xref: /linux/fs/binfmt_elf.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/errno.h>
19 #include <linux/signal.h>
20 #include <linux/binfmts.h>
21 #include <linux/string.h>
22 #include <linux/file.h>
23 #include <linux/slab.h>
24 #include <linux/personality.h>
25 #include <linux/elfcore.h>
26 #include <linux/init.h>
27 #include <linux/highuid.h>
28 #include <linux/compiler.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/random.h>
34 #include <linux/elf.h>
35 #include <linux/elf-randomize.h>
36 #include <linux/utsname.h>
37 #include <linux/coredump.h>
38 #include <linux/sched.h>
39 #include <linux/sched/coredump.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/sched/cputime.h>
42 #include <linux/cred.h>
43 #include <linux/dax.h>
44 #include <linux/uaccess.h>
45 #include <asm/param.h>
46 #include <asm/page.h>
47 
48 #ifndef user_long_t
49 #define user_long_t long
50 #endif
51 #ifndef user_siginfo_t
52 #define user_siginfo_t siginfo_t
53 #endif
54 
55 /* That's for binfmt_elf_fdpic to deal with */
56 #ifndef elf_check_fdpic
57 #define elf_check_fdpic(ex) false
58 #endif
59 
60 static int load_elf_binary(struct linux_binprm *bprm);
61 
62 #ifdef CONFIG_USELIB
63 static int load_elf_library(struct file *);
64 #else
65 #define load_elf_library NULL
66 #endif
67 
68 /*
69  * If we don't support core dumping, then supply a NULL so we
70  * don't even try.
71  */
72 #ifdef CONFIG_ELF_CORE
73 static int elf_core_dump(struct coredump_params *cprm);
74 #else
75 #define elf_core_dump	NULL
76 #endif
77 
78 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
79 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
80 #else
81 #define ELF_MIN_ALIGN	PAGE_SIZE
82 #endif
83 
84 #ifndef ELF_CORE_EFLAGS
85 #define ELF_CORE_EFLAGS	0
86 #endif
87 
88 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
89 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
90 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
91 
92 static struct linux_binfmt elf_format = {
93 	.module		= THIS_MODULE,
94 	.load_binary	= load_elf_binary,
95 	.load_shlib	= load_elf_library,
96 	.core_dump	= elf_core_dump,
97 	.min_coredump	= ELF_EXEC_PAGESIZE,
98 };
99 
100 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
101 
102 static int set_brk(unsigned long start, unsigned long end, int prot)
103 {
104 	start = ELF_PAGEALIGN(start);
105 	end = ELF_PAGEALIGN(end);
106 	if (end > start) {
107 		/*
108 		 * Map the last of the bss segment.
109 		 * If the header is requesting these pages to be
110 		 * executable, honour that (ppc32 needs this).
111 		 */
112 		int error = vm_brk_flags(start, end - start,
113 				prot & PROT_EXEC ? VM_EXEC : 0);
114 		if (error)
115 			return error;
116 	}
117 	current->mm->start_brk = current->mm->brk = end;
118 	return 0;
119 }
120 
121 /* We need to explicitly zero any fractional pages
122    after the data section (i.e. bss).  This would
123    contain the junk from the file that should not
124    be in memory
125  */
126 static int padzero(unsigned long elf_bss)
127 {
128 	unsigned long nbyte;
129 
130 	nbyte = ELF_PAGEOFFSET(elf_bss);
131 	if (nbyte) {
132 		nbyte = ELF_MIN_ALIGN - nbyte;
133 		if (clear_user((void __user *) elf_bss, nbyte))
134 			return -EFAULT;
135 	}
136 	return 0;
137 }
138 
139 /* Let's use some macros to make this stack manipulation a little clearer */
140 #ifdef CONFIG_STACK_GROWSUP
141 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
142 #define STACK_ROUND(sp, items) \
143 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
144 #define STACK_ALLOC(sp, len) ({ \
145 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
146 	old_sp; })
147 #else
148 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
149 #define STACK_ROUND(sp, items) \
150 	(((unsigned long) (sp - items)) &~ 15UL)
151 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
152 #endif
153 
154 #ifndef ELF_BASE_PLATFORM
155 /*
156  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
157  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
158  * will be copied to the user stack in the same manner as AT_PLATFORM.
159  */
160 #define ELF_BASE_PLATFORM NULL
161 #endif
162 
163 static int
164 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
165 		unsigned long load_addr, unsigned long interp_load_addr)
166 {
167 	unsigned long p = bprm->p;
168 	int argc = bprm->argc;
169 	int envc = bprm->envc;
170 	elf_addr_t __user *sp;
171 	elf_addr_t __user *u_platform;
172 	elf_addr_t __user *u_base_platform;
173 	elf_addr_t __user *u_rand_bytes;
174 	const char *k_platform = ELF_PLATFORM;
175 	const char *k_base_platform = ELF_BASE_PLATFORM;
176 	unsigned char k_rand_bytes[16];
177 	int items;
178 	elf_addr_t *elf_info;
179 	int ei_index = 0;
180 	const struct cred *cred = current_cred();
181 	struct vm_area_struct *vma;
182 
183 	/*
184 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
185 	 * evictions by the processes running on the same package. One
186 	 * thing we can do is to shuffle the initial stack for them.
187 	 */
188 
189 	p = arch_align_stack(p);
190 
191 	/*
192 	 * If this architecture has a platform capability string, copy it
193 	 * to userspace.  In some cases (Sparc), this info is impossible
194 	 * for userspace to get any other way, in others (i386) it is
195 	 * merely difficult.
196 	 */
197 	u_platform = NULL;
198 	if (k_platform) {
199 		size_t len = strlen(k_platform) + 1;
200 
201 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 		if (__copy_to_user(u_platform, k_platform, len))
203 			return -EFAULT;
204 	}
205 
206 	/*
207 	 * If this architecture has a "base" platform capability
208 	 * string, copy it to userspace.
209 	 */
210 	u_base_platform = NULL;
211 	if (k_base_platform) {
212 		size_t len = strlen(k_base_platform) + 1;
213 
214 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
215 		if (__copy_to_user(u_base_platform, k_base_platform, len))
216 			return -EFAULT;
217 	}
218 
219 	/*
220 	 * Generate 16 random bytes for userspace PRNG seeding.
221 	 */
222 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
223 	u_rand_bytes = (elf_addr_t __user *)
224 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
225 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
226 		return -EFAULT;
227 
228 	/* Create the ELF interpreter info */
229 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
230 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
231 #define NEW_AUX_ENT(id, val) \
232 	do { \
233 		elf_info[ei_index++] = id; \
234 		elf_info[ei_index++] = val; \
235 	} while (0)
236 
237 #ifdef ARCH_DLINFO
238 	/*
239 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
240 	 * AUXV.
241 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
242 	 * ARCH_DLINFO changes
243 	 */
244 	ARCH_DLINFO;
245 #endif
246 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
247 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
248 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
249 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
250 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
251 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
252 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
253 	NEW_AUX_ENT(AT_FLAGS, 0);
254 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
255 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
256 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
257 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
258 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
259 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
260 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
261 #ifdef ELF_HWCAP2
262 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
263 #endif
264 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
265 	if (k_platform) {
266 		NEW_AUX_ENT(AT_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_platform);
268 	}
269 	if (k_base_platform) {
270 		NEW_AUX_ENT(AT_BASE_PLATFORM,
271 			    (elf_addr_t)(unsigned long)u_base_platform);
272 	}
273 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
274 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
275 	}
276 #undef NEW_AUX_ENT
277 	/* AT_NULL is zero; clear the rest too */
278 	memset(&elf_info[ei_index], 0,
279 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
280 
281 	/* And advance past the AT_NULL entry.  */
282 	ei_index += 2;
283 
284 	sp = STACK_ADD(p, ei_index);
285 
286 	items = (argc + 1) + (envc + 1) + 1;
287 	bprm->p = STACK_ROUND(sp, items);
288 
289 	/* Point sp at the lowest address on the stack */
290 #ifdef CONFIG_STACK_GROWSUP
291 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
292 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
293 #else
294 	sp = (elf_addr_t __user *)bprm->p;
295 #endif
296 
297 
298 	/*
299 	 * Grow the stack manually; some architectures have a limit on how
300 	 * far ahead a user-space access may be in order to grow the stack.
301 	 */
302 	vma = find_extend_vma(current->mm, bprm->p);
303 	if (!vma)
304 		return -EFAULT;
305 
306 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
307 	if (__put_user(argc, sp++))
308 		return -EFAULT;
309 
310 	/* Populate list of argv pointers back to argv strings. */
311 	p = current->mm->arg_end = current->mm->arg_start;
312 	while (argc-- > 0) {
313 		size_t len;
314 		if (__put_user((elf_addr_t)p, sp++))
315 			return -EFAULT;
316 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
317 		if (!len || len > MAX_ARG_STRLEN)
318 			return -EINVAL;
319 		p += len;
320 	}
321 	if (__put_user(0, sp++))
322 		return -EFAULT;
323 	current->mm->arg_end = p;
324 
325 	/* Populate list of envp pointers back to envp strings. */
326 	current->mm->env_end = current->mm->env_start = p;
327 	while (envc-- > 0) {
328 		size_t len;
329 		if (__put_user((elf_addr_t)p, sp++))
330 			return -EFAULT;
331 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
332 		if (!len || len > MAX_ARG_STRLEN)
333 			return -EINVAL;
334 		p += len;
335 	}
336 	if (__put_user(0, sp++))
337 		return -EFAULT;
338 	current->mm->env_end = p;
339 
340 	/* Put the elf_info on the stack in the right place.  */
341 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
342 		return -EFAULT;
343 	return 0;
344 }
345 
346 #ifndef elf_map
347 
348 static unsigned long elf_map(struct file *filep, unsigned long addr,
349 		const struct elf_phdr *eppnt, int prot, int type,
350 		unsigned long total_size)
351 {
352 	unsigned long map_addr;
353 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
354 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	addr = ELF_PAGESTART(addr);
356 	size = ELF_PAGEALIGN(size);
357 
358 	/* mmap() will return -EINVAL if given a zero size, but a
359 	 * segment with zero filesize is perfectly valid */
360 	if (!size)
361 		return addr;
362 
363 	/*
364 	* total_size is the size of the ELF (interpreter) image.
365 	* The _first_ mmap needs to know the full size, otherwise
366 	* randomization might put this image into an overlapping
367 	* position with the ELF binary image. (since size < total_size)
368 	* So we first map the 'big' image - and unmap the remainder at
369 	* the end. (which unmap is needed for ELF images with holes.)
370 	*/
371 	if (total_size) {
372 		total_size = ELF_PAGEALIGN(total_size);
373 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
374 		if (!BAD_ADDR(map_addr))
375 			vm_munmap(map_addr+size, total_size-size);
376 	} else
377 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
378 
379 	if ((type & MAP_FIXED_NOREPLACE) &&
380 	    PTR_ERR((void *)map_addr) == -EEXIST)
381 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
382 			task_pid_nr(current), current->comm, (void *)addr);
383 
384 	return(map_addr);
385 }
386 
387 #endif /* !elf_map */
388 
389 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
390 {
391 	int i, first_idx = -1, last_idx = -1;
392 
393 	for (i = 0; i < nr; i++) {
394 		if (cmds[i].p_type == PT_LOAD) {
395 			last_idx = i;
396 			if (first_idx == -1)
397 				first_idx = i;
398 		}
399 	}
400 	if (first_idx == -1)
401 		return 0;
402 
403 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
404 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
405 }
406 
407 /**
408  * load_elf_phdrs() - load ELF program headers
409  * @elf_ex:   ELF header of the binary whose program headers should be loaded
410  * @elf_file: the opened ELF binary file
411  *
412  * Loads ELF program headers from the binary file elf_file, which has the ELF
413  * header pointed to by elf_ex, into a newly allocated array. The caller is
414  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
415  */
416 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
417 				       struct file *elf_file)
418 {
419 	struct elf_phdr *elf_phdata = NULL;
420 	int retval, err = -1;
421 	loff_t pos = elf_ex->e_phoff;
422 	unsigned int size;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	/* ...and their total size. */
433 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
434 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
435 		goto out;
436 
437 	elf_phdata = kmalloc(size, GFP_KERNEL);
438 	if (!elf_phdata)
439 		goto out;
440 
441 	/* Read in the program headers */
442 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
443 	if (retval != size) {
444 		err = (retval < 0) ? retval : -EIO;
445 		goto out;
446 	}
447 
448 	/* Success! */
449 	err = 0;
450 out:
451 	if (err) {
452 		kfree(elf_phdata);
453 		elf_phdata = NULL;
454 	}
455 	return elf_phdata;
456 }
457 
458 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
459 
460 /**
461  * struct arch_elf_state - arch-specific ELF loading state
462  *
463  * This structure is used to preserve architecture specific data during
464  * the loading of an ELF file, throughout the checking of architecture
465  * specific ELF headers & through to the point where the ELF load is
466  * known to be proceeding (ie. SET_PERSONALITY).
467  *
468  * This implementation is a dummy for architectures which require no
469  * specific state.
470  */
471 struct arch_elf_state {
472 };
473 
474 #define INIT_ARCH_ELF_STATE {}
475 
476 /**
477  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
478  * @ehdr:	The main ELF header
479  * @phdr:	The program header to check
480  * @elf:	The open ELF file
481  * @is_interp:	True if the phdr is from the interpreter of the ELF being
482  *		loaded, else false.
483  * @state:	Architecture-specific state preserved throughout the process
484  *		of loading the ELF.
485  *
486  * Inspects the program header phdr to validate its correctness and/or
487  * suitability for the system. Called once per ELF program header in the
488  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
489  * interpreter.
490  *
491  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
492  *         with that return code.
493  */
494 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
495 				   struct elf_phdr *phdr,
496 				   struct file *elf, bool is_interp,
497 				   struct arch_elf_state *state)
498 {
499 	/* Dummy implementation, always proceed */
500 	return 0;
501 }
502 
503 /**
504  * arch_check_elf() - check an ELF executable
505  * @ehdr:	The main ELF header
506  * @has_interp:	True if the ELF has an interpreter, else false.
507  * @interp_ehdr: The interpreter's ELF header
508  * @state:	Architecture-specific state preserved throughout the process
509  *		of loading the ELF.
510  *
511  * Provides a final opportunity for architecture code to reject the loading
512  * of the ELF & cause an exec syscall to return an error. This is called after
513  * all program headers to be checked by arch_elf_pt_proc have been.
514  *
515  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
516  *         with that return code.
517  */
518 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
519 				 struct elfhdr *interp_ehdr,
520 				 struct arch_elf_state *state)
521 {
522 	/* Dummy implementation, always proceed */
523 	return 0;
524 }
525 
526 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
527 
528 static inline int make_prot(u32 p_flags)
529 {
530 	int prot = 0;
531 
532 	if (p_flags & PF_R)
533 		prot |= PROT_READ;
534 	if (p_flags & PF_W)
535 		prot |= PROT_WRITE;
536 	if (p_flags & PF_X)
537 		prot |= PROT_EXEC;
538 	return prot;
539 }
540 
541 /* This is much more generalized than the library routine read function,
542    so we keep this separate.  Technically the library read function
543    is only provided so that we can read a.out libraries that have
544    an ELF header */
545 
546 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
547 		struct file *interpreter, unsigned long *interp_map_addr,
548 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
549 {
550 	struct elf_phdr *eppnt;
551 	unsigned long load_addr = 0;
552 	int load_addr_set = 0;
553 	unsigned long last_bss = 0, elf_bss = 0;
554 	int bss_prot = 0;
555 	unsigned long error = ~0UL;
556 	unsigned long total_size;
557 	int i;
558 
559 	/* First of all, some simple consistency checks */
560 	if (interp_elf_ex->e_type != ET_EXEC &&
561 	    interp_elf_ex->e_type != ET_DYN)
562 		goto out;
563 	if (!elf_check_arch(interp_elf_ex) ||
564 	    elf_check_fdpic(interp_elf_ex))
565 		goto out;
566 	if (!interpreter->f_op->mmap)
567 		goto out;
568 
569 	total_size = total_mapping_size(interp_elf_phdata,
570 					interp_elf_ex->e_phnum);
571 	if (!total_size) {
572 		error = -EINVAL;
573 		goto out;
574 	}
575 
576 	eppnt = interp_elf_phdata;
577 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
578 		if (eppnt->p_type == PT_LOAD) {
579 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
580 			int elf_prot = make_prot(eppnt->p_flags);
581 			unsigned long vaddr = 0;
582 			unsigned long k, map_addr;
583 
584 			vaddr = eppnt->p_vaddr;
585 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
586 				elf_type |= MAP_FIXED_NOREPLACE;
587 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
588 				load_addr = -vaddr;
589 
590 			map_addr = elf_map(interpreter, load_addr + vaddr,
591 					eppnt, elf_prot, elf_type, total_size);
592 			total_size = 0;
593 			if (!*interp_map_addr)
594 				*interp_map_addr = map_addr;
595 			error = map_addr;
596 			if (BAD_ADDR(map_addr))
597 				goto out;
598 
599 			if (!load_addr_set &&
600 			    interp_elf_ex->e_type == ET_DYN) {
601 				load_addr = map_addr - ELF_PAGESTART(vaddr);
602 				load_addr_set = 1;
603 			}
604 
605 			/*
606 			 * Check to see if the section's size will overflow the
607 			 * allowed task size. Note that p_filesz must always be
608 			 * <= p_memsize so it's only necessary to check p_memsz.
609 			 */
610 			k = load_addr + eppnt->p_vaddr;
611 			if (BAD_ADDR(k) ||
612 			    eppnt->p_filesz > eppnt->p_memsz ||
613 			    eppnt->p_memsz > TASK_SIZE ||
614 			    TASK_SIZE - eppnt->p_memsz < k) {
615 				error = -ENOMEM;
616 				goto out;
617 			}
618 
619 			/*
620 			 * Find the end of the file mapping for this phdr, and
621 			 * keep track of the largest address we see for this.
622 			 */
623 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
624 			if (k > elf_bss)
625 				elf_bss = k;
626 
627 			/*
628 			 * Do the same thing for the memory mapping - between
629 			 * elf_bss and last_bss is the bss section.
630 			 */
631 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
632 			if (k > last_bss) {
633 				last_bss = k;
634 				bss_prot = elf_prot;
635 			}
636 		}
637 	}
638 
639 	/*
640 	 * Now fill out the bss section: first pad the last page from
641 	 * the file up to the page boundary, and zero it from elf_bss
642 	 * up to the end of the page.
643 	 */
644 	if (padzero(elf_bss)) {
645 		error = -EFAULT;
646 		goto out;
647 	}
648 	/*
649 	 * Next, align both the file and mem bss up to the page size,
650 	 * since this is where elf_bss was just zeroed up to, and where
651 	 * last_bss will end after the vm_brk_flags() below.
652 	 */
653 	elf_bss = ELF_PAGEALIGN(elf_bss);
654 	last_bss = ELF_PAGEALIGN(last_bss);
655 	/* Finally, if there is still more bss to allocate, do it. */
656 	if (last_bss > elf_bss) {
657 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
658 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
659 		if (error)
660 			goto out;
661 	}
662 
663 	error = load_addr;
664 out:
665 	return error;
666 }
667 
668 /*
669  * These are the functions used to load ELF style executables and shared
670  * libraries.  There is no binary dependent code anywhere else.
671  */
672 
673 static int load_elf_binary(struct linux_binprm *bprm)
674 {
675 	struct file *interpreter = NULL; /* to shut gcc up */
676  	unsigned long load_addr = 0, load_bias = 0;
677 	int load_addr_set = 0;
678 	unsigned long error;
679 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
680 	unsigned long elf_bss, elf_brk;
681 	int bss_prot = 0;
682 	int retval, i;
683 	unsigned long elf_entry;
684 	unsigned long interp_load_addr = 0;
685 	unsigned long start_code, end_code, start_data, end_data;
686 	unsigned long reloc_func_desc __maybe_unused = 0;
687 	int executable_stack = EXSTACK_DEFAULT;
688 	struct {
689 		struct elfhdr elf_ex;
690 		struct elfhdr interp_elf_ex;
691 	} *loc;
692 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
693 	struct pt_regs *regs;
694 
695 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
696 	if (!loc) {
697 		retval = -ENOMEM;
698 		goto out_ret;
699 	}
700 
701 	/* Get the exec-header */
702 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
703 
704 	retval = -ENOEXEC;
705 	/* First of all, some simple consistency checks */
706 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
707 		goto out;
708 
709 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
710 		goto out;
711 	if (!elf_check_arch(&loc->elf_ex))
712 		goto out;
713 	if (elf_check_fdpic(&loc->elf_ex))
714 		goto out;
715 	if (!bprm->file->f_op->mmap)
716 		goto out;
717 
718 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
719 	if (!elf_phdata)
720 		goto out;
721 
722 	elf_ppnt = elf_phdata;
723 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
724 		char *elf_interpreter;
725 		loff_t pos;
726 
727 		if (elf_ppnt->p_type != PT_INTERP)
728 			continue;
729 
730 		/*
731 		 * This is the program interpreter used for shared libraries -
732 		 * for now assume that this is an a.out format binary.
733 		 */
734 		retval = -ENOEXEC;
735 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
736 			goto out_free_ph;
737 
738 		retval = -ENOMEM;
739 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
740 		if (!elf_interpreter)
741 			goto out_free_ph;
742 
743 		pos = elf_ppnt->p_offset;
744 		retval = kernel_read(bprm->file, elf_interpreter,
745 				     elf_ppnt->p_filesz, &pos);
746 		if (retval != elf_ppnt->p_filesz) {
747 			if (retval >= 0)
748 				retval = -EIO;
749 			goto out_free_interp;
750 		}
751 		/* make sure path is NULL terminated */
752 		retval = -ENOEXEC;
753 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
754 			goto out_free_interp;
755 
756 		interpreter = open_exec(elf_interpreter);
757 		kfree(elf_interpreter);
758 		retval = PTR_ERR(interpreter);
759 		if (IS_ERR(interpreter))
760 			goto out_free_ph;
761 
762 		/*
763 		 * If the binary is not readable then enforce mm->dumpable = 0
764 		 * regardless of the interpreter's permissions.
765 		 */
766 		would_dump(bprm, interpreter);
767 
768 		/* Get the exec headers */
769 		pos = 0;
770 		retval = kernel_read(interpreter, &loc->interp_elf_ex,
771 				     sizeof(loc->interp_elf_ex), &pos);
772 		if (retval != sizeof(loc->interp_elf_ex)) {
773 			if (retval >= 0)
774 				retval = -EIO;
775 			goto out_free_dentry;
776 		}
777 
778 		break;
779 
780 out_free_interp:
781 		kfree(elf_interpreter);
782 		goto out_free_ph;
783 	}
784 
785 	elf_ppnt = elf_phdata;
786 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
787 		switch (elf_ppnt->p_type) {
788 		case PT_GNU_STACK:
789 			if (elf_ppnt->p_flags & PF_X)
790 				executable_stack = EXSTACK_ENABLE_X;
791 			else
792 				executable_stack = EXSTACK_DISABLE_X;
793 			break;
794 
795 		case PT_LOPROC ... PT_HIPROC:
796 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
797 						  bprm->file, false,
798 						  &arch_state);
799 			if (retval)
800 				goto out_free_dentry;
801 			break;
802 		}
803 
804 	/* Some simple consistency checks for the interpreter */
805 	if (interpreter) {
806 		retval = -ELIBBAD;
807 		/* Not an ELF interpreter */
808 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
809 			goto out_free_dentry;
810 		/* Verify the interpreter has a valid arch */
811 		if (!elf_check_arch(&loc->interp_elf_ex) ||
812 		    elf_check_fdpic(&loc->interp_elf_ex))
813 			goto out_free_dentry;
814 
815 		/* Load the interpreter program headers */
816 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
817 						   interpreter);
818 		if (!interp_elf_phdata)
819 			goto out_free_dentry;
820 
821 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
822 		elf_ppnt = interp_elf_phdata;
823 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
824 			switch (elf_ppnt->p_type) {
825 			case PT_LOPROC ... PT_HIPROC:
826 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
827 							  elf_ppnt, interpreter,
828 							  true, &arch_state);
829 				if (retval)
830 					goto out_free_dentry;
831 				break;
832 			}
833 	}
834 
835 	/*
836 	 * Allow arch code to reject the ELF at this point, whilst it's
837 	 * still possible to return an error to the code that invoked
838 	 * the exec syscall.
839 	 */
840 	retval = arch_check_elf(&loc->elf_ex,
841 				!!interpreter, &loc->interp_elf_ex,
842 				&arch_state);
843 	if (retval)
844 		goto out_free_dentry;
845 
846 	/* Flush all traces of the currently running executable */
847 	retval = flush_old_exec(bprm);
848 	if (retval)
849 		goto out_free_dentry;
850 
851 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
852 	   may depend on the personality.  */
853 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
854 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
855 		current->personality |= READ_IMPLIES_EXEC;
856 
857 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
858 		current->flags |= PF_RANDOMIZE;
859 
860 	setup_new_exec(bprm);
861 	install_exec_creds(bprm);
862 
863 	/* Do this so that we can load the interpreter, if need be.  We will
864 	   change some of these later */
865 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
866 				 executable_stack);
867 	if (retval < 0)
868 		goto out_free_dentry;
869 
870 	elf_bss = 0;
871 	elf_brk = 0;
872 
873 	start_code = ~0UL;
874 	end_code = 0;
875 	start_data = 0;
876 	end_data = 0;
877 
878 	/* Now we do a little grungy work by mmapping the ELF image into
879 	   the correct location in memory. */
880 	for(i = 0, elf_ppnt = elf_phdata;
881 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
882 		int elf_prot, elf_flags;
883 		unsigned long k, vaddr;
884 		unsigned long total_size = 0;
885 
886 		if (elf_ppnt->p_type != PT_LOAD)
887 			continue;
888 
889 		if (unlikely (elf_brk > elf_bss)) {
890 			unsigned long nbyte;
891 
892 			/* There was a PT_LOAD segment with p_memsz > p_filesz
893 			   before this one. Map anonymous pages, if needed,
894 			   and clear the area.  */
895 			retval = set_brk(elf_bss + load_bias,
896 					 elf_brk + load_bias,
897 					 bss_prot);
898 			if (retval)
899 				goto out_free_dentry;
900 			nbyte = ELF_PAGEOFFSET(elf_bss);
901 			if (nbyte) {
902 				nbyte = ELF_MIN_ALIGN - nbyte;
903 				if (nbyte > elf_brk - elf_bss)
904 					nbyte = elf_brk - elf_bss;
905 				if (clear_user((void __user *)elf_bss +
906 							load_bias, nbyte)) {
907 					/*
908 					 * This bss-zeroing can fail if the ELF
909 					 * file specifies odd protections. So
910 					 * we don't check the return value
911 					 */
912 				}
913 			}
914 		}
915 
916 		elf_prot = make_prot(elf_ppnt->p_flags);
917 
918 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
919 
920 		vaddr = elf_ppnt->p_vaddr;
921 		/*
922 		 * If we are loading ET_EXEC or we have already performed
923 		 * the ET_DYN load_addr calculations, proceed normally.
924 		 */
925 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
926 			elf_flags |= MAP_FIXED;
927 		} else if (loc->elf_ex.e_type == ET_DYN) {
928 			/*
929 			 * This logic is run once for the first LOAD Program
930 			 * Header for ET_DYN binaries to calculate the
931 			 * randomization (load_bias) for all the LOAD
932 			 * Program Headers, and to calculate the entire
933 			 * size of the ELF mapping (total_size). (Note that
934 			 * load_addr_set is set to true later once the
935 			 * initial mapping is performed.)
936 			 *
937 			 * There are effectively two types of ET_DYN
938 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
939 			 * and loaders (ET_DYN without INTERP, since they
940 			 * _are_ the ELF interpreter). The loaders must
941 			 * be loaded away from programs since the program
942 			 * may otherwise collide with the loader (especially
943 			 * for ET_EXEC which does not have a randomized
944 			 * position). For example to handle invocations of
945 			 * "./ld.so someprog" to test out a new version of
946 			 * the loader, the subsequent program that the
947 			 * loader loads must avoid the loader itself, so
948 			 * they cannot share the same load range. Sufficient
949 			 * room for the brk must be allocated with the
950 			 * loader as well, since brk must be available with
951 			 * the loader.
952 			 *
953 			 * Therefore, programs are loaded offset from
954 			 * ELF_ET_DYN_BASE and loaders are loaded into the
955 			 * independently randomized mmap region (0 load_bias
956 			 * without MAP_FIXED).
957 			 */
958 			if (interpreter) {
959 				load_bias = ELF_ET_DYN_BASE;
960 				if (current->flags & PF_RANDOMIZE)
961 					load_bias += arch_mmap_rnd();
962 				elf_flags |= MAP_FIXED;
963 			} else
964 				load_bias = 0;
965 
966 			/*
967 			 * Since load_bias is used for all subsequent loading
968 			 * calculations, we must lower it by the first vaddr
969 			 * so that the remaining calculations based on the
970 			 * ELF vaddrs will be correctly offset. The result
971 			 * is then page aligned.
972 			 */
973 			load_bias = ELF_PAGESTART(load_bias - vaddr);
974 
975 			total_size = total_mapping_size(elf_phdata,
976 							loc->elf_ex.e_phnum);
977 			if (!total_size) {
978 				retval = -EINVAL;
979 				goto out_free_dentry;
980 			}
981 		}
982 
983 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
984 				elf_prot, elf_flags, total_size);
985 		if (BAD_ADDR(error)) {
986 			retval = IS_ERR((void *)error) ?
987 				PTR_ERR((void*)error) : -EINVAL;
988 			goto out_free_dentry;
989 		}
990 
991 		if (!load_addr_set) {
992 			load_addr_set = 1;
993 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
994 			if (loc->elf_ex.e_type == ET_DYN) {
995 				load_bias += error -
996 				             ELF_PAGESTART(load_bias + vaddr);
997 				load_addr += load_bias;
998 				reloc_func_desc = load_bias;
999 			}
1000 		}
1001 		k = elf_ppnt->p_vaddr;
1002 		if (k < start_code)
1003 			start_code = k;
1004 		if (start_data < k)
1005 			start_data = k;
1006 
1007 		/*
1008 		 * Check to see if the section's size will overflow the
1009 		 * allowed task size. Note that p_filesz must always be
1010 		 * <= p_memsz so it is only necessary to check p_memsz.
1011 		 */
1012 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1013 		    elf_ppnt->p_memsz > TASK_SIZE ||
1014 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1015 			/* set_brk can never work. Avoid overflows. */
1016 			retval = -EINVAL;
1017 			goto out_free_dentry;
1018 		}
1019 
1020 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1021 
1022 		if (k > elf_bss)
1023 			elf_bss = k;
1024 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1025 			end_code = k;
1026 		if (end_data < k)
1027 			end_data = k;
1028 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1029 		if (k > elf_brk) {
1030 			bss_prot = elf_prot;
1031 			elf_brk = k;
1032 		}
1033 	}
1034 
1035 	loc->elf_ex.e_entry += load_bias;
1036 	elf_bss += load_bias;
1037 	elf_brk += load_bias;
1038 	start_code += load_bias;
1039 	end_code += load_bias;
1040 	start_data += load_bias;
1041 	end_data += load_bias;
1042 
1043 	/* Calling set_brk effectively mmaps the pages that we need
1044 	 * for the bss and break sections.  We must do this before
1045 	 * mapping in the interpreter, to make sure it doesn't wind
1046 	 * up getting placed where the bss needs to go.
1047 	 */
1048 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1049 	if (retval)
1050 		goto out_free_dentry;
1051 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1052 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1053 		goto out_free_dentry;
1054 	}
1055 
1056 	if (interpreter) {
1057 		unsigned long interp_map_addr = 0;
1058 
1059 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1060 					    interpreter,
1061 					    &interp_map_addr,
1062 					    load_bias, interp_elf_phdata);
1063 		if (!IS_ERR((void *)elf_entry)) {
1064 			/*
1065 			 * load_elf_interp() returns relocation
1066 			 * adjustment
1067 			 */
1068 			interp_load_addr = elf_entry;
1069 			elf_entry += loc->interp_elf_ex.e_entry;
1070 		}
1071 		if (BAD_ADDR(elf_entry)) {
1072 			retval = IS_ERR((void *)elf_entry) ?
1073 					(int)elf_entry : -EINVAL;
1074 			goto out_free_dentry;
1075 		}
1076 		reloc_func_desc = interp_load_addr;
1077 
1078 		allow_write_access(interpreter);
1079 		fput(interpreter);
1080 	} else {
1081 		elf_entry = loc->elf_ex.e_entry;
1082 		if (BAD_ADDR(elf_entry)) {
1083 			retval = -EINVAL;
1084 			goto out_free_dentry;
1085 		}
1086 	}
1087 
1088 	kfree(interp_elf_phdata);
1089 	kfree(elf_phdata);
1090 
1091 	set_binfmt(&elf_format);
1092 
1093 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1094 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1095 	if (retval < 0)
1096 		goto out;
1097 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1098 
1099 	retval = create_elf_tables(bprm, &loc->elf_ex,
1100 			  load_addr, interp_load_addr);
1101 	if (retval < 0)
1102 		goto out;
1103 	current->mm->end_code = end_code;
1104 	current->mm->start_code = start_code;
1105 	current->mm->start_data = start_data;
1106 	current->mm->end_data = end_data;
1107 	current->mm->start_stack = bprm->p;
1108 
1109 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1110 		/*
1111 		 * For architectures with ELF randomization, when executing
1112 		 * a loader directly (i.e. no interpreter listed in ELF
1113 		 * headers), move the brk area out of the mmap region
1114 		 * (since it grows up, and may collide early with the stack
1115 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1116 		 */
1117 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1118 		    loc->elf_ex.e_type == ET_DYN && !interpreter)
1119 			current->mm->brk = current->mm->start_brk =
1120 				ELF_ET_DYN_BASE;
1121 
1122 		current->mm->brk = current->mm->start_brk =
1123 			arch_randomize_brk(current->mm);
1124 #ifdef compat_brk_randomized
1125 		current->brk_randomized = 1;
1126 #endif
1127 	}
1128 
1129 	if (current->personality & MMAP_PAGE_ZERO) {
1130 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1131 		   and some applications "depend" upon this behavior.
1132 		   Since we do not have the power to recompile these, we
1133 		   emulate the SVr4 behavior. Sigh. */
1134 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1135 				MAP_FIXED | MAP_PRIVATE, 0);
1136 	}
1137 
1138 	regs = current_pt_regs();
1139 #ifdef ELF_PLAT_INIT
1140 	/*
1141 	 * The ABI may specify that certain registers be set up in special
1142 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1143 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1144 	 * that the e_entry field is the address of the function descriptor
1145 	 * for the startup routine, rather than the address of the startup
1146 	 * routine itself.  This macro performs whatever initialization to
1147 	 * the regs structure is required as well as any relocations to the
1148 	 * function descriptor entries when executing dynamically links apps.
1149 	 */
1150 	ELF_PLAT_INIT(regs, reloc_func_desc);
1151 #endif
1152 
1153 	finalize_exec(bprm);
1154 	start_thread(regs, elf_entry, bprm->p);
1155 	retval = 0;
1156 out:
1157 	kfree(loc);
1158 out_ret:
1159 	return retval;
1160 
1161 	/* error cleanup */
1162 out_free_dentry:
1163 	kfree(interp_elf_phdata);
1164 	allow_write_access(interpreter);
1165 	if (interpreter)
1166 		fput(interpreter);
1167 out_free_ph:
1168 	kfree(elf_phdata);
1169 	goto out;
1170 }
1171 
1172 #ifdef CONFIG_USELIB
1173 /* This is really simpleminded and specialized - we are loading an
1174    a.out library that is given an ELF header. */
1175 static int load_elf_library(struct file *file)
1176 {
1177 	struct elf_phdr *elf_phdata;
1178 	struct elf_phdr *eppnt;
1179 	unsigned long elf_bss, bss, len;
1180 	int retval, error, i, j;
1181 	struct elfhdr elf_ex;
1182 	loff_t pos = 0;
1183 
1184 	error = -ENOEXEC;
1185 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1186 	if (retval != sizeof(elf_ex))
1187 		goto out;
1188 
1189 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1190 		goto out;
1191 
1192 	/* First of all, some simple consistency checks */
1193 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1194 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1195 		goto out;
1196 	if (elf_check_fdpic(&elf_ex))
1197 		goto out;
1198 
1199 	/* Now read in all of the header information */
1200 
1201 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1202 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1203 
1204 	error = -ENOMEM;
1205 	elf_phdata = kmalloc(j, GFP_KERNEL);
1206 	if (!elf_phdata)
1207 		goto out;
1208 
1209 	eppnt = elf_phdata;
1210 	error = -ENOEXEC;
1211 	pos =  elf_ex.e_phoff;
1212 	retval = kernel_read(file, eppnt, j, &pos);
1213 	if (retval != j)
1214 		goto out_free_ph;
1215 
1216 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1217 		if ((eppnt + i)->p_type == PT_LOAD)
1218 			j++;
1219 	if (j != 1)
1220 		goto out_free_ph;
1221 
1222 	while (eppnt->p_type != PT_LOAD)
1223 		eppnt++;
1224 
1225 	/* Now use mmap to map the library into memory. */
1226 	error = vm_mmap(file,
1227 			ELF_PAGESTART(eppnt->p_vaddr),
1228 			(eppnt->p_filesz +
1229 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1230 			PROT_READ | PROT_WRITE | PROT_EXEC,
1231 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1232 			(eppnt->p_offset -
1233 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1234 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1235 		goto out_free_ph;
1236 
1237 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1238 	if (padzero(elf_bss)) {
1239 		error = -EFAULT;
1240 		goto out_free_ph;
1241 	}
1242 
1243 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1244 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1245 	if (bss > len) {
1246 		error = vm_brk(len, bss - len);
1247 		if (error)
1248 			goto out_free_ph;
1249 	}
1250 	error = 0;
1251 
1252 out_free_ph:
1253 	kfree(elf_phdata);
1254 out:
1255 	return error;
1256 }
1257 #endif /* #ifdef CONFIG_USELIB */
1258 
1259 #ifdef CONFIG_ELF_CORE
1260 /*
1261  * ELF core dumper
1262  *
1263  * Modelled on fs/exec.c:aout_core_dump()
1264  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1265  */
1266 
1267 /*
1268  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1269  * that are useful for post-mortem analysis are included in every core dump.
1270  * In that way we ensure that the core dump is fully interpretable later
1271  * without matching up the same kernel and hardware config to see what PC values
1272  * meant. These special mappings include - vDSO, vsyscall, and other
1273  * architecture specific mappings
1274  */
1275 static bool always_dump_vma(struct vm_area_struct *vma)
1276 {
1277 	/* Any vsyscall mappings? */
1278 	if (vma == get_gate_vma(vma->vm_mm))
1279 		return true;
1280 
1281 	/*
1282 	 * Assume that all vmas with a .name op should always be dumped.
1283 	 * If this changes, a new vm_ops field can easily be added.
1284 	 */
1285 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1286 		return true;
1287 
1288 	/*
1289 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1290 	 * such as vDSO sections.
1291 	 */
1292 	if (arch_vma_name(vma))
1293 		return true;
1294 
1295 	return false;
1296 }
1297 
1298 /*
1299  * Decide what to dump of a segment, part, all or none.
1300  */
1301 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1302 				   unsigned long mm_flags)
1303 {
1304 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1305 
1306 	/* always dump the vdso and vsyscall sections */
1307 	if (always_dump_vma(vma))
1308 		goto whole;
1309 
1310 	if (vma->vm_flags & VM_DONTDUMP)
1311 		return 0;
1312 
1313 	/* support for DAX */
1314 	if (vma_is_dax(vma)) {
1315 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1316 			goto whole;
1317 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1318 			goto whole;
1319 		return 0;
1320 	}
1321 
1322 	/* Hugetlb memory check */
1323 	if (vma->vm_flags & VM_HUGETLB) {
1324 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1325 			goto whole;
1326 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1327 			goto whole;
1328 		return 0;
1329 	}
1330 
1331 	/* Do not dump I/O mapped devices or special mappings */
1332 	if (vma->vm_flags & VM_IO)
1333 		return 0;
1334 
1335 	/* By default, dump shared memory if mapped from an anonymous file. */
1336 	if (vma->vm_flags & VM_SHARED) {
1337 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1338 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1339 			goto whole;
1340 		return 0;
1341 	}
1342 
1343 	/* Dump segments that have been written to.  */
1344 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1345 		goto whole;
1346 	if (vma->vm_file == NULL)
1347 		return 0;
1348 
1349 	if (FILTER(MAPPED_PRIVATE))
1350 		goto whole;
1351 
1352 	/*
1353 	 * If this looks like the beginning of a DSO or executable mapping,
1354 	 * check for an ELF header.  If we find one, dump the first page to
1355 	 * aid in determining what was mapped here.
1356 	 */
1357 	if (FILTER(ELF_HEADERS) &&
1358 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1359 		u32 __user *header = (u32 __user *) vma->vm_start;
1360 		u32 word;
1361 		mm_segment_t fs = get_fs();
1362 		/*
1363 		 * Doing it this way gets the constant folded by GCC.
1364 		 */
1365 		union {
1366 			u32 cmp;
1367 			char elfmag[SELFMAG];
1368 		} magic;
1369 		BUILD_BUG_ON(SELFMAG != sizeof word);
1370 		magic.elfmag[EI_MAG0] = ELFMAG0;
1371 		magic.elfmag[EI_MAG1] = ELFMAG1;
1372 		magic.elfmag[EI_MAG2] = ELFMAG2;
1373 		magic.elfmag[EI_MAG3] = ELFMAG3;
1374 		/*
1375 		 * Switch to the user "segment" for get_user(),
1376 		 * then put back what elf_core_dump() had in place.
1377 		 */
1378 		set_fs(USER_DS);
1379 		if (unlikely(get_user(word, header)))
1380 			word = 0;
1381 		set_fs(fs);
1382 		if (word == magic.cmp)
1383 			return PAGE_SIZE;
1384 	}
1385 
1386 #undef	FILTER
1387 
1388 	return 0;
1389 
1390 whole:
1391 	return vma->vm_end - vma->vm_start;
1392 }
1393 
1394 /* An ELF note in memory */
1395 struct memelfnote
1396 {
1397 	const char *name;
1398 	int type;
1399 	unsigned int datasz;
1400 	void *data;
1401 };
1402 
1403 static int notesize(struct memelfnote *en)
1404 {
1405 	int sz;
1406 
1407 	sz = sizeof(struct elf_note);
1408 	sz += roundup(strlen(en->name) + 1, 4);
1409 	sz += roundup(en->datasz, 4);
1410 
1411 	return sz;
1412 }
1413 
1414 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1415 {
1416 	struct elf_note en;
1417 	en.n_namesz = strlen(men->name) + 1;
1418 	en.n_descsz = men->datasz;
1419 	en.n_type = men->type;
1420 
1421 	return dump_emit(cprm, &en, sizeof(en)) &&
1422 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1423 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1424 }
1425 
1426 static void fill_elf_header(struct elfhdr *elf, int segs,
1427 			    u16 machine, u32 flags)
1428 {
1429 	memset(elf, 0, sizeof(*elf));
1430 
1431 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1432 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1433 	elf->e_ident[EI_DATA] = ELF_DATA;
1434 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1435 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1436 
1437 	elf->e_type = ET_CORE;
1438 	elf->e_machine = machine;
1439 	elf->e_version = EV_CURRENT;
1440 	elf->e_phoff = sizeof(struct elfhdr);
1441 	elf->e_flags = flags;
1442 	elf->e_ehsize = sizeof(struct elfhdr);
1443 	elf->e_phentsize = sizeof(struct elf_phdr);
1444 	elf->e_phnum = segs;
1445 }
1446 
1447 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1448 {
1449 	phdr->p_type = PT_NOTE;
1450 	phdr->p_offset = offset;
1451 	phdr->p_vaddr = 0;
1452 	phdr->p_paddr = 0;
1453 	phdr->p_filesz = sz;
1454 	phdr->p_memsz = 0;
1455 	phdr->p_flags = 0;
1456 	phdr->p_align = 0;
1457 }
1458 
1459 static void fill_note(struct memelfnote *note, const char *name, int type,
1460 		unsigned int sz, void *data)
1461 {
1462 	note->name = name;
1463 	note->type = type;
1464 	note->datasz = sz;
1465 	note->data = data;
1466 }
1467 
1468 /*
1469  * fill up all the fields in prstatus from the given task struct, except
1470  * registers which need to be filled up separately.
1471  */
1472 static void fill_prstatus(struct elf_prstatus *prstatus,
1473 		struct task_struct *p, long signr)
1474 {
1475 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1476 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1477 	prstatus->pr_sighold = p->blocked.sig[0];
1478 	rcu_read_lock();
1479 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1480 	rcu_read_unlock();
1481 	prstatus->pr_pid = task_pid_vnr(p);
1482 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1483 	prstatus->pr_sid = task_session_vnr(p);
1484 	if (thread_group_leader(p)) {
1485 		struct task_cputime cputime;
1486 
1487 		/*
1488 		 * This is the record for the group leader.  It shows the
1489 		 * group-wide total, not its individual thread total.
1490 		 */
1491 		thread_group_cputime(p, &cputime);
1492 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1493 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1494 	} else {
1495 		u64 utime, stime;
1496 
1497 		task_cputime(p, &utime, &stime);
1498 		prstatus->pr_utime = ns_to_timeval(utime);
1499 		prstatus->pr_stime = ns_to_timeval(stime);
1500 	}
1501 
1502 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1503 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1504 }
1505 
1506 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1507 		       struct mm_struct *mm)
1508 {
1509 	const struct cred *cred;
1510 	unsigned int i, len;
1511 
1512 	/* first copy the parameters from user space */
1513 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1514 
1515 	len = mm->arg_end - mm->arg_start;
1516 	if (len >= ELF_PRARGSZ)
1517 		len = ELF_PRARGSZ-1;
1518 	if (copy_from_user(&psinfo->pr_psargs,
1519 		           (const char __user *)mm->arg_start, len))
1520 		return -EFAULT;
1521 	for(i = 0; i < len; i++)
1522 		if (psinfo->pr_psargs[i] == 0)
1523 			psinfo->pr_psargs[i] = ' ';
1524 	psinfo->pr_psargs[len] = 0;
1525 
1526 	rcu_read_lock();
1527 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1528 	rcu_read_unlock();
1529 	psinfo->pr_pid = task_pid_vnr(p);
1530 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1531 	psinfo->pr_sid = task_session_vnr(p);
1532 
1533 	i = p->state ? ffz(~p->state) + 1 : 0;
1534 	psinfo->pr_state = i;
1535 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1536 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1537 	psinfo->pr_nice = task_nice(p);
1538 	psinfo->pr_flag = p->flags;
1539 	rcu_read_lock();
1540 	cred = __task_cred(p);
1541 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1542 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1543 	rcu_read_unlock();
1544 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1545 
1546 	return 0;
1547 }
1548 
1549 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1550 {
1551 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1552 	int i = 0;
1553 	do
1554 		i += 2;
1555 	while (auxv[i - 2] != AT_NULL);
1556 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1557 }
1558 
1559 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1560 		const kernel_siginfo_t *siginfo)
1561 {
1562 	mm_segment_t old_fs = get_fs();
1563 	set_fs(KERNEL_DS);
1564 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1565 	set_fs(old_fs);
1566 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1567 }
1568 
1569 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1570 /*
1571  * Format of NT_FILE note:
1572  *
1573  * long count     -- how many files are mapped
1574  * long page_size -- units for file_ofs
1575  * array of [COUNT] elements of
1576  *   long start
1577  *   long end
1578  *   long file_ofs
1579  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1580  */
1581 static int fill_files_note(struct memelfnote *note)
1582 {
1583 	struct vm_area_struct *vma;
1584 	unsigned count, size, names_ofs, remaining, n;
1585 	user_long_t *data;
1586 	user_long_t *start_end_ofs;
1587 	char *name_base, *name_curpos;
1588 
1589 	/* *Estimated* file count and total data size needed */
1590 	count = current->mm->map_count;
1591 	if (count > UINT_MAX / 64)
1592 		return -EINVAL;
1593 	size = count * 64;
1594 
1595 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1596  alloc:
1597 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1598 		return -EINVAL;
1599 	size = round_up(size, PAGE_SIZE);
1600 	data = kvmalloc(size, GFP_KERNEL);
1601 	if (ZERO_OR_NULL_PTR(data))
1602 		return -ENOMEM;
1603 
1604 	start_end_ofs = data + 2;
1605 	name_base = name_curpos = ((char *)data) + names_ofs;
1606 	remaining = size - names_ofs;
1607 	count = 0;
1608 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1609 		struct file *file;
1610 		const char *filename;
1611 
1612 		file = vma->vm_file;
1613 		if (!file)
1614 			continue;
1615 		filename = file_path(file, name_curpos, remaining);
1616 		if (IS_ERR(filename)) {
1617 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1618 				kvfree(data);
1619 				size = size * 5 / 4;
1620 				goto alloc;
1621 			}
1622 			continue;
1623 		}
1624 
1625 		/* file_path() fills at the end, move name down */
1626 		/* n = strlen(filename) + 1: */
1627 		n = (name_curpos + remaining) - filename;
1628 		remaining = filename - name_curpos;
1629 		memmove(name_curpos, filename, n);
1630 		name_curpos += n;
1631 
1632 		*start_end_ofs++ = vma->vm_start;
1633 		*start_end_ofs++ = vma->vm_end;
1634 		*start_end_ofs++ = vma->vm_pgoff;
1635 		count++;
1636 	}
1637 
1638 	/* Now we know exact count of files, can store it */
1639 	data[0] = count;
1640 	data[1] = PAGE_SIZE;
1641 	/*
1642 	 * Count usually is less than current->mm->map_count,
1643 	 * we need to move filenames down.
1644 	 */
1645 	n = current->mm->map_count - count;
1646 	if (n != 0) {
1647 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1648 		memmove(name_base - shift_bytes, name_base,
1649 			name_curpos - name_base);
1650 		name_curpos -= shift_bytes;
1651 	}
1652 
1653 	size = name_curpos - (char *)data;
1654 	fill_note(note, "CORE", NT_FILE, size, data);
1655 	return 0;
1656 }
1657 
1658 #ifdef CORE_DUMP_USE_REGSET
1659 #include <linux/regset.h>
1660 
1661 struct elf_thread_core_info {
1662 	struct elf_thread_core_info *next;
1663 	struct task_struct *task;
1664 	struct elf_prstatus prstatus;
1665 	struct memelfnote notes[0];
1666 };
1667 
1668 struct elf_note_info {
1669 	struct elf_thread_core_info *thread;
1670 	struct memelfnote psinfo;
1671 	struct memelfnote signote;
1672 	struct memelfnote auxv;
1673 	struct memelfnote files;
1674 	user_siginfo_t csigdata;
1675 	size_t size;
1676 	int thread_notes;
1677 };
1678 
1679 /*
1680  * When a regset has a writeback hook, we call it on each thread before
1681  * dumping user memory.  On register window machines, this makes sure the
1682  * user memory backing the register data is up to date before we read it.
1683  */
1684 static void do_thread_regset_writeback(struct task_struct *task,
1685 				       const struct user_regset *regset)
1686 {
1687 	if (regset->writeback)
1688 		regset->writeback(task, regset, 1);
1689 }
1690 
1691 #ifndef PRSTATUS_SIZE
1692 #define PRSTATUS_SIZE(S, R) sizeof(S)
1693 #endif
1694 
1695 #ifndef SET_PR_FPVALID
1696 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1697 #endif
1698 
1699 static int fill_thread_core_info(struct elf_thread_core_info *t,
1700 				 const struct user_regset_view *view,
1701 				 long signr, size_t *total)
1702 {
1703 	unsigned int i;
1704 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1705 
1706 	/*
1707 	 * NT_PRSTATUS is the one special case, because the regset data
1708 	 * goes into the pr_reg field inside the note contents, rather
1709 	 * than being the whole note contents.  We fill the reset in here.
1710 	 * We assume that regset 0 is NT_PRSTATUS.
1711 	 */
1712 	fill_prstatus(&t->prstatus, t->task, signr);
1713 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1714 				    &t->prstatus.pr_reg, NULL);
1715 
1716 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1717 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1718 	*total += notesize(&t->notes[0]);
1719 
1720 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1721 
1722 	/*
1723 	 * Each other regset might generate a note too.  For each regset
1724 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1725 	 * all zero and we'll know to skip writing it later.
1726 	 */
1727 	for (i = 1; i < view->n; ++i) {
1728 		const struct user_regset *regset = &view->regsets[i];
1729 		do_thread_regset_writeback(t->task, regset);
1730 		if (regset->core_note_type && regset->get &&
1731 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1732 			int ret;
1733 			size_t size = regset_size(t->task, regset);
1734 			void *data = kmalloc(size, GFP_KERNEL);
1735 			if (unlikely(!data))
1736 				return 0;
1737 			ret = regset->get(t->task, regset,
1738 					  0, size, data, NULL);
1739 			if (unlikely(ret))
1740 				kfree(data);
1741 			else {
1742 				if (regset->core_note_type != NT_PRFPREG)
1743 					fill_note(&t->notes[i], "LINUX",
1744 						  regset->core_note_type,
1745 						  size, data);
1746 				else {
1747 					SET_PR_FPVALID(&t->prstatus,
1748 							1, regset0_size);
1749 					fill_note(&t->notes[i], "CORE",
1750 						  NT_PRFPREG, size, data);
1751 				}
1752 				*total += notesize(&t->notes[i]);
1753 			}
1754 		}
1755 	}
1756 
1757 	return 1;
1758 }
1759 
1760 static int fill_note_info(struct elfhdr *elf, int phdrs,
1761 			  struct elf_note_info *info,
1762 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1763 {
1764 	struct task_struct *dump_task = current;
1765 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1766 	struct elf_thread_core_info *t;
1767 	struct elf_prpsinfo *psinfo;
1768 	struct core_thread *ct;
1769 	unsigned int i;
1770 
1771 	info->size = 0;
1772 	info->thread = NULL;
1773 
1774 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1775 	if (psinfo == NULL) {
1776 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1777 		return 0;
1778 	}
1779 
1780 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1781 
1782 	/*
1783 	 * Figure out how many notes we're going to need for each thread.
1784 	 */
1785 	info->thread_notes = 0;
1786 	for (i = 0; i < view->n; ++i)
1787 		if (view->regsets[i].core_note_type != 0)
1788 			++info->thread_notes;
1789 
1790 	/*
1791 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1792 	 * since it is our one special case.
1793 	 */
1794 	if (unlikely(info->thread_notes == 0) ||
1795 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1796 		WARN_ON(1);
1797 		return 0;
1798 	}
1799 
1800 	/*
1801 	 * Initialize the ELF file header.
1802 	 */
1803 	fill_elf_header(elf, phdrs,
1804 			view->e_machine, view->e_flags);
1805 
1806 	/*
1807 	 * Allocate a structure for each thread.
1808 	 */
1809 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1810 		t = kzalloc(offsetof(struct elf_thread_core_info,
1811 				     notes[info->thread_notes]),
1812 			    GFP_KERNEL);
1813 		if (unlikely(!t))
1814 			return 0;
1815 
1816 		t->task = ct->task;
1817 		if (ct->task == dump_task || !info->thread) {
1818 			t->next = info->thread;
1819 			info->thread = t;
1820 		} else {
1821 			/*
1822 			 * Make sure to keep the original task at
1823 			 * the head of the list.
1824 			 */
1825 			t->next = info->thread->next;
1826 			info->thread->next = t;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Now fill in each thread's information.
1832 	 */
1833 	for (t = info->thread; t != NULL; t = t->next)
1834 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1835 			return 0;
1836 
1837 	/*
1838 	 * Fill in the two process-wide notes.
1839 	 */
1840 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1841 	info->size += notesize(&info->psinfo);
1842 
1843 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1844 	info->size += notesize(&info->signote);
1845 
1846 	fill_auxv_note(&info->auxv, current->mm);
1847 	info->size += notesize(&info->auxv);
1848 
1849 	if (fill_files_note(&info->files) == 0)
1850 		info->size += notesize(&info->files);
1851 
1852 	return 1;
1853 }
1854 
1855 static size_t get_note_info_size(struct elf_note_info *info)
1856 {
1857 	return info->size;
1858 }
1859 
1860 /*
1861  * Write all the notes for each thread.  When writing the first thread, the
1862  * process-wide notes are interleaved after the first thread-specific note.
1863  */
1864 static int write_note_info(struct elf_note_info *info,
1865 			   struct coredump_params *cprm)
1866 {
1867 	bool first = true;
1868 	struct elf_thread_core_info *t = info->thread;
1869 
1870 	do {
1871 		int i;
1872 
1873 		if (!writenote(&t->notes[0], cprm))
1874 			return 0;
1875 
1876 		if (first && !writenote(&info->psinfo, cprm))
1877 			return 0;
1878 		if (first && !writenote(&info->signote, cprm))
1879 			return 0;
1880 		if (first && !writenote(&info->auxv, cprm))
1881 			return 0;
1882 		if (first && info->files.data &&
1883 				!writenote(&info->files, cprm))
1884 			return 0;
1885 
1886 		for (i = 1; i < info->thread_notes; ++i)
1887 			if (t->notes[i].data &&
1888 			    !writenote(&t->notes[i], cprm))
1889 				return 0;
1890 
1891 		first = false;
1892 		t = t->next;
1893 	} while (t);
1894 
1895 	return 1;
1896 }
1897 
1898 static void free_note_info(struct elf_note_info *info)
1899 {
1900 	struct elf_thread_core_info *threads = info->thread;
1901 	while (threads) {
1902 		unsigned int i;
1903 		struct elf_thread_core_info *t = threads;
1904 		threads = t->next;
1905 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1906 		for (i = 1; i < info->thread_notes; ++i)
1907 			kfree(t->notes[i].data);
1908 		kfree(t);
1909 	}
1910 	kfree(info->psinfo.data);
1911 	kvfree(info->files.data);
1912 }
1913 
1914 #else
1915 
1916 /* Here is the structure in which status of each thread is captured. */
1917 struct elf_thread_status
1918 {
1919 	struct list_head list;
1920 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1921 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1922 	struct task_struct *thread;
1923 #ifdef ELF_CORE_COPY_XFPREGS
1924 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1925 #endif
1926 	struct memelfnote notes[3];
1927 	int num_notes;
1928 };
1929 
1930 /*
1931  * In order to add the specific thread information for the elf file format,
1932  * we need to keep a linked list of every threads pr_status and then create
1933  * a single section for them in the final core file.
1934  */
1935 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1936 {
1937 	int sz = 0;
1938 	struct task_struct *p = t->thread;
1939 	t->num_notes = 0;
1940 
1941 	fill_prstatus(&t->prstatus, p, signr);
1942 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1943 
1944 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1945 		  &(t->prstatus));
1946 	t->num_notes++;
1947 	sz += notesize(&t->notes[0]);
1948 
1949 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1950 								&t->fpu))) {
1951 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1952 			  &(t->fpu));
1953 		t->num_notes++;
1954 		sz += notesize(&t->notes[1]);
1955 	}
1956 
1957 #ifdef ELF_CORE_COPY_XFPREGS
1958 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1959 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1960 			  sizeof(t->xfpu), &t->xfpu);
1961 		t->num_notes++;
1962 		sz += notesize(&t->notes[2]);
1963 	}
1964 #endif
1965 	return sz;
1966 }
1967 
1968 struct elf_note_info {
1969 	struct memelfnote *notes;
1970 	struct memelfnote *notes_files;
1971 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1972 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1973 	struct list_head thread_list;
1974 	elf_fpregset_t *fpu;
1975 #ifdef ELF_CORE_COPY_XFPREGS
1976 	elf_fpxregset_t *xfpu;
1977 #endif
1978 	user_siginfo_t csigdata;
1979 	int thread_status_size;
1980 	int numnote;
1981 };
1982 
1983 static int elf_note_info_init(struct elf_note_info *info)
1984 {
1985 	memset(info, 0, sizeof(*info));
1986 	INIT_LIST_HEAD(&info->thread_list);
1987 
1988 	/* Allocate space for ELF notes */
1989 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
1990 	if (!info->notes)
1991 		return 0;
1992 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1993 	if (!info->psinfo)
1994 		return 0;
1995 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1996 	if (!info->prstatus)
1997 		return 0;
1998 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1999 	if (!info->fpu)
2000 		return 0;
2001 #ifdef ELF_CORE_COPY_XFPREGS
2002 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2003 	if (!info->xfpu)
2004 		return 0;
2005 #endif
2006 	return 1;
2007 }
2008 
2009 static int fill_note_info(struct elfhdr *elf, int phdrs,
2010 			  struct elf_note_info *info,
2011 			  const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2012 {
2013 	struct core_thread *ct;
2014 	struct elf_thread_status *ets;
2015 
2016 	if (!elf_note_info_init(info))
2017 		return 0;
2018 
2019 	for (ct = current->mm->core_state->dumper.next;
2020 					ct; ct = ct->next) {
2021 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2022 		if (!ets)
2023 			return 0;
2024 
2025 		ets->thread = ct->task;
2026 		list_add(&ets->list, &info->thread_list);
2027 	}
2028 
2029 	list_for_each_entry(ets, &info->thread_list, list) {
2030 		int sz;
2031 
2032 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2033 		info->thread_status_size += sz;
2034 	}
2035 	/* now collect the dump for the current */
2036 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2037 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2038 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2039 
2040 	/* Set up header */
2041 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2042 
2043 	/*
2044 	 * Set up the notes in similar form to SVR4 core dumps made
2045 	 * with info from their /proc.
2046 	 */
2047 
2048 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2049 		  sizeof(*info->prstatus), info->prstatus);
2050 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2051 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2052 		  sizeof(*info->psinfo), info->psinfo);
2053 
2054 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2055 	fill_auxv_note(info->notes + 3, current->mm);
2056 	info->numnote = 4;
2057 
2058 	if (fill_files_note(info->notes + info->numnote) == 0) {
2059 		info->notes_files = info->notes + info->numnote;
2060 		info->numnote++;
2061 	}
2062 
2063 	/* Try to dump the FPU. */
2064 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2065 							       info->fpu);
2066 	if (info->prstatus->pr_fpvalid)
2067 		fill_note(info->notes + info->numnote++,
2068 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2069 #ifdef ELF_CORE_COPY_XFPREGS
2070 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2071 		fill_note(info->notes + info->numnote++,
2072 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2073 			  sizeof(*info->xfpu), info->xfpu);
2074 #endif
2075 
2076 	return 1;
2077 }
2078 
2079 static size_t get_note_info_size(struct elf_note_info *info)
2080 {
2081 	int sz = 0;
2082 	int i;
2083 
2084 	for (i = 0; i < info->numnote; i++)
2085 		sz += notesize(info->notes + i);
2086 
2087 	sz += info->thread_status_size;
2088 
2089 	return sz;
2090 }
2091 
2092 static int write_note_info(struct elf_note_info *info,
2093 			   struct coredump_params *cprm)
2094 {
2095 	struct elf_thread_status *ets;
2096 	int i;
2097 
2098 	for (i = 0; i < info->numnote; i++)
2099 		if (!writenote(info->notes + i, cprm))
2100 			return 0;
2101 
2102 	/* write out the thread status notes section */
2103 	list_for_each_entry(ets, &info->thread_list, list) {
2104 		for (i = 0; i < ets->num_notes; i++)
2105 			if (!writenote(&ets->notes[i], cprm))
2106 				return 0;
2107 	}
2108 
2109 	return 1;
2110 }
2111 
2112 static void free_note_info(struct elf_note_info *info)
2113 {
2114 	while (!list_empty(&info->thread_list)) {
2115 		struct list_head *tmp = info->thread_list.next;
2116 		list_del(tmp);
2117 		kfree(list_entry(tmp, struct elf_thread_status, list));
2118 	}
2119 
2120 	/* Free data possibly allocated by fill_files_note(): */
2121 	if (info->notes_files)
2122 		kvfree(info->notes_files->data);
2123 
2124 	kfree(info->prstatus);
2125 	kfree(info->psinfo);
2126 	kfree(info->notes);
2127 	kfree(info->fpu);
2128 #ifdef ELF_CORE_COPY_XFPREGS
2129 	kfree(info->xfpu);
2130 #endif
2131 }
2132 
2133 #endif
2134 
2135 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2136 					struct vm_area_struct *gate_vma)
2137 {
2138 	struct vm_area_struct *ret = tsk->mm->mmap;
2139 
2140 	if (ret)
2141 		return ret;
2142 	return gate_vma;
2143 }
2144 /*
2145  * Helper function for iterating across a vma list.  It ensures that the caller
2146  * will visit `gate_vma' prior to terminating the search.
2147  */
2148 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2149 					struct vm_area_struct *gate_vma)
2150 {
2151 	struct vm_area_struct *ret;
2152 
2153 	ret = this_vma->vm_next;
2154 	if (ret)
2155 		return ret;
2156 	if (this_vma == gate_vma)
2157 		return NULL;
2158 	return gate_vma;
2159 }
2160 
2161 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2162 			     elf_addr_t e_shoff, int segs)
2163 {
2164 	elf->e_shoff = e_shoff;
2165 	elf->e_shentsize = sizeof(*shdr4extnum);
2166 	elf->e_shnum = 1;
2167 	elf->e_shstrndx = SHN_UNDEF;
2168 
2169 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2170 
2171 	shdr4extnum->sh_type = SHT_NULL;
2172 	shdr4extnum->sh_size = elf->e_shnum;
2173 	shdr4extnum->sh_link = elf->e_shstrndx;
2174 	shdr4extnum->sh_info = segs;
2175 }
2176 
2177 /*
2178  * Actual dumper
2179  *
2180  * This is a two-pass process; first we find the offsets of the bits,
2181  * and then they are actually written out.  If we run out of core limit
2182  * we just truncate.
2183  */
2184 static int elf_core_dump(struct coredump_params *cprm)
2185 {
2186 	int has_dumped = 0;
2187 	mm_segment_t fs;
2188 	int segs, i;
2189 	size_t vma_data_size = 0;
2190 	struct vm_area_struct *vma, *gate_vma;
2191 	struct elfhdr *elf = NULL;
2192 	loff_t offset = 0, dataoff;
2193 	struct elf_note_info info = { };
2194 	struct elf_phdr *phdr4note = NULL;
2195 	struct elf_shdr *shdr4extnum = NULL;
2196 	Elf_Half e_phnum;
2197 	elf_addr_t e_shoff;
2198 	elf_addr_t *vma_filesz = NULL;
2199 
2200 	/*
2201 	 * We no longer stop all VM operations.
2202 	 *
2203 	 * This is because those proceses that could possibly change map_count
2204 	 * or the mmap / vma pages are now blocked in do_exit on current
2205 	 * finishing this core dump.
2206 	 *
2207 	 * Only ptrace can touch these memory addresses, but it doesn't change
2208 	 * the map_count or the pages allocated. So no possibility of crashing
2209 	 * exists while dumping the mm->vm_next areas to the core file.
2210 	 */
2211 
2212 	/* alloc memory for large data structures: too large to be on stack */
2213 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2214 	if (!elf)
2215 		goto out;
2216 	/*
2217 	 * The number of segs are recored into ELF header as 16bit value.
2218 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2219 	 */
2220 	segs = current->mm->map_count;
2221 	segs += elf_core_extra_phdrs();
2222 
2223 	gate_vma = get_gate_vma(current->mm);
2224 	if (gate_vma != NULL)
2225 		segs++;
2226 
2227 	/* for notes section */
2228 	segs++;
2229 
2230 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2231 	 * this, kernel supports extended numbering. Have a look at
2232 	 * include/linux/elf.h for further information. */
2233 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2234 
2235 	/*
2236 	 * Collect all the non-memory information about the process for the
2237 	 * notes.  This also sets up the file header.
2238 	 */
2239 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2240 		goto cleanup;
2241 
2242 	has_dumped = 1;
2243 
2244 	fs = get_fs();
2245 	set_fs(KERNEL_DS);
2246 
2247 	offset += sizeof(*elf);				/* Elf header */
2248 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2249 
2250 	/* Write notes phdr entry */
2251 	{
2252 		size_t sz = get_note_info_size(&info);
2253 
2254 		sz += elf_coredump_extra_notes_size();
2255 
2256 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2257 		if (!phdr4note)
2258 			goto end_coredump;
2259 
2260 		fill_elf_note_phdr(phdr4note, sz, offset);
2261 		offset += sz;
2262 	}
2263 
2264 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2265 
2266 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2267 		goto end_coredump;
2268 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2269 			      GFP_KERNEL);
2270 	if (ZERO_OR_NULL_PTR(vma_filesz))
2271 		goto end_coredump;
2272 
2273 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2274 			vma = next_vma(vma, gate_vma)) {
2275 		unsigned long dump_size;
2276 
2277 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2278 		vma_filesz[i++] = dump_size;
2279 		vma_data_size += dump_size;
2280 	}
2281 
2282 	offset += vma_data_size;
2283 	offset += elf_core_extra_data_size();
2284 	e_shoff = offset;
2285 
2286 	if (e_phnum == PN_XNUM) {
2287 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2288 		if (!shdr4extnum)
2289 			goto end_coredump;
2290 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2291 	}
2292 
2293 	offset = dataoff;
2294 
2295 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2296 		goto end_coredump;
2297 
2298 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2299 		goto end_coredump;
2300 
2301 	/* Write program headers for segments dump */
2302 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2303 			vma = next_vma(vma, gate_vma)) {
2304 		struct elf_phdr phdr;
2305 
2306 		phdr.p_type = PT_LOAD;
2307 		phdr.p_offset = offset;
2308 		phdr.p_vaddr = vma->vm_start;
2309 		phdr.p_paddr = 0;
2310 		phdr.p_filesz = vma_filesz[i++];
2311 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2312 		offset += phdr.p_filesz;
2313 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2314 		if (vma->vm_flags & VM_WRITE)
2315 			phdr.p_flags |= PF_W;
2316 		if (vma->vm_flags & VM_EXEC)
2317 			phdr.p_flags |= PF_X;
2318 		phdr.p_align = ELF_EXEC_PAGESIZE;
2319 
2320 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2321 			goto end_coredump;
2322 	}
2323 
2324 	if (!elf_core_write_extra_phdrs(cprm, offset))
2325 		goto end_coredump;
2326 
2327  	/* write out the notes section */
2328 	if (!write_note_info(&info, cprm))
2329 		goto end_coredump;
2330 
2331 	if (elf_coredump_extra_notes_write(cprm))
2332 		goto end_coredump;
2333 
2334 	/* Align to page */
2335 	if (!dump_skip(cprm, dataoff - cprm->pos))
2336 		goto end_coredump;
2337 
2338 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2339 			vma = next_vma(vma, gate_vma)) {
2340 		unsigned long addr;
2341 		unsigned long end;
2342 
2343 		end = vma->vm_start + vma_filesz[i++];
2344 
2345 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2346 			struct page *page;
2347 			int stop;
2348 
2349 			page = get_dump_page(addr);
2350 			if (page) {
2351 				void *kaddr = kmap(page);
2352 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2353 				kunmap(page);
2354 				put_page(page);
2355 			} else
2356 				stop = !dump_skip(cprm, PAGE_SIZE);
2357 			if (stop)
2358 				goto end_coredump;
2359 		}
2360 	}
2361 	dump_truncate(cprm);
2362 
2363 	if (!elf_core_write_extra_data(cprm))
2364 		goto end_coredump;
2365 
2366 	if (e_phnum == PN_XNUM) {
2367 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2368 			goto end_coredump;
2369 	}
2370 
2371 end_coredump:
2372 	set_fs(fs);
2373 
2374 cleanup:
2375 	free_note_info(&info);
2376 	kfree(shdr4extnum);
2377 	kvfree(vma_filesz);
2378 	kfree(phdr4note);
2379 	kfree(elf);
2380 out:
2381 	return has_dumped;
2382 }
2383 
2384 #endif		/* CONFIG_ELF_CORE */
2385 
2386 static int __init init_elf_binfmt(void)
2387 {
2388 	register_binfmt(&elf_format);
2389 	return 0;
2390 }
2391 
2392 static void __exit exit_elf_binfmt(void)
2393 {
2394 	/* Remove the COFF and ELF loaders. */
2395 	unregister_binfmt(&elf_format);
2396 }
2397 
2398 core_initcall(init_elf_binfmt);
2399 module_exit(exit_elf_binfmt);
2400 MODULE_LICENSE("GPL");
2401