * request slot is cleared. The host controller
831 	 * shall free up any resources associated to the request slot
832 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
833 	 * host software indicates no change to request slots by setting the
834 	 * associated bits in this field to ‘1’. Bits in this field shall only
835 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
836 	 */
837 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
842  * @hba: per adapter instance
843  * @pos: position of the bit to be cleared
844  */
845 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
846 {
847 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
848 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
849 	else
850 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 }
852 
853 /**
854  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
855  * @reg: Register value of host controller status
856  *
857  * Return: 0 on success; a positive value if failed.
858  */
859 static inline int ufshcd_get_lists_status(u32 reg)
860 {
861 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
862 }
863 
864 /**
865  * ufshcd_get_uic_cmd_result - Get the UIC command result
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets the result of UIC command completion
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
875 	       MASK_UIC_COMMAND_RESULT;
876 }
877 
878 /**
879  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
880  * @hba: Pointer to adapter instance
881  *
882  * This function gets UIC command argument3
883  *
884  * Return: 0 on success; non-zero value on error.
885  */
886 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
887 {
888 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
889 }
890 
891 /**
892  * ufshcd_get_req_rsp - returns the TR response transaction type
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return: UPIU type.
896  */
897 static inline enum upiu_response_transaction
898 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.transaction_code;
901 }
902 
903 /**
904  * ufshcd_is_exception_event - Check if the device raised an exception event
905  * @ucd_rsp_ptr: pointer to response UPIU
906  *
907  * The function checks if the device raised an exception event indicated in
908  * the Device Information field of response UPIU.
909  *
910  * Return: true if exception is raised, false otherwise.
911  */
912 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
913 {
914 	return ucd_rsp_ptr->header.device_information & 1;
915 }
916 
917 /**
918  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
919  * @hba: per adapter instance
920  */
921 static inline void
922 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE |
925 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
926 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
927 }
928 
929 /**
930  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
931  * @hba: per adapter instance
932  * @cnt: Interrupt aggregation counter threshold
933  * @tmout: Interrupt aggregation timeout value
934  */
935 static inline void
936 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
937 {
938 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
939 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
940 		      INT_AGGR_TIMEOUT_VAL(tmout),
941 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
942 }
943 
944 /**
945  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
946  * @hba: per adapter instance
947  */
948 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
949 {
950 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
951 }
952 
953 /**
954  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
955  *			When run-stop registers are set to 1, it indicates the
956  *			host controller that it can process the requests
957  * @hba: per adapter instance
958  */
959 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
962 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
963 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
965 }
966 
967 /**
968  * ufshcd_hba_start - Start controller initialization sequence
969  * @hba: per adapter instance
970  */
971 static inline void ufshcd_hba_start(struct ufs_hba *hba)
972 {
973 	u32 val = CONTROLLER_ENABLE;
974 
975 	if (ufshcd_crypto_enable(hba))
976 		val |= CRYPTO_GENERAL_ENABLE;
977 
978 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
979 }
980 
981 /**
982  * ufshcd_is_hba_active - Get controller state
983  * @hba: per adapter instance
984  *
985  * Return: true if and only if the controller is active.
986  */
987 bool ufshcd_is_hba_active(struct ufs_hba *hba)
988 {
989 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
990 }
991 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
992 
993 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
994 {
995 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
996 	if (hba->ufs_version <= ufshci_version(1, 1))
997 		return UFS_UNIPRO_VER_1_41;
998 	else
999 		return UFS_UNIPRO_VER_1_6;
1000 }
1001 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1002 
1003 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1004 {
1005 	/*
1006 	 * If both host and device support UniPro ver1.6 or later, PA layer
1007 	 * parameters tuning happens during link startup itself.
1008 	 *
1009 	 * We can manually tune PA layer parameters if either host or device
1010 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1011 	 * logic simple, we will only do manual tuning if local unipro version
1012 	 * doesn't support ver1.6 or later.
1013 	 */
1014 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1015 }
1016 
1017 /**
1018  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1019  * @hba: per adapter instance
1020  * @scale_up: If True, set max possible frequency othewise set low frequency
1021  *
1022  * Return: 0 if successful; < 0 upon failure.
1023  */
1024 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1025 {
1026 	int ret = 0;
1027 	struct ufs_clk_info *clki;
1028 	struct list_head *head = &hba->clk_list_head;
1029 
1030 	if (list_empty(head))
1031 		goto out;
1032 
1033 	list_for_each_entry(clki, head, list) {
1034 		if (!IS_ERR_OR_NULL(clki->clk)) {
1035 			if (scale_up && clki->max_freq) {
1036 				if (clki->curr_freq == clki->max_freq)
1037 					continue;
1038 
1039 				ret = clk_set_rate(clki->clk, clki->max_freq);
1040 				if (ret) {
1041 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1042 						__func__, clki->name,
1043 						clki->max_freq, ret);
1044 					break;
1045 				}
1046 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1047 						"scaled up", clki->name,
1048 						clki->curr_freq,
1049 						clki->max_freq);
1050 
1051 				clki->curr_freq = clki->max_freq;
1052 
1053 			} else if (!scale_up && clki->min_freq) {
1054 				if (clki->curr_freq == clki->min_freq)
1055 					continue;
1056 
1057 				ret = clk_set_rate(clki->clk, clki->min_freq);
1058 				if (ret) {
1059 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1060 						__func__, clki->name,
1061 						clki->min_freq, ret);
1062 					break;
1063 				}
1064 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1065 						"scaled down", clki->name,
1066 						clki->curr_freq,
1067 						clki->min_freq);
1068 				clki->curr_freq = clki->min_freq;
1069 			}
1070 		}
1071 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1072 				clki->name, clk_get_rate(clki->clk));
1073 	}
1074 
1075 out:
1076 	return ret;
1077 }
1078 
1079 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1080 			   struct dev_pm_opp *opp, void *data,
1081 			   bool scaling_down)
1082 {
1083 	struct ufs_hba *hba = dev_get_drvdata(dev);
1084 	struct list_head *head = &hba->clk_list_head;
1085 	struct ufs_clk_info *clki;
1086 	unsigned long freq;
1087 	u8 idx = 0;
1088 	int ret;
1089 
1090 	list_for_each_entry(clki, head, list) {
1091 		if (!IS_ERR_OR_NULL(clki->clk)) {
1092 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1093 
1094 			/* Do not set rate for clocks having frequency as 0 */
1095 			if (!freq)
1096 				continue;
1097 
1098 			ret = clk_set_rate(clki->clk, freq);
1099 			if (ret) {
1100 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1101 					__func__, clki->name, freq, ret);
1102 				return ret;
1103 			}
1104 
1105 			trace_ufshcd_clk_scaling(dev_name(dev),
1106 				(scaling_down ? "scaled down" : "scaled up"),
1107 				clki->name, hba->clk_scaling.target_freq, freq);
1108 		}
1109 	}
1110 
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1114 
1115 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1116 {
1117 	struct dev_pm_opp *opp;
1118 	int ret;
1119 
1120 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1121 						 &freq, 0);
1122 	if (IS_ERR(opp))
1123 		return PTR_ERR(opp);
1124 
1125 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1126 	dev_pm_opp_put(opp);
1127 
1128 	return ret;
1129 }
1130 
1131 /**
1132  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1133  * @hba: per adapter instance
1134  * @freq: frequency to scale
1135  * @scale_up: True if scaling up and false if scaling down
1136  *
1137  * Return: 0 if successful; < 0 upon failure.
1138  */
1139 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1140 			     bool scale_up)
1141 {
1142 	int ret = 0;
1143 	ktime_t start = ktime_get();
1144 
1145 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1146 	if (ret)
1147 		goto out;
1148 
1149 	if (hba->use_pm_opp)
1150 		ret = ufshcd_opp_set_rate(hba, freq);
1151 	else
1152 		ret = ufshcd_set_clk_freq(hba, scale_up);
1153 	if (ret)
1154 		goto out;
1155 
1156 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1157 	if (ret) {
1158 		if (hba->use_pm_opp)
1159 			ufshcd_opp_set_rate(hba,
1160 					    hba->devfreq->previous_freq);
1161 		else
1162 			ufshcd_set_clk_freq(hba, !scale_up);
1163 	}
1164 
1165 out:
1166 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1167 			(scale_up ? "up" : "down"),
1168 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1169 	return ret;
1170 }
1171 
1172 /**
1173  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1174  * @hba: per adapter instance
1175  * @freq: frequency to scale
1176  * @scale_up: True if scaling up and false if scaling down
1177  *
1178  * Return: true if scaling is required, false otherwise.
1179  */
1180 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1181 					       unsigned long freq, bool scale_up)
1182 {
1183 	struct ufs_clk_info *clki;
1184 	struct list_head *head = &hba->clk_list_head;
1185 
1186 	if (list_empty(head))
1187 		return false;
1188 
1189 	if (hba->use_pm_opp)
1190 		return freq != hba->clk_scaling.target_freq;
1191 
1192 	list_for_each_entry(clki, head, list) {
1193 		if (!IS_ERR_OR_NULL(clki->clk)) {
1194 			if (scale_up && clki->max_freq) {
1195 				if (clki->curr_freq == clki->max_freq)
1196 					continue;
1197 				return true;
1198 			} else if (!scale_up && clki->min_freq) {
1199 				if (clki->curr_freq == clki->min_freq)
1200 					continue;
1201 				return true;
1202 			}
1203 		}
1204 	}
1205 
1206 	return false;
1207 }
1208 
1209 /*
1210  * Determine the number of pending commands by counting the bits in the SCSI
1211  * device budget maps. This approach has been selected because a bit is set in
1212  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1213  * flag. The host_self_blocked flag can be modified by calling
1214  * scsi_block_requests() or scsi_unblock_requests().
1215  */
1216 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1217 {
1218 	const struct scsi_device *sdev;
1219 	u32 pending = 0;
1220 
1221 	lockdep_assert_held(hba->host->host_lock);
1222 	__shost_for_each_device(sdev, hba->host)
1223 		pending += sbitmap_weight(&sdev->budget_map);
1224 
1225 	return pending;
1226 }
1227 
1228 /*
1229  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1230  * has expired.
1231  *
1232  * Return: 0 upon success; -EBUSY upon timeout.
1233  */
1234 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1235 					u64 wait_timeout_us)
1236 {
1237 	unsigned long flags;
1238 	int ret = 0;
1239 	u32 tm_doorbell;
1240 	u32 tr_pending;
1241 	bool timeout = false, do_last_check = false;
1242 	ktime_t start;
1243 
1244 	ufshcd_hold(hba);
1245 	spin_lock_irqsave(hba->host->host_lock, flags);
1246 	/*
1247 	 * Wait for all the outstanding tasks/transfer requests.
1248 	 * Verify by checking the doorbell registers are clear.
1249 	 */
1250 	start = ktime_get();
1251 	do {
1252 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1253 			ret = -EBUSY;
1254 			goto out;
1255 		}
1256 
1257 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1258 		tr_pending = ufshcd_pending_cmds(hba);
1259 		if (!tm_doorbell && !tr_pending) {
1260 			timeout = false;
1261 			break;
1262 		} else if (do_last_check) {
1263 			break;
1264 		}
1265 
1266 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1267 		io_schedule_timeout(msecs_to_jiffies(20));
1268 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1269 		    wait_timeout_us) {
1270 			timeout = true;
1271 			/*
1272 			 * We might have scheduled out for long time so make
1273 			 * sure to check if doorbells are cleared by this time
1274 			 * or not.
1275 			 */
1276 			do_last_check = true;
1277 		}
1278 		spin_lock_irqsave(hba->host->host_lock, flags);
1279 	} while (tm_doorbell || tr_pending);
1280 
1281 	if (timeout) {
1282 		dev_err(hba->dev,
1283 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1284 			__func__, tm_doorbell, tr_pending);
1285 		ret = -EBUSY;
1286 	}
1287 out:
1288 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1289 	ufshcd_release(hba);
1290 	return ret;
1291 }
1292 
1293 /**
1294  * ufshcd_scale_gear - scale up/down UFS gear
1295  * @hba: per adapter instance
1296  * @scale_up: True for scaling up gear and false for scaling down
1297  *
1298  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1299  * non-zero for any other errors.
1300  */
1301 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1302 {
1303 	int ret = 0;
1304 	struct ufs_pa_layer_attr new_pwr_info;
1305 
1306 	if (scale_up) {
1307 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1308 		       sizeof(struct ufs_pa_layer_attr));
1309 	} else {
1310 		memcpy(&new_pwr_info, &hba->pwr_info,
1311 		       sizeof(struct ufs_pa_layer_attr));
1312 
1313 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1314 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1315 			/* save the current power mode */
1316 			memcpy(&hba->clk_scaling.saved_pwr_info,
1317 				&hba->pwr_info,
1318 				sizeof(struct ufs_pa_layer_attr));
1319 
1320 			/* scale down gear */
1321 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1322 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1323 		}
1324 	}
1325 
1326 	/* check if the power mode needs to be changed or not? */
1327 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1328 	if (ret)
1329 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1330 			__func__, ret,
1331 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1332 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1333 
1334 	return ret;
1335 }
1336 
1337 /*
1338  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1339  * has expired.
1340  *
1341  * Return: 0 upon success; -EBUSY upon timeout.
1342  */
1343 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1344 {
1345 	int ret = 0;
1346 	/*
1347 	 * make sure that there are no outstanding requests when
1348 	 * clock scaling is in progress
1349 	 */
1350 	ufshcd_scsi_block_requests(hba);
1351 	mutex_lock(&hba->wb_mutex);
1352 	down_write(&hba->clk_scaling_lock);
1353 
1354 	if (!hba->clk_scaling.is_allowed ||
1355 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1356 		ret = -EBUSY;
1357 		up_write(&hba->clk_scaling_lock);
1358 		mutex_unlock(&hba->wb_mutex);
1359 		ufshcd_scsi_unblock_requests(hba);
1360 		goto out;
1361 	}
1362 
1363 	/* let's not get into low power until clock scaling is completed */
1364 	ufshcd_hold(hba);
1365 
1366 out:
1367 	return ret;
1368 }
1369 
1370 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1371 {
1372 	up_write(&hba->clk_scaling_lock);
1373 
1374 	/* Enable Write Booster if we have scaled up else disable it */
1375 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1376 		ufshcd_wb_toggle(hba, scale_up);
1377 
1378 	mutex_unlock(&hba->wb_mutex);
1379 
1380 	ufshcd_scsi_unblock_requests(hba);
1381 	ufshcd_release(hba);
1382 }
1383 
1384 /**
1385  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1386  * @hba: per adapter instance
1387  * @freq: frequency to scale
1388  * @scale_up: True for scaling up and false for scalin down
1389  *
1390  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1391  * for any other errors.
1392  */
1393 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1394 				bool scale_up)
1395 {
1396 	int ret = 0;
1397 
1398 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1399 	if (ret)
1400 		return ret;
1401 
1402 	/* scale down the gear before scaling down clocks */
1403 	if (!scale_up) {
1404 		ret = ufshcd_scale_gear(hba, false);
1405 		if (ret)
1406 			goto out_unprepare;
1407 	}
1408 
1409 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1410 	if (ret) {
1411 		if (!scale_up)
1412 			ufshcd_scale_gear(hba, true);
1413 		goto out_unprepare;
1414 	}
1415 
1416 	/* scale up the gear after scaling up clocks */
1417 	if (scale_up) {
1418 		ret = ufshcd_scale_gear(hba, true);
1419 		if (ret) {
1420 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1421 					  false);
1422 			goto out_unprepare;
1423 		}
1424 	}
1425 
1426 out_unprepare:
1427 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1428 	return ret;
1429 }
1430 
1431 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1432 {
1433 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1434 					   clk_scaling.suspend_work);
1435 	unsigned long irq_flags;
1436 
1437 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1438 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1439 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1440 		return;
1441 	}
1442 	hba->clk_scaling.is_suspended = true;
1443 	hba->clk_scaling.window_start_t = 0;
1444 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1445 
1446 	devfreq_suspend_device(hba->devfreq);
1447 }
1448 
1449 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1450 {
1451 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1452 					   clk_scaling.resume_work);
1453 	unsigned long irq_flags;
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1456 	if (!hba->clk_scaling.is_suspended) {
1457 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1458 		return;
1459 	}
1460 	hba->clk_scaling.is_suspended = false;
1461 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1462 
1463 	devfreq_resume_device(hba->devfreq);
1464 }
1465 
1466 static int ufshcd_devfreq_target(struct device *dev,
1467 				unsigned long *freq, u32 flags)
1468 {
1469 	int ret = 0;
1470 	struct ufs_hba *hba = dev_get_drvdata(dev);
1471 	ktime_t start;
1472 	bool scale_up, sched_clk_scaling_suspend_work = false;
1473 	struct list_head *clk_list = &hba->clk_list_head;
1474 	struct ufs_clk_info *clki;
1475 	unsigned long irq_flags;
1476 
1477 	if (!ufshcd_is_clkscaling_supported(hba))
1478 		return -EINVAL;
1479 
1480 	if (hba->use_pm_opp) {
1481 		struct dev_pm_opp *opp;
1482 
1483 		/* Get the recommended frequency from OPP framework */
1484 		opp = devfreq_recommended_opp(dev, freq, flags);
1485 		if (IS_ERR(opp))
1486 			return PTR_ERR(opp);
1487 
1488 		dev_pm_opp_put(opp);
1489 	} else {
1490 		/* Override with the closest supported frequency */
1491 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1492 					list);
1493 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1494 	}
1495 
1496 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1497 	if (ufshcd_eh_in_progress(hba)) {
1498 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1499 		return 0;
1500 	}
1501 
1502 	/* Skip scaling clock when clock scaling is suspended */
1503 	if (hba->clk_scaling.is_suspended) {
1504 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1505 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1506 		return 0;
1507 	}
1508 
1509 	if (!hba->clk_scaling.active_reqs)
1510 		sched_clk_scaling_suspend_work = true;
1511 
1512 	if (list_empty(clk_list)) {
1513 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1514 		goto out;
1515 	}
1516 
1517 	/* Decide based on the target or rounded-off frequency and update */
1518 	if (hba->use_pm_opp)
1519 		scale_up = *freq > hba->clk_scaling.target_freq;
1520 	else
1521 		scale_up = *freq == clki->max_freq;
1522 
1523 	if (!hba->use_pm_opp && !scale_up)
1524 		*freq = clki->min_freq;
1525 
1526 	/* Update the frequency */
1527 	if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1528 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1529 		ret = 0;
1530 		goto out; /* no state change required */
1531 	}
1532 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1533 
1534 	start = ktime_get();
1535 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1536 	if (!ret)
1537 		hba->clk_scaling.target_freq = *freq;
1538 
1539 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1540 		(scale_up ? "up" : "down"),
1541 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1542 
1543 out:
1544 	if (sched_clk_scaling_suspend_work && !scale_up)
1545 		queue_work(hba->clk_scaling.workq,
1546 			   &hba->clk_scaling.suspend_work);
1547 
1548 	return ret;
1549 }
1550 
1551 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1552 		struct devfreq_dev_status *stat)
1553 {
1554 	struct ufs_hba *hba = dev_get_drvdata(dev);
1555 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1556 	unsigned long flags;
1557 	ktime_t curr_t;
1558 
1559 	if (!ufshcd_is_clkscaling_supported(hba))
1560 		return -EINVAL;
1561 
1562 	memset(stat, 0, sizeof(*stat));
1563 
1564 	spin_lock_irqsave(hba->host->host_lock, flags);
1565 	curr_t = ktime_get();
1566 	if (!scaling->window_start_t)
1567 		goto start_window;
1568 
1569 	/*
1570 	 * If current frequency is 0, then the ondemand governor considers
1571 	 * there's no initial frequency set. And it always requests to set
1572 	 * to max. frequency.
1573 	 */
1574 	if (hba->use_pm_opp) {
1575 		stat->current_frequency = hba->clk_scaling.target_freq;
1576 	} else {
1577 		struct list_head *clk_list = &hba->clk_list_head;
1578 		struct ufs_clk_info *clki;
1579 
1580 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1581 		stat->current_frequency = clki->curr_freq;
1582 	}
1583 
1584 	if (scaling->is_busy_started)
1585 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1586 				scaling->busy_start_t);
1587 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1588 	stat->busy_time = scaling->tot_busy_t;
1589 start_window:
1590 	scaling->window_start_t = curr_t;
1591 	scaling->tot_busy_t = 0;
1592 
1593 	if (scaling->active_reqs) {
1594 		scaling->busy_start_t = curr_t;
1595 		scaling->is_busy_started = true;
1596 	} else {
1597 		scaling->busy_start_t = 0;
1598 		scaling->is_busy_started = false;
1599 	}
1600 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1601 	return 0;
1602 }
1603 
1604 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1605 {
1606 	struct list_head *clk_list = &hba->clk_list_head;
1607 	struct ufs_clk_info *clki;
1608 	struct devfreq *devfreq;
1609 	int ret;
1610 
1611 	/* Skip devfreq if we don't have any clocks in the list */
1612 	if (list_empty(clk_list))
1613 		return 0;
1614 
1615 	if (!hba->use_pm_opp) {
1616 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1617 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1618 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1619 	}
1620 
1621 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1622 					 &hba->vps->ondemand_data);
1623 	devfreq = devfreq_add_device(hba->dev,
1624 			&hba->vps->devfreq_profile,
1625 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1626 			&hba->vps->ondemand_data);
1627 	if (IS_ERR(devfreq)) {
1628 		ret = PTR_ERR(devfreq);
1629 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1630 
1631 		if (!hba->use_pm_opp) {
1632 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1633 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1634 		}
1635 		return ret;
1636 	}
1637 
1638 	hba->devfreq = devfreq;
1639 
1640 	return 0;
1641 }
1642 
1643 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1644 {
1645 	struct list_head *clk_list = &hba->clk_list_head;
1646 
1647 	if (!hba->devfreq)
1648 		return;
1649 
1650 	devfreq_remove_device(hba->devfreq);
1651 	hba->devfreq = NULL;
1652 
1653 	if (!hba->use_pm_opp) {
1654 		struct ufs_clk_info *clki;
1655 
1656 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1657 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1658 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1659 	}
1660 }
1661 
1662 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1663 {
1664 	unsigned long flags;
1665 	bool suspend = false;
1666 
1667 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1668 	cancel_work_sync(&hba->clk_scaling.resume_work);
1669 
1670 	spin_lock_irqsave(hba->host->host_lock, flags);
1671 	if (!hba->clk_scaling.is_suspended) {
1672 		suspend = true;
1673 		hba->clk_scaling.is_suspended = true;
1674 		hba->clk_scaling.window_start_t = 0;
1675 	}
1676 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1677 
1678 	if (suspend)
1679 		devfreq_suspend_device(hba->devfreq);
1680 }
1681 
1682 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1683 {
1684 	unsigned long flags;
1685 	bool resume = false;
1686 
1687 	spin_lock_irqsave(hba->host->host_lock, flags);
1688 	if (hba->clk_scaling.is_suspended) {
1689 		resume = true;
1690 		hba->clk_scaling.is_suspended = false;
1691 	}
1692 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1693 
1694 	if (resume)
1695 		devfreq_resume_device(hba->devfreq);
1696 }
1697 
1698 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1699 		struct device_attribute *attr, char *buf)
1700 {
1701 	struct ufs_hba *hba = dev_get_drvdata(dev);
1702 
1703 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1704 }
1705 
1706 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1707 		struct device_attribute *attr, const char *buf, size_t count)
1708 {
1709 	struct ufs_hba *hba = dev_get_drvdata(dev);
1710 	u32 value;
1711 	int err = 0;
1712 
1713 	if (kstrtou32(buf, 0, &value))
1714 		return -EINVAL;
1715 
1716 	down(&hba->host_sem);
1717 	if (!ufshcd_is_user_access_allowed(hba)) {
1718 		err = -EBUSY;
1719 		goto out;
1720 	}
1721 
1722 	value = !!value;
1723 	if (value == hba->clk_scaling.is_enabled)
1724 		goto out;
1725 
1726 	ufshcd_rpm_get_sync(hba);
1727 	ufshcd_hold(hba);
1728 
1729 	hba->clk_scaling.is_enabled = value;
1730 
1731 	if (value) {
1732 		ufshcd_resume_clkscaling(hba);
1733 	} else {
1734 		ufshcd_suspend_clkscaling(hba);
1735 		err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
1736 		if (err)
1737 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1738 					__func__, err);
1739 	}
1740 
1741 	ufshcd_release(hba);
1742 	ufshcd_rpm_put_sync(hba);
1743 out:
1744 	up(&hba->host_sem);
1745 	return err ? err : count;
1746 }
1747 
1748 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1749 {
1750 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1751 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1752 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1753 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1754 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1755 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1756 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1757 }
1758 
1759 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1760 {
1761 	if (hba->clk_scaling.enable_attr.attr.name)
1762 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1763 }
1764 
1765 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1766 {
1767 	char wq_name[sizeof("ufs_clkscaling_00")];
1768 
1769 	if (!ufshcd_is_clkscaling_supported(hba))
1770 		return;
1771 
1772 	if (!hba->clk_scaling.min_gear)
1773 		hba->clk_scaling.min_gear = UFS_HS_G1;
1774 
1775 	INIT_WORK(&hba->clk_scaling.suspend_work,
1776 		  ufshcd_clk_scaling_suspend_work);
1777 	INIT_WORK(&hba->clk_scaling.resume_work,
1778 		  ufshcd_clk_scaling_resume_work);
1779 
1780 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1781 		 hba->host->host_no);
1782 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1783 
1784 	hba->clk_scaling.is_initialized = true;
1785 }
1786 
1787 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1788 {
1789 	if (!hba->clk_scaling.is_initialized)
1790 		return;
1791 
1792 	ufshcd_remove_clk_scaling_sysfs(hba);
1793 	destroy_workqueue(hba->clk_scaling.workq);
1794 	ufshcd_devfreq_remove(hba);
1795 	hba->clk_scaling.is_initialized = false;
1796 }
1797 
1798 static void ufshcd_ungate_work(struct work_struct *work)
1799 {
1800 	int ret;
1801 	unsigned long flags;
1802 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1803 			clk_gating.ungate_work);
1804 
1805 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1806 
1807 	spin_lock_irqsave(hba->host->host_lock, flags);
1808 	if (hba->clk_gating.state == CLKS_ON) {
1809 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 		return;
1811 	}
1812 
1813 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1814 	ufshcd_hba_vreg_set_hpm(hba);
1815 	ufshcd_setup_clocks(hba, true);
1816 
1817 	ufshcd_enable_irq(hba);
1818 
1819 	/* Exit from hibern8 */
1820 	if (ufshcd_can_hibern8_during_gating(hba)) {
1821 		/* Prevent gating in this path */
1822 		hba->clk_gating.is_suspended = true;
1823 		if (ufshcd_is_link_hibern8(hba)) {
1824 			ret = ufshcd_uic_hibern8_exit(hba);
1825 			if (ret)
1826 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1827 					__func__, ret);
1828 			else
1829 				ufshcd_set_link_active(hba);
1830 		}
1831 		hba->clk_gating.is_suspended = false;
1832 	}
1833 }
1834 
1835 /**
1836  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1837  * Also, exit from hibern8 mode and set the link as active.
1838  * @hba: per adapter instance
1839  */
1840 void ufshcd_hold(struct ufs_hba *hba)
1841 {
1842 	bool flush_result;
1843 	unsigned long flags;
1844 
1845 	if (!ufshcd_is_clkgating_allowed(hba) ||
1846 	    !hba->clk_gating.is_initialized)
1847 		return;
1848 	spin_lock_irqsave(hba->host->host_lock, flags);
1849 	hba->clk_gating.active_reqs++;
1850 
1851 start:
1852 	switch (hba->clk_gating.state) {
1853 	case CLKS_ON:
1854 		/*
1855 		 * Wait for the ungate work to complete if in progress.
1856 		 * Though the clocks may be in ON state, the link could
1857 		 * still be in hibner8 state if hibern8 is allowed
1858 		 * during clock gating.
1859 		 * Make sure we exit hibern8 state also in addition to
1860 		 * clocks being ON.
1861 		 */
1862 		if (ufshcd_can_hibern8_during_gating(hba) &&
1863 		    ufshcd_is_link_hibern8(hba)) {
1864 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1865 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1866 			if (hba->clk_gating.is_suspended && !flush_result)
1867 				return;
1868 			spin_lock_irqsave(hba->host->host_lock, flags);
1869 			goto start;
1870 		}
1871 		break;
1872 	case REQ_CLKS_OFF:
1873 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1874 			hba->clk_gating.state = CLKS_ON;
1875 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1876 						hba->clk_gating.state);
1877 			break;
1878 		}
1879 		/*
1880 		 * If we are here, it means gating work is either done or
1881 		 * currently running. Hence, fall through to cancel gating
1882 		 * work and to enable clocks.
1883 		 */
1884 		fallthrough;
1885 	case CLKS_OFF:
1886 		hba->clk_gating.state = REQ_CLKS_ON;
1887 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1888 					hba->clk_gating.state);
1889 		queue_work(hba->clk_gating.clk_gating_workq,
1890 			   &hba->clk_gating.ungate_work);
1891 		/*
1892 		 * fall through to check if we should wait for this
1893 		 * work to be done or not.
1894 		 */
1895 		fallthrough;
1896 	case REQ_CLKS_ON:
1897 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1898 		flush_work(&hba->clk_gating.ungate_work);
1899 		/* Make sure state is CLKS_ON before returning */
1900 		spin_lock_irqsave(hba->host->host_lock, flags);
1901 		goto start;
1902 	default:
1903 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1904 				__func__, hba->clk_gating.state);
1905 		break;
1906 	}
1907 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1908 }
1909 EXPORT_SYMBOL_GPL(ufshcd_hold);
1910 
1911 static void ufshcd_gate_work(struct work_struct *work)
1912 {
1913 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1914 			clk_gating.gate_work.work);
1915 	unsigned long flags;
1916 	int ret;
1917 
1918 	spin_lock_irqsave(hba->host->host_lock, flags);
1919 	/*
1920 	 * In case you are here to cancel this work the gating state
1921 	 * would be marked as REQ_CLKS_ON. In this case save time by
1922 	 * skipping the gating work and exit after changing the clock
1923 	 * state to CLKS_ON.
1924 	 */
1925 	if (hba->clk_gating.is_suspended ||
1926 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1927 		hba->clk_gating.state = CLKS_ON;
1928 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1929 					hba->clk_gating.state);
1930 		goto rel_lock;
1931 	}
1932 
1933 	if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1934 		goto rel_lock;
1935 
1936 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1937 
1938 	/* put the link into hibern8 mode before turning off clocks */
1939 	if (ufshcd_can_hibern8_during_gating(hba)) {
1940 		ret = ufshcd_uic_hibern8_enter(hba);
1941 		if (ret) {
1942 			hba->clk_gating.state = CLKS_ON;
1943 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1944 					__func__, ret);
1945 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1946 						hba->clk_gating.state);
1947 			goto out;
1948 		}
1949 		ufshcd_set_link_hibern8(hba);
1950 	}
1951 
1952 	ufshcd_disable_irq(hba);
1953 
1954 	ufshcd_setup_clocks(hba, false);
1955 
1956 	/* Put the host controller in low power mode if possible */
1957 	ufshcd_hba_vreg_set_lpm(hba);
1958 	/*
1959 	 * In case you are here to cancel this work the gating state
1960 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1961 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1962 	 * and a request to turn them on is pending. By doing this way,
1963 	 * we keep the state machine in tact and this would ultimately
1964 	 * prevent from doing cancel work multiple times when there are
1965 	 * new requests arriving before the current cancel work is done.
1966 	 */
1967 	spin_lock_irqsave(hba->host->host_lock, flags);
1968 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1969 		hba->clk_gating.state = CLKS_OFF;
1970 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1971 					hba->clk_gating.state);
1972 	}
1973 rel_lock:
1974 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1975 out:
1976 	return;
1977 }
1978 
1979 /* host lock must be held before calling this variant */
1980 static void __ufshcd_release(struct ufs_hba *hba)
1981 {
1982 	if (!ufshcd_is_clkgating_allowed(hba))
1983 		return;
1984 
1985 	hba->clk_gating.active_reqs--;
1986 
1987 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1988 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1989 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1990 	    hba->active_uic_cmd || hba->uic_async_done ||
1991 	    hba->clk_gating.state == CLKS_OFF)
1992 		return;
1993 
1994 	hba->clk_gating.state = REQ_CLKS_OFF;
1995 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1996 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1997 			   &hba->clk_gating.gate_work,
1998 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1999 }
2000 
2001 void ufshcd_release(struct ufs_hba *hba)
2002 {
2003 	unsigned long flags;
2004 
2005 	spin_lock_irqsave(hba->host->host_lock, flags);
2006 	__ufshcd_release(hba);
2007 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2008 }
2009 EXPORT_SYMBOL_GPL(ufshcd_release);
2010 
2011 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2012 		struct device_attribute *attr, char *buf)
2013 {
2014 	struct ufs_hba *hba = dev_get_drvdata(dev);
2015 
2016 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2017 }
2018 
2019 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2020 {
2021 	struct ufs_hba *hba = dev_get_drvdata(dev);
2022 	unsigned long flags;
2023 
2024 	spin_lock_irqsave(hba->host->host_lock, flags);
2025 	hba->clk_gating.delay_ms = value;
2026 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2027 }
2028 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2029 
2030 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2031 		struct device_attribute *attr, const char *buf, size_t count)
2032 {
2033 	unsigned long value;
2034 
2035 	if (kstrtoul(buf, 0, &value))
2036 		return -EINVAL;
2037 
2038 	ufshcd_clkgate_delay_set(dev, value);
2039 	return count;
2040 }
2041 
2042 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2043 		struct device_attribute *attr, char *buf)
2044 {
2045 	struct ufs_hba *hba = dev_get_drvdata(dev);
2046 
2047 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2048 }
2049 
2050 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2051 		struct device_attribute *attr, const char *buf, size_t count)
2052 {
2053 	struct ufs_hba *hba = dev_get_drvdata(dev);
2054 	unsigned long flags;
2055 	u32 value;
2056 
2057 	if (kstrtou32(buf, 0, &value))
2058 		return -EINVAL;
2059 
2060 	value = !!value;
2061 
2062 	spin_lock_irqsave(hba->host->host_lock, flags);
2063 	if (value == hba->clk_gating.is_enabled)
2064 		goto out;
2065 
2066 	if (value)
2067 		__ufshcd_release(hba);
2068 	else
2069 		hba->clk_gating.active_reqs++;
2070 
2071 	hba->clk_gating.is_enabled = value;
2072 out:
2073 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2074 	return count;
2075 }
2076 
2077 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2078 {
2079 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2080 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2081 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2082 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2083 	hba->clk_gating.delay_attr.attr.mode = 0644;
2084 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2085 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2086 
2087 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2088 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2089 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2090 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2091 	hba->clk_gating.enable_attr.attr.mode = 0644;
2092 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2093 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2094 }
2095 
2096 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2097 {
2098 	if (hba->clk_gating.delay_attr.attr.name)
2099 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2100 	if (hba->clk_gating.enable_attr.attr.name)
2101 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2102 }
2103 
2104 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2105 {
2106 	char wq_name[sizeof("ufs_clk_gating_00")];
2107 
2108 	if (!ufshcd_is_clkgating_allowed(hba))
2109 		return;
2110 
2111 	hba->clk_gating.state = CLKS_ON;
2112 
2113 	hba->clk_gating.delay_ms = 150;
2114 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2115 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2116 
2117 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2118 		 hba->host->host_no);
2119 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2120 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2121 
2122 	ufshcd_init_clk_gating_sysfs(hba);
2123 
2124 	hba->clk_gating.is_enabled = true;
2125 	hba->clk_gating.is_initialized = true;
2126 }
2127 
2128 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2129 {
2130 	if (!hba->clk_gating.is_initialized)
2131 		return;
2132 
2133 	ufshcd_remove_clk_gating_sysfs(hba);
2134 
2135 	/* Ungate the clock if necessary. */
2136 	ufshcd_hold(hba);
2137 	hba->clk_gating.is_initialized = false;
2138 	ufshcd_release(hba);
2139 
2140 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2141 }
2142 
2143 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2144 {
2145 	bool queue_resume_work = false;
2146 	ktime_t curr_t = ktime_get();
2147 	unsigned long flags;
2148 
2149 	if (!ufshcd_is_clkscaling_supported(hba))
2150 		return;
2151 
2152 	spin_lock_irqsave(hba->host->host_lock, flags);
2153 	if (!hba->clk_scaling.active_reqs++)
2154 		queue_resume_work = true;
2155 
2156 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2157 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2158 		return;
2159 	}
2160 
2161 	if (queue_resume_work)
2162 		queue_work(hba->clk_scaling.workq,
2163 			   &hba->clk_scaling.resume_work);
2164 
2165 	if (!hba->clk_scaling.window_start_t) {
2166 		hba->clk_scaling.window_start_t = curr_t;
2167 		hba->clk_scaling.tot_busy_t = 0;
2168 		hba->clk_scaling.is_busy_started = false;
2169 	}
2170 
2171 	if (!hba->clk_scaling.is_busy_started) {
2172 		hba->clk_scaling.busy_start_t = curr_t;
2173 		hba->clk_scaling.is_busy_started = true;
2174 	}
2175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2176 }
2177 
2178 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2179 {
2180 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2181 	unsigned long flags;
2182 
2183 	if (!ufshcd_is_clkscaling_supported(hba))
2184 		return;
2185 
2186 	spin_lock_irqsave(hba->host->host_lock, flags);
2187 	hba->clk_scaling.active_reqs--;
2188 	if (!scaling->active_reqs && scaling->is_busy_started) {
2189 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2190 					scaling->busy_start_t));
2191 		scaling->busy_start_t = 0;
2192 		scaling->is_busy_started = false;
2193 	}
2194 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2195 }
2196 
2197 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2198 {
2199 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2200 		return READ;
2201 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2202 		return WRITE;
2203 	else
2204 		return -EINVAL;
2205 }
2206 
2207 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2208 						struct ufshcd_lrb *lrbp)
2209 {
2210 	const struct ufs_hba_monitor *m = &hba->monitor;
2211 
2212 	return (m->enabled && lrbp && lrbp->cmd &&
2213 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2214 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2215 }
2216 
2217 static void ufshcd_start_monitor(struct ufs_hba *hba,
2218 				 const struct ufshcd_lrb *lrbp)
2219 {
2220 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2221 	unsigned long flags;
2222 
2223 	spin_lock_irqsave(hba->host->host_lock, flags);
2224 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2225 		hba->monitor.busy_start_ts[dir] = ktime_get();
2226 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2227 }
2228 
2229 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2230 {
2231 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2232 	unsigned long flags;
2233 
2234 	spin_lock_irqsave(hba->host->host_lock, flags);
2235 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2236 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2237 		struct ufs_hba_monitor *m = &hba->monitor;
2238 		ktime_t now, inc, lat;
2239 
2240 		now = lrbp->compl_time_stamp;
2241 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2242 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2243 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2244 
2245 		/* Update latencies */
2246 		m->nr_req[dir]++;
2247 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2248 		m->lat_sum[dir] += lat;
2249 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2250 			m->lat_max[dir] = lat;
2251 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2252 			m->lat_min[dir] = lat;
2253 
2254 		m->nr_queued[dir]--;
2255 		/* Push forward the busy start of monitor */
2256 		m->busy_start_ts[dir] = now;
2257 	}
2258 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2259 }
2260 
2261 /**
2262  * ufshcd_send_command - Send SCSI or device management commands
2263  * @hba: per adapter instance
2264  * @task_tag: Task tag of the command
2265  * @hwq: pointer to hardware queue instance
2266  */
2267 static inline
2268 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2269 			 struct ufs_hw_queue *hwq)
2270 {
2271 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2272 	unsigned long flags;
2273 
2274 	lrbp->issue_time_stamp = ktime_get();
2275 	lrbp->issue_time_stamp_local_clock = local_clock();
2276 	lrbp->compl_time_stamp = ktime_set(0, 0);
2277 	lrbp->compl_time_stamp_local_clock = 0;
2278 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2279 	if (lrbp->cmd)
2280 		ufshcd_clk_scaling_start_busy(hba);
2281 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2282 		ufshcd_start_monitor(hba, lrbp);
2283 
2284 	if (is_mcq_enabled(hba)) {
2285 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2286 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2287 		struct utp_transfer_req_desc *dest;
2288 
2289 		spin_lock(&hwq->sq_lock);
2290 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2291 		memcpy(dest, src, utrd_size);
2292 		ufshcd_inc_sq_tail(hwq);
2293 		spin_unlock(&hwq->sq_lock);
2294 	} else {
2295 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2296 		if (hba->vops && hba->vops->setup_xfer_req)
2297 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2298 						  !!lrbp->cmd);
2299 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2300 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2301 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2302 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2303 	}
2304 }
2305 
2306 /**
2307  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2308  * @lrbp: pointer to local reference block
2309  */
2310 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2311 {
2312 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2313 	u16 resp_len;
2314 	int len;
2315 
2316 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2317 	if (sense_buffer && resp_len) {
2318 		int len_to_copy;
2319 
2320 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2321 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2322 
2323 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2324 		       len_to_copy);
2325 	}
2326 }
2327 
2328 /**
2329  * ufshcd_copy_query_response() - Copy the Query Response and the data
2330  * descriptor
2331  * @hba: per adapter instance
2332  * @lrbp: pointer to local reference block
2333  *
2334  * Return: 0 upon success; < 0 upon failure.
2335  */
2336 static
2337 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2338 {
2339 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2340 
2341 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2342 
2343 	/* Get the descriptor */
2344 	if (hba->dev_cmd.query.descriptor &&
2345 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2346 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2347 				GENERAL_UPIU_REQUEST_SIZE;
2348 		u16 resp_len;
2349 		u16 buf_len;
2350 
2351 		/* data segment length */
2352 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2353 				       .data_segment_length);
2354 		buf_len = be16_to_cpu(
2355 				hba->dev_cmd.query.request.upiu_req.length);
2356 		if (likely(buf_len >= resp_len)) {
2357 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2358 		} else {
2359 			dev_warn(hba->dev,
2360 				 "%s: rsp size %d is bigger than buffer size %d",
2361 				 __func__, resp_len, buf_len);
2362 			return -EINVAL;
2363 		}
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 /**
2370  * ufshcd_hba_capabilities - Read controller capabilities
2371  * @hba: per adapter instance
2372  *
2373  * Return: 0 on success, negative on error.
2374  */
2375 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2376 {
2377 	int err;
2378 
2379 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2380 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2381 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2382 
2383 	/* nutrs and nutmrs are 0 based values */
2384 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2385 	hba->nutmrs =
2386 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2387 	hba->reserved_slot = hba->nutrs - 1;
2388 
2389 	/* Read crypto capabilities */
2390 	err = ufshcd_hba_init_crypto_capabilities(hba);
2391 	if (err) {
2392 		dev_err(hba->dev, "crypto setup failed\n");
2393 		return err;
2394 	}
2395 
2396 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2397 	if (!hba->mcq_sup)
2398 		return 0;
2399 
2400 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2401 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2402 				     hba->mcq_capabilities);
2403 
2404 	return 0;
2405 }
2406 
2407 /**
2408  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2409  *                            to accept UIC commands
2410  * @hba: per adapter instance
2411  *
2412  * Return: true on success, else false.
2413  */
2414 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2415 {
2416 	u32 val;
2417 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2418 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2419 				    REG_CONTROLLER_STATUS);
2420 	return ret == 0;
2421 }
2422 
2423 /**
2424  * ufshcd_get_upmcrs - Get the power mode change request status
2425  * @hba: Pointer to adapter instance
2426  *
2427  * This function gets the UPMCRS field of HCS register
2428  *
2429  * Return: value of UPMCRS field.
2430  */
2431 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2432 {
2433 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2434 }
2435 
2436 /**
2437  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2438  * @hba: per adapter instance
2439  * @uic_cmd: UIC command
2440  */
2441 static inline void
2442 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2443 {
2444 	lockdep_assert_held(&hba->uic_cmd_mutex);
2445 
2446 	WARN_ON(hba->active_uic_cmd);
2447 
2448 	hba->active_uic_cmd = uic_cmd;
2449 
2450 	/* Write Args */
2451 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2452 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2453 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2454 
2455 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2456 
2457 	/* Write UIC Cmd */
2458 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2459 		      REG_UIC_COMMAND);
2460 }
2461 
2462 /**
2463  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2464  * @hba: per adapter instance
2465  * @uic_cmd: UIC command
2466  *
2467  * Return: 0 only if success.
2468  */
2469 static int
2470 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2471 {
2472 	int ret;
2473 	unsigned long flags;
2474 
2475 	lockdep_assert_held(&hba->uic_cmd_mutex);
2476 
2477 	if (wait_for_completion_timeout(&uic_cmd->done,
2478 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2479 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2480 	} else {
2481 		ret = -ETIMEDOUT;
2482 		dev_err(hba->dev,
2483 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2484 			uic_cmd->command, uic_cmd->argument3);
2485 
2486 		if (!uic_cmd->cmd_active) {
2487 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2488 				__func__);
2489 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2490 		}
2491 	}
2492 
2493 	spin_lock_irqsave(hba->host->host_lock, flags);
2494 	hba->active_uic_cmd = NULL;
2495 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2496 
2497 	return ret;
2498 }
2499 
2500 /**
2501  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2502  * @hba: per adapter instance
2503  * @uic_cmd: UIC command
2504  * @completion: initialize the completion only if this is set to true
2505  *
2506  * Return: 0 only if success.
2507  */
2508 static int
2509 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2510 		      bool completion)
2511 {
2512 	lockdep_assert_held(&hba->uic_cmd_mutex);
2513 
2514 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2515 		dev_err(hba->dev,
2516 			"Controller not ready to accept UIC commands\n");
2517 		return -EIO;
2518 	}
2519 
2520 	if (completion)
2521 		init_completion(&uic_cmd->done);
2522 
2523 	uic_cmd->cmd_active = 1;
2524 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2525 
2526 	return 0;
2527 }
2528 
2529 /**
2530  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2531  * @hba: per adapter instance
2532  * @uic_cmd: UIC command
2533  *
2534  * Return: 0 only if success.
2535  */
2536 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2537 {
2538 	int ret;
2539 
2540 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2541 		return 0;
2542 
2543 	ufshcd_hold(hba);
2544 	mutex_lock(&hba->uic_cmd_mutex);
2545 	ufshcd_add_delay_before_dme_cmd(hba);
2546 
2547 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2548 	if (!ret)
2549 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2550 
2551 	mutex_unlock(&hba->uic_cmd_mutex);
2552 
2553 	ufshcd_release(hba);
2554 	return ret;
2555 }
2556 
2557 /**
2558  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2559  * @hba:	per-adapter instance
2560  * @lrbp:	pointer to local reference block
2561  * @sg_entries:	The number of sg lists actually used
2562  * @sg_list:	Pointer to SG list
2563  */
2564 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2565 			       struct scatterlist *sg_list)
2566 {
2567 	struct ufshcd_sg_entry *prd;
2568 	struct scatterlist *sg;
2569 	int i;
2570 
2571 	if (sg_entries) {
2572 
2573 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2574 			lrbp->utr_descriptor_ptr->prd_table_length =
2575 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2576 		else
2577 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2578 
2579 		prd = lrbp->ucd_prdt_ptr;
2580 
2581 		for_each_sg(sg_list, sg, sg_entries, i) {
2582 			const unsigned int len = sg_dma_len(sg);
2583 
2584 			/*
2585 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2586 			 * based value that indicates the length, in bytes, of
2587 			 * the data block. A maximum of length of 256KB may
2588 			 * exist for any entry. Bits 1:0 of this field shall be
2589 			 * 11b to indicate Dword granularity. A value of '3'
2590 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2591 			 */
2592 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2593 			prd->size = cpu_to_le32(len - 1);
2594 			prd->addr = cpu_to_le64(sg->dma_address);
2595 			prd->reserved = 0;
2596 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2597 		}
2598 	} else {
2599 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2600 	}
2601 }
2602 
2603 /**
2604  * ufshcd_map_sg - Map scatter-gather list to prdt
2605  * @hba: per adapter instance
2606  * @lrbp: pointer to local reference block
2607  *
2608  * Return: 0 in case of success, non-zero value in case of failure.
2609  */
2610 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2611 {
2612 	struct scsi_cmnd *cmd = lrbp->cmd;
2613 	int sg_segments = scsi_dma_map(cmd);
2614 
2615 	if (sg_segments < 0)
2616 		return sg_segments;
2617 
2618 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2619 
2620 	return 0;
2621 }
2622 
2623 /**
2624  * ufshcd_enable_intr - enable interrupts
2625  * @hba: per adapter instance
2626  * @intrs: interrupt bits
2627  */
2628 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2629 {
2630 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2631 
2632 	if (hba->ufs_version == ufshci_version(1, 0)) {
2633 		u32 rw;
2634 		rw = set & INTERRUPT_MASK_RW_VER_10;
2635 		set = rw | ((set ^ intrs) & intrs);
2636 	} else {
2637 		set |= intrs;
2638 	}
2639 
2640 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2641 }
2642 
2643 /**
2644  * ufshcd_disable_intr - disable interrupts
2645  * @hba: per adapter instance
2646  * @intrs: interrupt bits
2647  */
2648 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2649 {
2650 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2651 
2652 	if (hba->ufs_version == ufshci_version(1, 0)) {
2653 		u32 rw;
2654 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2655 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2656 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2657 
2658 	} else {
2659 		set &= ~intrs;
2660 	}
2661 
2662 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2663 }
2664 
2665 /**
2666  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2667  * descriptor according to request
2668  * @lrbp: pointer to local reference block
2669  * @upiu_flags: flags required in the header
2670  * @cmd_dir: requests data direction
2671  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2672  */
2673 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2674 					enum dma_data_direction cmd_dir, int ehs_length)
2675 {
2676 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2677 	struct request_desc_header *h = &req_desc->header;
2678 	enum utp_data_direction data_direction;
2679 
2680 	*h = (typeof(*h)){ };
2681 
2682 	if (cmd_dir == DMA_FROM_DEVICE) {
2683 		data_direction = UTP_DEVICE_TO_HOST;
2684 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2685 	} else if (cmd_dir == DMA_TO_DEVICE) {
2686 		data_direction = UTP_HOST_TO_DEVICE;
2687 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2688 	} else {
2689 		data_direction = UTP_NO_DATA_TRANSFER;
2690 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2691 	}
2692 
2693 	h->command_type = lrbp->command_type;
2694 	h->data_direction = data_direction;
2695 	h->ehs_length = ehs_length;
2696 
2697 	if (lrbp->intr_cmd)
2698 		h->interrupt = 1;
2699 
2700 	/* Prepare crypto related dwords */
2701 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2702 
2703 	/*
2704 	 * assigning invalid value for command status. Controller
2705 	 * updates OCS on command completion, with the command
2706 	 * status
2707 	 */
2708 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2709 
2710 	req_desc->prd_table_length = 0;
2711 }
2712 
2713 /**
2714  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2715  * for scsi commands
2716  * @lrbp: local reference block pointer
2717  * @upiu_flags: flags
2718  */
2719 static
2720 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2721 {
2722 	struct scsi_cmnd *cmd = lrbp->cmd;
2723 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2724 	unsigned short cdb_len;
2725 
2726 	ucd_req_ptr->header = (struct utp_upiu_header){
2727 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2728 		.flags = upiu_flags,
2729 		.lun = lrbp->lun,
2730 		.task_tag = lrbp->task_tag,
2731 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2732 	};
2733 
2734 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2735 
2736 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2737 
2738 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2739 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2740 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2741 
2742 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2743 }
2744 
2745 /**
2746  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2747  * @hba: UFS hba
2748  * @lrbp: local reference block pointer
2749  * @upiu_flags: flags
2750  */
2751 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2752 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2753 {
2754 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2755 	struct ufs_query *query = &hba->dev_cmd.query;
2756 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2757 
2758 	/* Query request header */
2759 	ucd_req_ptr->header = (struct utp_upiu_header){
2760 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2761 		.flags = upiu_flags,
2762 		.lun = lrbp->lun,
2763 		.task_tag = lrbp->task_tag,
2764 		.query_function = query->request.query_func,
2765 		/* Data segment length only need for WRITE_DESC */
2766 		.data_segment_length =
2767 			query->request.upiu_req.opcode ==
2768 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2769 				cpu_to_be16(len) :
2770 				0,
2771 	};
2772 
2773 	/* Copy the Query Request buffer as is */
2774 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2775 			QUERY_OSF_SIZE);
2776 
2777 	/* Copy the Descriptor */
2778 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2779 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2780 
2781 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2782 }
2783 
2784 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2785 {
2786 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2787 
2788 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2789 
2790 	ucd_req_ptr->header = (struct utp_upiu_header){
2791 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2792 		.task_tag = lrbp->task_tag,
2793 	};
2794 
2795 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2796 }
2797 
2798 /**
2799  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2800  *			     for Device Management Purposes
2801  * @hba: per adapter instance
2802  * @lrbp: pointer to local reference block
2803  *
2804  * Return: 0 upon success; < 0 upon failure.
2805  */
2806 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2807 				      struct ufshcd_lrb *lrbp)
2808 {
2809 	u8 upiu_flags;
2810 	int ret = 0;
2811 
2812 	if (hba->ufs_version <= ufshci_version(1, 1))
2813 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2814 	else
2815 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2816 
2817 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2818 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2819 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2820 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2821 		ufshcd_prepare_utp_nop_upiu(lrbp);
2822 	else
2823 		ret = -EINVAL;
2824 
2825 	return ret;
2826 }
2827 
2828 /**
2829  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2830  *			   for SCSI Purposes
2831  * @hba: per adapter instance
2832  * @lrbp: pointer to local reference block
2833  */
2834 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2835 {
2836 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2837 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2838 	u8 upiu_flags;
2839 
2840 	if (hba->ufs_version <= ufshci_version(1, 1))
2841 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2842 	else
2843 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2844 
2845 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2846 				    lrbp->cmd->sc_data_direction, 0);
2847 	if (ioprio_class == IOPRIO_CLASS_RT)
2848 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2849 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2850 }
2851 
2852 /**
2853  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2854  * @upiu_wlun_id: UPIU W-LUN id
2855  *
2856  * Return: SCSI W-LUN id.
2857  */
2858 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2859 {
2860 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2861 }
2862 
2863 static inline bool is_device_wlun(struct scsi_device *sdev)
2864 {
2865 	return sdev->lun ==
2866 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2867 }
2868 
2869 /*
2870  * Associate the UFS controller queue with the default and poll HCTX types.
2871  * Initialize the mq_map[] arrays.
2872  */
2873 static void ufshcd_map_queues(struct Scsi_Host *shost)
2874 {
2875 	struct ufs_hba *hba = shost_priv(shost);
2876 	int i, queue_offset = 0;
2877 
2878 	if (!is_mcq_supported(hba)) {
2879 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2880 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2881 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2882 		hba->nr_hw_queues = 1;
2883 	}
2884 
2885 	for (i = 0; i < shost->nr_maps; i++) {
2886 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2887 
2888 		map->nr_queues = hba->nr_queues[i];
2889 		if (!map->nr_queues)
2890 			continue;
2891 		map->queue_offset = queue_offset;
2892 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2893 			map->queue_offset = 0;
2894 
2895 		blk_mq_map_queues(map);
2896 		queue_offset += map->nr_queues;
2897 	}
2898 }
2899 
2900 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2901 {
2902 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2903 		i * ufshcd_get_ucd_size(hba);
2904 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2905 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2906 		i * ufshcd_get_ucd_size(hba);
2907 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2908 				       response_upiu);
2909 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2910 
2911 	lrb->utr_descriptor_ptr = utrdlp + i;
2912 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2913 		i * sizeof(struct utp_transfer_req_desc);
2914 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2915 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2916 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2917 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2918 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2919 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2920 }
2921 
2922 /**
2923  * ufshcd_queuecommand - main entry point for SCSI requests
2924  * @host: SCSI host pointer
2925  * @cmd: command from SCSI Midlayer
2926  *
2927  * Return: 0 for success, non-zero in case of failure.
2928  */
2929 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2930 {
2931 	struct ufs_hba *hba = shost_priv(host);
2932 	int tag = scsi_cmd_to_rq(cmd)->tag;
2933 	struct ufshcd_lrb *lrbp;
2934 	int err = 0;
2935 	struct ufs_hw_queue *hwq = NULL;
2936 
2937 	switch (hba->ufshcd_state) {
2938 	case UFSHCD_STATE_OPERATIONAL:
2939 		break;
2940 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2941 		/*
2942 		 * SCSI error handler can call ->queuecommand() while UFS error
2943 		 * handler is in progress. Error interrupts could change the
2944 		 * state from UFSHCD_STATE_RESET to
2945 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2946 		 * being issued in that case.
2947 		 */
2948 		if (ufshcd_eh_in_progress(hba)) {
2949 			err = SCSI_MLQUEUE_HOST_BUSY;
2950 			goto out;
2951 		}
2952 		break;
2953 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2954 		/*
2955 		 * pm_runtime_get_sync() is used at error handling preparation
2956 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2957 		 * PM ops, it can never be finished if we let SCSI layer keep
2958 		 * retrying it, which gets err handler stuck forever. Neither
2959 		 * can we let the scsi cmd pass through, because UFS is in bad
2960 		 * state, the scsi cmd may eventually time out, which will get
2961 		 * err handler blocked for too long. So, just fail the scsi cmd
2962 		 * sent from PM ops, err handler can recover PM error anyways.
2963 		 */
2964 		if (hba->pm_op_in_progress) {
2965 			hba->force_reset = true;
2966 			set_host_byte(cmd, DID_BAD_TARGET);
2967 			scsi_done(cmd);
2968 			goto out;
2969 		}
2970 		fallthrough;
2971 	case UFSHCD_STATE_RESET:
2972 		err = SCSI_MLQUEUE_HOST_BUSY;
2973 		goto out;
2974 	case UFSHCD_STATE_ERROR:
2975 		set_host_byte(cmd, DID_ERROR);
2976 		scsi_done(cmd);
2977 		goto out;
2978 	}
2979 
2980 	hba->req_abort_count = 0;
2981 
2982 	ufshcd_hold(hba);
2983 
2984 	lrbp = &hba->lrb[tag];
2985 	lrbp->cmd = cmd;
2986 	lrbp->task_tag = tag;
2987 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2988 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2989 
2990 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2991 
2992 	lrbp->req_abort_skip = false;
2993 
2994 	ufshcd_comp_scsi_upiu(hba, lrbp);
2995 
2996 	err = ufshcd_map_sg(hba, lrbp);
2997 	if (err) {
2998 		ufshcd_release(hba);
2999 		goto out;
3000 	}
3001 
3002 	if (is_mcq_enabled(hba))
3003 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3004 
3005 	ufshcd_send_command(hba, tag, hwq);
3006 
3007 out:
3008 	if (ufs_trigger_eh(hba)) {
3009 		unsigned long flags;
3010 
3011 		spin_lock_irqsave(hba->host->host_lock, flags);
3012 		ufshcd_schedule_eh_work(hba);
3013 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3014 	}
3015 
3016 	return err;
3017 }
3018 
3019 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3020 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3021 {
3022 	lrbp->cmd = NULL;
3023 	lrbp->task_tag = tag;
3024 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3025 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3026 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3027 	hba->dev_cmd.type = cmd_type;
3028 
3029 	return ufshcd_compose_devman_upiu(hba, lrbp);
3030 }
3031 
3032 /*
3033  * Check with the block layer if the command is inflight
3034  * @cmd: command to check.
3035  *
3036  * Return: true if command is inflight; false if not.
3037  */
3038 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3039 {
3040 	struct request *rq;
3041 
3042 	if (!cmd)
3043 		return false;
3044 
3045 	rq = scsi_cmd_to_rq(cmd);
3046 	if (!blk_mq_request_started(rq))
3047 		return false;
3048 
3049 	return true;
3050 }
3051 
3052 /*
3053  * Clear the pending command in the controller and wait until
3054  * the controller confirms that the command has been cleared.
3055  * @hba: per adapter instance
3056  * @task_tag: The tag number of the command to be cleared.
3057  */
3058 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3059 {
3060 	u32 mask = 1U << task_tag;
3061 	unsigned long flags;
3062 	int err;
3063 
3064 	if (is_mcq_enabled(hba)) {
3065 		/*
3066 		 * MCQ mode. Clean up the MCQ resources similar to
3067 		 * what the ufshcd_utrl_clear() does for SDB mode.
3068 		 */
3069 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3070 		if (err) {
3071 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3072 				__func__, task_tag, err);
3073 			return err;
3074 		}
3075 		return 0;
3076 	}
3077 
3078 	/* clear outstanding transaction before retry */
3079 	spin_lock_irqsave(hba->host->host_lock, flags);
3080 	ufshcd_utrl_clear(hba, mask);
3081 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3082 
3083 	/*
3084 	 * wait for h/w to clear corresponding bit in door-bell.
3085 	 * max. wait is 1 sec.
3086 	 */
3087 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3088 					mask, ~mask, 1000, 1000);
3089 }
3090 
3091 /**
3092  * ufshcd_dev_cmd_completion() - handles device management command responses
3093  * @hba: per adapter instance
3094  * @lrbp: pointer to local reference block
3095  *
3096  * Return: 0 upon success; < 0 upon failure.
3097  */
3098 static int
3099 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3100 {
3101 	enum upiu_response_transaction resp;
3102 	int err = 0;
3103 
3104 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3105 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3106 
3107 	switch (resp) {
3108 	case UPIU_TRANSACTION_NOP_IN:
3109 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3110 			err = -EINVAL;
3111 			dev_err(hba->dev, "%s: unexpected response %x\n",
3112 					__func__, resp);
3113 		}
3114 		break;
3115 	case UPIU_TRANSACTION_QUERY_RSP: {
3116 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3117 
3118 		if (response == 0)
3119 			err = ufshcd_copy_query_response(hba, lrbp);
3120 		break;
3121 	}
3122 	case UPIU_TRANSACTION_REJECT_UPIU:
3123 		/* TODO: handle Reject UPIU Response */
3124 		err = -EPERM;
3125 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3126 				__func__);
3127 		break;
3128 	case UPIU_TRANSACTION_RESPONSE:
3129 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3130 			err = -EINVAL;
3131 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3132 		}
3133 		break;
3134 	default:
3135 		err = -EINVAL;
3136 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3137 				__func__, resp);
3138 		break;
3139 	}
3140 
3141 	return err;
3142 }
3143 
3144 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3145 		struct ufshcd_lrb *lrbp, int max_timeout)
3146 {
3147 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3148 	unsigned long flags;
3149 	bool pending;
3150 	int err;
3151 
3152 retry:
3153 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3154 						time_left);
3155 
3156 	if (likely(time_left)) {
3157 		/*
3158 		 * The completion handler called complete() and the caller of
3159 		 * this function still owns the @lrbp tag so the code below does
3160 		 * not trigger any race conditions.
3161 		 */
3162 		hba->dev_cmd.complete = NULL;
3163 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3164 		if (!err)
3165 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3166 	} else {
3167 		err = -ETIMEDOUT;
3168 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3169 			__func__, lrbp->task_tag);
3170 
3171 		/* MCQ mode */
3172 		if (is_mcq_enabled(hba)) {
3173 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3174 			hba->dev_cmd.complete = NULL;
3175 			return err;
3176 		}
3177 
3178 		/* SDB mode */
3179 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3180 			/* successfully cleared the command, retry if needed */
3181 			err = -EAGAIN;
3182 			/*
3183 			 * Since clearing the command succeeded we also need to
3184 			 * clear the task tag bit from the outstanding_reqs
3185 			 * variable.
3186 			 */
3187 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3188 			pending = test_bit(lrbp->task_tag,
3189 					   &hba->outstanding_reqs);
3190 			if (pending) {
3191 				hba->dev_cmd.complete = NULL;
3192 				__clear_bit(lrbp->task_tag,
3193 					    &hba->outstanding_reqs);
3194 			}
3195 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3196 
3197 			if (!pending) {
3198 				/*
3199 				 * The completion handler ran while we tried to
3200 				 * clear the command.
3201 				 */
3202 				time_left = 1;
3203 				goto retry;
3204 			}
3205 		} else {
3206 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3207 				__func__, lrbp->task_tag);
3208 
3209 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3210 			pending = test_bit(lrbp->task_tag,
3211 					   &hba->outstanding_reqs);
3212 			if (pending)
3213 				hba->dev_cmd.complete = NULL;
3214 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3215 
3216 			if (!pending) {
3217 				/*
3218 				 * The completion handler ran while we tried to
3219 				 * clear the command.
3220 				 */
3221 				time_left = 1;
3222 				goto retry;
3223 			}
3224 		}
3225 	}
3226 
3227 	return err;
3228 }
3229 
3230 /**
3231  * ufshcd_exec_dev_cmd - API for sending device management requests
3232  * @hba: UFS hba
3233  * @cmd_type: specifies the type (NOP, Query...)
3234  * @timeout: timeout in milliseconds
3235  *
3236  * Return: 0 upon success; < 0 upon failure.
3237  *
3238  * NOTE: Since there is only one available tag for device management commands,
3239  * it is expected you hold the hba->dev_cmd.lock mutex.
3240  */
3241 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3242 		enum dev_cmd_type cmd_type, int timeout)
3243 {
3244 	DECLARE_COMPLETION_ONSTACK(wait);
3245 	const u32 tag = hba->reserved_slot;
3246 	struct ufshcd_lrb *lrbp;
3247 	int err;
3248 
3249 	/* Protects use of hba->reserved_slot. */
3250 	lockdep_assert_held(&hba->dev_cmd.lock);
3251 
3252 	down_read(&hba->clk_scaling_lock);
3253 
3254 	lrbp = &hba->lrb[tag];
3255 	lrbp->cmd = NULL;
3256 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3257 	if (unlikely(err))
3258 		goto out;
3259 
3260 	hba->dev_cmd.complete = &wait;
3261 
3262 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3263 
3264 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3265 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3266 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3267 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3268 
3269 out:
3270 	up_read(&hba->clk_scaling_lock);
3271 	return err;
3272 }
3273 
3274 /**
3275  * ufshcd_init_query() - init the query response and request parameters
3276  * @hba: per-adapter instance
3277  * @request: address of the request pointer to be initialized
3278  * @response: address of the response pointer to be initialized
3279  * @opcode: operation to perform
3280  * @idn: flag idn to access
3281  * @index: LU number to access
3282  * @selector: query/flag/descriptor further identification
3283  */
3284 static inline void ufshcd_init_query(struct ufs_hba *hba,
3285 		struct ufs_query_req **request, struct ufs_query_res **response,
3286 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3287 {
3288 	*request = &hba->dev_cmd.query.request;
3289 	*response = &hba->dev_cmd.query.response;
3290 	memset(*request, 0, sizeof(struct ufs_query_req));
3291 	memset(*response, 0, sizeof(struct ufs_query_res));
3292 	(*request)->upiu_req.opcode = opcode;
3293 	(*request)->upiu_req.idn = idn;
3294 	(*request)->upiu_req.index = index;
3295 	(*request)->upiu_req.selector = selector;
3296 }
3297 
3298 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3299 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3300 {
3301 	int ret;
3302 	int retries;
3303 
3304 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3305 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3306 		if (ret)
3307 			dev_dbg(hba->dev,
3308 				"%s: failed with error %d, retries %d\n",
3309 				__func__, ret, retries);
3310 		else
3311 			break;
3312 	}
3313 
3314 	if (ret)
3315 		dev_err(hba->dev,
3316 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3317 			__func__, opcode, idn, ret, retries);
3318 	return ret;
3319 }
3320 
3321 /**
3322  * ufshcd_query_flag() - API function for sending flag query requests
3323  * @hba: per-adapter instance
3324  * @opcode: flag query to perform
3325  * @idn: flag idn to access
3326  * @index: flag index to access
3327  * @flag_res: the flag value after the query request completes
3328  *
3329  * Return: 0 for success, non-zero in case of failure.
3330  */
3331 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3332 			enum flag_idn idn, u8 index, bool *flag_res)
3333 {
3334 	struct ufs_query_req *request = NULL;
3335 	struct ufs_query_res *response = NULL;
3336 	int err, selector = 0;
3337 	int timeout = QUERY_REQ_TIMEOUT;
3338 
3339 	BUG_ON(!hba);
3340 
3341 	ufshcd_hold(hba);
3342 	mutex_lock(&hba->dev_cmd.lock);
3343 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3344 			selector);
3345 
3346 	switch (opcode) {
3347 	case UPIU_QUERY_OPCODE_SET_FLAG:
3348 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3349 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3350 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3351 		break;
3352 	case UPIU_QUERY_OPCODE_READ_FLAG:
3353 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3354 		if (!flag_res) {
3355 			/* No dummy reads */
3356 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3357 					__func__);
3358 			err = -EINVAL;
3359 			goto out_unlock;
3360 		}
3361 		break;
3362 	default:
3363 		dev_err(hba->dev,
3364 			"%s: Expected query flag opcode but got = %d\n",
3365 			__func__, opcode);
3366 		err = -EINVAL;
3367 		goto out_unlock;
3368 	}
3369 
3370 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3371 
3372 	if (err) {
3373 		dev_err(hba->dev,
3374 			"%s: Sending flag query for idn %d failed, err = %d\n",
3375 			__func__, idn, err);
3376 		goto out_unlock;
3377 	}
3378 
3379 	if (flag_res)
3380 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3381 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3382 
3383 out_unlock:
3384 	mutex_unlock(&hba->dev_cmd.lock);
3385 	ufshcd_release(hba);
3386 	return err;
3387 }
3388 
3389 /**
3390  * ufshcd_query_attr - API function for sending attribute requests
3391  * @hba: per-adapter instance
3392  * @opcode: attribute opcode
3393  * @idn: attribute idn to access
3394  * @index: index field
3395  * @selector: selector field
3396  * @attr_val: the attribute value after the query request completes
3397  *
3398  * Return: 0 for success, non-zero in case of failure.
3399 */
3400 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3401 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3402 {
3403 	struct ufs_query_req *request = NULL;
3404 	struct ufs_query_res *response = NULL;
3405 	int err;
3406 
3407 	BUG_ON(!hba);
3408 
3409 	if (!attr_val) {
3410 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3411 				__func__, opcode);
3412 		return -EINVAL;
3413 	}
3414 
3415 	ufshcd_hold(hba);
3416 
3417 	mutex_lock(&hba->dev_cmd.lock);
3418 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3419 			selector);
3420 
3421 	switch (opcode) {
3422 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3423 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3424 		request->upiu_req.value = cpu_to_be32(*attr_val);
3425 		break;
3426 	case UPIU_QUERY_OPCODE_READ_ATTR:
3427 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3428 		break;
3429 	default:
3430 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3431 				__func__, opcode);
3432 		err = -EINVAL;
3433 		goto out_unlock;
3434 	}
3435 
3436 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3437 
3438 	if (err) {
3439 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3440 				__func__, opcode, idn, index, err);
3441 		goto out_unlock;
3442 	}
3443 
3444 	*attr_val = be32_to_cpu(response->upiu_res.value);
3445 
3446 out_unlock:
3447 	mutex_unlock(&hba->dev_cmd.lock);
3448 	ufshcd_release(hba);
3449 	return err;
3450 }
3451 
3452 /**
3453  * ufshcd_query_attr_retry() - API function for sending query
3454  * attribute with retries
3455  * @hba: per-adapter instance
3456  * @opcode: attribute opcode
3457  * @idn: attribute idn to access
3458  * @index: index field
3459  * @selector: selector field
3460  * @attr_val: the attribute value after the query request
3461  * completes
3462  *
3463  * Return: 0 for success, non-zero in case of failure.
3464 */
3465 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3466 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3467 	u32 *attr_val)
3468 {
3469 	int ret = 0;
3470 	u32 retries;
3471 
3472 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3473 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3474 						selector, attr_val);
3475 		if (ret)
3476 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3477 				__func__, ret, retries);
3478 		else
3479 			break;
3480 	}
3481 
3482 	if (ret)
3483 		dev_err(hba->dev,
3484 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3485 			__func__, idn, ret, QUERY_REQ_RETRIES);
3486 	return ret;
3487 }
3488 
3489 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3490 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3491 			u8 selector, u8 *desc_buf, int *buf_len)
3492 {
3493 	struct ufs_query_req *request = NULL;
3494 	struct ufs_query_res *response = NULL;
3495 	int err;
3496 
3497 	BUG_ON(!hba);
3498 
3499 	if (!desc_buf) {
3500 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3501 				__func__, opcode);
3502 		return -EINVAL;
3503 	}
3504 
3505 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3506 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3507 				__func__, *buf_len);
3508 		return -EINVAL;
3509 	}
3510 
3511 	ufshcd_hold(hba);
3512 
3513 	mutex_lock(&hba->dev_cmd.lock);
3514 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3515 			selector);
3516 	hba->dev_cmd.query.descriptor = desc_buf;
3517 	request->upiu_req.length = cpu_to_be16(*buf_len);
3518 
3519 	switch (opcode) {
3520 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3521 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3522 		break;
3523 	case UPIU_QUERY_OPCODE_READ_DESC:
3524 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3525 		break;
3526 	default:
3527 		dev_err(hba->dev,
3528 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3529 				__func__, opcode);
3530 		err = -EINVAL;
3531 		goto out_unlock;
3532 	}
3533 
3534 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3535 
3536 	if (err) {
3537 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3538 				__func__, opcode, idn, index, err);
3539 		goto out_unlock;
3540 	}
3541 
3542 	*buf_len = be16_to_cpu(response->upiu_res.length);
3543 
3544 out_unlock:
3545 	hba->dev_cmd.query.descriptor = NULL;
3546 	mutex_unlock(&hba->dev_cmd.lock);
3547 	ufshcd_release(hba);
3548 	return err;
3549 }
3550 
3551 /**
3552  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3553  * @hba: per-adapter instance
3554  * @opcode: attribute opcode
3555  * @idn: attribute idn to access
3556  * @index: index field
3557  * @selector: selector field
3558  * @desc_buf: the buffer that contains the descriptor
3559  * @buf_len: length parameter passed to the device
3560  *
3561  * The buf_len parameter will contain, on return, the length parameter
3562  * received on the response.
3563  *
3564  * Return: 0 for success, non-zero in case of failure.
3565  */
3566 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3567 				  enum query_opcode opcode,
3568 				  enum desc_idn idn, u8 index,
3569 				  u8 selector,
3570 				  u8 *desc_buf, int *buf_len)
3571 {
3572 	int err;
3573 	int retries;
3574 
3575 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3576 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3577 						selector, desc_buf, buf_len);
3578 		if (!err || err == -EINVAL)
3579 			break;
3580 	}
3581 
3582 	return err;
3583 }
3584 
3585 /**
3586  * ufshcd_read_desc_param - read the specified descriptor parameter
3587  * @hba: Pointer to adapter instance
3588  * @desc_id: descriptor idn value
3589  * @desc_index: descriptor index
3590  * @param_offset: offset of the parameter to read
3591  * @param_read_buf: pointer to buffer where parameter would be read
3592  * @param_size: sizeof(param_read_buf)
3593  *
3594  * Return: 0 in case of success, non-zero otherwise.
3595  */
3596 int ufshcd_read_desc_param(struct ufs_hba *hba,
3597 			   enum desc_idn desc_id,
3598 			   int desc_index,
3599 			   u8 param_offset,
3600 			   u8 *param_read_buf,
3601 			   u8 param_size)
3602 {
3603 	int ret;
3604 	u8 *desc_buf;
3605 	int buff_len = QUERY_DESC_MAX_SIZE;
3606 	bool is_kmalloc = true;
3607 
3608 	/* Safety check */
3609 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3610 		return -EINVAL;
3611 
3612 	/* Check whether we need temp memory */
3613 	if (param_offset != 0 || param_size < buff_len) {
3614 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3615 		if (!desc_buf)
3616 			return -ENOMEM;
3617 	} else {
3618 		desc_buf = param_read_buf;
3619 		is_kmalloc = false;
3620 	}
3621 
3622 	/* Request for full descriptor */
3623 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3624 					    desc_id, desc_index, 0,
3625 					    desc_buf, &buff_len);
3626 	if (ret) {
3627 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3628 			__func__, desc_id, desc_index, param_offset, ret);
3629 		goto out;
3630 	}
3631 
3632 	/* Update descriptor length */
3633 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3634 
3635 	if (param_offset >= buff_len) {
3636 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3637 			__func__, param_offset, desc_id, buff_len);
3638 		ret = -EINVAL;
3639 		goto out;
3640 	}
3641 
3642 	/* Sanity check */
3643 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3644 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3645 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3646 		ret = -EINVAL;
3647 		goto out;
3648 	}
3649 
3650 	if (is_kmalloc) {
3651 		/* Make sure we don't copy more data than available */
3652 		if (param_offset >= buff_len)
3653 			ret = -EINVAL;
3654 		else
3655 			memcpy(param_read_buf, &desc_buf[param_offset],
3656 			       min_t(u32, param_size, buff_len - param_offset));
3657 	}
3658 out:
3659 	if (is_kmalloc)
3660 		kfree(desc_buf);
3661 	return ret;
3662 }
3663 
3664 /**
3665  * struct uc_string_id - unicode string
3666  *
3667  * @len: size of this descriptor inclusive
3668  * @type: descriptor type
3669  * @uc: unicode string character
3670  */
3671 struct uc_string_id {
3672 	u8 len;
3673 	u8 type;
3674 	wchar_t uc[];
3675 } __packed;
3676 
3677 /* replace non-printable or non-ASCII characters with spaces */
3678 static inline char ufshcd_remove_non_printable(u8 ch)
3679 {
3680 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3681 }
3682 
3683 /**
3684  * ufshcd_read_string_desc - read string descriptor
3685  * @hba: pointer to adapter instance
3686  * @desc_index: descriptor index
3687  * @buf: pointer to buffer where descriptor would be read,
3688  *       the caller should free the memory.
3689  * @ascii: if true convert from unicode to ascii characters
3690  *         null terminated string.
3691  *
3692  * Return:
3693  * *      string size on success.
3694  * *      -ENOMEM: on allocation failure
3695  * *      -EINVAL: on a wrong parameter
3696  */
3697 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3698 			    u8 **buf, bool ascii)
3699 {
3700 	struct uc_string_id *uc_str;
3701 	u8 *str;
3702 	int ret;
3703 
3704 	if (!buf)
3705 		return -EINVAL;
3706 
3707 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3708 	if (!uc_str)
3709 		return -ENOMEM;
3710 
3711 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3712 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3713 	if (ret < 0) {
3714 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3715 			QUERY_REQ_RETRIES, ret);
3716 		str = NULL;
3717 		goto out;
3718 	}
3719 
3720 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3721 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3722 		str = NULL;
3723 		ret = 0;
3724 		goto out;
3725 	}
3726 
3727 	if (ascii) {
3728 		ssize_t ascii_len;
3729 		int i;
3730 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3731 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3732 		str = kzalloc(ascii_len, GFP_KERNEL);
3733 		if (!str) {
3734 			ret = -ENOMEM;
3735 			goto out;
3736 		}
3737 
3738 		/*
3739 		 * the descriptor contains string in UTF16 format
3740 		 * we need to convert to utf-8 so it can be displayed
3741 		 */
3742 		ret = utf16s_to_utf8s(uc_str->uc,
3743 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3744 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3745 
3746 		/* replace non-printable or non-ASCII characters with spaces */
3747 		for (i = 0; i < ret; i++)
3748 			str[i] = ufshcd_remove_non_printable(str[i]);
3749 
3750 		str[ret++] = '\0';
3751 
3752 	} else {
3753 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3754 		if (!str) {
3755 			ret = -ENOMEM;
3756 			goto out;
3757 		}
3758 		ret = uc_str->len;
3759 	}
3760 out:
3761 	*buf = str;
3762 	kfree(uc_str);
3763 	return ret;
3764 }
3765 
3766 /**
3767  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3768  * @hba: Pointer to adapter instance
3769  * @lun: lun id
3770  * @param_offset: offset of the parameter to read
3771  * @param_read_buf: pointer to buffer where parameter would be read
3772  * @param_size: sizeof(param_read_buf)
3773  *
3774  * Return: 0 in case of success, non-zero otherwise.
3775  */
3776 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3777 					      int lun,
3778 					      enum unit_desc_param param_offset,
3779 					      u8 *param_read_buf,
3780 					      u32 param_size)
3781 {
3782 	/*
3783 	 * Unit descriptors are only available for general purpose LUs (LUN id
3784 	 * from 0 to 7) and RPMB Well known LU.
3785 	 */
3786 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3787 		return -EOPNOTSUPP;
3788 
3789 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3790 				      param_offset, param_read_buf, param_size);
3791 }
3792 
3793 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3794 {
3795 	int err = 0;
3796 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3797 
3798 	if (hba->dev_info.wspecversion >= 0x300) {
3799 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3800 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3801 				&gating_wait);
3802 		if (err)
3803 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3804 					 err, gating_wait);
3805 
3806 		if (gating_wait == 0) {
3807 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3808 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3809 					 gating_wait);
3810 		}
3811 
3812 		hba->dev_info.clk_gating_wait_us = gating_wait;
3813 	}
3814 
3815 	return err;
3816 }
3817 
3818 /**
3819  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3820  * @hba: per adapter instance
3821  *
3822  * 1. Allocate DMA memory for Command Descriptor array
3823  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3824  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3825  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3826  *	(UTMRDL)
3827  * 4. Allocate memory for local reference block(lrb).
3828  *
3829  * Return: 0 for success, non-zero in case of failure.
3830  */
3831 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3832 {
3833 	size_t utmrdl_size, utrdl_size, ucdl_size;
3834 
3835 	/* Allocate memory for UTP command descriptors */
3836 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3837 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3838 						  ucdl_size,
3839 						  &hba->ucdl_dma_addr,
3840 						  GFP_KERNEL);
3841 
3842 	/*
3843 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3844 	 */
3845 	if (!hba->ucdl_base_addr ||
3846 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3847 		dev_err(hba->dev,
3848 			"Command Descriptor Memory allocation failed\n");
3849 		goto out;
3850 	}
3851 
3852 	/*
3853 	 * Allocate memory for UTP Transfer descriptors
3854 	 * UFSHCI requires 1KB alignment of UTRD
3855 	 */
3856 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3857 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3858 						   utrdl_size,
3859 						   &hba->utrdl_dma_addr,
3860 						   GFP_KERNEL);
3861 	if (!hba->utrdl_base_addr ||
3862 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3863 		dev_err(hba->dev,
3864 			"Transfer Descriptor Memory allocation failed\n");
3865 		goto out;
3866 	}
3867 
3868 	/*
3869 	 * Skip utmrdl allocation; it may have been
3870 	 * allocated during first pass and not released during
3871 	 * MCQ memory allocation.
3872 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3873 	 */
3874 	if (hba->utmrdl_base_addr)
3875 		goto skip_utmrdl;
3876 	/*
3877 	 * Allocate memory for UTP Task Management descriptors
3878 	 * UFSHCI requires 1KB alignment of UTMRD
3879 	 */
3880 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3881 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3882 						    utmrdl_size,
3883 						    &hba->utmrdl_dma_addr,
3884 						    GFP_KERNEL);
3885 	if (!hba->utmrdl_base_addr ||
3886 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3887 		dev_err(hba->dev,
3888 		"Task Management Descriptor Memory allocation failed\n");
3889 		goto out;
3890 	}
3891 
3892 skip_utmrdl:
3893 	/* Allocate memory for local reference block */
3894 	hba->lrb = devm_kcalloc(hba->dev,
3895 				hba->nutrs, sizeof(struct ufshcd_lrb),
3896 				GFP_KERNEL);
3897 	if (!hba->lrb) {
3898 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3899 		goto out;
3900 	}
3901 	return 0;
3902 out:
3903 	return -ENOMEM;
3904 }
3905 
3906 /**
3907  * ufshcd_host_memory_configure - configure local reference block with
3908  *				memory offsets
3909  * @hba: per adapter instance
3910  *
3911  * Configure Host memory space
3912  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3913  * address.
3914  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3915  * and PRDT offset.
3916  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3917  * into local reference block.
3918  */
3919 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3920 {
3921 	struct utp_transfer_req_desc *utrdlp;
3922 	dma_addr_t cmd_desc_dma_addr;
3923 	dma_addr_t cmd_desc_element_addr;
3924 	u16 response_offset;
3925 	u16 prdt_offset;
3926 	int cmd_desc_size;
3927 	int i;
3928 
3929 	utrdlp = hba->utrdl_base_addr;
3930 
3931 	response_offset =
3932 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3933 	prdt_offset =
3934 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3935 
3936 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3937 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3938 
3939 	for (i = 0; i < hba->nutrs; i++) {
3940 		/* Configure UTRD with command descriptor base address */
3941 		cmd_desc_element_addr =
3942 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3943 		utrdlp[i].command_desc_base_addr =
3944 				cpu_to_le64(cmd_desc_element_addr);
3945 
3946 		/* Response upiu and prdt offset should be in double words */
3947 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3948 			utrdlp[i].response_upiu_offset =
3949 				cpu_to_le16(response_offset);
3950 			utrdlp[i].prd_table_offset =
3951 				cpu_to_le16(prdt_offset);
3952 			utrdlp[i].response_upiu_length =
3953 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3954 		} else {
3955 			utrdlp[i].response_upiu_offset =
3956 				cpu_to_le16(response_offset >> 2);
3957 			utrdlp[i].prd_table_offset =
3958 				cpu_to_le16(prdt_offset >> 2);
3959 			utrdlp[i].response_upiu_length =
3960 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3961 		}
3962 
3963 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3964 	}
3965 }
3966 
3967 /**
3968  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3969  * @hba: per adapter instance
3970  *
3971  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3972  * in order to initialize the Unipro link startup procedure.
3973  * Once the Unipro links are up, the device connected to the controller
3974  * is detected.
3975  *
3976  * Return: 0 on success, non-zero value on failure.
3977  */
3978 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3979 {
3980 	struct uic_command uic_cmd = {0};
3981 	int ret;
3982 
3983 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3984 
3985 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3986 	if (ret)
3987 		dev_dbg(hba->dev,
3988 			"dme-link-startup: error code %d\n", ret);
3989 	return ret;
3990 }
3991 /**
3992  * ufshcd_dme_reset - UIC command for DME_RESET
3993  * @hba: per adapter instance
3994  *
3995  * DME_RESET command is issued in order to reset UniPro stack.
3996  * This function now deals with cold reset.
3997  *
3998  * Return: 0 on success, non-zero value on failure.
3999  */
4000 static int ufshcd_dme_reset(struct ufs_hba *hba)
4001 {
4002 	struct uic_command uic_cmd = {0};
4003 	int ret;
4004 
4005 	uic_cmd.command = UIC_CMD_DME_RESET;
4006 
4007 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4008 	if (ret)
4009 		dev_err(hba->dev,
4010 			"dme-reset: error code %d\n", ret);
4011 
4012 	return ret;
4013 }
4014 
4015 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4016 			       int agreed_gear,
4017 			       int adapt_val)
4018 {
4019 	int ret;
4020 
4021 	if (agreed_gear < UFS_HS_G4)
4022 		adapt_val = PA_NO_ADAPT;
4023 
4024 	ret = ufshcd_dme_set(hba,
4025 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4026 			     adapt_val);
4027 	return ret;
4028 }
4029 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4030 
4031 /**
4032  * ufshcd_dme_enable - UIC command for DME_ENABLE
4033  * @hba: per adapter instance
4034  *
4035  * DME_ENABLE command is issued in order to enable UniPro stack.
4036  *
4037  * Return: 0 on success, non-zero value on failure.
4038  */
4039 static int ufshcd_dme_enable(struct ufs_hba *hba)
4040 {
4041 	struct uic_command uic_cmd = {0};
4042 	int ret;
4043 
4044 	uic_cmd.command = UIC_CMD_DME_ENABLE;
4045 
4046 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4047 	if (ret)
4048 		dev_err(hba->dev,
4049 			"dme-enable: error code %d\n", ret);
4050 
4051 	return ret;
4052 }
4053 
4054 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4055 {
4056 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4057 	unsigned long min_sleep_time_us;
4058 
4059 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4060 		return;
4061 
4062 	/*
4063 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4064 	 * this function
4065 	 */
4066 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4067 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4068 	} else {
4069 		unsigned long delta =
4070 			(unsigned long) ktime_to_us(
4071 				ktime_sub(ktime_get(),
4072 				hba->last_dme_cmd_tstamp));
4073 
4074 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4075 			min_sleep_time_us =
4076 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4077 		else
4078 			return; /* no more delay required */
4079 	}
4080 
4081 	/* allow sleep for extra 50us if needed */
4082 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4083 }
4084 
4085 /**
4086  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4087  * @hba: per adapter instance
4088  * @attr_sel: uic command argument1
4089  * @attr_set: attribute set type as uic command argument2
4090  * @mib_val: setting value as uic command argument3
4091  * @peer: indicate whether peer or local
4092  *
4093  * Return: 0 on success, non-zero value on failure.
4094  */
4095 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4096 			u8 attr_set, u32 mib_val, u8 peer)
4097 {
4098 	struct uic_command uic_cmd = {0};
4099 	static const char *const action[] = {
4100 		"dme-set",
4101 		"dme-peer-set"
4102 	};
4103 	const char *set = action[!!peer];
4104 	int ret;
4105 	int retries = UFS_UIC_COMMAND_RETRIES;
4106 
4107 	uic_cmd.command = peer ?
4108 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4109 	uic_cmd.argument1 = attr_sel;
4110 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4111 	uic_cmd.argument3 = mib_val;
4112 
4113 	do {
4114 		/* for peer attributes we retry upon failure */
4115 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4116 		if (ret)
4117 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4118 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4119 	} while (ret && peer && --retries);
4120 
4121 	if (ret)
4122 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4123 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4124 			UFS_UIC_COMMAND_RETRIES - retries);
4125 
4126 	return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4129 
4130 /**
4131  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4132  * @hba: per adapter instance
4133  * @attr_sel: uic command argument1
4134  * @mib_val: the value of the attribute as returned by the UIC command
4135  * @peer: indicate whether peer or local
4136  *
4137  * Return: 0 on success, non-zero value on failure.
4138  */
4139 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4140 			u32 *mib_val, u8 peer)
4141 {
4142 	struct uic_command uic_cmd = {0};
4143 	static const char *const action[] = {
4144 		"dme-get",
4145 		"dme-peer-get"
4146 	};
4147 	const char *get = action[!!peer];
4148 	int ret;
4149 	int retries = UFS_UIC_COMMAND_RETRIES;
4150 	struct ufs_pa_layer_attr orig_pwr_info;
4151 	struct ufs_pa_layer_attr temp_pwr_info;
4152 	bool pwr_mode_change = false;
4153 
4154 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4155 		orig_pwr_info = hba->pwr_info;
4156 		temp_pwr_info = orig_pwr_info;
4157 
4158 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4159 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4160 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4161 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4162 			pwr_mode_change = true;
4163 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4164 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4165 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4166 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4167 			pwr_mode_change = true;
4168 		}
4169 		if (pwr_mode_change) {
4170 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4171 			if (ret)
4172 				goto out;
4173 		}
4174 	}
4175 
4176 	uic_cmd.command = peer ?
4177 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4178 	uic_cmd.argument1 = attr_sel;
4179 
4180 	do {
4181 		/* for peer attributes we retry upon failure */
4182 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4183 		if (ret)
4184 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4185 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4186 	} while (ret && peer && --retries);
4187 
4188 	if (ret)
4189 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4190 			get, UIC_GET_ATTR_ID(attr_sel),
4191 			UFS_UIC_COMMAND_RETRIES - retries);
4192 
4193 	if (mib_val && !ret)
4194 		*mib_val = uic_cmd.argument3;
4195 
4196 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4197 	    && pwr_mode_change)
4198 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4199 out:
4200 	return ret;
4201 }
4202 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4203 
4204 /**
4205  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4206  * state) and waits for it to take effect.
4207  *
4208  * @hba: per adapter instance
4209  * @cmd: UIC command to execute
4210  *
4211  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4212  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4213  * and device UniPro link and hence it's final completion would be indicated by
4214  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4215  * addition to normal UIC command completion Status (UCCS). This function only
4216  * returns after the relevant status bits indicate the completion.
4217  *
4218  * Return: 0 on success, non-zero value on failure.
4219  */
4220 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4221 {
4222 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4223 	unsigned long flags;
4224 	u8 status;
4225 	int ret;
4226 	bool reenable_intr = false;
4227 
4228 	mutex_lock(&hba->uic_cmd_mutex);
4229 	ufshcd_add_delay_before_dme_cmd(hba);
4230 
4231 	spin_lock_irqsave(hba->host->host_lock, flags);
4232 	if (ufshcd_is_link_broken(hba)) {
4233 		ret = -ENOLINK;
4234 		goto out_unlock;
4235 	}
4236 	hba->uic_async_done = &uic_async_done;
4237 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4238 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4239 		/*
4240 		 * Make sure UIC command completion interrupt is disabled before
4241 		 * issuing UIC command.
4242 		 */
4243 		wmb();
4244 		reenable_intr = true;
4245 	}
4246 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4247 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4248 	if (ret) {
4249 		dev_err(hba->dev,
4250 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4251 			cmd->command, cmd->argument3, ret);
4252 		goto out;
4253 	}
4254 
4255 	if (!wait_for_completion_timeout(hba->uic_async_done,
4256 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4257 		dev_err(hba->dev,
4258 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4259 			cmd->command, cmd->argument3);
4260 
4261 		if (!cmd->cmd_active) {
4262 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4263 				__func__);
4264 			goto check_upmcrs;
4265 		}
4266 
4267 		ret = -ETIMEDOUT;
4268 		goto out;
4269 	}
4270 
4271 check_upmcrs:
4272 	status = ufshcd_get_upmcrs(hba);
4273 	if (status != PWR_LOCAL) {
4274 		dev_err(hba->dev,
4275 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4276 			cmd->command, status);
4277 		ret = (status != PWR_OK) ? status : -1;
4278 	}
4279 out:
4280 	if (ret) {
4281 		ufshcd_print_host_state(hba);
4282 		ufshcd_print_pwr_info(hba);
4283 		ufshcd_print_evt_hist(hba);
4284 	}
4285 
4286 	spin_lock_irqsave(hba->host->host_lock, flags);
4287 	hba->active_uic_cmd = NULL;
4288 	hba->uic_async_done = NULL;
4289 	if (reenable_intr)
4290 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4291 	if (ret) {
4292 		ufshcd_set_link_broken(hba);
4293 		ufshcd_schedule_eh_work(hba);
4294 	}
4295 out_unlock:
4296 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4297 	mutex_unlock(&hba->uic_cmd_mutex);
4298 
4299 	return ret;
4300 }
4301 
4302 /**
4303  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4304  *				using DME_SET primitives.
4305  * @hba: per adapter instance
4306  * @mode: powr mode value
4307  *
4308  * Return: 0 on success, non-zero value on failure.
4309  */
4310 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4311 {
4312 	struct uic_command uic_cmd = {0};
4313 	int ret;
4314 
4315 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4316 		ret = ufshcd_dme_set(hba,
4317 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4318 		if (ret) {
4319 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4320 						__func__, ret);
4321 			goto out;
4322 		}
4323 	}
4324 
4325 	uic_cmd.command = UIC_CMD_DME_SET;
4326 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4327 	uic_cmd.argument3 = mode;
4328 	ufshcd_hold(hba);
4329 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4330 	ufshcd_release(hba);
4331 
4332 out:
4333 	return ret;
4334 }
4335 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4336 
4337 int ufshcd_link_recovery(struct ufs_hba *hba)
4338 {
4339 	int ret;
4340 	unsigned long flags;
4341 
4342 	spin_lock_irqsave(hba->host->host_lock, flags);
4343 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4344 	ufshcd_set_eh_in_progress(hba);
4345 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4346 
4347 	/* Reset the attached device */
4348 	ufshcd_device_reset(hba);
4349 
4350 	ret = ufshcd_host_reset_and_restore(hba);
4351 
4352 	spin_lock_irqsave(hba->host->host_lock, flags);
4353 	if (ret)
4354 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4355 	ufshcd_clear_eh_in_progress(hba);
4356 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4357 
4358 	if (ret)
4359 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4360 			__func__, ret);
4361 
4362 	return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4365 
4366 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4367 {
4368 	int ret;
4369 	struct uic_command uic_cmd = {0};
4370 	ktime_t start = ktime_get();
4371 
4372 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4373 
4374 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4375 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4376 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4377 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4378 
4379 	if (ret)
4380 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4381 			__func__, ret);
4382 	else
4383 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4384 								POST_CHANGE);
4385 
4386 	return ret;
4387 }
4388 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4389 
4390 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4391 {
4392 	struct uic_command uic_cmd = {0};
4393 	int ret;
4394 	ktime_t start = ktime_get();
4395 
4396 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4397 
4398 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4399 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4400 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4401 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4402 
4403 	if (ret) {
4404 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4405 			__func__, ret);
4406 	} else {
4407 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4408 								POST_CHANGE);
4409 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4410 		hba->ufs_stats.hibern8_exit_cnt++;
4411 	}
4412 
4413 	return ret;
4414 }
4415 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4416 
4417 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4418 {
4419 	if (!ufshcd_is_auto_hibern8_supported(hba))
4420 		return;
4421 
4422 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4423 }
4424 
4425 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4426 {
4427 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4428 
4429 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4430 		return;
4431 
4432 	WRITE_ONCE(hba->ahit, ahit);
4433 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4434 		ufshcd_rpm_get_sync(hba);
4435 		ufshcd_hold(hba);
4436 		ufshcd_configure_auto_hibern8(hba);
4437 		ufshcd_release(hba);
4438 		ufshcd_rpm_put_sync(hba);
4439 	}
4440 }
4441 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4442 
4443  /**
4444  * ufshcd_init_pwr_info - setting the POR (power on reset)
4445  * values in hba power info
4446  * @hba: per-adapter instance
4447  */
4448 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4449 {
4450 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4451 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4452 	hba->pwr_info.lane_rx = UFS_LANE_1;
4453 	hba->pwr_info.lane_tx = UFS_LANE_1;
4454 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4455 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4456 	hba->pwr_info.hs_rate = 0;
4457 }
4458 
4459 /**
4460  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4461  * @hba: per-adapter instance
4462  *
4463  * Return: 0 upon success; < 0 upon failure.
4464  */
4465 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4466 {
4467 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4468 
4469 	if (hba->max_pwr_info.is_valid)
4470 		return 0;
4471 
4472 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4473 		pwr_info->pwr_tx = FASTAUTO_MODE;
4474 		pwr_info->pwr_rx = FASTAUTO_MODE;
4475 	} else {
4476 		pwr_info->pwr_tx = FAST_MODE;
4477 		pwr_info->pwr_rx = FAST_MODE;
4478 	}
4479 	pwr_info->hs_rate = PA_HS_MODE_B;
4480 
4481 	/* Get the connected lane count */
4482 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4483 			&pwr_info->lane_rx);
4484 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4485 			&pwr_info->lane_tx);
4486 
4487 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4488 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4489 				__func__,
4490 				pwr_info->lane_rx,
4491 				pwr_info->lane_tx);
4492 		return -EINVAL;
4493 	}
4494 
4495 	/*
4496 	 * First, get the maximum gears of HS speed.
4497 	 * If a zero value, it means there is no HSGEAR capability.
4498 	 * Then, get the maximum gears of PWM speed.
4499 	 */
4500 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4501 	if (!pwr_info->gear_rx) {
4502 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4503 				&pwr_info->gear_rx);
4504 		if (!pwr_info->gear_rx) {
4505 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4506 				__func__, pwr_info->gear_rx);
4507 			return -EINVAL;
4508 		}
4509 		pwr_info->pwr_rx = SLOW_MODE;
4510 	}
4511 
4512 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4513 			&pwr_info->gear_tx);
4514 	if (!pwr_info->gear_tx) {
4515 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4516 				&pwr_info->gear_tx);
4517 		if (!pwr_info->gear_tx) {
4518 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4519 				__func__, pwr_info->gear_tx);
4520 			return -EINVAL;
4521 		}
4522 		pwr_info->pwr_tx = SLOW_MODE;
4523 	}
4524 
4525 	hba->max_pwr_info.is_valid = true;
4526 	return 0;
4527 }
4528 
4529 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4530 			     struct ufs_pa_layer_attr *pwr_mode)
4531 {
4532 	int ret;
4533 
4534 	/* if already configured to the requested pwr_mode */
4535 	if (!hba->force_pmc &&
4536 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4537 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4538 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4539 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4540 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4541 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4542 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4543 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4544 		return 0;
4545 	}
4546 
4547 	/*
4548 	 * Configure attributes for power mode change with below.
4549 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4550 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4551 	 * - PA_HSSERIES
4552 	 */
4553 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4554 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4555 			pwr_mode->lane_rx);
4556 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4557 			pwr_mode->pwr_rx == FAST_MODE)
4558 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4559 	else
4560 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4561 
4562 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4563 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4564 			pwr_mode->lane_tx);
4565 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4566 			pwr_mode->pwr_tx == FAST_MODE)
4567 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4568 	else
4569 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4570 
4571 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4572 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4573 	    pwr_mode->pwr_rx == FAST_MODE ||
4574 	    pwr_mode->pwr_tx == FAST_MODE)
4575 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4576 						pwr_mode->hs_rate);
4577 
4578 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4579 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4580 				DL_FC0ProtectionTimeOutVal_Default);
4581 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4582 				DL_TC0ReplayTimeOutVal_Default);
4583 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4584 				DL_AFC0ReqTimeOutVal_Default);
4585 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4586 				DL_FC1ProtectionTimeOutVal_Default);
4587 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4588 				DL_TC1ReplayTimeOutVal_Default);
4589 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4590 				DL_AFC1ReqTimeOutVal_Default);
4591 
4592 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4593 				DL_FC0ProtectionTimeOutVal_Default);
4594 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4595 				DL_TC0ReplayTimeOutVal_Default);
4596 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4597 				DL_AFC0ReqTimeOutVal_Default);
4598 	}
4599 
4600 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4601 			| pwr_mode->pwr_tx);
4602 
4603 	if (ret) {
4604 		dev_err(hba->dev,
4605 			"%s: power mode change failed %d\n", __func__, ret);
4606 	} else {
4607 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4608 								pwr_mode);
4609 
4610 		memcpy(&hba->pwr_info, pwr_mode,
4611 			sizeof(struct ufs_pa_layer_attr));
4612 	}
4613 
4614 	return ret;
4615 }
4616 
4617 /**
4618  * ufshcd_config_pwr_mode - configure a new power mode
4619  * @hba: per-adapter instance
4620  * @desired_pwr_mode: desired power configuration
4621  *
4622  * Return: 0 upon success; < 0 upon failure.
4623  */
4624 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4625 		struct ufs_pa_layer_attr *desired_pwr_mode)
4626 {
4627 	struct ufs_pa_layer_attr final_params = { 0 };
4628 	int ret;
4629 
4630 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4631 					desired_pwr_mode, &final_params);
4632 
4633 	if (ret)
4634 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4635 
4636 	ret = ufshcd_change_power_mode(hba, &final_params);
4637 
4638 	return ret;
4639 }
4640 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4641 
4642 /**
4643  * ufshcd_complete_dev_init() - checks device readiness
4644  * @hba: per-adapter instance
4645  *
4646  * Set fDeviceInit flag and poll until device toggles it.
4647  *
4648  * Return: 0 upon success; < 0 upon failure.
4649  */
4650 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4651 {
4652 	int err;
4653 	bool flag_res = true;
4654 	ktime_t timeout;
4655 
4656 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4657 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4658 	if (err) {
4659 		dev_err(hba->dev,
4660 			"%s: setting fDeviceInit flag failed with error %d\n",
4661 			__func__, err);
4662 		goto out;
4663 	}
4664 
4665 	/* Poll fDeviceInit flag to be cleared */
4666 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4667 	do {
4668 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4669 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4670 		if (!flag_res)
4671 			break;
4672 		usleep_range(500, 1000);
4673 	} while (ktime_before(ktime_get(), timeout));
4674 
4675 	if (err) {
4676 		dev_err(hba->dev,
4677 				"%s: reading fDeviceInit flag failed with error %d\n",
4678 				__func__, err);
4679 	} else if (flag_res) {
4680 		dev_err(hba->dev,
4681 				"%s: fDeviceInit was not cleared by the device\n",
4682 				__func__);
4683 		err = -EBUSY;
4684 	}
4685 out:
4686 	return err;
4687 }
4688 
4689 /**
4690  * ufshcd_make_hba_operational - Make UFS controller operational
4691  * @hba: per adapter instance
4692  *
4693  * To bring UFS host controller to operational state,
4694  * 1. Enable required interrupts
4695  * 2. Configure interrupt aggregation
4696  * 3. Program UTRL and UTMRL base address
4697  * 4. Configure run-stop-registers
4698  *
4699  * Return: 0 on success, non-zero value on failure.
4700  */
4701 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4702 {
4703 	int err = 0;
4704 	u32 reg;
4705 
4706 	/* Enable required interrupts */
4707 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4708 
4709 	/* Configure interrupt aggregation */
4710 	if (ufshcd_is_intr_aggr_allowed(hba))
4711 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4712 	else
4713 		ufshcd_disable_intr_aggr(hba);
4714 
4715 	/* Configure UTRL and UTMRL base address registers */
4716 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4717 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4718 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4719 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4720 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4721 			REG_UTP_TASK_REQ_LIST_BASE_L);
4722 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4723 			REG_UTP_TASK_REQ_LIST_BASE_H);
4724 
4725 	/*
4726 	 * Make sure base address and interrupt setup are updated before
4727 	 * enabling the run/stop registers below.
4728 	 */
4729 	wmb();
4730 
4731 	/*
4732 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4733 	 */
4734 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4735 	if (!(ufshcd_get_lists_status(reg))) {
4736 		ufshcd_enable_run_stop_reg(hba);
4737 	} else {
4738 		dev_err(hba->dev,
4739 			"Host controller not ready to process requests");
4740 		err = -EIO;
4741 	}
4742 
4743 	return err;
4744 }
4745 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4746 
4747 /**
4748  * ufshcd_hba_stop - Send controller to reset state
4749  * @hba: per adapter instance
4750  */
4751 void ufshcd_hba_stop(struct ufs_hba *hba)
4752 {
4753 	unsigned long flags;
4754 	int err;
4755 
4756 	/*
4757 	 * Obtain the host lock to prevent that the controller is disabled
4758 	 * while the UFS interrupt handler is active on another CPU.
4759 	 */
4760 	spin_lock_irqsave(hba->host->host_lock, flags);
4761 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4762 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4763 
4764 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4765 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4766 					10, 1);
4767 	if (err)
4768 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4769 }
4770 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4771 
4772 /**
4773  * ufshcd_hba_execute_hce - initialize the controller
4774  * @hba: per adapter instance
4775  *
4776  * The controller resets itself and controller firmware initialization
4777  * sequence kicks off. When controller is ready it will set
4778  * the Host Controller Enable bit to 1.
4779  *
4780  * Return: 0 on success, non-zero value on failure.
4781  */
4782 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4783 {
4784 	int retry_outer = 3;
4785 	int retry_inner;
4786 
4787 start:
4788 	if (ufshcd_is_hba_active(hba))
4789 		/* change controller state to "reset state" */
4790 		ufshcd_hba_stop(hba);
4791 
4792 	/* UniPro link is disabled at this point */
4793 	ufshcd_set_link_off(hba);
4794 
4795 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4796 
4797 	/* start controller initialization sequence */
4798 	ufshcd_hba_start(hba);
4799 
4800 	/*
4801 	 * To initialize a UFS host controller HCE bit must be set to 1.
4802 	 * During initialization the HCE bit value changes from 1->0->1.
4803 	 * When the host controller completes initialization sequence
4804 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4805 	 * to check if the controller has completed initialization sequence.
4806 	 * So without this delay the value HCE = 1, set in the previous
4807 	 * instruction might be read back.
4808 	 * This delay can be changed based on the controller.
4809 	 */
4810 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4811 
4812 	/* wait for the host controller to complete initialization */
4813 	retry_inner = 50;
4814 	while (!ufshcd_is_hba_active(hba)) {
4815 		if (retry_inner) {
4816 			retry_inner--;
4817 		} else {
4818 			dev_err(hba->dev,
4819 				"Controller enable failed\n");
4820 			if (retry_outer) {
4821 				retry_outer--;
4822 				goto start;
4823 			}
4824 			return -EIO;
4825 		}
4826 		usleep_range(1000, 1100);
4827 	}
4828 
4829 	/* enable UIC related interrupts */
4830 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4831 
4832 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4833 
4834 	return 0;
4835 }
4836 
4837 int ufshcd_hba_enable(struct ufs_hba *hba)
4838 {
4839 	int ret;
4840 
4841 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4842 		ufshcd_set_link_off(hba);
4843 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4844 
4845 		/* enable UIC related interrupts */
4846 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4847 		ret = ufshcd_dme_reset(hba);
4848 		if (ret) {
4849 			dev_err(hba->dev, "DME_RESET failed\n");
4850 			return ret;
4851 		}
4852 
4853 		ret = ufshcd_dme_enable(hba);
4854 		if (ret) {
4855 			dev_err(hba->dev, "Enabling DME failed\n");
4856 			return ret;
4857 		}
4858 
4859 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4860 	} else {
4861 		ret = ufshcd_hba_execute_hce(hba);
4862 	}
4863 
4864 	return ret;
4865 }
4866 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4867 
4868 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4869 {
4870 	int tx_lanes = 0, i, err = 0;
4871 
4872 	if (!peer)
4873 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4874 			       &tx_lanes);
4875 	else
4876 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4877 				    &tx_lanes);
4878 	for (i = 0; i < tx_lanes; i++) {
4879 		if (!peer)
4880 			err = ufshcd_dme_set(hba,
4881 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4882 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4883 					0);
4884 		else
4885 			err = ufshcd_dme_peer_set(hba,
4886 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4887 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4888 					0);
4889 		if (err) {
4890 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4891 				__func__, peer, i, err);
4892 			break;
4893 		}
4894 	}
4895 
4896 	return err;
4897 }
4898 
4899 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4900 {
4901 	return ufshcd_disable_tx_lcc(hba, true);
4902 }
4903 
4904 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4905 {
4906 	struct ufs_event_hist *e;
4907 
4908 	if (id >= UFS_EVT_CNT)
4909 		return;
4910 
4911 	e = &hba->ufs_stats.event[id];
4912 	e->val[e->pos] = val;
4913 	e->tstamp[e->pos] = local_clock();
4914 	e->cnt += 1;
4915 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4916 
4917 	ufshcd_vops_event_notify(hba, id, &val);
4918 }
4919 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4920 
4921 /**
4922  * ufshcd_link_startup - Initialize unipro link startup
4923  * @hba: per adapter instance
4924  *
4925  * Return: 0 for success, non-zero in case of failure.
4926  */
4927 static int ufshcd_link_startup(struct ufs_hba *hba)
4928 {
4929 	int ret;
4930 	int retries = DME_LINKSTARTUP_RETRIES;
4931 	bool link_startup_again = false;
4932 
4933 	/*
4934 	 * If UFS device isn't active then we will have to issue link startup
4935 	 * 2 times to make sure the device state move to active.
4936 	 */
4937 	if (!ufshcd_is_ufs_dev_active(hba))
4938 		link_startup_again = true;
4939 
4940 link_startup:
4941 	do {
4942 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4943 
4944 		ret = ufshcd_dme_link_startup(hba);
4945 
4946 		/* check if device is detected by inter-connect layer */
4947 		if (!ret && !ufshcd_is_device_present(hba)) {
4948 			ufshcd_update_evt_hist(hba,
4949 					       UFS_EVT_LINK_STARTUP_FAIL,
4950 					       0);
4951 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4952 			ret = -ENXIO;
4953 			goto out;
4954 		}
4955 
4956 		/*
4957 		 * DME link lost indication is only received when link is up,
4958 		 * but we can't be sure if the link is up until link startup
4959 		 * succeeds. So reset the local Uni-Pro and try again.
4960 		 */
4961 		if (ret && retries && ufshcd_hba_enable(hba)) {
4962 			ufshcd_update_evt_hist(hba,
4963 					       UFS_EVT_LINK_STARTUP_FAIL,
4964 					       (u32)ret);
4965 			goto out;
4966 		}
4967 	} while (ret && retries--);
4968 
4969 	if (ret) {
4970 		/* failed to get the link up... retire */
4971 		ufshcd_update_evt_hist(hba,
4972 				       UFS_EVT_LINK_STARTUP_FAIL,
4973 				       (u32)ret);
4974 		goto out;
4975 	}
4976 
4977 	if (link_startup_again) {
4978 		link_startup_again = false;
4979 		retries = DME_LINKSTARTUP_RETRIES;
4980 		goto link_startup;
4981 	}
4982 
4983 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4984 	ufshcd_init_pwr_info(hba);
4985 	ufshcd_print_pwr_info(hba);
4986 
4987 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4988 		ret = ufshcd_disable_device_tx_lcc(hba);
4989 		if (ret)
4990 			goto out;
4991 	}
4992 
4993 	/* Include any host controller configuration via UIC commands */
4994 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4995 	if (ret)
4996 		goto out;
4997 
4998 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4999 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5000 	ret = ufshcd_make_hba_operational(hba);
5001 out:
5002 	if (ret) {
5003 		dev_err(hba->dev, "link startup failed %d\n", ret);
5004 		ufshcd_print_host_state(hba);
5005 		ufshcd_print_pwr_info(hba);
5006 		ufshcd_print_evt_hist(hba);
5007 	}
5008 	return ret;
5009 }
5010 
5011 /**
5012  * ufshcd_verify_dev_init() - Verify device initialization
5013  * @hba: per-adapter instance
5014  *
5015  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5016  * device Transport Protocol (UTP) layer is ready after a reset.
5017  * If the UTP layer at the device side is not initialized, it may
5018  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5019  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5020  *
5021  * Return: 0 upon success; < 0 upon failure.
5022  */
5023 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5024 {
5025 	int err = 0;
5026 	int retries;
5027 
5028 	ufshcd_hold(hba);
5029 	mutex_lock(&hba->dev_cmd.lock);
5030 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5031 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5032 					  hba->nop_out_timeout);
5033 
5034 		if (!err || err == -ETIMEDOUT)
5035 			break;
5036 
5037 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5038 	}
5039 	mutex_unlock(&hba->dev_cmd.lock);
5040 	ufshcd_release(hba);
5041 
5042 	if (err)
5043 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5044 	return err;
5045 }
5046 
5047 /**
5048  * ufshcd_setup_links - associate link b/w device wlun and other luns
5049  * @sdev: pointer to SCSI device
5050  * @hba: pointer to ufs hba
5051  */
5052 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5053 {
5054 	struct device_link *link;
5055 
5056 	/*
5057 	 * Device wlun is the supplier & rest of the luns are consumers.
5058 	 * This ensures that device wlun suspends after all other luns.
5059 	 */
5060 	if (hba->ufs_device_wlun) {
5061 		link = device_link_add(&sdev->sdev_gendev,
5062 				       &hba->ufs_device_wlun->sdev_gendev,
5063 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5064 		if (!link) {
5065 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5066 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5067 			return;
5068 		}
5069 		hba->luns_avail--;
5070 		/* Ignore REPORT_LUN wlun probing */
5071 		if (hba->luns_avail == 1) {
5072 			ufshcd_rpm_put(hba);
5073 			return;
5074 		}
5075 	} else {
5076 		/*
5077 		 * Device wlun is probed. The assumption is that WLUNs are
5078 		 * scanned before other LUNs.
5079 		 */
5080 		hba->luns_avail--;
5081 	}
5082 }
5083 
5084 /**
5085  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5086  * @hba: per-adapter instance
5087  * @sdev: pointer to SCSI device
5088  */
5089 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5090 {
5091 	int len = QUERY_DESC_MAX_SIZE;
5092 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5093 	u8 lun_qdepth = hba->nutrs;
5094 	u8 *desc_buf;
5095 	int ret;
5096 
5097 	desc_buf = kzalloc(len, GFP_KERNEL);
5098 	if (!desc_buf)
5099 		goto set_qdepth;
5100 
5101 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5102 	if (ret < 0) {
5103 		if (ret == -EOPNOTSUPP)
5104 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5105 			lun_qdepth = 1;
5106 		kfree(desc_buf);
5107 		goto set_qdepth;
5108 	}
5109 
5110 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5111 		/*
5112 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5113 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5114 		 */
5115 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5116 	}
5117 	/*
5118 	 * According to UFS device specification, the write protection mode is only supported by
5119 	 * normal LU, not supported by WLUN.
5120 	 */
5121 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5122 	    !hba->dev_info.is_lu_power_on_wp &&
5123 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5124 		hba->dev_info.is_lu_power_on_wp = true;
5125 
5126 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5127 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5128 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5129 		hba->dev_info.b_advanced_rpmb_en = true;
5130 
5131 
5132 	kfree(desc_buf);
5133 set_qdepth:
5134 	/*
5135 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5136 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5137 	 */
5138 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5139 	scsi_change_queue_depth(sdev, lun_qdepth);
5140 }
5141 
5142 /**
5143  * ufshcd_slave_alloc - handle initial SCSI device configurations
5144  * @sdev: pointer to SCSI device
5145  *
5146  * Return: success.
5147  */
5148 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5149 {
5150 	struct ufs_hba *hba;
5151 
5152 	hba = shost_priv(sdev->host);
5153 
5154 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5155 	sdev->use_10_for_ms = 1;
5156 
5157 	/* DBD field should be set to 1 in mode sense(10) */
5158 	sdev->set_dbd_for_ms = 1;
5159 
5160 	/* allow SCSI layer to restart the device in case of errors */
5161 	sdev->allow_restart = 1;
5162 
5163 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5164 	sdev->no_report_opcodes = 1;
5165 
5166 	/* WRITE_SAME command is not supported */
5167 	sdev->no_write_same = 1;
5168 
5169 	ufshcd_lu_init(hba, sdev);
5170 
5171 	ufshcd_setup_links(hba, sdev);
5172 
5173 	return 0;
5174 }
5175 
5176 /**
5177  * ufshcd_change_queue_depth - change queue depth
5178  * @sdev: pointer to SCSI device
5179  * @depth: required depth to set
5180  *
5181  * Change queue depth and make sure the max. limits are not crossed.
5182  *
5183  * Return: new queue depth.
5184  */
5185 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5186 {
5187 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5188 }
5189 
5190 /**
5191  * ufshcd_slave_configure - adjust SCSI device configurations
5192  * @sdev: pointer to SCSI device
5193  *
5194  * Return: 0 (success).
5195  */
5196 static int ufshcd_slave_configure(struct scsi_device *sdev)
5197 {
5198 	struct ufs_hba *hba = shost_priv(sdev->host);
5199 	struct request_queue *q = sdev->request_queue;
5200 
5201 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5202 
5203 	/*
5204 	 * Block runtime-pm until all consumers are added.
5205 	 * Refer ufshcd_setup_links().
5206 	 */
5207 	if (is_device_wlun(sdev))
5208 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5209 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5210 		sdev->rpm_autosuspend = 1;
5211 	/*
5212 	 * Do not print messages during runtime PM to avoid never-ending cycles
5213 	 * of messages written back to storage by user space causing runtime
5214 	 * resume, causing more messages and so on.
5215 	 */
5216 	sdev->silence_suspend = 1;
5217 
5218 	if (hba->vops && hba->vops->config_scsi_dev)
5219 		hba->vops->config_scsi_dev(sdev);
5220 
5221 	ufshcd_crypto_register(hba, q);
5222 
5223 	return 0;
5224 }
5225 
5226 /**
5227  * ufshcd_slave_destroy - remove SCSI device configurations
5228  * @sdev: pointer to SCSI device
5229  */
5230 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5231 {
5232 	struct ufs_hba *hba;
5233 	unsigned long flags;
5234 
5235 	hba = shost_priv(sdev->host);
5236 
5237 	/* Drop the reference as it won't be needed anymore */
5238 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5239 		spin_lock_irqsave(hba->host->host_lock, flags);
5240 		hba->ufs_device_wlun = NULL;
5241 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5242 	} else if (hba->ufs_device_wlun) {
5243 		struct device *supplier = NULL;
5244 
5245 		/* Ensure UFS Device WLUN exists and does not disappear */
5246 		spin_lock_irqsave(hba->host->host_lock, flags);
5247 		if (hba->ufs_device_wlun) {
5248 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5249 			get_device(supplier);
5250 		}
5251 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5252 
5253 		if (supplier) {
5254 			/*
5255 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5256 			 * device will not have been registered but can still
5257 			 * have a device link holding a reference to the device.
5258 			 */
5259 			device_link_remove(&sdev->sdev_gendev, supplier);
5260 			put_device(supplier);
5261 		}
5262 	}
5263 }
5264 
5265 /**
5266  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5267  * @lrbp: pointer to local reference block of completed command
5268  * @scsi_status: SCSI command status
5269  *
5270  * Return: value base on SCSI command status.
5271  */
5272 static inline int
5273 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5274 {
5275 	int result = 0;
5276 
5277 	switch (scsi_status) {
5278 	case SAM_STAT_CHECK_CONDITION:
5279 		ufshcd_copy_sense_data(lrbp);
5280 		fallthrough;
5281 	case SAM_STAT_GOOD:
5282 		result |= DID_OK << 16 | scsi_status;
5283 		break;
5284 	case SAM_STAT_TASK_SET_FULL:
5285 	case SAM_STAT_BUSY:
5286 	case SAM_STAT_TASK_ABORTED:
5287 		ufshcd_copy_sense_data(lrbp);
5288 		result |= scsi_status;
5289 		break;
5290 	default:
5291 		result |= DID_ERROR << 16;
5292 		break;
5293 	} /* end of switch */
5294 
5295 	return result;
5296 }
5297 
5298 /**
5299  * ufshcd_transfer_rsp_status - Get overall status of the response
5300  * @hba: per adapter instance
5301  * @lrbp: pointer to local reference block of completed command
5302  * @cqe: pointer to the completion queue entry
5303  *
5304  * Return: result of the command to notify SCSI midlayer.
5305  */
5306 static inline int
5307 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5308 			   struct cq_entry *cqe)
5309 {
5310 	int result = 0;
5311 	int scsi_status;
5312 	enum utp_ocs ocs;
5313 	u8 upiu_flags;
5314 	u32 resid;
5315 
5316 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5317 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5318 	/*
5319 	 * Test !overflow instead of underflow to support UFS devices that do
5320 	 * not set either flag.
5321 	 */
5322 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5323 		scsi_set_resid(lrbp->cmd, resid);
5324 
5325 	/* overall command status of utrd */
5326 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5327 
5328 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5329 		if (lrbp->ucd_rsp_ptr->header.response ||
5330 		    lrbp->ucd_rsp_ptr->header.status)
5331 			ocs = OCS_SUCCESS;
5332 	}
5333 
5334 	switch (ocs) {
5335 	case OCS_SUCCESS:
5336 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5337 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5338 		case UPIU_TRANSACTION_RESPONSE:
5339 			/*
5340 			 * get the result based on SCSI status response
5341 			 * to notify the SCSI midlayer of the command status
5342 			 */
5343 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5344 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5345 
5346 			/*
5347 			 * Currently we are only supporting BKOPs exception
5348 			 * events hence we can ignore BKOPs exception event
5349 			 * during power management callbacks. BKOPs exception
5350 			 * event is not expected to be raised in runtime suspend
5351 			 * callback as it allows the urgent bkops.
5352 			 * During system suspend, we are anyway forcefully
5353 			 * disabling the bkops and if urgent bkops is needed
5354 			 * it will be enabled on system resume. Long term
5355 			 * solution could be to abort the system suspend if
5356 			 * UFS device needs urgent BKOPs.
5357 			 */
5358 			if (!hba->pm_op_in_progress &&
5359 			    !ufshcd_eh_in_progress(hba) &&
5360 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5361 				/* Flushed in suspend */
5362 				schedule_work(&hba->eeh_work);
5363 			break;
5364 		case UPIU_TRANSACTION_REJECT_UPIU:
5365 			/* TODO: handle Reject UPIU Response */
5366 			result = DID_ERROR << 16;
5367 			dev_err(hba->dev,
5368 				"Reject UPIU not fully implemented\n");
5369 			break;
5370 		default:
5371 			dev_err(hba->dev,
5372 				"Unexpected request response code = %x\n",
5373 				result);
5374 			result = DID_ERROR << 16;
5375 			break;
5376 		}
5377 		break;
5378 	case OCS_ABORTED:
5379 		result |= DID_ABORT << 16;
5380 		break;
5381 	case OCS_INVALID_COMMAND_STATUS:
5382 		result |= DID_REQUEUE << 16;
5383 		break;
5384 	case OCS_INVALID_CMD_TABLE_ATTR:
5385 	case OCS_INVALID_PRDT_ATTR:
5386 	case OCS_MISMATCH_DATA_BUF_SIZE:
5387 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5388 	case OCS_PEER_COMM_FAILURE:
5389 	case OCS_FATAL_ERROR:
5390 	case OCS_DEVICE_FATAL_ERROR:
5391 	case OCS_INVALID_CRYPTO_CONFIG:
5392 	case OCS_GENERAL_CRYPTO_ERROR:
5393 	default:
5394 		result |= DID_ERROR << 16;
5395 		dev_err(hba->dev,
5396 				"OCS error from controller = %x for tag %d\n",
5397 				ocs, lrbp->task_tag);
5398 		ufshcd_print_evt_hist(hba);
5399 		ufshcd_print_host_state(hba);
5400 		break;
5401 	} /* end of switch */
5402 
5403 	if ((host_byte(result) != DID_OK) &&
5404 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5405 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5406 	return result;
5407 }
5408 
5409 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5410 					 u32 intr_mask)
5411 {
5412 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5413 	    !ufshcd_is_auto_hibern8_enabled(hba))
5414 		return false;
5415 
5416 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5417 		return false;
5418 
5419 	if (hba->active_uic_cmd &&
5420 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5421 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5422 		return false;
5423 
5424 	return true;
5425 }
5426 
5427 /**
5428  * ufshcd_uic_cmd_compl - handle completion of uic command
5429  * @hba: per adapter instance
5430  * @intr_status: interrupt status generated by the controller
5431  *
5432  * Return:
5433  *  IRQ_HANDLED - If interrupt is valid
5434  *  IRQ_NONE    - If invalid interrupt
5435  */
5436 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5437 {
5438 	irqreturn_t retval = IRQ_NONE;
5439 
5440 	spin_lock(hba->host->host_lock);
5441 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5442 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5443 
5444 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5445 		hba->active_uic_cmd->argument2 |=
5446 			ufshcd_get_uic_cmd_result(hba);
5447 		hba->active_uic_cmd->argument3 =
5448 			ufshcd_get_dme_attr_val(hba);
5449 		if (!hba->uic_async_done)
5450 			hba->active_uic_cmd->cmd_active = 0;
5451 		complete(&hba->active_uic_cmd->done);
5452 		retval = IRQ_HANDLED;
5453 	}
5454 
5455 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5456 		hba->active_uic_cmd->cmd_active = 0;
5457 		complete(hba->uic_async_done);
5458 		retval = IRQ_HANDLED;
5459 	}
5460 
5461 	if (retval == IRQ_HANDLED)
5462 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5463 					     UFS_CMD_COMP);
5464 	spin_unlock(hba->host->host_lock);
5465 	return retval;
5466 }
5467 
5468 /* Release the resources allocated for processing a SCSI command. */
5469 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5470 			     struct ufshcd_lrb *lrbp)
5471 {
5472 	struct scsi_cmnd *cmd = lrbp->cmd;
5473 
5474 	scsi_dma_unmap(cmd);
5475 	ufshcd_release(hba);
5476 	ufshcd_clk_scaling_update_busy(hba);
5477 }
5478 
5479 /**
5480  * ufshcd_compl_one_cqe - handle a completion queue entry
5481  * @hba: per adapter instance
5482  * @task_tag: the task tag of the request to be completed
5483  * @cqe: pointer to the completion queue entry
5484  */
5485 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5486 			  struct cq_entry *cqe)
5487 {
5488 	struct ufshcd_lrb *lrbp;
5489 	struct scsi_cmnd *cmd;
5490 	enum utp_ocs ocs;
5491 
5492 	lrbp = &hba->lrb[task_tag];
5493 	lrbp->compl_time_stamp = ktime_get();
5494 	cmd = lrbp->cmd;
5495 	if (cmd) {
5496 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5497 			ufshcd_update_monitor(hba, lrbp);
5498 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5499 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5500 		ufshcd_release_scsi_cmd(hba, lrbp);
5501 		/* Do not touch lrbp after scsi done */
5502 		scsi_done(cmd);
5503 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5504 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5505 		if (hba->dev_cmd.complete) {
5506 			if (cqe) {
5507 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5508 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5509 			}
5510 			complete(hba->dev_cmd.complete);
5511 		}
5512 	}
5513 }
5514 
5515 /**
5516  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5517  * @hba: per adapter instance
5518  * @completed_reqs: bitmask that indicates which requests to complete
5519  */
5520 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5521 					unsigned long completed_reqs)
5522 {
5523 	int tag;
5524 
5525 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5526 		ufshcd_compl_one_cqe(hba, tag, NULL);
5527 }
5528 
5529 /* Any value that is not an existing queue number is fine for this constant. */
5530 enum {
5531 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5532 };
5533 
5534 static void ufshcd_clear_polled(struct ufs_hba *hba,
5535 				unsigned long *completed_reqs)
5536 {
5537 	int tag;
5538 
5539 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5540 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5541 
5542 		if (!cmd)
5543 			continue;
5544 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5545 			__clear_bit(tag, completed_reqs);
5546 	}
5547 }
5548 
5549 /*
5550  * Return: > 0 if one or more commands have been completed or 0 if no
5551  * requests have been completed.
5552  */
5553 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5554 {
5555 	struct ufs_hba *hba = shost_priv(shost);
5556 	unsigned long completed_reqs, flags;
5557 	u32 tr_doorbell;
5558 	struct ufs_hw_queue *hwq;
5559 
5560 	if (is_mcq_enabled(hba)) {
5561 		hwq = &hba->uhq[queue_num];
5562 
5563 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5564 	}
5565 
5566 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5567 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5568 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5569 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5570 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5571 		  hba->outstanding_reqs);
5572 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5573 		/* Do not complete polled requests from interrupt context. */
5574 		ufshcd_clear_polled(hba, &completed_reqs);
5575 	}
5576 	hba->outstanding_reqs &= ~completed_reqs;
5577 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5578 
5579 	if (completed_reqs)
5580 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5581 
5582 	return completed_reqs != 0;
5583 }
5584 
5585 /**
5586  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5587  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5588  * to complete the pending transfers and free the resources associated with
5589  * the scsi command.
5590  *
5591  * @hba: per adapter instance
5592  * @force_compl: This flag is set to true when invoked
5593  * from ufshcd_host_reset_and_restore() in which case it requires special
5594  * handling because the host controller has been reset by ufshcd_hba_stop().
5595  */
5596 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5597 					      bool force_compl)
5598 {
5599 	struct ufs_hw_queue *hwq;
5600 	struct ufshcd_lrb *lrbp;
5601 	struct scsi_cmnd *cmd;
5602 	unsigned long flags;
5603 	u32 hwq_num, utag;
5604 	int tag;
5605 
5606 	for (tag = 0; tag < hba->nutrs; tag++) {
5607 		lrbp = &hba->lrb[tag];
5608 		cmd = lrbp->cmd;
5609 		if (!ufshcd_cmd_inflight(cmd) ||
5610 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5611 			continue;
5612 
5613 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5614 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5615 		hwq = &hba->uhq[hwq_num];
5616 
5617 		if (force_compl) {
5618 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5619 			/*
5620 			 * For those cmds of which the cqes are not present
5621 			 * in the cq, complete them explicitly.
5622 			 */
5623 			spin_lock_irqsave(&hwq->cq_lock, flags);
5624 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5625 				set_host_byte(cmd, DID_REQUEUE);
5626 				ufshcd_release_scsi_cmd(hba, lrbp);
5627 				scsi_done(cmd);
5628 			}
5629 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5630 		} else {
5631 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5632 		}
5633 	}
5634 }
5635 
5636 /**
5637  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5638  * @hba: per adapter instance
5639  *
5640  * Return:
5641  *  IRQ_HANDLED - If interrupt is valid
5642  *  IRQ_NONE    - If invalid interrupt
5643  */
5644 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5645 {
5646 	/* Resetting interrupt aggregation counters first and reading the
5647 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5648 	 * In order to prevent other interrupts starvation the DB is read once
5649 	 * after reset. The down side of this solution is the possibility of
5650 	 * false interrupt if device completes another request after resetting
5651 	 * aggregation and before reading the DB.
5652 	 */
5653 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5654 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5655 		ufshcd_reset_intr_aggr(hba);
5656 
5657 	if (ufs_fail_completion(hba))
5658 		return IRQ_HANDLED;
5659 
5660 	/*
5661 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5662 	 * do not want polling to trigger spurious interrupt complaints.
5663 	 */
5664 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5665 
5666 	return IRQ_HANDLED;
5667 }
5668 
5669 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5670 {
5671 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5672 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5673 				       &ee_ctrl_mask);
5674 }
5675 
5676 int ufshcd_write_ee_control(struct ufs_hba *hba)
5677 {
5678 	int err;
5679 
5680 	mutex_lock(&hba->ee_ctrl_mutex);
5681 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5682 	mutex_unlock(&hba->ee_ctrl_mutex);
5683 	if (err)
5684 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5685 			__func__, err);
5686 	return err;
5687 }
5688 
5689 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5690 			     const u16 *other_mask, u16 set, u16 clr)
5691 {
5692 	u16 new_mask, ee_ctrl_mask;
5693 	int err = 0;
5694 
5695 	mutex_lock(&hba->ee_ctrl_mutex);
5696 	new_mask = (*mask & ~clr) | set;
5697 	ee_ctrl_mask = new_mask | *other_mask;
5698 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5699 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5700 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5701 	if (!err) {
5702 		hba->ee_ctrl_mask = ee_ctrl_mask;
5703 		*mask = new_mask;
5704 	}
5705 	mutex_unlock(&hba->ee_ctrl_mutex);
5706 	return err;
5707 }
5708 
5709 /**
5710  * ufshcd_disable_ee - disable exception event
5711  * @hba: per-adapter instance
5712  * @mask: exception event to disable
5713  *
5714  * Disables exception event in the device so that the EVENT_ALERT
5715  * bit is not set.
5716  *
5717  * Return: zero on success, non-zero error value on failure.
5718  */
5719 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5720 {
5721 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5722 }
5723 
5724 /**
5725  * ufshcd_enable_ee - enable exception event
5726  * @hba: per-adapter instance
5727  * @mask: exception event to enable
5728  *
5729  * Enable corresponding exception event in the device to allow
5730  * device to alert host in critical scenarios.
5731  *
5732  * Return: zero on success, non-zero error value on failure.
5733  */
5734 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5735 {
5736 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5737 }
5738 
5739 /**
5740  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5741  * @hba: per-adapter instance
5742  *
5743  * Allow device to manage background operations on its own. Enabling
5744  * this might lead to inconsistent latencies during normal data transfers
5745  * as the device is allowed to manage its own way of handling background
5746  * operations.
5747  *
5748  * Return: zero on success, non-zero on failure.
5749  */
5750 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5751 {
5752 	int err = 0;
5753 
5754 	if (hba->auto_bkops_enabled)
5755 		goto out;
5756 
5757 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5758 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5759 	if (err) {
5760 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5761 				__func__, err);
5762 		goto out;
5763 	}
5764 
5765 	hba->auto_bkops_enabled = true;
5766 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5767 
5768 	/* No need of URGENT_BKOPS exception from the device */
5769 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5770 	if (err)
5771 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5772 				__func__, err);
5773 out:
5774 	return err;
5775 }
5776 
5777 /**
5778  * ufshcd_disable_auto_bkops - block device in doing background operations
5779  * @hba: per-adapter instance
5780  *
5781  * Disabling background operations improves command response latency but
5782  * has drawback of device moving into critical state where the device is
5783  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5784  * host is idle so that BKOPS are managed effectively without any negative
5785  * impacts.
5786  *
5787  * Return: zero on success, non-zero on failure.
5788  */
5789 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5790 {
5791 	int err = 0;
5792 
5793 	if (!hba->auto_bkops_enabled)
5794 		goto out;
5795 
5796 	/*
5797 	 * If host assisted BKOPs is to be enabled, make sure
5798 	 * urgent bkops exception is allowed.
5799 	 */
5800 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5801 	if (err) {
5802 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5803 				__func__, err);
5804 		goto out;
5805 	}
5806 
5807 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5808 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5809 	if (err) {
5810 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5811 				__func__, err);
5812 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5813 		goto out;
5814 	}
5815 
5816 	hba->auto_bkops_enabled = false;
5817 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5818 	hba->is_urgent_bkops_lvl_checked = false;
5819 out:
5820 	return err;
5821 }
5822 
5823 /**
5824  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5825  * @hba: per adapter instance
5826  *
5827  * After a device reset the device may toggle the BKOPS_EN flag
5828  * to default value. The s/w tracking variables should be updated
5829  * as well. This function would change the auto-bkops state based on
5830  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5831  */
5832 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5833 {
5834 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5835 		hba->auto_bkops_enabled = false;
5836 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5837 		ufshcd_enable_auto_bkops(hba);
5838 	} else {
5839 		hba->auto_bkops_enabled = true;
5840 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5841 		ufshcd_disable_auto_bkops(hba);
5842 	}
5843 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5844 	hba->is_urgent_bkops_lvl_checked = false;
5845 }
5846 
5847 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5848 {
5849 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5850 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5851 }
5852 
5853 /**
5854  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5855  * @hba: per-adapter instance
5856  * @status: bkops_status value
5857  *
5858  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5859  * flag in the device to permit background operations if the device
5860  * bkops_status is greater than or equal to "status" argument passed to
5861  * this function, disable otherwise.
5862  *
5863  * Return: 0 for success, non-zero in case of failure.
5864  *
5865  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5866  * to know whether auto bkops is enabled or disabled after this function
5867  * returns control to it.
5868  */
5869 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5870 			     enum bkops_status status)
5871 {
5872 	int err;
5873 	u32 curr_status = 0;
5874 
5875 	err = ufshcd_get_bkops_status(hba, &curr_status);
5876 	if (err) {
5877 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5878 				__func__, err);
5879 		goto out;
5880 	} else if (curr_status > BKOPS_STATUS_MAX) {
5881 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5882 				__func__, curr_status);
5883 		err = -EINVAL;
5884 		goto out;
5885 	}
5886 
5887 	if (curr_status >= status)
5888 		err = ufshcd_enable_auto_bkops(hba);
5889 	else
5890 		err = ufshcd_disable_auto_bkops(hba);
5891 out:
5892 	return err;
5893 }
5894 
5895 /**
5896  * ufshcd_urgent_bkops - handle urgent bkops exception event
5897  * @hba: per-adapter instance
5898  *
5899  * Enable fBackgroundOpsEn flag in the device to permit background
5900  * operations.
5901  *
5902  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5903  * and negative error value for any other failure.
5904  *
5905  * Return: 0 upon success; < 0 upon failure.
5906  */
5907 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5908 {
5909 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5910 }
5911 
5912 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5913 {
5914 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5915 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5916 }
5917 
5918 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5919 {
5920 	int err;
5921 	u32 curr_status = 0;
5922 
5923 	if (hba->is_urgent_bkops_lvl_checked)
5924 		goto enable_auto_bkops;
5925 
5926 	err = ufshcd_get_bkops_status(hba, &curr_status);
5927 	if (err) {
5928 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5929 				__func__, err);
5930 		goto out;
5931 	}
5932 
5933 	/*
5934 	 * We are seeing that some devices are raising the urgent bkops
5935 	 * exception events even when BKOPS status doesn't indicate performace
5936 	 * impacted or critical. Handle these device by determining their urgent
5937 	 * bkops status at runtime.
5938 	 */
5939 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5940 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5941 				__func__, curr_status);
5942 		/* update the current status as the urgent bkops level */
5943 		hba->urgent_bkops_lvl = curr_status;
5944 		hba->is_urgent_bkops_lvl_checked = true;
5945 	}
5946 
5947 enable_auto_bkops:
5948 	err = ufshcd_enable_auto_bkops(hba);
5949 out:
5950 	if (err < 0)
5951 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5952 				__func__, err);
5953 }
5954 
5955 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5956 {
5957 	u32 value;
5958 
5959 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5960 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5961 		return;
5962 
5963 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5964 
5965 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5966 
5967 	/*
5968 	 * A placeholder for the platform vendors to add whatever additional
5969 	 * steps required
5970 	 */
5971 }
5972 
5973 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5974 {
5975 	u8 index;
5976 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5977 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5978 
5979 	index = ufshcd_wb_get_query_index(hba);
5980 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5981 }
5982 
5983 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5984 {
5985 	int ret;
5986 
5987 	if (!ufshcd_is_wb_allowed(hba) ||
5988 	    hba->dev_info.wb_enabled == enable)
5989 		return 0;
5990 
5991 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5992 	if (ret) {
5993 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5994 			__func__, enable ? "enabling" : "disabling", ret);
5995 		return ret;
5996 	}
5997 
5998 	hba->dev_info.wb_enabled = enable;
5999 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6000 			__func__, enable ? "enabled" : "disabled");
6001 
6002 	return ret;
6003 }
6004 
6005 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6006 						 bool enable)
6007 {
6008 	int ret;
6009 
6010 	ret = __ufshcd_wb_toggle(hba, enable,
6011 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6012 	if (ret) {
6013 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6014 			__func__, enable ? "enabling" : "disabling", ret);
6015 		return;
6016 	}
6017 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6018 			__func__, enable ? "enabled" : "disabled");
6019 }
6020 
6021 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6022 {
6023 	int ret;
6024 
6025 	if (!ufshcd_is_wb_allowed(hba) ||
6026 	    hba->dev_info.wb_buf_flush_enabled == enable)
6027 		return 0;
6028 
6029 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6030 	if (ret) {
6031 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6032 			__func__, enable ? "enabling" : "disabling", ret);
6033 		return ret;
6034 	}
6035 
6036 	hba->dev_info.wb_buf_flush_enabled = enable;
6037 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6038 			__func__, enable ? "enabled" : "disabled");
6039 
6040 	return ret;
6041 }
6042 
6043 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6044 						u32 avail_buf)
6045 {
6046 	u32 cur_buf;
6047 	int ret;
6048 	u8 index;
6049 
6050 	index = ufshcd_wb_get_query_index(hba);
6051 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6052 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6053 					      index, 0, &cur_buf);
6054 	if (ret) {
6055 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6056 			__func__, ret);
6057 		return false;
6058 	}
6059 
6060 	if (!cur_buf) {
6061 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6062 			 cur_buf);
6063 		return false;
6064 	}
6065 	/* Let it continue to flush when available buffer exceeds threshold */
6066 	return avail_buf < hba->vps->wb_flush_threshold;
6067 }
6068 
6069 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6070 {
6071 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6072 		ufshcd_wb_toggle_buf_flush(hba, false);
6073 
6074 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6075 	ufshcd_wb_toggle(hba, false);
6076 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6077 
6078 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6079 }
6080 
6081 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6082 {
6083 	u32 lifetime;
6084 	int ret;
6085 	u8 index;
6086 
6087 	index = ufshcd_wb_get_query_index(hba);
6088 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6089 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6090 				      index, 0, &lifetime);
6091 	if (ret) {
6092 		dev_err(hba->dev,
6093 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6094 			__func__, ret);
6095 		return false;
6096 	}
6097 
6098 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6099 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6100 			__func__, lifetime);
6101 		return false;
6102 	}
6103 
6104 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6105 		__func__, lifetime);
6106 
6107 	return true;
6108 }
6109 
6110 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6111 {
6112 	int ret;
6113 	u32 avail_buf;
6114 	u8 index;
6115 
6116 	if (!ufshcd_is_wb_allowed(hba))
6117 		return false;
6118 
6119 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6120 		ufshcd_wb_force_disable(hba);
6121 		return false;
6122 	}
6123 
6124 	/*
6125 	 * The ufs device needs the vcc to be ON to flush.
6126 	 * With user-space reduction enabled, it's enough to enable flush
6127 	 * by checking only the available buffer. The threshold
6128 	 * defined here is > 90% full.
6129 	 * With user-space preserved enabled, the current-buffer
6130 	 * should be checked too because the wb buffer size can reduce
6131 	 * when disk tends to be full. This info is provided by current
6132 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6133 	 * keeping vcc on when current buffer is empty.
6134 	 */
6135 	index = ufshcd_wb_get_query_index(hba);
6136 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6137 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6138 				      index, 0, &avail_buf);
6139 	if (ret) {
6140 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6141 			 __func__, ret);
6142 		return false;
6143 	}
6144 
6145 	if (!hba->dev_info.b_presrv_uspc_en)
6146 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6147 
6148 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6149 }
6150 
6151 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6152 {
6153 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6154 					   struct ufs_hba,
6155 					   rpm_dev_flush_recheck_work);
6156 	/*
6157 	 * To prevent unnecessary VCC power drain after device finishes
6158 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6159 	 * after a certain delay to recheck the threshold by next runtime
6160 	 * suspend.
6161 	 */
6162 	ufshcd_rpm_get_sync(hba);
6163 	ufshcd_rpm_put_sync(hba);
6164 }
6165 
6166 /**
6167  * ufshcd_exception_event_handler - handle exceptions raised by device
6168  * @work: pointer to work data
6169  *
6170  * Read bExceptionEventStatus attribute from the device and handle the
6171  * exception event accordingly.
6172  */
6173 static void ufshcd_exception_event_handler(struct work_struct *work)
6174 {
6175 	struct ufs_hba *hba;
6176 	int err;
6177 	u32 status = 0;
6178 	hba = container_of(work, struct ufs_hba, eeh_work);
6179 
6180 	ufshcd_scsi_block_requests(hba);
6181 	err = ufshcd_get_ee_status(hba, &status);
6182 	if (err) {
6183 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6184 				__func__, err);
6185 		goto out;
6186 	}
6187 
6188 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6189 
6190 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6191 		ufshcd_bkops_exception_event_handler(hba);
6192 
6193 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6194 		ufshcd_temp_exception_event_handler(hba, status);
6195 
6196 	ufs_debugfs_exception_event(hba, status);
6197 out:
6198 	ufshcd_scsi_unblock_requests(hba);
6199 }
6200 
6201 /* Complete requests that have door-bell cleared */
6202 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6203 {
6204 	if (is_mcq_enabled(hba))
6205 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6206 	else
6207 		ufshcd_transfer_req_compl(hba);
6208 
6209 	ufshcd_tmc_handler(hba);
6210 }
6211 
6212 /**
6213  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6214  *				to recover from the DL NAC errors or not.
6215  * @hba: per-adapter instance
6216  *
6217  * Return: true if error handling is required, false otherwise.
6218  */
6219 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6220 {
6221 	unsigned long flags;
6222 	bool err_handling = true;
6223 
6224 	spin_lock_irqsave(hba->host->host_lock, flags);
6225 	/*
6226 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6227 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6228 	 */
6229 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6230 		goto out;
6231 
6232 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6233 	    ((hba->saved_err & UIC_ERROR) &&
6234 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6235 		goto out;
6236 
6237 	if ((hba->saved_err & UIC_ERROR) &&
6238 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6239 		int err;
6240 		/*
6241 		 * wait for 50ms to see if we can get any other errors or not.
6242 		 */
6243 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6244 		msleep(50);
6245 		spin_lock_irqsave(hba->host->host_lock, flags);
6246 
6247 		/*
6248 		 * now check if we have got any other severe errors other than
6249 		 * DL NAC error?
6250 		 */
6251 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6252 		    ((hba->saved_err & UIC_ERROR) &&
6253 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6254 			goto out;
6255 
6256 		/*
6257 		 * As DL NAC is the only error received so far, send out NOP
6258 		 * command to confirm if link is still active or not.
6259 		 *   - If we don't get any response then do error recovery.
6260 		 *   - If we get response then clear the DL NAC error bit.
6261 		 */
6262 
6263 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6264 		err = ufshcd_verify_dev_init(hba);
6265 		spin_lock_irqsave(hba->host->host_lock, flags);
6266 
6267 		if (err)
6268 			goto out;
6269 
6270 		/* Link seems to be alive hence ignore the DL NAC errors */
6271 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6272 			hba->saved_err &= ~UIC_ERROR;
6273 		/* clear NAC error */
6274 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6275 		if (!hba->saved_uic_err)
6276 			err_handling = false;
6277 	}
6278 out:
6279 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6280 	return err_handling;
6281 }
6282 
6283 /* host lock must be held before calling this func */
6284 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6285 {
6286 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6287 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6288 }
6289 
6290 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6291 {
6292 	lockdep_assert_held(hba->host->host_lock);
6293 
6294 	/* handle fatal errors only when link is not in error state */
6295 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6296 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6297 		    ufshcd_is_saved_err_fatal(hba))
6298 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6299 		else
6300 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6301 		queue_work(hba->eh_wq, &hba->eh_work);
6302 	}
6303 }
6304 
6305 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6306 {
6307 	spin_lock_irq(hba->host->host_lock);
6308 	hba->force_reset = true;
6309 	ufshcd_schedule_eh_work(hba);
6310 	spin_unlock_irq(hba->host->host_lock);
6311 }
6312 
6313 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6314 {
6315 	mutex_lock(&hba->wb_mutex);
6316 	down_write(&hba->clk_scaling_lock);
6317 	hba->clk_scaling.is_allowed = allow;
6318 	up_write(&hba->clk_scaling_lock);
6319 	mutex_unlock(&hba->wb_mutex);
6320 }
6321 
6322 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6323 {
6324 	if (suspend) {
6325 		if (hba->clk_scaling.is_enabled)
6326 			ufshcd_suspend_clkscaling(hba);
6327 		ufshcd_clk_scaling_allow(hba, false);
6328 	} else {
6329 		ufshcd_clk_scaling_allow(hba, true);
6330 		if (hba->clk_scaling.is_enabled)
6331 			ufshcd_resume_clkscaling(hba);
6332 	}
6333 }
6334 
6335 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6336 {
6337 	ufshcd_rpm_get_sync(hba);
6338 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6339 	    hba->is_sys_suspended) {
6340 		enum ufs_pm_op pm_op;
6341 
6342 		/*
6343 		 * Don't assume anything of resume, if
6344 		 * resume fails, irq and clocks can be OFF, and powers
6345 		 * can be OFF or in LPM.
6346 		 */
6347 		ufshcd_setup_hba_vreg(hba, true);
6348 		ufshcd_enable_irq(hba);
6349 		ufshcd_setup_vreg(hba, true);
6350 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6351 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6352 		ufshcd_hold(hba);
6353 		if (!ufshcd_is_clkgating_allowed(hba))
6354 			ufshcd_setup_clocks(hba, true);
6355 		ufshcd_release(hba);
6356 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6357 		ufshcd_vops_resume(hba, pm_op);
6358 	} else {
6359 		ufshcd_hold(hba);
6360 		if (ufshcd_is_clkscaling_supported(hba) &&
6361 		    hba->clk_scaling.is_enabled)
6362 			ufshcd_suspend_clkscaling(hba);
6363 		ufshcd_clk_scaling_allow(hba, false);
6364 	}
6365 	ufshcd_scsi_block_requests(hba);
6366 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6367 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6368 	cancel_work_sync(&hba->eeh_work);
6369 }
6370 
6371 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6372 {
6373 	ufshcd_scsi_unblock_requests(hba);
6374 	ufshcd_release(hba);
6375 	if (ufshcd_is_clkscaling_supported(hba))
6376 		ufshcd_clk_scaling_suspend(hba, false);
6377 	ufshcd_rpm_put(hba);
6378 }
6379 
6380 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6381 {
6382 	return (!hba->is_powered || hba->shutting_down ||
6383 		!hba->ufs_device_wlun ||
6384 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6385 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6386 		   ufshcd_is_link_broken(hba))));
6387 }
6388 
6389 #ifdef CONFIG_PM
6390 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6391 {
6392 	struct Scsi_Host *shost = hba->host;
6393 	struct scsi_device *sdev;
6394 	struct request_queue *q;
6395 	int ret;
6396 
6397 	hba->is_sys_suspended = false;
6398 	/*
6399 	 * Set RPM status of wlun device to RPM_ACTIVE,
6400 	 * this also clears its runtime error.
6401 	 */
6402 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6403 
6404 	/* hba device might have a runtime error otherwise */
6405 	if (ret)
6406 		ret = pm_runtime_set_active(hba->dev);
6407 	/*
6408 	 * If wlun device had runtime error, we also need to resume those
6409 	 * consumer scsi devices in case any of them has failed to be
6410 	 * resumed due to supplier runtime resume failure. This is to unblock
6411 	 * blk_queue_enter in case there are bios waiting inside it.
6412 	 */
6413 	if (!ret) {
6414 		shost_for_each_device(sdev, shost) {
6415 			q = sdev->request_queue;
6416 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6417 				       q->rpm_status == RPM_SUSPENDING))
6418 				pm_request_resume(q->dev);
6419 		}
6420 	}
6421 }
6422 #else
6423 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6424 {
6425 }
6426 #endif
6427 
6428 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6429 {
6430 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6431 	u32 mode;
6432 
6433 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6434 
6435 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6436 		return true;
6437 
6438 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6439 		return true;
6440 
6441 	return false;
6442 }
6443 
6444 static bool ufshcd_abort_one(struct request *rq, void *priv)
6445 {
6446 	int *ret = priv;
6447 	u32 tag = rq->tag;
6448 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6449 	struct scsi_device *sdev = cmd->device;
6450 	struct Scsi_Host *shost = sdev->host;
6451 	struct ufs_hba *hba = shost_priv(shost);
6452 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6453 	struct ufs_hw_queue *hwq;
6454 	unsigned long flags;
6455 
6456 	*ret = ufshcd_try_to_abort_task(hba, tag);
6457 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6458 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6459 		*ret ? "failed" : "succeeded");
6460 
6461 	/* Release cmd in MCQ mode if abort succeeds */
6462 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6463 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6464 		spin_lock_irqsave(&hwq->cq_lock, flags);
6465 		if (ufshcd_cmd_inflight(lrbp->cmd))
6466 			ufshcd_release_scsi_cmd(hba, lrbp);
6467 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6468 	}
6469 
6470 	return *ret == 0;
6471 }
6472 
6473 /**
6474  * ufshcd_abort_all - Abort all pending commands.
6475  * @hba: Host bus adapter pointer.
6476  *
6477  * Return: true if and only if the host controller needs to be reset.
6478  */
6479 static bool ufshcd_abort_all(struct ufs_hba *hba)
6480 {
6481 	int tag, ret = 0;
6482 
6483 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6484 	if (ret)
6485 		goto out;
6486 
6487 	/* Clear pending task management requests */
6488 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6489 		ret = ufshcd_clear_tm_cmd(hba, tag);
6490 		if (ret)
6491 			goto out;
6492 	}
6493 
6494 out:
6495 	/* Complete the requests that are cleared by s/w */
6496 	ufshcd_complete_requests(hba, false);
6497 
6498 	return ret != 0;
6499 }
6500 
6501 /**
6502  * ufshcd_err_handler - handle UFS errors that require s/w attention
6503  * @work: pointer to work structure
6504  */
6505 static void ufshcd_err_handler(struct work_struct *work)
6506 {
6507 	int retries = MAX_ERR_HANDLER_RETRIES;
6508 	struct ufs_hba *hba;
6509 	unsigned long flags;
6510 	bool needs_restore;
6511 	bool needs_reset;
6512 	int pmc_err;
6513 
6514 	hba = container_of(work, struct ufs_hba, eh_work);
6515 
6516 	dev_info(hba->dev,
6517 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6518 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6519 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6520 		 hba->saved_uic_err, hba->force_reset,
6521 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6522 
6523 	down(&hba->host_sem);
6524 	spin_lock_irqsave(hba->host->host_lock, flags);
6525 	if (ufshcd_err_handling_should_stop(hba)) {
6526 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6527 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6528 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6529 		up(&hba->host_sem);
6530 		return;
6531 	}
6532 	ufshcd_set_eh_in_progress(hba);
6533 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6534 	ufshcd_err_handling_prepare(hba);
6535 	/* Complete requests that have door-bell cleared by h/w */
6536 	ufshcd_complete_requests(hba, false);
6537 	spin_lock_irqsave(hba->host->host_lock, flags);
6538 again:
6539 	needs_restore = false;
6540 	needs_reset = false;
6541 
6542 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6543 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6544 	/*
6545 	 * A full reset and restore might have happened after preparation
6546 	 * is finished, double check whether we should stop.
6547 	 */
6548 	if (ufshcd_err_handling_should_stop(hba))
6549 		goto skip_err_handling;
6550 
6551 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6552 		bool ret;
6553 
6554 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6555 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6556 		ret = ufshcd_quirk_dl_nac_errors(hba);
6557 		spin_lock_irqsave(hba->host->host_lock, flags);
6558 		if (!ret && ufshcd_err_handling_should_stop(hba))
6559 			goto skip_err_handling;
6560 	}
6561 
6562 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6563 	    (hba->saved_uic_err &&
6564 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6565 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6566 
6567 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6568 		ufshcd_print_host_state(hba);
6569 		ufshcd_print_pwr_info(hba);
6570 		ufshcd_print_evt_hist(hba);
6571 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6572 		ufshcd_print_trs_all(hba, pr_prdt);
6573 		spin_lock_irqsave(hba->host->host_lock, flags);
6574 	}
6575 
6576 	/*
6577 	 * if host reset is required then skip clearing the pending
6578 	 * transfers forcefully because they will get cleared during
6579 	 * host reset and restore
6580 	 */
6581 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6582 	    ufshcd_is_saved_err_fatal(hba) ||
6583 	    ((hba->saved_err & UIC_ERROR) &&
6584 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6585 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6586 		needs_reset = true;
6587 		goto do_reset;
6588 	}
6589 
6590 	/*
6591 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6592 	 * check if power mode restore is needed.
6593 	 */
6594 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6595 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6596 		if (!hba->saved_uic_err)
6597 			hba->saved_err &= ~UIC_ERROR;
6598 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6599 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6600 			needs_restore = true;
6601 		spin_lock_irqsave(hba->host->host_lock, flags);
6602 		if (!hba->saved_err && !needs_restore)
6603 			goto skip_err_handling;
6604 	}
6605 
6606 	hba->silence_err_logs = true;
6607 	/* release lock as clear command might sleep */
6608 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6609 
6610 	needs_reset = ufshcd_abort_all(hba);
6611 
6612 	spin_lock_irqsave(hba->host->host_lock, flags);
6613 	hba->silence_err_logs = false;
6614 	if (needs_reset)
6615 		goto do_reset;
6616 
6617 	/*
6618 	 * After all reqs and tasks are cleared from doorbell,
6619 	 * now it is safe to retore power mode.
6620 	 */
6621 	if (needs_restore) {
6622 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6623 		/*
6624 		 * Hold the scaling lock just in case dev cmds
6625 		 * are sent via bsg and/or sysfs.
6626 		 */
6627 		down_write(&hba->clk_scaling_lock);
6628 		hba->force_pmc = true;
6629 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6630 		if (pmc_err) {
6631 			needs_reset = true;
6632 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6633 					__func__, pmc_err);
6634 		}
6635 		hba->force_pmc = false;
6636 		ufshcd_print_pwr_info(hba);
6637 		up_write(&hba->clk_scaling_lock);
6638 		spin_lock_irqsave(hba->host->host_lock, flags);
6639 	}
6640 
6641 do_reset:
6642 	/* Fatal errors need reset */
6643 	if (needs_reset) {
6644 		int err;
6645 
6646 		hba->force_reset = false;
6647 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6648 		err = ufshcd_reset_and_restore(hba);
6649 		if (err)
6650 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6651 					__func__, err);
6652 		else
6653 			ufshcd_recover_pm_error(hba);
6654 		spin_lock_irqsave(hba->host->host_lock, flags);
6655 	}
6656 
6657 skip_err_handling:
6658 	if (!needs_reset) {
6659 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6660 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6661 		if (hba->saved_err || hba->saved_uic_err)
6662 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6663 			    __func__, hba->saved_err, hba->saved_uic_err);
6664 	}
6665 	/* Exit in an operational state or dead */
6666 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6667 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6668 		if (--retries)
6669 			goto again;
6670 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6671 	}
6672 	ufshcd_clear_eh_in_progress(hba);
6673 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6674 	ufshcd_err_handling_unprepare(hba);
6675 	up(&hba->host_sem);
6676 
6677 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6678 		 ufshcd_state_name[hba->ufshcd_state]);
6679 }
6680 
6681 /**
6682  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6683  * @hba: per-adapter instance
6684  *
6685  * Return:
6686  *  IRQ_HANDLED - If interrupt is valid
6687  *  IRQ_NONE    - If invalid interrupt
6688  */
6689 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6690 {
6691 	u32 reg;
6692 	irqreturn_t retval = IRQ_NONE;
6693 
6694 	/* PHY layer error */
6695 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6696 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6697 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6698 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6699 		/*
6700 		 * To know whether this error is fatal or not, DB timeout
6701 		 * must be checked but this error is handled separately.
6702 		 */
6703 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6704 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6705 					__func__);
6706 
6707 		/* Got a LINERESET indication. */
6708 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6709 			struct uic_command *cmd = NULL;
6710 
6711 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6712 			if (hba->uic_async_done && hba->active_uic_cmd)
6713 				cmd = hba->active_uic_cmd;
6714 			/*
6715 			 * Ignore the LINERESET during power mode change
6716 			 * operation via DME_SET command.
6717 			 */
6718 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6719 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6720 		}
6721 		retval |= IRQ_HANDLED;
6722 	}
6723 
6724 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6725 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6726 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6727 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6728 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6729 
6730 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6731 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6732 		else if (hba->dev_quirks &
6733 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6734 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6735 				hba->uic_error |=
6736 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6737 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6738 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6739 		}
6740 		retval |= IRQ_HANDLED;
6741 	}
6742 
6743 	/* UIC NL/TL/DME errors needs software retry */
6744 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6745 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6746 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6747 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6748 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6749 		retval |= IRQ_HANDLED;
6750 	}
6751 
6752 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6753 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6754 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6755 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6756 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6757 		retval |= IRQ_HANDLED;
6758 	}
6759 
6760 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6761 	if ((reg & UIC_DME_ERROR) &&
6762 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6763 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6764 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6765 		retval |= IRQ_HANDLED;
6766 	}
6767 
6768 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6769 			__func__, hba->uic_error);
6770 	return retval;
6771 }
6772 
6773 /**
6774  * ufshcd_check_errors - Check for errors that need s/w attention
6775  * @hba: per-adapter instance
6776  * @intr_status: interrupt status generated by the controller
6777  *
6778  * Return:
6779  *  IRQ_HANDLED - If interrupt is valid
6780  *  IRQ_NONE    - If invalid interrupt
6781  */
6782 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6783 {
6784 	bool queue_eh_work = false;
6785 	irqreturn_t retval = IRQ_NONE;
6786 
6787 	spin_lock(hba->host->host_lock);
6788 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6789 
6790 	if (hba->errors & INT_FATAL_ERRORS) {
6791 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6792 				       hba->errors);
6793 		queue_eh_work = true;
6794 	}
6795 
6796 	if (hba->errors & UIC_ERROR) {
6797 		hba->uic_error = 0;
6798 		retval = ufshcd_update_uic_error(hba);
6799 		if (hba->uic_error)
6800 			queue_eh_work = true;
6801 	}
6802 
6803 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6804 		dev_err(hba->dev,
6805 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6806 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6807 			"Enter" : "Exit",
6808 			hba->errors, ufshcd_get_upmcrs(hba));
6809 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6810 				       hba->errors);
6811 		ufshcd_set_link_broken(hba);
6812 		queue_eh_work = true;
6813 	}
6814 
6815 	if (queue_eh_work) {
6816 		/*
6817 		 * update the transfer error masks to sticky bits, let's do this
6818 		 * irrespective of current ufshcd_state.
6819 		 */
6820 		hba->saved_err |= hba->errors;
6821 		hba->saved_uic_err |= hba->uic_error;
6822 
6823 		/* dump controller state before resetting */
6824 		if ((hba->saved_err &
6825 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6826 		    (hba->saved_uic_err &&
6827 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6828 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6829 					__func__, hba->saved_err,
6830 					hba->saved_uic_err);
6831 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6832 					 "host_regs: ");
6833 			ufshcd_print_pwr_info(hba);
6834 		}
6835 		ufshcd_schedule_eh_work(hba);
6836 		retval |= IRQ_HANDLED;
6837 	}
6838 	/*
6839 	 * if (!queue_eh_work) -
6840 	 * Other errors are either non-fatal where host recovers
6841 	 * itself without s/w intervention or errors that will be
6842 	 * handled by the SCSI core layer.
6843 	 */
6844 	hba->errors = 0;
6845 	hba->uic_error = 0;
6846 	spin_unlock(hba->host->host_lock);
6847 	return retval;
6848 }
6849 
6850 /**
6851  * ufshcd_tmc_handler - handle task management function completion
6852  * @hba: per adapter instance
6853  *
6854  * Return:
6855  *  IRQ_HANDLED - If interrupt is valid
6856  *  IRQ_NONE    - If invalid interrupt
6857  */
6858 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6859 {
6860 	unsigned long flags, pending, issued;
6861 	irqreturn_t ret = IRQ_NONE;
6862 	int tag;
6863 
6864 	spin_lock_irqsave(hba->host->host_lock, flags);
6865 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6866 	issued = hba->outstanding_tasks & ~pending;
6867 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6868 		struct request *req = hba->tmf_rqs[tag];
6869 		struct completion *c = req->end_io_data;
6870 
6871 		complete(c);
6872 		ret = IRQ_HANDLED;
6873 	}
6874 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6875 
6876 	return ret;
6877 }
6878 
6879 /**
6880  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6881  * @hba: per adapter instance
6882  *
6883  * Return: IRQ_HANDLED if interrupt is handled.
6884  */
6885 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6886 {
6887 	struct ufs_hw_queue *hwq;
6888 	unsigned long outstanding_cqs;
6889 	unsigned int nr_queues;
6890 	int i, ret;
6891 	u32 events;
6892 
6893 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6894 	if (ret)
6895 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6896 
6897 	/* Exclude the poll queues */
6898 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6899 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6900 		hwq = &hba->uhq[i];
6901 
6902 		events = ufshcd_mcq_read_cqis(hba, i);
6903 		if (events)
6904 			ufshcd_mcq_write_cqis(hba, events, i);
6905 
6906 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6907 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6908 	}
6909 
6910 	return IRQ_HANDLED;
6911 }
6912 
6913 /**
6914  * ufshcd_sl_intr - Interrupt service routine
6915  * @hba: per adapter instance
6916  * @intr_status: contains interrupts generated by the controller
6917  *
6918  * Return:
6919  *  IRQ_HANDLED - If interrupt is valid
6920  *  IRQ_NONE    - If invalid interrupt
6921  */
6922 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6923 {
6924 	irqreturn_t retval = IRQ_NONE;
6925 
6926 	if (intr_status & UFSHCD_UIC_MASK)
6927 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6928 
6929 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6930 		retval |= ufshcd_check_errors(hba, intr_status);
6931 
6932 	if (intr_status & UTP_TASK_REQ_COMPL)
6933 		retval |= ufshcd_tmc_handler(hba);
6934 
6935 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6936 		retval |= ufshcd_transfer_req_compl(hba);
6937 
6938 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6939 		retval |= ufshcd_handle_mcq_cq_events(hba);
6940 
6941 	return retval;
6942 }
6943 
6944 /**
6945  * ufshcd_intr - Main interrupt service routine
6946  * @irq: irq number
6947  * @__hba: pointer to adapter instance
6948  *
6949  * Return:
6950  *  IRQ_HANDLED - If interrupt is valid
6951  *  IRQ_NONE    - If invalid interrupt
6952  */
6953 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6954 {
6955 	u32 intr_status, enabled_intr_status = 0;
6956 	irqreturn_t retval = IRQ_NONE;
6957 	struct ufs_hba *hba = __hba;
6958 	int retries = hba->nutrs;
6959 
6960 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6961 	hba->ufs_stats.last_intr_status = intr_status;
6962 	hba->ufs_stats.last_intr_ts = local_clock();
6963 
6964 	/*
6965 	 * There could be max of hba->nutrs reqs in flight and in worst case
6966 	 * if the reqs get finished 1 by 1 after the interrupt status is
6967 	 * read, make sure we handle them by checking the interrupt status
6968 	 * again in a loop until we process all of the reqs before returning.
6969 	 */
6970 	while (intr_status && retries--) {
6971 		enabled_intr_status =
6972 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6973 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6974 		if (enabled_intr_status)
6975 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6976 
6977 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6978 	}
6979 
6980 	if (enabled_intr_status && retval == IRQ_NONE &&
6981 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6982 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6983 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6984 					__func__,
6985 					intr_status,
6986 					hba->ufs_stats.last_intr_status,
6987 					enabled_intr_status);
6988 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6989 	}
6990 
6991 	return retval;
6992 }
6993 
6994 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6995 {
6996 	int err = 0;
6997 	u32 mask = 1 << tag;
6998 	unsigned long flags;
6999 
7000 	if (!test_bit(tag, &hba->outstanding_tasks))
7001 		goto out;
7002 
7003 	spin_lock_irqsave(hba->host->host_lock, flags);
7004 	ufshcd_utmrl_clear(hba, tag);
7005 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7006 
7007 	/* poll for max. 1 sec to clear door bell register by h/w */
7008 	err = ufshcd_wait_for_register(hba,
7009 			REG_UTP_TASK_REQ_DOOR_BELL,
7010 			mask, 0, 1000, 1000);
7011 
7012 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7013 		tag, err < 0 ? "failed" : "succeeded");
7014 
7015 out:
7016 	return err;
7017 }
7018 
7019 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7020 		struct utp_task_req_desc *treq, u8 tm_function)
7021 {
7022 	struct request_queue *q = hba->tmf_queue;
7023 	struct Scsi_Host *host = hba->host;
7024 	DECLARE_COMPLETION_ONSTACK(wait);
7025 	struct request *req;
7026 	unsigned long flags;
7027 	int task_tag, err;
7028 
7029 	/*
7030 	 * blk_mq_alloc_request() is used here only to get a free tag.
7031 	 */
7032 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7033 	if (IS_ERR(req))
7034 		return PTR_ERR(req);
7035 
7036 	req->end_io_data = &wait;
7037 	ufshcd_hold(hba);
7038 
7039 	spin_lock_irqsave(host->host_lock, flags);
7040 
7041 	task_tag = req->tag;
7042 	hba->tmf_rqs[req->tag] = req;
7043 	treq->upiu_req.req_header.task_tag = task_tag;
7044 
7045 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7046 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7047 
7048 	/* send command to the controller */
7049 	__set_bit(task_tag, &hba->outstanding_tasks);
7050 
7051 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7052 	/* Make sure that doorbell is committed immediately */
7053 	wmb();
7054 
7055 	spin_unlock_irqrestore(host->host_lock, flags);
7056 
7057 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7058 
7059 	/* wait until the task management command is completed */
7060 	err = wait_for_completion_io_timeout(&wait,
7061 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7062 	if (!err) {
7063 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7064 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7065 				__func__, tm_function);
7066 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7067 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7068 					__func__, task_tag);
7069 		err = -ETIMEDOUT;
7070 	} else {
7071 		err = 0;
7072 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7073 
7074 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7075 	}
7076 
7077 	spin_lock_irqsave(hba->host->host_lock, flags);
7078 	hba->tmf_rqs[req->tag] = NULL;
7079 	__clear_bit(task_tag, &hba->outstanding_tasks);
7080 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7081 
7082 	ufshcd_release(hba);
7083 	blk_mq_free_request(req);
7084 
7085 	return err;
7086 }
7087 
7088 /**
7089  * ufshcd_issue_tm_cmd - issues task management commands to controller
7090  * @hba: per adapter instance
7091  * @lun_id: LUN ID to which TM command is sent
7092  * @task_id: task ID to which the TM command is applicable
7093  * @tm_function: task management function opcode
7094  * @tm_response: task management service response return value
7095  *
7096  * Return: non-zero value on error, zero on success.
7097  */
7098 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7099 		u8 tm_function, u8 *tm_response)
7100 {
7101 	struct utp_task_req_desc treq = { };
7102 	enum utp_ocs ocs_value;
7103 	int err;
7104 
7105 	/* Configure task request descriptor */
7106 	treq.header.interrupt = 1;
7107 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7108 
7109 	/* Configure task request UPIU */
7110 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7111 	treq.upiu_req.req_header.lun = lun_id;
7112 	treq.upiu_req.req_header.tm_function = tm_function;
7113 
7114 	/*
7115 	 * The host shall provide the same value for LUN field in the basic
7116 	 * header and for Input Parameter.
7117 	 */
7118 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7119 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7120 
7121 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7122 	if (err == -ETIMEDOUT)
7123 		return err;
7124 
7125 	ocs_value = treq.header.ocs & MASK_OCS;
7126 	if (ocs_value != OCS_SUCCESS)
7127 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7128 				__func__, ocs_value);
7129 	else if (tm_response)
7130 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7131 				MASK_TM_SERVICE_RESP;
7132 	return err;
7133 }
7134 
7135 /**
7136  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7137  * @hba:	per-adapter instance
7138  * @req_upiu:	upiu request
7139  * @rsp_upiu:	upiu reply
7140  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7141  * @buff_len:	descriptor size, 0 if NA
7142  * @cmd_type:	specifies the type (NOP, Query...)
7143  * @desc_op:	descriptor operation
7144  *
7145  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7146  * Therefore, it "rides" the device management infrastructure: uses its tag and
7147  * tasks work queues.
7148  *
7149  * Since there is only one available tag for device management commands,
7150  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7151  *
7152  * Return: 0 upon success; < 0 upon failure.
7153  */
7154 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7155 					struct utp_upiu_req *req_upiu,
7156 					struct utp_upiu_req *rsp_upiu,
7157 					u8 *desc_buff, int *buff_len,
7158 					enum dev_cmd_type cmd_type,
7159 					enum query_opcode desc_op)
7160 {
7161 	DECLARE_COMPLETION_ONSTACK(wait);
7162 	const u32 tag = hba->reserved_slot;
7163 	struct ufshcd_lrb *lrbp;
7164 	int err = 0;
7165 	u8 upiu_flags;
7166 
7167 	/* Protects use of hba->reserved_slot. */
7168 	lockdep_assert_held(&hba->dev_cmd.lock);
7169 
7170 	down_read(&hba->clk_scaling_lock);
7171 
7172 	lrbp = &hba->lrb[tag];
7173 	lrbp->cmd = NULL;
7174 	lrbp->task_tag = tag;
7175 	lrbp->lun = 0;
7176 	lrbp->intr_cmd = true;
7177 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7178 	hba->dev_cmd.type = cmd_type;
7179 
7180 	if (hba->ufs_version <= ufshci_version(1, 1))
7181 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7182 	else
7183 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7184 
7185 	/* update the task tag in the request upiu */
7186 	req_upiu->header.task_tag = tag;
7187 
7188 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7189 
7190 	/* just copy the upiu request as it is */
7191 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7192 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7193 		/* The Data Segment Area is optional depending upon the query
7194 		 * function value. for WRITE DESCRIPTOR, the data segment
7195 		 * follows right after the tsf.
7196 		 */
7197 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7198 		*buff_len = 0;
7199 	}
7200 
7201 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7202 
7203 	hba->dev_cmd.complete = &wait;
7204 
7205 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7206 
7207 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7208 	/*
7209 	 * ignore the returning value here - ufshcd_check_query_response is
7210 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7211 	 * read the response directly ignoring all errors.
7212 	 */
7213 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7214 
7215 	/* just copy the upiu response as it is */
7216 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7217 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7218 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7219 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7220 					   .data_segment_length);
7221 
7222 		if (*buff_len >= resp_len) {
7223 			memcpy(desc_buff, descp, resp_len);
7224 			*buff_len = resp_len;
7225 		} else {
7226 			dev_warn(hba->dev,
7227 				 "%s: rsp size %d is bigger than buffer size %d",
7228 				 __func__, resp_len, *buff_len);
7229 			*buff_len = 0;
7230 			err = -EINVAL;
7231 		}
7232 	}
7233 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7234 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7235 
7236 	up_read(&hba->clk_scaling_lock);
7237 	return err;
7238 }
7239 
7240 /**
7241  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7242  * @hba:	per-adapter instance
7243  * @req_upiu:	upiu request
7244  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7245  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7246  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7247  * @buff_len:	descriptor size, 0 if NA
7248  * @desc_op:	descriptor operation
7249  *
7250  * Supports UTP Transfer requests (nop and query), and UTP Task
7251  * Management requests.
7252  * It is up to the caller to fill the upiu conent properly, as it will
7253  * be copied without any further input validations.
7254  *
7255  * Return: 0 upon success; < 0 upon failure.
7256  */
7257 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7258 			     struct utp_upiu_req *req_upiu,
7259 			     struct utp_upiu_req *rsp_upiu,
7260 			     enum upiu_request_transaction msgcode,
7261 			     u8 *desc_buff, int *buff_len,
7262 			     enum query_opcode desc_op)
7263 {
7264 	int err;
7265 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7266 	struct utp_task_req_desc treq = { };
7267 	enum utp_ocs ocs_value;
7268 	u8 tm_f = req_upiu->header.tm_function;
7269 
7270 	switch (msgcode) {
7271 	case UPIU_TRANSACTION_NOP_OUT:
7272 		cmd_type = DEV_CMD_TYPE_NOP;
7273 		fallthrough;
7274 	case UPIU_TRANSACTION_QUERY_REQ:
7275 		ufshcd_hold(hba);
7276 		mutex_lock(&hba->dev_cmd.lock);
7277 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7278 						   desc_buff, buff_len,
7279 						   cmd_type, desc_op);
7280 		mutex_unlock(&hba->dev_cmd.lock);
7281 		ufshcd_release(hba);
7282 
7283 		break;
7284 	case UPIU_TRANSACTION_TASK_REQ:
7285 		treq.header.interrupt = 1;
7286 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7287 
7288 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7289 
7290 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7291 		if (err == -ETIMEDOUT)
7292 			break;
7293 
7294 		ocs_value = treq.header.ocs & MASK_OCS;
7295 		if (ocs_value != OCS_SUCCESS) {
7296 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7297 				ocs_value);
7298 			break;
7299 		}
7300 
7301 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7302 
7303 		break;
7304 	default:
7305 		err = -EINVAL;
7306 
7307 		break;
7308 	}
7309 
7310 	return err;
7311 }
7312 
7313 /**
7314  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7315  * @hba:	per adapter instance
7316  * @req_upiu:	upiu request
7317  * @rsp_upiu:	upiu reply
7318  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7319  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7320  * @sg_cnt:	The number of sg lists actually used
7321  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7322  * @dir:	DMA direction
7323  *
7324  * Return: zero on success, non-zero on failure.
7325  */
7326 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7327 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7328 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7329 			 enum dma_data_direction dir)
7330 {
7331 	DECLARE_COMPLETION_ONSTACK(wait);
7332 	const u32 tag = hba->reserved_slot;
7333 	struct ufshcd_lrb *lrbp;
7334 	int err = 0;
7335 	int result;
7336 	u8 upiu_flags;
7337 	u8 *ehs_data;
7338 	u16 ehs_len;
7339 
7340 	/* Protects use of hba->reserved_slot. */
7341 	ufshcd_hold(hba);
7342 	mutex_lock(&hba->dev_cmd.lock);
7343 	down_read(&hba->clk_scaling_lock);
7344 
7345 	lrbp = &hba->lrb[tag];
7346 	lrbp->cmd = NULL;
7347 	lrbp->task_tag = tag;
7348 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7349 
7350 	lrbp->intr_cmd = true;
7351 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7352 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7353 
7354 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7355 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7356 
7357 	/*
7358 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7359 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7360 	 * HW controller takes EHS length from UTRD.
7361 	 */
7362 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7363 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7364 	else
7365 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7366 
7367 	/* update the task tag */
7368 	req_upiu->header.task_tag = tag;
7369 
7370 	/* copy the UPIU(contains CDB) request as it is */
7371 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7372 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7373 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7374 
7375 	if (dir != DMA_NONE && sg_list)
7376 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7377 
7378 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7379 
7380 	hba->dev_cmd.complete = &wait;
7381 
7382 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7383 
7384 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7385 
7386 	if (!err) {
7387 		/* Just copy the upiu response as it is */
7388 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7389 		/* Get the response UPIU result */
7390 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7391 			lrbp->ucd_rsp_ptr->header.status;
7392 
7393 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7394 		/*
7395 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7396 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7397 		 * Message is 02h
7398 		 */
7399 		if (ehs_len == 2 && rsp_ehs) {
7400 			/*
7401 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7402 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7403 			 */
7404 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7405 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7406 		}
7407 	}
7408 
7409 	up_read(&hba->clk_scaling_lock);
7410 	mutex_unlock(&hba->dev_cmd.lock);
7411 	ufshcd_release(hba);
7412 	return err ? : result;
7413 }
7414 
7415 /**
7416  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7417  * @cmd: SCSI command pointer
7418  *
7419  * Return: SUCCESS or FAILED.
7420  */
7421 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7422 {
7423 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7424 	struct Scsi_Host *host;
7425 	struct ufs_hba *hba;
7426 	struct ufs_hw_queue *hwq;
7427 	struct ufshcd_lrb *lrbp;
7428 	u32 pos, not_cleared_mask = 0;
7429 	int err;
7430 	u8 resp = 0xF, lun;
7431 
7432 	host = cmd->device->host;
7433 	hba = shost_priv(host);
7434 
7435 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7436 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7437 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7438 		if (!err)
7439 			err = resp;
7440 		goto out;
7441 	}
7442 
7443 	if (is_mcq_enabled(hba)) {
7444 		for (pos = 0; pos < hba->nutrs; pos++) {
7445 			lrbp = &hba->lrb[pos];
7446 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7447 			    lrbp->lun == lun) {
7448 				ufshcd_clear_cmd(hba, pos);
7449 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7450 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7451 			}
7452 		}
7453 		err = 0;
7454 		goto out;
7455 	}
7456 
7457 	/* clear the commands that were pending for corresponding LUN */
7458 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7459 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7460 		if (hba->lrb[pos].lun == lun)
7461 			__set_bit(pos, &pending_reqs);
7462 	hba->outstanding_reqs &= ~pending_reqs;
7463 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7464 
7465 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7466 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7467 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7468 			not_cleared = 1U << pos &
7469 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7470 			hba->outstanding_reqs |= not_cleared;
7471 			not_cleared_mask |= not_cleared;
7472 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7473 
7474 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7475 				__func__, pos);
7476 		}
7477 	}
7478 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7479 
7480 out:
7481 	hba->req_abort_count = 0;
7482 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7483 	if (!err) {
7484 		err = SUCCESS;
7485 	} else {
7486 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7487 		err = FAILED;
7488 	}
7489 	return err;
7490 }
7491 
7492 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7493 {
7494 	struct ufshcd_lrb *lrbp;
7495 	int tag;
7496 
7497 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7498 		lrbp = &hba->lrb[tag];
7499 		lrbp->req_abort_skip = true;
7500 	}
7501 }
7502 
7503 /**
7504  * ufshcd_try_to_abort_task - abort a specific task
7505  * @hba: Pointer to adapter instance
7506  * @tag: Task tag/index to be aborted
7507  *
7508  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7509  * command, and in host controller by clearing the door-bell register. There can
7510  * be race between controller sending the command to the device while abort is
7511  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7512  * really issued and then try to abort it.
7513  *
7514  * Return: zero on success, non-zero on failure.
7515  */
7516 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7517 {
7518 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7519 	int err = 0;
7520 	int poll_cnt;
7521 	u8 resp = 0xF;
7522 	u32 reg;
7523 
7524 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7525 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7526 				UFS_QUERY_TASK, &resp);
7527 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7528 			/* cmd pending in the device */
7529 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7530 				__func__, tag);
7531 			break;
7532 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7533 			/*
7534 			 * cmd not pending in the device, check if it is
7535 			 * in transition.
7536 			 */
7537 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7538 				__func__, tag);
7539 			if (is_mcq_enabled(hba)) {
7540 				/* MCQ mode */
7541 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7542 					/* sleep for max. 200us same delay as in SDB mode */
7543 					usleep_range(100, 200);
7544 					continue;
7545 				}
7546 				/* command completed already */
7547 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7548 					__func__, tag);
7549 				goto out;
7550 			}
7551 
7552 			/* Single Doorbell Mode */
7553 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7554 			if (reg & (1 << tag)) {
7555 				/* sleep for max. 200us to stabilize */
7556 				usleep_range(100, 200);
7557 				continue;
7558 			}
7559 			/* command completed already */
7560 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7561 				__func__, tag);
7562 			goto out;
7563 		} else {
7564 			dev_err(hba->dev,
7565 				"%s: no response from device. tag = %d, err %d\n",
7566 				__func__, tag, err);
7567 			if (!err)
7568 				err = resp; /* service response error */
7569 			goto out;
7570 		}
7571 	}
7572 
7573 	if (!poll_cnt) {
7574 		err = -EBUSY;
7575 		goto out;
7576 	}
7577 
7578 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7579 			UFS_ABORT_TASK, &resp);
7580 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7581 		if (!err) {
7582 			err = resp; /* service response error */
7583 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7584 				__func__, tag, err);
7585 		}
7586 		goto out;
7587 	}
7588 
7589 	err = ufshcd_clear_cmd(hba, tag);
7590 	if (err)
7591 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7592 			__func__, tag, err);
7593 
7594 out:
7595 	return err;
7596 }
7597 
7598 /**
7599  * ufshcd_abort - scsi host template eh_abort_handler callback
7600  * @cmd: SCSI command pointer
7601  *
7602  * Return: SUCCESS or FAILED.
7603  */
7604 static int ufshcd_abort(struct scsi_cmnd *cmd)
7605 {
7606 	struct Scsi_Host *host = cmd->device->host;
7607 	struct ufs_hba *hba = shost_priv(host);
7608 	int tag = scsi_cmd_to_rq(cmd)->tag;
7609 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7610 	unsigned long flags;
7611 	int err = FAILED;
7612 	bool outstanding;
7613 	u32 reg;
7614 
7615 	ufshcd_hold(hba);
7616 
7617 	if (!is_mcq_enabled(hba)) {
7618 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7619 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7620 			/* If command is already aborted/completed, return FAILED. */
7621 			dev_err(hba->dev,
7622 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7623 				__func__, tag, hba->outstanding_reqs, reg);
7624 			goto release;
7625 		}
7626 	}
7627 
7628 	/* Print Transfer Request of aborted task */
7629 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7630 
7631 	/*
7632 	 * Print detailed info about aborted request.
7633 	 * As more than one request might get aborted at the same time,
7634 	 * print full information only for the first aborted request in order
7635 	 * to reduce repeated printouts. For other aborted requests only print
7636 	 * basic details.
7637 	 */
7638 	scsi_print_command(cmd);
7639 	if (!hba->req_abort_count) {
7640 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7641 		ufshcd_print_evt_hist(hba);
7642 		ufshcd_print_host_state(hba);
7643 		ufshcd_print_pwr_info(hba);
7644 		ufshcd_print_tr(hba, tag, true);
7645 	} else {
7646 		ufshcd_print_tr(hba, tag, false);
7647 	}
7648 	hba->req_abort_count++;
7649 
7650 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7651 		/* only execute this code in single doorbell mode */
7652 		dev_err(hba->dev,
7653 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7654 		__func__, tag);
7655 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7656 		goto release;
7657 	}
7658 
7659 	/*
7660 	 * Task abort to the device W-LUN is illegal. When this command
7661 	 * will fail, due to spec violation, scsi err handling next step
7662 	 * will be to send LU reset which, again, is a spec violation.
7663 	 * To avoid these unnecessary/illegal steps, first we clean up
7664 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7665 	 * then queue the eh_work and bail.
7666 	 */
7667 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7668 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7669 
7670 		spin_lock_irqsave(host->host_lock, flags);
7671 		hba->force_reset = true;
7672 		ufshcd_schedule_eh_work(hba);
7673 		spin_unlock_irqrestore(host->host_lock, flags);
7674 		goto release;
7675 	}
7676 
7677 	if (is_mcq_enabled(hba)) {
7678 		/* MCQ mode. Branch off to handle abort for mcq mode */
7679 		err = ufshcd_mcq_abort(cmd);
7680 		goto release;
7681 	}
7682 
7683 	/* Skip task abort in case previous aborts failed and report failure */
7684 	if (lrbp->req_abort_skip) {
7685 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7686 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7687 		goto release;
7688 	}
7689 
7690 	err = ufshcd_try_to_abort_task(hba, tag);
7691 	if (err) {
7692 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7693 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7694 		err = FAILED;
7695 		goto release;
7696 	}
7697 
7698 	/*
7699 	 * Clear the corresponding bit from outstanding_reqs since the command
7700 	 * has been aborted successfully.
7701 	 */
7702 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7703 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7704 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7705 
7706 	if (outstanding)
7707 		ufshcd_release_scsi_cmd(hba, lrbp);
7708 
7709 	err = SUCCESS;
7710 
7711 release:
7712 	/* Matches the ufshcd_hold() call at the start of this function. */
7713 	ufshcd_release(hba);
7714 	return err;
7715 }
7716 
7717 /**
7718  * ufshcd_host_reset_and_restore - reset and restore host controller
7719  * @hba: per-adapter instance
7720  *
7721  * Note that host controller reset may issue DME_RESET to
7722  * local and remote (device) Uni-Pro stack and the attributes
7723  * are reset to default state.
7724  *
7725  * Return: zero on success, non-zero on failure.
7726  */
7727 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7728 {
7729 	int err;
7730 
7731 	/*
7732 	 * Stop the host controller and complete the requests
7733 	 * cleared by h/w
7734 	 */
7735 	ufshcd_hba_stop(hba);
7736 	hba->silence_err_logs = true;
7737 	ufshcd_complete_requests(hba, true);
7738 	hba->silence_err_logs = false;
7739 
7740 	/* scale up clocks to max frequency before full reinitialization */
7741 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7742 
7743 	err = ufshcd_hba_enable(hba);
7744 
7745 	/* Establish the link again and restore the device */
7746 	if (!err)
7747 		err = ufshcd_probe_hba(hba, false);
7748 
7749 	if (err)
7750 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7751 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7752 	return err;
7753 }
7754 
7755 /**
7756  * ufshcd_reset_and_restore - reset and re-initialize host/device
7757  * @hba: per-adapter instance
7758  *
7759  * Reset and recover device, host and re-establish link. This
7760  * is helpful to recover the communication in fatal error conditions.
7761  *
7762  * Return: zero on success, non-zero on failure.
7763  */
7764 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7765 {
7766 	u32 saved_err = 0;
7767 	u32 saved_uic_err = 0;
7768 	int err = 0;
7769 	unsigned long flags;
7770 	int retries = MAX_HOST_RESET_RETRIES;
7771 
7772 	spin_lock_irqsave(hba->host->host_lock, flags);
7773 	do {
7774 		/*
7775 		 * This is a fresh start, cache and clear saved error first,
7776 		 * in case new error generated during reset and restore.
7777 		 */
7778 		saved_err |= hba->saved_err;
7779 		saved_uic_err |= hba->saved_uic_err;
7780 		hba->saved_err = 0;
7781 		hba->saved_uic_err = 0;
7782 		hba->force_reset = false;
7783 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7784 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7785 
7786 		/* Reset the attached device */
7787 		ufshcd_device_reset(hba);
7788 
7789 		err = ufshcd_host_reset_and_restore(hba);
7790 
7791 		spin_lock_irqsave(hba->host->host_lock, flags);
7792 		if (err)
7793 			continue;
7794 		/* Do not exit unless operational or dead */
7795 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7796 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7797 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7798 			err = -EAGAIN;
7799 	} while (err && --retries);
7800 
7801 	/*
7802 	 * Inform scsi mid-layer that we did reset and allow to handle
7803 	 * Unit Attention properly.
7804 	 */
7805 	scsi_report_bus_reset(hba->host, 0);
7806 	if (err) {
7807 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7808 		hba->saved_err |= saved_err;
7809 		hba->saved_uic_err |= saved_uic_err;
7810 	}
7811 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7812 
7813 	return err;
7814 }
7815 
7816 /**
7817  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7818  * @cmd: SCSI command pointer
7819  *
7820  * Return: SUCCESS or FAILED.
7821  */
7822 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7823 {
7824 	int err = SUCCESS;
7825 	unsigned long flags;
7826 	struct ufs_hba *hba;
7827 
7828 	hba = shost_priv(cmd->device->host);
7829 
7830 	/*
7831 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7832 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7833 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7834 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7835 	 */
7836 	if (hba->pm_op_in_progress) {
7837 		if (ufshcd_link_recovery(hba))
7838 			err = FAILED;
7839 
7840 		return err;
7841 	}
7842 
7843 	spin_lock_irqsave(hba->host->host_lock, flags);
7844 	hba->force_reset = true;
7845 	ufshcd_schedule_eh_work(hba);
7846 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7847 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7848 
7849 	flush_work(&hba->eh_work);
7850 
7851 	spin_lock_irqsave(hba->host->host_lock, flags);
7852 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7853 		err = FAILED;
7854 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7855 
7856 	return err;
7857 }
7858 
7859 /**
7860  * ufshcd_get_max_icc_level - calculate the ICC level
7861  * @sup_curr_uA: max. current supported by the regulator
7862  * @start_scan: row at the desc table to start scan from
7863  * @buff: power descriptor buffer
7864  *
7865  * Return: calculated max ICC level for specific regulator.
7866  */
7867 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7868 				    const char *buff)
7869 {
7870 	int i;
7871 	int curr_uA;
7872 	u16 data;
7873 	u16 unit;
7874 
7875 	for (i = start_scan; i >= 0; i--) {
7876 		data = get_unaligned_be16(&buff[2 * i]);
7877 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7878 						ATTR_ICC_LVL_UNIT_OFFSET;
7879 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7880 		switch (unit) {
7881 		case UFSHCD_NANO_AMP:
7882 			curr_uA = curr_uA / 1000;
7883 			break;
7884 		case UFSHCD_MILI_AMP:
7885 			curr_uA = curr_uA * 1000;
7886 			break;
7887 		case UFSHCD_AMP:
7888 			curr_uA = curr_uA * 1000 * 1000;
7889 			break;
7890 		case UFSHCD_MICRO_AMP:
7891 		default:
7892 			break;
7893 		}
7894 		if (sup_curr_uA >= curr_uA)
7895 			break;
7896 	}
7897 	if (i < 0) {
7898 		i = 0;
7899 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7900 	}
7901 
7902 	return (u32)i;
7903 }
7904 
7905 /**
7906  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7907  * In case regulators are not initialized we'll return 0
7908  * @hba: per-adapter instance
7909  * @desc_buf: power descriptor buffer to extract ICC levels from.
7910  *
7911  * Return: calculated ICC level.
7912  */
7913 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7914 						const u8 *desc_buf)
7915 {
7916 	u32 icc_level = 0;
7917 
7918 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7919 						!hba->vreg_info.vccq2) {
7920 		/*
7921 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7922 		 * never-ending cycles of messages written back to storage by
7923 		 * user space causing runtime resume, causing more messages and
7924 		 * so on.
7925 		 */
7926 		dev_dbg(hba->dev,
7927 			"%s: Regulator capability was not set, actvIccLevel=%d",
7928 							__func__, icc_level);
7929 		goto out;
7930 	}
7931 
7932 	if (hba->vreg_info.vcc->max_uA)
7933 		icc_level = ufshcd_get_max_icc_level(
7934 				hba->vreg_info.vcc->max_uA,
7935 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7936 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7937 
7938 	if (hba->vreg_info.vccq->max_uA)
7939 		icc_level = ufshcd_get_max_icc_level(
7940 				hba->vreg_info.vccq->max_uA,
7941 				icc_level,
7942 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7943 
7944 	if (hba->vreg_info.vccq2->max_uA)
7945 		icc_level = ufshcd_get_max_icc_level(
7946 				hba->vreg_info.vccq2->max_uA,
7947 				icc_level,
7948 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7949 out:
7950 	return icc_level;
7951 }
7952 
7953 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7954 {
7955 	int ret;
7956 	u8 *desc_buf;
7957 	u32 icc_level;
7958 
7959 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7960 	if (!desc_buf)
7961 		return;
7962 
7963 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7964 				     desc_buf, QUERY_DESC_MAX_SIZE);
7965 	if (ret) {
7966 		dev_err(hba->dev,
7967 			"%s: Failed reading power descriptor ret = %d",
7968 			__func__, ret);
7969 		goto out;
7970 	}
7971 
7972 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7973 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7974 
7975 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7976 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7977 
7978 	if (ret)
7979 		dev_err(hba->dev,
7980 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7981 			__func__, icc_level, ret);
7982 
7983 out:
7984 	kfree(desc_buf);
7985 }
7986 
7987 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7988 {
7989 	scsi_autopm_get_device(sdev);
7990 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7991 	if (sdev->rpm_autosuspend)
7992 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7993 						 RPM_AUTOSUSPEND_DELAY_MS);
7994 	scsi_autopm_put_device(sdev);
7995 }
7996 
7997 /**
7998  * ufshcd_scsi_add_wlus - Adds required W-LUs
7999  * @hba: per-adapter instance
8000  *
8001  * UFS device specification requires the UFS devices to support 4 well known
8002  * logical units:
8003  *	"REPORT_LUNS" (address: 01h)
8004  *	"UFS Device" (address: 50h)
8005  *	"RPMB" (address: 44h)
8006  *	"BOOT" (address: 30h)
8007  * UFS device's power management needs to be controlled by "POWER CONDITION"
8008  * field of SSU (START STOP UNIT) command. But this "power condition" field
8009  * will take effect only when its sent to "UFS device" well known logical unit
8010  * hence we require the scsi_device instance to represent this logical unit in
8011  * order for the UFS host driver to send the SSU command for power management.
8012  *
8013  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8014  * Block) LU so user space process can control this LU. User space may also
8015  * want to have access to BOOT LU.
8016  *
8017  * This function adds scsi device instances for each of all well known LUs
8018  * (except "REPORT LUNS" LU).
8019  *
8020  * Return: zero on success (all required W-LUs are added successfully),
8021  * non-zero error value on failure (if failed to add any of the required W-LU).
8022  */
8023 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8024 {
8025 	int ret = 0;
8026 	struct scsi_device *sdev_boot, *sdev_rpmb;
8027 
8028 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8029 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8030 	if (IS_ERR(hba->ufs_device_wlun)) {
8031 		ret = PTR_ERR(hba->ufs_device_wlun);
8032 		hba->ufs_device_wlun = NULL;
8033 		goto out;
8034 	}
8035 	scsi_device_put(hba->ufs_device_wlun);
8036 
8037 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8038 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8039 	if (IS_ERR(sdev_rpmb)) {
8040 		ret = PTR_ERR(sdev_rpmb);
8041 		goto remove_ufs_device_wlun;
8042 	}
8043 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8044 	scsi_device_put(sdev_rpmb);
8045 
8046 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8047 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8048 	if (IS_ERR(sdev_boot)) {
8049 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8050 	} else {
8051 		ufshcd_blk_pm_runtime_init(sdev_boot);
8052 		scsi_device_put(sdev_boot);
8053 	}
8054 	goto out;
8055 
8056 remove_ufs_device_wlun:
8057 	scsi_remove_device(hba->ufs_device_wlun);
8058 out:
8059 	return ret;
8060 }
8061 
8062 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8063 {
8064 	struct ufs_dev_info *dev_info = &hba->dev_info;
8065 	u8 lun;
8066 	u32 d_lu_wb_buf_alloc;
8067 	u32 ext_ufs_feature;
8068 
8069 	if (!ufshcd_is_wb_allowed(hba))
8070 		return;
8071 
8072 	/*
8073 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8074 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8075 	 * enabled
8076 	 */
8077 	if (!(dev_info->wspecversion >= 0x310 ||
8078 	      dev_info->wspecversion == 0x220 ||
8079 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8080 		goto wb_disabled;
8081 
8082 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8083 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8084 
8085 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8086 		goto wb_disabled;
8087 
8088 	/*
8089 	 * WB may be supported but not configured while provisioning. The spec
8090 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8091 	 * buffer configured.
8092 	 */
8093 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8094 
8095 	dev_info->b_presrv_uspc_en =
8096 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8097 
8098 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8099 		if (!get_unaligned_be32(desc_buf +
8100 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8101 			goto wb_disabled;
8102 	} else {
8103 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8104 			d_lu_wb_buf_alloc = 0;
8105 			ufshcd_read_unit_desc_param(hba,
8106 					lun,
8107 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8108 					(u8 *)&d_lu_wb_buf_alloc,
8109 					sizeof(d_lu_wb_buf_alloc));
8110 			if (d_lu_wb_buf_alloc) {
8111 				dev_info->wb_dedicated_lu = lun;
8112 				break;
8113 			}
8114 		}
8115 
8116 		if (!d_lu_wb_buf_alloc)
8117 			goto wb_disabled;
8118 	}
8119 
8120 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8121 		goto wb_disabled;
8122 
8123 	return;
8124 
8125 wb_disabled:
8126 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8127 }
8128 
8129 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8130 {
8131 	struct ufs_dev_info *dev_info = &hba->dev_info;
8132 	u32 ext_ufs_feature;
8133 	u8 mask = 0;
8134 
8135 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8136 		return;
8137 
8138 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8139 
8140 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8141 		mask |= MASK_EE_TOO_LOW_TEMP;
8142 
8143 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8144 		mask |= MASK_EE_TOO_HIGH_TEMP;
8145 
8146 	if (mask) {
8147 		ufshcd_enable_ee(hba, mask);
8148 		ufs_hwmon_probe(hba, mask);
8149 	}
8150 }
8151 
8152 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8153 {
8154 	struct ufs_dev_info *dev_info = &hba->dev_info;
8155 	u32 ext_ufs_feature;
8156 	u32 ext_iid_en = 0;
8157 	int err;
8158 
8159 	/* Only UFS-4.0 and above may support EXT_IID */
8160 	if (dev_info->wspecversion < 0x400)
8161 		goto out;
8162 
8163 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8164 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8165 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8166 		goto out;
8167 
8168 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8169 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8170 	if (err)
8171 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8172 
8173 out:
8174 	dev_info->b_ext_iid_en = ext_iid_en;
8175 }
8176 
8177 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8178 			     const struct ufs_dev_quirk *fixups)
8179 {
8180 	const struct ufs_dev_quirk *f;
8181 	struct ufs_dev_info *dev_info = &hba->dev_info;
8182 
8183 	if (!fixups)
8184 		return;
8185 
8186 	for (f = fixups; f->quirk; f++) {
8187 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8188 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8189 		     ((dev_info->model &&
8190 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8191 		      !strcmp(f->model, UFS_ANY_MODEL)))
8192 			hba->dev_quirks |= f->quirk;
8193 	}
8194 }
8195 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8196 
8197 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8198 {
8199 	/* fix by general quirk table */
8200 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8201 
8202 	/* allow vendors to fix quirks */
8203 	ufshcd_vops_fixup_dev_quirks(hba);
8204 }
8205 
8206 static void ufshcd_update_rtc(struct ufs_hba *hba)
8207 {
8208 	struct timespec64 ts64;
8209 	int err;
8210 	u32 val;
8211 
8212 	ktime_get_real_ts64(&ts64);
8213 
8214 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8215 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8216 		return;
8217 	}
8218 
8219 	/*
8220 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8221 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8222 	 */
8223 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8224 
8225 	ufshcd_rpm_get_sync(hba);
8226 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8227 				0, 0, &val);
8228 	ufshcd_rpm_put_sync(hba);
8229 
8230 	if (err)
8231 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8232 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8233 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8234 }
8235 
8236 static void ufshcd_rtc_work(struct work_struct *work)
8237 {
8238 	struct ufs_hba *hba;
8239 
8240 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8241 
8242 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8243 	if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
8244 		ufshcd_update_rtc(hba);
8245 
8246 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8247 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8248 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8249 }
8250 
8251 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8252 {
8253 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8254 	struct ufs_dev_info *dev_info = &hba->dev_info;
8255 
8256 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8257 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8258 
8259 		/*
8260 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8261 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8262 		 * 2010 00:00, here we need to adjust ABS baseline.
8263 		 */
8264 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8265 							mktime64(1970, 1, 1, 0, 0, 0);
8266 	} else {
8267 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8268 		dev_info->rtc_time_baseline = 0;
8269 	}
8270 
8271 	/*
8272 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8273 	 * how to calculate the specific update period for each time unit. And we disable periodic
8274 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8275 	 */
8276 	dev_info->rtc_update_period = 0;
8277 }
8278 
8279 static int ufs_get_device_desc(struct ufs_hba *hba)
8280 {
8281 	int err;
8282 	u8 model_index;
8283 	u8 *desc_buf;
8284 	struct ufs_dev_info *dev_info = &hba->dev_info;
8285 
8286 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8287 	if (!desc_buf) {
8288 		err = -ENOMEM;
8289 		goto out;
8290 	}
8291 
8292 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8293 				     QUERY_DESC_MAX_SIZE);
8294 	if (err) {
8295 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8296 			__func__, err);
8297 		goto out;
8298 	}
8299 
8300 	/*
8301 	 * getting vendor (manufacturerID) and Bank Index in big endian
8302 	 * format
8303 	 */
8304 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8305 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8306 
8307 	/* getting Specification Version in big endian format */
8308 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8309 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8310 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8311 
8312 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8313 
8314 	err = ufshcd_read_string_desc(hba, model_index,
8315 				      &dev_info->model, SD_ASCII_STD);
8316 	if (err < 0) {
8317 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8318 			__func__, err);
8319 		goto out;
8320 	}
8321 
8322 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8323 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8324 
8325 	ufs_fixup_device_setup(hba);
8326 
8327 	ufshcd_wb_probe(hba, desc_buf);
8328 
8329 	ufshcd_temp_notif_probe(hba, desc_buf);
8330 
8331 	ufs_init_rtc(hba, desc_buf);
8332 
8333 	if (hba->ext_iid_sup)
8334 		ufshcd_ext_iid_probe(hba, desc_buf);
8335 
8336 	/*
8337 	 * ufshcd_read_string_desc returns size of the string
8338 	 * reset the error value
8339 	 */
8340 	err = 0;
8341 
8342 out:
8343 	kfree(desc_buf);
8344 	return err;
8345 }
8346 
8347 static void ufs_put_device_desc(struct ufs_hba *hba)
8348 {
8349 	struct ufs_dev_info *dev_info = &hba->dev_info;
8350 
8351 	kfree(dev_info->model);
8352 	dev_info->model = NULL;
8353 }
8354 
8355 /**
8356  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8357  * @hba: per-adapter instance
8358  *
8359  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8360  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8361  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8362  * the hibern8 exit latency.
8363  *
8364  * Return: zero on success, non-zero error value on failure.
8365  */
8366 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8367 {
8368 	int ret = 0;
8369 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8370 
8371 	ret = ufshcd_dme_peer_get(hba,
8372 				  UIC_ARG_MIB_SEL(
8373 					RX_MIN_ACTIVATETIME_CAPABILITY,
8374 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8375 				  &peer_rx_min_activatetime);
8376 	if (ret)
8377 		goto out;
8378 
8379 	/* make sure proper unit conversion is applied */
8380 	tuned_pa_tactivate =
8381 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8382 		 / PA_TACTIVATE_TIME_UNIT_US);
8383 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8384 			     tuned_pa_tactivate);
8385 
8386 out:
8387 	return ret;
8388 }
8389 
8390 /**
8391  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8392  * @hba: per-adapter instance
8393  *
8394  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8395  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8396  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8397  * This optimal value can help reduce the hibern8 exit latency.
8398  *
8399  * Return: zero on success, non-zero error value on failure.
8400  */
8401 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8402 {
8403 	int ret = 0;
8404 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8405 	u32 max_hibern8_time, tuned_pa_hibern8time;
8406 
8407 	ret = ufshcd_dme_get(hba,
8408 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8409 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8410 				  &local_tx_hibern8_time_cap);
8411 	if (ret)
8412 		goto out;
8413 
8414 	ret = ufshcd_dme_peer_get(hba,
8415 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8416 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8417 				  &peer_rx_hibern8_time_cap);
8418 	if (ret)
8419 		goto out;
8420 
8421 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8422 			       peer_rx_hibern8_time_cap);
8423 	/* make sure proper unit conversion is applied */
8424 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8425 				/ PA_HIBERN8_TIME_UNIT_US);
8426 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8427 			     tuned_pa_hibern8time);
8428 out:
8429 	return ret;
8430 }
8431 
8432 /**
8433  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8434  * less than device PA_TACTIVATE time.
8435  * @hba: per-adapter instance
8436  *
8437  * Some UFS devices require host PA_TACTIVATE to be lower than device
8438  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8439  * for such devices.
8440  *
8441  * Return: zero on success, non-zero error value on failure.
8442  */
8443 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8444 {
8445 	int ret = 0;
8446 	u32 granularity, peer_granularity;
8447 	u32 pa_tactivate, peer_pa_tactivate;
8448 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8449 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8450 
8451 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8452 				  &granularity);
8453 	if (ret)
8454 		goto out;
8455 
8456 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8457 				  &peer_granularity);
8458 	if (ret)
8459 		goto out;
8460 
8461 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8462 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8463 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8464 			__func__, granularity);
8465 		return -EINVAL;
8466 	}
8467 
8468 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8469 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8470 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8471 			__func__, peer_granularity);
8472 		return -EINVAL;
8473 	}
8474 
8475 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8476 	if (ret)
8477 		goto out;
8478 
8479 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8480 				  &peer_pa_tactivate);
8481 	if (ret)
8482 		goto out;
8483 
8484 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8485 	peer_pa_tactivate_us = peer_pa_tactivate *
8486 			     gran_to_us_table[peer_granularity - 1];
8487 
8488 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8489 		u32 new_peer_pa_tactivate;
8490 
8491 		new_peer_pa_tactivate = pa_tactivate_us /
8492 				      gran_to_us_table[peer_granularity - 1];
8493 		new_peer_pa_tactivate++;
8494 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8495 					  new_peer_pa_tactivate);
8496 	}
8497 
8498 out:
8499 	return ret;
8500 }
8501 
8502 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8503 {
8504 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8505 		ufshcd_tune_pa_tactivate(hba);
8506 		ufshcd_tune_pa_hibern8time(hba);
8507 	}
8508 
8509 	ufshcd_vops_apply_dev_quirks(hba);
8510 
8511 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8512 		/* set 1ms timeout for PA_TACTIVATE */
8513 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8514 
8515 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8516 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8517 }
8518 
8519 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8520 {
8521 	hba->ufs_stats.hibern8_exit_cnt = 0;
8522 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8523 	hba->req_abort_count = 0;
8524 }
8525 
8526 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8527 {
8528 	int err;
8529 	u8 *desc_buf;
8530 
8531 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8532 	if (!desc_buf) {
8533 		err = -ENOMEM;
8534 		goto out;
8535 	}
8536 
8537 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8538 				     desc_buf, QUERY_DESC_MAX_SIZE);
8539 	if (err) {
8540 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8541 				__func__, err);
8542 		goto out;
8543 	}
8544 
8545 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8546 		hba->dev_info.max_lu_supported = 32;
8547 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8548 		hba->dev_info.max_lu_supported = 8;
8549 
8550 out:
8551 	kfree(desc_buf);
8552 	return err;
8553 }
8554 
8555 struct ufs_ref_clk {
8556 	unsigned long freq_hz;
8557 	enum ufs_ref_clk_freq val;
8558 };
8559 
8560 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8561 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8562 	{26000000, REF_CLK_FREQ_26_MHZ},
8563 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8564 	{52000000, REF_CLK_FREQ_52_MHZ},
8565 	{0, REF_CLK_FREQ_INVAL},
8566 };
8567 
8568 static enum ufs_ref_clk_freq
8569 ufs_get_bref_clk_from_hz(unsigned long freq)
8570 {
8571 	int i;
8572 
8573 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8574 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8575 			return ufs_ref_clk_freqs[i].val;
8576 
8577 	return REF_CLK_FREQ_INVAL;
8578 }
8579 
8580 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8581 {
8582 	unsigned long freq;
8583 
8584 	freq = clk_get_rate(refclk);
8585 
8586 	hba->dev_ref_clk_freq =
8587 		ufs_get_bref_clk_from_hz(freq);
8588 
8589 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8590 		dev_err(hba->dev,
8591 		"invalid ref_clk setting = %ld\n", freq);
8592 }
8593 
8594 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8595 {
8596 	int err;
8597 	u32 ref_clk;
8598 	u32 freq = hba->dev_ref_clk_freq;
8599 
8600 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8601 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8602 
8603 	if (err) {
8604 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8605 			err);
8606 		goto out;
8607 	}
8608 
8609 	if (ref_clk == freq)
8610 		goto out; /* nothing to update */
8611 
8612 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8613 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8614 
8615 	if (err) {
8616 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8617 			ufs_ref_clk_freqs[freq].freq_hz);
8618 		goto out;
8619 	}
8620 
8621 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8622 			ufs_ref_clk_freqs[freq].freq_hz);
8623 
8624 out:
8625 	return err;
8626 }
8627 
8628 static int ufshcd_device_params_init(struct ufs_hba *hba)
8629 {
8630 	bool flag;
8631 	int ret;
8632 
8633 	/* Init UFS geometry descriptor related parameters */
8634 	ret = ufshcd_device_geo_params_init(hba);
8635 	if (ret)
8636 		goto out;
8637 
8638 	/* Check and apply UFS device quirks */
8639 	ret = ufs_get_device_desc(hba);
8640 	if (ret) {
8641 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8642 			__func__, ret);
8643 		goto out;
8644 	}
8645 
8646 	ufshcd_get_ref_clk_gating_wait(hba);
8647 
8648 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8649 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8650 		hba->dev_info.f_power_on_wp_en = flag;
8651 
8652 	/* Probe maximum power mode co-supported by both UFS host and device */
8653 	if (ufshcd_get_max_pwr_mode(hba))
8654 		dev_err(hba->dev,
8655 			"%s: Failed getting max supported power mode\n",
8656 			__func__);
8657 out:
8658 	return ret;
8659 }
8660 
8661 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8662 {
8663 	int err;
8664 	struct ufs_query_req *request = NULL;
8665 	struct ufs_query_res *response = NULL;
8666 	struct ufs_dev_info *dev_info = &hba->dev_info;
8667 	struct utp_upiu_query_v4_0 *upiu_data;
8668 
8669 	if (dev_info->wspecversion < 0x400)
8670 		return;
8671 
8672 	ufshcd_hold(hba);
8673 
8674 	mutex_lock(&hba->dev_cmd.lock);
8675 
8676 	ufshcd_init_query(hba, &request, &response,
8677 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8678 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8679 
8680 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8681 
8682 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8683 
8684 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8685 
8686 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8687 
8688 	if (err)
8689 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8690 			__func__, err);
8691 
8692 	mutex_unlock(&hba->dev_cmd.lock);
8693 	ufshcd_release(hba);
8694 }
8695 
8696 /**
8697  * ufshcd_add_lus - probe and add UFS logical units
8698  * @hba: per-adapter instance
8699  *
8700  * Return: 0 upon success; < 0 upon failure.
8701  */
8702 static int ufshcd_add_lus(struct ufs_hba *hba)
8703 {
8704 	int ret;
8705 
8706 	/* Add required well known logical units to scsi mid layer */
8707 	ret = ufshcd_scsi_add_wlus(hba);
8708 	if (ret)
8709 		goto out;
8710 
8711 	/* Initialize devfreq after UFS device is detected */
8712 	if (ufshcd_is_clkscaling_supported(hba)) {
8713 		memcpy(&hba->clk_scaling.saved_pwr_info,
8714 			&hba->pwr_info,
8715 			sizeof(struct ufs_pa_layer_attr));
8716 		hba->clk_scaling.is_allowed = true;
8717 
8718 		ret = ufshcd_devfreq_init(hba);
8719 		if (ret)
8720 			goto out;
8721 
8722 		hba->clk_scaling.is_enabled = true;
8723 		ufshcd_init_clk_scaling_sysfs(hba);
8724 	}
8725 
8726 	ufs_bsg_probe(hba);
8727 	scsi_scan_host(hba->host);
8728 
8729 out:
8730 	return ret;
8731 }
8732 
8733 /* SDB - Single Doorbell */
8734 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8735 {
8736 	size_t ucdl_size, utrdl_size;
8737 
8738 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8739 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8740 			   hba->ucdl_dma_addr);
8741 
8742 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8743 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8744 			   hba->utrdl_dma_addr);
8745 
8746 	devm_kfree(hba->dev, hba->lrb);
8747 }
8748 
8749 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8750 {
8751 	int ret;
8752 	int old_nutrs = hba->nutrs;
8753 
8754 	ret = ufshcd_mcq_decide_queue_depth(hba);
8755 	if (ret < 0)
8756 		return ret;
8757 
8758 	hba->nutrs = ret;
8759 	ret = ufshcd_mcq_init(hba);
8760 	if (ret)
8761 		goto err;
8762 
8763 	/*
8764 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8765 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8766 	 */
8767 	if (hba->nutrs != old_nutrs) {
8768 		ufshcd_release_sdb_queue(hba, old_nutrs);
8769 		ret = ufshcd_memory_alloc(hba);
8770 		if (ret)
8771 			goto err;
8772 		ufshcd_host_memory_configure(hba);
8773 	}
8774 
8775 	ret = ufshcd_mcq_memory_alloc(hba);
8776 	if (ret)
8777 		goto err;
8778 
8779 	return 0;
8780 err:
8781 	hba->nutrs = old_nutrs;
8782 	return ret;
8783 }
8784 
8785 static void ufshcd_config_mcq(struct ufs_hba *hba)
8786 {
8787 	int ret;
8788 	u32 intrs;
8789 
8790 	ret = ufshcd_mcq_vops_config_esi(hba);
8791 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8792 
8793 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8794 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8795 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8796 	ufshcd_enable_intr(hba, intrs);
8797 	ufshcd_mcq_make_queues_operational(hba);
8798 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8799 
8800 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8801 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8802 
8803 	/* Select MCQ mode */
8804 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8805 		      REG_UFS_MEM_CFG);
8806 	hba->mcq_enabled = true;
8807 
8808 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8809 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8810 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8811 		 hba->nutrs);
8812 }
8813 
8814 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8815 {
8816 	int ret;
8817 	struct Scsi_Host *host = hba->host;
8818 
8819 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8820 
8821 	ret = ufshcd_link_startup(hba);
8822 	if (ret)
8823 		return ret;
8824 
8825 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8826 		return ret;
8827 
8828 	/* Debug counters initialization */
8829 	ufshcd_clear_dbg_ufs_stats(hba);
8830 
8831 	/* UniPro link is active now */
8832 	ufshcd_set_link_active(hba);
8833 
8834 	/* Reconfigure MCQ upon reset */
8835 	if (is_mcq_enabled(hba) && !init_dev_params)
8836 		ufshcd_config_mcq(hba);
8837 
8838 	/* Verify device initialization by sending NOP OUT UPIU */
8839 	ret = ufshcd_verify_dev_init(hba);
8840 	if (ret)
8841 		return ret;
8842 
8843 	/* Initiate UFS initialization, and waiting until completion */
8844 	ret = ufshcd_complete_dev_init(hba);
8845 	if (ret)
8846 		return ret;
8847 
8848 	/*
8849 	 * Initialize UFS device parameters used by driver, these
8850 	 * parameters are associated with UFS descriptors.
8851 	 */
8852 	if (init_dev_params) {
8853 		ret = ufshcd_device_params_init(hba);
8854 		if (ret)
8855 			return ret;
8856 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8857 			ret = ufshcd_alloc_mcq(hba);
8858 			if (!ret) {
8859 				ufshcd_config_mcq(hba);
8860 			} else {
8861 				/* Continue with SDB mode */
8862 				use_mcq_mode = false;
8863 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8864 					 ret);
8865 			}
8866 			ret = scsi_add_host(host, hba->dev);
8867 			if (ret) {
8868 				dev_err(hba->dev, "scsi_add_host failed\n");
8869 				return ret;
8870 			}
8871 			hba->scsi_host_added = true;
8872 		} else if (is_mcq_supported(hba)) {
8873 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8874 			ufshcd_config_mcq(hba);
8875 		}
8876 	}
8877 
8878 	ufshcd_tune_unipro_params(hba);
8879 
8880 	/* UFS device is also active now */
8881 	ufshcd_set_ufs_dev_active(hba);
8882 	ufshcd_force_reset_auto_bkops(hba);
8883 
8884 	ufshcd_set_timestamp_attr(hba);
8885 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8886 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8887 
8888 	/* Gear up to HS gear if supported */
8889 	if (hba->max_pwr_info.is_valid) {
8890 		/*
8891 		 * Set the right value to bRefClkFreq before attempting to
8892 		 * switch to HS gears.
8893 		 */
8894 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8895 			ufshcd_set_dev_ref_clk(hba);
8896 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8897 		if (ret) {
8898 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8899 					__func__, ret);
8900 			return ret;
8901 		}
8902 	}
8903 
8904 	return 0;
8905 }
8906 
8907 /**
8908  * ufshcd_probe_hba - probe hba to detect device and initialize it
8909  * @hba: per-adapter instance
8910  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8911  *
8912  * Execute link-startup and verify device initialization
8913  *
8914  * Return: 0 upon success; < 0 upon failure.
8915  */
8916 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8917 {
8918 	ktime_t start = ktime_get();
8919 	unsigned long flags;
8920 	int ret;
8921 
8922 	ret = ufshcd_device_init(hba, init_dev_params);
8923 	if (ret)
8924 		goto out;
8925 
8926 	if (!hba->pm_op_in_progress &&
8927 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8928 		/* Reset the device and controller before doing reinit */
8929 		ufshcd_device_reset(hba);
8930 		ufshcd_hba_stop(hba);
8931 		ufshcd_vops_reinit_notify(hba);
8932 		ret = ufshcd_hba_enable(hba);
8933 		if (ret) {
8934 			dev_err(hba->dev, "Host controller enable failed\n");
8935 			ufshcd_print_evt_hist(hba);
8936 			ufshcd_print_host_state(hba);
8937 			goto out;
8938 		}
8939 
8940 		/* Reinit the device */
8941 		ret = ufshcd_device_init(hba, init_dev_params);
8942 		if (ret)
8943 			goto out;
8944 	}
8945 
8946 	ufshcd_print_pwr_info(hba);
8947 
8948 	/*
8949 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8950 	 * and for removable UFS card as well, hence always set the parameter.
8951 	 * Note: Error handler may issue the device reset hence resetting
8952 	 * bActiveICCLevel as well so it is always safe to set this here.
8953 	 */
8954 	ufshcd_set_active_icc_lvl(hba);
8955 
8956 	/* Enable UFS Write Booster if supported */
8957 	ufshcd_configure_wb(hba);
8958 
8959 	if (hba->ee_usr_mask)
8960 		ufshcd_write_ee_control(hba);
8961 	ufshcd_configure_auto_hibern8(hba);
8962 
8963 out:
8964 	spin_lock_irqsave(hba->host->host_lock, flags);
8965 	if (ret)
8966 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8967 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8968 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8969 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8970 
8971 	trace_ufshcd_init(dev_name(hba->dev), ret,
8972 		ktime_to_us(ktime_sub(ktime_get(), start)),
8973 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8974 	return ret;
8975 }
8976 
8977 /**
8978  * ufshcd_async_scan - asynchronous execution for probing hba
8979  * @data: data pointer to pass to this function
8980  * @cookie: cookie data
8981  */
8982 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8983 {
8984 	struct ufs_hba *hba = (struct ufs_hba *)data;
8985 	int ret;
8986 
8987 	down(&hba->host_sem);
8988 	/* Initialize hba, detect and initialize UFS device */
8989 	ret = ufshcd_probe_hba(hba, true);
8990 	up(&hba->host_sem);
8991 	if (ret)
8992 		goto out;
8993 
8994 	/* Probe and add UFS logical units  */
8995 	ret = ufshcd_add_lus(hba);
8996 
8997 out:
8998 	pm_runtime_put_sync(hba->dev);
8999 
9000 	if (ret)
9001 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
9002 }
9003 
9004 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
9005 {
9006 	struct ufs_hba *hba = shost_priv(scmd->device->host);
9007 
9008 	if (!hba->system_suspending) {
9009 		/* Activate the error handler in the SCSI core. */
9010 		return SCSI_EH_NOT_HANDLED;
9011 	}
9012 
9013 	/*
9014 	 * If we get here we know that no TMFs are outstanding and also that
9015 	 * the only pending command is a START STOP UNIT command. Handle the
9016 	 * timeout of that command directly to prevent a deadlock between
9017 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
9018 	 */
9019 	ufshcd_link_recovery(hba);
9020 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
9021 		 __func__, hba->outstanding_tasks);
9022 
9023 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9024 }
9025 
9026 static const struct attribute_group *ufshcd_driver_groups[] = {
9027 	&ufs_sysfs_unit_descriptor_group,
9028 	&ufs_sysfs_lun_attributes_group,
9029 	NULL,
9030 };
9031 
9032 static struct ufs_hba_variant_params ufs_hba_vps = {
9033 	.hba_enable_delay_us		= 1000,
9034 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9035 	.devfreq_profile.polling_ms	= 100,
9036 	.devfreq_profile.target		= ufshcd_devfreq_target,
9037 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9038 	.ondemand_data.upthreshold	= 70,
9039 	.ondemand_data.downdifferential	= 5,
9040 };
9041 
9042 static const struct scsi_host_template ufshcd_driver_template = {
9043 	.module			= THIS_MODULE,
9044 	.name			= UFSHCD,
9045 	.proc_name		= UFSHCD,
9046 	.map_queues		= ufshcd_map_queues,
9047 	.queuecommand		= ufshcd_queuecommand,
9048 	.mq_poll		= ufshcd_poll,
9049 	.slave_alloc		= ufshcd_slave_alloc,
9050 	.slave_configure	= ufshcd_slave_configure,
9051 	.slave_destroy		= ufshcd_slave_destroy,
9052 	.change_queue_depth	= ufshcd_change_queue_depth,
9053 	.eh_abort_handler	= ufshcd_abort,
9054 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9055 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9056 	.eh_timed_out		= ufshcd_eh_timed_out,
9057 	.this_id		= -1,
9058 	.sg_tablesize		= SG_ALL,
9059 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9060 	.can_queue		= UFSHCD_CAN_QUEUE,
9061 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9062 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9063 	.max_host_blocked	= 1,
9064 	.track_queue_depth	= 1,
9065 	.skip_settle_delay	= 1,
9066 	.sdev_groups		= ufshcd_driver_groups,
9067 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
9068 };
9069 
9070 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9071 				   int ua)
9072 {
9073 	int ret;
9074 
9075 	if (!vreg)
9076 		return 0;
9077 
9078 	/*
9079 	 * "set_load" operation shall be required on those regulators
9080 	 * which specifically configured current limitation. Otherwise
9081 	 * zero max_uA may cause unexpected behavior when regulator is
9082 	 * enabled or set as high power mode.
9083 	 */
9084 	if (!vreg->max_uA)
9085 		return 0;
9086 
9087 	ret = regulator_set_load(vreg->reg, ua);
9088 	if (ret < 0) {
9089 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9090 				__func__, vreg->name, ua, ret);
9091 	}
9092 
9093 	return ret;
9094 }
9095 
9096 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9097 					 struct ufs_vreg *vreg)
9098 {
9099 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9100 }
9101 
9102 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9103 					 struct ufs_vreg *vreg)
9104 {
9105 	if (!vreg)
9106 		return 0;
9107 
9108 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9109 }
9110 
9111 static int ufshcd_config_vreg(struct device *dev,
9112 		struct ufs_vreg *vreg, bool on)
9113 {
9114 	if (regulator_count_voltages(vreg->reg) <= 0)
9115 		return 0;
9116 
9117 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9118 }
9119 
9120 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9121 {
9122 	int ret = 0;
9123 
9124 	if (!vreg || vreg->enabled)
9125 		goto out;
9126 
9127 	ret = ufshcd_config_vreg(dev, vreg, true);
9128 	if (!ret)
9129 		ret = regulator_enable(vreg->reg);
9130 
9131 	if (!ret)
9132 		vreg->enabled = true;
9133 	else
9134 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9135 				__func__, vreg->name, ret);
9136 out:
9137 	return ret;
9138 }
9139 
9140 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9141 {
9142 	int ret = 0;
9143 
9144 	if (!vreg || !vreg->enabled || vreg->always_on)
9145 		goto out;
9146 
9147 	ret = regulator_disable(vreg->reg);
9148 
9149 	if (!ret) {
9150 		/* ignore errors on applying disable config */
9151 		ufshcd_config_vreg(dev, vreg, false);
9152 		vreg->enabled = false;
9153 	} else {
9154 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9155 				__func__, vreg->name, ret);
9156 	}
9157 out:
9158 	return ret;
9159 }
9160 
9161 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9162 {
9163 	int ret = 0;
9164 	struct device *dev = hba->dev;
9165 	struct ufs_vreg_info *info = &hba->vreg_info;
9166 
9167 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9168 	if (ret)
9169 		goto out;
9170 
9171 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9172 	if (ret)
9173 		goto out;
9174 
9175 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9176 
9177 out:
9178 	if (ret) {
9179 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9180 		ufshcd_toggle_vreg(dev, info->vccq, false);
9181 		ufshcd_toggle_vreg(dev, info->vcc, false);
9182 	}
9183 	return ret;
9184 }
9185 
9186 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9187 {
9188 	struct ufs_vreg_info *info = &hba->vreg_info;
9189 
9190 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9191 }
9192 
9193 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9194 {
9195 	int ret = 0;
9196 
9197 	if (!vreg)
9198 		goto out;
9199 
9200 	vreg->reg = devm_regulator_get(dev, vreg->name);
9201 	if (IS_ERR(vreg->reg)) {
9202 		ret = PTR_ERR(vreg->reg);
9203 		dev_err(dev, "%s: %s get failed, err=%d\n",
9204 				__func__, vreg->name, ret);
9205 	}
9206 out:
9207 	return ret;
9208 }
9209 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9210 
9211 static int ufshcd_init_vreg(struct ufs_hba *hba)
9212 {
9213 	int ret = 0;
9214 	struct device *dev = hba->dev;
9215 	struct ufs_vreg_info *info = &hba->vreg_info;
9216 
9217 	ret = ufshcd_get_vreg(dev, info->vcc);
9218 	if (ret)
9219 		goto out;
9220 
9221 	ret = ufshcd_get_vreg(dev, info->vccq);
9222 	if (!ret)
9223 		ret = ufshcd_get_vreg(dev, info->vccq2);
9224 out:
9225 	return ret;
9226 }
9227 
9228 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9229 {
9230 	struct ufs_vreg_info *info = &hba->vreg_info;
9231 
9232 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9233 }
9234 
9235 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9236 {
9237 	int ret = 0;
9238 	struct ufs_clk_info *clki;
9239 	struct list_head *head = &hba->clk_list_head;
9240 	unsigned long flags;
9241 	ktime_t start = ktime_get();
9242 	bool clk_state_changed = false;
9243 
9244 	if (list_empty(head))
9245 		goto out;
9246 
9247 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9248 	if (ret)
9249 		return ret;
9250 
9251 	list_for_each_entry(clki, head, list) {
9252 		if (!IS_ERR_OR_NULL(clki->clk)) {
9253 			/*
9254 			 * Don't disable clocks which are needed
9255 			 * to keep the link active.
9256 			 */
9257 			if (ufshcd_is_link_active(hba) &&
9258 			    clki->keep_link_active)
9259 				continue;
9260 
9261 			clk_state_changed = on ^ clki->enabled;
9262 			if (on && !clki->enabled) {
9263 				ret = clk_prepare_enable(clki->clk);
9264 				if (ret) {
9265 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9266 						__func__, clki->name, ret);
9267 					goto out;
9268 				}
9269 			} else if (!on && clki->enabled) {
9270 				clk_disable_unprepare(clki->clk);
9271 			}
9272 			clki->enabled = on;
9273 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9274 					clki->name, on ? "en" : "dis");
9275 		}
9276 	}
9277 
9278 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9279 	if (ret)
9280 		return ret;
9281 
9282 out:
9283 	if (ret) {
9284 		list_for_each_entry(clki, head, list) {
9285 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9286 				clk_disable_unprepare(clki->clk);
9287 		}
9288 	} else if (!ret && on) {
9289 		spin_lock_irqsave(hba->host->host_lock, flags);
9290 		hba->clk_gating.state = CLKS_ON;
9291 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9292 					hba->clk_gating.state);
9293 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9294 	}
9295 
9296 	if (clk_state_changed)
9297 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9298 			(on ? "on" : "off"),
9299 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9300 	return ret;
9301 }
9302 
9303 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9304 {
9305 	u32 freq;
9306 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9307 
9308 	if (ret) {
9309 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9310 		return REF_CLK_FREQ_INVAL;
9311 	}
9312 
9313 	return ufs_get_bref_clk_from_hz(freq);
9314 }
9315 
9316 static int ufshcd_init_clocks(struct ufs_hba *hba)
9317 {
9318 	int ret = 0;
9319 	struct ufs_clk_info *clki;
9320 	struct device *dev = hba->dev;
9321 	struct list_head *head = &hba->clk_list_head;
9322 
9323 	if (list_empty(head))
9324 		goto out;
9325 
9326 	list_for_each_entry(clki, head, list) {
9327 		if (!clki->name)
9328 			continue;
9329 
9330 		clki->clk = devm_clk_get(dev, clki->name);
9331 		if (IS_ERR(clki->clk)) {
9332 			ret = PTR_ERR(clki->clk);
9333 			dev_err(dev, "%s: %s clk get failed, %d\n",
9334 					__func__, clki->name, ret);
9335 			goto out;
9336 		}
9337 
9338 		/*
9339 		 * Parse device ref clk freq as per device tree "ref_clk".
9340 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9341 		 * in ufshcd_alloc_host().
9342 		 */
9343 		if (!strcmp(clki->name, "ref_clk"))
9344 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9345 
9346 		if (clki->max_freq) {
9347 			ret = clk_set_rate(clki->clk, clki->max_freq);
9348 			if (ret) {
9349 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9350 					__func__, clki->name,
9351 					clki->max_freq, ret);
9352 				goto out;
9353 			}
9354 			clki->curr_freq = clki->max_freq;
9355 		}
9356 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9357 				clki->name, clk_get_rate(clki->clk));
9358 	}
9359 
9360 	/* Set Max. frequency for all clocks */
9361 	if (hba->use_pm_opp) {
9362 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9363 		if (ret) {
9364 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9365 				ret);
9366 			goto out;
9367 		}
9368 	}
9369 
9370 out:
9371 	return ret;
9372 }
9373 
9374 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9375 {
9376 	int err = 0;
9377 
9378 	if (!hba->vops)
9379 		goto out;
9380 
9381 	err = ufshcd_vops_init(hba);
9382 	if (err)
9383 		dev_err_probe(hba->dev, err,
9384 			      "%s: variant %s init failed with err %d\n",
9385 			      __func__, ufshcd_get_var_name(hba), err);
9386 out:
9387 	return err;
9388 }
9389 
9390 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9391 {
9392 	if (!hba->vops)
9393 		return;
9394 
9395 	ufshcd_vops_exit(hba);
9396 }
9397 
9398 static int ufshcd_hba_init(struct ufs_hba *hba)
9399 {
9400 	int err;
9401 
9402 	/*
9403 	 * Handle host controller power separately from the UFS device power
9404 	 * rails as it will help controlling the UFS host controller power
9405 	 * collapse easily which is different than UFS device power collapse.
9406 	 * Also, enable the host controller power before we go ahead with rest
9407 	 * of the initialization here.
9408 	 */
9409 	err = ufshcd_init_hba_vreg(hba);
9410 	if (err)
9411 		goto out;
9412 
9413 	err = ufshcd_setup_hba_vreg(hba, true);
9414 	if (err)
9415 		goto out;
9416 
9417 	err = ufshcd_init_clocks(hba);
9418 	if (err)
9419 		goto out_disable_hba_vreg;
9420 
9421 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9422 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9423 
9424 	err = ufshcd_setup_clocks(hba, true);
9425 	if (err)
9426 		goto out_disable_hba_vreg;
9427 
9428 	err = ufshcd_init_vreg(hba);
9429 	if (err)
9430 		goto out_disable_clks;
9431 
9432 	err = ufshcd_setup_vreg(hba, true);
9433 	if (err)
9434 		goto out_disable_clks;
9435 
9436 	err = ufshcd_variant_hba_init(hba);
9437 	if (err)
9438 		goto out_disable_vreg;
9439 
9440 	ufs_debugfs_hba_init(hba);
9441 	ufs_fault_inject_hba_init(hba);
9442 
9443 	hba->is_powered = true;
9444 	goto out;
9445 
9446 out_disable_vreg:
9447 	ufshcd_setup_vreg(hba, false);
9448 out_disable_clks:
9449 	ufshcd_setup_clocks(hba, false);
9450 out_disable_hba_vreg:
9451 	ufshcd_setup_hba_vreg(hba, false);
9452 out:
9453 	return err;
9454 }
9455 
9456 static void ufshcd_hba_exit(struct ufs_hba *hba)
9457 {
9458 	if (hba->is_powered) {
9459 		ufshcd_exit_clk_scaling(hba);
9460 		ufshcd_exit_clk_gating(hba);
9461 		if (hba->eh_wq)
9462 			destroy_workqueue(hba->eh_wq);
9463 		ufs_debugfs_hba_exit(hba);
9464 		ufshcd_variant_hba_exit(hba);
9465 		ufshcd_setup_vreg(hba, false);
9466 		ufshcd_setup_clocks(hba, false);
9467 		ufshcd_setup_hba_vreg(hba, false);
9468 		hba->is_powered = false;
9469 		ufs_put_device_desc(hba);
9470 	}
9471 }
9472 
9473 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9474 				     enum ufs_dev_pwr_mode pwr_mode,
9475 				     struct scsi_sense_hdr *sshdr)
9476 {
9477 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9478 	const struct scsi_exec_args args = {
9479 		.sshdr = sshdr,
9480 		.req_flags = BLK_MQ_REQ_PM,
9481 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9482 	};
9483 
9484 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9485 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9486 			&args);
9487 }
9488 
9489 /**
9490  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9491  *			     power mode
9492  * @hba: per adapter instance
9493  * @pwr_mode: device power mode to set
9494  *
9495  * Return: 0 if requested power mode is set successfully;
9496  *         < 0 if failed to set the requested power mode.
9497  */
9498 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9499 				     enum ufs_dev_pwr_mode pwr_mode)
9500 {
9501 	struct scsi_sense_hdr sshdr;
9502 	struct scsi_device *sdp;
9503 	unsigned long flags;
9504 	int ret, retries;
9505 
9506 	spin_lock_irqsave(hba->host->host_lock, flags);
9507 	sdp = hba->ufs_device_wlun;
9508 	if (sdp && scsi_device_online(sdp))
9509 		ret = scsi_device_get(sdp);
9510 	else
9511 		ret = -ENODEV;
9512 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9513 
9514 	if (ret)
9515 		return ret;
9516 
9517 	/*
9518 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9519 	 * handling, which would wait for host to be resumed. Since we know
9520 	 * we are functional while we are here, skip host resume in error
9521 	 * handling context.
9522 	 */
9523 	hba->host->eh_noresume = 1;
9524 
9525 	/*
9526 	 * Current function would be generally called from the power management
9527 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9528 	 * already suspended childs.
9529 	 */
9530 	for (retries = 3; retries > 0; --retries) {
9531 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9532 		/*
9533 		 * scsi_execute() only returns a negative value if the request
9534 		 * queue is dying.
9535 		 */
9536 		if (ret <= 0)
9537 			break;
9538 	}
9539 	if (ret) {
9540 		sdev_printk(KERN_WARNING, sdp,
9541 			    "START_STOP failed for power mode: %d, result %x\n",
9542 			    pwr_mode, ret);
9543 		if (ret > 0) {
9544 			if (scsi_sense_valid(&sshdr))
9545 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9546 			ret = -EIO;
9547 		}
9548 	} else {
9549 		hba->curr_dev_pwr_mode = pwr_mode;
9550 	}
9551 
9552 	scsi_device_put(sdp);
9553 	hba->host->eh_noresume = 0;
9554 	return ret;
9555 }
9556 
9557 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9558 					enum uic_link_state req_link_state,
9559 					bool check_for_bkops)
9560 {
9561 	int ret = 0;
9562 
9563 	if (req_link_state == hba->uic_link_state)
9564 		return 0;
9565 
9566 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9567 		ret = ufshcd_uic_hibern8_enter(hba);
9568 		if (!ret) {
9569 			ufshcd_set_link_hibern8(hba);
9570 		} else {
9571 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9572 					__func__, ret);
9573 			goto out;
9574 		}
9575 	}
9576 	/*
9577 	 * If autobkops is enabled, link can't be turned off because
9578 	 * turning off the link would also turn off the device, except in the
9579 	 * case of DeepSleep where the device is expected to remain powered.
9580 	 */
9581 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9582 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9583 		/*
9584 		 * Let's make sure that link is in low power mode, we are doing
9585 		 * this currently by putting the link in Hibern8. Otherway to
9586 		 * put the link in low power mode is to send the DME end point
9587 		 * to device and then send the DME reset command to local
9588 		 * unipro. But putting the link in hibern8 is much faster.
9589 		 *
9590 		 * Note also that putting the link in Hibern8 is a requirement
9591 		 * for entering DeepSleep.
9592 		 */
9593 		ret = ufshcd_uic_hibern8_enter(hba);
9594 		if (ret) {
9595 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9596 					__func__, ret);
9597 			goto out;
9598 		}
9599 		/*
9600 		 * Change controller state to "reset state" which
9601 		 * should also put the link in off/reset state
9602 		 */
9603 		ufshcd_hba_stop(hba);
9604 		/*
9605 		 * TODO: Check if we need any delay to make sure that
9606 		 * controller is reset
9607 		 */
9608 		ufshcd_set_link_off(hba);
9609 	}
9610 
9611 out:
9612 	return ret;
9613 }
9614 
9615 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9616 {
9617 	bool vcc_off = false;
9618 
9619 	/*
9620 	 * It seems some UFS devices may keep drawing more than sleep current
9621 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9622 	 * To avoid this situation, add 2ms delay before putting these UFS
9623 	 * rails in LPM mode.
9624 	 */
9625 	if (!ufshcd_is_link_active(hba) &&
9626 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9627 		usleep_range(2000, 2100);
9628 
9629 	/*
9630 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9631 	 * power.
9632 	 *
9633 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9634 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9635 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9636 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9637 	 *
9638 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9639 	 * in low power state which would save some power.
9640 	 *
9641 	 * If Write Booster is enabled and the device needs to flush the WB
9642 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9643 	 */
9644 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9645 	    !hba->dev_info.is_lu_power_on_wp) {
9646 		ufshcd_setup_vreg(hba, false);
9647 		vcc_off = true;
9648 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9649 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9650 		vcc_off = true;
9651 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9652 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9653 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9654 		}
9655 	}
9656 
9657 	/*
9658 	 * Some UFS devices require delay after VCC power rail is turned-off.
9659 	 */
9660 	if (vcc_off && hba->vreg_info.vcc &&
9661 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9662 		usleep_range(5000, 5100);
9663 }
9664 
9665 #ifdef CONFIG_PM
9666 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9667 {
9668 	int ret = 0;
9669 
9670 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9671 	    !hba->dev_info.is_lu_power_on_wp) {
9672 		ret = ufshcd_setup_vreg(hba, true);
9673 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9674 		if (!ufshcd_is_link_active(hba)) {
9675 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9676 			if (ret)
9677 				goto vcc_disable;
9678 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9679 			if (ret)
9680 				goto vccq_lpm;
9681 		}
9682 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9683 	}
9684 	goto out;
9685 
9686 vccq_lpm:
9687 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9688 vcc_disable:
9689 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9690 out:
9691 	return ret;
9692 }
9693 #endif /* CONFIG_PM */
9694 
9695 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9696 {
9697 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9698 		ufshcd_setup_hba_vreg(hba, false);
9699 }
9700 
9701 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9702 {
9703 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9704 		ufshcd_setup_hba_vreg(hba, true);
9705 }
9706 
9707 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9708 {
9709 	int ret = 0;
9710 	bool check_for_bkops;
9711 	enum ufs_pm_level pm_lvl;
9712 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9713 	enum uic_link_state req_link_state;
9714 
9715 	hba->pm_op_in_progress = true;
9716 	if (pm_op != UFS_SHUTDOWN_PM) {
9717 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9718 			 hba->rpm_lvl : hba->spm_lvl;
9719 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9720 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9721 	} else {
9722 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9723 		req_link_state = UIC_LINK_OFF_STATE;
9724 	}
9725 
9726 	/*
9727 	 * If we can't transition into any of the low power modes
9728 	 * just gate the clocks.
9729 	 */
9730 	ufshcd_hold(hba);
9731 	hba->clk_gating.is_suspended = true;
9732 
9733 	if (ufshcd_is_clkscaling_supported(hba))
9734 		ufshcd_clk_scaling_suspend(hba, true);
9735 
9736 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9737 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9738 		goto vops_suspend;
9739 	}
9740 
9741 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9742 	    (req_link_state == hba->uic_link_state))
9743 		goto enable_scaling;
9744 
9745 	/* UFS device & link must be active before we enter in this function */
9746 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9747 		ret = -EINVAL;
9748 		goto enable_scaling;
9749 	}
9750 
9751 	if (pm_op == UFS_RUNTIME_PM) {
9752 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9753 			/*
9754 			 * The device is idle with no requests in the queue,
9755 			 * allow background operations if bkops status shows
9756 			 * that performance might be impacted.
9757 			 */
9758 			ret = ufshcd_urgent_bkops(hba);
9759 			if (ret) {
9760 				/*
9761 				 * If return err in suspend flow, IO will hang.
9762 				 * Trigger error handler and break suspend for
9763 				 * error recovery.
9764 				 */
9765 				ufshcd_force_error_recovery(hba);
9766 				ret = -EBUSY;
9767 				goto enable_scaling;
9768 			}
9769 		} else {
9770 			/* make sure that auto bkops is disabled */
9771 			ufshcd_disable_auto_bkops(hba);
9772 		}
9773 		/*
9774 		 * If device needs to do BKOP or WB buffer flush during
9775 		 * Hibern8, keep device power mode as "active power mode"
9776 		 * and VCC supply.
9777 		 */
9778 		hba->dev_info.b_rpm_dev_flush_capable =
9779 			hba->auto_bkops_enabled ||
9780 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9781 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9782 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9783 			ufshcd_wb_need_flush(hba));
9784 	}
9785 
9786 	flush_work(&hba->eeh_work);
9787 
9788 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9789 	if (ret)
9790 		goto enable_scaling;
9791 
9792 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9793 		if (pm_op != UFS_RUNTIME_PM)
9794 			/* ensure that bkops is disabled */
9795 			ufshcd_disable_auto_bkops(hba);
9796 
9797 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9798 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9799 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9800 				/*
9801 				 * If return err in suspend flow, IO will hang.
9802 				 * Trigger error handler and break suspend for
9803 				 * error recovery.
9804 				 */
9805 				ufshcd_force_error_recovery(hba);
9806 				ret = -EBUSY;
9807 			}
9808 			if (ret)
9809 				goto enable_scaling;
9810 		}
9811 	}
9812 
9813 	/*
9814 	 * In the case of DeepSleep, the device is expected to remain powered
9815 	 * with the link off, so do not check for bkops.
9816 	 */
9817 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9818 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9819 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9820 		/*
9821 		 * If return err in suspend flow, IO will hang.
9822 		 * Trigger error handler and break suspend for
9823 		 * error recovery.
9824 		 */
9825 		ufshcd_force_error_recovery(hba);
9826 		ret = -EBUSY;
9827 	}
9828 	if (ret)
9829 		goto set_dev_active;
9830 
9831 vops_suspend:
9832 	/*
9833 	 * Call vendor specific suspend callback. As these callbacks may access
9834 	 * vendor specific host controller register space call them before the
9835 	 * host clocks are ON.
9836 	 */
9837 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9838 	if (ret)
9839 		goto set_link_active;
9840 
9841 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9842 	goto out;
9843 
9844 set_link_active:
9845 	/*
9846 	 * Device hardware reset is required to exit DeepSleep. Also, for
9847 	 * DeepSleep, the link is off so host reset and restore will be done
9848 	 * further below.
9849 	 */
9850 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9851 		ufshcd_device_reset(hba);
9852 		WARN_ON(!ufshcd_is_link_off(hba));
9853 	}
9854 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9855 		ufshcd_set_link_active(hba);
9856 	else if (ufshcd_is_link_off(hba))
9857 		ufshcd_host_reset_and_restore(hba);
9858 set_dev_active:
9859 	/* Can also get here needing to exit DeepSleep */
9860 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9861 		ufshcd_device_reset(hba);
9862 		ufshcd_host_reset_and_restore(hba);
9863 	}
9864 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9865 		ufshcd_disable_auto_bkops(hba);
9866 enable_scaling:
9867 	if (ufshcd_is_clkscaling_supported(hba))
9868 		ufshcd_clk_scaling_suspend(hba, false);
9869 
9870 	hba->dev_info.b_rpm_dev_flush_capable = false;
9871 out:
9872 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9873 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9874 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9875 	}
9876 
9877 	if (ret) {
9878 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9879 		hba->clk_gating.is_suspended = false;
9880 		ufshcd_release(hba);
9881 	}
9882 	hba->pm_op_in_progress = false;
9883 	return ret;
9884 }
9885 
9886 #ifdef CONFIG_PM
9887 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9888 {
9889 	int ret;
9890 	enum uic_link_state old_link_state = hba->uic_link_state;
9891 
9892 	hba->pm_op_in_progress = true;
9893 
9894 	/*
9895 	 * Call vendor specific resume callback. As these callbacks may access
9896 	 * vendor specific host controller register space call them when the
9897 	 * host clocks are ON.
9898 	 */
9899 	ret = ufshcd_vops_resume(hba, pm_op);
9900 	if (ret)
9901 		goto out;
9902 
9903 	/* For DeepSleep, the only supported option is to have the link off */
9904 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9905 
9906 	if (ufshcd_is_link_hibern8(hba)) {
9907 		ret = ufshcd_uic_hibern8_exit(hba);
9908 		if (!ret) {
9909 			ufshcd_set_link_active(hba);
9910 		} else {
9911 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9912 					__func__, ret);
9913 			goto vendor_suspend;
9914 		}
9915 	} else if (ufshcd_is_link_off(hba)) {
9916 		/*
9917 		 * A full initialization of the host and the device is
9918 		 * required since the link was put to off during suspend.
9919 		 * Note, in the case of DeepSleep, the device will exit
9920 		 * DeepSleep due to device reset.
9921 		 */
9922 		ret = ufshcd_reset_and_restore(hba);
9923 		/*
9924 		 * ufshcd_reset_and_restore() should have already
9925 		 * set the link state as active
9926 		 */
9927 		if (ret || !ufshcd_is_link_active(hba))
9928 			goto vendor_suspend;
9929 	}
9930 
9931 	if (!ufshcd_is_ufs_dev_active(hba)) {
9932 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9933 		if (ret)
9934 			goto set_old_link_state;
9935 		ufshcd_set_timestamp_attr(hba);
9936 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9937 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9938 	}
9939 
9940 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9941 		ufshcd_enable_auto_bkops(hba);
9942 	else
9943 		/*
9944 		 * If BKOPs operations are urgently needed at this moment then
9945 		 * keep auto-bkops enabled or else disable it.
9946 		 */
9947 		ufshcd_urgent_bkops(hba);
9948 
9949 	if (hba->ee_usr_mask)
9950 		ufshcd_write_ee_control(hba);
9951 
9952 	if (ufshcd_is_clkscaling_supported(hba))
9953 		ufshcd_clk_scaling_suspend(hba, false);
9954 
9955 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9956 		hba->dev_info.b_rpm_dev_flush_capable = false;
9957 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9958 	}
9959 
9960 	ufshcd_configure_auto_hibern8(hba);
9961 
9962 	goto out;
9963 
9964 set_old_link_state:
9965 	ufshcd_link_state_transition(hba, old_link_state, 0);
9966 vendor_suspend:
9967 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9968 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9969 out:
9970 	if (ret)
9971 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9972 	hba->clk_gating.is_suspended = false;
9973 	ufshcd_release(hba);
9974 	hba->pm_op_in_progress = false;
9975 	return ret;
9976 }
9977 
9978 static int ufshcd_wl_runtime_suspend(struct device *dev)
9979 {
9980 	struct scsi_device *sdev = to_scsi_device(dev);
9981 	struct ufs_hba *hba;
9982 	int ret;
9983 	ktime_t start = ktime_get();
9984 
9985 	hba = shost_priv(sdev->host);
9986 
9987 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9988 	if (ret)
9989 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9990 
9991 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9992 		ktime_to_us(ktime_sub(ktime_get(), start)),
9993 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9994 
9995 	return ret;
9996 }
9997 
9998 static int ufshcd_wl_runtime_resume(struct device *dev)
9999 {
10000 	struct scsi_device *sdev = to_scsi_device(dev);
10001 	struct ufs_hba *hba;
10002 	int ret = 0;
10003 	ktime_t start = ktime_get();
10004 
10005 	hba = shost_priv(sdev->host);
10006 
10007 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
10008 	if (ret)
10009 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10010 
10011 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
10012 		ktime_to_us(ktime_sub(ktime_get(), start)),
10013 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10014 
10015 	return ret;
10016 }
10017 #endif
10018 
10019 #ifdef CONFIG_PM_SLEEP
10020 static int ufshcd_wl_suspend(struct device *dev)
10021 {
10022 	struct scsi_device *sdev = to_scsi_device(dev);
10023 	struct ufs_hba *hba;
10024 	int ret = 0;
10025 	ktime_t start = ktime_get();
10026 
10027 	hba = shost_priv(sdev->host);
10028 	down(&hba->host_sem);
10029 	hba->system_suspending = true;
10030 
10031 	if (pm_runtime_suspended(dev))
10032 		goto out;
10033 
10034 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10035 	if (ret) {
10036 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10037 		up(&hba->host_sem);
10038 	}
10039 
10040 out:
10041 	if (!ret)
10042 		hba->is_sys_suspended = true;
10043 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
10044 		ktime_to_us(ktime_sub(ktime_get(), start)),
10045 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10046 
10047 	return ret;
10048 }
10049 
10050 static int ufshcd_wl_resume(struct device *dev)
10051 {
10052 	struct scsi_device *sdev = to_scsi_device(dev);
10053 	struct ufs_hba *hba;
10054 	int ret = 0;
10055 	ktime_t start = ktime_get();
10056 
10057 	hba = shost_priv(sdev->host);
10058 
10059 	if (pm_runtime_suspended(dev))
10060 		goto out;
10061 
10062 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10063 	if (ret)
10064 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10065 out:
10066 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10067 		ktime_to_us(ktime_sub(ktime_get(), start)),
10068 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10069 	if (!ret)
10070 		hba->is_sys_suspended = false;
10071 	hba->system_suspending = false;
10072 	up(&hba->host_sem);
10073 	return ret;
10074 }
10075 #endif
10076 
10077 /**
10078  * ufshcd_suspend - helper function for suspend operations
10079  * @hba: per adapter instance
10080  *
10081  * This function will put disable irqs, turn off clocks
10082  * and set vreg and hba-vreg in lpm mode.
10083  *
10084  * Return: 0 upon success; < 0 upon failure.
10085  */
10086 static int ufshcd_suspend(struct ufs_hba *hba)
10087 {
10088 	int ret;
10089 
10090 	if (!hba->is_powered)
10091 		return 0;
10092 	/*
10093 	 * Disable the host irq as host controller as there won't be any
10094 	 * host controller transaction expected till resume.
10095 	 */
10096 	ufshcd_disable_irq(hba);
10097 	ret = ufshcd_setup_clocks(hba, false);
10098 	if (ret) {
10099 		ufshcd_enable_irq(hba);
10100 		return ret;
10101 	}
10102 	if (ufshcd_is_clkgating_allowed(hba)) {
10103 		hba->clk_gating.state = CLKS_OFF;
10104 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10105 					hba->clk_gating.state);
10106 	}
10107 
10108 	ufshcd_vreg_set_lpm(hba);
10109 	/* Put the host controller in low power mode if possible */
10110 	ufshcd_hba_vreg_set_lpm(hba);
10111 	return ret;
10112 }
10113 
10114 #ifdef CONFIG_PM
10115 /**
10116  * ufshcd_resume - helper function for resume operations
10117  * @hba: per adapter instance
10118  *
10119  * This function basically turns on the regulators, clocks and
10120  * irqs of the hba.
10121  *
10122  * Return: 0 for success and non-zero for failure.
10123  */
10124 static int ufshcd_resume(struct ufs_hba *hba)
10125 {
10126 	int ret;
10127 
10128 	if (!hba->is_powered)
10129 		return 0;
10130 
10131 	ufshcd_hba_vreg_set_hpm(hba);
10132 	ret = ufshcd_vreg_set_hpm(hba);
10133 	if (ret)
10134 		goto out;
10135 
10136 	/* Make sure clocks are enabled before accessing controller */
10137 	ret = ufshcd_setup_clocks(hba, true);
10138 	if (ret)
10139 		goto disable_vreg;
10140 
10141 	/* enable the host irq as host controller would be active soon */
10142 	ufshcd_enable_irq(hba);
10143 
10144 	goto out;
10145 
10146 disable_vreg:
10147 	ufshcd_vreg_set_lpm(hba);
10148 out:
10149 	if (ret)
10150 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10151 	return ret;
10152 }
10153 #endif /* CONFIG_PM */
10154 
10155 #ifdef CONFIG_PM_SLEEP
10156 /**
10157  * ufshcd_system_suspend - system suspend callback
10158  * @dev: Device associated with the UFS controller.
10159  *
10160  * Executed before putting the system into a sleep state in which the contents
10161  * of main memory are preserved.
10162  *
10163  * Return: 0 for success and non-zero for failure.
10164  */
10165 int ufshcd_system_suspend(struct device *dev)
10166 {
10167 	struct ufs_hba *hba = dev_get_drvdata(dev);
10168 	int ret = 0;
10169 	ktime_t start = ktime_get();
10170 
10171 	if (pm_runtime_suspended(hba->dev))
10172 		goto out;
10173 
10174 	ret = ufshcd_suspend(hba);
10175 out:
10176 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10177 		ktime_to_us(ktime_sub(ktime_get(), start)),
10178 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10179 	return ret;
10180 }
10181 EXPORT_SYMBOL(ufshcd_system_suspend);
10182 
10183 /**
10184  * ufshcd_system_resume - system resume callback
10185  * @dev: Device associated with the UFS controller.
10186  *
10187  * Executed after waking the system up from a sleep state in which the contents
10188  * of main memory were preserved.
10189  *
10190  * Return: 0 for success and non-zero for failure.
10191  */
10192 int ufshcd_system_resume(struct device *dev)
10193 {
10194 	struct ufs_hba *hba = dev_get_drvdata(dev);
10195 	ktime_t start = ktime_get();
10196 	int ret = 0;
10197 
10198 	if (pm_runtime_suspended(hba->dev))
10199 		goto out;
10200 
10201 	ret = ufshcd_resume(hba);
10202 
10203 out:
10204 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10205 		ktime_to_us(ktime_sub(ktime_get(), start)),
10206 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10207 
10208 	return ret;
10209 }
10210 EXPORT_SYMBOL(ufshcd_system_resume);
10211 #endif /* CONFIG_PM_SLEEP */
10212 
10213 #ifdef CONFIG_PM
10214 /**
10215  * ufshcd_runtime_suspend - runtime suspend callback
10216  * @dev: Device associated with the UFS controller.
10217  *
10218  * Check the description of ufshcd_suspend() function for more details.
10219  *
10220  * Return: 0 for success and non-zero for failure.
10221  */
10222 int ufshcd_runtime_suspend(struct device *dev)
10223 {
10224 	struct ufs_hba *hba = dev_get_drvdata(dev);
10225 	int ret;
10226 	ktime_t start = ktime_get();
10227 
10228 	ret = ufshcd_suspend(hba);
10229 
10230 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10231 		ktime_to_us(ktime_sub(ktime_get(), start)),
10232 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10233 	return ret;
10234 }
10235 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10236 
10237 /**
10238  * ufshcd_runtime_resume - runtime resume routine
10239  * @dev: Device associated with the UFS controller.
10240  *
10241  * This function basically brings controller
10242  * to active state. Following operations are done in this function:
10243  *
10244  * 1. Turn on all the controller related clocks
10245  * 2. Turn ON VCC rail
10246  *
10247  * Return: 0 upon success; < 0 upon failure.
10248  */
10249 int ufshcd_runtime_resume(struct device *dev)
10250 {
10251 	struct ufs_hba *hba = dev_get_drvdata(dev);
10252 	int ret;
10253 	ktime_t start = ktime_get();
10254 
10255 	ret = ufshcd_resume(hba);
10256 
10257 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10258 		ktime_to_us(ktime_sub(ktime_get(), start)),
10259 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10260 	return ret;
10261 }
10262 EXPORT_SYMBOL(ufshcd_runtime_resume);
10263 #endif /* CONFIG_PM */
10264 
10265 static void ufshcd_wl_shutdown(struct device *dev)
10266 {
10267 	struct scsi_device *sdev = to_scsi_device(dev);
10268 	struct ufs_hba *hba = shost_priv(sdev->host);
10269 
10270 	down(&hba->host_sem);
10271 	hba->shutting_down = true;
10272 	up(&hba->host_sem);
10273 
10274 	/* Turn on everything while shutting down */
10275 	ufshcd_rpm_get_sync(hba);
10276 	scsi_device_quiesce(sdev);
10277 	shost_for_each_device(sdev, hba->host) {
10278 		if (sdev == hba->ufs_device_wlun)
10279 			continue;
10280 		scsi_device_quiesce(sdev);
10281 	}
10282 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10283 
10284 	/*
10285 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10286 	 * clocks.
10287 	 */
10288 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10289 		ufshcd_suspend(hba);
10290 
10291 	hba->is_powered = false;
10292 }
10293 
10294 /**
10295  * ufshcd_remove - de-allocate SCSI host and host memory space
10296  *		data structure memory
10297  * @hba: per adapter instance
10298  */
10299 void ufshcd_remove(struct ufs_hba *hba)
10300 {
10301 	if (hba->ufs_device_wlun)
10302 		ufshcd_rpm_get_sync(hba);
10303 	ufs_hwmon_remove(hba);
10304 	ufs_bsg_remove(hba);
10305 	ufs_sysfs_remove_nodes(hba->dev);
10306 	blk_mq_destroy_queue(hba->tmf_queue);
10307 	blk_put_queue(hba->tmf_queue);
10308 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10309 	scsi_remove_host(hba->host);
10310 	/* disable interrupts */
10311 	ufshcd_disable_intr(hba, hba->intr_mask);
10312 	ufshcd_hba_stop(hba);
10313 	ufshcd_hba_exit(hba);
10314 }
10315 EXPORT_SYMBOL_GPL(ufshcd_remove);
10316 
10317 #ifdef CONFIG_PM_SLEEP
10318 int ufshcd_system_freeze(struct device *dev)
10319 {
10320 
10321 	return ufshcd_system_suspend(dev);
10322 
10323 }
10324 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10325 
10326 int ufshcd_system_restore(struct device *dev)
10327 {
10328 
10329 	struct ufs_hba *hba = dev_get_drvdata(dev);
10330 	int ret;
10331 
10332 	ret = ufshcd_system_resume(dev);
10333 	if (ret)
10334 		return ret;
10335 
10336 	/* Configure UTRL and UTMRL base address registers */
10337 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10338 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10339 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10340 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10341 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10342 			REG_UTP_TASK_REQ_LIST_BASE_L);
10343 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10344 			REG_UTP_TASK_REQ_LIST_BASE_H);
10345 	/*
10346 	 * Make sure that UTRL and UTMRL base address registers
10347 	 * are updated with the latest queue addresses. Only after
10348 	 * updating these addresses, we can queue the new commands.
10349 	 */
10350 	mb();
10351 
10352 	/* Resuming from hibernate, assume that link was OFF */
10353 	ufshcd_set_link_off(hba);
10354 
10355 	return 0;
10356 
10357 }
10358 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10359 
10360 int ufshcd_system_thaw(struct device *dev)
10361 {
10362 	return ufshcd_system_resume(dev);
10363 }
10364 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10365 #endif /* CONFIG_PM_SLEEP  */
10366 
10367 /**
10368  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10369  * @hba: pointer to Host Bus Adapter (HBA)
10370  */
10371 void ufshcd_dealloc_host(struct ufs_hba *hba)
10372 {
10373 	scsi_host_put(hba->host);
10374 }
10375 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10376 
10377 /**
10378  * ufshcd_set_dma_mask - Set dma mask based on the controller
10379  *			 addressing capability
10380  * @hba: per adapter instance
10381  *
10382  * Return: 0 for success, non-zero for failure.
10383  */
10384 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10385 {
10386 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10387 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10388 			return 0;
10389 	}
10390 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10391 }
10392 
10393 /**
10394  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10395  * @dev: pointer to device handle
10396  * @hba_handle: driver private handle
10397  *
10398  * Return: 0 on success, non-zero value on failure.
10399  */
10400 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10401 {
10402 	struct Scsi_Host *host;
10403 	struct ufs_hba *hba;
10404 	int err = 0;
10405 
10406 	if (!dev) {
10407 		dev_err(dev,
10408 		"Invalid memory reference for dev is NULL\n");
10409 		err = -ENODEV;
10410 		goto out_error;
10411 	}
10412 
10413 	host = scsi_host_alloc(&ufshcd_driver_template,
10414 				sizeof(struct ufs_hba));
10415 	if (!host) {
10416 		dev_err(dev, "scsi_host_alloc failed\n");
10417 		err = -ENOMEM;
10418 		goto out_error;
10419 	}
10420 	host->nr_maps = HCTX_TYPE_POLL + 1;
10421 	hba = shost_priv(host);
10422 	hba->host = host;
10423 	hba->dev = dev;
10424 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10425 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10426 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10427 	INIT_LIST_HEAD(&hba->clk_list_head);
10428 	spin_lock_init(&hba->outstanding_lock);
10429 
10430 	*hba_handle = hba;
10431 
10432 out_error:
10433 	return err;
10434 }
10435 EXPORT_SYMBOL(ufshcd_alloc_host);
10436 
10437 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10438 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10439 				     const struct blk_mq_queue_data *qd)
10440 {
10441 	WARN_ON_ONCE(true);
10442 	return BLK_STS_NOTSUPP;
10443 }
10444 
10445 static const struct blk_mq_ops ufshcd_tmf_ops = {
10446 	.queue_rq = ufshcd_queue_tmf,
10447 };
10448 
10449 /**
10450  * ufshcd_init - Driver initialization routine
10451  * @hba: per-adapter instance
10452  * @mmio_base: base register address
10453  * @irq: Interrupt line of device
10454  *
10455  * Return: 0 on success, non-zero value on failure.
10456  */
10457 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10458 {
10459 	int err;
10460 	struct Scsi_Host *host = hba->host;
10461 	struct device *dev = hba->dev;
10462 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10463 
10464 	/*
10465 	 * dev_set_drvdata() must be called before any callbacks are registered
10466 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10467 	 * sysfs).
10468 	 */
10469 	dev_set_drvdata(dev, hba);
10470 
10471 	if (!mmio_base) {
10472 		dev_err(hba->dev,
10473 		"Invalid memory reference for mmio_base is NULL\n");
10474 		err = -ENODEV;
10475 		goto out_error;
10476 	}
10477 
10478 	hba->mmio_base = mmio_base;
10479 	hba->irq = irq;
10480 	hba->vps = &ufs_hba_vps;
10481 
10482 	err = ufshcd_hba_init(hba);
10483 	if (err)
10484 		goto out_error;
10485 
10486 	/* Read capabilities registers */
10487 	err = ufshcd_hba_capabilities(hba);
10488 	if (err)
10489 		goto out_disable;
10490 
10491 	/* Get UFS version supported by the controller */
10492 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10493 
10494 	/* Get Interrupt bit mask per version */
10495 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10496 
10497 	err = ufshcd_set_dma_mask(hba);
10498 	if (err) {
10499 		dev_err(hba->dev, "set dma mask failed\n");
10500 		goto out_disable;
10501 	}
10502 
10503 	/* Allocate memory for host memory space */
10504 	err = ufshcd_memory_alloc(hba);
10505 	if (err) {
10506 		dev_err(hba->dev, "Memory allocation failed\n");
10507 		goto out_disable;
10508 	}
10509 
10510 	/* Configure LRB */
10511 	ufshcd_host_memory_configure(hba);
10512 
10513 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10514 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10515 	host->max_id = UFSHCD_MAX_ID;
10516 	host->max_lun = UFS_MAX_LUNS;
10517 	host->max_channel = UFSHCD_MAX_CHANNEL;
10518 	host->unique_id = host->host_no;
10519 	host->max_cmd_len = UFS_CDB_SIZE;
10520 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10521 
10522 	hba->max_pwr_info.is_valid = false;
10523 
10524 	/* Initialize work queues */
10525 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10526 		 hba->host->host_no);
10527 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10528 	if (!hba->eh_wq) {
10529 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10530 			__func__);
10531 		err = -ENOMEM;
10532 		goto out_disable;
10533 	}
10534 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10535 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10536 
10537 	sema_init(&hba->host_sem, 1);
10538 
10539 	/* Initialize UIC command mutex */
10540 	mutex_init(&hba->uic_cmd_mutex);
10541 
10542 	/* Initialize mutex for device management commands */
10543 	mutex_init(&hba->dev_cmd.lock);
10544 
10545 	/* Initialize mutex for exception event control */
10546 	mutex_init(&hba->ee_ctrl_mutex);
10547 
10548 	mutex_init(&hba->wb_mutex);
10549 	init_rwsem(&hba->clk_scaling_lock);
10550 
10551 	ufshcd_init_clk_gating(hba);
10552 
10553 	ufshcd_init_clk_scaling(hba);
10554 
10555 	/*
10556 	 * In order to avoid any spurious interrupt immediately after
10557 	 * registering UFS controller interrupt handler, clear any pending UFS
10558 	 * interrupt status and disable all the UFS interrupts.
10559 	 */
10560 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10561 		      REG_INTERRUPT_STATUS);
10562 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10563 	/*
10564 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10565 	 * status is cleared before registering UFS interrupt handler.
10566 	 */
10567 	mb();
10568 
10569 	/* IRQ registration */
10570 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10571 	if (err) {
10572 		dev_err(hba->dev, "request irq failed\n");
10573 		goto out_disable;
10574 	} else {
10575 		hba->is_irq_enabled = true;
10576 	}
10577 
10578 	if (!is_mcq_supported(hba)) {
10579 		err = scsi_add_host(host, hba->dev);
10580 		if (err) {
10581 			dev_err(hba->dev, "scsi_add_host failed\n");
10582 			goto out_disable;
10583 		}
10584 	}
10585 
10586 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10587 		.nr_hw_queues	= 1,
10588 		.queue_depth	= hba->nutmrs,
10589 		.ops		= &ufshcd_tmf_ops,
10590 		.flags		= BLK_MQ_F_NO_SCHED,
10591 	};
10592 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10593 	if (err < 0)
10594 		goto out_remove_scsi_host;
10595 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10596 	if (IS_ERR(hba->tmf_queue)) {
10597 		err = PTR_ERR(hba->tmf_queue);
10598 		goto free_tmf_tag_set;
10599 	}
10600 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10601 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10602 	if (!hba->tmf_rqs) {
10603 		err = -ENOMEM;
10604 		goto free_tmf_queue;
10605 	}
10606 
10607 	/* Reset the attached device */
10608 	ufshcd_device_reset(hba);
10609 
10610 	ufshcd_init_crypto(hba);
10611 
10612 	/* Host controller enable */
10613 	err = ufshcd_hba_enable(hba);
10614 	if (err) {
10615 		dev_err(hba->dev, "Host controller enable failed\n");
10616 		ufshcd_print_evt_hist(hba);
10617 		ufshcd_print_host_state(hba);
10618 		goto free_tmf_queue;
10619 	}
10620 
10621 	/*
10622 	 * Set the default power management level for runtime and system PM.
10623 	 * Default power saving mode is to keep UFS link in Hibern8 state
10624 	 * and UFS device in sleep state.
10625 	 */
10626 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10627 						UFS_SLEEP_PWR_MODE,
10628 						UIC_LINK_HIBERN8_STATE);
10629 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10630 						UFS_SLEEP_PWR_MODE,
10631 						UIC_LINK_HIBERN8_STATE);
10632 
10633 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10634 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10635 
10636 	/* Set the default auto-hiberate idle timer value to 150 ms */
10637 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10638 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10639 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10640 	}
10641 
10642 	/* Hold auto suspend until async scan completes */
10643 	pm_runtime_get_sync(dev);
10644 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10645 	/*
10646 	 * We are assuming that device wasn't put in sleep/power-down
10647 	 * state exclusively during the boot stage before kernel.
10648 	 * This assumption helps avoid doing link startup twice during
10649 	 * ufshcd_probe_hba().
10650 	 */
10651 	ufshcd_set_ufs_dev_active(hba);
10652 
10653 	async_schedule(ufshcd_async_scan, hba);
10654 	ufs_sysfs_add_nodes(hba->dev);
10655 
10656 	device_enable_async_suspend(dev);
10657 	return 0;
10658 
10659 free_tmf_queue:
10660 	blk_mq_destroy_queue(hba->tmf_queue);
10661 	blk_put_queue(hba->tmf_queue);
10662 free_tmf_tag_set:
10663 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10664 out_remove_scsi_host:
10665 	scsi_remove_host(hba->host);
10666 out_disable:
10667 	hba->is_irq_enabled = false;
10668 	ufshcd_hba_exit(hba);
10669 out_error:
10670 	return err;
10671 }
10672 EXPORT_SYMBOL_GPL(ufshcd_init);
10673 
10674 void ufshcd_resume_complete(struct device *dev)
10675 {
10676 	struct ufs_hba *hba = dev_get_drvdata(dev);
10677 
10678 	if (hba->complete_put) {
10679 		ufshcd_rpm_put(hba);
10680 		hba->complete_put = false;
10681 	}
10682 }
10683 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10684 
10685 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10686 {
10687 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10688 	enum ufs_dev_pwr_mode dev_pwr_mode;
10689 	enum uic_link_state link_state;
10690 	unsigned long flags;
10691 	bool res;
10692 
10693 	spin_lock_irqsave(&dev->power.lock, flags);
10694 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10695 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10696 	res = pm_runtime_suspended(dev) &&
10697 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10698 	      hba->uic_link_state == link_state &&
10699 	      !hba->dev_info.b_rpm_dev_flush_capable;
10700 	spin_unlock_irqrestore(&dev->power.lock, flags);
10701 
10702 	return res;
10703 }
10704 
10705 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10706 {
10707 	struct ufs_hba *hba = dev_get_drvdata(dev);
10708 	int ret;
10709 
10710 	/*
10711 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10712 	 * are same. And it doesn't wake up the device for system-suspend
10713 	 * if it's runtime suspended. But ufs doesn't follow that.
10714 	 * Refer ufshcd_resume_complete()
10715 	 */
10716 	if (hba->ufs_device_wlun) {
10717 		/* Prevent runtime suspend */
10718 		ufshcd_rpm_get_noresume(hba);
10719 		/*
10720 		 * Check if already runtime suspended in same state as system
10721 		 * suspend would be.
10722 		 */
10723 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10724 			/* RPM state is not ok for SPM, so runtime resume */
10725 			ret = ufshcd_rpm_resume(hba);
10726 			if (ret < 0 && ret != -EACCES) {
10727 				ufshcd_rpm_put(hba);
10728 				return ret;
10729 			}
10730 		}
10731 		hba->complete_put = true;
10732 	}
10733 	return 0;
10734 }
10735 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10736 
10737 int ufshcd_suspend_prepare(struct device *dev)
10738 {
10739 	return __ufshcd_suspend_prepare(dev, true);
10740 }
10741 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10742 
10743 #ifdef CONFIG_PM_SLEEP
10744 static int ufshcd_wl_poweroff(struct device *dev)
10745 {
10746 	struct scsi_device *sdev = to_scsi_device(dev);
10747 	struct ufs_hba *hba = shost_priv(sdev->host);
10748 
10749 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10750 	return 0;
10751 }
10752 #endif
10753 
10754 static int ufshcd_wl_probe(struct device *dev)
10755 {
10756 	struct scsi_device *sdev = to_scsi_device(dev);
10757 
10758 	if (!is_device_wlun(sdev))
10759 		return -ENODEV;
10760 
10761 	blk_pm_runtime_init(sdev->request_queue, dev);
10762 	pm_runtime_set_autosuspend_delay(dev, 0);
10763 	pm_runtime_allow(dev);
10764 
10765 	return  0;
10766 }
10767 
10768 static int ufshcd_wl_remove(struct device *dev)
10769 {
10770 	pm_runtime_forbid(dev);
10771 	return 0;
10772 }
10773 
10774 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10775 #ifdef CONFIG_PM_SLEEP
10776 	.suspend = ufshcd_wl_suspend,
10777 	.resume = ufshcd_wl_resume,
10778 	.freeze = ufshcd_wl_suspend,
10779 	.thaw = ufshcd_wl_resume,
10780 	.poweroff = ufshcd_wl_poweroff,
10781 	.restore = ufshcd_wl_resume,
10782 #endif
10783 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10784 };
10785 
10786 static void ufshcd_check_header_layout(void)
10787 {
10788 	/*
10789 	 * gcc compilers before version 10 cannot do constant-folding for
10790 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10791 	 * before.
10792 	 */
10793 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10794 		return;
10795 
10796 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10797 				.cci = 3})[0] != 3);
10798 
10799 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10800 				.ehs_length = 2})[1] != 2);
10801 
10802 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10803 				.enable_crypto = 1})[2]
10804 		     != 0x80);
10805 
10806 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10807 					.command_type = 5,
10808 					.data_direction = 3,
10809 					.interrupt = 1,
10810 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10811 
10812 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10813 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10814 		cpu_to_le32(0xdeadbeef));
10815 
10816 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10817 				.ocs = 4})[8] != 4);
10818 
10819 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10820 				.cds = 5})[9] != 5);
10821 
10822 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10823 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10824 		cpu_to_le32(0xbadcafe));
10825 
10826 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10827 			     .iid = 0xf })[4] != 0xf0);
10828 
10829 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10830 			     .command_set_type = 0xf })[4] != 0xf);
10831 }
10832 
10833 /*
10834  * ufs_dev_wlun_template - describes ufs device wlun
10835  * ufs-device wlun - used to send pm commands
10836  * All luns are consumers of ufs-device wlun.
10837  *
10838  * Currently, no sd driver is present for wluns.
10839  * Hence the no specific pm operations are performed.
10840  * With ufs design, SSU should be sent to ufs-device wlun.
10841  * Hence register a scsi driver for ufs wluns only.
10842  */
10843 static struct scsi_driver ufs_dev_wlun_template = {
10844 	.gendrv = {
10845 		.name = "ufs_device_wlun",
10846 		.owner = THIS_MODULE,
10847 		.probe = ufshcd_wl_probe,
10848 		.remove = ufshcd_wl_remove,
10849 		.pm = &ufshcd_wl_pm_ops,
10850 		.shutdown = ufshcd_wl_shutdown,
10851 	},
10852 };
10853 
10854 static int __init ufshcd_core_init(void)
10855 {
10856 	int ret;
10857 
10858 	ufshcd_check_header_layout();
10859 
10860 	ufs_debugfs_init();
10861 
10862 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10863 	if (ret)
10864 		ufs_debugfs_exit();
10865 	return ret;
10866 }
10867 
10868 static void __exit ufshcd_core_exit(void)
10869 {
10870 	ufs_debugfs_exit();
10871 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10872 }
10873 
10874 module_init(ufshcd_core_init);
10875 module_exit(ufshcd_core_exit);
10876 
10877 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10878 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10879 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10880 MODULE_SOFTDEP("pre: governor_simpleondemand");
10881 MODULE_LICENSE("GPL");
10882