xref: /linux/fs/btrfs/bio.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "dev-replace.h"
14 #include "rcu-string.h"
15 #include "zoned.h"
16 #include "file-item.h"
17 #include "raid-stripe-tree.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /* Is this a data path I/O that needs storage layer checksum and repair? */
31 static inline bool is_data_bbio(struct btrfs_bio *bbio)
32 {
33 	return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
34 }
35 
36 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
37 {
38 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
39 }
40 
41 /*
42  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
43  * is already initialized by the block layer.
44  */
45 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
46 		    btrfs_bio_end_io_t end_io, void *private)
47 {
48 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
49 	bbio->fs_info = fs_info;
50 	bbio->end_io = end_io;
51 	bbio->private = private;
52 	atomic_set(&bbio->pending_ios, 1);
53 }
54 
55 /*
56  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
57  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
58  *
59  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60  * a mempool.
61  */
62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 				  struct btrfs_fs_info *fs_info,
64 				  btrfs_bio_end_io_t end_io, void *private)
65 {
66 	struct btrfs_bio *bbio;
67 	struct bio *bio;
68 
69 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 	bbio = btrfs_bio(bio);
71 	btrfs_bio_init(bbio, fs_info, end_io, private);
72 	return bbio;
73 }
74 
75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 					 struct btrfs_bio *orig_bbio,
77 					 u64 map_length, bool use_append)
78 {
79 	struct btrfs_bio *bbio;
80 	struct bio *bio;
81 
82 	if (use_append) {
83 		unsigned int nr_segs;
84 
85 		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
86 				   &btrfs_clone_bioset, map_length);
87 	} else {
88 		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
89 				GFP_NOFS, &btrfs_clone_bioset);
90 	}
91 	bbio = btrfs_bio(bio);
92 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
93 	bbio->inode = orig_bbio->inode;
94 	bbio->file_offset = orig_bbio->file_offset;
95 	orig_bbio->file_offset += map_length;
96 	if (bbio_has_ordered_extent(bbio)) {
97 		refcount_inc(&orig_bbio->ordered->refs);
98 		bbio->ordered = orig_bbio->ordered;
99 	}
100 	atomic_inc(&orig_bbio->pending_ios);
101 	return bbio;
102 }
103 
104 /* Free a bio that was never submitted to the underlying device. */
105 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106 {
107 	if (bbio_has_ordered_extent(bbio))
108 		btrfs_put_ordered_extent(bbio->ordered);
109 	bio_put(&bbio->bio);
110 }
111 
112 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113 {
114 	if (bbio_has_ordered_extent(bbio)) {
115 		struct btrfs_ordered_extent *ordered = bbio->ordered;
116 
117 		bbio->end_io(bbio);
118 		btrfs_put_ordered_extent(ordered);
119 	} else {
120 		bbio->end_io(bbio);
121 	}
122 }
123 
124 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125 {
126 	bbio->bio.bi_status = status;
127 	__btrfs_bio_end_io(bbio);
128 }
129 
130 static void btrfs_orig_write_end_io(struct bio *bio);
131 
132 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
133 				       struct btrfs_bio *orig_bbio)
134 {
135 	/*
136 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
137 	 * just blindly propagate a write failure here.  Instead increment the
138 	 * error count in the original I/O context so that it is guaranteed to
139 	 * be larger than the error tolerance.
140 	 */
141 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
142 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
143 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144 
145 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146 	} else {
147 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
148 	}
149 }
150 
151 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152 {
153 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
154 		struct btrfs_bio *orig_bbio = bbio->private;
155 
156 		if (bbio->bio.bi_status)
157 			btrfs_bbio_propagate_error(bbio, orig_bbio);
158 		btrfs_cleanup_bio(bbio);
159 		bbio = orig_bbio;
160 	}
161 
162 	if (atomic_dec_and_test(&bbio->pending_ios))
163 		__btrfs_bio_end_io(bbio);
164 }
165 
166 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167 {
168 	if (cur_mirror == fbio->num_copies)
169 		return cur_mirror + 1 - fbio->num_copies;
170 	return cur_mirror + 1;
171 }
172 
173 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
174 {
175 	if (cur_mirror == 1)
176 		return fbio->num_copies;
177 	return cur_mirror - 1;
178 }
179 
180 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181 {
182 	if (atomic_dec_and_test(&fbio->repair_count)) {
183 		btrfs_orig_bbio_end_io(fbio->bbio);
184 		mempool_free(fbio, &btrfs_failed_bio_pool);
185 	}
186 }
187 
188 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
189 				 struct btrfs_device *dev)
190 {
191 	struct btrfs_failed_bio *fbio = repair_bbio->private;
192 	struct btrfs_inode *inode = repair_bbio->inode;
193 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
194 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
195 	int mirror = repair_bbio->mirror_num;
196 
197 	/*
198 	 * We can only trigger this for data bio, which doesn't support larger
199 	 * folios yet.
200 	 */
201 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
202 
203 	if (repair_bbio->bio.bi_status ||
204 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
205 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
206 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
207 
208 		mirror = next_repair_mirror(fbio, mirror);
209 		if (mirror == fbio->bbio->mirror_num) {
210 			btrfs_debug(fs_info, "no mirror left");
211 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
212 			goto done;
213 		}
214 
215 		btrfs_submit_bio(repair_bbio, mirror);
216 		return;
217 	}
218 
219 	do {
220 		mirror = prev_repair_mirror(fbio, mirror);
221 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
222 				  repair_bbio->file_offset, fs_info->sectorsize,
223 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
224 				  page_folio(bv->bv_page), bv->bv_offset, mirror);
225 	} while (mirror != fbio->bbio->mirror_num);
226 
227 done:
228 	btrfs_repair_done(fbio);
229 	bio_put(&repair_bbio->bio);
230 }
231 
232 /*
233  * Try to kick off a repair read to the next available mirror for a bad sector.
234  *
235  * This primarily tries to recover good data to serve the actual read request,
236  * but also tries to write the good data back to the bad mirror(s) when a
237  * read succeeded to restore the redundancy.
238  */
239 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
240 						  u32 bio_offset,
241 						  struct bio_vec *bv,
242 						  struct btrfs_failed_bio *fbio)
243 {
244 	struct btrfs_inode *inode = failed_bbio->inode;
245 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
246 	const u32 sectorsize = fs_info->sectorsize;
247 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
248 	struct btrfs_bio *repair_bbio;
249 	struct bio *repair_bio;
250 	int num_copies;
251 	int mirror;
252 
253 	btrfs_debug(fs_info, "repair read error: read error at %llu",
254 		    failed_bbio->file_offset + bio_offset);
255 
256 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
257 	if (num_copies == 1) {
258 		btrfs_debug(fs_info, "no copy to repair from");
259 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
260 		return fbio;
261 	}
262 
263 	if (!fbio) {
264 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
265 		fbio->bbio = failed_bbio;
266 		fbio->num_copies = num_copies;
267 		atomic_set(&fbio->repair_count, 1);
268 	}
269 
270 	atomic_inc(&fbio->repair_count);
271 
272 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
273 				      &btrfs_repair_bioset);
274 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
275 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
276 
277 	repair_bbio = btrfs_bio(repair_bio);
278 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
279 	repair_bbio->inode = failed_bbio->inode;
280 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
281 
282 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
283 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
284 	btrfs_submit_bio(repair_bbio, mirror);
285 	return fbio;
286 }
287 
288 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
289 {
290 	struct btrfs_inode *inode = bbio->inode;
291 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
292 	u32 sectorsize = fs_info->sectorsize;
293 	struct bvec_iter *iter = &bbio->saved_iter;
294 	blk_status_t status = bbio->bio.bi_status;
295 	struct btrfs_failed_bio *fbio = NULL;
296 	u32 offset = 0;
297 
298 	/* Read-repair requires the inode field to be set by the submitter. */
299 	ASSERT(inode);
300 
301 	/*
302 	 * Hand off repair bios to the repair code as there is no upper level
303 	 * submitter for them.
304 	 */
305 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
306 		btrfs_end_repair_bio(bbio, dev);
307 		return;
308 	}
309 
310 	/* Clear the I/O error. A failed repair will reset it. */
311 	bbio->bio.bi_status = BLK_STS_OK;
312 
313 	while (iter->bi_size) {
314 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
315 
316 		bv.bv_len = min(bv.bv_len, sectorsize);
317 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
318 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
319 
320 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
321 		offset += sectorsize;
322 	}
323 
324 	if (bbio->csum != bbio->csum_inline)
325 		kfree(bbio->csum);
326 
327 	if (fbio)
328 		btrfs_repair_done(fbio);
329 	else
330 		btrfs_orig_bbio_end_io(bbio);
331 }
332 
333 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
334 {
335 	if (!dev || !dev->bdev)
336 		return;
337 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
338 		return;
339 
340 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
341 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
342 	else if (!(bio->bi_opf & REQ_RAHEAD))
343 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
344 	if (bio->bi_opf & REQ_PREFLUSH)
345 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
346 }
347 
348 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
349 						struct bio *bio)
350 {
351 	if (bio->bi_opf & REQ_META)
352 		return fs_info->endio_meta_workers;
353 	return fs_info->endio_workers;
354 }
355 
356 static void btrfs_end_bio_work(struct work_struct *work)
357 {
358 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
359 
360 	/* Metadata reads are checked and repaired by the submitter. */
361 	if (is_data_bbio(bbio))
362 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
363 	else
364 		btrfs_orig_bbio_end_io(bbio);
365 }
366 
367 static void btrfs_simple_end_io(struct bio *bio)
368 {
369 	struct btrfs_bio *bbio = btrfs_bio(bio);
370 	struct btrfs_device *dev = bio->bi_private;
371 	struct btrfs_fs_info *fs_info = bbio->fs_info;
372 
373 	btrfs_bio_counter_dec(fs_info);
374 
375 	if (bio->bi_status)
376 		btrfs_log_dev_io_error(bio, dev);
377 
378 	if (bio_op(bio) == REQ_OP_READ) {
379 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
380 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
381 	} else {
382 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
383 			btrfs_record_physical_zoned(bbio);
384 		btrfs_orig_bbio_end_io(bbio);
385 	}
386 }
387 
388 static void btrfs_raid56_end_io(struct bio *bio)
389 {
390 	struct btrfs_io_context *bioc = bio->bi_private;
391 	struct btrfs_bio *bbio = btrfs_bio(bio);
392 
393 	btrfs_bio_counter_dec(bioc->fs_info);
394 	bbio->mirror_num = bioc->mirror_num;
395 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
396 		btrfs_check_read_bio(bbio, NULL);
397 	else
398 		btrfs_orig_bbio_end_io(bbio);
399 
400 	btrfs_put_bioc(bioc);
401 }
402 
403 static void btrfs_orig_write_end_io(struct bio *bio)
404 {
405 	struct btrfs_io_stripe *stripe = bio->bi_private;
406 	struct btrfs_io_context *bioc = stripe->bioc;
407 	struct btrfs_bio *bbio = btrfs_bio(bio);
408 
409 	btrfs_bio_counter_dec(bioc->fs_info);
410 
411 	if (bio->bi_status) {
412 		atomic_inc(&bioc->error);
413 		btrfs_log_dev_io_error(bio, stripe->dev);
414 	}
415 
416 	/*
417 	 * Only send an error to the higher layers if it is beyond the tolerance
418 	 * threshold.
419 	 */
420 	if (atomic_read(&bioc->error) > bioc->max_errors)
421 		bio->bi_status = BLK_STS_IOERR;
422 	else
423 		bio->bi_status = BLK_STS_OK;
424 
425 	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
426 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
427 
428 	btrfs_orig_bbio_end_io(bbio);
429 	btrfs_put_bioc(bioc);
430 }
431 
432 static void btrfs_clone_write_end_io(struct bio *bio)
433 {
434 	struct btrfs_io_stripe *stripe = bio->bi_private;
435 
436 	if (bio->bi_status) {
437 		atomic_inc(&stripe->bioc->error);
438 		btrfs_log_dev_io_error(bio, stripe->dev);
439 	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
440 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
441 	}
442 
443 	/* Pass on control to the original bio this one was cloned from */
444 	bio_endio(stripe->bioc->orig_bio);
445 	bio_put(bio);
446 }
447 
448 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
449 {
450 	if (!dev || !dev->bdev ||
451 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
452 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
453 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
454 		bio_io_error(bio);
455 		return;
456 	}
457 
458 	bio_set_dev(bio, dev->bdev);
459 
460 	/*
461 	 * For zone append writing, bi_sector must point the beginning of the
462 	 * zone
463 	 */
464 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
465 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
466 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
467 
468 		ASSERT(btrfs_dev_is_sequential(dev, physical));
469 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
470 	}
471 	btrfs_debug_in_rcu(dev->fs_info,
472 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
473 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
474 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
475 		dev->devid, bio->bi_iter.bi_size);
476 
477 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
478 		blkcg_punt_bio_submit(bio);
479 	else
480 		submit_bio(bio);
481 }
482 
483 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
484 {
485 	struct bio *orig_bio = bioc->orig_bio, *bio;
486 
487 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
488 
489 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
490 	if (dev_nr == bioc->num_stripes - 1) {
491 		bio = orig_bio;
492 		bio->bi_end_io = btrfs_orig_write_end_io;
493 	} else {
494 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
495 		bio_inc_remaining(orig_bio);
496 		bio->bi_end_io = btrfs_clone_write_end_io;
497 	}
498 
499 	bio->bi_private = &bioc->stripes[dev_nr];
500 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
501 	bioc->stripes[dev_nr].bioc = bioc;
502 	bioc->size = bio->bi_iter.bi_size;
503 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
504 }
505 
506 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
507 			       struct btrfs_io_stripe *smap, int mirror_num)
508 {
509 	if (!bioc) {
510 		/* Single mirror read/write fast path. */
511 		btrfs_bio(bio)->mirror_num = mirror_num;
512 		if (bio_op(bio) != REQ_OP_READ)
513 			btrfs_bio(bio)->orig_physical = smap->physical;
514 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
515 		if (bio_op(bio) != REQ_OP_READ)
516 			btrfs_bio(bio)->orig_physical = smap->physical;
517 		bio->bi_private = smap->dev;
518 		bio->bi_end_io = btrfs_simple_end_io;
519 		btrfs_submit_dev_bio(smap->dev, bio);
520 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
521 		/* Parity RAID write or read recovery. */
522 		bio->bi_private = bioc;
523 		bio->bi_end_io = btrfs_raid56_end_io;
524 		if (bio_op(bio) == REQ_OP_READ)
525 			raid56_parity_recover(bio, bioc, mirror_num);
526 		else
527 			raid56_parity_write(bio, bioc);
528 	} else {
529 		/* Write to multiple mirrors. */
530 		int total_devs = bioc->num_stripes;
531 
532 		bioc->orig_bio = bio;
533 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
534 			btrfs_submit_mirrored_bio(bioc, dev_nr);
535 	}
536 }
537 
538 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
539 {
540 	if (bbio->bio.bi_opf & REQ_META)
541 		return btree_csum_one_bio(bbio);
542 	return btrfs_csum_one_bio(bbio);
543 }
544 
545 /*
546  * Async submit bios are used to offload expensive checksumming onto the worker
547  * threads.
548  */
549 struct async_submit_bio {
550 	struct btrfs_bio *bbio;
551 	struct btrfs_io_context *bioc;
552 	struct btrfs_io_stripe smap;
553 	int mirror_num;
554 	struct btrfs_work work;
555 };
556 
557 /*
558  * In order to insert checksums into the metadata in large chunks, we wait
559  * until bio submission time.   All the pages in the bio are checksummed and
560  * sums are attached onto the ordered extent record.
561  *
562  * At IO completion time the csums attached on the ordered extent record are
563  * inserted into the btree.
564  */
565 static void run_one_async_start(struct btrfs_work *work)
566 {
567 	struct async_submit_bio *async =
568 		container_of(work, struct async_submit_bio, work);
569 	blk_status_t ret;
570 
571 	ret = btrfs_bio_csum(async->bbio);
572 	if (ret)
573 		async->bbio->bio.bi_status = ret;
574 }
575 
576 /*
577  * In order to insert checksums into the metadata in large chunks, we wait
578  * until bio submission time.   All the pages in the bio are checksummed and
579  * sums are attached onto the ordered extent record.
580  *
581  * At IO completion time the csums attached on the ordered extent record are
582  * inserted into the tree.
583  *
584  * If called with @do_free == true, then it will free the work struct.
585  */
586 static void run_one_async_done(struct btrfs_work *work, bool do_free)
587 {
588 	struct async_submit_bio *async =
589 		container_of(work, struct async_submit_bio, work);
590 	struct bio *bio = &async->bbio->bio;
591 
592 	if (do_free) {
593 		kfree(container_of(work, struct async_submit_bio, work));
594 		return;
595 	}
596 
597 	/* If an error occurred we just want to clean up the bio and move on. */
598 	if (bio->bi_status) {
599 		btrfs_orig_bbio_end_io(async->bbio);
600 		return;
601 	}
602 
603 	/*
604 	 * All of the bios that pass through here are from async helpers.
605 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
606 	 * context.  This changes nothing when cgroups aren't in use.
607 	 */
608 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
609 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
610 }
611 
612 static bool should_async_write(struct btrfs_bio *bbio)
613 {
614 	/* Submit synchronously if the checksum implementation is fast. */
615 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
616 		return false;
617 
618 	/*
619 	 * Try to defer the submission to a workqueue to parallelize the
620 	 * checksum calculation unless the I/O is issued synchronously.
621 	 */
622 	if (op_is_sync(bbio->bio.bi_opf))
623 		return false;
624 
625 	/* Zoned devices require I/O to be submitted in order. */
626 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
627 		return false;
628 
629 	return true;
630 }
631 
632 /*
633  * Submit bio to an async queue.
634  *
635  * Return true if the work has been successfully submitted, else false.
636  */
637 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
638 				struct btrfs_io_context *bioc,
639 				struct btrfs_io_stripe *smap, int mirror_num)
640 {
641 	struct btrfs_fs_info *fs_info = bbio->fs_info;
642 	struct async_submit_bio *async;
643 
644 	async = kmalloc(sizeof(*async), GFP_NOFS);
645 	if (!async)
646 		return false;
647 
648 	async->bbio = bbio;
649 	async->bioc = bioc;
650 	async->smap = *smap;
651 	async->mirror_num = mirror_num;
652 
653 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
654 	btrfs_queue_work(fs_info->workers, &async->work);
655 	return true;
656 }
657 
658 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
659 {
660 	struct btrfs_inode *inode = bbio->inode;
661 	struct btrfs_fs_info *fs_info = bbio->fs_info;
662 	struct btrfs_bio *orig_bbio = bbio;
663 	struct bio *bio = &bbio->bio;
664 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
665 	u64 length = bio->bi_iter.bi_size;
666 	u64 map_length = length;
667 	bool use_append = btrfs_use_zone_append(bbio);
668 	struct btrfs_io_context *bioc = NULL;
669 	struct btrfs_io_stripe smap;
670 	blk_status_t ret;
671 	int error;
672 
673 	smap.is_scrub = !bbio->inode;
674 
675 	btrfs_bio_counter_inc_blocked(fs_info);
676 	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
677 				&bioc, &smap, &mirror_num);
678 	if (error) {
679 		ret = errno_to_blk_status(error);
680 		goto fail;
681 	}
682 
683 	map_length = min(map_length, length);
684 	if (use_append)
685 		map_length = min(map_length, fs_info->max_zone_append_size);
686 
687 	if (map_length < length) {
688 		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
689 		bio = &bbio->bio;
690 	}
691 
692 	/*
693 	 * Save the iter for the end_io handler and preload the checksums for
694 	 * data reads.
695 	 */
696 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
697 		bbio->saved_iter = bio->bi_iter;
698 		ret = btrfs_lookup_bio_sums(bbio);
699 		if (ret)
700 			goto fail_put_bio;
701 	}
702 
703 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
704 		if (use_append) {
705 			bio->bi_opf &= ~REQ_OP_WRITE;
706 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
707 		}
708 
709 		if (is_data_bbio(bbio) && bioc &&
710 		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
711 			/*
712 			 * No locking for the list update, as we only add to
713 			 * the list in the I/O submission path, and list
714 			 * iteration only happens in the completion path, which
715 			 * can't happen until after the last submission.
716 			 */
717 			btrfs_get_bioc(bioc);
718 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
719 		}
720 
721 		/*
722 		 * Csum items for reloc roots have already been cloned at this
723 		 * point, so they are handled as part of the no-checksum case.
724 		 */
725 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
726 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
727 		    !btrfs_is_data_reloc_root(inode->root)) {
728 			if (should_async_write(bbio) &&
729 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
730 				goto done;
731 
732 			ret = btrfs_bio_csum(bbio);
733 			if (ret)
734 				goto fail_put_bio;
735 		} else if (use_append) {
736 			ret = btrfs_alloc_dummy_sum(bbio);
737 			if (ret)
738 				goto fail_put_bio;
739 		}
740 	}
741 
742 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
743 done:
744 	return map_length == length;
745 
746 fail_put_bio:
747 	if (map_length < length)
748 		btrfs_cleanup_bio(bbio);
749 fail:
750 	btrfs_bio_counter_dec(fs_info);
751 	btrfs_bio_end_io(orig_bbio, ret);
752 	/* Do not submit another chunk */
753 	return true;
754 }
755 
756 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
757 {
758 	/* If bbio->inode is not populated, its file_offset must be 0. */
759 	ASSERT(bbio->inode || bbio->file_offset == 0);
760 
761 	while (!btrfs_submit_chunk(bbio, mirror_num))
762 		;
763 }
764 
765 /*
766  * Submit a repair write.
767  *
768  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
769  * RAID setup.  Here we only want to write the one bad copy, so we do the
770  * mapping ourselves and submit the bio directly.
771  *
772  * The I/O is issued synchronously to block the repair read completion from
773  * freeing the bio.
774  */
775 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
776 			    u64 length, u64 logical, struct folio *folio,
777 			    unsigned int folio_offset, int mirror_num)
778 {
779 	struct btrfs_io_stripe smap = { 0 };
780 	struct bio_vec bvec;
781 	struct bio bio;
782 	int ret = 0;
783 
784 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
785 	BUG_ON(!mirror_num);
786 
787 	if (btrfs_repair_one_zone(fs_info, logical))
788 		return 0;
789 
790 	/*
791 	 * Avoid races with device replace and make sure our bioc has devices
792 	 * associated to its stripes that don't go away while we are doing the
793 	 * read repair operation.
794 	 */
795 	btrfs_bio_counter_inc_blocked(fs_info);
796 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
797 	if (ret < 0)
798 		goto out_counter_dec;
799 
800 	if (!smap.dev->bdev ||
801 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
802 		ret = -EIO;
803 		goto out_counter_dec;
804 	}
805 
806 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
807 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
808 	ret = bio_add_folio(&bio, folio, length, folio_offset);
809 	ASSERT(ret);
810 	ret = submit_bio_wait(&bio);
811 	if (ret) {
812 		/* try to remap that extent elsewhere? */
813 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
814 		goto out_bio_uninit;
815 	}
816 
817 	btrfs_info_rl_in_rcu(fs_info,
818 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
819 			     ino, start, btrfs_dev_name(smap.dev),
820 			     smap.physical >> SECTOR_SHIFT);
821 	ret = 0;
822 
823 out_bio_uninit:
824 	bio_uninit(&bio);
825 out_counter_dec:
826 	btrfs_bio_counter_dec(fs_info);
827 	return ret;
828 }
829 
830 /*
831  * Submit a btrfs_bio based repair write.
832  *
833  * If @dev_replace is true, the write would be submitted to dev-replace target.
834  */
835 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
836 {
837 	struct btrfs_fs_info *fs_info = bbio->fs_info;
838 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
839 	u64 length = bbio->bio.bi_iter.bi_size;
840 	struct btrfs_io_stripe smap = { 0 };
841 	int ret;
842 
843 	ASSERT(fs_info);
844 	ASSERT(mirror_num > 0);
845 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
846 	ASSERT(!bbio->inode);
847 
848 	btrfs_bio_counter_inc_blocked(fs_info);
849 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
850 	if (ret < 0)
851 		goto fail;
852 
853 	if (dev_replace) {
854 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
855 		smap.dev = fs_info->dev_replace.tgtdev;
856 	}
857 	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
858 	return;
859 
860 fail:
861 	btrfs_bio_counter_dec(fs_info);
862 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
863 }
864 
865 int __init btrfs_bioset_init(void)
866 {
867 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
868 			offsetof(struct btrfs_bio, bio),
869 			BIOSET_NEED_BVECS))
870 		return -ENOMEM;
871 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
872 			offsetof(struct btrfs_bio, bio), 0))
873 		goto out_free_bioset;
874 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
875 			offsetof(struct btrfs_bio, bio),
876 			BIOSET_NEED_BVECS))
877 		goto out_free_clone_bioset;
878 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
879 				      sizeof(struct btrfs_failed_bio)))
880 		goto out_free_repair_bioset;
881 	return 0;
882 
883 out_free_repair_bioset:
884 	bioset_exit(&btrfs_repair_bioset);
885 out_free_clone_bioset:
886 	bioset_exit(&btrfs_clone_bioset);
887 out_free_bioset:
888 	bioset_exit(&btrfs_bioset);
889 	return -ENOMEM;
890 }
891 
892 void __cold btrfs_bioset_exit(void)
893 {
894 	mempool_exit(&btrfs_failed_bio_pool);
895 	bioset_exit(&btrfs_repair_bioset);
896 	bioset_exit(&btrfs_clone_bioset);
897 	bioset_exit(&btrfs_bioset);
898 }
899