xref: /linux/fs/aio.c (revision 9a6b55ac)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 #include <linux/pseudo_fs.h>
46 
47 #include <asm/kmap_types.h>
48 #include <linux/uaccess.h>
49 #include <linux/nospec.h>
50 
51 #include "internal.h"
52 
53 #define KIOCB_KEY		0
54 
55 #define AIO_RING_MAGIC			0xa10a10a1
56 #define AIO_RING_COMPAT_FEATURES	1
57 #define AIO_RING_INCOMPAT_FEATURES	0
58 struct aio_ring {
59 	unsigned	id;	/* kernel internal index number */
60 	unsigned	nr;	/* number of io_events */
61 	unsigned	head;	/* Written to by userland or under ring_lock
62 				 * mutex by aio_read_events_ring(). */
63 	unsigned	tail;
64 
65 	unsigned	magic;
66 	unsigned	compat_features;
67 	unsigned	incompat_features;
68 	unsigned	header_length;	/* size of aio_ring */
69 
70 
71 	struct io_event		io_events[0];
72 }; /* 128 bytes + ring size */
73 
74 /*
75  * Plugging is meant to work with larger batches of IOs. If we don't
76  * have more than the below, then don't bother setting up a plug.
77  */
78 #define AIO_PLUG_THRESHOLD	2
79 
80 #define AIO_RING_PAGES	8
81 
82 struct kioctx_table {
83 	struct rcu_head		rcu;
84 	unsigned		nr;
85 	struct kioctx __rcu	*table[];
86 };
87 
88 struct kioctx_cpu {
89 	unsigned		reqs_available;
90 };
91 
92 struct ctx_rq_wait {
93 	struct completion comp;
94 	atomic_t count;
95 };
96 
97 struct kioctx {
98 	struct percpu_ref	users;
99 	atomic_t		dead;
100 
101 	struct percpu_ref	reqs;
102 
103 	unsigned long		user_id;
104 
105 	struct __percpu kioctx_cpu *cpu;
106 
107 	/*
108 	 * For percpu reqs_available, number of slots we move to/from global
109 	 * counter at a time:
110 	 */
111 	unsigned		req_batch;
112 	/*
113 	 * This is what userspace passed to io_setup(), it's not used for
114 	 * anything but counting against the global max_reqs quota.
115 	 *
116 	 * The real limit is nr_events - 1, which will be larger (see
117 	 * aio_setup_ring())
118 	 */
119 	unsigned		max_reqs;
120 
121 	/* Size of ringbuffer, in units of struct io_event */
122 	unsigned		nr_events;
123 
124 	unsigned long		mmap_base;
125 	unsigned long		mmap_size;
126 
127 	struct page		**ring_pages;
128 	long			nr_pages;
129 
130 	struct rcu_work		free_rwork;	/* see free_ioctx() */
131 
132 	/*
133 	 * signals when all in-flight requests are done
134 	 */
135 	struct ctx_rq_wait	*rq_wait;
136 
137 	struct {
138 		/*
139 		 * This counts the number of available slots in the ringbuffer,
140 		 * so we avoid overflowing it: it's decremented (if positive)
141 		 * when allocating a kiocb and incremented when the resulting
142 		 * io_event is pulled off the ringbuffer.
143 		 *
144 		 * We batch accesses to it with a percpu version.
145 		 */
146 		atomic_t	reqs_available;
147 	} ____cacheline_aligned_in_smp;
148 
149 	struct {
150 		spinlock_t	ctx_lock;
151 		struct list_head active_reqs;	/* used for cancellation */
152 	} ____cacheline_aligned_in_smp;
153 
154 	struct {
155 		struct mutex	ring_lock;
156 		wait_queue_head_t wait;
157 	} ____cacheline_aligned_in_smp;
158 
159 	struct {
160 		unsigned	tail;
161 		unsigned	completed_events;
162 		spinlock_t	completion_lock;
163 	} ____cacheline_aligned_in_smp;
164 
165 	struct page		*internal_pages[AIO_RING_PAGES];
166 	struct file		*aio_ring_file;
167 
168 	unsigned		id;
169 };
170 
171 /*
172  * First field must be the file pointer in all the
173  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
174  */
175 struct fsync_iocb {
176 	struct file		*file;
177 	struct work_struct	work;
178 	bool			datasync;
179 };
180 
181 struct poll_iocb {
182 	struct file		*file;
183 	struct wait_queue_head	*head;
184 	__poll_t		events;
185 	bool			done;
186 	bool			cancelled;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr;		/* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 
227 static struct kmem_cache	*kiocb_cachep;
228 static struct kmem_cache	*kioctx_cachep;
229 
230 static struct vfsmount *aio_mnt;
231 
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
234 
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 {
237 	struct file *file;
238 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 	if (IS_ERR(inode))
240 		return ERR_CAST(inode);
241 
242 	inode->i_mapping->a_ops = &aio_ctx_aops;
243 	inode->i_mapping->private_data = ctx;
244 	inode->i_size = PAGE_SIZE * nr_pages;
245 
246 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 				O_RDWR, &aio_ring_fops);
248 	if (IS_ERR(file))
249 		iput(inode);
250 	return file;
251 }
252 
253 static int aio_init_fs_context(struct fs_context *fc)
254 {
255 	if (!init_pseudo(fc, AIO_RING_MAGIC))
256 		return -ENOMEM;
257 	fc->s_iflags |= SB_I_NOEXEC;
258 	return 0;
259 }
260 
261 /* aio_setup
262  *	Creates the slab caches used by the aio routines, panic on
263  *	failure as this is done early during the boot sequence.
264  */
265 static int __init aio_setup(void)
266 {
267 	static struct file_system_type aio_fs = {
268 		.name		= "aio",
269 		.init_fs_context = aio_init_fs_context,
270 		.kill_sb	= kill_anon_super,
271 	};
272 	aio_mnt = kern_mount(&aio_fs);
273 	if (IS_ERR(aio_mnt))
274 		panic("Failed to create aio fs mount.");
275 
276 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	return 0;
279 }
280 __initcall(aio_setup);
281 
282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 	struct file *aio_ring_file = ctx->aio_ring_file;
285 	struct address_space *i_mapping;
286 
287 	if (aio_ring_file) {
288 		truncate_setsize(file_inode(aio_ring_file), 0);
289 
290 		/* Prevent further access to the kioctx from migratepages */
291 		i_mapping = aio_ring_file->f_mapping;
292 		spin_lock(&i_mapping->private_lock);
293 		i_mapping->private_data = NULL;
294 		ctx->aio_ring_file = NULL;
295 		spin_unlock(&i_mapping->private_lock);
296 
297 		fput(aio_ring_file);
298 	}
299 }
300 
301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 	int i;
304 
305 	/* Disconnect the kiotx from the ring file.  This prevents future
306 	 * accesses to the kioctx from page migration.
307 	 */
308 	put_aio_ring_file(ctx);
309 
310 	for (i = 0; i < ctx->nr_pages; i++) {
311 		struct page *page;
312 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 				page_count(ctx->ring_pages[i]));
314 		page = ctx->ring_pages[i];
315 		if (!page)
316 			continue;
317 		ctx->ring_pages[i] = NULL;
318 		put_page(page);
319 	}
320 
321 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 		kfree(ctx->ring_pages);
323 		ctx->ring_pages = NULL;
324 	}
325 }
326 
327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 	struct file *file = vma->vm_file;
330 	struct mm_struct *mm = vma->vm_mm;
331 	struct kioctx_table *table;
332 	int i, res = -EINVAL;
333 
334 	spin_lock(&mm->ioctx_lock);
335 	rcu_read_lock();
336 	table = rcu_dereference(mm->ioctx_table);
337 	for (i = 0; i < table->nr; i++) {
338 		struct kioctx *ctx;
339 
340 		ctx = rcu_dereference(table->table[i]);
341 		if (ctx && ctx->aio_ring_file == file) {
342 			if (!atomic_read(&ctx->dead)) {
343 				ctx->user_id = ctx->mmap_base = vma->vm_start;
344 				res = 0;
345 			}
346 			break;
347 		}
348 	}
349 
350 	rcu_read_unlock();
351 	spin_unlock(&mm->ioctx_lock);
352 	return res;
353 }
354 
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 	.mremap		= aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 	.fault		= filemap_fault,
359 	.map_pages	= filemap_map_pages,
360 	.page_mkwrite	= filemap_page_mkwrite,
361 #endif
362 };
363 
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 	vma->vm_flags |= VM_DONTEXPAND;
367 	vma->vm_ops = &aio_ring_vm_ops;
368 	return 0;
369 }
370 
371 static const struct file_operations aio_ring_fops = {
372 	.mmap = aio_ring_mmap,
373 };
374 
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 			struct page *old, enum migrate_mode mode)
378 {
379 	struct kioctx *ctx;
380 	unsigned long flags;
381 	pgoff_t idx;
382 	int rc;
383 
384 	/*
385 	 * We cannot support the _NO_COPY case here, because copy needs to
386 	 * happen under the ctx->completion_lock. That does not work with the
387 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 	 */
389 	if (mode == MIGRATE_SYNC_NO_COPY)
390 		return -EINVAL;
391 
392 	rc = 0;
393 
394 	/* mapping->private_lock here protects against the kioctx teardown.  */
395 	spin_lock(&mapping->private_lock);
396 	ctx = mapping->private_data;
397 	if (!ctx) {
398 		rc = -EINVAL;
399 		goto out;
400 	}
401 
402 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
403 	 * to the ring's head, and prevents page migration from mucking in
404 	 * a partially initialized kiotx.
405 	 */
406 	if (!mutex_trylock(&ctx->ring_lock)) {
407 		rc = -EAGAIN;
408 		goto out;
409 	}
410 
411 	idx = old->index;
412 	if (idx < (pgoff_t)ctx->nr_pages) {
413 		/* Make sure the old page hasn't already been changed */
414 		if (ctx->ring_pages[idx] != old)
415 			rc = -EAGAIN;
416 	} else
417 		rc = -EINVAL;
418 
419 	if (rc != 0)
420 		goto out_unlock;
421 
422 	/* Writeback must be complete */
423 	BUG_ON(PageWriteback(old));
424 	get_page(new);
425 
426 	rc = migrate_page_move_mapping(mapping, new, old, 1);
427 	if (rc != MIGRATEPAGE_SUCCESS) {
428 		put_page(new);
429 		goto out_unlock;
430 	}
431 
432 	/* Take completion_lock to prevent other writes to the ring buffer
433 	 * while the old page is copied to the new.  This prevents new
434 	 * events from being lost.
435 	 */
436 	spin_lock_irqsave(&ctx->completion_lock, flags);
437 	migrate_page_copy(new, old);
438 	BUG_ON(ctx->ring_pages[idx] != old);
439 	ctx->ring_pages[idx] = new;
440 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
441 
442 	/* The old page is no longer accessible. */
443 	put_page(old);
444 
445 out_unlock:
446 	mutex_unlock(&ctx->ring_lock);
447 out:
448 	spin_unlock(&mapping->private_lock);
449 	return rc;
450 }
451 #endif
452 
453 static const struct address_space_operations aio_ctx_aops = {
454 	.set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 	.migratepage	= aio_migratepage,
457 #endif
458 };
459 
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461 {
462 	struct aio_ring *ring;
463 	struct mm_struct *mm = current->mm;
464 	unsigned long size, unused;
465 	int nr_pages;
466 	int i;
467 	struct file *file;
468 
469 	/* Compensate for the ring buffer's head/tail overlap entry */
470 	nr_events += 2;	/* 1 is required, 2 for good luck */
471 
472 	size = sizeof(struct aio_ring);
473 	size += sizeof(struct io_event) * nr_events;
474 
475 	nr_pages = PFN_UP(size);
476 	if (nr_pages < 0)
477 		return -EINVAL;
478 
479 	file = aio_private_file(ctx, nr_pages);
480 	if (IS_ERR(file)) {
481 		ctx->aio_ring_file = NULL;
482 		return -ENOMEM;
483 	}
484 
485 	ctx->aio_ring_file = file;
486 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 			/ sizeof(struct io_event);
488 
489 	ctx->ring_pages = ctx->internal_pages;
490 	if (nr_pages > AIO_RING_PAGES) {
491 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 					  GFP_KERNEL);
493 		if (!ctx->ring_pages) {
494 			put_aio_ring_file(ctx);
495 			return -ENOMEM;
496 		}
497 	}
498 
499 	for (i = 0; i < nr_pages; i++) {
500 		struct page *page;
501 		page = find_or_create_page(file->f_mapping,
502 					   i, GFP_HIGHUSER | __GFP_ZERO);
503 		if (!page)
504 			break;
505 		pr_debug("pid(%d) page[%d]->count=%d\n",
506 			 current->pid, i, page_count(page));
507 		SetPageUptodate(page);
508 		unlock_page(page);
509 
510 		ctx->ring_pages[i] = page;
511 	}
512 	ctx->nr_pages = i;
513 
514 	if (unlikely(i != nr_pages)) {
515 		aio_free_ring(ctx);
516 		return -ENOMEM;
517 	}
518 
519 	ctx->mmap_size = nr_pages * PAGE_SIZE;
520 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521 
522 	if (down_write_killable(&mm->mmap_sem)) {
523 		ctx->mmap_size = 0;
524 		aio_free_ring(ctx);
525 		return -EINTR;
526 	}
527 
528 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 				       PROT_READ | PROT_WRITE,
530 				       MAP_SHARED, 0, &unused, NULL);
531 	up_write(&mm->mmap_sem);
532 	if (IS_ERR((void *)ctx->mmap_base)) {
533 		ctx->mmap_size = 0;
534 		aio_free_ring(ctx);
535 		return -ENOMEM;
536 	}
537 
538 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539 
540 	ctx->user_id = ctx->mmap_base;
541 	ctx->nr_events = nr_events; /* trusted copy */
542 
543 	ring = kmap_atomic(ctx->ring_pages[0]);
544 	ring->nr = nr_events;	/* user copy */
545 	ring->id = ~0U;
546 	ring->head = ring->tail = 0;
547 	ring->magic = AIO_RING_MAGIC;
548 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 	ring->header_length = sizeof(struct aio_ring);
551 	kunmap_atomic(ring);
552 	flush_dcache_page(ctx->ring_pages[0]);
553 
554 	return 0;
555 }
556 
557 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560 
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562 {
563 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 	struct kioctx *ctx = req->ki_ctx;
565 	unsigned long flags;
566 
567 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 		return;
569 
570 	spin_lock_irqsave(&ctx->ctx_lock, flags);
571 	list_add_tail(&req->ki_list, &ctx->active_reqs);
572 	req->ki_cancel = cancel;
573 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574 }
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
576 
577 /*
578  * free_ioctx() should be RCU delayed to synchronize against the RCU
579  * protected lookup_ioctx() and also needs process context to call
580  * aio_free_ring().  Use rcu_work.
581  */
582 static void free_ioctx(struct work_struct *work)
583 {
584 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 					  free_rwork);
586 	pr_debug("freeing %p\n", ctx);
587 
588 	aio_free_ring(ctx);
589 	free_percpu(ctx->cpu);
590 	percpu_ref_exit(&ctx->reqs);
591 	percpu_ref_exit(&ctx->users);
592 	kmem_cache_free(kioctx_cachep, ctx);
593 }
594 
595 static void free_ioctx_reqs(struct percpu_ref *ref)
596 {
597 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598 
599 	/* At this point we know that there are no any in-flight requests */
600 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 		complete(&ctx->rq_wait->comp);
602 
603 	/* Synchronize against RCU protected table->table[] dereferences */
604 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 	queue_rcu_work(system_wq, &ctx->free_rwork);
606 }
607 
608 /*
609  * When this function runs, the kioctx has been removed from the "hash table"
610  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611  * now it's safe to cancel any that need to be.
612  */
613 static void free_ioctx_users(struct percpu_ref *ref)
614 {
615 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 	struct aio_kiocb *req;
617 
618 	spin_lock_irq(&ctx->ctx_lock);
619 
620 	while (!list_empty(&ctx->active_reqs)) {
621 		req = list_first_entry(&ctx->active_reqs,
622 				       struct aio_kiocb, ki_list);
623 		req->ki_cancel(&req->rw);
624 		list_del_init(&req->ki_list);
625 	}
626 
627 	spin_unlock_irq(&ctx->ctx_lock);
628 
629 	percpu_ref_kill(&ctx->reqs);
630 	percpu_ref_put(&ctx->reqs);
631 }
632 
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 {
635 	unsigned i, new_nr;
636 	struct kioctx_table *table, *old;
637 	struct aio_ring *ring;
638 
639 	spin_lock(&mm->ioctx_lock);
640 	table = rcu_dereference_raw(mm->ioctx_table);
641 
642 	while (1) {
643 		if (table)
644 			for (i = 0; i < table->nr; i++)
645 				if (!rcu_access_pointer(table->table[i])) {
646 					ctx->id = i;
647 					rcu_assign_pointer(table->table[i], ctx);
648 					spin_unlock(&mm->ioctx_lock);
649 
650 					/* While kioctx setup is in progress,
651 					 * we are protected from page migration
652 					 * changes ring_pages by ->ring_lock.
653 					 */
654 					ring = kmap_atomic(ctx->ring_pages[0]);
655 					ring->id = ctx->id;
656 					kunmap_atomic(ring);
657 					return 0;
658 				}
659 
660 		new_nr = (table ? table->nr : 1) * 4;
661 		spin_unlock(&mm->ioctx_lock);
662 
663 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 				new_nr, GFP_KERNEL);
665 		if (!table)
666 			return -ENOMEM;
667 
668 		table->nr = new_nr;
669 
670 		spin_lock(&mm->ioctx_lock);
671 		old = rcu_dereference_raw(mm->ioctx_table);
672 
673 		if (!old) {
674 			rcu_assign_pointer(mm->ioctx_table, table);
675 		} else if (table->nr > old->nr) {
676 			memcpy(table->table, old->table,
677 			       old->nr * sizeof(struct kioctx *));
678 
679 			rcu_assign_pointer(mm->ioctx_table, table);
680 			kfree_rcu(old, rcu);
681 		} else {
682 			kfree(table);
683 			table = old;
684 		}
685 	}
686 }
687 
688 static void aio_nr_sub(unsigned nr)
689 {
690 	spin_lock(&aio_nr_lock);
691 	if (WARN_ON(aio_nr - nr > aio_nr))
692 		aio_nr = 0;
693 	else
694 		aio_nr -= nr;
695 	spin_unlock(&aio_nr_lock);
696 }
697 
698 /* ioctx_alloc
699  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
700  */
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 {
703 	struct mm_struct *mm = current->mm;
704 	struct kioctx *ctx;
705 	int err = -ENOMEM;
706 
707 	/*
708 	 * Store the original nr_events -- what userspace passed to io_setup(),
709 	 * for counting against the global limit -- before it changes.
710 	 */
711 	unsigned int max_reqs = nr_events;
712 
713 	/*
714 	 * We keep track of the number of available ringbuffer slots, to prevent
715 	 * overflow (reqs_available), and we also use percpu counters for this.
716 	 *
717 	 * So since up to half the slots might be on other cpu's percpu counters
718 	 * and unavailable, double nr_events so userspace sees what they
719 	 * expected: additionally, we move req_batch slots to/from percpu
720 	 * counters at a time, so make sure that isn't 0:
721 	 */
722 	nr_events = max(nr_events, num_possible_cpus() * 4);
723 	nr_events *= 2;
724 
725 	/* Prevent overflows */
726 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 		pr_debug("ENOMEM: nr_events too high\n");
728 		return ERR_PTR(-EINVAL);
729 	}
730 
731 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 		return ERR_PTR(-EAGAIN);
733 
734 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 	if (!ctx)
736 		return ERR_PTR(-ENOMEM);
737 
738 	ctx->max_reqs = max_reqs;
739 
740 	spin_lock_init(&ctx->ctx_lock);
741 	spin_lock_init(&ctx->completion_lock);
742 	mutex_init(&ctx->ring_lock);
743 	/* Protect against page migration throughout kiotx setup by keeping
744 	 * the ring_lock mutex held until setup is complete. */
745 	mutex_lock(&ctx->ring_lock);
746 	init_waitqueue_head(&ctx->wait);
747 
748 	INIT_LIST_HEAD(&ctx->active_reqs);
749 
750 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 		goto err;
752 
753 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 		goto err;
755 
756 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 	if (!ctx->cpu)
758 		goto err;
759 
760 	err = aio_setup_ring(ctx, nr_events);
761 	if (err < 0)
762 		goto err;
763 
764 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 	if (ctx->req_batch < 1)
767 		ctx->req_batch = 1;
768 
769 	/* limit the number of system wide aios */
770 	spin_lock(&aio_nr_lock);
771 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 	    aio_nr + ctx->max_reqs < aio_nr) {
773 		spin_unlock(&aio_nr_lock);
774 		err = -EAGAIN;
775 		goto err_ctx;
776 	}
777 	aio_nr += ctx->max_reqs;
778 	spin_unlock(&aio_nr_lock);
779 
780 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
781 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
782 
783 	err = ioctx_add_table(ctx, mm);
784 	if (err)
785 		goto err_cleanup;
786 
787 	/* Release the ring_lock mutex now that all setup is complete. */
788 	mutex_unlock(&ctx->ring_lock);
789 
790 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 		 ctx, ctx->user_id, mm, ctx->nr_events);
792 	return ctx;
793 
794 err_cleanup:
795 	aio_nr_sub(ctx->max_reqs);
796 err_ctx:
797 	atomic_set(&ctx->dead, 1);
798 	if (ctx->mmap_size)
799 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 	aio_free_ring(ctx);
801 err:
802 	mutex_unlock(&ctx->ring_lock);
803 	free_percpu(ctx->cpu);
804 	percpu_ref_exit(&ctx->reqs);
805 	percpu_ref_exit(&ctx->users);
806 	kmem_cache_free(kioctx_cachep, ctx);
807 	pr_debug("error allocating ioctx %d\n", err);
808 	return ERR_PTR(err);
809 }
810 
811 /* kill_ioctx
812  *	Cancels all outstanding aio requests on an aio context.  Used
813  *	when the processes owning a context have all exited to encourage
814  *	the rapid destruction of the kioctx.
815  */
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 		      struct ctx_rq_wait *wait)
818 {
819 	struct kioctx_table *table;
820 
821 	spin_lock(&mm->ioctx_lock);
822 	if (atomic_xchg(&ctx->dead, 1)) {
823 		spin_unlock(&mm->ioctx_lock);
824 		return -EINVAL;
825 	}
826 
827 	table = rcu_dereference_raw(mm->ioctx_table);
828 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 	spin_unlock(&mm->ioctx_lock);
831 
832 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
833 	wake_up_all(&ctx->wait);
834 
835 	/*
836 	 * It'd be more correct to do this in free_ioctx(), after all
837 	 * the outstanding kiocbs have finished - but by then io_destroy
838 	 * has already returned, so io_setup() could potentially return
839 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 	 *  could tell).
841 	 */
842 	aio_nr_sub(ctx->max_reqs);
843 
844 	if (ctx->mmap_size)
845 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
846 
847 	ctx->rq_wait = wait;
848 	percpu_ref_kill(&ctx->users);
849 	return 0;
850 }
851 
852 /*
853  * exit_aio: called when the last user of mm goes away.  At this point, there is
854  * no way for any new requests to be submited or any of the io_* syscalls to be
855  * called on the context.
856  *
857  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858  * them.
859  */
860 void exit_aio(struct mm_struct *mm)
861 {
862 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 	struct ctx_rq_wait wait;
864 	int i, skipped;
865 
866 	if (!table)
867 		return;
868 
869 	atomic_set(&wait.count, table->nr);
870 	init_completion(&wait.comp);
871 
872 	skipped = 0;
873 	for (i = 0; i < table->nr; ++i) {
874 		struct kioctx *ctx =
875 			rcu_dereference_protected(table->table[i], true);
876 
877 		if (!ctx) {
878 			skipped++;
879 			continue;
880 		}
881 
882 		/*
883 		 * We don't need to bother with munmap() here - exit_mmap(mm)
884 		 * is coming and it'll unmap everything. And we simply can't,
885 		 * this is not necessarily our ->mm.
886 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 		 * that it needs to unmap the area, just set it to 0.
888 		 */
889 		ctx->mmap_size = 0;
890 		kill_ioctx(mm, ctx, &wait);
891 	}
892 
893 	if (!atomic_sub_and_test(skipped, &wait.count)) {
894 		/* Wait until all IO for the context are done. */
895 		wait_for_completion(&wait.comp);
896 	}
897 
898 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 	kfree(table);
900 }
901 
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903 {
904 	struct kioctx_cpu *kcpu;
905 	unsigned long flags;
906 
907 	local_irq_save(flags);
908 	kcpu = this_cpu_ptr(ctx->cpu);
909 	kcpu->reqs_available += nr;
910 
911 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 		kcpu->reqs_available -= ctx->req_batch;
913 		atomic_add(ctx->req_batch, &ctx->reqs_available);
914 	}
915 
916 	local_irq_restore(flags);
917 }
918 
919 static bool __get_reqs_available(struct kioctx *ctx)
920 {
921 	struct kioctx_cpu *kcpu;
922 	bool ret = false;
923 	unsigned long flags;
924 
925 	local_irq_save(flags);
926 	kcpu = this_cpu_ptr(ctx->cpu);
927 	if (!kcpu->reqs_available) {
928 		int old, avail = atomic_read(&ctx->reqs_available);
929 
930 		do {
931 			if (avail < ctx->req_batch)
932 				goto out;
933 
934 			old = avail;
935 			avail = atomic_cmpxchg(&ctx->reqs_available,
936 					       avail, avail - ctx->req_batch);
937 		} while (avail != old);
938 
939 		kcpu->reqs_available += ctx->req_batch;
940 	}
941 
942 	ret = true;
943 	kcpu->reqs_available--;
944 out:
945 	local_irq_restore(flags);
946 	return ret;
947 }
948 
949 /* refill_reqs_available
950  *	Updates the reqs_available reference counts used for tracking the
951  *	number of free slots in the completion ring.  This can be called
952  *	from aio_complete() (to optimistically update reqs_available) or
953  *	from aio_get_req() (the we're out of events case).  It must be
954  *	called holding ctx->completion_lock.
955  */
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957                                   unsigned tail)
958 {
959 	unsigned events_in_ring, completed;
960 
961 	/* Clamp head since userland can write to it. */
962 	head %= ctx->nr_events;
963 	if (head <= tail)
964 		events_in_ring = tail - head;
965 	else
966 		events_in_ring = ctx->nr_events - (head - tail);
967 
968 	completed = ctx->completed_events;
969 	if (events_in_ring < completed)
970 		completed -= events_in_ring;
971 	else
972 		completed = 0;
973 
974 	if (!completed)
975 		return;
976 
977 	ctx->completed_events -= completed;
978 	put_reqs_available(ctx, completed);
979 }
980 
981 /* user_refill_reqs_available
982  *	Called to refill reqs_available when aio_get_req() encounters an
983  *	out of space in the completion ring.
984  */
985 static void user_refill_reqs_available(struct kioctx *ctx)
986 {
987 	spin_lock_irq(&ctx->completion_lock);
988 	if (ctx->completed_events) {
989 		struct aio_ring *ring;
990 		unsigned head;
991 
992 		/* Access of ring->head may race with aio_read_events_ring()
993 		 * here, but that's okay since whether we read the old version
994 		 * or the new version, and either will be valid.  The important
995 		 * part is that head cannot pass tail since we prevent
996 		 * aio_complete() from updating tail by holding
997 		 * ctx->completion_lock.  Even if head is invalid, the check
998 		 * against ctx->completed_events below will make sure we do the
999 		 * safe/right thing.
1000 		 */
1001 		ring = kmap_atomic(ctx->ring_pages[0]);
1002 		head = ring->head;
1003 		kunmap_atomic(ring);
1004 
1005 		refill_reqs_available(ctx, head, ctx->tail);
1006 	}
1007 
1008 	spin_unlock_irq(&ctx->completion_lock);
1009 }
1010 
1011 static bool get_reqs_available(struct kioctx *ctx)
1012 {
1013 	if (__get_reqs_available(ctx))
1014 		return true;
1015 	user_refill_reqs_available(ctx);
1016 	return __get_reqs_available(ctx);
1017 }
1018 
1019 /* aio_get_req
1020  *	Allocate a slot for an aio request.
1021  * Returns NULL if no requests are free.
1022  *
1023  * The refcount is initialized to 2 - one for the async op completion,
1024  * one for the synchronous code that does this.
1025  */
1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027 {
1028 	struct aio_kiocb *req;
1029 
1030 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1031 	if (unlikely(!req))
1032 		return NULL;
1033 
1034 	if (unlikely(!get_reqs_available(ctx))) {
1035 		kmem_cache_free(kiocb_cachep, req);
1036 		return NULL;
1037 	}
1038 
1039 	percpu_ref_get(&ctx->reqs);
1040 	req->ki_ctx = ctx;
1041 	INIT_LIST_HEAD(&req->ki_list);
1042 	refcount_set(&req->ki_refcnt, 2);
1043 	req->ki_eventfd = NULL;
1044 	return req;
1045 }
1046 
1047 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1048 {
1049 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1050 	struct mm_struct *mm = current->mm;
1051 	struct kioctx *ctx, *ret = NULL;
1052 	struct kioctx_table *table;
1053 	unsigned id;
1054 
1055 	if (get_user(id, &ring->id))
1056 		return NULL;
1057 
1058 	rcu_read_lock();
1059 	table = rcu_dereference(mm->ioctx_table);
1060 
1061 	if (!table || id >= table->nr)
1062 		goto out;
1063 
1064 	id = array_index_nospec(id, table->nr);
1065 	ctx = rcu_dereference(table->table[id]);
1066 	if (ctx && ctx->user_id == ctx_id) {
1067 		if (percpu_ref_tryget_live(&ctx->users))
1068 			ret = ctx;
1069 	}
1070 out:
1071 	rcu_read_unlock();
1072 	return ret;
1073 }
1074 
1075 static inline void iocb_destroy(struct aio_kiocb *iocb)
1076 {
1077 	if (iocb->ki_eventfd)
1078 		eventfd_ctx_put(iocb->ki_eventfd);
1079 	if (iocb->ki_filp)
1080 		fput(iocb->ki_filp);
1081 	percpu_ref_put(&iocb->ki_ctx->reqs);
1082 	kmem_cache_free(kiocb_cachep, iocb);
1083 }
1084 
1085 /* aio_complete
1086  *	Called when the io request on the given iocb is complete.
1087  */
1088 static void aio_complete(struct aio_kiocb *iocb)
1089 {
1090 	struct kioctx	*ctx = iocb->ki_ctx;
1091 	struct aio_ring	*ring;
1092 	struct io_event	*ev_page, *event;
1093 	unsigned tail, pos, head;
1094 	unsigned long	flags;
1095 
1096 	/*
1097 	 * Add a completion event to the ring buffer. Must be done holding
1098 	 * ctx->completion_lock to prevent other code from messing with the tail
1099 	 * pointer since we might be called from irq context.
1100 	 */
1101 	spin_lock_irqsave(&ctx->completion_lock, flags);
1102 
1103 	tail = ctx->tail;
1104 	pos = tail + AIO_EVENTS_OFFSET;
1105 
1106 	if (++tail >= ctx->nr_events)
1107 		tail = 0;
1108 
1109 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1110 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111 
1112 	*event = iocb->ki_res;
1113 
1114 	kunmap_atomic(ev_page);
1115 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1116 
1117 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1119 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1120 
1121 	/* after flagging the request as done, we
1122 	 * must never even look at it again
1123 	 */
1124 	smp_wmb();	/* make event visible before updating tail */
1125 
1126 	ctx->tail = tail;
1127 
1128 	ring = kmap_atomic(ctx->ring_pages[0]);
1129 	head = ring->head;
1130 	ring->tail = tail;
1131 	kunmap_atomic(ring);
1132 	flush_dcache_page(ctx->ring_pages[0]);
1133 
1134 	ctx->completed_events++;
1135 	if (ctx->completed_events > 1)
1136 		refill_reqs_available(ctx, head, tail);
1137 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138 
1139 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1140 
1141 	/*
1142 	 * Check if the user asked us to deliver the result through an
1143 	 * eventfd. The eventfd_signal() function is safe to be called
1144 	 * from IRQ context.
1145 	 */
1146 	if (iocb->ki_eventfd)
1147 		eventfd_signal(iocb->ki_eventfd, 1);
1148 
1149 	/*
1150 	 * We have to order our ring_info tail store above and test
1151 	 * of the wait list below outside the wait lock.  This is
1152 	 * like in wake_up_bit() where clearing a bit has to be
1153 	 * ordered with the unlocked test.
1154 	 */
1155 	smp_mb();
1156 
1157 	if (waitqueue_active(&ctx->wait))
1158 		wake_up(&ctx->wait);
1159 }
1160 
1161 static inline void iocb_put(struct aio_kiocb *iocb)
1162 {
1163 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164 		aio_complete(iocb);
1165 		iocb_destroy(iocb);
1166 	}
1167 }
1168 
1169 /* aio_read_events_ring
1170  *	Pull an event off of the ioctx's event ring.  Returns the number of
1171  *	events fetched
1172  */
1173 static long aio_read_events_ring(struct kioctx *ctx,
1174 				 struct io_event __user *event, long nr)
1175 {
1176 	struct aio_ring *ring;
1177 	unsigned head, tail, pos;
1178 	long ret = 0;
1179 	int copy_ret;
1180 
1181 	/*
1182 	 * The mutex can block and wake us up and that will cause
1183 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 	 * and repeat. This should be rare enough that it doesn't cause
1185 	 * peformance issues. See the comment in read_events() for more detail.
1186 	 */
1187 	sched_annotate_sleep();
1188 	mutex_lock(&ctx->ring_lock);
1189 
1190 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 	ring = kmap_atomic(ctx->ring_pages[0]);
1192 	head = ring->head;
1193 	tail = ring->tail;
1194 	kunmap_atomic(ring);
1195 
1196 	/*
1197 	 * Ensure that once we've read the current tail pointer, that
1198 	 * we also see the events that were stored up to the tail.
1199 	 */
1200 	smp_rmb();
1201 
1202 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1203 
1204 	if (head == tail)
1205 		goto out;
1206 
1207 	head %= ctx->nr_events;
1208 	tail %= ctx->nr_events;
1209 
1210 	while (ret < nr) {
1211 		long avail;
1212 		struct io_event *ev;
1213 		struct page *page;
1214 
1215 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1216 		if (head == tail)
1217 			break;
1218 
1219 		pos = head + AIO_EVENTS_OFFSET;
1220 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1221 		pos %= AIO_EVENTS_PER_PAGE;
1222 
1223 		avail = min(avail, nr - ret);
1224 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225 
1226 		ev = kmap(page);
1227 		copy_ret = copy_to_user(event + ret, ev + pos,
1228 					sizeof(*ev) * avail);
1229 		kunmap(page);
1230 
1231 		if (unlikely(copy_ret)) {
1232 			ret = -EFAULT;
1233 			goto out;
1234 		}
1235 
1236 		ret += avail;
1237 		head += avail;
1238 		head %= ctx->nr_events;
1239 	}
1240 
1241 	ring = kmap_atomic(ctx->ring_pages[0]);
1242 	ring->head = head;
1243 	kunmap_atomic(ring);
1244 	flush_dcache_page(ctx->ring_pages[0]);
1245 
1246 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1247 out:
1248 	mutex_unlock(&ctx->ring_lock);
1249 
1250 	return ret;
1251 }
1252 
1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 			    struct io_event __user *event, long *i)
1255 {
1256 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257 
1258 	if (ret > 0)
1259 		*i += ret;
1260 
1261 	if (unlikely(atomic_read(&ctx->dead)))
1262 		ret = -EINVAL;
1263 
1264 	if (!*i)
1265 		*i = ret;
1266 
1267 	return ret < 0 || *i >= min_nr;
1268 }
1269 
1270 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271 			struct io_event __user *event,
1272 			ktime_t until)
1273 {
1274 	long ret = 0;
1275 
1276 	/*
1277 	 * Note that aio_read_events() is being called as the conditional - i.e.
1278 	 * we're calling it after prepare_to_wait() has set task state to
1279 	 * TASK_INTERRUPTIBLE.
1280 	 *
1281 	 * But aio_read_events() can block, and if it blocks it's going to flip
1282 	 * the task state back to TASK_RUNNING.
1283 	 *
1284 	 * This should be ok, provided it doesn't flip the state back to
1285 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 	 * will only happen if the mutex_lock() call blocks, and we then find
1287 	 * the ringbuffer empty. So in practice we should be ok, but it's
1288 	 * something to be aware of when touching this code.
1289 	 */
1290 	if (until == 0)
1291 		aio_read_events(ctx, min_nr, nr, event, &ret);
1292 	else
1293 		wait_event_interruptible_hrtimeout(ctx->wait,
1294 				aio_read_events(ctx, min_nr, nr, event, &ret),
1295 				until);
1296 	return ret;
1297 }
1298 
1299 /* sys_io_setup:
1300  *	Create an aio_context capable of receiving at least nr_events.
1301  *	ctxp must not point to an aio_context that already exists, and
1302  *	must be initialized to 0 prior to the call.  On successful
1303  *	creation of the aio_context, *ctxp is filled in with the resulting
1304  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1305  *	if the specified nr_events exceeds internal limits.  May fail
1306  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1307  *	of available events.  May fail with -ENOMEM if insufficient kernel
1308  *	resources are available.  May fail with -EFAULT if an invalid
1309  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1310  *	implemented.
1311  */
1312 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1313 {
1314 	struct kioctx *ioctx = NULL;
1315 	unsigned long ctx;
1316 	long ret;
1317 
1318 	ret = get_user(ctx, ctxp);
1319 	if (unlikely(ret))
1320 		goto out;
1321 
1322 	ret = -EINVAL;
1323 	if (unlikely(ctx || nr_events == 0)) {
1324 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1325 		         ctx, nr_events);
1326 		goto out;
1327 	}
1328 
1329 	ioctx = ioctx_alloc(nr_events);
1330 	ret = PTR_ERR(ioctx);
1331 	if (!IS_ERR(ioctx)) {
1332 		ret = put_user(ioctx->user_id, ctxp);
1333 		if (ret)
1334 			kill_ioctx(current->mm, ioctx, NULL);
1335 		percpu_ref_put(&ioctx->users);
1336 	}
1337 
1338 out:
1339 	return ret;
1340 }
1341 
1342 #ifdef CONFIG_COMPAT
1343 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344 {
1345 	struct kioctx *ioctx = NULL;
1346 	unsigned long ctx;
1347 	long ret;
1348 
1349 	ret = get_user(ctx, ctx32p);
1350 	if (unlikely(ret))
1351 		goto out;
1352 
1353 	ret = -EINVAL;
1354 	if (unlikely(ctx || nr_events == 0)) {
1355 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 		         ctx, nr_events);
1357 		goto out;
1358 	}
1359 
1360 	ioctx = ioctx_alloc(nr_events);
1361 	ret = PTR_ERR(ioctx);
1362 	if (!IS_ERR(ioctx)) {
1363 		/* truncating is ok because it's a user address */
1364 		ret = put_user((u32)ioctx->user_id, ctx32p);
1365 		if (ret)
1366 			kill_ioctx(current->mm, ioctx, NULL);
1367 		percpu_ref_put(&ioctx->users);
1368 	}
1369 
1370 out:
1371 	return ret;
1372 }
1373 #endif
1374 
1375 /* sys_io_destroy:
1376  *	Destroy the aio_context specified.  May cancel any outstanding
1377  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1378  *	implemented.  May fail with -EINVAL if the context pointed to
1379  *	is invalid.
1380  */
1381 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1382 {
1383 	struct kioctx *ioctx = lookup_ioctx(ctx);
1384 	if (likely(NULL != ioctx)) {
1385 		struct ctx_rq_wait wait;
1386 		int ret;
1387 
1388 		init_completion(&wait.comp);
1389 		atomic_set(&wait.count, 1);
1390 
1391 		/* Pass requests_done to kill_ioctx() where it can be set
1392 		 * in a thread-safe way. If we try to set it here then we have
1393 		 * a race condition if two io_destroy() called simultaneously.
1394 		 */
1395 		ret = kill_ioctx(current->mm, ioctx, &wait);
1396 		percpu_ref_put(&ioctx->users);
1397 
1398 		/* Wait until all IO for the context are done. Otherwise kernel
1399 		 * keep using user-space buffers even if user thinks the context
1400 		 * is destroyed.
1401 		 */
1402 		if (!ret)
1403 			wait_for_completion(&wait.comp);
1404 
1405 		return ret;
1406 	}
1407 	pr_debug("EINVAL: invalid context id\n");
1408 	return -EINVAL;
1409 }
1410 
1411 static void aio_remove_iocb(struct aio_kiocb *iocb)
1412 {
1413 	struct kioctx *ctx = iocb->ki_ctx;
1414 	unsigned long flags;
1415 
1416 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 	list_del(&iocb->ki_list);
1418 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419 }
1420 
1421 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422 {
1423 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424 
1425 	if (!list_empty_careful(&iocb->ki_list))
1426 		aio_remove_iocb(iocb);
1427 
1428 	if (kiocb->ki_flags & IOCB_WRITE) {
1429 		struct inode *inode = file_inode(kiocb->ki_filp);
1430 
1431 		/*
1432 		 * Tell lockdep we inherited freeze protection from submission
1433 		 * thread.
1434 		 */
1435 		if (S_ISREG(inode->i_mode))
1436 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 		file_end_write(kiocb->ki_filp);
1438 	}
1439 
1440 	iocb->ki_res.res = res;
1441 	iocb->ki_res.res2 = res2;
1442 	iocb_put(iocb);
1443 }
1444 
1445 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1446 {
1447 	int ret;
1448 
1449 	req->ki_complete = aio_complete_rw;
1450 	req->private = NULL;
1451 	req->ki_pos = iocb->aio_offset;
1452 	req->ki_flags = iocb_flags(req->ki_filp);
1453 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454 		req->ki_flags |= IOCB_EVENTFD;
1455 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1456 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457 		/*
1458 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 		 * aio_reqprio is interpreted as an I/O scheduling
1460 		 * class and priority.
1461 		 */
1462 		ret = ioprio_check_cap(iocb->aio_reqprio);
1463 		if (ret) {
1464 			pr_debug("aio ioprio check cap error: %d\n", ret);
1465 			return ret;
1466 		}
1467 
1468 		req->ki_ioprio = iocb->aio_reqprio;
1469 	} else
1470 		req->ki_ioprio = get_current_ioprio();
1471 
1472 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473 	if (unlikely(ret))
1474 		return ret;
1475 
1476 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477 	return 0;
1478 }
1479 
1480 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481 		struct iovec **iovec, bool vectored, bool compat,
1482 		struct iov_iter *iter)
1483 {
1484 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485 	size_t len = iocb->aio_nbytes;
1486 
1487 	if (!vectored) {
1488 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489 		*iovec = NULL;
1490 		return ret;
1491 	}
1492 #ifdef CONFIG_COMPAT
1493 	if (compat)
1494 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495 				iter);
1496 #endif
1497 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1498 }
1499 
1500 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1501 {
1502 	switch (ret) {
1503 	case -EIOCBQUEUED:
1504 		break;
1505 	case -ERESTARTSYS:
1506 	case -ERESTARTNOINTR:
1507 	case -ERESTARTNOHAND:
1508 	case -ERESTART_RESTARTBLOCK:
1509 		/*
1510 		 * There's no easy way to restart the syscall since other AIO's
1511 		 * may be already running. Just fail this IO with EINTR.
1512 		 */
1513 		ret = -EINTR;
1514 		/*FALLTHRU*/
1515 	default:
1516 		req->ki_complete(req, ret, 0);
1517 	}
1518 }
1519 
1520 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1521 			bool vectored, bool compat)
1522 {
1523 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1524 	struct iov_iter iter;
1525 	struct file *file;
1526 	int ret;
1527 
1528 	ret = aio_prep_rw(req, iocb);
1529 	if (ret)
1530 		return ret;
1531 	file = req->ki_filp;
1532 	if (unlikely(!(file->f_mode & FMODE_READ)))
1533 		return -EBADF;
1534 	ret = -EINVAL;
1535 	if (unlikely(!file->f_op->read_iter))
1536 		return -EINVAL;
1537 
1538 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1539 	if (ret < 0)
1540 		return ret;
1541 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542 	if (!ret)
1543 		aio_rw_done(req, call_read_iter(file, req, &iter));
1544 	kfree(iovec);
1545 	return ret;
1546 }
1547 
1548 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1549 			 bool vectored, bool compat)
1550 {
1551 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552 	struct iov_iter iter;
1553 	struct file *file;
1554 	int ret;
1555 
1556 	ret = aio_prep_rw(req, iocb);
1557 	if (ret)
1558 		return ret;
1559 	file = req->ki_filp;
1560 
1561 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1562 		return -EBADF;
1563 	if (unlikely(!file->f_op->write_iter))
1564 		return -EINVAL;
1565 
1566 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1567 	if (ret < 0)
1568 		return ret;
1569 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570 	if (!ret) {
1571 		/*
1572 		 * Open-code file_start_write here to grab freeze protection,
1573 		 * which will be released by another thread in
1574 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1575 		 * released so that it doesn't complain about the held lock when
1576 		 * we return to userspace.
1577 		 */
1578 		if (S_ISREG(file_inode(file)->i_mode)) {
1579 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1580 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1581 		}
1582 		req->ki_flags |= IOCB_WRITE;
1583 		aio_rw_done(req, call_write_iter(file, req, &iter));
1584 	}
1585 	kfree(iovec);
1586 	return ret;
1587 }
1588 
1589 static void aio_fsync_work(struct work_struct *work)
1590 {
1591 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1592 
1593 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594 	iocb_put(iocb);
1595 }
1596 
1597 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 		     bool datasync)
1599 {
1600 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601 			iocb->aio_rw_flags))
1602 		return -EINVAL;
1603 
1604 	if (unlikely(!req->file->f_op->fsync))
1605 		return -EINVAL;
1606 
1607 	req->datasync = datasync;
1608 	INIT_WORK(&req->work, aio_fsync_work);
1609 	schedule_work(&req->work);
1610 	return 0;
1611 }
1612 
1613 static void aio_poll_complete_work(struct work_struct *work)
1614 {
1615 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1616 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1617 	struct poll_table_struct pt = { ._key = req->events };
1618 	struct kioctx *ctx = iocb->ki_ctx;
1619 	__poll_t mask = 0;
1620 
1621 	if (!READ_ONCE(req->cancelled))
1622 		mask = vfs_poll(req->file, &pt) & req->events;
1623 
1624 	/*
1625 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1626 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1627 	 * synchronize with them.  In the cancellation case the list_del_init
1628 	 * itself is not actually needed, but harmless so we keep it in to
1629 	 * avoid further branches in the fast path.
1630 	 */
1631 	spin_lock_irq(&ctx->ctx_lock);
1632 	if (!mask && !READ_ONCE(req->cancelled)) {
1633 		add_wait_queue(req->head, &req->wait);
1634 		spin_unlock_irq(&ctx->ctx_lock);
1635 		return;
1636 	}
1637 	list_del_init(&iocb->ki_list);
1638 	iocb->ki_res.res = mangle_poll(mask);
1639 	req->done = true;
1640 	spin_unlock_irq(&ctx->ctx_lock);
1641 
1642 	iocb_put(iocb);
1643 }
1644 
1645 /* assumes we are called with irqs disabled */
1646 static int aio_poll_cancel(struct kiocb *iocb)
1647 {
1648 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1649 	struct poll_iocb *req = &aiocb->poll;
1650 
1651 	spin_lock(&req->head->lock);
1652 	WRITE_ONCE(req->cancelled, true);
1653 	if (!list_empty(&req->wait.entry)) {
1654 		list_del_init(&req->wait.entry);
1655 		schedule_work(&aiocb->poll.work);
1656 	}
1657 	spin_unlock(&req->head->lock);
1658 
1659 	return 0;
1660 }
1661 
1662 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1663 		void *key)
1664 {
1665 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1666 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1667 	__poll_t mask = key_to_poll(key);
1668 	unsigned long flags;
1669 
1670 	/* for instances that support it check for an event match first: */
1671 	if (mask && !(mask & req->events))
1672 		return 0;
1673 
1674 	list_del_init(&req->wait.entry);
1675 
1676 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1677 		/*
1678 		 * Try to complete the iocb inline if we can. Use
1679 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680 		 * call this function with IRQs disabled and because IRQs
1681 		 * have to be disabled before ctx_lock is obtained.
1682 		 */
1683 		list_del(&iocb->ki_list);
1684 		iocb->ki_res.res = mangle_poll(mask);
1685 		req->done = true;
1686 		spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1687 		iocb_put(iocb);
1688 	} else {
1689 		schedule_work(&req->work);
1690 	}
1691 	return 1;
1692 }
1693 
1694 struct aio_poll_table {
1695 	struct poll_table_struct	pt;
1696 	struct aio_kiocb		*iocb;
1697 	int				error;
1698 };
1699 
1700 static void
1701 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1702 		struct poll_table_struct *p)
1703 {
1704 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1705 
1706 	/* multiple wait queues per file are not supported */
1707 	if (unlikely(pt->iocb->poll.head)) {
1708 		pt->error = -EINVAL;
1709 		return;
1710 	}
1711 
1712 	pt->error = 0;
1713 	pt->iocb->poll.head = head;
1714 	add_wait_queue(head, &pt->iocb->poll.wait);
1715 }
1716 
1717 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1718 {
1719 	struct kioctx *ctx = aiocb->ki_ctx;
1720 	struct poll_iocb *req = &aiocb->poll;
1721 	struct aio_poll_table apt;
1722 	bool cancel = false;
1723 	__poll_t mask;
1724 
1725 	/* reject any unknown events outside the normal event mask. */
1726 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1727 		return -EINVAL;
1728 	/* reject fields that are not defined for poll */
1729 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1730 		return -EINVAL;
1731 
1732 	INIT_WORK(&req->work, aio_poll_complete_work);
1733 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1734 
1735 	req->head = NULL;
1736 	req->done = false;
1737 	req->cancelled = false;
1738 
1739 	apt.pt._qproc = aio_poll_queue_proc;
1740 	apt.pt._key = req->events;
1741 	apt.iocb = aiocb;
1742 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1743 
1744 	/* initialized the list so that we can do list_empty checks */
1745 	INIT_LIST_HEAD(&req->wait.entry);
1746 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1747 
1748 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1749 	spin_lock_irq(&ctx->ctx_lock);
1750 	if (likely(req->head)) {
1751 		spin_lock(&req->head->lock);
1752 		if (unlikely(list_empty(&req->wait.entry))) {
1753 			if (apt.error)
1754 				cancel = true;
1755 			apt.error = 0;
1756 			mask = 0;
1757 		}
1758 		if (mask || apt.error) {
1759 			list_del_init(&req->wait.entry);
1760 		} else if (cancel) {
1761 			WRITE_ONCE(req->cancelled, true);
1762 		} else if (!req->done) { /* actually waiting for an event */
1763 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1764 			aiocb->ki_cancel = aio_poll_cancel;
1765 		}
1766 		spin_unlock(&req->head->lock);
1767 	}
1768 	if (mask) { /* no async, we'd stolen it */
1769 		aiocb->ki_res.res = mangle_poll(mask);
1770 		apt.error = 0;
1771 	}
1772 	spin_unlock_irq(&ctx->ctx_lock);
1773 	if (mask)
1774 		iocb_put(aiocb);
1775 	return apt.error;
1776 }
1777 
1778 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1779 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1780 			   bool compat)
1781 {
1782 	req->ki_filp = fget(iocb->aio_fildes);
1783 	if (unlikely(!req->ki_filp))
1784 		return -EBADF;
1785 
1786 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1787 		struct eventfd_ctx *eventfd;
1788 		/*
1789 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1790 		 * instance of the file* now. The file descriptor must be
1791 		 * an eventfd() fd, and will be signaled for each completed
1792 		 * event using the eventfd_signal() function.
1793 		 */
1794 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1795 		if (IS_ERR(eventfd))
1796 			return PTR_ERR(eventfd);
1797 
1798 		req->ki_eventfd = eventfd;
1799 	}
1800 
1801 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1802 		pr_debug("EFAULT: aio_key\n");
1803 		return -EFAULT;
1804 	}
1805 
1806 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1807 	req->ki_res.data = iocb->aio_data;
1808 	req->ki_res.res = 0;
1809 	req->ki_res.res2 = 0;
1810 
1811 	switch (iocb->aio_lio_opcode) {
1812 	case IOCB_CMD_PREAD:
1813 		return aio_read(&req->rw, iocb, false, compat);
1814 	case IOCB_CMD_PWRITE:
1815 		return aio_write(&req->rw, iocb, false, compat);
1816 	case IOCB_CMD_PREADV:
1817 		return aio_read(&req->rw, iocb, true, compat);
1818 	case IOCB_CMD_PWRITEV:
1819 		return aio_write(&req->rw, iocb, true, compat);
1820 	case IOCB_CMD_FSYNC:
1821 		return aio_fsync(&req->fsync, iocb, false);
1822 	case IOCB_CMD_FDSYNC:
1823 		return aio_fsync(&req->fsync, iocb, true);
1824 	case IOCB_CMD_POLL:
1825 		return aio_poll(req, iocb);
1826 	default:
1827 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1828 		return -EINVAL;
1829 	}
1830 }
1831 
1832 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1833 			 bool compat)
1834 {
1835 	struct aio_kiocb *req;
1836 	struct iocb iocb;
1837 	int err;
1838 
1839 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1840 		return -EFAULT;
1841 
1842 	/* enforce forwards compatibility on users */
1843 	if (unlikely(iocb.aio_reserved2)) {
1844 		pr_debug("EINVAL: reserve field set\n");
1845 		return -EINVAL;
1846 	}
1847 
1848 	/* prevent overflows */
1849 	if (unlikely(
1850 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1851 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1852 	    ((ssize_t)iocb.aio_nbytes < 0)
1853 	   )) {
1854 		pr_debug("EINVAL: overflow check\n");
1855 		return -EINVAL;
1856 	}
1857 
1858 	req = aio_get_req(ctx);
1859 	if (unlikely(!req))
1860 		return -EAGAIN;
1861 
1862 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1863 
1864 	/* Done with the synchronous reference */
1865 	iocb_put(req);
1866 
1867 	/*
1868 	 * If err is 0, we'd either done aio_complete() ourselves or have
1869 	 * arranged for that to be done asynchronously.  Anything non-zero
1870 	 * means that we need to destroy req ourselves.
1871 	 */
1872 	if (unlikely(err)) {
1873 		iocb_destroy(req);
1874 		put_reqs_available(ctx, 1);
1875 	}
1876 	return err;
1877 }
1878 
1879 /* sys_io_submit:
1880  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1881  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1882  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1883  *	*iocbpp[0] is not properly initialized, if the operation specified
1884  *	is invalid for the file descriptor in the iocb.  May fail with
1885  *	-EFAULT if any of the data structures point to invalid data.  May
1886  *	fail with -EBADF if the file descriptor specified in the first
1887  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1888  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1889  *	fail with -ENOSYS if not implemented.
1890  */
1891 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1892 		struct iocb __user * __user *, iocbpp)
1893 {
1894 	struct kioctx *ctx;
1895 	long ret = 0;
1896 	int i = 0;
1897 	struct blk_plug plug;
1898 
1899 	if (unlikely(nr < 0))
1900 		return -EINVAL;
1901 
1902 	ctx = lookup_ioctx(ctx_id);
1903 	if (unlikely(!ctx)) {
1904 		pr_debug("EINVAL: invalid context id\n");
1905 		return -EINVAL;
1906 	}
1907 
1908 	if (nr > ctx->nr_events)
1909 		nr = ctx->nr_events;
1910 
1911 	if (nr > AIO_PLUG_THRESHOLD)
1912 		blk_start_plug(&plug);
1913 	for (i = 0; i < nr; i++) {
1914 		struct iocb __user *user_iocb;
1915 
1916 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1917 			ret = -EFAULT;
1918 			break;
1919 		}
1920 
1921 		ret = io_submit_one(ctx, user_iocb, false);
1922 		if (ret)
1923 			break;
1924 	}
1925 	if (nr > AIO_PLUG_THRESHOLD)
1926 		blk_finish_plug(&plug);
1927 
1928 	percpu_ref_put(&ctx->users);
1929 	return i ? i : ret;
1930 }
1931 
1932 #ifdef CONFIG_COMPAT
1933 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1934 		       int, nr, compat_uptr_t __user *, iocbpp)
1935 {
1936 	struct kioctx *ctx;
1937 	long ret = 0;
1938 	int i = 0;
1939 	struct blk_plug plug;
1940 
1941 	if (unlikely(nr < 0))
1942 		return -EINVAL;
1943 
1944 	ctx = lookup_ioctx(ctx_id);
1945 	if (unlikely(!ctx)) {
1946 		pr_debug("EINVAL: invalid context id\n");
1947 		return -EINVAL;
1948 	}
1949 
1950 	if (nr > ctx->nr_events)
1951 		nr = ctx->nr_events;
1952 
1953 	if (nr > AIO_PLUG_THRESHOLD)
1954 		blk_start_plug(&plug);
1955 	for (i = 0; i < nr; i++) {
1956 		compat_uptr_t user_iocb;
1957 
1958 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1959 			ret = -EFAULT;
1960 			break;
1961 		}
1962 
1963 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1964 		if (ret)
1965 			break;
1966 	}
1967 	if (nr > AIO_PLUG_THRESHOLD)
1968 		blk_finish_plug(&plug);
1969 
1970 	percpu_ref_put(&ctx->users);
1971 	return i ? i : ret;
1972 }
1973 #endif
1974 
1975 /* sys_io_cancel:
1976  *	Attempts to cancel an iocb previously passed to io_submit.  If
1977  *	the operation is successfully cancelled, the resulting event is
1978  *	copied into the memory pointed to by result without being placed
1979  *	into the completion queue and 0 is returned.  May fail with
1980  *	-EFAULT if any of the data structures pointed to are invalid.
1981  *	May fail with -EINVAL if aio_context specified by ctx_id is
1982  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1983  *	cancelled.  Will fail with -ENOSYS if not implemented.
1984  */
1985 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1986 		struct io_event __user *, result)
1987 {
1988 	struct kioctx *ctx;
1989 	struct aio_kiocb *kiocb;
1990 	int ret = -EINVAL;
1991 	u32 key;
1992 	u64 obj = (u64)(unsigned long)iocb;
1993 
1994 	if (unlikely(get_user(key, &iocb->aio_key)))
1995 		return -EFAULT;
1996 	if (unlikely(key != KIOCB_KEY))
1997 		return -EINVAL;
1998 
1999 	ctx = lookup_ioctx(ctx_id);
2000 	if (unlikely(!ctx))
2001 		return -EINVAL;
2002 
2003 	spin_lock_irq(&ctx->ctx_lock);
2004 	/* TODO: use a hash or array, this sucks. */
2005 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2006 		if (kiocb->ki_res.obj == obj) {
2007 			ret = kiocb->ki_cancel(&kiocb->rw);
2008 			list_del_init(&kiocb->ki_list);
2009 			break;
2010 		}
2011 	}
2012 	spin_unlock_irq(&ctx->ctx_lock);
2013 
2014 	if (!ret) {
2015 		/*
2016 		 * The result argument is no longer used - the io_event is
2017 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2018 		 * cancellation is progress:
2019 		 */
2020 		ret = -EINPROGRESS;
2021 	}
2022 
2023 	percpu_ref_put(&ctx->users);
2024 
2025 	return ret;
2026 }
2027 
2028 static long do_io_getevents(aio_context_t ctx_id,
2029 		long min_nr,
2030 		long nr,
2031 		struct io_event __user *events,
2032 		struct timespec64 *ts)
2033 {
2034 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2035 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2036 	long ret = -EINVAL;
2037 
2038 	if (likely(ioctx)) {
2039 		if (likely(min_nr <= nr && min_nr >= 0))
2040 			ret = read_events(ioctx, min_nr, nr, events, until);
2041 		percpu_ref_put(&ioctx->users);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 /* io_getevents:
2048  *	Attempts to read at least min_nr events and up to nr events from
2049  *	the completion queue for the aio_context specified by ctx_id. If
2050  *	it succeeds, the number of read events is returned. May fail with
2051  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2052  *	out of range, if timeout is out of range.  May fail with -EFAULT
2053  *	if any of the memory specified is invalid.  May return 0 or
2054  *	< min_nr if the timeout specified by timeout has elapsed
2055  *	before sufficient events are available, where timeout == NULL
2056  *	specifies an infinite timeout. Note that the timeout pointed to by
2057  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2058  */
2059 #ifdef CONFIG_64BIT
2060 
2061 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2062 		long, min_nr,
2063 		long, nr,
2064 		struct io_event __user *, events,
2065 		struct __kernel_timespec __user *, timeout)
2066 {
2067 	struct timespec64	ts;
2068 	int			ret;
2069 
2070 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2071 		return -EFAULT;
2072 
2073 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074 	if (!ret && signal_pending(current))
2075 		ret = -EINTR;
2076 	return ret;
2077 }
2078 
2079 #endif
2080 
2081 struct __aio_sigset {
2082 	const sigset_t __user	*sigmask;
2083 	size_t		sigsetsize;
2084 };
2085 
2086 SYSCALL_DEFINE6(io_pgetevents,
2087 		aio_context_t, ctx_id,
2088 		long, min_nr,
2089 		long, nr,
2090 		struct io_event __user *, events,
2091 		struct __kernel_timespec __user *, timeout,
2092 		const struct __aio_sigset __user *, usig)
2093 {
2094 	struct __aio_sigset	ksig = { NULL, };
2095 	struct timespec64	ts;
2096 	bool interrupted;
2097 	int ret;
2098 
2099 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2100 		return -EFAULT;
2101 
2102 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2103 		return -EFAULT;
2104 
2105 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2106 	if (ret)
2107 		return ret;
2108 
2109 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2110 
2111 	interrupted = signal_pending(current);
2112 	restore_saved_sigmask_unless(interrupted);
2113 	if (interrupted && !ret)
2114 		ret = -ERESTARTNOHAND;
2115 
2116 	return ret;
2117 }
2118 
2119 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2120 
2121 SYSCALL_DEFINE6(io_pgetevents_time32,
2122 		aio_context_t, ctx_id,
2123 		long, min_nr,
2124 		long, nr,
2125 		struct io_event __user *, events,
2126 		struct old_timespec32 __user *, timeout,
2127 		const struct __aio_sigset __user *, usig)
2128 {
2129 	struct __aio_sigset	ksig = { NULL, };
2130 	struct timespec64	ts;
2131 	bool interrupted;
2132 	int ret;
2133 
2134 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2135 		return -EFAULT;
2136 
2137 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2138 		return -EFAULT;
2139 
2140 
2141 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2142 	if (ret)
2143 		return ret;
2144 
2145 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2146 
2147 	interrupted = signal_pending(current);
2148 	restore_saved_sigmask_unless(interrupted);
2149 	if (interrupted && !ret)
2150 		ret = -ERESTARTNOHAND;
2151 
2152 	return ret;
2153 }
2154 
2155 #endif
2156 
2157 #if defined(CONFIG_COMPAT_32BIT_TIME)
2158 
2159 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2160 		__s32, min_nr,
2161 		__s32, nr,
2162 		struct io_event __user *, events,
2163 		struct old_timespec32 __user *, timeout)
2164 {
2165 	struct timespec64 t;
2166 	int ret;
2167 
2168 	if (timeout && get_old_timespec32(&t, timeout))
2169 		return -EFAULT;
2170 
2171 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2172 	if (!ret && signal_pending(current))
2173 		ret = -EINTR;
2174 	return ret;
2175 }
2176 
2177 #endif
2178 
2179 #ifdef CONFIG_COMPAT
2180 
2181 struct __compat_aio_sigset {
2182 	compat_uptr_t		sigmask;
2183 	compat_size_t		sigsetsize;
2184 };
2185 
2186 #if defined(CONFIG_COMPAT_32BIT_TIME)
2187 
2188 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2189 		compat_aio_context_t, ctx_id,
2190 		compat_long_t, min_nr,
2191 		compat_long_t, nr,
2192 		struct io_event __user *, events,
2193 		struct old_timespec32 __user *, timeout,
2194 		const struct __compat_aio_sigset __user *, usig)
2195 {
2196 	struct __compat_aio_sigset ksig = { 0, };
2197 	struct timespec64 t;
2198 	bool interrupted;
2199 	int ret;
2200 
2201 	if (timeout && get_old_timespec32(&t, timeout))
2202 		return -EFAULT;
2203 
2204 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2205 		return -EFAULT;
2206 
2207 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2208 	if (ret)
2209 		return ret;
2210 
2211 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2212 
2213 	interrupted = signal_pending(current);
2214 	restore_saved_sigmask_unless(interrupted);
2215 	if (interrupted && !ret)
2216 		ret = -ERESTARTNOHAND;
2217 
2218 	return ret;
2219 }
2220 
2221 #endif
2222 
2223 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2224 		compat_aio_context_t, ctx_id,
2225 		compat_long_t, min_nr,
2226 		compat_long_t, nr,
2227 		struct io_event __user *, events,
2228 		struct __kernel_timespec __user *, timeout,
2229 		const struct __compat_aio_sigset __user *, usig)
2230 {
2231 	struct __compat_aio_sigset ksig = { 0, };
2232 	struct timespec64 t;
2233 	bool interrupted;
2234 	int ret;
2235 
2236 	if (timeout && get_timespec64(&t, timeout))
2237 		return -EFAULT;
2238 
2239 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240 		return -EFAULT;
2241 
2242 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2243 	if (ret)
2244 		return ret;
2245 
2246 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2247 
2248 	interrupted = signal_pending(current);
2249 	restore_saved_sigmask_unless(interrupted);
2250 	if (interrupted && !ret)
2251 		ret = -ERESTARTNOHAND;
2252 
2253 	return ret;
2254 }
2255 #endif
2256