xref: /linux/fs/btrfs/compression.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "btrfs_inode.h"
31 #include "bio.h"
32 #include "ordered-data.h"
33 #include "compression.h"
34 #include "extent_io.h"
35 #include "extent_map.h"
36 #include "subpage.h"
37 #include "zoned.h"
38 #include "file-item.h"
39 #include "super.h"
40 
41 static struct bio_set btrfs_compressed_bioset;
42 
43 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
44 
45 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
46 {
47 	switch (type) {
48 	case BTRFS_COMPRESS_ZLIB:
49 	case BTRFS_COMPRESS_LZO:
50 	case BTRFS_COMPRESS_ZSTD:
51 	case BTRFS_COMPRESS_NONE:
52 		return btrfs_compress_types[type];
53 	default:
54 		break;
55 	}
56 
57 	return NULL;
58 }
59 
60 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
61 {
62 	return container_of(bbio, struct compressed_bio, bbio);
63 }
64 
65 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
66 						   u64 start, blk_opf_t op,
67 						   btrfs_bio_end_io_t end_io)
68 {
69 	struct btrfs_bio *bbio;
70 
71 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
72 					  GFP_NOFS, &btrfs_compressed_bioset));
73 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
74 	bbio->inode = inode;
75 	bbio->file_offset = start;
76 	return to_compressed_bio(bbio);
77 }
78 
79 bool btrfs_compress_is_valid_type(const char *str, size_t len)
80 {
81 	int i;
82 
83 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
84 		size_t comp_len = strlen(btrfs_compress_types[i]);
85 
86 		if (len < comp_len)
87 			continue;
88 
89 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
90 			return true;
91 	}
92 	return false;
93 }
94 
95 static int compression_compress_pages(int type, struct list_head *ws,
96                struct address_space *mapping, u64 start, struct page **pages,
97                unsigned long *out_pages, unsigned long *total_in,
98                unsigned long *total_out)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB:
102 		return zlib_compress_pages(ws, mapping, start, pages,
103 				out_pages, total_in, total_out);
104 	case BTRFS_COMPRESS_LZO:
105 		return lzo_compress_pages(ws, mapping, start, pages,
106 				out_pages, total_in, total_out);
107 	case BTRFS_COMPRESS_ZSTD:
108 		return zstd_compress_pages(ws, mapping, start, pages,
109 				out_pages, total_in, total_out);
110 	case BTRFS_COMPRESS_NONE:
111 	default:
112 		/*
113 		 * This can happen when compression races with remount setting
114 		 * it to 'no compress', while caller doesn't call
115 		 * inode_need_compress() to check if we really need to
116 		 * compress.
117 		 *
118 		 * Not a big deal, just need to inform caller that we
119 		 * haven't allocated any pages yet.
120 		 */
121 		*out_pages = 0;
122 		return -E2BIG;
123 	}
124 }
125 
126 static int compression_decompress_bio(struct list_head *ws,
127 				      struct compressed_bio *cb)
128 {
129 	switch (cb->compress_type) {
130 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 	case BTRFS_COMPRESS_NONE:
134 	default:
135 		/*
136 		 * This can't happen, the type is validated several times
137 		 * before we get here.
138 		 */
139 		BUG();
140 	}
141 }
142 
143 static int compression_decompress(int type, struct list_head *ws,
144 		const u8 *data_in, struct page *dest_page,
145 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
146 {
147 	switch (type) {
148 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 						dest_pgoff, srclen, destlen);
150 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
151 						dest_pgoff, srclen, destlen);
152 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 						dest_pgoff, srclen, destlen);
154 	case BTRFS_COMPRESS_NONE:
155 	default:
156 		/*
157 		 * This can't happen, the type is validated several times
158 		 * before we get here.
159 		 */
160 		BUG();
161 	}
162 }
163 
164 static void btrfs_free_compressed_pages(struct compressed_bio *cb)
165 {
166 	for (unsigned int i = 0; i < cb->nr_pages; i++)
167 		btrfs_free_compr_page(cb->compressed_pages[i]);
168 	kfree(cb->compressed_pages);
169 }
170 
171 static int btrfs_decompress_bio(struct compressed_bio *cb);
172 
173 /*
174  * Global cache of last unused pages for compression/decompression.
175  */
176 static struct btrfs_compr_pool {
177 	struct shrinker *shrinker;
178 	spinlock_t lock;
179 	struct list_head list;
180 	int count;
181 	int thresh;
182 } compr_pool;
183 
184 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
185 {
186 	int ret;
187 
188 	/*
189 	 * We must not read the values more than once if 'ret' gets expanded in
190 	 * the return statement so we don't accidentally return a negative
191 	 * number, even if the first condition finds it positive.
192 	 */
193 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
194 
195 	return ret > 0 ? ret : 0;
196 }
197 
198 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
199 {
200 	struct list_head remove;
201 	struct list_head *tmp, *next;
202 	int freed;
203 
204 	if (compr_pool.count == 0)
205 		return SHRINK_STOP;
206 
207 	INIT_LIST_HEAD(&remove);
208 
209 	/* For now, just simply drain the whole list. */
210 	spin_lock(&compr_pool.lock);
211 	list_splice_init(&compr_pool.list, &remove);
212 	freed = compr_pool.count;
213 	compr_pool.count = 0;
214 	spin_unlock(&compr_pool.lock);
215 
216 	list_for_each_safe(tmp, next, &remove) {
217 		struct page *page = list_entry(tmp, struct page, lru);
218 
219 		ASSERT(page_ref_count(page) == 1);
220 		put_page(page);
221 	}
222 
223 	return freed;
224 }
225 
226 /*
227  * Common wrappers for page allocation from compression wrappers
228  */
229 struct page *btrfs_alloc_compr_page(void)
230 {
231 	struct page *page = NULL;
232 
233 	spin_lock(&compr_pool.lock);
234 	if (compr_pool.count > 0) {
235 		page = list_first_entry(&compr_pool.list, struct page, lru);
236 		list_del_init(&page->lru);
237 		compr_pool.count--;
238 	}
239 	spin_unlock(&compr_pool.lock);
240 
241 	if (page)
242 		return page;
243 
244 	return alloc_page(GFP_NOFS);
245 }
246 
247 void btrfs_free_compr_page(struct page *page)
248 {
249 	bool do_free = false;
250 
251 	spin_lock(&compr_pool.lock);
252 	if (compr_pool.count > compr_pool.thresh) {
253 		do_free = true;
254 	} else {
255 		list_add(&page->lru, &compr_pool.list);
256 		compr_pool.count++;
257 	}
258 	spin_unlock(&compr_pool.lock);
259 
260 	if (!do_free)
261 		return;
262 
263 	ASSERT(page_ref_count(page) == 1);
264 	put_page(page);
265 }
266 
267 static void end_bbio_comprssed_read(struct btrfs_bio *bbio)
268 {
269 	struct compressed_bio *cb = to_compressed_bio(bbio);
270 	blk_status_t status = bbio->bio.bi_status;
271 
272 	if (!status)
273 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
274 
275 	btrfs_free_compressed_pages(cb);
276 	btrfs_bio_end_io(cb->orig_bbio, status);
277 	bio_put(&bbio->bio);
278 }
279 
280 /*
281  * Clear the writeback bits on all of the file
282  * pages for a compressed write
283  */
284 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
285 {
286 	struct inode *inode = &cb->bbio.inode->vfs_inode;
287 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
288 	unsigned long index = cb->start >> PAGE_SHIFT;
289 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
290 	struct folio_batch fbatch;
291 	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
292 	int i;
293 	int ret;
294 
295 	if (error)
296 		mapping_set_error(inode->i_mapping, error);
297 
298 	folio_batch_init(&fbatch);
299 	while (index <= end_index) {
300 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
301 				&fbatch);
302 
303 		if (ret == 0)
304 			return;
305 
306 		for (i = 0; i < ret; i++) {
307 			struct folio *folio = fbatch.folios[i];
308 
309 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
310 							  cb->start, cb->len);
311 		}
312 		folio_batch_release(&fbatch);
313 	}
314 	/* the inode may be gone now */
315 }
316 
317 static void btrfs_finish_compressed_write_work(struct work_struct *work)
318 {
319 	struct compressed_bio *cb =
320 		container_of(work, struct compressed_bio, write_end_work);
321 
322 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
323 				    cb->bbio.bio.bi_status == BLK_STS_OK);
324 
325 	if (cb->writeback)
326 		end_compressed_writeback(cb);
327 	/* Note, our inode could be gone now */
328 
329 	btrfs_free_compressed_pages(cb);
330 	bio_put(&cb->bbio.bio);
331 }
332 
333 /*
334  * Do the cleanup once all the compressed pages hit the disk.  This will clear
335  * writeback on the file pages and free the compressed pages.
336  *
337  * This also calls the writeback end hooks for the file pages so that metadata
338  * and checksums can be updated in the file.
339  */
340 static void end_bbio_comprssed_write(struct btrfs_bio *bbio)
341 {
342 	struct compressed_bio *cb = to_compressed_bio(bbio);
343 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
344 
345 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
346 }
347 
348 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
349 {
350 	struct bio *bio = &cb->bbio.bio;
351 	u32 offset = 0;
352 
353 	while (offset < cb->compressed_len) {
354 		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
355 
356 		/* Maximum compressed extent is smaller than bio size limit. */
357 		__bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
358 			       len, 0);
359 		offset += len;
360 	}
361 }
362 
363 /*
364  * worker function to build and submit bios for previously compressed pages.
365  * The corresponding pages in the inode should be marked for writeback
366  * and the compressed pages should have a reference on them for dropping
367  * when the IO is complete.
368  *
369  * This also checksums the file bytes and gets things ready for
370  * the end io hooks.
371  */
372 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
373 				   struct page **compressed_pages,
374 				   unsigned int nr_pages,
375 				   blk_opf_t write_flags,
376 				   bool writeback)
377 {
378 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
379 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
380 	struct compressed_bio *cb;
381 
382 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
383 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
384 
385 	cb = alloc_compressed_bio(inode, ordered->file_offset,
386 				  REQ_OP_WRITE | write_flags,
387 				  end_bbio_comprssed_write);
388 	cb->start = ordered->file_offset;
389 	cb->len = ordered->num_bytes;
390 	cb->compressed_pages = compressed_pages;
391 	cb->compressed_len = ordered->disk_num_bytes;
392 	cb->writeback = writeback;
393 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
394 	cb->nr_pages = nr_pages;
395 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
396 	cb->bbio.ordered = ordered;
397 	btrfs_add_compressed_bio_pages(cb);
398 
399 	btrfs_submit_bio(&cb->bbio, 0);
400 }
401 
402 /*
403  * Add extra pages in the same compressed file extent so that we don't need to
404  * re-read the same extent again and again.
405  *
406  * NOTE: this won't work well for subpage, as for subpage read, we lock the
407  * full page then submit bio for each compressed/regular extents.
408  *
409  * This means, if we have several sectors in the same page points to the same
410  * on-disk compressed data, we will re-read the same extent many times and
411  * this function can only help for the next page.
412  */
413 static noinline int add_ra_bio_pages(struct inode *inode,
414 				     u64 compressed_end,
415 				     struct compressed_bio *cb,
416 				     int *memstall, unsigned long *pflags)
417 {
418 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 	unsigned long end_index;
420 	struct bio *orig_bio = &cb->orig_bbio->bio;
421 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
422 	u64 isize = i_size_read(inode);
423 	int ret;
424 	struct page *page;
425 	struct extent_map *em;
426 	struct address_space *mapping = inode->i_mapping;
427 	struct extent_map_tree *em_tree;
428 	struct extent_io_tree *tree;
429 	int sectors_missed = 0;
430 
431 	em_tree = &BTRFS_I(inode)->extent_tree;
432 	tree = &BTRFS_I(inode)->io_tree;
433 
434 	if (isize == 0)
435 		return 0;
436 
437 	/*
438 	 * For current subpage support, we only support 64K page size,
439 	 * which means maximum compressed extent size (128K) is just 2x page
440 	 * size.
441 	 * This makes readahead less effective, so here disable readahead for
442 	 * subpage for now, until full compressed write is supported.
443 	 */
444 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
445 		return 0;
446 
447 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
448 
449 	while (cur < compressed_end) {
450 		u64 page_end;
451 		u64 pg_index = cur >> PAGE_SHIFT;
452 		u32 add_size;
453 
454 		if (pg_index > end_index)
455 			break;
456 
457 		page = xa_load(&mapping->i_pages, pg_index);
458 		if (page && !xa_is_value(page)) {
459 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
460 					  fs_info->sectorsize_bits;
461 
462 			/* Beyond threshold, no need to continue */
463 			if (sectors_missed > 4)
464 				break;
465 
466 			/*
467 			 * Jump to next page start as we already have page for
468 			 * current offset.
469 			 */
470 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
471 			continue;
472 		}
473 
474 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
475 								 ~__GFP_FS));
476 		if (!page)
477 			break;
478 
479 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
480 			put_page(page);
481 			/* There is already a page, skip to page end */
482 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
483 			continue;
484 		}
485 
486 		if (!*memstall && PageWorkingset(page)) {
487 			psi_memstall_enter(pflags);
488 			*memstall = 1;
489 		}
490 
491 		ret = set_page_extent_mapped(page);
492 		if (ret < 0) {
493 			unlock_page(page);
494 			put_page(page);
495 			break;
496 		}
497 
498 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
499 		lock_extent(tree, cur, page_end, NULL);
500 		read_lock(&em_tree->lock);
501 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
502 		read_unlock(&em_tree->lock);
503 
504 		/*
505 		 * At this point, we have a locked page in the page cache for
506 		 * these bytes in the file.  But, we have to make sure they map
507 		 * to this compressed extent on disk.
508 		 */
509 		if (!em || cur < em->start ||
510 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
511 		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
512 			free_extent_map(em);
513 			unlock_extent(tree, cur, page_end, NULL);
514 			unlock_page(page);
515 			put_page(page);
516 			break;
517 		}
518 		free_extent_map(em);
519 
520 		if (page->index == end_index) {
521 			size_t zero_offset = offset_in_page(isize);
522 
523 			if (zero_offset) {
524 				int zeros;
525 				zeros = PAGE_SIZE - zero_offset;
526 				memzero_page(page, zero_offset, zeros);
527 			}
528 		}
529 
530 		add_size = min(em->start + em->len, page_end + 1) - cur;
531 		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
532 		if (ret != add_size) {
533 			unlock_extent(tree, cur, page_end, NULL);
534 			unlock_page(page);
535 			put_page(page);
536 			break;
537 		}
538 		/*
539 		 * If it's subpage, we also need to increase its
540 		 * subpage::readers number, as at endio we will decrease
541 		 * subpage::readers and to unlock the page.
542 		 */
543 		if (fs_info->sectorsize < PAGE_SIZE)
544 			btrfs_subpage_start_reader(fs_info, page_folio(page),
545 						   cur, add_size);
546 		put_page(page);
547 		cur += add_size;
548 	}
549 	return 0;
550 }
551 
552 /*
553  * for a compressed read, the bio we get passed has all the inode pages
554  * in it.  We don't actually do IO on those pages but allocate new ones
555  * to hold the compressed pages on disk.
556  *
557  * bio->bi_iter.bi_sector points to the compressed extent on disk
558  * bio->bi_io_vec points to all of the inode pages
559  *
560  * After the compressed pages are read, we copy the bytes into the
561  * bio we were passed and then call the bio end_io calls
562  */
563 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
564 {
565 	struct btrfs_inode *inode = bbio->inode;
566 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
567 	struct extent_map_tree *em_tree = &inode->extent_tree;
568 	struct compressed_bio *cb;
569 	unsigned int compressed_len;
570 	u64 file_offset = bbio->file_offset;
571 	u64 em_len;
572 	u64 em_start;
573 	struct extent_map *em;
574 	unsigned long pflags;
575 	int memstall = 0;
576 	blk_status_t ret;
577 	int ret2;
578 
579 	/* we need the actual starting offset of this extent in the file */
580 	read_lock(&em_tree->lock);
581 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
582 	read_unlock(&em_tree->lock);
583 	if (!em) {
584 		ret = BLK_STS_IOERR;
585 		goto out;
586 	}
587 
588 	ASSERT(extent_map_is_compressed(em));
589 	compressed_len = em->block_len;
590 
591 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
592 				  end_bbio_comprssed_read);
593 
594 	cb->start = em->orig_start;
595 	em_len = em->len;
596 	em_start = em->start;
597 
598 	cb->len = bbio->bio.bi_iter.bi_size;
599 	cb->compressed_len = compressed_len;
600 	cb->compress_type = extent_map_compression(em);
601 	cb->orig_bbio = bbio;
602 
603 	free_extent_map(em);
604 
605 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
606 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
607 	if (!cb->compressed_pages) {
608 		ret = BLK_STS_RESOURCE;
609 		goto out_free_bio;
610 	}
611 
612 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages, 0);
613 	if (ret2) {
614 		ret = BLK_STS_RESOURCE;
615 		goto out_free_compressed_pages;
616 	}
617 
618 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
619 			 &pflags);
620 
621 	/* include any pages we added in add_ra-bio_pages */
622 	cb->len = bbio->bio.bi_iter.bi_size;
623 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
624 	btrfs_add_compressed_bio_pages(cb);
625 
626 	if (memstall)
627 		psi_memstall_leave(&pflags);
628 
629 	btrfs_submit_bio(&cb->bbio, 0);
630 	return;
631 
632 out_free_compressed_pages:
633 	kfree(cb->compressed_pages);
634 out_free_bio:
635 	bio_put(&cb->bbio.bio);
636 out:
637 	btrfs_bio_end_io(bbio, ret);
638 }
639 
640 /*
641  * Heuristic uses systematic sampling to collect data from the input data
642  * range, the logic can be tuned by the following constants:
643  *
644  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
645  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
646  */
647 #define SAMPLING_READ_SIZE	(16)
648 #define SAMPLING_INTERVAL	(256)
649 
650 /*
651  * For statistical analysis of the input data we consider bytes that form a
652  * Galois Field of 256 objects. Each object has an attribute count, ie. how
653  * many times the object appeared in the sample.
654  */
655 #define BUCKET_SIZE		(256)
656 
657 /*
658  * The size of the sample is based on a statistical sampling rule of thumb.
659  * The common way is to perform sampling tests as long as the number of
660  * elements in each cell is at least 5.
661  *
662  * Instead of 5, we choose 32 to obtain more accurate results.
663  * If the data contain the maximum number of symbols, which is 256, we obtain a
664  * sample size bound by 8192.
665  *
666  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
667  * from up to 512 locations.
668  */
669 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
670 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
671 
672 struct bucket_item {
673 	u32 count;
674 };
675 
676 struct heuristic_ws {
677 	/* Partial copy of input data */
678 	u8 *sample;
679 	u32 sample_size;
680 	/* Buckets store counters for each byte value */
681 	struct bucket_item *bucket;
682 	/* Sorting buffer */
683 	struct bucket_item *bucket_b;
684 	struct list_head list;
685 };
686 
687 static struct workspace_manager heuristic_wsm;
688 
689 static void free_heuristic_ws(struct list_head *ws)
690 {
691 	struct heuristic_ws *workspace;
692 
693 	workspace = list_entry(ws, struct heuristic_ws, list);
694 
695 	kvfree(workspace->sample);
696 	kfree(workspace->bucket);
697 	kfree(workspace->bucket_b);
698 	kfree(workspace);
699 }
700 
701 static struct list_head *alloc_heuristic_ws(unsigned int level)
702 {
703 	struct heuristic_ws *ws;
704 
705 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
706 	if (!ws)
707 		return ERR_PTR(-ENOMEM);
708 
709 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
710 	if (!ws->sample)
711 		goto fail;
712 
713 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
714 	if (!ws->bucket)
715 		goto fail;
716 
717 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
718 	if (!ws->bucket_b)
719 		goto fail;
720 
721 	INIT_LIST_HEAD(&ws->list);
722 	return &ws->list;
723 fail:
724 	free_heuristic_ws(&ws->list);
725 	return ERR_PTR(-ENOMEM);
726 }
727 
728 const struct btrfs_compress_op btrfs_heuristic_compress = {
729 	.workspace_manager = &heuristic_wsm,
730 };
731 
732 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
733 	/* The heuristic is represented as compression type 0 */
734 	&btrfs_heuristic_compress,
735 	&btrfs_zlib_compress,
736 	&btrfs_lzo_compress,
737 	&btrfs_zstd_compress,
738 };
739 
740 static struct list_head *alloc_workspace(int type, unsigned int level)
741 {
742 	switch (type) {
743 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
744 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
745 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
746 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
747 	default:
748 		/*
749 		 * This can't happen, the type is validated several times
750 		 * before we get here.
751 		 */
752 		BUG();
753 	}
754 }
755 
756 static void free_workspace(int type, struct list_head *ws)
757 {
758 	switch (type) {
759 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
760 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
761 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
762 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
763 	default:
764 		/*
765 		 * This can't happen, the type is validated several times
766 		 * before we get here.
767 		 */
768 		BUG();
769 	}
770 }
771 
772 static void btrfs_init_workspace_manager(int type)
773 {
774 	struct workspace_manager *wsm;
775 	struct list_head *workspace;
776 
777 	wsm = btrfs_compress_op[type]->workspace_manager;
778 	INIT_LIST_HEAD(&wsm->idle_ws);
779 	spin_lock_init(&wsm->ws_lock);
780 	atomic_set(&wsm->total_ws, 0);
781 	init_waitqueue_head(&wsm->ws_wait);
782 
783 	/*
784 	 * Preallocate one workspace for each compression type so we can
785 	 * guarantee forward progress in the worst case
786 	 */
787 	workspace = alloc_workspace(type, 0);
788 	if (IS_ERR(workspace)) {
789 		pr_warn(
790 	"BTRFS: cannot preallocate compression workspace, will try later\n");
791 	} else {
792 		atomic_set(&wsm->total_ws, 1);
793 		wsm->free_ws = 1;
794 		list_add(workspace, &wsm->idle_ws);
795 	}
796 }
797 
798 static void btrfs_cleanup_workspace_manager(int type)
799 {
800 	struct workspace_manager *wsman;
801 	struct list_head *ws;
802 
803 	wsman = btrfs_compress_op[type]->workspace_manager;
804 	while (!list_empty(&wsman->idle_ws)) {
805 		ws = wsman->idle_ws.next;
806 		list_del(ws);
807 		free_workspace(type, ws);
808 		atomic_dec(&wsman->total_ws);
809 	}
810 }
811 
812 /*
813  * This finds an available workspace or allocates a new one.
814  * If it's not possible to allocate a new one, waits until there's one.
815  * Preallocation makes a forward progress guarantees and we do not return
816  * errors.
817  */
818 struct list_head *btrfs_get_workspace(int type, unsigned int level)
819 {
820 	struct workspace_manager *wsm;
821 	struct list_head *workspace;
822 	int cpus = num_online_cpus();
823 	unsigned nofs_flag;
824 	struct list_head *idle_ws;
825 	spinlock_t *ws_lock;
826 	atomic_t *total_ws;
827 	wait_queue_head_t *ws_wait;
828 	int *free_ws;
829 
830 	wsm = btrfs_compress_op[type]->workspace_manager;
831 	idle_ws	 = &wsm->idle_ws;
832 	ws_lock	 = &wsm->ws_lock;
833 	total_ws = &wsm->total_ws;
834 	ws_wait	 = &wsm->ws_wait;
835 	free_ws	 = &wsm->free_ws;
836 
837 again:
838 	spin_lock(ws_lock);
839 	if (!list_empty(idle_ws)) {
840 		workspace = idle_ws->next;
841 		list_del(workspace);
842 		(*free_ws)--;
843 		spin_unlock(ws_lock);
844 		return workspace;
845 
846 	}
847 	if (atomic_read(total_ws) > cpus) {
848 		DEFINE_WAIT(wait);
849 
850 		spin_unlock(ws_lock);
851 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
852 		if (atomic_read(total_ws) > cpus && !*free_ws)
853 			schedule();
854 		finish_wait(ws_wait, &wait);
855 		goto again;
856 	}
857 	atomic_inc(total_ws);
858 	spin_unlock(ws_lock);
859 
860 	/*
861 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
862 	 * to turn it off here because we might get called from the restricted
863 	 * context of btrfs_compress_bio/btrfs_compress_pages
864 	 */
865 	nofs_flag = memalloc_nofs_save();
866 	workspace = alloc_workspace(type, level);
867 	memalloc_nofs_restore(nofs_flag);
868 
869 	if (IS_ERR(workspace)) {
870 		atomic_dec(total_ws);
871 		wake_up(ws_wait);
872 
873 		/*
874 		 * Do not return the error but go back to waiting. There's a
875 		 * workspace preallocated for each type and the compression
876 		 * time is bounded so we get to a workspace eventually. This
877 		 * makes our caller's life easier.
878 		 *
879 		 * To prevent silent and low-probability deadlocks (when the
880 		 * initial preallocation fails), check if there are any
881 		 * workspaces at all.
882 		 */
883 		if (atomic_read(total_ws) == 0) {
884 			static DEFINE_RATELIMIT_STATE(_rs,
885 					/* once per minute */ 60 * HZ,
886 					/* no burst */ 1);
887 
888 			if (__ratelimit(&_rs)) {
889 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
890 			}
891 		}
892 		goto again;
893 	}
894 	return workspace;
895 }
896 
897 static struct list_head *get_workspace(int type, int level)
898 {
899 	switch (type) {
900 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
901 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
902 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
903 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
904 	default:
905 		/*
906 		 * This can't happen, the type is validated several times
907 		 * before we get here.
908 		 */
909 		BUG();
910 	}
911 }
912 
913 /*
914  * put a workspace struct back on the list or free it if we have enough
915  * idle ones sitting around
916  */
917 void btrfs_put_workspace(int type, struct list_head *ws)
918 {
919 	struct workspace_manager *wsm;
920 	struct list_head *idle_ws;
921 	spinlock_t *ws_lock;
922 	atomic_t *total_ws;
923 	wait_queue_head_t *ws_wait;
924 	int *free_ws;
925 
926 	wsm = btrfs_compress_op[type]->workspace_manager;
927 	idle_ws	 = &wsm->idle_ws;
928 	ws_lock	 = &wsm->ws_lock;
929 	total_ws = &wsm->total_ws;
930 	ws_wait	 = &wsm->ws_wait;
931 	free_ws	 = &wsm->free_ws;
932 
933 	spin_lock(ws_lock);
934 	if (*free_ws <= num_online_cpus()) {
935 		list_add(ws, idle_ws);
936 		(*free_ws)++;
937 		spin_unlock(ws_lock);
938 		goto wake;
939 	}
940 	spin_unlock(ws_lock);
941 
942 	free_workspace(type, ws);
943 	atomic_dec(total_ws);
944 wake:
945 	cond_wake_up(ws_wait);
946 }
947 
948 static void put_workspace(int type, struct list_head *ws)
949 {
950 	switch (type) {
951 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
952 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
953 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
954 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
955 	default:
956 		/*
957 		 * This can't happen, the type is validated several times
958 		 * before we get here.
959 		 */
960 		BUG();
961 	}
962 }
963 
964 /*
965  * Adjust @level according to the limits of the compression algorithm or
966  * fallback to default
967  */
968 static unsigned int btrfs_compress_set_level(int type, unsigned level)
969 {
970 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
971 
972 	if (level == 0)
973 		level = ops->default_level;
974 	else
975 		level = min(level, ops->max_level);
976 
977 	return level;
978 }
979 
980 /*
981  * Given an address space and start and length, compress the bytes into @pages
982  * that are allocated on demand.
983  *
984  * @type_level is encoded algorithm and level, where level 0 means whatever
985  * default the algorithm chooses and is opaque here;
986  * - compression algo are 0-3
987  * - the level are bits 4-7
988  *
989  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
990  * and returns number of actually allocated pages
991  *
992  * @total_in is used to return the number of bytes actually read.  It
993  * may be smaller than the input length if we had to exit early because we
994  * ran out of room in the pages array or because we cross the
995  * max_out threshold.
996  *
997  * @total_out is an in/out parameter, must be set to the input length and will
998  * be also used to return the total number of compressed bytes
999  */
1000 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1001 			 u64 start, struct page **pages,
1002 			 unsigned long *out_pages,
1003 			 unsigned long *total_in,
1004 			 unsigned long *total_out)
1005 {
1006 	int type = btrfs_compress_type(type_level);
1007 	int level = btrfs_compress_level(type_level);
1008 	struct list_head *workspace;
1009 	int ret;
1010 
1011 	level = btrfs_compress_set_level(type, level);
1012 	workspace = get_workspace(type, level);
1013 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1014 					 out_pages, total_in, total_out);
1015 	put_workspace(type, workspace);
1016 	return ret;
1017 }
1018 
1019 static int btrfs_decompress_bio(struct compressed_bio *cb)
1020 {
1021 	struct list_head *workspace;
1022 	int ret;
1023 	int type = cb->compress_type;
1024 
1025 	workspace = get_workspace(type, 0);
1026 	ret = compression_decompress_bio(workspace, cb);
1027 	put_workspace(type, workspace);
1028 
1029 	if (!ret)
1030 		zero_fill_bio(&cb->orig_bbio->bio);
1031 	return ret;
1032 }
1033 
1034 /*
1035  * a less complex decompression routine.  Our compressed data fits in a
1036  * single page, and we want to read a single page out of it.
1037  * start_byte tells us the offset into the compressed data we're interested in
1038  */
1039 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1040 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1041 {
1042 	struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
1043 	struct list_head *workspace;
1044 	const u32 sectorsize = fs_info->sectorsize;
1045 	int ret;
1046 
1047 	/*
1048 	 * The full destination page range should not exceed the page size.
1049 	 * And the @destlen should not exceed sectorsize, as this is only called for
1050 	 * inline file extents, which should not exceed sectorsize.
1051 	 */
1052 	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1053 
1054 	workspace = get_workspace(type, 0);
1055 	ret = compression_decompress(type, workspace, data_in, dest_page,
1056 				     dest_pgoff, srclen, destlen);
1057 	put_workspace(type, workspace);
1058 
1059 	return ret;
1060 }
1061 
1062 int __init btrfs_init_compress(void)
1063 {
1064 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1065 			offsetof(struct compressed_bio, bbio.bio),
1066 			BIOSET_NEED_BVECS))
1067 		return -ENOMEM;
1068 
1069 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1070 	if (!compr_pool.shrinker)
1071 		return -ENOMEM;
1072 
1073 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1074 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1075 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1076 	zstd_init_workspace_manager();
1077 
1078 	spin_lock_init(&compr_pool.lock);
1079 	INIT_LIST_HEAD(&compr_pool.list);
1080 	compr_pool.count = 0;
1081 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1082 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1083 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1084 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1085 	compr_pool.shrinker->batch = 32;
1086 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1087 	shrinker_register(compr_pool.shrinker);
1088 
1089 	return 0;
1090 }
1091 
1092 void __cold btrfs_exit_compress(void)
1093 {
1094 	/* For now scan drains all pages and does not touch the parameters. */
1095 	btrfs_compr_pool_scan(NULL, NULL);
1096 	shrinker_free(compr_pool.shrinker);
1097 
1098 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1099 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1100 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1101 	zstd_cleanup_workspace_manager();
1102 	bioset_exit(&btrfs_compressed_bioset);
1103 }
1104 
1105 /*
1106  * Copy decompressed data from working buffer to pages.
1107  *
1108  * @buf:		The decompressed data buffer
1109  * @buf_len:		The decompressed data length
1110  * @decompressed:	Number of bytes that are already decompressed inside the
1111  * 			compressed extent
1112  * @cb:			The compressed extent descriptor
1113  * @orig_bio:		The original bio that the caller wants to read for
1114  *
1115  * An easier to understand graph is like below:
1116  *
1117  * 		|<- orig_bio ->|     |<- orig_bio->|
1118  * 	|<-------      full decompressed extent      ----->|
1119  * 	|<-----------    @cb range   ---->|
1120  * 	|			|<-- @buf_len -->|
1121  * 	|<--- @decompressed --->|
1122  *
1123  * Note that, @cb can be a subpage of the full decompressed extent, but
1124  * @cb->start always has the same as the orig_file_offset value of the full
1125  * decompressed extent.
1126  *
1127  * When reading compressed extent, we have to read the full compressed extent,
1128  * while @orig_bio may only want part of the range.
1129  * Thus this function will ensure only data covered by @orig_bio will be copied
1130  * to.
1131  *
1132  * Return 0 if we have copied all needed contents for @orig_bio.
1133  * Return >0 if we need continue decompress.
1134  */
1135 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1136 			      struct compressed_bio *cb, u32 decompressed)
1137 {
1138 	struct bio *orig_bio = &cb->orig_bbio->bio;
1139 	/* Offset inside the full decompressed extent */
1140 	u32 cur_offset;
1141 
1142 	cur_offset = decompressed;
1143 	/* The main loop to do the copy */
1144 	while (cur_offset < decompressed + buf_len) {
1145 		struct bio_vec bvec;
1146 		size_t copy_len;
1147 		u32 copy_start;
1148 		/* Offset inside the full decompressed extent */
1149 		u32 bvec_offset;
1150 
1151 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1152 		/*
1153 		 * cb->start may underflow, but subtracting that value can still
1154 		 * give us correct offset inside the full decompressed extent.
1155 		 */
1156 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1157 
1158 		/* Haven't reached the bvec range, exit */
1159 		if (decompressed + buf_len <= bvec_offset)
1160 			return 1;
1161 
1162 		copy_start = max(cur_offset, bvec_offset);
1163 		copy_len = min(bvec_offset + bvec.bv_len,
1164 			       decompressed + buf_len) - copy_start;
1165 		ASSERT(copy_len);
1166 
1167 		/*
1168 		 * Extra range check to ensure we didn't go beyond
1169 		 * @buf + @buf_len.
1170 		 */
1171 		ASSERT(copy_start - decompressed < buf_len);
1172 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1173 			       buf + copy_start - decompressed, copy_len);
1174 		cur_offset += copy_len;
1175 
1176 		bio_advance(orig_bio, copy_len);
1177 		/* Finished the bio */
1178 		if (!orig_bio->bi_iter.bi_size)
1179 			return 0;
1180 	}
1181 	return 1;
1182 }
1183 
1184 /*
1185  * Shannon Entropy calculation
1186  *
1187  * Pure byte distribution analysis fails to determine compressibility of data.
1188  * Try calculating entropy to estimate the average minimum number of bits
1189  * needed to encode the sampled data.
1190  *
1191  * For convenience, return the percentage of needed bits, instead of amount of
1192  * bits directly.
1193  *
1194  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1195  *			    and can be compressible with high probability
1196  *
1197  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1198  *
1199  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1200  */
1201 #define ENTROPY_LVL_ACEPTABLE		(65)
1202 #define ENTROPY_LVL_HIGH		(80)
1203 
1204 /*
1205  * For increasead precision in shannon_entropy calculation,
1206  * let's do pow(n, M) to save more digits after comma:
1207  *
1208  * - maximum int bit length is 64
1209  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1210  * - 13 * 4 = 52 < 64		-> M = 4
1211  *
1212  * So use pow(n, 4).
1213  */
1214 static inline u32 ilog2_w(u64 n)
1215 {
1216 	return ilog2(n * n * n * n);
1217 }
1218 
1219 static u32 shannon_entropy(struct heuristic_ws *ws)
1220 {
1221 	const u32 entropy_max = 8 * ilog2_w(2);
1222 	u32 entropy_sum = 0;
1223 	u32 p, p_base, sz_base;
1224 	u32 i;
1225 
1226 	sz_base = ilog2_w(ws->sample_size);
1227 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1228 		p = ws->bucket[i].count;
1229 		p_base = ilog2_w(p);
1230 		entropy_sum += p * (sz_base - p_base);
1231 	}
1232 
1233 	entropy_sum /= ws->sample_size;
1234 	return entropy_sum * 100 / entropy_max;
1235 }
1236 
1237 #define RADIX_BASE		4U
1238 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1239 
1240 static u8 get4bits(u64 num, int shift) {
1241 	u8 low4bits;
1242 
1243 	num >>= shift;
1244 	/* Reverse order */
1245 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1246 	return low4bits;
1247 }
1248 
1249 /*
1250  * Use 4 bits as radix base
1251  * Use 16 u32 counters for calculating new position in buf array
1252  *
1253  * @array     - array that will be sorted
1254  * @array_buf - buffer array to store sorting results
1255  *              must be equal in size to @array
1256  * @num       - array size
1257  */
1258 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1259 		       int num)
1260 {
1261 	u64 max_num;
1262 	u64 buf_num;
1263 	u32 counters[COUNTERS_SIZE];
1264 	u32 new_addr;
1265 	u32 addr;
1266 	int bitlen;
1267 	int shift;
1268 	int i;
1269 
1270 	/*
1271 	 * Try avoid useless loop iterations for small numbers stored in big
1272 	 * counters.  Example: 48 33 4 ... in 64bit array
1273 	 */
1274 	max_num = array[0].count;
1275 	for (i = 1; i < num; i++) {
1276 		buf_num = array[i].count;
1277 		if (buf_num > max_num)
1278 			max_num = buf_num;
1279 	}
1280 
1281 	buf_num = ilog2(max_num);
1282 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1283 
1284 	shift = 0;
1285 	while (shift < bitlen) {
1286 		memset(counters, 0, sizeof(counters));
1287 
1288 		for (i = 0; i < num; i++) {
1289 			buf_num = array[i].count;
1290 			addr = get4bits(buf_num, shift);
1291 			counters[addr]++;
1292 		}
1293 
1294 		for (i = 1; i < COUNTERS_SIZE; i++)
1295 			counters[i] += counters[i - 1];
1296 
1297 		for (i = num - 1; i >= 0; i--) {
1298 			buf_num = array[i].count;
1299 			addr = get4bits(buf_num, shift);
1300 			counters[addr]--;
1301 			new_addr = counters[addr];
1302 			array_buf[new_addr] = array[i];
1303 		}
1304 
1305 		shift += RADIX_BASE;
1306 
1307 		/*
1308 		 * Normal radix expects to move data from a temporary array, to
1309 		 * the main one.  But that requires some CPU time. Avoid that
1310 		 * by doing another sort iteration to original array instead of
1311 		 * memcpy()
1312 		 */
1313 		memset(counters, 0, sizeof(counters));
1314 
1315 		for (i = 0; i < num; i ++) {
1316 			buf_num = array_buf[i].count;
1317 			addr = get4bits(buf_num, shift);
1318 			counters[addr]++;
1319 		}
1320 
1321 		for (i = 1; i < COUNTERS_SIZE; i++)
1322 			counters[i] += counters[i - 1];
1323 
1324 		for (i = num - 1; i >= 0; i--) {
1325 			buf_num = array_buf[i].count;
1326 			addr = get4bits(buf_num, shift);
1327 			counters[addr]--;
1328 			new_addr = counters[addr];
1329 			array[new_addr] = array_buf[i];
1330 		}
1331 
1332 		shift += RADIX_BASE;
1333 	}
1334 }
1335 
1336 /*
1337  * Size of the core byte set - how many bytes cover 90% of the sample
1338  *
1339  * There are several types of structured binary data that use nearly all byte
1340  * values. The distribution can be uniform and counts in all buckets will be
1341  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1342  *
1343  * Other possibility is normal (Gaussian) distribution, where the data could
1344  * be potentially compressible, but we have to take a few more steps to decide
1345  * how much.
1346  *
1347  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1348  *                       compression algo can easy fix that
1349  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1350  *                       probability is not compressible
1351  */
1352 #define BYTE_CORE_SET_LOW		(64)
1353 #define BYTE_CORE_SET_HIGH		(200)
1354 
1355 static int byte_core_set_size(struct heuristic_ws *ws)
1356 {
1357 	u32 i;
1358 	u32 coreset_sum = 0;
1359 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1360 	struct bucket_item *bucket = ws->bucket;
1361 
1362 	/* Sort in reverse order */
1363 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1364 
1365 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1366 		coreset_sum += bucket[i].count;
1367 
1368 	if (coreset_sum > core_set_threshold)
1369 		return i;
1370 
1371 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1372 		coreset_sum += bucket[i].count;
1373 		if (coreset_sum > core_set_threshold)
1374 			break;
1375 	}
1376 
1377 	return i;
1378 }
1379 
1380 /*
1381  * Count byte values in buckets.
1382  * This heuristic can detect textual data (configs, xml, json, html, etc).
1383  * Because in most text-like data byte set is restricted to limited number of
1384  * possible characters, and that restriction in most cases makes data easy to
1385  * compress.
1386  *
1387  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1388  *	less - compressible
1389  *	more - need additional analysis
1390  */
1391 #define BYTE_SET_THRESHOLD		(64)
1392 
1393 static u32 byte_set_size(const struct heuristic_ws *ws)
1394 {
1395 	u32 i;
1396 	u32 byte_set_size = 0;
1397 
1398 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1399 		if (ws->bucket[i].count > 0)
1400 			byte_set_size++;
1401 	}
1402 
1403 	/*
1404 	 * Continue collecting count of byte values in buckets.  If the byte
1405 	 * set size is bigger then the threshold, it's pointless to continue,
1406 	 * the detection technique would fail for this type of data.
1407 	 */
1408 	for (; i < BUCKET_SIZE; i++) {
1409 		if (ws->bucket[i].count > 0) {
1410 			byte_set_size++;
1411 			if (byte_set_size > BYTE_SET_THRESHOLD)
1412 				return byte_set_size;
1413 		}
1414 	}
1415 
1416 	return byte_set_size;
1417 }
1418 
1419 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1420 {
1421 	const u32 half_of_sample = ws->sample_size / 2;
1422 	const u8 *data = ws->sample;
1423 
1424 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1425 }
1426 
1427 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1428 				     struct heuristic_ws *ws)
1429 {
1430 	struct page *page;
1431 	u64 index, index_end;
1432 	u32 i, curr_sample_pos;
1433 	u8 *in_data;
1434 
1435 	/*
1436 	 * Compression handles the input data by chunks of 128KiB
1437 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1438 	 *
1439 	 * We do the same for the heuristic and loop over the whole range.
1440 	 *
1441 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1442 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1443 	 */
1444 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1445 		end = start + BTRFS_MAX_UNCOMPRESSED;
1446 
1447 	index = start >> PAGE_SHIFT;
1448 	index_end = end >> PAGE_SHIFT;
1449 
1450 	/* Don't miss unaligned end */
1451 	if (!PAGE_ALIGNED(end))
1452 		index_end++;
1453 
1454 	curr_sample_pos = 0;
1455 	while (index < index_end) {
1456 		page = find_get_page(inode->i_mapping, index);
1457 		in_data = kmap_local_page(page);
1458 		/* Handle case where the start is not aligned to PAGE_SIZE */
1459 		i = start % PAGE_SIZE;
1460 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1461 			/* Don't sample any garbage from the last page */
1462 			if (start > end - SAMPLING_READ_SIZE)
1463 				break;
1464 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1465 					SAMPLING_READ_SIZE);
1466 			i += SAMPLING_INTERVAL;
1467 			start += SAMPLING_INTERVAL;
1468 			curr_sample_pos += SAMPLING_READ_SIZE;
1469 		}
1470 		kunmap_local(in_data);
1471 		put_page(page);
1472 
1473 		index++;
1474 	}
1475 
1476 	ws->sample_size = curr_sample_pos;
1477 }
1478 
1479 /*
1480  * Compression heuristic.
1481  *
1482  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1483  * quickly (compared to direct compression) detect data characteristics
1484  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1485  * data.
1486  *
1487  * The following types of analysis can be performed:
1488  * - detect mostly zero data
1489  * - detect data with low "byte set" size (text, etc)
1490  * - detect data with low/high "core byte" set
1491  *
1492  * Return non-zero if the compression should be done, 0 otherwise.
1493  */
1494 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1495 {
1496 	struct list_head *ws_list = get_workspace(0, 0);
1497 	struct heuristic_ws *ws;
1498 	u32 i;
1499 	u8 byte;
1500 	int ret = 0;
1501 
1502 	ws = list_entry(ws_list, struct heuristic_ws, list);
1503 
1504 	heuristic_collect_sample(inode, start, end, ws);
1505 
1506 	if (sample_repeated_patterns(ws)) {
1507 		ret = 1;
1508 		goto out;
1509 	}
1510 
1511 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1512 
1513 	for (i = 0; i < ws->sample_size; i++) {
1514 		byte = ws->sample[i];
1515 		ws->bucket[byte].count++;
1516 	}
1517 
1518 	i = byte_set_size(ws);
1519 	if (i < BYTE_SET_THRESHOLD) {
1520 		ret = 2;
1521 		goto out;
1522 	}
1523 
1524 	i = byte_core_set_size(ws);
1525 	if (i <= BYTE_CORE_SET_LOW) {
1526 		ret = 3;
1527 		goto out;
1528 	}
1529 
1530 	if (i >= BYTE_CORE_SET_HIGH) {
1531 		ret = 0;
1532 		goto out;
1533 	}
1534 
1535 	i = shannon_entropy(ws);
1536 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1537 		ret = 4;
1538 		goto out;
1539 	}
1540 
1541 	/*
1542 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1543 	 * needed to give green light to compression.
1544 	 *
1545 	 * For now just assume that compression at that level is not worth the
1546 	 * resources because:
1547 	 *
1548 	 * 1. it is possible to defrag the data later
1549 	 *
1550 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1551 	 * values, every bucket has counter at level ~54. The heuristic would
1552 	 * be confused. This can happen when data have some internal repeated
1553 	 * patterns like "abbacbbc...". This can be detected by analyzing
1554 	 * pairs of bytes, which is too costly.
1555 	 */
1556 	if (i < ENTROPY_LVL_HIGH) {
1557 		ret = 5;
1558 		goto out;
1559 	} else {
1560 		ret = 0;
1561 		goto out;
1562 	}
1563 
1564 out:
1565 	put_workspace(0, ws_list);
1566 	return ret;
1567 }
1568 
1569 /*
1570  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1571  * level, unrecognized string will set the default level
1572  */
1573 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1574 {
1575 	unsigned int level = 0;
1576 	int ret;
1577 
1578 	if (!type)
1579 		return 0;
1580 
1581 	if (str[0] == ':') {
1582 		ret = kstrtouint(str + 1, 10, &level);
1583 		if (ret)
1584 			level = 0;
1585 	}
1586 
1587 	level = btrfs_compress_set_level(type, level);
1588 
1589 	return level;
1590 }
1591