xref: /linux/drivers/vhost/vhost.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3  * Copyright (C) 2006 Rusty Russell IBM Corporation
4  *
5  * Author: Michael S. Tsirkin <mst@redhat.com>
6  *
7  * Inspiration, some code, and most witty comments come from
8  * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9  *
10  * Generic code for virtio server in host kernel.
11  */
12 
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_context.h>
18 #include <linux/miscdevice.h>
19 #include <linux/mutex.h>
20 #include <linux/poll.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/kthread.h>
26 #include <linux/cgroup.h>
27 #include <linux/module.h>
28 #include <linux/sort.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/interval_tree_generic.h>
32 #include <linux/nospec.h>
33 
34 #include "vhost.h"
35 
36 static ushort max_mem_regions = 64;
37 module_param(max_mem_regions, ushort, 0444);
38 MODULE_PARM_DESC(max_mem_regions,
39 	"Maximum number of memory regions in memory map. (default: 64)");
40 static int max_iotlb_entries = 2048;
41 module_param(max_iotlb_entries, int, 0444);
42 MODULE_PARM_DESC(max_iotlb_entries,
43 	"Maximum number of iotlb entries. (default: 2048)");
44 
45 enum {
46 	VHOST_MEMORY_F_LOG = 0x1,
47 };
48 
49 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
50 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
51 
52 INTERVAL_TREE_DEFINE(struct vhost_umem_node,
53 		     rb, __u64, __subtree_last,
54 		     START, LAST, static inline, vhost_umem_interval_tree);
55 
56 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
57 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
58 {
59 	vq->user_be = !virtio_legacy_is_little_endian();
60 }
61 
62 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
63 {
64 	vq->user_be = true;
65 }
66 
67 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
68 {
69 	vq->user_be = false;
70 }
71 
72 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
73 {
74 	struct vhost_vring_state s;
75 
76 	if (vq->private_data)
77 		return -EBUSY;
78 
79 	if (copy_from_user(&s, argp, sizeof(s)))
80 		return -EFAULT;
81 
82 	if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
83 	    s.num != VHOST_VRING_BIG_ENDIAN)
84 		return -EINVAL;
85 
86 	if (s.num == VHOST_VRING_BIG_ENDIAN)
87 		vhost_enable_cross_endian_big(vq);
88 	else
89 		vhost_enable_cross_endian_little(vq);
90 
91 	return 0;
92 }
93 
94 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
95 				   int __user *argp)
96 {
97 	struct vhost_vring_state s = {
98 		.index = idx,
99 		.num = vq->user_be
100 	};
101 
102 	if (copy_to_user(argp, &s, sizeof(s)))
103 		return -EFAULT;
104 
105 	return 0;
106 }
107 
108 static void vhost_init_is_le(struct vhost_virtqueue *vq)
109 {
110 	/* Note for legacy virtio: user_be is initialized at reset time
111 	 * according to the host endianness. If userspace does not set an
112 	 * explicit endianness, the default behavior is native endian, as
113 	 * expected by legacy virtio.
114 	 */
115 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
116 }
117 #else
118 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
119 {
120 }
121 
122 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
123 {
124 	return -ENOIOCTLCMD;
125 }
126 
127 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
128 				   int __user *argp)
129 {
130 	return -ENOIOCTLCMD;
131 }
132 
133 static void vhost_init_is_le(struct vhost_virtqueue *vq)
134 {
135 	vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
136 		|| virtio_legacy_is_little_endian();
137 }
138 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
139 
140 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
141 {
142 	vhost_init_is_le(vq);
143 }
144 
145 struct vhost_flush_struct {
146 	struct vhost_work work;
147 	struct completion wait_event;
148 };
149 
150 static void vhost_flush_work(struct vhost_work *work)
151 {
152 	struct vhost_flush_struct *s;
153 
154 	s = container_of(work, struct vhost_flush_struct, work);
155 	complete(&s->wait_event);
156 }
157 
158 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
159 			    poll_table *pt)
160 {
161 	struct vhost_poll *poll;
162 
163 	poll = container_of(pt, struct vhost_poll, table);
164 	poll->wqh = wqh;
165 	add_wait_queue(wqh, &poll->wait);
166 }
167 
168 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
169 			     void *key)
170 {
171 	struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
172 
173 	if (!(key_to_poll(key) & poll->mask))
174 		return 0;
175 
176 	vhost_poll_queue(poll);
177 	return 0;
178 }
179 
180 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
181 {
182 	clear_bit(VHOST_WORK_QUEUED, &work->flags);
183 	work->fn = fn;
184 }
185 EXPORT_SYMBOL_GPL(vhost_work_init);
186 
187 /* Init poll structure */
188 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
189 		     __poll_t mask, struct vhost_dev *dev)
190 {
191 	init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
192 	init_poll_funcptr(&poll->table, vhost_poll_func);
193 	poll->mask = mask;
194 	poll->dev = dev;
195 	poll->wqh = NULL;
196 
197 	vhost_work_init(&poll->work, fn);
198 }
199 EXPORT_SYMBOL_GPL(vhost_poll_init);
200 
201 /* Start polling a file. We add ourselves to file's wait queue. The caller must
202  * keep a reference to a file until after vhost_poll_stop is called. */
203 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
204 {
205 	__poll_t mask;
206 	int ret = 0;
207 
208 	if (poll->wqh)
209 		return 0;
210 
211 	mask = vfs_poll(file, &poll->table);
212 	if (mask)
213 		vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
214 	if (mask & EPOLLERR) {
215 		vhost_poll_stop(poll);
216 		ret = -EINVAL;
217 	}
218 
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(vhost_poll_start);
222 
223 /* Stop polling a file. After this function returns, it becomes safe to drop the
224  * file reference. You must also flush afterwards. */
225 void vhost_poll_stop(struct vhost_poll *poll)
226 {
227 	if (poll->wqh) {
228 		remove_wait_queue(poll->wqh, &poll->wait);
229 		poll->wqh = NULL;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(vhost_poll_stop);
233 
234 void vhost_work_flush(struct vhost_dev *dev, struct vhost_work *work)
235 {
236 	struct vhost_flush_struct flush;
237 
238 	if (dev->worker) {
239 		init_completion(&flush.wait_event);
240 		vhost_work_init(&flush.work, vhost_flush_work);
241 
242 		vhost_work_queue(dev, &flush.work);
243 		wait_for_completion(&flush.wait_event);
244 	}
245 }
246 EXPORT_SYMBOL_GPL(vhost_work_flush);
247 
248 /* Flush any work that has been scheduled. When calling this, don't hold any
249  * locks that are also used by the callback. */
250 void vhost_poll_flush(struct vhost_poll *poll)
251 {
252 	vhost_work_flush(poll->dev, &poll->work);
253 }
254 EXPORT_SYMBOL_GPL(vhost_poll_flush);
255 
256 void vhost_work_queue(struct vhost_dev *dev, struct vhost_work *work)
257 {
258 	if (!dev->worker)
259 		return;
260 
261 	if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
262 		/* We can only add the work to the list after we're
263 		 * sure it was not in the list.
264 		 * test_and_set_bit() implies a memory barrier.
265 		 */
266 		llist_add(&work->node, &dev->work_list);
267 		wake_up_process(dev->worker);
268 	}
269 }
270 EXPORT_SYMBOL_GPL(vhost_work_queue);
271 
272 /* A lockless hint for busy polling code to exit the loop */
273 bool vhost_has_work(struct vhost_dev *dev)
274 {
275 	return !llist_empty(&dev->work_list);
276 }
277 EXPORT_SYMBOL_GPL(vhost_has_work);
278 
279 void vhost_poll_queue(struct vhost_poll *poll)
280 {
281 	vhost_work_queue(poll->dev, &poll->work);
282 }
283 EXPORT_SYMBOL_GPL(vhost_poll_queue);
284 
285 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
286 {
287 	int j;
288 
289 	for (j = 0; j < VHOST_NUM_ADDRS; j++)
290 		vq->meta_iotlb[j] = NULL;
291 }
292 
293 static void vhost_vq_meta_reset(struct vhost_dev *d)
294 {
295 	int i;
296 
297 	for (i = 0; i < d->nvqs; ++i)
298 		__vhost_vq_meta_reset(d->vqs[i]);
299 }
300 
301 static void vhost_vq_reset(struct vhost_dev *dev,
302 			   struct vhost_virtqueue *vq)
303 {
304 	vq->num = 1;
305 	vq->desc = NULL;
306 	vq->avail = NULL;
307 	vq->used = NULL;
308 	vq->last_avail_idx = 0;
309 	vq->avail_idx = 0;
310 	vq->last_used_idx = 0;
311 	vq->signalled_used = 0;
312 	vq->signalled_used_valid = false;
313 	vq->used_flags = 0;
314 	vq->log_used = false;
315 	vq->log_addr = -1ull;
316 	vq->private_data = NULL;
317 	vq->acked_features = 0;
318 	vq->acked_backend_features = 0;
319 	vq->log_base = NULL;
320 	vq->error_ctx = NULL;
321 	vq->kick = NULL;
322 	vq->call_ctx = NULL;
323 	vq->log_ctx = NULL;
324 	vhost_reset_is_le(vq);
325 	vhost_disable_cross_endian(vq);
326 	vq->busyloop_timeout = 0;
327 	vq->umem = NULL;
328 	vq->iotlb = NULL;
329 	__vhost_vq_meta_reset(vq);
330 }
331 
332 static int vhost_worker(void *data)
333 {
334 	struct vhost_dev *dev = data;
335 	struct vhost_work *work, *work_next;
336 	struct llist_node *node;
337 	mm_segment_t oldfs = get_fs();
338 
339 	set_fs(USER_DS);
340 	use_mm(dev->mm);
341 
342 	for (;;) {
343 		/* mb paired w/ kthread_stop */
344 		set_current_state(TASK_INTERRUPTIBLE);
345 
346 		if (kthread_should_stop()) {
347 			__set_current_state(TASK_RUNNING);
348 			break;
349 		}
350 
351 		node = llist_del_all(&dev->work_list);
352 		if (!node)
353 			schedule();
354 
355 		node = llist_reverse_order(node);
356 		/* make sure flag is seen after deletion */
357 		smp_wmb();
358 		llist_for_each_entry_safe(work, work_next, node, node) {
359 			clear_bit(VHOST_WORK_QUEUED, &work->flags);
360 			__set_current_state(TASK_RUNNING);
361 			work->fn(work);
362 			if (need_resched())
363 				schedule();
364 		}
365 	}
366 	unuse_mm(dev->mm);
367 	set_fs(oldfs);
368 	return 0;
369 }
370 
371 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
372 {
373 	kfree(vq->indirect);
374 	vq->indirect = NULL;
375 	kfree(vq->log);
376 	vq->log = NULL;
377 	kfree(vq->heads);
378 	vq->heads = NULL;
379 }
380 
381 /* Helper to allocate iovec buffers for all vqs. */
382 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
383 {
384 	struct vhost_virtqueue *vq;
385 	int i;
386 
387 	for (i = 0; i < dev->nvqs; ++i) {
388 		vq = dev->vqs[i];
389 		vq->indirect = kmalloc_array(UIO_MAXIOV,
390 					     sizeof(*vq->indirect),
391 					     GFP_KERNEL);
392 		vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
393 					GFP_KERNEL);
394 		vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
395 					  GFP_KERNEL);
396 		if (!vq->indirect || !vq->log || !vq->heads)
397 			goto err_nomem;
398 	}
399 	return 0;
400 
401 err_nomem:
402 	for (; i >= 0; --i)
403 		vhost_vq_free_iovecs(dev->vqs[i]);
404 	return -ENOMEM;
405 }
406 
407 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
408 {
409 	int i;
410 
411 	for (i = 0; i < dev->nvqs; ++i)
412 		vhost_vq_free_iovecs(dev->vqs[i]);
413 }
414 
415 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
416 			  int pkts, int total_len)
417 {
418 	struct vhost_dev *dev = vq->dev;
419 
420 	if ((dev->byte_weight && total_len >= dev->byte_weight) ||
421 	    pkts >= dev->weight) {
422 		vhost_poll_queue(&vq->poll);
423 		return true;
424 	}
425 
426 	return false;
427 }
428 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
429 
430 void vhost_dev_init(struct vhost_dev *dev,
431 		    struct vhost_virtqueue **vqs, int nvqs,
432 		    int iov_limit, int weight, int byte_weight)
433 {
434 	struct vhost_virtqueue *vq;
435 	int i;
436 
437 	dev->vqs = vqs;
438 	dev->nvqs = nvqs;
439 	mutex_init(&dev->mutex);
440 	dev->log_ctx = NULL;
441 	dev->umem = NULL;
442 	dev->iotlb = NULL;
443 	dev->mm = NULL;
444 	dev->worker = NULL;
445 	dev->iov_limit = iov_limit;
446 	dev->weight = weight;
447 	dev->byte_weight = byte_weight;
448 	init_llist_head(&dev->work_list);
449 	init_waitqueue_head(&dev->wait);
450 	INIT_LIST_HEAD(&dev->read_list);
451 	INIT_LIST_HEAD(&dev->pending_list);
452 	spin_lock_init(&dev->iotlb_lock);
453 
454 
455 	for (i = 0; i < dev->nvqs; ++i) {
456 		vq = dev->vqs[i];
457 		vq->log = NULL;
458 		vq->indirect = NULL;
459 		vq->heads = NULL;
460 		vq->dev = dev;
461 		mutex_init(&vq->mutex);
462 		vhost_vq_reset(dev, vq);
463 		if (vq->handle_kick)
464 			vhost_poll_init(&vq->poll, vq->handle_kick,
465 					EPOLLIN, dev);
466 	}
467 }
468 EXPORT_SYMBOL_GPL(vhost_dev_init);
469 
470 /* Caller should have device mutex */
471 long vhost_dev_check_owner(struct vhost_dev *dev)
472 {
473 	/* Are you the owner? If not, I don't think you mean to do that */
474 	return dev->mm == current->mm ? 0 : -EPERM;
475 }
476 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
477 
478 struct vhost_attach_cgroups_struct {
479 	struct vhost_work work;
480 	struct task_struct *owner;
481 	int ret;
482 };
483 
484 static void vhost_attach_cgroups_work(struct vhost_work *work)
485 {
486 	struct vhost_attach_cgroups_struct *s;
487 
488 	s = container_of(work, struct vhost_attach_cgroups_struct, work);
489 	s->ret = cgroup_attach_task_all(s->owner, current);
490 }
491 
492 static int vhost_attach_cgroups(struct vhost_dev *dev)
493 {
494 	struct vhost_attach_cgroups_struct attach;
495 
496 	attach.owner = current;
497 	vhost_work_init(&attach.work, vhost_attach_cgroups_work);
498 	vhost_work_queue(dev, &attach.work);
499 	vhost_work_flush(dev, &attach.work);
500 	return attach.ret;
501 }
502 
503 /* Caller should have device mutex */
504 bool vhost_dev_has_owner(struct vhost_dev *dev)
505 {
506 	return dev->mm;
507 }
508 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
509 
510 /* Caller should have device mutex */
511 long vhost_dev_set_owner(struct vhost_dev *dev)
512 {
513 	struct task_struct *worker;
514 	int err;
515 
516 	/* Is there an owner already? */
517 	if (vhost_dev_has_owner(dev)) {
518 		err = -EBUSY;
519 		goto err_mm;
520 	}
521 
522 	/* No owner, become one */
523 	dev->mm = get_task_mm(current);
524 	worker = kthread_create(vhost_worker, dev, "vhost-%d", current->pid);
525 	if (IS_ERR(worker)) {
526 		err = PTR_ERR(worker);
527 		goto err_worker;
528 	}
529 
530 	dev->worker = worker;
531 	wake_up_process(worker);	/* avoid contributing to loadavg */
532 
533 	err = vhost_attach_cgroups(dev);
534 	if (err)
535 		goto err_cgroup;
536 
537 	err = vhost_dev_alloc_iovecs(dev);
538 	if (err)
539 		goto err_cgroup;
540 
541 	return 0;
542 err_cgroup:
543 	kthread_stop(worker);
544 	dev->worker = NULL;
545 err_worker:
546 	if (dev->mm)
547 		mmput(dev->mm);
548 	dev->mm = NULL;
549 err_mm:
550 	return err;
551 }
552 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
553 
554 struct vhost_umem *vhost_dev_reset_owner_prepare(void)
555 {
556 	return kvzalloc(sizeof(struct vhost_umem), GFP_KERNEL);
557 }
558 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
559 
560 /* Caller should have device mutex */
561 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_umem *umem)
562 {
563 	int i;
564 
565 	vhost_dev_cleanup(dev);
566 
567 	/* Restore memory to default empty mapping. */
568 	INIT_LIST_HEAD(&umem->umem_list);
569 	dev->umem = umem;
570 	/* We don't need VQ locks below since vhost_dev_cleanup makes sure
571 	 * VQs aren't running.
572 	 */
573 	for (i = 0; i < dev->nvqs; ++i)
574 		dev->vqs[i]->umem = umem;
575 }
576 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
577 
578 void vhost_dev_stop(struct vhost_dev *dev)
579 {
580 	int i;
581 
582 	for (i = 0; i < dev->nvqs; ++i) {
583 		if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick) {
584 			vhost_poll_stop(&dev->vqs[i]->poll);
585 			vhost_poll_flush(&dev->vqs[i]->poll);
586 		}
587 	}
588 }
589 EXPORT_SYMBOL_GPL(vhost_dev_stop);
590 
591 static void vhost_umem_free(struct vhost_umem *umem,
592 			    struct vhost_umem_node *node)
593 {
594 	vhost_umem_interval_tree_remove(node, &umem->umem_tree);
595 	list_del(&node->link);
596 	kfree(node);
597 	umem->numem--;
598 }
599 
600 static void vhost_umem_clean(struct vhost_umem *umem)
601 {
602 	struct vhost_umem_node *node, *tmp;
603 
604 	if (!umem)
605 		return;
606 
607 	list_for_each_entry_safe(node, tmp, &umem->umem_list, link)
608 		vhost_umem_free(umem, node);
609 
610 	kvfree(umem);
611 }
612 
613 static void vhost_clear_msg(struct vhost_dev *dev)
614 {
615 	struct vhost_msg_node *node, *n;
616 
617 	spin_lock(&dev->iotlb_lock);
618 
619 	list_for_each_entry_safe(node, n, &dev->read_list, node) {
620 		list_del(&node->node);
621 		kfree(node);
622 	}
623 
624 	list_for_each_entry_safe(node, n, &dev->pending_list, node) {
625 		list_del(&node->node);
626 		kfree(node);
627 	}
628 
629 	spin_unlock(&dev->iotlb_lock);
630 }
631 
632 void vhost_dev_cleanup(struct vhost_dev *dev)
633 {
634 	int i;
635 
636 	for (i = 0; i < dev->nvqs; ++i) {
637 		if (dev->vqs[i]->error_ctx)
638 			eventfd_ctx_put(dev->vqs[i]->error_ctx);
639 		if (dev->vqs[i]->kick)
640 			fput(dev->vqs[i]->kick);
641 		if (dev->vqs[i]->call_ctx)
642 			eventfd_ctx_put(dev->vqs[i]->call_ctx);
643 		vhost_vq_reset(dev, dev->vqs[i]);
644 	}
645 	vhost_dev_free_iovecs(dev);
646 	if (dev->log_ctx)
647 		eventfd_ctx_put(dev->log_ctx);
648 	dev->log_ctx = NULL;
649 	/* No one will access memory at this point */
650 	vhost_umem_clean(dev->umem);
651 	dev->umem = NULL;
652 	vhost_umem_clean(dev->iotlb);
653 	dev->iotlb = NULL;
654 	vhost_clear_msg(dev);
655 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
656 	WARN_ON(!llist_empty(&dev->work_list));
657 	if (dev->worker) {
658 		kthread_stop(dev->worker);
659 		dev->worker = NULL;
660 	}
661 	if (dev->mm)
662 		mmput(dev->mm);
663 	dev->mm = NULL;
664 }
665 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
666 
667 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
668 {
669 	u64 a = addr / VHOST_PAGE_SIZE / 8;
670 
671 	/* Make sure 64 bit math will not overflow. */
672 	if (a > ULONG_MAX - (unsigned long)log_base ||
673 	    a + (unsigned long)log_base > ULONG_MAX)
674 		return false;
675 
676 	return access_ok(log_base + a,
677 			 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
678 }
679 
680 static bool vhost_overflow(u64 uaddr, u64 size)
681 {
682 	/* Make sure 64 bit math will not overflow. */
683 	return uaddr > ULONG_MAX || size > ULONG_MAX || uaddr > ULONG_MAX - size;
684 }
685 
686 /* Caller should have vq mutex and device mutex. */
687 static bool vq_memory_access_ok(void __user *log_base, struct vhost_umem *umem,
688 				int log_all)
689 {
690 	struct vhost_umem_node *node;
691 
692 	if (!umem)
693 		return false;
694 
695 	list_for_each_entry(node, &umem->umem_list, link) {
696 		unsigned long a = node->userspace_addr;
697 
698 		if (vhost_overflow(node->userspace_addr, node->size))
699 			return false;
700 
701 
702 		if (!access_ok((void __user *)a,
703 				    node->size))
704 			return false;
705 		else if (log_all && !log_access_ok(log_base,
706 						   node->start,
707 						   node->size))
708 			return false;
709 	}
710 	return true;
711 }
712 
713 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
714 					       u64 addr, unsigned int size,
715 					       int type)
716 {
717 	const struct vhost_umem_node *node = vq->meta_iotlb[type];
718 
719 	if (!node)
720 		return NULL;
721 
722 	return (void *)(uintptr_t)(node->userspace_addr + addr - node->start);
723 }
724 
725 /* Can we switch to this memory table? */
726 /* Caller should have device mutex but not vq mutex */
727 static bool memory_access_ok(struct vhost_dev *d, struct vhost_umem *umem,
728 			     int log_all)
729 {
730 	int i;
731 
732 	for (i = 0; i < d->nvqs; ++i) {
733 		bool ok;
734 		bool log;
735 
736 		mutex_lock(&d->vqs[i]->mutex);
737 		log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
738 		/* If ring is inactive, will check when it's enabled. */
739 		if (d->vqs[i]->private_data)
740 			ok = vq_memory_access_ok(d->vqs[i]->log_base,
741 						 umem, log);
742 		else
743 			ok = true;
744 		mutex_unlock(&d->vqs[i]->mutex);
745 		if (!ok)
746 			return false;
747 	}
748 	return true;
749 }
750 
751 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
752 			  struct iovec iov[], int iov_size, int access);
753 
754 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
755 			      const void *from, unsigned size)
756 {
757 	int ret;
758 
759 	if (!vq->iotlb)
760 		return __copy_to_user(to, from, size);
761 	else {
762 		/* This function should be called after iotlb
763 		 * prefetch, which means we're sure that all vq
764 		 * could be access through iotlb. So -EAGAIN should
765 		 * not happen in this case.
766 		 */
767 		struct iov_iter t;
768 		void __user *uaddr = vhost_vq_meta_fetch(vq,
769 				     (u64)(uintptr_t)to, size,
770 				     VHOST_ADDR_USED);
771 
772 		if (uaddr)
773 			return __copy_to_user(uaddr, from, size);
774 
775 		ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
776 				     ARRAY_SIZE(vq->iotlb_iov),
777 				     VHOST_ACCESS_WO);
778 		if (ret < 0)
779 			goto out;
780 		iov_iter_init(&t, WRITE, vq->iotlb_iov, ret, size);
781 		ret = copy_to_iter(from, size, &t);
782 		if (ret == size)
783 			ret = 0;
784 	}
785 out:
786 	return ret;
787 }
788 
789 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
790 				void __user *from, unsigned size)
791 {
792 	int ret;
793 
794 	if (!vq->iotlb)
795 		return __copy_from_user(to, from, size);
796 	else {
797 		/* This function should be called after iotlb
798 		 * prefetch, which means we're sure that vq
799 		 * could be access through iotlb. So -EAGAIN should
800 		 * not happen in this case.
801 		 */
802 		void __user *uaddr = vhost_vq_meta_fetch(vq,
803 				     (u64)(uintptr_t)from, size,
804 				     VHOST_ADDR_DESC);
805 		struct iov_iter f;
806 
807 		if (uaddr)
808 			return __copy_from_user(to, uaddr, size);
809 
810 		ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
811 				     ARRAY_SIZE(vq->iotlb_iov),
812 				     VHOST_ACCESS_RO);
813 		if (ret < 0) {
814 			vq_err(vq, "IOTLB translation failure: uaddr "
815 			       "%p size 0x%llx\n", from,
816 			       (unsigned long long) size);
817 			goto out;
818 		}
819 		iov_iter_init(&f, READ, vq->iotlb_iov, ret, size);
820 		ret = copy_from_iter(to, size, &f);
821 		if (ret == size)
822 			ret = 0;
823 	}
824 
825 out:
826 	return ret;
827 }
828 
829 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
830 					  void __user *addr, unsigned int size,
831 					  int type)
832 {
833 	int ret;
834 
835 	ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
836 			     ARRAY_SIZE(vq->iotlb_iov),
837 			     VHOST_ACCESS_RO);
838 	if (ret < 0) {
839 		vq_err(vq, "IOTLB translation failure: uaddr "
840 			"%p size 0x%llx\n", addr,
841 			(unsigned long long) size);
842 		return NULL;
843 	}
844 
845 	if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
846 		vq_err(vq, "Non atomic userspace memory access: uaddr "
847 			"%p size 0x%llx\n", addr,
848 			(unsigned long long) size);
849 		return NULL;
850 	}
851 
852 	return vq->iotlb_iov[0].iov_base;
853 }
854 
855 /* This function should be called after iotlb
856  * prefetch, which means we're sure that vq
857  * could be access through iotlb. So -EAGAIN should
858  * not happen in this case.
859  */
860 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
861 					    void *addr, unsigned int size,
862 					    int type)
863 {
864 	void __user *uaddr = vhost_vq_meta_fetch(vq,
865 			     (u64)(uintptr_t)addr, size, type);
866 	if (uaddr)
867 		return uaddr;
868 
869 	return __vhost_get_user_slow(vq, addr, size, type);
870 }
871 
872 #define vhost_put_user(vq, x, ptr)		\
873 ({ \
874 	int ret = -EFAULT; \
875 	if (!vq->iotlb) { \
876 		ret = __put_user(x, ptr); \
877 	} else { \
878 		__typeof__(ptr) to = \
879 			(__typeof__(ptr)) __vhost_get_user(vq, ptr,	\
880 					  sizeof(*ptr), VHOST_ADDR_USED); \
881 		if (to != NULL) \
882 			ret = __put_user(x, to); \
883 		else \
884 			ret = -EFAULT;	\
885 	} \
886 	ret; \
887 })
888 
889 #define vhost_get_user(vq, x, ptr, type)		\
890 ({ \
891 	int ret; \
892 	if (!vq->iotlb) { \
893 		ret = __get_user(x, ptr); \
894 	} else { \
895 		__typeof__(ptr) from = \
896 			(__typeof__(ptr)) __vhost_get_user(vq, ptr, \
897 							   sizeof(*ptr), \
898 							   type); \
899 		if (from != NULL) \
900 			ret = __get_user(x, from); \
901 		else \
902 			ret = -EFAULT; \
903 	} \
904 	ret; \
905 })
906 
907 #define vhost_get_avail(vq, x, ptr) \
908 	vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
909 
910 #define vhost_get_used(vq, x, ptr) \
911 	vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
912 
913 static void vhost_dev_lock_vqs(struct vhost_dev *d)
914 {
915 	int i = 0;
916 	for (i = 0; i < d->nvqs; ++i)
917 		mutex_lock_nested(&d->vqs[i]->mutex, i);
918 }
919 
920 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
921 {
922 	int i = 0;
923 	for (i = 0; i < d->nvqs; ++i)
924 		mutex_unlock(&d->vqs[i]->mutex);
925 }
926 
927 static int vhost_new_umem_range(struct vhost_umem *umem,
928 				u64 start, u64 size, u64 end,
929 				u64 userspace_addr, int perm)
930 {
931 	struct vhost_umem_node *tmp, *node;
932 
933 	if (!size)
934 		return -EFAULT;
935 
936 	node = kmalloc(sizeof(*node), GFP_ATOMIC);
937 	if (!node)
938 		return -ENOMEM;
939 
940 	if (umem->numem == max_iotlb_entries) {
941 		tmp = list_first_entry(&umem->umem_list, typeof(*tmp), link);
942 		vhost_umem_free(umem, tmp);
943 	}
944 
945 	node->start = start;
946 	node->size = size;
947 	node->last = end;
948 	node->userspace_addr = userspace_addr;
949 	node->perm = perm;
950 	INIT_LIST_HEAD(&node->link);
951 	list_add_tail(&node->link, &umem->umem_list);
952 	vhost_umem_interval_tree_insert(node, &umem->umem_tree);
953 	umem->numem++;
954 
955 	return 0;
956 }
957 
958 static void vhost_del_umem_range(struct vhost_umem *umem,
959 				 u64 start, u64 end)
960 {
961 	struct vhost_umem_node *node;
962 
963 	while ((node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
964 							   start, end)))
965 		vhost_umem_free(umem, node);
966 }
967 
968 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
969 				  struct vhost_iotlb_msg *msg)
970 {
971 	struct vhost_msg_node *node, *n;
972 
973 	spin_lock(&d->iotlb_lock);
974 
975 	list_for_each_entry_safe(node, n, &d->pending_list, node) {
976 		struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
977 		if (msg->iova <= vq_msg->iova &&
978 		    msg->iova + msg->size - 1 >= vq_msg->iova &&
979 		    vq_msg->type == VHOST_IOTLB_MISS) {
980 			vhost_poll_queue(&node->vq->poll);
981 			list_del(&node->node);
982 			kfree(node);
983 		}
984 	}
985 
986 	spin_unlock(&d->iotlb_lock);
987 }
988 
989 static bool umem_access_ok(u64 uaddr, u64 size, int access)
990 {
991 	unsigned long a = uaddr;
992 
993 	/* Make sure 64 bit math will not overflow. */
994 	if (vhost_overflow(uaddr, size))
995 		return false;
996 
997 	if ((access & VHOST_ACCESS_RO) &&
998 	    !access_ok((void __user *)a, size))
999 		return false;
1000 	if ((access & VHOST_ACCESS_WO) &&
1001 	    !access_ok((void __user *)a, size))
1002 		return false;
1003 	return true;
1004 }
1005 
1006 static int vhost_process_iotlb_msg(struct vhost_dev *dev,
1007 				   struct vhost_iotlb_msg *msg)
1008 {
1009 	int ret = 0;
1010 
1011 	mutex_lock(&dev->mutex);
1012 	vhost_dev_lock_vqs(dev);
1013 	switch (msg->type) {
1014 	case VHOST_IOTLB_UPDATE:
1015 		if (!dev->iotlb) {
1016 			ret = -EFAULT;
1017 			break;
1018 		}
1019 		if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1020 			ret = -EFAULT;
1021 			break;
1022 		}
1023 		vhost_vq_meta_reset(dev);
1024 		if (vhost_new_umem_range(dev->iotlb, msg->iova, msg->size,
1025 					 msg->iova + msg->size - 1,
1026 					 msg->uaddr, msg->perm)) {
1027 			ret = -ENOMEM;
1028 			break;
1029 		}
1030 		vhost_iotlb_notify_vq(dev, msg);
1031 		break;
1032 	case VHOST_IOTLB_INVALIDATE:
1033 		if (!dev->iotlb) {
1034 			ret = -EFAULT;
1035 			break;
1036 		}
1037 		vhost_vq_meta_reset(dev);
1038 		vhost_del_umem_range(dev->iotlb, msg->iova,
1039 				     msg->iova + msg->size - 1);
1040 		break;
1041 	default:
1042 		ret = -EINVAL;
1043 		break;
1044 	}
1045 
1046 	vhost_dev_unlock_vqs(dev);
1047 	mutex_unlock(&dev->mutex);
1048 
1049 	return ret;
1050 }
1051 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1052 			     struct iov_iter *from)
1053 {
1054 	struct vhost_iotlb_msg msg;
1055 	size_t offset;
1056 	int type, ret;
1057 
1058 	ret = copy_from_iter(&type, sizeof(type), from);
1059 	if (ret != sizeof(type)) {
1060 		ret = -EINVAL;
1061 		goto done;
1062 	}
1063 
1064 	switch (type) {
1065 	case VHOST_IOTLB_MSG:
1066 		/* There maybe a hole after type for V1 message type,
1067 		 * so skip it here.
1068 		 */
1069 		offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1070 		break;
1071 	case VHOST_IOTLB_MSG_V2:
1072 		offset = sizeof(__u32);
1073 		break;
1074 	default:
1075 		ret = -EINVAL;
1076 		goto done;
1077 	}
1078 
1079 	iov_iter_advance(from, offset);
1080 	ret = copy_from_iter(&msg, sizeof(msg), from);
1081 	if (ret != sizeof(msg)) {
1082 		ret = -EINVAL;
1083 		goto done;
1084 	}
1085 	if (vhost_process_iotlb_msg(dev, &msg)) {
1086 		ret = -EFAULT;
1087 		goto done;
1088 	}
1089 
1090 	ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1091 	      sizeof(struct vhost_msg_v2);
1092 done:
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(vhost_chr_write_iter);
1096 
1097 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1098 			    poll_table *wait)
1099 {
1100 	__poll_t mask = 0;
1101 
1102 	poll_wait(file, &dev->wait, wait);
1103 
1104 	if (!list_empty(&dev->read_list))
1105 		mask |= EPOLLIN | EPOLLRDNORM;
1106 
1107 	return mask;
1108 }
1109 EXPORT_SYMBOL(vhost_chr_poll);
1110 
1111 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1112 			    int noblock)
1113 {
1114 	DEFINE_WAIT(wait);
1115 	struct vhost_msg_node *node;
1116 	ssize_t ret = 0;
1117 	unsigned size = sizeof(struct vhost_msg);
1118 
1119 	if (iov_iter_count(to) < size)
1120 		return 0;
1121 
1122 	while (1) {
1123 		if (!noblock)
1124 			prepare_to_wait(&dev->wait, &wait,
1125 					TASK_INTERRUPTIBLE);
1126 
1127 		node = vhost_dequeue_msg(dev, &dev->read_list);
1128 		if (node)
1129 			break;
1130 		if (noblock) {
1131 			ret = -EAGAIN;
1132 			break;
1133 		}
1134 		if (signal_pending(current)) {
1135 			ret = -ERESTARTSYS;
1136 			break;
1137 		}
1138 		if (!dev->iotlb) {
1139 			ret = -EBADFD;
1140 			break;
1141 		}
1142 
1143 		schedule();
1144 	}
1145 
1146 	if (!noblock)
1147 		finish_wait(&dev->wait, &wait);
1148 
1149 	if (node) {
1150 		struct vhost_iotlb_msg *msg;
1151 		void *start = &node->msg;
1152 
1153 		switch (node->msg.type) {
1154 		case VHOST_IOTLB_MSG:
1155 			size = sizeof(node->msg);
1156 			msg = &node->msg.iotlb;
1157 			break;
1158 		case VHOST_IOTLB_MSG_V2:
1159 			size = sizeof(node->msg_v2);
1160 			msg = &node->msg_v2.iotlb;
1161 			break;
1162 		default:
1163 			BUG();
1164 			break;
1165 		}
1166 
1167 		ret = copy_to_iter(start, size, to);
1168 		if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1169 			kfree(node);
1170 			return ret;
1171 		}
1172 		vhost_enqueue_msg(dev, &dev->pending_list, node);
1173 	}
1174 
1175 	return ret;
1176 }
1177 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1178 
1179 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1180 {
1181 	struct vhost_dev *dev = vq->dev;
1182 	struct vhost_msg_node *node;
1183 	struct vhost_iotlb_msg *msg;
1184 	bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1185 
1186 	node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1187 	if (!node)
1188 		return -ENOMEM;
1189 
1190 	if (v2) {
1191 		node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1192 		msg = &node->msg_v2.iotlb;
1193 	} else {
1194 		msg = &node->msg.iotlb;
1195 	}
1196 
1197 	msg->type = VHOST_IOTLB_MISS;
1198 	msg->iova = iova;
1199 	msg->perm = access;
1200 
1201 	vhost_enqueue_msg(dev, &dev->read_list, node);
1202 
1203 	return 0;
1204 }
1205 
1206 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1207 			 struct vring_desc __user *desc,
1208 			 struct vring_avail __user *avail,
1209 			 struct vring_used __user *used)
1210 
1211 {
1212 	size_t s __maybe_unused = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1213 
1214 	return access_ok(desc, num * sizeof *desc) &&
1215 	       access_ok(avail,
1216 			 sizeof *avail + num * sizeof *avail->ring + s) &&
1217 	       access_ok(used,
1218 			sizeof *used + num * sizeof *used->ring + s);
1219 }
1220 
1221 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1222 				 const struct vhost_umem_node *node,
1223 				 int type)
1224 {
1225 	int access = (type == VHOST_ADDR_USED) ?
1226 		     VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1227 
1228 	if (likely(node->perm & access))
1229 		vq->meta_iotlb[type] = node;
1230 }
1231 
1232 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1233 			    int access, u64 addr, u64 len, int type)
1234 {
1235 	const struct vhost_umem_node *node;
1236 	struct vhost_umem *umem = vq->iotlb;
1237 	u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1238 
1239 	if (vhost_vq_meta_fetch(vq, addr, len, type))
1240 		return true;
1241 
1242 	while (len > s) {
1243 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1244 							   addr,
1245 							   last);
1246 		if (node == NULL || node->start > addr) {
1247 			vhost_iotlb_miss(vq, addr, access);
1248 			return false;
1249 		} else if (!(node->perm & access)) {
1250 			/* Report the possible access violation by
1251 			 * request another translation from userspace.
1252 			 */
1253 			return false;
1254 		}
1255 
1256 		size = node->size - addr + node->start;
1257 
1258 		if (orig_addr == addr && size >= len)
1259 			vhost_vq_meta_update(vq, node, type);
1260 
1261 		s += size;
1262 		addr += size;
1263 	}
1264 
1265 	return true;
1266 }
1267 
1268 int vq_iotlb_prefetch(struct vhost_virtqueue *vq)
1269 {
1270 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1271 	unsigned int num = vq->num;
1272 
1273 	if (!vq->iotlb)
1274 		return 1;
1275 
1276 	return iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->desc,
1277 			       num * sizeof(*vq->desc), VHOST_ADDR_DESC) &&
1278 	       iotlb_access_ok(vq, VHOST_ACCESS_RO, (u64)(uintptr_t)vq->avail,
1279 			       sizeof *vq->avail +
1280 			       num * sizeof(*vq->avail->ring) + s,
1281 			       VHOST_ADDR_AVAIL) &&
1282 	       iotlb_access_ok(vq, VHOST_ACCESS_WO, (u64)(uintptr_t)vq->used,
1283 			       sizeof *vq->used +
1284 			       num * sizeof(*vq->used->ring) + s,
1285 			       VHOST_ADDR_USED);
1286 }
1287 EXPORT_SYMBOL_GPL(vq_iotlb_prefetch);
1288 
1289 /* Can we log writes? */
1290 /* Caller should have device mutex but not vq mutex */
1291 bool vhost_log_access_ok(struct vhost_dev *dev)
1292 {
1293 	return memory_access_ok(dev, dev->umem, 1);
1294 }
1295 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1296 
1297 /* Verify access for write logging. */
1298 /* Caller should have vq mutex and device mutex */
1299 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1300 			     void __user *log_base)
1301 {
1302 	size_t s = vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
1303 
1304 	return vq_memory_access_ok(log_base, vq->umem,
1305 				   vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1306 		(!vq->log_used || log_access_ok(log_base, vq->log_addr,
1307 					sizeof *vq->used +
1308 					vq->num * sizeof *vq->used->ring + s));
1309 }
1310 
1311 /* Can we start vq? */
1312 /* Caller should have vq mutex and device mutex */
1313 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1314 {
1315 	if (!vq_log_access_ok(vq, vq->log_base))
1316 		return false;
1317 
1318 	/* Access validation occurs at prefetch time with IOTLB */
1319 	if (vq->iotlb)
1320 		return true;
1321 
1322 	return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1323 }
1324 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1325 
1326 static struct vhost_umem *vhost_umem_alloc(void)
1327 {
1328 	struct vhost_umem *umem = kvzalloc(sizeof(*umem), GFP_KERNEL);
1329 
1330 	if (!umem)
1331 		return NULL;
1332 
1333 	umem->umem_tree = RB_ROOT_CACHED;
1334 	umem->numem = 0;
1335 	INIT_LIST_HEAD(&umem->umem_list);
1336 
1337 	return umem;
1338 }
1339 
1340 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1341 {
1342 	struct vhost_memory mem, *newmem;
1343 	struct vhost_memory_region *region;
1344 	struct vhost_umem *newumem, *oldumem;
1345 	unsigned long size = offsetof(struct vhost_memory, regions);
1346 	int i;
1347 
1348 	if (copy_from_user(&mem, m, size))
1349 		return -EFAULT;
1350 	if (mem.padding)
1351 		return -EOPNOTSUPP;
1352 	if (mem.nregions > max_mem_regions)
1353 		return -E2BIG;
1354 	newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1355 			GFP_KERNEL);
1356 	if (!newmem)
1357 		return -ENOMEM;
1358 
1359 	memcpy(newmem, &mem, size);
1360 	if (copy_from_user(newmem->regions, m->regions,
1361 			   mem.nregions * sizeof *m->regions)) {
1362 		kvfree(newmem);
1363 		return -EFAULT;
1364 	}
1365 
1366 	newumem = vhost_umem_alloc();
1367 	if (!newumem) {
1368 		kvfree(newmem);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	for (region = newmem->regions;
1373 	     region < newmem->regions + mem.nregions;
1374 	     region++) {
1375 		if (vhost_new_umem_range(newumem,
1376 					 region->guest_phys_addr,
1377 					 region->memory_size,
1378 					 region->guest_phys_addr +
1379 					 region->memory_size - 1,
1380 					 region->userspace_addr,
1381 					 VHOST_ACCESS_RW))
1382 			goto err;
1383 	}
1384 
1385 	if (!memory_access_ok(d, newumem, 0))
1386 		goto err;
1387 
1388 	oldumem = d->umem;
1389 	d->umem = newumem;
1390 
1391 	/* All memory accesses are done under some VQ mutex. */
1392 	for (i = 0; i < d->nvqs; ++i) {
1393 		mutex_lock(&d->vqs[i]->mutex);
1394 		d->vqs[i]->umem = newumem;
1395 		mutex_unlock(&d->vqs[i]->mutex);
1396 	}
1397 
1398 	kvfree(newmem);
1399 	vhost_umem_clean(oldumem);
1400 	return 0;
1401 
1402 err:
1403 	vhost_umem_clean(newumem);
1404 	kvfree(newmem);
1405 	return -EFAULT;
1406 }
1407 
1408 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1409 {
1410 	struct file *eventfp, *filep = NULL;
1411 	bool pollstart = false, pollstop = false;
1412 	struct eventfd_ctx *ctx = NULL;
1413 	u32 __user *idxp = argp;
1414 	struct vhost_virtqueue *vq;
1415 	struct vhost_vring_state s;
1416 	struct vhost_vring_file f;
1417 	struct vhost_vring_addr a;
1418 	u32 idx;
1419 	long r;
1420 
1421 	r = get_user(idx, idxp);
1422 	if (r < 0)
1423 		return r;
1424 	if (idx >= d->nvqs)
1425 		return -ENOBUFS;
1426 
1427 	idx = array_index_nospec(idx, d->nvqs);
1428 	vq = d->vqs[idx];
1429 
1430 	mutex_lock(&vq->mutex);
1431 
1432 	switch (ioctl) {
1433 	case VHOST_SET_VRING_NUM:
1434 		/* Resizing ring with an active backend?
1435 		 * You don't want to do that. */
1436 		if (vq->private_data) {
1437 			r = -EBUSY;
1438 			break;
1439 		}
1440 		if (copy_from_user(&s, argp, sizeof s)) {
1441 			r = -EFAULT;
1442 			break;
1443 		}
1444 		if (!s.num || s.num > 0xffff || (s.num & (s.num - 1))) {
1445 			r = -EINVAL;
1446 			break;
1447 		}
1448 		vq->num = s.num;
1449 		break;
1450 	case VHOST_SET_VRING_BASE:
1451 		/* Moving base with an active backend?
1452 		 * You don't want to do that. */
1453 		if (vq->private_data) {
1454 			r = -EBUSY;
1455 			break;
1456 		}
1457 		if (copy_from_user(&s, argp, sizeof s)) {
1458 			r = -EFAULT;
1459 			break;
1460 		}
1461 		if (s.num > 0xffff) {
1462 			r = -EINVAL;
1463 			break;
1464 		}
1465 		vq->last_avail_idx = s.num;
1466 		/* Forget the cached index value. */
1467 		vq->avail_idx = vq->last_avail_idx;
1468 		break;
1469 	case VHOST_GET_VRING_BASE:
1470 		s.index = idx;
1471 		s.num = vq->last_avail_idx;
1472 		if (copy_to_user(argp, &s, sizeof s))
1473 			r = -EFAULT;
1474 		break;
1475 	case VHOST_SET_VRING_ADDR:
1476 		if (copy_from_user(&a, argp, sizeof a)) {
1477 			r = -EFAULT;
1478 			break;
1479 		}
1480 		if (a.flags & ~(0x1 << VHOST_VRING_F_LOG)) {
1481 			r = -EOPNOTSUPP;
1482 			break;
1483 		}
1484 		/* For 32bit, verify that the top 32bits of the user
1485 		   data are set to zero. */
1486 		if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
1487 		    (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
1488 		    (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr) {
1489 			r = -EFAULT;
1490 			break;
1491 		}
1492 
1493 		/* Make sure it's safe to cast pointers to vring types. */
1494 		BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
1495 		BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
1496 		if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
1497 		    (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
1498 		    (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1))) {
1499 			r = -EINVAL;
1500 			break;
1501 		}
1502 
1503 		/* We only verify access here if backend is configured.
1504 		 * If it is not, we don't as size might not have been setup.
1505 		 * We will verify when backend is configured. */
1506 		if (vq->private_data) {
1507 			if (!vq_access_ok(vq, vq->num,
1508 				(void __user *)(unsigned long)a.desc_user_addr,
1509 				(void __user *)(unsigned long)a.avail_user_addr,
1510 				(void __user *)(unsigned long)a.used_user_addr)) {
1511 				r = -EINVAL;
1512 				break;
1513 			}
1514 
1515 			/* Also validate log access for used ring if enabled. */
1516 			if ((a.flags & (0x1 << VHOST_VRING_F_LOG)) &&
1517 			    !log_access_ok(vq->log_base, a.log_guest_addr,
1518 					   sizeof *vq->used +
1519 					   vq->num * sizeof *vq->used->ring)) {
1520 				r = -EINVAL;
1521 				break;
1522 			}
1523 		}
1524 
1525 		vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
1526 		vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
1527 		vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
1528 		vq->log_addr = a.log_guest_addr;
1529 		vq->used = (void __user *)(unsigned long)a.used_user_addr;
1530 		break;
1531 	case VHOST_SET_VRING_KICK:
1532 		if (copy_from_user(&f, argp, sizeof f)) {
1533 			r = -EFAULT;
1534 			break;
1535 		}
1536 		eventfp = f.fd == -1 ? NULL : eventfd_fget(f.fd);
1537 		if (IS_ERR(eventfp)) {
1538 			r = PTR_ERR(eventfp);
1539 			break;
1540 		}
1541 		if (eventfp != vq->kick) {
1542 			pollstop = (filep = vq->kick) != NULL;
1543 			pollstart = (vq->kick = eventfp) != NULL;
1544 		} else
1545 			filep = eventfp;
1546 		break;
1547 	case VHOST_SET_VRING_CALL:
1548 		if (copy_from_user(&f, argp, sizeof f)) {
1549 			r = -EFAULT;
1550 			break;
1551 		}
1552 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1553 		if (IS_ERR(ctx)) {
1554 			r = PTR_ERR(ctx);
1555 			break;
1556 		}
1557 		swap(ctx, vq->call_ctx);
1558 		break;
1559 	case VHOST_SET_VRING_ERR:
1560 		if (copy_from_user(&f, argp, sizeof f)) {
1561 			r = -EFAULT;
1562 			break;
1563 		}
1564 		ctx = f.fd == -1 ? NULL : eventfd_ctx_fdget(f.fd);
1565 		if (IS_ERR(ctx)) {
1566 			r = PTR_ERR(ctx);
1567 			break;
1568 		}
1569 		swap(ctx, vq->error_ctx);
1570 		break;
1571 	case VHOST_SET_VRING_ENDIAN:
1572 		r = vhost_set_vring_endian(vq, argp);
1573 		break;
1574 	case VHOST_GET_VRING_ENDIAN:
1575 		r = vhost_get_vring_endian(vq, idx, argp);
1576 		break;
1577 	case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
1578 		if (copy_from_user(&s, argp, sizeof(s))) {
1579 			r = -EFAULT;
1580 			break;
1581 		}
1582 		vq->busyloop_timeout = s.num;
1583 		break;
1584 	case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
1585 		s.index = idx;
1586 		s.num = vq->busyloop_timeout;
1587 		if (copy_to_user(argp, &s, sizeof(s)))
1588 			r = -EFAULT;
1589 		break;
1590 	default:
1591 		r = -ENOIOCTLCMD;
1592 	}
1593 
1594 	if (pollstop && vq->handle_kick)
1595 		vhost_poll_stop(&vq->poll);
1596 
1597 	if (!IS_ERR_OR_NULL(ctx))
1598 		eventfd_ctx_put(ctx);
1599 	if (filep)
1600 		fput(filep);
1601 
1602 	if (pollstart && vq->handle_kick)
1603 		r = vhost_poll_start(&vq->poll, vq->kick);
1604 
1605 	mutex_unlock(&vq->mutex);
1606 
1607 	if (pollstop && vq->handle_kick)
1608 		vhost_poll_flush(&vq->poll);
1609 	return r;
1610 }
1611 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
1612 
1613 int vhost_init_device_iotlb(struct vhost_dev *d, bool enabled)
1614 {
1615 	struct vhost_umem *niotlb, *oiotlb;
1616 	int i;
1617 
1618 	niotlb = vhost_umem_alloc();
1619 	if (!niotlb)
1620 		return -ENOMEM;
1621 
1622 	oiotlb = d->iotlb;
1623 	d->iotlb = niotlb;
1624 
1625 	for (i = 0; i < d->nvqs; ++i) {
1626 		struct vhost_virtqueue *vq = d->vqs[i];
1627 
1628 		mutex_lock(&vq->mutex);
1629 		vq->iotlb = niotlb;
1630 		__vhost_vq_meta_reset(vq);
1631 		mutex_unlock(&vq->mutex);
1632 	}
1633 
1634 	vhost_umem_clean(oiotlb);
1635 
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
1639 
1640 /* Caller must have device mutex */
1641 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
1642 {
1643 	struct eventfd_ctx *ctx;
1644 	u64 p;
1645 	long r;
1646 	int i, fd;
1647 
1648 	/* If you are not the owner, you can become one */
1649 	if (ioctl == VHOST_SET_OWNER) {
1650 		r = vhost_dev_set_owner(d);
1651 		goto done;
1652 	}
1653 
1654 	/* You must be the owner to do anything else */
1655 	r = vhost_dev_check_owner(d);
1656 	if (r)
1657 		goto done;
1658 
1659 	switch (ioctl) {
1660 	case VHOST_SET_MEM_TABLE:
1661 		r = vhost_set_memory(d, argp);
1662 		break;
1663 	case VHOST_SET_LOG_BASE:
1664 		if (copy_from_user(&p, argp, sizeof p)) {
1665 			r = -EFAULT;
1666 			break;
1667 		}
1668 		if ((u64)(unsigned long)p != p) {
1669 			r = -EFAULT;
1670 			break;
1671 		}
1672 		for (i = 0; i < d->nvqs; ++i) {
1673 			struct vhost_virtqueue *vq;
1674 			void __user *base = (void __user *)(unsigned long)p;
1675 			vq = d->vqs[i];
1676 			mutex_lock(&vq->mutex);
1677 			/* If ring is inactive, will check when it's enabled. */
1678 			if (vq->private_data && !vq_log_access_ok(vq, base))
1679 				r = -EFAULT;
1680 			else
1681 				vq->log_base = base;
1682 			mutex_unlock(&vq->mutex);
1683 		}
1684 		break;
1685 	case VHOST_SET_LOG_FD:
1686 		r = get_user(fd, (int __user *)argp);
1687 		if (r < 0)
1688 			break;
1689 		ctx = fd == -1 ? NULL : eventfd_ctx_fdget(fd);
1690 		if (IS_ERR(ctx)) {
1691 			r = PTR_ERR(ctx);
1692 			break;
1693 		}
1694 		swap(ctx, d->log_ctx);
1695 		for (i = 0; i < d->nvqs; ++i) {
1696 			mutex_lock(&d->vqs[i]->mutex);
1697 			d->vqs[i]->log_ctx = d->log_ctx;
1698 			mutex_unlock(&d->vqs[i]->mutex);
1699 		}
1700 		if (ctx)
1701 			eventfd_ctx_put(ctx);
1702 		break;
1703 	default:
1704 		r = -ENOIOCTLCMD;
1705 		break;
1706 	}
1707 done:
1708 	return r;
1709 }
1710 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
1711 
1712 /* TODO: This is really inefficient.  We need something like get_user()
1713  * (instruction directly accesses the data, with an exception table entry
1714  * returning -EFAULT). See Documentation/x86/exception-tables.txt.
1715  */
1716 static int set_bit_to_user(int nr, void __user *addr)
1717 {
1718 	unsigned long log = (unsigned long)addr;
1719 	struct page *page;
1720 	void *base;
1721 	int bit = nr + (log % PAGE_SIZE) * 8;
1722 	int r;
1723 
1724 	r = get_user_pages_fast(log, 1, FOLL_WRITE, &page);
1725 	if (r < 0)
1726 		return r;
1727 	BUG_ON(r != 1);
1728 	base = kmap_atomic(page);
1729 	set_bit(bit, base);
1730 	kunmap_atomic(base);
1731 	set_page_dirty_lock(page);
1732 	put_page(page);
1733 	return 0;
1734 }
1735 
1736 static int log_write(void __user *log_base,
1737 		     u64 write_address, u64 write_length)
1738 {
1739 	u64 write_page = write_address / VHOST_PAGE_SIZE;
1740 	int r;
1741 
1742 	if (!write_length)
1743 		return 0;
1744 	write_length += write_address % VHOST_PAGE_SIZE;
1745 	for (;;) {
1746 		u64 base = (u64)(unsigned long)log_base;
1747 		u64 log = base + write_page / 8;
1748 		int bit = write_page % 8;
1749 		if ((u64)(unsigned long)log != log)
1750 			return -EFAULT;
1751 		r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
1752 		if (r < 0)
1753 			return r;
1754 		if (write_length <= VHOST_PAGE_SIZE)
1755 			break;
1756 		write_length -= VHOST_PAGE_SIZE;
1757 		write_page += 1;
1758 	}
1759 	return r;
1760 }
1761 
1762 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
1763 {
1764 	struct vhost_umem *umem = vq->umem;
1765 	struct vhost_umem_node *u;
1766 	u64 start, end, l, min;
1767 	int r;
1768 	bool hit = false;
1769 
1770 	while (len) {
1771 		min = len;
1772 		/* More than one GPAs can be mapped into a single HVA. So
1773 		 * iterate all possible umems here to be safe.
1774 		 */
1775 		list_for_each_entry(u, &umem->umem_list, link) {
1776 			if (u->userspace_addr > hva - 1 + len ||
1777 			    u->userspace_addr - 1 + u->size < hva)
1778 				continue;
1779 			start = max(u->userspace_addr, hva);
1780 			end = min(u->userspace_addr - 1 + u->size,
1781 				  hva - 1 + len);
1782 			l = end - start + 1;
1783 			r = log_write(vq->log_base,
1784 				      u->start + start - u->userspace_addr,
1785 				      l);
1786 			if (r < 0)
1787 				return r;
1788 			hit = true;
1789 			min = min(l, min);
1790 		}
1791 
1792 		if (!hit)
1793 			return -EFAULT;
1794 
1795 		len -= min;
1796 		hva += min;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
1803 {
1804 	struct iovec iov[64];
1805 	int i, ret;
1806 
1807 	if (!vq->iotlb)
1808 		return log_write(vq->log_base, vq->log_addr + used_offset, len);
1809 
1810 	ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
1811 			     len, iov, 64, VHOST_ACCESS_WO);
1812 	if (ret < 0)
1813 		return ret;
1814 
1815 	for (i = 0; i < ret; i++) {
1816 		ret = log_write_hva(vq,	(uintptr_t)iov[i].iov_base,
1817 				    iov[i].iov_len);
1818 		if (ret)
1819 			return ret;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
1825 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
1826 		    unsigned int log_num, u64 len, struct iovec *iov, int count)
1827 {
1828 	int i, r;
1829 
1830 	/* Make sure data written is seen before log. */
1831 	smp_wmb();
1832 
1833 	if (vq->iotlb) {
1834 		for (i = 0; i < count; i++) {
1835 			r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
1836 					  iov[i].iov_len);
1837 			if (r < 0)
1838 				return r;
1839 		}
1840 		return 0;
1841 	}
1842 
1843 	for (i = 0; i < log_num; ++i) {
1844 		u64 l = min(log[i].len, len);
1845 		r = log_write(vq->log_base, log[i].addr, l);
1846 		if (r < 0)
1847 			return r;
1848 		len -= l;
1849 		if (!len) {
1850 			if (vq->log_ctx)
1851 				eventfd_signal(vq->log_ctx, 1);
1852 			return 0;
1853 		}
1854 	}
1855 	/* Length written exceeds what we have stored. This is a bug. */
1856 	BUG();
1857 	return 0;
1858 }
1859 EXPORT_SYMBOL_GPL(vhost_log_write);
1860 
1861 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
1862 {
1863 	void __user *used;
1864 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1865 			   &vq->used->flags) < 0)
1866 		return -EFAULT;
1867 	if (unlikely(vq->log_used)) {
1868 		/* Make sure the flag is seen before log. */
1869 		smp_wmb();
1870 		/* Log used flag write. */
1871 		used = &vq->used->flags;
1872 		log_used(vq, (used - (void __user *)vq->used),
1873 			 sizeof vq->used->flags);
1874 		if (vq->log_ctx)
1875 			eventfd_signal(vq->log_ctx, 1);
1876 	}
1877 	return 0;
1878 }
1879 
1880 static int vhost_update_avail_event(struct vhost_virtqueue *vq, u16 avail_event)
1881 {
1882 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1883 			   vhost_avail_event(vq)))
1884 		return -EFAULT;
1885 	if (unlikely(vq->log_used)) {
1886 		void __user *used;
1887 		/* Make sure the event is seen before log. */
1888 		smp_wmb();
1889 		/* Log avail event write */
1890 		used = vhost_avail_event(vq);
1891 		log_used(vq, (used - (void __user *)vq->used),
1892 			 sizeof *vhost_avail_event(vq));
1893 		if (vq->log_ctx)
1894 			eventfd_signal(vq->log_ctx, 1);
1895 	}
1896 	return 0;
1897 }
1898 
1899 int vhost_vq_init_access(struct vhost_virtqueue *vq)
1900 {
1901 	__virtio16 last_used_idx;
1902 	int r;
1903 	bool is_le = vq->is_le;
1904 
1905 	if (!vq->private_data)
1906 		return 0;
1907 
1908 	vhost_init_is_le(vq);
1909 
1910 	r = vhost_update_used_flags(vq);
1911 	if (r)
1912 		goto err;
1913 	vq->signalled_used_valid = false;
1914 	if (!vq->iotlb &&
1915 	    !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
1916 		r = -EFAULT;
1917 		goto err;
1918 	}
1919 	r = vhost_get_used(vq, last_used_idx, &vq->used->idx);
1920 	if (r) {
1921 		vq_err(vq, "Can't access used idx at %p\n",
1922 		       &vq->used->idx);
1923 		goto err;
1924 	}
1925 	vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
1926 	return 0;
1927 
1928 err:
1929 	vq->is_le = is_le;
1930 	return r;
1931 }
1932 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
1933 
1934 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1935 			  struct iovec iov[], int iov_size, int access)
1936 {
1937 	const struct vhost_umem_node *node;
1938 	struct vhost_dev *dev = vq->dev;
1939 	struct vhost_umem *umem = dev->iotlb ? dev->iotlb : dev->umem;
1940 	struct iovec *_iov;
1941 	u64 s = 0;
1942 	int ret = 0;
1943 
1944 	while ((u64)len > s) {
1945 		u64 size;
1946 		if (unlikely(ret >= iov_size)) {
1947 			ret = -ENOBUFS;
1948 			break;
1949 		}
1950 
1951 		node = vhost_umem_interval_tree_iter_first(&umem->umem_tree,
1952 							addr, addr + len - 1);
1953 		if (node == NULL || node->start > addr) {
1954 			if (umem != dev->iotlb) {
1955 				ret = -EFAULT;
1956 				break;
1957 			}
1958 			ret = -EAGAIN;
1959 			break;
1960 		} else if (!(node->perm & access)) {
1961 			ret = -EPERM;
1962 			break;
1963 		}
1964 
1965 		_iov = iov + ret;
1966 		size = node->size - addr + node->start;
1967 		_iov->iov_len = min((u64)len - s, size);
1968 		_iov->iov_base = (void __user *)(unsigned long)
1969 			(node->userspace_addr + addr - node->start);
1970 		s += size;
1971 		addr += size;
1972 		++ret;
1973 	}
1974 
1975 	if (ret == -EAGAIN)
1976 		vhost_iotlb_miss(vq, addr, access);
1977 	return ret;
1978 }
1979 
1980 /* Each buffer in the virtqueues is actually a chain of descriptors.  This
1981  * function returns the next descriptor in the chain,
1982  * or -1U if we're at the end. */
1983 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
1984 {
1985 	unsigned int next;
1986 
1987 	/* If this descriptor says it doesn't chain, we're done. */
1988 	if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
1989 		return -1U;
1990 
1991 	/* Check they're not leading us off end of descriptors. */
1992 	next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
1993 	return next;
1994 }
1995 
1996 static int get_indirect(struct vhost_virtqueue *vq,
1997 			struct iovec iov[], unsigned int iov_size,
1998 			unsigned int *out_num, unsigned int *in_num,
1999 			struct vhost_log *log, unsigned int *log_num,
2000 			struct vring_desc *indirect)
2001 {
2002 	struct vring_desc desc;
2003 	unsigned int i = 0, count, found = 0;
2004 	u32 len = vhost32_to_cpu(vq, indirect->len);
2005 	struct iov_iter from;
2006 	int ret, access;
2007 
2008 	/* Sanity check */
2009 	if (unlikely(len % sizeof desc)) {
2010 		vq_err(vq, "Invalid length in indirect descriptor: "
2011 		       "len 0x%llx not multiple of 0x%zx\n",
2012 		       (unsigned long long)len,
2013 		       sizeof desc);
2014 		return -EINVAL;
2015 	}
2016 
2017 	ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2018 			     UIO_MAXIOV, VHOST_ACCESS_RO);
2019 	if (unlikely(ret < 0)) {
2020 		if (ret != -EAGAIN)
2021 			vq_err(vq, "Translation failure %d in indirect.\n", ret);
2022 		return ret;
2023 	}
2024 	iov_iter_init(&from, READ, vq->indirect, ret, len);
2025 
2026 	/* We will use the result as an address to read from, so most
2027 	 * architectures only need a compiler barrier here. */
2028 	read_barrier_depends();
2029 
2030 	count = len / sizeof desc;
2031 	/* Buffers are chained via a 16 bit next field, so
2032 	 * we can have at most 2^16 of these. */
2033 	if (unlikely(count > USHRT_MAX + 1)) {
2034 		vq_err(vq, "Indirect buffer length too big: %d\n",
2035 		       indirect->len);
2036 		return -E2BIG;
2037 	}
2038 
2039 	do {
2040 		unsigned iov_count = *in_num + *out_num;
2041 		if (unlikely(++found > count)) {
2042 			vq_err(vq, "Loop detected: last one at %u "
2043 			       "indirect size %u\n",
2044 			       i, count);
2045 			return -EINVAL;
2046 		}
2047 		if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2048 			vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2049 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2050 			return -EINVAL;
2051 		}
2052 		if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2053 			vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2054 			       i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2055 			return -EINVAL;
2056 		}
2057 
2058 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2059 			access = VHOST_ACCESS_WO;
2060 		else
2061 			access = VHOST_ACCESS_RO;
2062 
2063 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2064 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2065 				     iov_size - iov_count, access);
2066 		if (unlikely(ret < 0)) {
2067 			if (ret != -EAGAIN)
2068 				vq_err(vq, "Translation failure %d indirect idx %d\n",
2069 					ret, i);
2070 			return ret;
2071 		}
2072 		/* If this is an input descriptor, increment that count. */
2073 		if (access == VHOST_ACCESS_WO) {
2074 			*in_num += ret;
2075 			if (unlikely(log)) {
2076 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2077 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2078 				++*log_num;
2079 			}
2080 		} else {
2081 			/* If it's an output descriptor, they're all supposed
2082 			 * to come before any input descriptors. */
2083 			if (unlikely(*in_num)) {
2084 				vq_err(vq, "Indirect descriptor "
2085 				       "has out after in: idx %d\n", i);
2086 				return -EINVAL;
2087 			}
2088 			*out_num += ret;
2089 		}
2090 	} while ((i = next_desc(vq, &desc)) != -1);
2091 	return 0;
2092 }
2093 
2094 /* This looks in the virtqueue and for the first available buffer, and converts
2095  * it to an iovec for convenient access.  Since descriptors consist of some
2096  * number of output then some number of input descriptors, it's actually two
2097  * iovecs, but we pack them into one and note how many of each there were.
2098  *
2099  * This function returns the descriptor number found, or vq->num (which is
2100  * never a valid descriptor number) if none was found.  A negative code is
2101  * returned on error. */
2102 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2103 		      struct iovec iov[], unsigned int iov_size,
2104 		      unsigned int *out_num, unsigned int *in_num,
2105 		      struct vhost_log *log, unsigned int *log_num)
2106 {
2107 	struct vring_desc desc;
2108 	unsigned int i, head, found = 0;
2109 	u16 last_avail_idx;
2110 	__virtio16 avail_idx;
2111 	__virtio16 ring_head;
2112 	int ret, access;
2113 
2114 	/* Check it isn't doing very strange things with descriptor numbers. */
2115 	last_avail_idx = vq->last_avail_idx;
2116 
2117 	if (vq->avail_idx == vq->last_avail_idx) {
2118 		if (unlikely(vhost_get_avail(vq, avail_idx, &vq->avail->idx))) {
2119 			vq_err(vq, "Failed to access avail idx at %p\n",
2120 				&vq->avail->idx);
2121 			return -EFAULT;
2122 		}
2123 		vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2124 
2125 		if (unlikely((u16)(vq->avail_idx - last_avail_idx) > vq->num)) {
2126 			vq_err(vq, "Guest moved used index from %u to %u",
2127 				last_avail_idx, vq->avail_idx);
2128 			return -EFAULT;
2129 		}
2130 
2131 		/* If there's nothing new since last we looked, return
2132 		 * invalid.
2133 		 */
2134 		if (vq->avail_idx == last_avail_idx)
2135 			return vq->num;
2136 
2137 		/* Only get avail ring entries after they have been
2138 		 * exposed by guest.
2139 		 */
2140 		smp_rmb();
2141 	}
2142 
2143 	/* Grab the next descriptor number they're advertising, and increment
2144 	 * the index we've seen. */
2145 	if (unlikely(vhost_get_avail(vq, ring_head,
2146 		     &vq->avail->ring[last_avail_idx & (vq->num - 1)]))) {
2147 		vq_err(vq, "Failed to read head: idx %d address %p\n",
2148 		       last_avail_idx,
2149 		       &vq->avail->ring[last_avail_idx % vq->num]);
2150 		return -EFAULT;
2151 	}
2152 
2153 	head = vhost16_to_cpu(vq, ring_head);
2154 
2155 	/* If their number is silly, that's an error. */
2156 	if (unlikely(head >= vq->num)) {
2157 		vq_err(vq, "Guest says index %u > %u is available",
2158 		       head, vq->num);
2159 		return -EINVAL;
2160 	}
2161 
2162 	/* When we start there are none of either input nor output. */
2163 	*out_num = *in_num = 0;
2164 	if (unlikely(log))
2165 		*log_num = 0;
2166 
2167 	i = head;
2168 	do {
2169 		unsigned iov_count = *in_num + *out_num;
2170 		if (unlikely(i >= vq->num)) {
2171 			vq_err(vq, "Desc index is %u > %u, head = %u",
2172 			       i, vq->num, head);
2173 			return -EINVAL;
2174 		}
2175 		if (unlikely(++found > vq->num)) {
2176 			vq_err(vq, "Loop detected: last one at %u "
2177 			       "vq size %u head %u\n",
2178 			       i, vq->num, head);
2179 			return -EINVAL;
2180 		}
2181 		ret = vhost_copy_from_user(vq, &desc, vq->desc + i,
2182 					   sizeof desc);
2183 		if (unlikely(ret)) {
2184 			vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2185 			       i, vq->desc + i);
2186 			return -EFAULT;
2187 		}
2188 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2189 			ret = get_indirect(vq, iov, iov_size,
2190 					   out_num, in_num,
2191 					   log, log_num, &desc);
2192 			if (unlikely(ret < 0)) {
2193 				if (ret != -EAGAIN)
2194 					vq_err(vq, "Failure detected "
2195 						"in indirect descriptor at idx %d\n", i);
2196 				return ret;
2197 			}
2198 			continue;
2199 		}
2200 
2201 		if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2202 			access = VHOST_ACCESS_WO;
2203 		else
2204 			access = VHOST_ACCESS_RO;
2205 		ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2206 				     vhost32_to_cpu(vq, desc.len), iov + iov_count,
2207 				     iov_size - iov_count, access);
2208 		if (unlikely(ret < 0)) {
2209 			if (ret != -EAGAIN)
2210 				vq_err(vq, "Translation failure %d descriptor idx %d\n",
2211 					ret, i);
2212 			return ret;
2213 		}
2214 		if (access == VHOST_ACCESS_WO) {
2215 			/* If this is an input descriptor,
2216 			 * increment that count. */
2217 			*in_num += ret;
2218 			if (unlikely(log)) {
2219 				log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2220 				log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2221 				++*log_num;
2222 			}
2223 		} else {
2224 			/* If it's an output descriptor, they're all supposed
2225 			 * to come before any input descriptors. */
2226 			if (unlikely(*in_num)) {
2227 				vq_err(vq, "Descriptor has out after in: "
2228 				       "idx %d\n", i);
2229 				return -EINVAL;
2230 			}
2231 			*out_num += ret;
2232 		}
2233 	} while ((i = next_desc(vq, &desc)) != -1);
2234 
2235 	/* On success, increment avail index. */
2236 	vq->last_avail_idx++;
2237 
2238 	/* Assume notifications from guest are disabled at this point,
2239 	 * if they aren't we would need to update avail_event index. */
2240 	BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2241 	return head;
2242 }
2243 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2244 
2245 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
2246 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2247 {
2248 	vq->last_avail_idx -= n;
2249 }
2250 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2251 
2252 /* After we've used one of their buffers, we tell them about it.  We'll then
2253  * want to notify the guest, using eventfd. */
2254 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2255 {
2256 	struct vring_used_elem heads = {
2257 		cpu_to_vhost32(vq, head),
2258 		cpu_to_vhost32(vq, len)
2259 	};
2260 
2261 	return vhost_add_used_n(vq, &heads, 1);
2262 }
2263 EXPORT_SYMBOL_GPL(vhost_add_used);
2264 
2265 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2266 			    struct vring_used_elem *heads,
2267 			    unsigned count)
2268 {
2269 	struct vring_used_elem __user *used;
2270 	u16 old, new;
2271 	int start;
2272 
2273 	start = vq->last_used_idx & (vq->num - 1);
2274 	used = vq->used->ring + start;
2275 	if (count == 1) {
2276 		if (vhost_put_user(vq, heads[0].id, &used->id)) {
2277 			vq_err(vq, "Failed to write used id");
2278 			return -EFAULT;
2279 		}
2280 		if (vhost_put_user(vq, heads[0].len, &used->len)) {
2281 			vq_err(vq, "Failed to write used len");
2282 			return -EFAULT;
2283 		}
2284 	} else if (vhost_copy_to_user(vq, used, heads, count * sizeof *used)) {
2285 		vq_err(vq, "Failed to write used");
2286 		return -EFAULT;
2287 	}
2288 	if (unlikely(vq->log_used)) {
2289 		/* Make sure data is seen before log. */
2290 		smp_wmb();
2291 		/* Log used ring entry write. */
2292 		log_used(vq, ((void __user *)used - (void __user *)vq->used),
2293 			 count * sizeof *used);
2294 	}
2295 	old = vq->last_used_idx;
2296 	new = (vq->last_used_idx += count);
2297 	/* If the driver never bothers to signal in a very long while,
2298 	 * used index might wrap around. If that happens, invalidate
2299 	 * signalled_used index we stored. TODO: make sure driver
2300 	 * signals at least once in 2^16 and remove this. */
2301 	if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2302 		vq->signalled_used_valid = false;
2303 	return 0;
2304 }
2305 
2306 /* After we've used one of their buffers, we tell them about it.  We'll then
2307  * want to notify the guest, using eventfd. */
2308 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
2309 		     unsigned count)
2310 {
2311 	int start, n, r;
2312 
2313 	start = vq->last_used_idx & (vq->num - 1);
2314 	n = vq->num - start;
2315 	if (n < count) {
2316 		r = __vhost_add_used_n(vq, heads, n);
2317 		if (r < 0)
2318 			return r;
2319 		heads += n;
2320 		count -= n;
2321 	}
2322 	r = __vhost_add_used_n(vq, heads, count);
2323 
2324 	/* Make sure buffer is written before we update index. */
2325 	smp_wmb();
2326 	if (vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
2327 			   &vq->used->idx)) {
2328 		vq_err(vq, "Failed to increment used idx");
2329 		return -EFAULT;
2330 	}
2331 	if (unlikely(vq->log_used)) {
2332 		/* Make sure used idx is seen before log. */
2333 		smp_wmb();
2334 		/* Log used index update. */
2335 		log_used(vq, offsetof(struct vring_used, idx),
2336 			 sizeof vq->used->idx);
2337 		if (vq->log_ctx)
2338 			eventfd_signal(vq->log_ctx, 1);
2339 	}
2340 	return r;
2341 }
2342 EXPORT_SYMBOL_GPL(vhost_add_used_n);
2343 
2344 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2345 {
2346 	__u16 old, new;
2347 	__virtio16 event;
2348 	bool v;
2349 	/* Flush out used index updates. This is paired
2350 	 * with the barrier that the Guest executes when enabling
2351 	 * interrupts. */
2352 	smp_mb();
2353 
2354 	if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
2355 	    unlikely(vq->avail_idx == vq->last_avail_idx))
2356 		return true;
2357 
2358 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2359 		__virtio16 flags;
2360 		if (vhost_get_avail(vq, flags, &vq->avail->flags)) {
2361 			vq_err(vq, "Failed to get flags");
2362 			return true;
2363 		}
2364 		return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
2365 	}
2366 	old = vq->signalled_used;
2367 	v = vq->signalled_used_valid;
2368 	new = vq->signalled_used = vq->last_used_idx;
2369 	vq->signalled_used_valid = true;
2370 
2371 	if (unlikely(!v))
2372 		return true;
2373 
2374 	if (vhost_get_avail(vq, event, vhost_used_event(vq))) {
2375 		vq_err(vq, "Failed to get used event idx");
2376 		return true;
2377 	}
2378 	return vring_need_event(vhost16_to_cpu(vq, event), new, old);
2379 }
2380 
2381 /* This actually signals the guest, using eventfd. */
2382 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2383 {
2384 	/* Signal the Guest tell them we used something up. */
2385 	if (vq->call_ctx && vhost_notify(dev, vq))
2386 		eventfd_signal(vq->call_ctx, 1);
2387 }
2388 EXPORT_SYMBOL_GPL(vhost_signal);
2389 
2390 /* And here's the combo meal deal.  Supersize me! */
2391 void vhost_add_used_and_signal(struct vhost_dev *dev,
2392 			       struct vhost_virtqueue *vq,
2393 			       unsigned int head, int len)
2394 {
2395 	vhost_add_used(vq, head, len);
2396 	vhost_signal(dev, vq);
2397 }
2398 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
2399 
2400 /* multi-buffer version of vhost_add_used_and_signal */
2401 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
2402 				 struct vhost_virtqueue *vq,
2403 				 struct vring_used_elem *heads, unsigned count)
2404 {
2405 	vhost_add_used_n(vq, heads, count);
2406 	vhost_signal(dev, vq);
2407 }
2408 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
2409 
2410 /* return true if we're sure that avaiable ring is empty */
2411 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2412 {
2413 	__virtio16 avail_idx;
2414 	int r;
2415 
2416 	if (vq->avail_idx != vq->last_avail_idx)
2417 		return false;
2418 
2419 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2420 	if (unlikely(r))
2421 		return false;
2422 	vq->avail_idx = vhost16_to_cpu(vq, avail_idx);
2423 
2424 	return vq->avail_idx == vq->last_avail_idx;
2425 }
2426 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
2427 
2428 /* OK, now we need to know about added descriptors. */
2429 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2430 {
2431 	__virtio16 avail_idx;
2432 	int r;
2433 
2434 	if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
2435 		return false;
2436 	vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
2437 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2438 		r = vhost_update_used_flags(vq);
2439 		if (r) {
2440 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2441 			       &vq->used->flags, r);
2442 			return false;
2443 		}
2444 	} else {
2445 		r = vhost_update_avail_event(vq, vq->avail_idx);
2446 		if (r) {
2447 			vq_err(vq, "Failed to update avail event index at %p: %d\n",
2448 			       vhost_avail_event(vq), r);
2449 			return false;
2450 		}
2451 	}
2452 	/* They could have slipped one in as we were doing that: make
2453 	 * sure it's written, then check again. */
2454 	smp_mb();
2455 	r = vhost_get_avail(vq, avail_idx, &vq->avail->idx);
2456 	if (r) {
2457 		vq_err(vq, "Failed to check avail idx at %p: %d\n",
2458 		       &vq->avail->idx, r);
2459 		return false;
2460 	}
2461 
2462 	return vhost16_to_cpu(vq, avail_idx) != vq->avail_idx;
2463 }
2464 EXPORT_SYMBOL_GPL(vhost_enable_notify);
2465 
2466 /* We don't need to be notified again. */
2467 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
2468 {
2469 	int r;
2470 
2471 	if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
2472 		return;
2473 	vq->used_flags |= VRING_USED_F_NO_NOTIFY;
2474 	if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
2475 		r = vhost_update_used_flags(vq);
2476 		if (r)
2477 			vq_err(vq, "Failed to enable notification at %p: %d\n",
2478 			       &vq->used->flags, r);
2479 	}
2480 }
2481 EXPORT_SYMBOL_GPL(vhost_disable_notify);
2482 
2483 /* Create a new message. */
2484 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
2485 {
2486 	struct vhost_msg_node *node = kmalloc(sizeof *node, GFP_KERNEL);
2487 	if (!node)
2488 		return NULL;
2489 
2490 	/* Make sure all padding within the structure is initialized. */
2491 	memset(&node->msg, 0, sizeof node->msg);
2492 	node->vq = vq;
2493 	node->msg.type = type;
2494 	return node;
2495 }
2496 EXPORT_SYMBOL_GPL(vhost_new_msg);
2497 
2498 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
2499 		       struct vhost_msg_node *node)
2500 {
2501 	spin_lock(&dev->iotlb_lock);
2502 	list_add_tail(&node->node, head);
2503 	spin_unlock(&dev->iotlb_lock);
2504 
2505 	wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
2506 }
2507 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
2508 
2509 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
2510 					 struct list_head *head)
2511 {
2512 	struct vhost_msg_node *node = NULL;
2513 
2514 	spin_lock(&dev->iotlb_lock);
2515 	if (!list_empty(head)) {
2516 		node = list_first_entry(head, struct vhost_msg_node,
2517 					node);
2518 		list_del(&node->node);
2519 	}
2520 	spin_unlock(&dev->iotlb_lock);
2521 
2522 	return node;
2523 }
2524 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
2525 
2526 
2527 static int __init vhost_init(void)
2528 {
2529 	return 0;
2530 }
2531 
2532 static void __exit vhost_exit(void)
2533 {
2534 }
2535 
2536 module_init(vhost_init);
2537 module_exit(vhost_exit);
2538 
2539 MODULE_VERSION("0.0.1");
2540 MODULE_LICENSE("GPL v2");
2541 MODULE_AUTHOR("Michael S. Tsirkin");
2542 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
2543