xref: /linux/fs/btrfs/block-group.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 
18 /*
19  * Return target flags in extended format or 0 if restripe for this chunk_type
20  * is not in progress
21  *
22  * Should be called with balance_lock held
23  */
24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25 {
26 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 	u64 target = 0;
28 
29 	if (!bctl)
30 		return 0;
31 
32 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 	}
42 
43 	return target;
44 }
45 
46 /*
47  * @flags: available profiles in extended format (see ctree.h)
48  *
49  * Return reduced profile in chunk format.  If profile changing is in progress
50  * (either running or paused) picks the target profile (if it's already
51  * available), otherwise falls back to plain reducing.
52  */
53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54 {
55 	u64 num_devices = fs_info->fs_devices->rw_devices;
56 	u64 target;
57 	u64 raid_type;
58 	u64 allowed = 0;
59 
60 	/*
61 	 * See if restripe for this chunk_type is in progress, if so try to
62 	 * reduce to the target profile
63 	 */
64 	spin_lock(&fs_info->balance_lock);
65 	target = get_restripe_target(fs_info, flags);
66 	if (target) {
67 		/* Pick target profile only if it's already available */
68 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 			spin_unlock(&fs_info->balance_lock);
70 			return extended_to_chunk(target);
71 		}
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119 {
120 	return get_alloc_profile(fs_info, orig_flags);
121 }
122 
123 void btrfs_get_block_group(struct btrfs_block_group *cache)
124 {
125 	atomic_inc(&cache->count);
126 }
127 
128 void btrfs_put_block_group(struct btrfs_block_group *cache)
129 {
130 	if (atomic_dec_and_test(&cache->count)) {
131 		WARN_ON(cache->pinned > 0);
132 		WARN_ON(cache->reserved > 0);
133 
134 		/*
135 		 * If not empty, someone is still holding mutex of
136 		 * full_stripe_lock, which can only be released by caller.
137 		 * And it will definitely cause use-after-free when caller
138 		 * tries to release full stripe lock.
139 		 *
140 		 * No better way to resolve, but only to warn.
141 		 */
142 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 		kfree(cache->free_space_ctl);
144 		kfree(cache);
145 	}
146 }
147 
148 /*
149  * This adds the block group to the fs_info rb tree for the block group cache
150  */
151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 				       struct btrfs_block_group *block_group)
153 {
154 	struct rb_node **p;
155 	struct rb_node *parent = NULL;
156 	struct btrfs_block_group *cache;
157 
158 	spin_lock(&info->block_group_cache_lock);
159 	p = &info->block_group_cache_tree.rb_node;
160 
161 	while (*p) {
162 		parent = *p;
163 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
164 		if (block_group->start < cache->start) {
165 			p = &(*p)->rb_left;
166 		} else if (block_group->start > cache->start) {
167 			p = &(*p)->rb_right;
168 		} else {
169 			spin_unlock(&info->block_group_cache_lock);
170 			return -EEXIST;
171 		}
172 	}
173 
174 	rb_link_node(&block_group->cache_node, parent, p);
175 	rb_insert_color(&block_group->cache_node,
176 			&info->block_group_cache_tree);
177 
178 	if (info->first_logical_byte > block_group->start)
179 		info->first_logical_byte = block_group->start;
180 
181 	spin_unlock(&info->block_group_cache_lock);
182 
183 	return 0;
184 }
185 
186 /*
187  * This will return the block group at or after bytenr if contains is 0, else
188  * it will return the block group that contains the bytenr
189  */
190 static struct btrfs_block_group *block_group_cache_tree_search(
191 		struct btrfs_fs_info *info, u64 bytenr, int contains)
192 {
193 	struct btrfs_block_group *cache, *ret = NULL;
194 	struct rb_node *n;
195 	u64 end, start;
196 
197 	spin_lock(&info->block_group_cache_lock);
198 	n = info->block_group_cache_tree.rb_node;
199 
200 	while (n) {
201 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
202 		end = cache->start + cache->length - 1;
203 		start = cache->start;
204 
205 		if (bytenr < start) {
206 			if (!contains && (!ret || start < ret->start))
207 				ret = cache;
208 			n = n->rb_left;
209 		} else if (bytenr > start) {
210 			if (contains && bytenr <= end) {
211 				ret = cache;
212 				break;
213 			}
214 			n = n->rb_right;
215 		} else {
216 			ret = cache;
217 			break;
218 		}
219 	}
220 	if (ret) {
221 		btrfs_get_block_group(ret);
222 		if (bytenr == 0 && info->first_logical_byte > ret->start)
223 			info->first_logical_byte = ret->start;
224 	}
225 	spin_unlock(&info->block_group_cache_lock);
226 
227 	return ret;
228 }
229 
230 /*
231  * Return the block group that starts at or after bytenr
232  */
233 struct btrfs_block_group *btrfs_lookup_first_block_group(
234 		struct btrfs_fs_info *info, u64 bytenr)
235 {
236 	return block_group_cache_tree_search(info, bytenr, 0);
237 }
238 
239 /*
240  * Return the block group that contains the given bytenr
241  */
242 struct btrfs_block_group *btrfs_lookup_block_group(
243 		struct btrfs_fs_info *info, u64 bytenr)
244 {
245 	return block_group_cache_tree_search(info, bytenr, 1);
246 }
247 
248 struct btrfs_block_group *btrfs_next_block_group(
249 		struct btrfs_block_group *cache)
250 {
251 	struct btrfs_fs_info *fs_info = cache->fs_info;
252 	struct rb_node *node;
253 
254 	spin_lock(&fs_info->block_group_cache_lock);
255 
256 	/* If our block group was removed, we need a full search. */
257 	if (RB_EMPTY_NODE(&cache->cache_node)) {
258 		const u64 next_bytenr = cache->start + cache->length;
259 
260 		spin_unlock(&fs_info->block_group_cache_lock);
261 		btrfs_put_block_group(cache);
262 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
263 	}
264 	node = rb_next(&cache->cache_node);
265 	btrfs_put_block_group(cache);
266 	if (node) {
267 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
268 		btrfs_get_block_group(cache);
269 	} else
270 		cache = NULL;
271 	spin_unlock(&fs_info->block_group_cache_lock);
272 	return cache;
273 }
274 
275 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
276 {
277 	struct btrfs_block_group *bg;
278 	bool ret = true;
279 
280 	bg = btrfs_lookup_block_group(fs_info, bytenr);
281 	if (!bg)
282 		return false;
283 
284 	spin_lock(&bg->lock);
285 	if (bg->ro)
286 		ret = false;
287 	else
288 		atomic_inc(&bg->nocow_writers);
289 	spin_unlock(&bg->lock);
290 
291 	/* No put on block group, done by btrfs_dec_nocow_writers */
292 	if (!ret)
293 		btrfs_put_block_group(bg);
294 
295 	return ret;
296 }
297 
298 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
299 {
300 	struct btrfs_block_group *bg;
301 
302 	bg = btrfs_lookup_block_group(fs_info, bytenr);
303 	ASSERT(bg);
304 	if (atomic_dec_and_test(&bg->nocow_writers))
305 		wake_up_var(&bg->nocow_writers);
306 	/*
307 	 * Once for our lookup and once for the lookup done by a previous call
308 	 * to btrfs_inc_nocow_writers()
309 	 */
310 	btrfs_put_block_group(bg);
311 	btrfs_put_block_group(bg);
312 }
313 
314 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
315 {
316 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
317 }
318 
319 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
320 					const u64 start)
321 {
322 	struct btrfs_block_group *bg;
323 
324 	bg = btrfs_lookup_block_group(fs_info, start);
325 	ASSERT(bg);
326 	if (atomic_dec_and_test(&bg->reservations))
327 		wake_up_var(&bg->reservations);
328 	btrfs_put_block_group(bg);
329 }
330 
331 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
332 {
333 	struct btrfs_space_info *space_info = bg->space_info;
334 
335 	ASSERT(bg->ro);
336 
337 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
338 		return;
339 
340 	/*
341 	 * Our block group is read only but before we set it to read only,
342 	 * some task might have had allocated an extent from it already, but it
343 	 * has not yet created a respective ordered extent (and added it to a
344 	 * root's list of ordered extents).
345 	 * Therefore wait for any task currently allocating extents, since the
346 	 * block group's reservations counter is incremented while a read lock
347 	 * on the groups' semaphore is held and decremented after releasing
348 	 * the read access on that semaphore and creating the ordered extent.
349 	 */
350 	down_write(&space_info->groups_sem);
351 	up_write(&space_info->groups_sem);
352 
353 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
354 }
355 
356 struct btrfs_caching_control *btrfs_get_caching_control(
357 		struct btrfs_block_group *cache)
358 {
359 	struct btrfs_caching_control *ctl;
360 
361 	spin_lock(&cache->lock);
362 	if (!cache->caching_ctl) {
363 		spin_unlock(&cache->lock);
364 		return NULL;
365 	}
366 
367 	ctl = cache->caching_ctl;
368 	refcount_inc(&ctl->count);
369 	spin_unlock(&cache->lock);
370 	return ctl;
371 }
372 
373 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
374 {
375 	if (refcount_dec_and_test(&ctl->count))
376 		kfree(ctl);
377 }
378 
379 /*
380  * When we wait for progress in the block group caching, its because our
381  * allocation attempt failed at least once.  So, we must sleep and let some
382  * progress happen before we try again.
383  *
384  * This function will sleep at least once waiting for new free space to show
385  * up, and then it will check the block group free space numbers for our min
386  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
387  * a free extent of a given size, but this is a good start.
388  *
389  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
390  * any of the information in this block group.
391  */
392 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
393 					   u64 num_bytes)
394 {
395 	struct btrfs_caching_control *caching_ctl;
396 
397 	caching_ctl = btrfs_get_caching_control(cache);
398 	if (!caching_ctl)
399 		return;
400 
401 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
402 		   (cache->free_space_ctl->free_space >= num_bytes));
403 
404 	btrfs_put_caching_control(caching_ctl);
405 }
406 
407 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
408 {
409 	struct btrfs_caching_control *caching_ctl;
410 	int ret = 0;
411 
412 	caching_ctl = btrfs_get_caching_control(cache);
413 	if (!caching_ctl)
414 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
415 
416 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
417 	if (cache->cached == BTRFS_CACHE_ERROR)
418 		ret = -EIO;
419 	btrfs_put_caching_control(caching_ctl);
420 	return ret;
421 }
422 
423 #ifdef CONFIG_BTRFS_DEBUG
424 static void fragment_free_space(struct btrfs_block_group *block_group)
425 {
426 	struct btrfs_fs_info *fs_info = block_group->fs_info;
427 	u64 start = block_group->start;
428 	u64 len = block_group->length;
429 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
430 		fs_info->nodesize : fs_info->sectorsize;
431 	u64 step = chunk << 1;
432 
433 	while (len > chunk) {
434 		btrfs_remove_free_space(block_group, start, chunk);
435 		start += step;
436 		if (len < step)
437 			len = 0;
438 		else
439 			len -= step;
440 	}
441 }
442 #endif
443 
444 /*
445  * This is only called by btrfs_cache_block_group, since we could have freed
446  * extents we need to check the pinned_extents for any extents that can't be
447  * used yet since their free space will be released as soon as the transaction
448  * commits.
449  */
450 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
451 {
452 	struct btrfs_fs_info *info = block_group->fs_info;
453 	u64 extent_start, extent_end, size, total_added = 0;
454 	int ret;
455 
456 	while (start < end) {
457 		ret = find_first_extent_bit(info->pinned_extents, start,
458 					    &extent_start, &extent_end,
459 					    EXTENT_DIRTY | EXTENT_UPTODATE,
460 					    NULL);
461 		if (ret)
462 			break;
463 
464 		if (extent_start <= start) {
465 			start = extent_end + 1;
466 		} else if (extent_start > start && extent_start < end) {
467 			size = extent_start - start;
468 			total_added += size;
469 			ret = btrfs_add_free_space(block_group, start,
470 						   size);
471 			BUG_ON(ret); /* -ENOMEM or logic error */
472 			start = extent_end + 1;
473 		} else {
474 			break;
475 		}
476 	}
477 
478 	if (start < end) {
479 		size = end - start;
480 		total_added += size;
481 		ret = btrfs_add_free_space(block_group, start, size);
482 		BUG_ON(ret); /* -ENOMEM or logic error */
483 	}
484 
485 	return total_added;
486 }
487 
488 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
489 {
490 	struct btrfs_block_group *block_group = caching_ctl->block_group;
491 	struct btrfs_fs_info *fs_info = block_group->fs_info;
492 	struct btrfs_root *extent_root = fs_info->extent_root;
493 	struct btrfs_path *path;
494 	struct extent_buffer *leaf;
495 	struct btrfs_key key;
496 	u64 total_found = 0;
497 	u64 last = 0;
498 	u32 nritems;
499 	int ret;
500 	bool wakeup = true;
501 
502 	path = btrfs_alloc_path();
503 	if (!path)
504 		return -ENOMEM;
505 
506 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
507 
508 #ifdef CONFIG_BTRFS_DEBUG
509 	/*
510 	 * If we're fragmenting we don't want to make anybody think we can
511 	 * allocate from this block group until we've had a chance to fragment
512 	 * the free space.
513 	 */
514 	if (btrfs_should_fragment_free_space(block_group))
515 		wakeup = false;
516 #endif
517 	/*
518 	 * We don't want to deadlock with somebody trying to allocate a new
519 	 * extent for the extent root while also trying to search the extent
520 	 * root to add free space.  So we skip locking and search the commit
521 	 * root, since its read-only
522 	 */
523 	path->skip_locking = 1;
524 	path->search_commit_root = 1;
525 	path->reada = READA_FORWARD;
526 
527 	key.objectid = last;
528 	key.offset = 0;
529 	key.type = BTRFS_EXTENT_ITEM_KEY;
530 
531 next:
532 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
533 	if (ret < 0)
534 		goto out;
535 
536 	leaf = path->nodes[0];
537 	nritems = btrfs_header_nritems(leaf);
538 
539 	while (1) {
540 		if (btrfs_fs_closing(fs_info) > 1) {
541 			last = (u64)-1;
542 			break;
543 		}
544 
545 		if (path->slots[0] < nritems) {
546 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
547 		} else {
548 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
549 			if (ret)
550 				break;
551 
552 			if (need_resched() ||
553 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
554 				if (wakeup)
555 					caching_ctl->progress = last;
556 				btrfs_release_path(path);
557 				up_read(&fs_info->commit_root_sem);
558 				mutex_unlock(&caching_ctl->mutex);
559 				cond_resched();
560 				mutex_lock(&caching_ctl->mutex);
561 				down_read(&fs_info->commit_root_sem);
562 				goto next;
563 			}
564 
565 			ret = btrfs_next_leaf(extent_root, path);
566 			if (ret < 0)
567 				goto out;
568 			if (ret)
569 				break;
570 			leaf = path->nodes[0];
571 			nritems = btrfs_header_nritems(leaf);
572 			continue;
573 		}
574 
575 		if (key.objectid < last) {
576 			key.objectid = last;
577 			key.offset = 0;
578 			key.type = BTRFS_EXTENT_ITEM_KEY;
579 
580 			if (wakeup)
581 				caching_ctl->progress = last;
582 			btrfs_release_path(path);
583 			goto next;
584 		}
585 
586 		if (key.objectid < block_group->start) {
587 			path->slots[0]++;
588 			continue;
589 		}
590 
591 		if (key.objectid >= block_group->start + block_group->length)
592 			break;
593 
594 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
595 		    key.type == BTRFS_METADATA_ITEM_KEY) {
596 			total_found += add_new_free_space(block_group, last,
597 							  key.objectid);
598 			if (key.type == BTRFS_METADATA_ITEM_KEY)
599 				last = key.objectid +
600 					fs_info->nodesize;
601 			else
602 				last = key.objectid + key.offset;
603 
604 			if (total_found > CACHING_CTL_WAKE_UP) {
605 				total_found = 0;
606 				if (wakeup)
607 					wake_up(&caching_ctl->wait);
608 			}
609 		}
610 		path->slots[0]++;
611 	}
612 	ret = 0;
613 
614 	total_found += add_new_free_space(block_group, last,
615 				block_group->start + block_group->length);
616 	caching_ctl->progress = (u64)-1;
617 
618 out:
619 	btrfs_free_path(path);
620 	return ret;
621 }
622 
623 static noinline void caching_thread(struct btrfs_work *work)
624 {
625 	struct btrfs_block_group *block_group;
626 	struct btrfs_fs_info *fs_info;
627 	struct btrfs_caching_control *caching_ctl;
628 	int ret;
629 
630 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
631 	block_group = caching_ctl->block_group;
632 	fs_info = block_group->fs_info;
633 
634 	mutex_lock(&caching_ctl->mutex);
635 	down_read(&fs_info->commit_root_sem);
636 
637 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
638 		ret = load_free_space_tree(caching_ctl);
639 	else
640 		ret = load_extent_tree_free(caching_ctl);
641 
642 	spin_lock(&block_group->lock);
643 	block_group->caching_ctl = NULL;
644 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
645 	spin_unlock(&block_group->lock);
646 
647 #ifdef CONFIG_BTRFS_DEBUG
648 	if (btrfs_should_fragment_free_space(block_group)) {
649 		u64 bytes_used;
650 
651 		spin_lock(&block_group->space_info->lock);
652 		spin_lock(&block_group->lock);
653 		bytes_used = block_group->length - block_group->used;
654 		block_group->space_info->bytes_used += bytes_used >> 1;
655 		spin_unlock(&block_group->lock);
656 		spin_unlock(&block_group->space_info->lock);
657 		fragment_free_space(block_group);
658 	}
659 #endif
660 
661 	caching_ctl->progress = (u64)-1;
662 
663 	up_read(&fs_info->commit_root_sem);
664 	btrfs_free_excluded_extents(block_group);
665 	mutex_unlock(&caching_ctl->mutex);
666 
667 	wake_up(&caching_ctl->wait);
668 
669 	btrfs_put_caching_control(caching_ctl);
670 	btrfs_put_block_group(block_group);
671 }
672 
673 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
674 {
675 	DEFINE_WAIT(wait);
676 	struct btrfs_fs_info *fs_info = cache->fs_info;
677 	struct btrfs_caching_control *caching_ctl;
678 	int ret = 0;
679 
680 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
681 	if (!caching_ctl)
682 		return -ENOMEM;
683 
684 	INIT_LIST_HEAD(&caching_ctl->list);
685 	mutex_init(&caching_ctl->mutex);
686 	init_waitqueue_head(&caching_ctl->wait);
687 	caching_ctl->block_group = cache;
688 	caching_ctl->progress = cache->start;
689 	refcount_set(&caching_ctl->count, 1);
690 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
691 
692 	spin_lock(&cache->lock);
693 	/*
694 	 * This should be a rare occasion, but this could happen I think in the
695 	 * case where one thread starts to load the space cache info, and then
696 	 * some other thread starts a transaction commit which tries to do an
697 	 * allocation while the other thread is still loading the space cache
698 	 * info.  The previous loop should have kept us from choosing this block
699 	 * group, but if we've moved to the state where we will wait on caching
700 	 * block groups we need to first check if we're doing a fast load here,
701 	 * so we can wait for it to finish, otherwise we could end up allocating
702 	 * from a block group who's cache gets evicted for one reason or
703 	 * another.
704 	 */
705 	while (cache->cached == BTRFS_CACHE_FAST) {
706 		struct btrfs_caching_control *ctl;
707 
708 		ctl = cache->caching_ctl;
709 		refcount_inc(&ctl->count);
710 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
711 		spin_unlock(&cache->lock);
712 
713 		schedule();
714 
715 		finish_wait(&ctl->wait, &wait);
716 		btrfs_put_caching_control(ctl);
717 		spin_lock(&cache->lock);
718 	}
719 
720 	if (cache->cached != BTRFS_CACHE_NO) {
721 		spin_unlock(&cache->lock);
722 		kfree(caching_ctl);
723 		return 0;
724 	}
725 	WARN_ON(cache->caching_ctl);
726 	cache->caching_ctl = caching_ctl;
727 	cache->cached = BTRFS_CACHE_FAST;
728 	spin_unlock(&cache->lock);
729 
730 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
731 		mutex_lock(&caching_ctl->mutex);
732 		ret = load_free_space_cache(cache);
733 
734 		spin_lock(&cache->lock);
735 		if (ret == 1) {
736 			cache->caching_ctl = NULL;
737 			cache->cached = BTRFS_CACHE_FINISHED;
738 			cache->last_byte_to_unpin = (u64)-1;
739 			caching_ctl->progress = (u64)-1;
740 		} else {
741 			if (load_cache_only) {
742 				cache->caching_ctl = NULL;
743 				cache->cached = BTRFS_CACHE_NO;
744 			} else {
745 				cache->cached = BTRFS_CACHE_STARTED;
746 				cache->has_caching_ctl = 1;
747 			}
748 		}
749 		spin_unlock(&cache->lock);
750 #ifdef CONFIG_BTRFS_DEBUG
751 		if (ret == 1 &&
752 		    btrfs_should_fragment_free_space(cache)) {
753 			u64 bytes_used;
754 
755 			spin_lock(&cache->space_info->lock);
756 			spin_lock(&cache->lock);
757 			bytes_used = cache->length - cache->used;
758 			cache->space_info->bytes_used += bytes_used >> 1;
759 			spin_unlock(&cache->lock);
760 			spin_unlock(&cache->space_info->lock);
761 			fragment_free_space(cache);
762 		}
763 #endif
764 		mutex_unlock(&caching_ctl->mutex);
765 
766 		wake_up(&caching_ctl->wait);
767 		if (ret == 1) {
768 			btrfs_put_caching_control(caching_ctl);
769 			btrfs_free_excluded_extents(cache);
770 			return 0;
771 		}
772 	} else {
773 		/*
774 		 * We're either using the free space tree or no caching at all.
775 		 * Set cached to the appropriate value and wakeup any waiters.
776 		 */
777 		spin_lock(&cache->lock);
778 		if (load_cache_only) {
779 			cache->caching_ctl = NULL;
780 			cache->cached = BTRFS_CACHE_NO;
781 		} else {
782 			cache->cached = BTRFS_CACHE_STARTED;
783 			cache->has_caching_ctl = 1;
784 		}
785 		spin_unlock(&cache->lock);
786 		wake_up(&caching_ctl->wait);
787 	}
788 
789 	if (load_cache_only) {
790 		btrfs_put_caching_control(caching_ctl);
791 		return 0;
792 	}
793 
794 	down_write(&fs_info->commit_root_sem);
795 	refcount_inc(&caching_ctl->count);
796 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
797 	up_write(&fs_info->commit_root_sem);
798 
799 	btrfs_get_block_group(cache);
800 
801 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
802 
803 	return ret;
804 }
805 
806 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
807 {
808 	u64 extra_flags = chunk_to_extended(flags) &
809 				BTRFS_EXTENDED_PROFILE_MASK;
810 
811 	write_seqlock(&fs_info->profiles_lock);
812 	if (flags & BTRFS_BLOCK_GROUP_DATA)
813 		fs_info->avail_data_alloc_bits &= ~extra_flags;
814 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
815 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
816 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
817 		fs_info->avail_system_alloc_bits &= ~extra_flags;
818 	write_sequnlock(&fs_info->profiles_lock);
819 }
820 
821 /*
822  * Clear incompat bits for the following feature(s):
823  *
824  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
825  *            in the whole filesystem
826  *
827  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
828  */
829 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
830 {
831 	bool found_raid56 = false;
832 	bool found_raid1c34 = false;
833 
834 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
835 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
836 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
837 		struct list_head *head = &fs_info->space_info;
838 		struct btrfs_space_info *sinfo;
839 
840 		list_for_each_entry_rcu(sinfo, head, list) {
841 			down_read(&sinfo->groups_sem);
842 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
843 				found_raid56 = true;
844 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
845 				found_raid56 = true;
846 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
847 				found_raid1c34 = true;
848 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
849 				found_raid1c34 = true;
850 			up_read(&sinfo->groups_sem);
851 		}
852 		if (found_raid56)
853 			btrfs_clear_fs_incompat(fs_info, RAID56);
854 		if (found_raid1c34)
855 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
856 	}
857 }
858 
859 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
860 			     u64 group_start, struct extent_map *em)
861 {
862 	struct btrfs_fs_info *fs_info = trans->fs_info;
863 	struct btrfs_root *root = fs_info->extent_root;
864 	struct btrfs_path *path;
865 	struct btrfs_block_group *block_group;
866 	struct btrfs_free_cluster *cluster;
867 	struct btrfs_root *tree_root = fs_info->tree_root;
868 	struct btrfs_key key;
869 	struct inode *inode;
870 	struct kobject *kobj = NULL;
871 	int ret;
872 	int index;
873 	int factor;
874 	struct btrfs_caching_control *caching_ctl = NULL;
875 	bool remove_em;
876 	bool remove_rsv = false;
877 
878 	block_group = btrfs_lookup_block_group(fs_info, group_start);
879 	BUG_ON(!block_group);
880 	BUG_ON(!block_group->ro);
881 
882 	trace_btrfs_remove_block_group(block_group);
883 	/*
884 	 * Free the reserved super bytes from this block group before
885 	 * remove it.
886 	 */
887 	btrfs_free_excluded_extents(block_group);
888 	btrfs_free_ref_tree_range(fs_info, block_group->start,
889 				  block_group->length);
890 
891 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
892 	factor = btrfs_bg_type_to_factor(block_group->flags);
893 
894 	/* make sure this block group isn't part of an allocation cluster */
895 	cluster = &fs_info->data_alloc_cluster;
896 	spin_lock(&cluster->refill_lock);
897 	btrfs_return_cluster_to_free_space(block_group, cluster);
898 	spin_unlock(&cluster->refill_lock);
899 
900 	/*
901 	 * make sure this block group isn't part of a metadata
902 	 * allocation cluster
903 	 */
904 	cluster = &fs_info->meta_alloc_cluster;
905 	spin_lock(&cluster->refill_lock);
906 	btrfs_return_cluster_to_free_space(block_group, cluster);
907 	spin_unlock(&cluster->refill_lock);
908 
909 	path = btrfs_alloc_path();
910 	if (!path) {
911 		ret = -ENOMEM;
912 		goto out;
913 	}
914 
915 	/*
916 	 * get the inode first so any iput calls done for the io_list
917 	 * aren't the final iput (no unlinks allowed now)
918 	 */
919 	inode = lookup_free_space_inode(block_group, path);
920 
921 	mutex_lock(&trans->transaction->cache_write_mutex);
922 	/*
923 	 * Make sure our free space cache IO is done before removing the
924 	 * free space inode
925 	 */
926 	spin_lock(&trans->transaction->dirty_bgs_lock);
927 	if (!list_empty(&block_group->io_list)) {
928 		list_del_init(&block_group->io_list);
929 
930 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
931 
932 		spin_unlock(&trans->transaction->dirty_bgs_lock);
933 		btrfs_wait_cache_io(trans, block_group, path);
934 		btrfs_put_block_group(block_group);
935 		spin_lock(&trans->transaction->dirty_bgs_lock);
936 	}
937 
938 	if (!list_empty(&block_group->dirty_list)) {
939 		list_del_init(&block_group->dirty_list);
940 		remove_rsv = true;
941 		btrfs_put_block_group(block_group);
942 	}
943 	spin_unlock(&trans->transaction->dirty_bgs_lock);
944 	mutex_unlock(&trans->transaction->cache_write_mutex);
945 
946 	if (!IS_ERR(inode)) {
947 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
948 		if (ret) {
949 			btrfs_add_delayed_iput(inode);
950 			goto out;
951 		}
952 		clear_nlink(inode);
953 		/* One for the block groups ref */
954 		spin_lock(&block_group->lock);
955 		if (block_group->iref) {
956 			block_group->iref = 0;
957 			block_group->inode = NULL;
958 			spin_unlock(&block_group->lock);
959 			iput(inode);
960 		} else {
961 			spin_unlock(&block_group->lock);
962 		}
963 		/* One for our lookup ref */
964 		btrfs_add_delayed_iput(inode);
965 	}
966 
967 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
968 	key.type = 0;
969 	key.offset = block_group->start;
970 
971 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
972 	if (ret < 0)
973 		goto out;
974 	if (ret > 0)
975 		btrfs_release_path(path);
976 	if (ret == 0) {
977 		ret = btrfs_del_item(trans, tree_root, path);
978 		if (ret)
979 			goto out;
980 		btrfs_release_path(path);
981 	}
982 
983 	spin_lock(&fs_info->block_group_cache_lock);
984 	rb_erase(&block_group->cache_node,
985 		 &fs_info->block_group_cache_tree);
986 	RB_CLEAR_NODE(&block_group->cache_node);
987 
988 	if (fs_info->first_logical_byte == block_group->start)
989 		fs_info->first_logical_byte = (u64)-1;
990 	spin_unlock(&fs_info->block_group_cache_lock);
991 
992 	down_write(&block_group->space_info->groups_sem);
993 	/*
994 	 * we must use list_del_init so people can check to see if they
995 	 * are still on the list after taking the semaphore
996 	 */
997 	list_del_init(&block_group->list);
998 	if (list_empty(&block_group->space_info->block_groups[index])) {
999 		kobj = block_group->space_info->block_group_kobjs[index];
1000 		block_group->space_info->block_group_kobjs[index] = NULL;
1001 		clear_avail_alloc_bits(fs_info, block_group->flags);
1002 	}
1003 	up_write(&block_group->space_info->groups_sem);
1004 	clear_incompat_bg_bits(fs_info, block_group->flags);
1005 	if (kobj) {
1006 		kobject_del(kobj);
1007 		kobject_put(kobj);
1008 	}
1009 
1010 	if (block_group->has_caching_ctl)
1011 		caching_ctl = btrfs_get_caching_control(block_group);
1012 	if (block_group->cached == BTRFS_CACHE_STARTED)
1013 		btrfs_wait_block_group_cache_done(block_group);
1014 	if (block_group->has_caching_ctl) {
1015 		down_write(&fs_info->commit_root_sem);
1016 		if (!caching_ctl) {
1017 			struct btrfs_caching_control *ctl;
1018 
1019 			list_for_each_entry(ctl,
1020 				    &fs_info->caching_block_groups, list)
1021 				if (ctl->block_group == block_group) {
1022 					caching_ctl = ctl;
1023 					refcount_inc(&caching_ctl->count);
1024 					break;
1025 				}
1026 		}
1027 		if (caching_ctl)
1028 			list_del_init(&caching_ctl->list);
1029 		up_write(&fs_info->commit_root_sem);
1030 		if (caching_ctl) {
1031 			/* Once for the caching bgs list and once for us. */
1032 			btrfs_put_caching_control(caching_ctl);
1033 			btrfs_put_caching_control(caching_ctl);
1034 		}
1035 	}
1036 
1037 	spin_lock(&trans->transaction->dirty_bgs_lock);
1038 	WARN_ON(!list_empty(&block_group->dirty_list));
1039 	WARN_ON(!list_empty(&block_group->io_list));
1040 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1041 
1042 	btrfs_remove_free_space_cache(block_group);
1043 
1044 	spin_lock(&block_group->space_info->lock);
1045 	list_del_init(&block_group->ro_list);
1046 
1047 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1048 		WARN_ON(block_group->space_info->total_bytes
1049 			< block_group->length);
1050 		WARN_ON(block_group->space_info->bytes_readonly
1051 			< block_group->length);
1052 		WARN_ON(block_group->space_info->disk_total
1053 			< block_group->length * factor);
1054 	}
1055 	block_group->space_info->total_bytes -= block_group->length;
1056 	block_group->space_info->bytes_readonly -= block_group->length;
1057 	block_group->space_info->disk_total -= block_group->length * factor;
1058 
1059 	spin_unlock(&block_group->space_info->lock);
1060 
1061 	key.objectid = block_group->start;
1062 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1063 	key.offset = block_group->length;
1064 
1065 	mutex_lock(&fs_info->chunk_mutex);
1066 	spin_lock(&block_group->lock);
1067 	block_group->removed = 1;
1068 	/*
1069 	 * At this point trimming can't start on this block group, because we
1070 	 * removed the block group from the tree fs_info->block_group_cache_tree
1071 	 * so no one can't find it anymore and even if someone already got this
1072 	 * block group before we removed it from the rbtree, they have already
1073 	 * incremented block_group->trimming - if they didn't, they won't find
1074 	 * any free space entries because we already removed them all when we
1075 	 * called btrfs_remove_free_space_cache().
1076 	 *
1077 	 * And we must not remove the extent map from the fs_info->mapping_tree
1078 	 * to prevent the same logical address range and physical device space
1079 	 * ranges from being reused for a new block group. This is because our
1080 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1081 	 * completely transactionless, so while it is trimming a range the
1082 	 * currently running transaction might finish and a new one start,
1083 	 * allowing for new block groups to be created that can reuse the same
1084 	 * physical device locations unless we take this special care.
1085 	 *
1086 	 * There may also be an implicit trim operation if the file system
1087 	 * is mounted with -odiscard. The same protections must remain
1088 	 * in place until the extents have been discarded completely when
1089 	 * the transaction commit has completed.
1090 	 */
1091 	remove_em = (atomic_read(&block_group->trimming) == 0);
1092 	spin_unlock(&block_group->lock);
1093 
1094 	mutex_unlock(&fs_info->chunk_mutex);
1095 
1096 	ret = remove_block_group_free_space(trans, block_group);
1097 	if (ret)
1098 		goto out;
1099 
1100 	btrfs_put_block_group(block_group);
1101 	btrfs_put_block_group(block_group);
1102 
1103 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1104 	if (ret > 0)
1105 		ret = -EIO;
1106 	if (ret < 0)
1107 		goto out;
1108 
1109 	ret = btrfs_del_item(trans, root, path);
1110 	if (ret)
1111 		goto out;
1112 
1113 	if (remove_em) {
1114 		struct extent_map_tree *em_tree;
1115 
1116 		em_tree = &fs_info->mapping_tree;
1117 		write_lock(&em_tree->lock);
1118 		remove_extent_mapping(em_tree, em);
1119 		write_unlock(&em_tree->lock);
1120 		/* once for the tree */
1121 		free_extent_map(em);
1122 	}
1123 out:
1124 	if (remove_rsv)
1125 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1126 	btrfs_free_path(path);
1127 	return ret;
1128 }
1129 
1130 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1131 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1132 {
1133 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1134 	struct extent_map *em;
1135 	struct map_lookup *map;
1136 	unsigned int num_items;
1137 
1138 	read_lock(&em_tree->lock);
1139 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1140 	read_unlock(&em_tree->lock);
1141 	ASSERT(em && em->start == chunk_offset);
1142 
1143 	/*
1144 	 * We need to reserve 3 + N units from the metadata space info in order
1145 	 * to remove a block group (done at btrfs_remove_chunk() and at
1146 	 * btrfs_remove_block_group()), which are used for:
1147 	 *
1148 	 * 1 unit for adding the free space inode's orphan (located in the tree
1149 	 * of tree roots).
1150 	 * 1 unit for deleting the block group item (located in the extent
1151 	 * tree).
1152 	 * 1 unit for deleting the free space item (located in tree of tree
1153 	 * roots).
1154 	 * N units for deleting N device extent items corresponding to each
1155 	 * stripe (located in the device tree).
1156 	 *
1157 	 * In order to remove a block group we also need to reserve units in the
1158 	 * system space info in order to update the chunk tree (update one or
1159 	 * more device items and remove one chunk item), but this is done at
1160 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1161 	 */
1162 	map = em->map_lookup;
1163 	num_items = 3 + map->num_stripes;
1164 	free_extent_map(em);
1165 
1166 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1167 							   num_items, 1);
1168 }
1169 
1170 /*
1171  * Mark block group @cache read-only, so later write won't happen to block
1172  * group @cache.
1173  *
1174  * If @force is not set, this function will only mark the block group readonly
1175  * if we have enough free space (1M) in other metadata/system block groups.
1176  * If @force is not set, this function will mark the block group readonly
1177  * without checking free space.
1178  *
1179  * NOTE: This function doesn't care if other block groups can contain all the
1180  * data in this block group. That check should be done by relocation routine,
1181  * not this function.
1182  */
1183 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1184 {
1185 	struct btrfs_space_info *sinfo = cache->space_info;
1186 	u64 num_bytes;
1187 	u64 sinfo_used;
1188 	u64 min_allocable_bytes;
1189 	int ret = -ENOSPC;
1190 
1191 	/*
1192 	 * We need some metadata space and system metadata space for
1193 	 * allocating chunks in some corner cases until we force to set
1194 	 * it to be readonly.
1195 	 */
1196 	if ((sinfo->flags &
1197 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1198 	    !force)
1199 		min_allocable_bytes = SZ_1M;
1200 	else
1201 		min_allocable_bytes = 0;
1202 
1203 	spin_lock(&sinfo->lock);
1204 	spin_lock(&cache->lock);
1205 
1206 	if (cache->ro) {
1207 		cache->ro++;
1208 		ret = 0;
1209 		goto out;
1210 	}
1211 
1212 	num_bytes = cache->length - cache->reserved - cache->pinned -
1213 		    cache->bytes_super - cache->used;
1214 	sinfo_used = btrfs_space_info_used(sinfo, true);
1215 
1216 	/*
1217 	 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1218 	 *
1219 	 * Here we make sure if we mark this bg RO, we still have enough
1220 	 * free space as buffer (if min_allocable_bytes is not 0).
1221 	 */
1222 	if (sinfo_used + num_bytes + min_allocable_bytes <=
1223 	    sinfo->total_bytes) {
1224 		sinfo->bytes_readonly += num_bytes;
1225 		cache->ro++;
1226 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1227 		ret = 0;
1228 	}
1229 out:
1230 	spin_unlock(&cache->lock);
1231 	spin_unlock(&sinfo->lock);
1232 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 		btrfs_info(cache->fs_info,
1234 			"unable to make block group %llu ro", cache->start);
1235 		btrfs_info(cache->fs_info,
1236 			"sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1237 			sinfo_used, num_bytes, min_allocable_bytes);
1238 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1239 	}
1240 	return ret;
1241 }
1242 
1243 /*
1244  * Process the unused_bgs list and remove any that don't have any allocated
1245  * space inside of them.
1246  */
1247 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1248 {
1249 	struct btrfs_block_group *block_group;
1250 	struct btrfs_space_info *space_info;
1251 	struct btrfs_trans_handle *trans;
1252 	int ret = 0;
1253 
1254 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1255 		return;
1256 
1257 	spin_lock(&fs_info->unused_bgs_lock);
1258 	while (!list_empty(&fs_info->unused_bgs)) {
1259 		u64 start, end;
1260 		int trimming;
1261 
1262 		block_group = list_first_entry(&fs_info->unused_bgs,
1263 					       struct btrfs_block_group,
1264 					       bg_list);
1265 		list_del_init(&block_group->bg_list);
1266 
1267 		space_info = block_group->space_info;
1268 
1269 		if (ret || btrfs_mixed_space_info(space_info)) {
1270 			btrfs_put_block_group(block_group);
1271 			continue;
1272 		}
1273 		spin_unlock(&fs_info->unused_bgs_lock);
1274 
1275 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
1276 
1277 		/* Don't want to race with allocators so take the groups_sem */
1278 		down_write(&space_info->groups_sem);
1279 		spin_lock(&block_group->lock);
1280 		if (block_group->reserved || block_group->pinned ||
1281 		    block_group->used || block_group->ro ||
1282 		    list_is_singular(&block_group->list)) {
1283 			/*
1284 			 * We want to bail if we made new allocations or have
1285 			 * outstanding allocations in this block group.  We do
1286 			 * the ro check in case balance is currently acting on
1287 			 * this block group.
1288 			 */
1289 			trace_btrfs_skip_unused_block_group(block_group);
1290 			spin_unlock(&block_group->lock);
1291 			up_write(&space_info->groups_sem);
1292 			goto next;
1293 		}
1294 		spin_unlock(&block_group->lock);
1295 
1296 		/* We don't want to force the issue, only flip if it's ok. */
1297 		ret = inc_block_group_ro(block_group, 0);
1298 		up_write(&space_info->groups_sem);
1299 		if (ret < 0) {
1300 			ret = 0;
1301 			goto next;
1302 		}
1303 
1304 		/*
1305 		 * Want to do this before we do anything else so we can recover
1306 		 * properly if we fail to join the transaction.
1307 		 */
1308 		trans = btrfs_start_trans_remove_block_group(fs_info,
1309 						     block_group->start);
1310 		if (IS_ERR(trans)) {
1311 			btrfs_dec_block_group_ro(block_group);
1312 			ret = PTR_ERR(trans);
1313 			goto next;
1314 		}
1315 
1316 		/*
1317 		 * We could have pending pinned extents for this block group,
1318 		 * just delete them, we don't care about them anymore.
1319 		 */
1320 		start = block_group->start;
1321 		end = start + block_group->length - 1;
1322 		/*
1323 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1324 		 * btrfs_finish_extent_commit(). If we are at transaction N,
1325 		 * another task might be running finish_extent_commit() for the
1326 		 * previous transaction N - 1, and have seen a range belonging
1327 		 * to the block group in freed_extents[] before we were able to
1328 		 * clear the whole block group range from freed_extents[]. This
1329 		 * means that task can lookup for the block group after we
1330 		 * unpinned it from freed_extents[] and removed it, leading to
1331 		 * a BUG_ON() at btrfs_unpin_extent_range().
1332 		 */
1333 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
1334 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1335 				  EXTENT_DIRTY);
1336 		if (ret) {
1337 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1338 			btrfs_dec_block_group_ro(block_group);
1339 			goto end_trans;
1340 		}
1341 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1342 				  EXTENT_DIRTY);
1343 		if (ret) {
1344 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1345 			btrfs_dec_block_group_ro(block_group);
1346 			goto end_trans;
1347 		}
1348 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1349 
1350 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1351 		spin_lock(&space_info->lock);
1352 		spin_lock(&block_group->lock);
1353 
1354 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1355 						     -block_group->pinned);
1356 		space_info->bytes_readonly += block_group->pinned;
1357 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1358 				   -block_group->pinned,
1359 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1360 		block_group->pinned = 0;
1361 
1362 		spin_unlock(&block_group->lock);
1363 		spin_unlock(&space_info->lock);
1364 
1365 		/* DISCARD can flip during remount */
1366 		trimming = btrfs_test_opt(fs_info, DISCARD);
1367 
1368 		/* Implicit trim during transaction commit. */
1369 		if (trimming)
1370 			btrfs_get_block_group_trimming(block_group);
1371 
1372 		/*
1373 		 * Btrfs_remove_chunk will abort the transaction if things go
1374 		 * horribly wrong.
1375 		 */
1376 		ret = btrfs_remove_chunk(trans, block_group->start);
1377 
1378 		if (ret) {
1379 			if (trimming)
1380 				btrfs_put_block_group_trimming(block_group);
1381 			goto end_trans;
1382 		}
1383 
1384 		/*
1385 		 * If we're not mounted with -odiscard, we can just forget
1386 		 * about this block group. Otherwise we'll need to wait
1387 		 * until transaction commit to do the actual discard.
1388 		 */
1389 		if (trimming) {
1390 			spin_lock(&fs_info->unused_bgs_lock);
1391 			/*
1392 			 * A concurrent scrub might have added us to the list
1393 			 * fs_info->unused_bgs, so use a list_move operation
1394 			 * to add the block group to the deleted_bgs list.
1395 			 */
1396 			list_move(&block_group->bg_list,
1397 				  &trans->transaction->deleted_bgs);
1398 			spin_unlock(&fs_info->unused_bgs_lock);
1399 			btrfs_get_block_group(block_group);
1400 		}
1401 end_trans:
1402 		btrfs_end_transaction(trans);
1403 next:
1404 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1405 		btrfs_put_block_group(block_group);
1406 		spin_lock(&fs_info->unused_bgs_lock);
1407 	}
1408 	spin_unlock(&fs_info->unused_bgs_lock);
1409 }
1410 
1411 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1412 {
1413 	struct btrfs_fs_info *fs_info = bg->fs_info;
1414 
1415 	spin_lock(&fs_info->unused_bgs_lock);
1416 	if (list_empty(&bg->bg_list)) {
1417 		btrfs_get_block_group(bg);
1418 		trace_btrfs_add_unused_block_group(bg);
1419 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1420 	}
1421 	spin_unlock(&fs_info->unused_bgs_lock);
1422 }
1423 
1424 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1425 				  struct btrfs_path *path,
1426 				  struct btrfs_key *key)
1427 {
1428 	struct btrfs_root *root = fs_info->extent_root;
1429 	int ret = 0;
1430 	struct btrfs_key found_key;
1431 	struct extent_buffer *leaf;
1432 	struct btrfs_block_group_item bg;
1433 	u64 flags;
1434 	int slot;
1435 
1436 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1437 	if (ret < 0)
1438 		goto out;
1439 
1440 	while (1) {
1441 		slot = path->slots[0];
1442 		leaf = path->nodes[0];
1443 		if (slot >= btrfs_header_nritems(leaf)) {
1444 			ret = btrfs_next_leaf(root, path);
1445 			if (ret == 0)
1446 				continue;
1447 			if (ret < 0)
1448 				goto out;
1449 			break;
1450 		}
1451 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1452 
1453 		if (found_key.objectid >= key->objectid &&
1454 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1455 			struct extent_map_tree *em_tree;
1456 			struct extent_map *em;
1457 
1458 			em_tree = &root->fs_info->mapping_tree;
1459 			read_lock(&em_tree->lock);
1460 			em = lookup_extent_mapping(em_tree, found_key.objectid,
1461 						   found_key.offset);
1462 			read_unlock(&em_tree->lock);
1463 			if (!em) {
1464 				btrfs_err(fs_info,
1465 			"logical %llu len %llu found bg but no related chunk",
1466 					  found_key.objectid, found_key.offset);
1467 				ret = -ENOENT;
1468 			} else if (em->start != found_key.objectid ||
1469 				   em->len != found_key.offset) {
1470 				btrfs_err(fs_info,
1471 		"block group %llu len %llu mismatch with chunk %llu len %llu",
1472 					  found_key.objectid, found_key.offset,
1473 					  em->start, em->len);
1474 				ret = -EUCLEAN;
1475 			} else {
1476 				read_extent_buffer(leaf, &bg,
1477 					btrfs_item_ptr_offset(leaf, slot),
1478 					sizeof(bg));
1479 				flags = btrfs_stack_block_group_flags(&bg) &
1480 					BTRFS_BLOCK_GROUP_TYPE_MASK;
1481 
1482 				if (flags != (em->map_lookup->type &
1483 					      BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1484 					btrfs_err(fs_info,
1485 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1486 						found_key.objectid,
1487 						found_key.offset, flags,
1488 						(BTRFS_BLOCK_GROUP_TYPE_MASK &
1489 						 em->map_lookup->type));
1490 					ret = -EUCLEAN;
1491 				} else {
1492 					ret = 0;
1493 				}
1494 			}
1495 			free_extent_map(em);
1496 			goto out;
1497 		}
1498 		path->slots[0]++;
1499 	}
1500 out:
1501 	return ret;
1502 }
1503 
1504 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1505 {
1506 	u64 extra_flags = chunk_to_extended(flags) &
1507 				BTRFS_EXTENDED_PROFILE_MASK;
1508 
1509 	write_seqlock(&fs_info->profiles_lock);
1510 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1511 		fs_info->avail_data_alloc_bits |= extra_flags;
1512 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1513 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1514 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1515 		fs_info->avail_system_alloc_bits |= extra_flags;
1516 	write_sequnlock(&fs_info->profiles_lock);
1517 }
1518 
1519 static int exclude_super_stripes(struct btrfs_block_group *cache)
1520 {
1521 	struct btrfs_fs_info *fs_info = cache->fs_info;
1522 	u64 bytenr;
1523 	u64 *logical;
1524 	int stripe_len;
1525 	int i, nr, ret;
1526 
1527 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1528 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1529 		cache->bytes_super += stripe_len;
1530 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1531 						stripe_len);
1532 		if (ret)
1533 			return ret;
1534 	}
1535 
1536 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1537 		bytenr = btrfs_sb_offset(i);
1538 		ret = btrfs_rmap_block(fs_info, cache->start,
1539 				       bytenr, &logical, &nr, &stripe_len);
1540 		if (ret)
1541 			return ret;
1542 
1543 		while (nr--) {
1544 			u64 start, len;
1545 
1546 			if (logical[nr] > cache->start + cache->length)
1547 				continue;
1548 
1549 			if (logical[nr] + stripe_len <= cache->start)
1550 				continue;
1551 
1552 			start = logical[nr];
1553 			if (start < cache->start) {
1554 				start = cache->start;
1555 				len = (logical[nr] + stripe_len) - start;
1556 			} else {
1557 				len = min_t(u64, stripe_len,
1558 					    cache->start + cache->length - start);
1559 			}
1560 
1561 			cache->bytes_super += len;
1562 			ret = btrfs_add_excluded_extent(fs_info, start, len);
1563 			if (ret) {
1564 				kfree(logical);
1565 				return ret;
1566 			}
1567 		}
1568 
1569 		kfree(logical);
1570 	}
1571 	return 0;
1572 }
1573 
1574 static void link_block_group(struct btrfs_block_group *cache)
1575 {
1576 	struct btrfs_space_info *space_info = cache->space_info;
1577 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1578 	bool first = false;
1579 
1580 	down_write(&space_info->groups_sem);
1581 	if (list_empty(&space_info->block_groups[index]))
1582 		first = true;
1583 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1584 	up_write(&space_info->groups_sem);
1585 
1586 	if (first)
1587 		btrfs_sysfs_add_block_group_type(cache);
1588 }
1589 
1590 static struct btrfs_block_group *btrfs_create_block_group_cache(
1591 		struct btrfs_fs_info *fs_info, u64 start, u64 size)
1592 {
1593 	struct btrfs_block_group *cache;
1594 
1595 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1596 	if (!cache)
1597 		return NULL;
1598 
1599 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1600 					GFP_NOFS);
1601 	if (!cache->free_space_ctl) {
1602 		kfree(cache);
1603 		return NULL;
1604 	}
1605 
1606 	cache->start = start;
1607 	cache->length = size;
1608 
1609 	cache->fs_info = fs_info;
1610 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1611 	set_free_space_tree_thresholds(cache);
1612 
1613 	atomic_set(&cache->count, 1);
1614 	spin_lock_init(&cache->lock);
1615 	init_rwsem(&cache->data_rwsem);
1616 	INIT_LIST_HEAD(&cache->list);
1617 	INIT_LIST_HEAD(&cache->cluster_list);
1618 	INIT_LIST_HEAD(&cache->bg_list);
1619 	INIT_LIST_HEAD(&cache->ro_list);
1620 	INIT_LIST_HEAD(&cache->dirty_list);
1621 	INIT_LIST_HEAD(&cache->io_list);
1622 	btrfs_init_free_space_ctl(cache);
1623 	atomic_set(&cache->trimming, 0);
1624 	mutex_init(&cache->free_space_lock);
1625 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1626 
1627 	return cache;
1628 }
1629 
1630 /*
1631  * Iterate all chunks and verify that each of them has the corresponding block
1632  * group
1633  */
1634 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1635 {
1636 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1637 	struct extent_map *em;
1638 	struct btrfs_block_group *bg;
1639 	u64 start = 0;
1640 	int ret = 0;
1641 
1642 	while (1) {
1643 		read_lock(&map_tree->lock);
1644 		/*
1645 		 * lookup_extent_mapping will return the first extent map
1646 		 * intersecting the range, so setting @len to 1 is enough to
1647 		 * get the first chunk.
1648 		 */
1649 		em = lookup_extent_mapping(map_tree, start, 1);
1650 		read_unlock(&map_tree->lock);
1651 		if (!em)
1652 			break;
1653 
1654 		bg = btrfs_lookup_block_group(fs_info, em->start);
1655 		if (!bg) {
1656 			btrfs_err(fs_info,
1657 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1658 				     em->start, em->len);
1659 			ret = -EUCLEAN;
1660 			free_extent_map(em);
1661 			break;
1662 		}
1663 		if (bg->start != em->start || bg->length != em->len ||
1664 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1665 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1666 			btrfs_err(fs_info,
1667 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1668 				em->start, em->len,
1669 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1670 				bg->start, bg->length,
1671 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1672 			ret = -EUCLEAN;
1673 			free_extent_map(em);
1674 			btrfs_put_block_group(bg);
1675 			break;
1676 		}
1677 		start = em->start + em->len;
1678 		free_extent_map(em);
1679 		btrfs_put_block_group(bg);
1680 	}
1681 	return ret;
1682 }
1683 
1684 static int read_one_block_group(struct btrfs_fs_info *info,
1685 				struct btrfs_path *path,
1686 				const struct btrfs_key *key,
1687 				int need_clear)
1688 {
1689 	struct extent_buffer *leaf = path->nodes[0];
1690 	struct btrfs_block_group *cache;
1691 	struct btrfs_space_info *space_info;
1692 	struct btrfs_block_group_item bgi;
1693 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1694 	int slot = path->slots[0];
1695 	int ret;
1696 
1697 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1698 
1699 	cache = btrfs_create_block_group_cache(info, key->objectid, key->offset);
1700 	if (!cache)
1701 		return -ENOMEM;
1702 
1703 	if (need_clear) {
1704 		/*
1705 		 * When we mount with old space cache, we need to
1706 		 * set BTRFS_DC_CLEAR and set dirty flag.
1707 		 *
1708 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1709 		 *    truncate the old free space cache inode and
1710 		 *    setup a new one.
1711 		 * b) Setting 'dirty flag' makes sure that we flush
1712 		 *    the new space cache info onto disk.
1713 		 */
1714 		if (btrfs_test_opt(info, SPACE_CACHE))
1715 			cache->disk_cache_state = BTRFS_DC_CLEAR;
1716 	}
1717 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1718 			   sizeof(bgi));
1719 	cache->used = btrfs_stack_block_group_used(&bgi);
1720 	cache->flags = btrfs_stack_block_group_flags(&bgi);
1721 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1722 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1723 			btrfs_err(info,
1724 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1725 				  cache->start);
1726 			ret = -EINVAL;
1727 			goto error;
1728 	}
1729 
1730 	/*
1731 	 * We need to exclude the super stripes now so that the space info has
1732 	 * super bytes accounted for, otherwise we'll think we have more space
1733 	 * than we actually do.
1734 	 */
1735 	ret = exclude_super_stripes(cache);
1736 	if (ret) {
1737 		/* We may have excluded something, so call this just in case. */
1738 		btrfs_free_excluded_extents(cache);
1739 		goto error;
1740 	}
1741 
1742 	/*
1743 	 * Check for two cases, either we are full, and therefore don't need
1744 	 * to bother with the caching work since we won't find any space, or we
1745 	 * are empty, and we can just add all the space in and be done with it.
1746 	 * This saves us _a_lot_ of time, particularly in the full case.
1747 	 */
1748 	if (key->offset == cache->used) {
1749 		cache->last_byte_to_unpin = (u64)-1;
1750 		cache->cached = BTRFS_CACHE_FINISHED;
1751 		btrfs_free_excluded_extents(cache);
1752 	} else if (cache->used == 0) {
1753 		cache->last_byte_to_unpin = (u64)-1;
1754 		cache->cached = BTRFS_CACHE_FINISHED;
1755 		add_new_free_space(cache, key->objectid,
1756 				   key->objectid + key->offset);
1757 		btrfs_free_excluded_extents(cache);
1758 	}
1759 
1760 	ret = btrfs_add_block_group_cache(info, cache);
1761 	if (ret) {
1762 		btrfs_remove_free_space_cache(cache);
1763 		goto error;
1764 	}
1765 	trace_btrfs_add_block_group(info, cache, 0);
1766 	btrfs_update_space_info(info, cache->flags, key->offset,
1767 				cache->used, cache->bytes_super, &space_info);
1768 
1769 	cache->space_info = space_info;
1770 
1771 	link_block_group(cache);
1772 
1773 	set_avail_alloc_bits(info, cache->flags);
1774 	if (btrfs_chunk_readonly(info, cache->start)) {
1775 		inc_block_group_ro(cache, 1);
1776 	} else if (cache->used == 0) {
1777 		ASSERT(list_empty(&cache->bg_list));
1778 		btrfs_mark_bg_unused(cache);
1779 	}
1780 	return 0;
1781 error:
1782 	btrfs_put_block_group(cache);
1783 	return ret;
1784 }
1785 
1786 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1787 {
1788 	struct btrfs_path *path;
1789 	int ret;
1790 	struct btrfs_block_group *cache;
1791 	struct btrfs_space_info *space_info;
1792 	struct btrfs_key key;
1793 	int need_clear = 0;
1794 	u64 cache_gen;
1795 
1796 	key.objectid = 0;
1797 	key.offset = 0;
1798 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1799 	path = btrfs_alloc_path();
1800 	if (!path)
1801 		return -ENOMEM;
1802 	path->reada = READA_FORWARD;
1803 
1804 	cache_gen = btrfs_super_cache_generation(info->super_copy);
1805 	if (btrfs_test_opt(info, SPACE_CACHE) &&
1806 	    btrfs_super_generation(info->super_copy) != cache_gen)
1807 		need_clear = 1;
1808 	if (btrfs_test_opt(info, CLEAR_CACHE))
1809 		need_clear = 1;
1810 
1811 	while (1) {
1812 		ret = find_first_block_group(info, path, &key);
1813 		if (ret > 0)
1814 			break;
1815 		if (ret != 0)
1816 			goto error;
1817 
1818 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1819 		ret = read_one_block_group(info, path, &key, need_clear);
1820 		if (ret < 0)
1821 			goto error;
1822 		key.objectid += key.offset;
1823 		key.offset = 0;
1824 		btrfs_release_path(path);
1825 	}
1826 
1827 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
1828 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1829 		      (BTRFS_BLOCK_GROUP_RAID10 |
1830 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
1831 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
1832 		       BTRFS_BLOCK_GROUP_DUP)))
1833 			continue;
1834 		/*
1835 		 * Avoid allocating from un-mirrored block group if there are
1836 		 * mirrored block groups.
1837 		 */
1838 		list_for_each_entry(cache,
1839 				&space_info->block_groups[BTRFS_RAID_RAID0],
1840 				list)
1841 			inc_block_group_ro(cache, 1);
1842 		list_for_each_entry(cache,
1843 				&space_info->block_groups[BTRFS_RAID_SINGLE],
1844 				list)
1845 			inc_block_group_ro(cache, 1);
1846 	}
1847 
1848 	btrfs_init_global_block_rsv(info);
1849 	ret = check_chunk_block_group_mappings(info);
1850 error:
1851 	btrfs_free_path(path);
1852 	return ret;
1853 }
1854 
1855 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1856 {
1857 	struct btrfs_fs_info *fs_info = trans->fs_info;
1858 	struct btrfs_block_group *block_group;
1859 	struct btrfs_root *extent_root = fs_info->extent_root;
1860 	struct btrfs_block_group_item item;
1861 	struct btrfs_key key;
1862 	int ret = 0;
1863 
1864 	if (!trans->can_flush_pending_bgs)
1865 		return;
1866 
1867 	while (!list_empty(&trans->new_bgs)) {
1868 		block_group = list_first_entry(&trans->new_bgs,
1869 					       struct btrfs_block_group,
1870 					       bg_list);
1871 		if (ret)
1872 			goto next;
1873 
1874 		spin_lock(&block_group->lock);
1875 		btrfs_set_stack_block_group_used(&item, block_group->used);
1876 		btrfs_set_stack_block_group_chunk_objectid(&item,
1877 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1878 		btrfs_set_stack_block_group_flags(&item, block_group->flags);
1879 		key.objectid = block_group->start;
1880 		key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1881 		key.offset = block_group->length;
1882 		spin_unlock(&block_group->lock);
1883 
1884 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
1885 					sizeof(item));
1886 		if (ret)
1887 			btrfs_abort_transaction(trans, ret);
1888 		ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1889 		if (ret)
1890 			btrfs_abort_transaction(trans, ret);
1891 		add_block_group_free_space(trans, block_group);
1892 		/* Already aborted the transaction if it failed. */
1893 next:
1894 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1895 		list_del_init(&block_group->bg_list);
1896 	}
1897 	btrfs_trans_release_chunk_metadata(trans);
1898 }
1899 
1900 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1901 			   u64 type, u64 chunk_offset, u64 size)
1902 {
1903 	struct btrfs_fs_info *fs_info = trans->fs_info;
1904 	struct btrfs_block_group *cache;
1905 	int ret;
1906 
1907 	btrfs_set_log_full_commit(trans);
1908 
1909 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1910 	if (!cache)
1911 		return -ENOMEM;
1912 
1913 	cache->used = bytes_used;
1914 	cache->flags = type;
1915 	cache->last_byte_to_unpin = (u64)-1;
1916 	cache->cached = BTRFS_CACHE_FINISHED;
1917 	cache->needs_free_space = 1;
1918 	ret = exclude_super_stripes(cache);
1919 	if (ret) {
1920 		/* We may have excluded something, so call this just in case */
1921 		btrfs_free_excluded_extents(cache);
1922 		btrfs_put_block_group(cache);
1923 		return ret;
1924 	}
1925 
1926 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
1927 
1928 	btrfs_free_excluded_extents(cache);
1929 
1930 #ifdef CONFIG_BTRFS_DEBUG
1931 	if (btrfs_should_fragment_free_space(cache)) {
1932 		u64 new_bytes_used = size - bytes_used;
1933 
1934 		bytes_used += new_bytes_used >> 1;
1935 		fragment_free_space(cache);
1936 	}
1937 #endif
1938 	/*
1939 	 * Ensure the corresponding space_info object is created and
1940 	 * assigned to our block group. We want our bg to be added to the rbtree
1941 	 * with its ->space_info set.
1942 	 */
1943 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1944 	ASSERT(cache->space_info);
1945 
1946 	ret = btrfs_add_block_group_cache(fs_info, cache);
1947 	if (ret) {
1948 		btrfs_remove_free_space_cache(cache);
1949 		btrfs_put_block_group(cache);
1950 		return ret;
1951 	}
1952 
1953 	/*
1954 	 * Now that our block group has its ->space_info set and is inserted in
1955 	 * the rbtree, update the space info's counters.
1956 	 */
1957 	trace_btrfs_add_block_group(fs_info, cache, 1);
1958 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1959 				cache->bytes_super, &cache->space_info);
1960 	btrfs_update_global_block_rsv(fs_info);
1961 
1962 	link_block_group(cache);
1963 
1964 	list_add_tail(&cache->bg_list, &trans->new_bgs);
1965 	trans->delayed_ref_updates++;
1966 	btrfs_update_delayed_refs_rsv(trans);
1967 
1968 	set_avail_alloc_bits(fs_info, type);
1969 	return 0;
1970 }
1971 
1972 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
1973 {
1974 	u64 num_devices;
1975 	u64 stripped;
1976 
1977 	/*
1978 	 * if restripe for this chunk_type is on pick target profile and
1979 	 * return, otherwise do the usual balance
1980 	 */
1981 	stripped = get_restripe_target(fs_info, flags);
1982 	if (stripped)
1983 		return extended_to_chunk(stripped);
1984 
1985 	num_devices = fs_info->fs_devices->rw_devices;
1986 
1987 	stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
1988 		BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
1989 
1990 	if (num_devices == 1) {
1991 		stripped |= BTRFS_BLOCK_GROUP_DUP;
1992 		stripped = flags & ~stripped;
1993 
1994 		/* turn raid0 into single device chunks */
1995 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
1996 			return stripped;
1997 
1998 		/* turn mirroring into duplication */
1999 		if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2000 			     BTRFS_BLOCK_GROUP_RAID10))
2001 			return stripped | BTRFS_BLOCK_GROUP_DUP;
2002 	} else {
2003 		/* they already had raid on here, just return */
2004 		if (flags & stripped)
2005 			return flags;
2006 
2007 		stripped |= BTRFS_BLOCK_GROUP_DUP;
2008 		stripped = flags & ~stripped;
2009 
2010 		/* switch duplicated blocks with raid1 */
2011 		if (flags & BTRFS_BLOCK_GROUP_DUP)
2012 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
2013 
2014 		/* this is drive concat, leave it alone */
2015 	}
2016 
2017 	return flags;
2018 }
2019 
2020 /*
2021  * Mark one block group RO, can be called several times for the same block
2022  * group.
2023  *
2024  * @cache:		the destination block group
2025  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2026  * 			ensure we still have some free space after marking this
2027  * 			block group RO.
2028  */
2029 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2030 			     bool do_chunk_alloc)
2031 {
2032 	struct btrfs_fs_info *fs_info = cache->fs_info;
2033 	struct btrfs_trans_handle *trans;
2034 	u64 alloc_flags;
2035 	int ret;
2036 
2037 again:
2038 	trans = btrfs_join_transaction(fs_info->extent_root);
2039 	if (IS_ERR(trans))
2040 		return PTR_ERR(trans);
2041 
2042 	/*
2043 	 * we're not allowed to set block groups readonly after the dirty
2044 	 * block groups cache has started writing.  If it already started,
2045 	 * back off and let this transaction commit
2046 	 */
2047 	mutex_lock(&fs_info->ro_block_group_mutex);
2048 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2049 		u64 transid = trans->transid;
2050 
2051 		mutex_unlock(&fs_info->ro_block_group_mutex);
2052 		btrfs_end_transaction(trans);
2053 
2054 		ret = btrfs_wait_for_commit(fs_info, transid);
2055 		if (ret)
2056 			return ret;
2057 		goto again;
2058 	}
2059 
2060 	if (do_chunk_alloc) {
2061 		/*
2062 		 * If we are changing raid levels, try to allocate a
2063 		 * corresponding block group with the new raid level.
2064 		 */
2065 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2066 		if (alloc_flags != cache->flags) {
2067 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2068 						CHUNK_ALLOC_FORCE);
2069 			/*
2070 			 * ENOSPC is allowed here, we may have enough space
2071 			 * already allocated at the new raid level to carry on
2072 			 */
2073 			if (ret == -ENOSPC)
2074 				ret = 0;
2075 			if (ret < 0)
2076 				goto out;
2077 		}
2078 	}
2079 
2080 	ret = inc_block_group_ro(cache, !do_chunk_alloc);
2081 	if (!do_chunk_alloc)
2082 		goto unlock_out;
2083 	if (!ret)
2084 		goto out;
2085 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2086 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2087 	if (ret < 0)
2088 		goto out;
2089 	ret = inc_block_group_ro(cache, 0);
2090 out:
2091 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2092 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
2093 		mutex_lock(&fs_info->chunk_mutex);
2094 		check_system_chunk(trans, alloc_flags);
2095 		mutex_unlock(&fs_info->chunk_mutex);
2096 	}
2097 unlock_out:
2098 	mutex_unlock(&fs_info->ro_block_group_mutex);
2099 
2100 	btrfs_end_transaction(trans);
2101 	return ret;
2102 }
2103 
2104 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2105 {
2106 	struct btrfs_space_info *sinfo = cache->space_info;
2107 	u64 num_bytes;
2108 
2109 	BUG_ON(!cache->ro);
2110 
2111 	spin_lock(&sinfo->lock);
2112 	spin_lock(&cache->lock);
2113 	if (!--cache->ro) {
2114 		num_bytes = cache->length - cache->reserved -
2115 			    cache->pinned - cache->bytes_super - cache->used;
2116 		sinfo->bytes_readonly -= num_bytes;
2117 		list_del_init(&cache->ro_list);
2118 	}
2119 	spin_unlock(&cache->lock);
2120 	spin_unlock(&sinfo->lock);
2121 }
2122 
2123 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2124 				 struct btrfs_path *path,
2125 				 struct btrfs_block_group *cache)
2126 {
2127 	struct btrfs_fs_info *fs_info = trans->fs_info;
2128 	int ret;
2129 	struct btrfs_root *extent_root = fs_info->extent_root;
2130 	unsigned long bi;
2131 	struct extent_buffer *leaf;
2132 	struct btrfs_block_group_item bgi;
2133 	struct btrfs_key key;
2134 
2135 	key.objectid = cache->start;
2136 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2137 	key.offset = cache->length;
2138 
2139 	ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1);
2140 	if (ret) {
2141 		if (ret > 0)
2142 			ret = -ENOENT;
2143 		goto fail;
2144 	}
2145 
2146 	leaf = path->nodes[0];
2147 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2148 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2149 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2150 			BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2151 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2152 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2153 	btrfs_mark_buffer_dirty(leaf);
2154 fail:
2155 	btrfs_release_path(path);
2156 	return ret;
2157 
2158 }
2159 
2160 static int cache_save_setup(struct btrfs_block_group *block_group,
2161 			    struct btrfs_trans_handle *trans,
2162 			    struct btrfs_path *path)
2163 {
2164 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2165 	struct btrfs_root *root = fs_info->tree_root;
2166 	struct inode *inode = NULL;
2167 	struct extent_changeset *data_reserved = NULL;
2168 	u64 alloc_hint = 0;
2169 	int dcs = BTRFS_DC_ERROR;
2170 	u64 num_pages = 0;
2171 	int retries = 0;
2172 	int ret = 0;
2173 
2174 	/*
2175 	 * If this block group is smaller than 100 megs don't bother caching the
2176 	 * block group.
2177 	 */
2178 	if (block_group->length < (100 * SZ_1M)) {
2179 		spin_lock(&block_group->lock);
2180 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2181 		spin_unlock(&block_group->lock);
2182 		return 0;
2183 	}
2184 
2185 	if (trans->aborted)
2186 		return 0;
2187 again:
2188 	inode = lookup_free_space_inode(block_group, path);
2189 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2190 		ret = PTR_ERR(inode);
2191 		btrfs_release_path(path);
2192 		goto out;
2193 	}
2194 
2195 	if (IS_ERR(inode)) {
2196 		BUG_ON(retries);
2197 		retries++;
2198 
2199 		if (block_group->ro)
2200 			goto out_free;
2201 
2202 		ret = create_free_space_inode(trans, block_group, path);
2203 		if (ret)
2204 			goto out_free;
2205 		goto again;
2206 	}
2207 
2208 	/*
2209 	 * We want to set the generation to 0, that way if anything goes wrong
2210 	 * from here on out we know not to trust this cache when we load up next
2211 	 * time.
2212 	 */
2213 	BTRFS_I(inode)->generation = 0;
2214 	ret = btrfs_update_inode(trans, root, inode);
2215 	if (ret) {
2216 		/*
2217 		 * So theoretically we could recover from this, simply set the
2218 		 * super cache generation to 0 so we know to invalidate the
2219 		 * cache, but then we'd have to keep track of the block groups
2220 		 * that fail this way so we know we _have_ to reset this cache
2221 		 * before the next commit or risk reading stale cache.  So to
2222 		 * limit our exposure to horrible edge cases lets just abort the
2223 		 * transaction, this only happens in really bad situations
2224 		 * anyway.
2225 		 */
2226 		btrfs_abort_transaction(trans, ret);
2227 		goto out_put;
2228 	}
2229 	WARN_ON(ret);
2230 
2231 	/* We've already setup this transaction, go ahead and exit */
2232 	if (block_group->cache_generation == trans->transid &&
2233 	    i_size_read(inode)) {
2234 		dcs = BTRFS_DC_SETUP;
2235 		goto out_put;
2236 	}
2237 
2238 	if (i_size_read(inode) > 0) {
2239 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2240 					&fs_info->global_block_rsv);
2241 		if (ret)
2242 			goto out_put;
2243 
2244 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2245 		if (ret)
2246 			goto out_put;
2247 	}
2248 
2249 	spin_lock(&block_group->lock);
2250 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2251 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2252 		/*
2253 		 * don't bother trying to write stuff out _if_
2254 		 * a) we're not cached,
2255 		 * b) we're with nospace_cache mount option,
2256 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2257 		 */
2258 		dcs = BTRFS_DC_WRITTEN;
2259 		spin_unlock(&block_group->lock);
2260 		goto out_put;
2261 	}
2262 	spin_unlock(&block_group->lock);
2263 
2264 	/*
2265 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2266 	 * skip doing the setup, we've already cleared the cache so we're safe.
2267 	 */
2268 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2269 		ret = -ENOSPC;
2270 		goto out_put;
2271 	}
2272 
2273 	/*
2274 	 * Try to preallocate enough space based on how big the block group is.
2275 	 * Keep in mind this has to include any pinned space which could end up
2276 	 * taking up quite a bit since it's not folded into the other space
2277 	 * cache.
2278 	 */
2279 	num_pages = div_u64(block_group->length, SZ_256M);
2280 	if (!num_pages)
2281 		num_pages = 1;
2282 
2283 	num_pages *= 16;
2284 	num_pages *= PAGE_SIZE;
2285 
2286 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2287 	if (ret)
2288 		goto out_put;
2289 
2290 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2291 					      num_pages, num_pages,
2292 					      &alloc_hint);
2293 	/*
2294 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2295 	 * of metadata or split extents when writing the cache out, which means
2296 	 * we can enospc if we are heavily fragmented in addition to just normal
2297 	 * out of space conditions.  So if we hit this just skip setting up any
2298 	 * other block groups for this transaction, maybe we'll unpin enough
2299 	 * space the next time around.
2300 	 */
2301 	if (!ret)
2302 		dcs = BTRFS_DC_SETUP;
2303 	else if (ret == -ENOSPC)
2304 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2305 
2306 out_put:
2307 	iput(inode);
2308 out_free:
2309 	btrfs_release_path(path);
2310 out:
2311 	spin_lock(&block_group->lock);
2312 	if (!ret && dcs == BTRFS_DC_SETUP)
2313 		block_group->cache_generation = trans->transid;
2314 	block_group->disk_cache_state = dcs;
2315 	spin_unlock(&block_group->lock);
2316 
2317 	extent_changeset_free(data_reserved);
2318 	return ret;
2319 }
2320 
2321 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2322 {
2323 	struct btrfs_fs_info *fs_info = trans->fs_info;
2324 	struct btrfs_block_group *cache, *tmp;
2325 	struct btrfs_transaction *cur_trans = trans->transaction;
2326 	struct btrfs_path *path;
2327 
2328 	if (list_empty(&cur_trans->dirty_bgs) ||
2329 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2330 		return 0;
2331 
2332 	path = btrfs_alloc_path();
2333 	if (!path)
2334 		return -ENOMEM;
2335 
2336 	/* Could add new block groups, use _safe just in case */
2337 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2338 				 dirty_list) {
2339 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2340 			cache_save_setup(cache, trans, path);
2341 	}
2342 
2343 	btrfs_free_path(path);
2344 	return 0;
2345 }
2346 
2347 /*
2348  * Transaction commit does final block group cache writeback during a critical
2349  * section where nothing is allowed to change the FS.  This is required in
2350  * order for the cache to actually match the block group, but can introduce a
2351  * lot of latency into the commit.
2352  *
2353  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2354  * There's a chance we'll have to redo some of it if the block group changes
2355  * again during the commit, but it greatly reduces the commit latency by
2356  * getting rid of the easy block groups while we're still allowing others to
2357  * join the commit.
2358  */
2359 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2360 {
2361 	struct btrfs_fs_info *fs_info = trans->fs_info;
2362 	struct btrfs_block_group *cache;
2363 	struct btrfs_transaction *cur_trans = trans->transaction;
2364 	int ret = 0;
2365 	int should_put;
2366 	struct btrfs_path *path = NULL;
2367 	LIST_HEAD(dirty);
2368 	struct list_head *io = &cur_trans->io_bgs;
2369 	int num_started = 0;
2370 	int loops = 0;
2371 
2372 	spin_lock(&cur_trans->dirty_bgs_lock);
2373 	if (list_empty(&cur_trans->dirty_bgs)) {
2374 		spin_unlock(&cur_trans->dirty_bgs_lock);
2375 		return 0;
2376 	}
2377 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2378 	spin_unlock(&cur_trans->dirty_bgs_lock);
2379 
2380 again:
2381 	/* Make sure all the block groups on our dirty list actually exist */
2382 	btrfs_create_pending_block_groups(trans);
2383 
2384 	if (!path) {
2385 		path = btrfs_alloc_path();
2386 		if (!path)
2387 			return -ENOMEM;
2388 	}
2389 
2390 	/*
2391 	 * cache_write_mutex is here only to save us from balance or automatic
2392 	 * removal of empty block groups deleting this block group while we are
2393 	 * writing out the cache
2394 	 */
2395 	mutex_lock(&trans->transaction->cache_write_mutex);
2396 	while (!list_empty(&dirty)) {
2397 		bool drop_reserve = true;
2398 
2399 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2400 					 dirty_list);
2401 		/*
2402 		 * This can happen if something re-dirties a block group that
2403 		 * is already under IO.  Just wait for it to finish and then do
2404 		 * it all again
2405 		 */
2406 		if (!list_empty(&cache->io_list)) {
2407 			list_del_init(&cache->io_list);
2408 			btrfs_wait_cache_io(trans, cache, path);
2409 			btrfs_put_block_group(cache);
2410 		}
2411 
2412 
2413 		/*
2414 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2415 		 * it should update the cache_state.  Don't delete until after
2416 		 * we wait.
2417 		 *
2418 		 * Since we're not running in the commit critical section
2419 		 * we need the dirty_bgs_lock to protect from update_block_group
2420 		 */
2421 		spin_lock(&cur_trans->dirty_bgs_lock);
2422 		list_del_init(&cache->dirty_list);
2423 		spin_unlock(&cur_trans->dirty_bgs_lock);
2424 
2425 		should_put = 1;
2426 
2427 		cache_save_setup(cache, trans, path);
2428 
2429 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2430 			cache->io_ctl.inode = NULL;
2431 			ret = btrfs_write_out_cache(trans, cache, path);
2432 			if (ret == 0 && cache->io_ctl.inode) {
2433 				num_started++;
2434 				should_put = 0;
2435 
2436 				/*
2437 				 * The cache_write_mutex is protecting the
2438 				 * io_list, also refer to the definition of
2439 				 * btrfs_transaction::io_bgs for more details
2440 				 */
2441 				list_add_tail(&cache->io_list, io);
2442 			} else {
2443 				/*
2444 				 * If we failed to write the cache, the
2445 				 * generation will be bad and life goes on
2446 				 */
2447 				ret = 0;
2448 			}
2449 		}
2450 		if (!ret) {
2451 			ret = write_one_cache_group(trans, path, cache);
2452 			/*
2453 			 * Our block group might still be attached to the list
2454 			 * of new block groups in the transaction handle of some
2455 			 * other task (struct btrfs_trans_handle->new_bgs). This
2456 			 * means its block group item isn't yet in the extent
2457 			 * tree. If this happens ignore the error, as we will
2458 			 * try again later in the critical section of the
2459 			 * transaction commit.
2460 			 */
2461 			if (ret == -ENOENT) {
2462 				ret = 0;
2463 				spin_lock(&cur_trans->dirty_bgs_lock);
2464 				if (list_empty(&cache->dirty_list)) {
2465 					list_add_tail(&cache->dirty_list,
2466 						      &cur_trans->dirty_bgs);
2467 					btrfs_get_block_group(cache);
2468 					drop_reserve = false;
2469 				}
2470 				spin_unlock(&cur_trans->dirty_bgs_lock);
2471 			} else if (ret) {
2472 				btrfs_abort_transaction(trans, ret);
2473 			}
2474 		}
2475 
2476 		/* If it's not on the io list, we need to put the block group */
2477 		if (should_put)
2478 			btrfs_put_block_group(cache);
2479 		if (drop_reserve)
2480 			btrfs_delayed_refs_rsv_release(fs_info, 1);
2481 
2482 		if (ret)
2483 			break;
2484 
2485 		/*
2486 		 * Avoid blocking other tasks for too long. It might even save
2487 		 * us from writing caches for block groups that are going to be
2488 		 * removed.
2489 		 */
2490 		mutex_unlock(&trans->transaction->cache_write_mutex);
2491 		mutex_lock(&trans->transaction->cache_write_mutex);
2492 	}
2493 	mutex_unlock(&trans->transaction->cache_write_mutex);
2494 
2495 	/*
2496 	 * Go through delayed refs for all the stuff we've just kicked off
2497 	 * and then loop back (just once)
2498 	 */
2499 	ret = btrfs_run_delayed_refs(trans, 0);
2500 	if (!ret && loops == 0) {
2501 		loops++;
2502 		spin_lock(&cur_trans->dirty_bgs_lock);
2503 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
2504 		/*
2505 		 * dirty_bgs_lock protects us from concurrent block group
2506 		 * deletes too (not just cache_write_mutex).
2507 		 */
2508 		if (!list_empty(&dirty)) {
2509 			spin_unlock(&cur_trans->dirty_bgs_lock);
2510 			goto again;
2511 		}
2512 		spin_unlock(&cur_trans->dirty_bgs_lock);
2513 	} else if (ret < 0) {
2514 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2515 	}
2516 
2517 	btrfs_free_path(path);
2518 	return ret;
2519 }
2520 
2521 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2522 {
2523 	struct btrfs_fs_info *fs_info = trans->fs_info;
2524 	struct btrfs_block_group *cache;
2525 	struct btrfs_transaction *cur_trans = trans->transaction;
2526 	int ret = 0;
2527 	int should_put;
2528 	struct btrfs_path *path;
2529 	struct list_head *io = &cur_trans->io_bgs;
2530 	int num_started = 0;
2531 
2532 	path = btrfs_alloc_path();
2533 	if (!path)
2534 		return -ENOMEM;
2535 
2536 	/*
2537 	 * Even though we are in the critical section of the transaction commit,
2538 	 * we can still have concurrent tasks adding elements to this
2539 	 * transaction's list of dirty block groups. These tasks correspond to
2540 	 * endio free space workers started when writeback finishes for a
2541 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2542 	 * allocate new block groups as a result of COWing nodes of the root
2543 	 * tree when updating the free space inode. The writeback for the space
2544 	 * caches is triggered by an earlier call to
2545 	 * btrfs_start_dirty_block_groups() and iterations of the following
2546 	 * loop.
2547 	 * Also we want to do the cache_save_setup first and then run the
2548 	 * delayed refs to make sure we have the best chance at doing this all
2549 	 * in one shot.
2550 	 */
2551 	spin_lock(&cur_trans->dirty_bgs_lock);
2552 	while (!list_empty(&cur_trans->dirty_bgs)) {
2553 		cache = list_first_entry(&cur_trans->dirty_bgs,
2554 					 struct btrfs_block_group,
2555 					 dirty_list);
2556 
2557 		/*
2558 		 * This can happen if cache_save_setup re-dirties a block group
2559 		 * that is already under IO.  Just wait for it to finish and
2560 		 * then do it all again
2561 		 */
2562 		if (!list_empty(&cache->io_list)) {
2563 			spin_unlock(&cur_trans->dirty_bgs_lock);
2564 			list_del_init(&cache->io_list);
2565 			btrfs_wait_cache_io(trans, cache, path);
2566 			btrfs_put_block_group(cache);
2567 			spin_lock(&cur_trans->dirty_bgs_lock);
2568 		}
2569 
2570 		/*
2571 		 * Don't remove from the dirty list until after we've waited on
2572 		 * any pending IO
2573 		 */
2574 		list_del_init(&cache->dirty_list);
2575 		spin_unlock(&cur_trans->dirty_bgs_lock);
2576 		should_put = 1;
2577 
2578 		cache_save_setup(cache, trans, path);
2579 
2580 		if (!ret)
2581 			ret = btrfs_run_delayed_refs(trans,
2582 						     (unsigned long) -1);
2583 
2584 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2585 			cache->io_ctl.inode = NULL;
2586 			ret = btrfs_write_out_cache(trans, cache, path);
2587 			if (ret == 0 && cache->io_ctl.inode) {
2588 				num_started++;
2589 				should_put = 0;
2590 				list_add_tail(&cache->io_list, io);
2591 			} else {
2592 				/*
2593 				 * If we failed to write the cache, the
2594 				 * generation will be bad and life goes on
2595 				 */
2596 				ret = 0;
2597 			}
2598 		}
2599 		if (!ret) {
2600 			ret = write_one_cache_group(trans, path, cache);
2601 			/*
2602 			 * One of the free space endio workers might have
2603 			 * created a new block group while updating a free space
2604 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2605 			 * and hasn't released its transaction handle yet, in
2606 			 * which case the new block group is still attached to
2607 			 * its transaction handle and its creation has not
2608 			 * finished yet (no block group item in the extent tree
2609 			 * yet, etc). If this is the case, wait for all free
2610 			 * space endio workers to finish and retry. This is a
2611 			 * a very rare case so no need for a more efficient and
2612 			 * complex approach.
2613 			 */
2614 			if (ret == -ENOENT) {
2615 				wait_event(cur_trans->writer_wait,
2616 				   atomic_read(&cur_trans->num_writers) == 1);
2617 				ret = write_one_cache_group(trans, path, cache);
2618 			}
2619 			if (ret)
2620 				btrfs_abort_transaction(trans, ret);
2621 		}
2622 
2623 		/* If its not on the io list, we need to put the block group */
2624 		if (should_put)
2625 			btrfs_put_block_group(cache);
2626 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2627 		spin_lock(&cur_trans->dirty_bgs_lock);
2628 	}
2629 	spin_unlock(&cur_trans->dirty_bgs_lock);
2630 
2631 	/*
2632 	 * Refer to the definition of io_bgs member for details why it's safe
2633 	 * to use it without any locking
2634 	 */
2635 	while (!list_empty(io)) {
2636 		cache = list_first_entry(io, struct btrfs_block_group,
2637 					 io_list);
2638 		list_del_init(&cache->io_list);
2639 		btrfs_wait_cache_io(trans, cache, path);
2640 		btrfs_put_block_group(cache);
2641 	}
2642 
2643 	btrfs_free_path(path);
2644 	return ret;
2645 }
2646 
2647 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2648 			     u64 bytenr, u64 num_bytes, int alloc)
2649 {
2650 	struct btrfs_fs_info *info = trans->fs_info;
2651 	struct btrfs_block_group *cache = NULL;
2652 	u64 total = num_bytes;
2653 	u64 old_val;
2654 	u64 byte_in_group;
2655 	int factor;
2656 	int ret = 0;
2657 
2658 	/* Block accounting for super block */
2659 	spin_lock(&info->delalloc_root_lock);
2660 	old_val = btrfs_super_bytes_used(info->super_copy);
2661 	if (alloc)
2662 		old_val += num_bytes;
2663 	else
2664 		old_val -= num_bytes;
2665 	btrfs_set_super_bytes_used(info->super_copy, old_val);
2666 	spin_unlock(&info->delalloc_root_lock);
2667 
2668 	while (total) {
2669 		cache = btrfs_lookup_block_group(info, bytenr);
2670 		if (!cache) {
2671 			ret = -ENOENT;
2672 			break;
2673 		}
2674 		factor = btrfs_bg_type_to_factor(cache->flags);
2675 
2676 		/*
2677 		 * If this block group has free space cache written out, we
2678 		 * need to make sure to load it if we are removing space.  This
2679 		 * is because we need the unpinning stage to actually add the
2680 		 * space back to the block group, otherwise we will leak space.
2681 		 */
2682 		if (!alloc && !btrfs_block_group_done(cache))
2683 			btrfs_cache_block_group(cache, 1);
2684 
2685 		byte_in_group = bytenr - cache->start;
2686 		WARN_ON(byte_in_group > cache->length);
2687 
2688 		spin_lock(&cache->space_info->lock);
2689 		spin_lock(&cache->lock);
2690 
2691 		if (btrfs_test_opt(info, SPACE_CACHE) &&
2692 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
2693 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2694 
2695 		old_val = cache->used;
2696 		num_bytes = min(total, cache->length - byte_in_group);
2697 		if (alloc) {
2698 			old_val += num_bytes;
2699 			cache->used = old_val;
2700 			cache->reserved -= num_bytes;
2701 			cache->space_info->bytes_reserved -= num_bytes;
2702 			cache->space_info->bytes_used += num_bytes;
2703 			cache->space_info->disk_used += num_bytes * factor;
2704 			spin_unlock(&cache->lock);
2705 			spin_unlock(&cache->space_info->lock);
2706 		} else {
2707 			old_val -= num_bytes;
2708 			cache->used = old_val;
2709 			cache->pinned += num_bytes;
2710 			btrfs_space_info_update_bytes_pinned(info,
2711 					cache->space_info, num_bytes);
2712 			cache->space_info->bytes_used -= num_bytes;
2713 			cache->space_info->disk_used -= num_bytes * factor;
2714 			spin_unlock(&cache->lock);
2715 			spin_unlock(&cache->space_info->lock);
2716 
2717 			percpu_counter_add_batch(
2718 					&cache->space_info->total_bytes_pinned,
2719 					num_bytes,
2720 					BTRFS_TOTAL_BYTES_PINNED_BATCH);
2721 			set_extent_dirty(info->pinned_extents,
2722 					 bytenr, bytenr + num_bytes - 1,
2723 					 GFP_NOFS | __GFP_NOFAIL);
2724 		}
2725 
2726 		spin_lock(&trans->transaction->dirty_bgs_lock);
2727 		if (list_empty(&cache->dirty_list)) {
2728 			list_add_tail(&cache->dirty_list,
2729 				      &trans->transaction->dirty_bgs);
2730 			trans->delayed_ref_updates++;
2731 			btrfs_get_block_group(cache);
2732 		}
2733 		spin_unlock(&trans->transaction->dirty_bgs_lock);
2734 
2735 		/*
2736 		 * No longer have used bytes in this block group, queue it for
2737 		 * deletion. We do this after adding the block group to the
2738 		 * dirty list to avoid races between cleaner kthread and space
2739 		 * cache writeout.
2740 		 */
2741 		if (!alloc && old_val == 0)
2742 			btrfs_mark_bg_unused(cache);
2743 
2744 		btrfs_put_block_group(cache);
2745 		total -= num_bytes;
2746 		bytenr += num_bytes;
2747 	}
2748 
2749 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
2750 	btrfs_update_delayed_refs_rsv(trans);
2751 	return ret;
2752 }
2753 
2754 /**
2755  * btrfs_add_reserved_bytes - update the block_group and space info counters
2756  * @cache:	The cache we are manipulating
2757  * @ram_bytes:  The number of bytes of file content, and will be same to
2758  *              @num_bytes except for the compress path.
2759  * @num_bytes:	The number of bytes in question
2760  * @delalloc:   The blocks are allocated for the delalloc write
2761  *
2762  * This is called by the allocator when it reserves space. If this is a
2763  * reservation and the block group has become read only we cannot make the
2764  * reservation and return -EAGAIN, otherwise this function always succeeds.
2765  */
2766 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2767 			     u64 ram_bytes, u64 num_bytes, int delalloc)
2768 {
2769 	struct btrfs_space_info *space_info = cache->space_info;
2770 	int ret = 0;
2771 
2772 	spin_lock(&space_info->lock);
2773 	spin_lock(&cache->lock);
2774 	if (cache->ro) {
2775 		ret = -EAGAIN;
2776 	} else {
2777 		cache->reserved += num_bytes;
2778 		space_info->bytes_reserved += num_bytes;
2779 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
2780 					      space_info->flags, num_bytes, 1);
2781 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
2782 						      space_info, -ram_bytes);
2783 		if (delalloc)
2784 			cache->delalloc_bytes += num_bytes;
2785 	}
2786 	spin_unlock(&cache->lock);
2787 	spin_unlock(&space_info->lock);
2788 	return ret;
2789 }
2790 
2791 /**
2792  * btrfs_free_reserved_bytes - update the block_group and space info counters
2793  * @cache:      The cache we are manipulating
2794  * @num_bytes:  The number of bytes in question
2795  * @delalloc:   The blocks are allocated for the delalloc write
2796  *
2797  * This is called by somebody who is freeing space that was never actually used
2798  * on disk.  For example if you reserve some space for a new leaf in transaction
2799  * A and before transaction A commits you free that leaf, you call this with
2800  * reserve set to 0 in order to clear the reservation.
2801  */
2802 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2803 			       u64 num_bytes, int delalloc)
2804 {
2805 	struct btrfs_space_info *space_info = cache->space_info;
2806 
2807 	spin_lock(&space_info->lock);
2808 	spin_lock(&cache->lock);
2809 	if (cache->ro)
2810 		space_info->bytes_readonly += num_bytes;
2811 	cache->reserved -= num_bytes;
2812 	space_info->bytes_reserved -= num_bytes;
2813 	space_info->max_extent_size = 0;
2814 
2815 	if (delalloc)
2816 		cache->delalloc_bytes -= num_bytes;
2817 	spin_unlock(&cache->lock);
2818 	spin_unlock(&space_info->lock);
2819 }
2820 
2821 static void force_metadata_allocation(struct btrfs_fs_info *info)
2822 {
2823 	struct list_head *head = &info->space_info;
2824 	struct btrfs_space_info *found;
2825 
2826 	rcu_read_lock();
2827 	list_for_each_entry_rcu(found, head, list) {
2828 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2829 			found->force_alloc = CHUNK_ALLOC_FORCE;
2830 	}
2831 	rcu_read_unlock();
2832 }
2833 
2834 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2835 			      struct btrfs_space_info *sinfo, int force)
2836 {
2837 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
2838 	u64 thresh;
2839 
2840 	if (force == CHUNK_ALLOC_FORCE)
2841 		return 1;
2842 
2843 	/*
2844 	 * in limited mode, we want to have some free space up to
2845 	 * about 1% of the FS size.
2846 	 */
2847 	if (force == CHUNK_ALLOC_LIMITED) {
2848 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
2849 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2850 
2851 		if (sinfo->total_bytes - bytes_used < thresh)
2852 			return 1;
2853 	}
2854 
2855 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2856 		return 0;
2857 	return 1;
2858 }
2859 
2860 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2861 {
2862 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2863 
2864 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2865 }
2866 
2867 /*
2868  * If force is CHUNK_ALLOC_FORCE:
2869  *    - return 1 if it successfully allocates a chunk,
2870  *    - return errors including -ENOSPC otherwise.
2871  * If force is NOT CHUNK_ALLOC_FORCE:
2872  *    - return 0 if it doesn't need to allocate a new chunk,
2873  *    - return 1 if it successfully allocates a chunk,
2874  *    - return errors including -ENOSPC otherwise.
2875  */
2876 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2877 		      enum btrfs_chunk_alloc_enum force)
2878 {
2879 	struct btrfs_fs_info *fs_info = trans->fs_info;
2880 	struct btrfs_space_info *space_info;
2881 	bool wait_for_alloc = false;
2882 	bool should_alloc = false;
2883 	int ret = 0;
2884 
2885 	/* Don't re-enter if we're already allocating a chunk */
2886 	if (trans->allocating_chunk)
2887 		return -ENOSPC;
2888 
2889 	space_info = btrfs_find_space_info(fs_info, flags);
2890 	ASSERT(space_info);
2891 
2892 	do {
2893 		spin_lock(&space_info->lock);
2894 		if (force < space_info->force_alloc)
2895 			force = space_info->force_alloc;
2896 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
2897 		if (space_info->full) {
2898 			/* No more free physical space */
2899 			if (should_alloc)
2900 				ret = -ENOSPC;
2901 			else
2902 				ret = 0;
2903 			spin_unlock(&space_info->lock);
2904 			return ret;
2905 		} else if (!should_alloc) {
2906 			spin_unlock(&space_info->lock);
2907 			return 0;
2908 		} else if (space_info->chunk_alloc) {
2909 			/*
2910 			 * Someone is already allocating, so we need to block
2911 			 * until this someone is finished and then loop to
2912 			 * recheck if we should continue with our allocation
2913 			 * attempt.
2914 			 */
2915 			wait_for_alloc = true;
2916 			spin_unlock(&space_info->lock);
2917 			mutex_lock(&fs_info->chunk_mutex);
2918 			mutex_unlock(&fs_info->chunk_mutex);
2919 		} else {
2920 			/* Proceed with allocation */
2921 			space_info->chunk_alloc = 1;
2922 			wait_for_alloc = false;
2923 			spin_unlock(&space_info->lock);
2924 		}
2925 
2926 		cond_resched();
2927 	} while (wait_for_alloc);
2928 
2929 	mutex_lock(&fs_info->chunk_mutex);
2930 	trans->allocating_chunk = true;
2931 
2932 	/*
2933 	 * If we have mixed data/metadata chunks we want to make sure we keep
2934 	 * allocating mixed chunks instead of individual chunks.
2935 	 */
2936 	if (btrfs_mixed_space_info(space_info))
2937 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2938 
2939 	/*
2940 	 * if we're doing a data chunk, go ahead and make sure that
2941 	 * we keep a reasonable number of metadata chunks allocated in the
2942 	 * FS as well.
2943 	 */
2944 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2945 		fs_info->data_chunk_allocations++;
2946 		if (!(fs_info->data_chunk_allocations %
2947 		      fs_info->metadata_ratio))
2948 			force_metadata_allocation(fs_info);
2949 	}
2950 
2951 	/*
2952 	 * Check if we have enough space in SYSTEM chunk because we may need
2953 	 * to update devices.
2954 	 */
2955 	check_system_chunk(trans, flags);
2956 
2957 	ret = btrfs_alloc_chunk(trans, flags);
2958 	trans->allocating_chunk = false;
2959 
2960 	spin_lock(&space_info->lock);
2961 	if (ret < 0) {
2962 		if (ret == -ENOSPC)
2963 			space_info->full = 1;
2964 		else
2965 			goto out;
2966 	} else {
2967 		ret = 1;
2968 		space_info->max_extent_size = 0;
2969 	}
2970 
2971 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2972 out:
2973 	space_info->chunk_alloc = 0;
2974 	spin_unlock(&space_info->lock);
2975 	mutex_unlock(&fs_info->chunk_mutex);
2976 	/*
2977 	 * When we allocate a new chunk we reserve space in the chunk block
2978 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2979 	 * add new nodes/leafs to it if we end up needing to do it when
2980 	 * inserting the chunk item and updating device items as part of the
2981 	 * second phase of chunk allocation, performed by
2982 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2983 	 * large number of new block groups to create in our transaction
2984 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
2985 	 * in extreme cases - like having a single transaction create many new
2986 	 * block groups when starting to write out the free space caches of all
2987 	 * the block groups that were made dirty during the lifetime of the
2988 	 * transaction.
2989 	 */
2990 	if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
2991 		btrfs_create_pending_block_groups(trans);
2992 
2993 	return ret;
2994 }
2995 
2996 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
2997 {
2998 	u64 num_dev;
2999 
3000 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3001 	if (!num_dev)
3002 		num_dev = fs_info->fs_devices->rw_devices;
3003 
3004 	return num_dev;
3005 }
3006 
3007 /*
3008  * Reserve space in the system space for allocating or removing a chunk
3009  */
3010 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3011 {
3012 	struct btrfs_fs_info *fs_info = trans->fs_info;
3013 	struct btrfs_space_info *info;
3014 	u64 left;
3015 	u64 thresh;
3016 	int ret = 0;
3017 	u64 num_devs;
3018 
3019 	/*
3020 	 * Needed because we can end up allocating a system chunk and for an
3021 	 * atomic and race free space reservation in the chunk block reserve.
3022 	 */
3023 	lockdep_assert_held(&fs_info->chunk_mutex);
3024 
3025 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3026 	spin_lock(&info->lock);
3027 	left = info->total_bytes - btrfs_space_info_used(info, true);
3028 	spin_unlock(&info->lock);
3029 
3030 	num_devs = get_profile_num_devs(fs_info, type);
3031 
3032 	/* num_devs device items to update and 1 chunk item to add or remove */
3033 	thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3034 		btrfs_calc_insert_metadata_size(fs_info, 1);
3035 
3036 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3037 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3038 			   left, thresh, type);
3039 		btrfs_dump_space_info(fs_info, info, 0, 0);
3040 	}
3041 
3042 	if (left < thresh) {
3043 		u64 flags = btrfs_system_alloc_profile(fs_info);
3044 
3045 		/*
3046 		 * Ignore failure to create system chunk. We might end up not
3047 		 * needing it, as we might not need to COW all nodes/leafs from
3048 		 * the paths we visit in the chunk tree (they were already COWed
3049 		 * or created in the current transaction for example).
3050 		 */
3051 		ret = btrfs_alloc_chunk(trans, flags);
3052 	}
3053 
3054 	if (!ret) {
3055 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
3056 					  &fs_info->chunk_block_rsv,
3057 					  thresh, BTRFS_RESERVE_NO_FLUSH);
3058 		if (!ret)
3059 			trans->chunk_bytes_reserved += thresh;
3060 	}
3061 }
3062 
3063 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3064 {
3065 	struct btrfs_block_group *block_group;
3066 	u64 last = 0;
3067 
3068 	while (1) {
3069 		struct inode *inode;
3070 
3071 		block_group = btrfs_lookup_first_block_group(info, last);
3072 		while (block_group) {
3073 			btrfs_wait_block_group_cache_done(block_group);
3074 			spin_lock(&block_group->lock);
3075 			if (block_group->iref)
3076 				break;
3077 			spin_unlock(&block_group->lock);
3078 			block_group = btrfs_next_block_group(block_group);
3079 		}
3080 		if (!block_group) {
3081 			if (last == 0)
3082 				break;
3083 			last = 0;
3084 			continue;
3085 		}
3086 
3087 		inode = block_group->inode;
3088 		block_group->iref = 0;
3089 		block_group->inode = NULL;
3090 		spin_unlock(&block_group->lock);
3091 		ASSERT(block_group->io_ctl.inode == NULL);
3092 		iput(inode);
3093 		last = block_group->start + block_group->length;
3094 		btrfs_put_block_group(block_group);
3095 	}
3096 }
3097 
3098 /*
3099  * Must be called only after stopping all workers, since we could have block
3100  * group caching kthreads running, and therefore they could race with us if we
3101  * freed the block groups before stopping them.
3102  */
3103 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3104 {
3105 	struct btrfs_block_group *block_group;
3106 	struct btrfs_space_info *space_info;
3107 	struct btrfs_caching_control *caching_ctl;
3108 	struct rb_node *n;
3109 
3110 	down_write(&info->commit_root_sem);
3111 	while (!list_empty(&info->caching_block_groups)) {
3112 		caching_ctl = list_entry(info->caching_block_groups.next,
3113 					 struct btrfs_caching_control, list);
3114 		list_del(&caching_ctl->list);
3115 		btrfs_put_caching_control(caching_ctl);
3116 	}
3117 	up_write(&info->commit_root_sem);
3118 
3119 	spin_lock(&info->unused_bgs_lock);
3120 	while (!list_empty(&info->unused_bgs)) {
3121 		block_group = list_first_entry(&info->unused_bgs,
3122 					       struct btrfs_block_group,
3123 					       bg_list);
3124 		list_del_init(&block_group->bg_list);
3125 		btrfs_put_block_group(block_group);
3126 	}
3127 	spin_unlock(&info->unused_bgs_lock);
3128 
3129 	spin_lock(&info->block_group_cache_lock);
3130 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3131 		block_group = rb_entry(n, struct btrfs_block_group,
3132 				       cache_node);
3133 		rb_erase(&block_group->cache_node,
3134 			 &info->block_group_cache_tree);
3135 		RB_CLEAR_NODE(&block_group->cache_node);
3136 		spin_unlock(&info->block_group_cache_lock);
3137 
3138 		down_write(&block_group->space_info->groups_sem);
3139 		list_del(&block_group->list);
3140 		up_write(&block_group->space_info->groups_sem);
3141 
3142 		/*
3143 		 * We haven't cached this block group, which means we could
3144 		 * possibly have excluded extents on this block group.
3145 		 */
3146 		if (block_group->cached == BTRFS_CACHE_NO ||
3147 		    block_group->cached == BTRFS_CACHE_ERROR)
3148 			btrfs_free_excluded_extents(block_group);
3149 
3150 		btrfs_remove_free_space_cache(block_group);
3151 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3152 		ASSERT(list_empty(&block_group->dirty_list));
3153 		ASSERT(list_empty(&block_group->io_list));
3154 		ASSERT(list_empty(&block_group->bg_list));
3155 		ASSERT(atomic_read(&block_group->count) == 1);
3156 		btrfs_put_block_group(block_group);
3157 
3158 		spin_lock(&info->block_group_cache_lock);
3159 	}
3160 	spin_unlock(&info->block_group_cache_lock);
3161 
3162 	/*
3163 	 * Now that all the block groups are freed, go through and free all the
3164 	 * space_info structs.  This is only called during the final stages of
3165 	 * unmount, and so we know nobody is using them.  We call
3166 	 * synchronize_rcu() once before we start, just to be on the safe side.
3167 	 */
3168 	synchronize_rcu();
3169 
3170 	btrfs_release_global_block_rsv(info);
3171 
3172 	while (!list_empty(&info->space_info)) {
3173 		space_info = list_entry(info->space_info.next,
3174 					struct btrfs_space_info,
3175 					list);
3176 
3177 		/*
3178 		 * Do not hide this behind enospc_debug, this is actually
3179 		 * important and indicates a real bug if this happens.
3180 		 */
3181 		if (WARN_ON(space_info->bytes_pinned > 0 ||
3182 			    space_info->bytes_reserved > 0 ||
3183 			    space_info->bytes_may_use > 0))
3184 			btrfs_dump_space_info(info, space_info, 0, 0);
3185 		list_del(&space_info->list);
3186 		btrfs_sysfs_remove_space_info(space_info);
3187 	}
3188 	return 0;
3189 }
3190