xref: /linux/fs/btrfs/compression.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
33 		u64 start, struct page **pages, unsigned long *out_pages,
34 		unsigned long *total_in, unsigned long *total_out);
35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
36 int zlib_decompress(struct list_head *ws, unsigned char *data_in,
37 		struct page *dest_page, unsigned long start_byte, size_t srclen,
38 		size_t destlen);
39 struct list_head *zlib_alloc_workspace(unsigned int level);
40 void zlib_free_workspace(struct list_head *ws);
41 struct list_head *zlib_get_workspace(unsigned int level);
42 
43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
44 		u64 start, struct page **pages, unsigned long *out_pages,
45 		unsigned long *total_in, unsigned long *total_out);
46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
47 int lzo_decompress(struct list_head *ws, unsigned char *data_in,
48 		struct page *dest_page, unsigned long start_byte, size_t srclen,
49 		size_t destlen);
50 struct list_head *lzo_alloc_workspace(unsigned int level);
51 void lzo_free_workspace(struct list_head *ws);
52 
53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
54 		u64 start, struct page **pages, unsigned long *out_pages,
55 		unsigned long *total_in, unsigned long *total_out);
56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
57 int zstd_decompress(struct list_head *ws, unsigned char *data_in,
58 		struct page *dest_page, unsigned long start_byte, size_t srclen,
59 		size_t destlen);
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head *zstd_alloc_workspace(unsigned int level);
63 void zstd_free_workspace(struct list_head *ws);
64 struct list_head *zstd_get_workspace(unsigned int level);
65 void zstd_put_workspace(struct list_head *ws);
66 
67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
68 
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 	case BTRFS_COMPRESS_LZO:
74 	case BTRFS_COMPRESS_ZSTD:
75 	case BTRFS_COMPRESS_NONE:
76 		return btrfs_compress_types[type];
77 	default:
78 		break;
79 	}
80 
81 	return NULL;
82 }
83 
84 bool btrfs_compress_is_valid_type(const char *str, size_t len)
85 {
86 	int i;
87 
88 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
89 		size_t comp_len = strlen(btrfs_compress_types[i]);
90 
91 		if (len < comp_len)
92 			continue;
93 
94 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
95 			return true;
96 	}
97 	return false;
98 }
99 
100 static int compression_compress_pages(int type, struct list_head *ws,
101                struct address_space *mapping, u64 start, struct page **pages,
102                unsigned long *out_pages, unsigned long *total_in,
103                unsigned long *total_out)
104 {
105 	switch (type) {
106 	case BTRFS_COMPRESS_ZLIB:
107 		return zlib_compress_pages(ws, mapping, start, pages,
108 				out_pages, total_in, total_out);
109 	case BTRFS_COMPRESS_LZO:
110 		return lzo_compress_pages(ws, mapping, start, pages,
111 				out_pages, total_in, total_out);
112 	case BTRFS_COMPRESS_ZSTD:
113 		return zstd_compress_pages(ws, mapping, start, pages,
114 				out_pages, total_in, total_out);
115 	case BTRFS_COMPRESS_NONE:
116 	default:
117 		/*
118 		 * This can't happen, the type is validated several times
119 		 * before we get here. As a sane fallback, return what the
120 		 * callers will understand as 'no compression happened'.
121 		 */
122 		return -E2BIG;
123 	}
124 }
125 
126 static int compression_decompress_bio(int type, struct list_head *ws,
127 		struct compressed_bio *cb)
128 {
129 	switch (type) {
130 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 	case BTRFS_COMPRESS_NONE:
134 	default:
135 		/*
136 		 * This can't happen, the type is validated several times
137 		 * before we get here.
138 		 */
139 		BUG();
140 	}
141 }
142 
143 static int compression_decompress(int type, struct list_head *ws,
144                unsigned char *data_in, struct page *dest_page,
145                unsigned long start_byte, size_t srclen, size_t destlen)
146 {
147 	switch (type) {
148 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 						start_byte, srclen, destlen);
154 	case BTRFS_COMPRESS_NONE:
155 	default:
156 		/*
157 		 * This can't happen, the type is validated several times
158 		 * before we get here.
159 		 */
160 		BUG();
161 	}
162 }
163 
164 static int btrfs_decompress_bio(struct compressed_bio *cb);
165 
166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 				      unsigned long disk_size)
168 {
169 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170 
171 	return sizeof(struct compressed_bio) +
172 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
173 }
174 
175 static int check_compressed_csum(struct btrfs_inode *inode,
176 				 struct compressed_bio *cb,
177 				 u64 disk_start)
178 {
179 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
180 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
182 	int ret;
183 	struct page *page;
184 	unsigned long i;
185 	char *kaddr;
186 	u8 csum[BTRFS_CSUM_SIZE];
187 	u8 *cb_sum = cb->sums;
188 
189 	if (inode->flags & BTRFS_INODE_NODATASUM)
190 		return 0;
191 
192 	shash->tfm = fs_info->csum_shash;
193 
194 	for (i = 0; i < cb->nr_pages; i++) {
195 		page = cb->compressed_pages[i];
196 
197 		crypto_shash_init(shash);
198 		kaddr = kmap_atomic(page);
199 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
200 		kunmap_atomic(kaddr);
201 		crypto_shash_final(shash, (u8 *)&csum);
202 
203 		if (memcmp(&csum, cb_sum, csum_size)) {
204 			btrfs_print_data_csum_error(inode, disk_start,
205 					csum, cb_sum, cb->mirror_num);
206 			ret = -EIO;
207 			goto fail;
208 		}
209 		cb_sum += csum_size;
210 
211 	}
212 	ret = 0;
213 fail:
214 	return ret;
215 }
216 
217 /* when we finish reading compressed pages from the disk, we
218  * decompress them and then run the bio end_io routines on the
219  * decompressed pages (in the inode address space).
220  *
221  * This allows the checksumming and other IO error handling routines
222  * to work normally
223  *
224  * The compressed pages are freed here, and it must be run
225  * in process context
226  */
227 static void end_compressed_bio_read(struct bio *bio)
228 {
229 	struct compressed_bio *cb = bio->bi_private;
230 	struct inode *inode;
231 	struct page *page;
232 	unsigned long index;
233 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
234 	int ret = 0;
235 
236 	if (bio->bi_status)
237 		cb->errors = 1;
238 
239 	/* if there are more bios still pending for this compressed
240 	 * extent, just exit
241 	 */
242 	if (!refcount_dec_and_test(&cb->pending_bios))
243 		goto out;
244 
245 	/*
246 	 * Record the correct mirror_num in cb->orig_bio so that
247 	 * read-repair can work properly.
248 	 */
249 	ASSERT(btrfs_io_bio(cb->orig_bio));
250 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
251 	cb->mirror_num = mirror;
252 
253 	/*
254 	 * Some IO in this cb have failed, just skip checksum as there
255 	 * is no way it could be correct.
256 	 */
257 	if (cb->errors == 1)
258 		goto csum_failed;
259 
260 	inode = cb->inode;
261 	ret = check_compressed_csum(BTRFS_I(inode), cb,
262 				    (u64)bio->bi_iter.bi_sector << 9);
263 	if (ret)
264 		goto csum_failed;
265 
266 	/* ok, we're the last bio for this extent, lets start
267 	 * the decompression.
268 	 */
269 	ret = btrfs_decompress_bio(cb);
270 
271 csum_failed:
272 	if (ret)
273 		cb->errors = 1;
274 
275 	/* release the compressed pages */
276 	index = 0;
277 	for (index = 0; index < cb->nr_pages; index++) {
278 		page = cb->compressed_pages[index];
279 		page->mapping = NULL;
280 		put_page(page);
281 	}
282 
283 	/* do io completion on the original bio */
284 	if (cb->errors) {
285 		bio_io_error(cb->orig_bio);
286 	} else {
287 		struct bio_vec *bvec;
288 		struct bvec_iter_all iter_all;
289 
290 		/*
291 		 * we have verified the checksum already, set page
292 		 * checked so the end_io handlers know about it
293 		 */
294 		ASSERT(!bio_flagged(bio, BIO_CLONED));
295 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
296 			SetPageChecked(bvec->bv_page);
297 
298 		bio_endio(cb->orig_bio);
299 	}
300 
301 	/* finally free the cb struct */
302 	kfree(cb->compressed_pages);
303 	kfree(cb);
304 out:
305 	bio_put(bio);
306 }
307 
308 /*
309  * Clear the writeback bits on all of the file
310  * pages for a compressed write
311  */
312 static noinline void end_compressed_writeback(struct inode *inode,
313 					      const struct compressed_bio *cb)
314 {
315 	unsigned long index = cb->start >> PAGE_SHIFT;
316 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
317 	struct page *pages[16];
318 	unsigned long nr_pages = end_index - index + 1;
319 	int i;
320 	int ret;
321 
322 	if (cb->errors)
323 		mapping_set_error(inode->i_mapping, -EIO);
324 
325 	while (nr_pages > 0) {
326 		ret = find_get_pages_contig(inode->i_mapping, index,
327 				     min_t(unsigned long,
328 				     nr_pages, ARRAY_SIZE(pages)), pages);
329 		if (ret == 0) {
330 			nr_pages -= 1;
331 			index += 1;
332 			continue;
333 		}
334 		for (i = 0; i < ret; i++) {
335 			if (cb->errors)
336 				SetPageError(pages[i]);
337 			end_page_writeback(pages[i]);
338 			put_page(pages[i]);
339 		}
340 		nr_pages -= ret;
341 		index += ret;
342 	}
343 	/* the inode may be gone now */
344 }
345 
346 /*
347  * do the cleanup once all the compressed pages hit the disk.
348  * This will clear writeback on the file pages and free the compressed
349  * pages.
350  *
351  * This also calls the writeback end hooks for the file pages so that
352  * metadata and checksums can be updated in the file.
353  */
354 static void end_compressed_bio_write(struct bio *bio)
355 {
356 	struct compressed_bio *cb = bio->bi_private;
357 	struct inode *inode;
358 	struct page *page;
359 	unsigned long index;
360 
361 	if (bio->bi_status)
362 		cb->errors = 1;
363 
364 	/* if there are more bios still pending for this compressed
365 	 * extent, just exit
366 	 */
367 	if (!refcount_dec_and_test(&cb->pending_bios))
368 		goto out;
369 
370 	/* ok, we're the last bio for this extent, step one is to
371 	 * call back into the FS and do all the end_io operations
372 	 */
373 	inode = cb->inode;
374 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
375 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
376 			cb->start, cb->start + cb->len - 1,
377 			bio->bi_status == BLK_STS_OK);
378 	cb->compressed_pages[0]->mapping = NULL;
379 
380 	end_compressed_writeback(inode, cb);
381 	/* note, our inode could be gone now */
382 
383 	/*
384 	 * release the compressed pages, these came from alloc_page and
385 	 * are not attached to the inode at all
386 	 */
387 	index = 0;
388 	for (index = 0; index < cb->nr_pages; index++) {
389 		page = cb->compressed_pages[index];
390 		page->mapping = NULL;
391 		put_page(page);
392 	}
393 
394 	/* finally free the cb struct */
395 	kfree(cb->compressed_pages);
396 	kfree(cb);
397 out:
398 	bio_put(bio);
399 }
400 
401 /*
402  * worker function to build and submit bios for previously compressed pages.
403  * The corresponding pages in the inode should be marked for writeback
404  * and the compressed pages should have a reference on them for dropping
405  * when the IO is complete.
406  *
407  * This also checksums the file bytes and gets things ready for
408  * the end io hooks.
409  */
410 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
411 				 unsigned long len, u64 disk_start,
412 				 unsigned long compressed_len,
413 				 struct page **compressed_pages,
414 				 unsigned long nr_pages,
415 				 unsigned int write_flags,
416 				 struct cgroup_subsys_state *blkcg_css)
417 {
418 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 	struct bio *bio = NULL;
420 	struct compressed_bio *cb;
421 	unsigned long bytes_left;
422 	int pg_index = 0;
423 	struct page *page;
424 	u64 first_byte = disk_start;
425 	blk_status_t ret;
426 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
427 
428 	WARN_ON(!PAGE_ALIGNED(start));
429 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
430 	if (!cb)
431 		return BLK_STS_RESOURCE;
432 	refcount_set(&cb->pending_bios, 0);
433 	cb->errors = 0;
434 	cb->inode = inode;
435 	cb->start = start;
436 	cb->len = len;
437 	cb->mirror_num = 0;
438 	cb->compressed_pages = compressed_pages;
439 	cb->compressed_len = compressed_len;
440 	cb->orig_bio = NULL;
441 	cb->nr_pages = nr_pages;
442 
443 	bio = btrfs_bio_alloc(first_byte);
444 	bio->bi_opf = REQ_OP_WRITE | write_flags;
445 	bio->bi_private = cb;
446 	bio->bi_end_io = end_compressed_bio_write;
447 
448 	if (blkcg_css) {
449 		bio->bi_opf |= REQ_CGROUP_PUNT;
450 		kthread_associate_blkcg(blkcg_css);
451 	}
452 	refcount_set(&cb->pending_bios, 1);
453 
454 	/* create and submit bios for the compressed pages */
455 	bytes_left = compressed_len;
456 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
457 		int submit = 0;
458 
459 		page = compressed_pages[pg_index];
460 		page->mapping = inode->i_mapping;
461 		if (bio->bi_iter.bi_size)
462 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
463 							  0);
464 
465 		page->mapping = NULL;
466 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
467 		    PAGE_SIZE) {
468 			/*
469 			 * inc the count before we submit the bio so
470 			 * we know the end IO handler won't happen before
471 			 * we inc the count.  Otherwise, the cb might get
472 			 * freed before we're done setting it up
473 			 */
474 			refcount_inc(&cb->pending_bios);
475 			ret = btrfs_bio_wq_end_io(fs_info, bio,
476 						  BTRFS_WQ_ENDIO_DATA);
477 			BUG_ON(ret); /* -ENOMEM */
478 
479 			if (!skip_sum) {
480 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
481 				BUG_ON(ret); /* -ENOMEM */
482 			}
483 
484 			ret = btrfs_map_bio(fs_info, bio, 0);
485 			if (ret) {
486 				bio->bi_status = ret;
487 				bio_endio(bio);
488 			}
489 
490 			bio = btrfs_bio_alloc(first_byte);
491 			bio->bi_opf = REQ_OP_WRITE | write_flags;
492 			bio->bi_private = cb;
493 			bio->bi_end_io = end_compressed_bio_write;
494 			if (blkcg_css)
495 				bio->bi_opf |= REQ_CGROUP_PUNT;
496 			bio_add_page(bio, page, PAGE_SIZE, 0);
497 		}
498 		if (bytes_left < PAGE_SIZE) {
499 			btrfs_info(fs_info,
500 					"bytes left %lu compress len %lu nr %lu",
501 			       bytes_left, cb->compressed_len, cb->nr_pages);
502 		}
503 		bytes_left -= PAGE_SIZE;
504 		first_byte += PAGE_SIZE;
505 		cond_resched();
506 	}
507 
508 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
509 	BUG_ON(ret); /* -ENOMEM */
510 
511 	if (!skip_sum) {
512 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
513 		BUG_ON(ret); /* -ENOMEM */
514 	}
515 
516 	ret = btrfs_map_bio(fs_info, bio, 0);
517 	if (ret) {
518 		bio->bi_status = ret;
519 		bio_endio(bio);
520 	}
521 
522 	if (blkcg_css)
523 		kthread_associate_blkcg(NULL);
524 
525 	return 0;
526 }
527 
528 static u64 bio_end_offset(struct bio *bio)
529 {
530 	struct bio_vec *last = bio_last_bvec_all(bio);
531 
532 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
533 }
534 
535 static noinline int add_ra_bio_pages(struct inode *inode,
536 				     u64 compressed_end,
537 				     struct compressed_bio *cb)
538 {
539 	unsigned long end_index;
540 	unsigned long pg_index;
541 	u64 last_offset;
542 	u64 isize = i_size_read(inode);
543 	int ret;
544 	struct page *page;
545 	unsigned long nr_pages = 0;
546 	struct extent_map *em;
547 	struct address_space *mapping = inode->i_mapping;
548 	struct extent_map_tree *em_tree;
549 	struct extent_io_tree *tree;
550 	u64 end;
551 	int misses = 0;
552 
553 	last_offset = bio_end_offset(cb->orig_bio);
554 	em_tree = &BTRFS_I(inode)->extent_tree;
555 	tree = &BTRFS_I(inode)->io_tree;
556 
557 	if (isize == 0)
558 		return 0;
559 
560 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
561 
562 	while (last_offset < compressed_end) {
563 		pg_index = last_offset >> PAGE_SHIFT;
564 
565 		if (pg_index > end_index)
566 			break;
567 
568 		page = xa_load(&mapping->i_pages, pg_index);
569 		if (page && !xa_is_value(page)) {
570 			misses++;
571 			if (misses > 4)
572 				break;
573 			goto next;
574 		}
575 
576 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
577 								 ~__GFP_FS));
578 		if (!page)
579 			break;
580 
581 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
582 			put_page(page);
583 			goto next;
584 		}
585 
586 		end = last_offset + PAGE_SIZE - 1;
587 		/*
588 		 * at this point, we have a locked page in the page cache
589 		 * for these bytes in the file.  But, we have to make
590 		 * sure they map to this compressed extent on disk.
591 		 */
592 		set_page_extent_mapped(page);
593 		lock_extent(tree, last_offset, end);
594 		read_lock(&em_tree->lock);
595 		em = lookup_extent_mapping(em_tree, last_offset,
596 					   PAGE_SIZE);
597 		read_unlock(&em_tree->lock);
598 
599 		if (!em || last_offset < em->start ||
600 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
601 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
602 			free_extent_map(em);
603 			unlock_extent(tree, last_offset, end);
604 			unlock_page(page);
605 			put_page(page);
606 			break;
607 		}
608 		free_extent_map(em);
609 
610 		if (page->index == end_index) {
611 			char *userpage;
612 			size_t zero_offset = offset_in_page(isize);
613 
614 			if (zero_offset) {
615 				int zeros;
616 				zeros = PAGE_SIZE - zero_offset;
617 				userpage = kmap_atomic(page);
618 				memset(userpage + zero_offset, 0, zeros);
619 				flush_dcache_page(page);
620 				kunmap_atomic(userpage);
621 			}
622 		}
623 
624 		ret = bio_add_page(cb->orig_bio, page,
625 				   PAGE_SIZE, 0);
626 
627 		if (ret == PAGE_SIZE) {
628 			nr_pages++;
629 			put_page(page);
630 		} else {
631 			unlock_extent(tree, last_offset, end);
632 			unlock_page(page);
633 			put_page(page);
634 			break;
635 		}
636 next:
637 		last_offset += PAGE_SIZE;
638 	}
639 	return 0;
640 }
641 
642 /*
643  * for a compressed read, the bio we get passed has all the inode pages
644  * in it.  We don't actually do IO on those pages but allocate new ones
645  * to hold the compressed pages on disk.
646  *
647  * bio->bi_iter.bi_sector points to the compressed extent on disk
648  * bio->bi_io_vec points to all of the inode pages
649  *
650  * After the compressed pages are read, we copy the bytes into the
651  * bio we were passed and then call the bio end_io calls
652  */
653 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
654 				 int mirror_num, unsigned long bio_flags)
655 {
656 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
657 	struct extent_map_tree *em_tree;
658 	struct compressed_bio *cb;
659 	unsigned long compressed_len;
660 	unsigned long nr_pages;
661 	unsigned long pg_index;
662 	struct page *page;
663 	struct bio *comp_bio;
664 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
665 	u64 em_len;
666 	u64 em_start;
667 	struct extent_map *em;
668 	blk_status_t ret = BLK_STS_RESOURCE;
669 	int faili = 0;
670 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
671 	u8 *sums;
672 
673 	em_tree = &BTRFS_I(inode)->extent_tree;
674 
675 	/* we need the actual starting offset of this extent in the file */
676 	read_lock(&em_tree->lock);
677 	em = lookup_extent_mapping(em_tree,
678 				   page_offset(bio_first_page_all(bio)),
679 				   PAGE_SIZE);
680 	read_unlock(&em_tree->lock);
681 	if (!em)
682 		return BLK_STS_IOERR;
683 
684 	compressed_len = em->block_len;
685 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
686 	if (!cb)
687 		goto out;
688 
689 	refcount_set(&cb->pending_bios, 0);
690 	cb->errors = 0;
691 	cb->inode = inode;
692 	cb->mirror_num = mirror_num;
693 	sums = cb->sums;
694 
695 	cb->start = em->orig_start;
696 	em_len = em->len;
697 	em_start = em->start;
698 
699 	free_extent_map(em);
700 	em = NULL;
701 
702 	cb->len = bio->bi_iter.bi_size;
703 	cb->compressed_len = compressed_len;
704 	cb->compress_type = extent_compress_type(bio_flags);
705 	cb->orig_bio = bio;
706 
707 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
708 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
709 				       GFP_NOFS);
710 	if (!cb->compressed_pages)
711 		goto fail1;
712 
713 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
714 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
715 							      __GFP_HIGHMEM);
716 		if (!cb->compressed_pages[pg_index]) {
717 			faili = pg_index - 1;
718 			ret = BLK_STS_RESOURCE;
719 			goto fail2;
720 		}
721 	}
722 	faili = nr_pages - 1;
723 	cb->nr_pages = nr_pages;
724 
725 	add_ra_bio_pages(inode, em_start + em_len, cb);
726 
727 	/* include any pages we added in add_ra-bio_pages */
728 	cb->len = bio->bi_iter.bi_size;
729 
730 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
731 	comp_bio->bi_opf = REQ_OP_READ;
732 	comp_bio->bi_private = cb;
733 	comp_bio->bi_end_io = end_compressed_bio_read;
734 	refcount_set(&cb->pending_bios, 1);
735 
736 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
737 		int submit = 0;
738 
739 		page = cb->compressed_pages[pg_index];
740 		page->mapping = inode->i_mapping;
741 		page->index = em_start >> PAGE_SHIFT;
742 
743 		if (comp_bio->bi_iter.bi_size)
744 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
745 							  comp_bio, 0);
746 
747 		page->mapping = NULL;
748 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
749 		    PAGE_SIZE) {
750 			unsigned int nr_sectors;
751 
752 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
753 						  BTRFS_WQ_ENDIO_DATA);
754 			BUG_ON(ret); /* -ENOMEM */
755 
756 			/*
757 			 * inc the count before we submit the bio so
758 			 * we know the end IO handler won't happen before
759 			 * we inc the count.  Otherwise, the cb might get
760 			 * freed before we're done setting it up
761 			 */
762 			refcount_inc(&cb->pending_bios);
763 
764 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
765 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
766 							    (u64)-1, sums);
767 				BUG_ON(ret); /* -ENOMEM */
768 			}
769 
770 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
771 						  fs_info->sectorsize);
772 			sums += csum_size * nr_sectors;
773 
774 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
775 			if (ret) {
776 				comp_bio->bi_status = ret;
777 				bio_endio(comp_bio);
778 			}
779 
780 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
781 			comp_bio->bi_opf = REQ_OP_READ;
782 			comp_bio->bi_private = cb;
783 			comp_bio->bi_end_io = end_compressed_bio_read;
784 
785 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
786 		}
787 		cur_disk_byte += PAGE_SIZE;
788 	}
789 
790 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
791 	BUG_ON(ret); /* -ENOMEM */
792 
793 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
794 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
795 		BUG_ON(ret); /* -ENOMEM */
796 	}
797 
798 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
799 	if (ret) {
800 		comp_bio->bi_status = ret;
801 		bio_endio(comp_bio);
802 	}
803 
804 	return 0;
805 
806 fail2:
807 	while (faili >= 0) {
808 		__free_page(cb->compressed_pages[faili]);
809 		faili--;
810 	}
811 
812 	kfree(cb->compressed_pages);
813 fail1:
814 	kfree(cb);
815 out:
816 	free_extent_map(em);
817 	return ret;
818 }
819 
820 /*
821  * Heuristic uses systematic sampling to collect data from the input data
822  * range, the logic can be tuned by the following constants:
823  *
824  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
825  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
826  */
827 #define SAMPLING_READ_SIZE	(16)
828 #define SAMPLING_INTERVAL	(256)
829 
830 /*
831  * For statistical analysis of the input data we consider bytes that form a
832  * Galois Field of 256 objects. Each object has an attribute count, ie. how
833  * many times the object appeared in the sample.
834  */
835 #define BUCKET_SIZE		(256)
836 
837 /*
838  * The size of the sample is based on a statistical sampling rule of thumb.
839  * The common way is to perform sampling tests as long as the number of
840  * elements in each cell is at least 5.
841  *
842  * Instead of 5, we choose 32 to obtain more accurate results.
843  * If the data contain the maximum number of symbols, which is 256, we obtain a
844  * sample size bound by 8192.
845  *
846  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
847  * from up to 512 locations.
848  */
849 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
850 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
851 
852 struct bucket_item {
853 	u32 count;
854 };
855 
856 struct heuristic_ws {
857 	/* Partial copy of input data */
858 	u8 *sample;
859 	u32 sample_size;
860 	/* Buckets store counters for each byte value */
861 	struct bucket_item *bucket;
862 	/* Sorting buffer */
863 	struct bucket_item *bucket_b;
864 	struct list_head list;
865 };
866 
867 static struct workspace_manager heuristic_wsm;
868 
869 static void free_heuristic_ws(struct list_head *ws)
870 {
871 	struct heuristic_ws *workspace;
872 
873 	workspace = list_entry(ws, struct heuristic_ws, list);
874 
875 	kvfree(workspace->sample);
876 	kfree(workspace->bucket);
877 	kfree(workspace->bucket_b);
878 	kfree(workspace);
879 }
880 
881 static struct list_head *alloc_heuristic_ws(unsigned int level)
882 {
883 	struct heuristic_ws *ws;
884 
885 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
886 	if (!ws)
887 		return ERR_PTR(-ENOMEM);
888 
889 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
890 	if (!ws->sample)
891 		goto fail;
892 
893 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
894 	if (!ws->bucket)
895 		goto fail;
896 
897 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
898 	if (!ws->bucket_b)
899 		goto fail;
900 
901 	INIT_LIST_HEAD(&ws->list);
902 	return &ws->list;
903 fail:
904 	free_heuristic_ws(&ws->list);
905 	return ERR_PTR(-ENOMEM);
906 }
907 
908 const struct btrfs_compress_op btrfs_heuristic_compress = {
909 	.workspace_manager = &heuristic_wsm,
910 };
911 
912 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
913 	/* The heuristic is represented as compression type 0 */
914 	&btrfs_heuristic_compress,
915 	&btrfs_zlib_compress,
916 	&btrfs_lzo_compress,
917 	&btrfs_zstd_compress,
918 };
919 
920 static struct list_head *alloc_workspace(int type, unsigned int level)
921 {
922 	switch (type) {
923 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
924 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
925 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
926 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
927 	default:
928 		/*
929 		 * This can't happen, the type is validated several times
930 		 * before we get here.
931 		 */
932 		BUG();
933 	}
934 }
935 
936 static void free_workspace(int type, struct list_head *ws)
937 {
938 	switch (type) {
939 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
940 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
941 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
942 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
943 	default:
944 		/*
945 		 * This can't happen, the type is validated several times
946 		 * before we get here.
947 		 */
948 		BUG();
949 	}
950 }
951 
952 static void btrfs_init_workspace_manager(int type)
953 {
954 	struct workspace_manager *wsm;
955 	struct list_head *workspace;
956 
957 	wsm = btrfs_compress_op[type]->workspace_manager;
958 	INIT_LIST_HEAD(&wsm->idle_ws);
959 	spin_lock_init(&wsm->ws_lock);
960 	atomic_set(&wsm->total_ws, 0);
961 	init_waitqueue_head(&wsm->ws_wait);
962 
963 	/*
964 	 * Preallocate one workspace for each compression type so we can
965 	 * guarantee forward progress in the worst case
966 	 */
967 	workspace = alloc_workspace(type, 0);
968 	if (IS_ERR(workspace)) {
969 		pr_warn(
970 	"BTRFS: cannot preallocate compression workspace, will try later\n");
971 	} else {
972 		atomic_set(&wsm->total_ws, 1);
973 		wsm->free_ws = 1;
974 		list_add(workspace, &wsm->idle_ws);
975 	}
976 }
977 
978 static void btrfs_cleanup_workspace_manager(int type)
979 {
980 	struct workspace_manager *wsman;
981 	struct list_head *ws;
982 
983 	wsman = btrfs_compress_op[type]->workspace_manager;
984 	while (!list_empty(&wsman->idle_ws)) {
985 		ws = wsman->idle_ws.next;
986 		list_del(ws);
987 		free_workspace(type, ws);
988 		atomic_dec(&wsman->total_ws);
989 	}
990 }
991 
992 /*
993  * This finds an available workspace or allocates a new one.
994  * If it's not possible to allocate a new one, waits until there's one.
995  * Preallocation makes a forward progress guarantees and we do not return
996  * errors.
997  */
998 struct list_head *btrfs_get_workspace(int type, unsigned int level)
999 {
1000 	struct workspace_manager *wsm;
1001 	struct list_head *workspace;
1002 	int cpus = num_online_cpus();
1003 	unsigned nofs_flag;
1004 	struct list_head *idle_ws;
1005 	spinlock_t *ws_lock;
1006 	atomic_t *total_ws;
1007 	wait_queue_head_t *ws_wait;
1008 	int *free_ws;
1009 
1010 	wsm = btrfs_compress_op[type]->workspace_manager;
1011 	idle_ws	 = &wsm->idle_ws;
1012 	ws_lock	 = &wsm->ws_lock;
1013 	total_ws = &wsm->total_ws;
1014 	ws_wait	 = &wsm->ws_wait;
1015 	free_ws	 = &wsm->free_ws;
1016 
1017 again:
1018 	spin_lock(ws_lock);
1019 	if (!list_empty(idle_ws)) {
1020 		workspace = idle_ws->next;
1021 		list_del(workspace);
1022 		(*free_ws)--;
1023 		spin_unlock(ws_lock);
1024 		return workspace;
1025 
1026 	}
1027 	if (atomic_read(total_ws) > cpus) {
1028 		DEFINE_WAIT(wait);
1029 
1030 		spin_unlock(ws_lock);
1031 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1032 		if (atomic_read(total_ws) > cpus && !*free_ws)
1033 			schedule();
1034 		finish_wait(ws_wait, &wait);
1035 		goto again;
1036 	}
1037 	atomic_inc(total_ws);
1038 	spin_unlock(ws_lock);
1039 
1040 	/*
1041 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1042 	 * to turn it off here because we might get called from the restricted
1043 	 * context of btrfs_compress_bio/btrfs_compress_pages
1044 	 */
1045 	nofs_flag = memalloc_nofs_save();
1046 	workspace = alloc_workspace(type, level);
1047 	memalloc_nofs_restore(nofs_flag);
1048 
1049 	if (IS_ERR(workspace)) {
1050 		atomic_dec(total_ws);
1051 		wake_up(ws_wait);
1052 
1053 		/*
1054 		 * Do not return the error but go back to waiting. There's a
1055 		 * workspace preallocated for each type and the compression
1056 		 * time is bounded so we get to a workspace eventually. This
1057 		 * makes our caller's life easier.
1058 		 *
1059 		 * To prevent silent and low-probability deadlocks (when the
1060 		 * initial preallocation fails), check if there are any
1061 		 * workspaces at all.
1062 		 */
1063 		if (atomic_read(total_ws) == 0) {
1064 			static DEFINE_RATELIMIT_STATE(_rs,
1065 					/* once per minute */ 60 * HZ,
1066 					/* no burst */ 1);
1067 
1068 			if (__ratelimit(&_rs)) {
1069 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1070 			}
1071 		}
1072 		goto again;
1073 	}
1074 	return workspace;
1075 }
1076 
1077 static struct list_head *get_workspace(int type, int level)
1078 {
1079 	switch (type) {
1080 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1081 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1082 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1083 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1084 	default:
1085 		/*
1086 		 * This can't happen, the type is validated several times
1087 		 * before we get here.
1088 		 */
1089 		BUG();
1090 	}
1091 }
1092 
1093 /*
1094  * put a workspace struct back on the list or free it if we have enough
1095  * idle ones sitting around
1096  */
1097 void btrfs_put_workspace(int type, struct list_head *ws)
1098 {
1099 	struct workspace_manager *wsm;
1100 	struct list_head *idle_ws;
1101 	spinlock_t *ws_lock;
1102 	atomic_t *total_ws;
1103 	wait_queue_head_t *ws_wait;
1104 	int *free_ws;
1105 
1106 	wsm = btrfs_compress_op[type]->workspace_manager;
1107 	idle_ws	 = &wsm->idle_ws;
1108 	ws_lock	 = &wsm->ws_lock;
1109 	total_ws = &wsm->total_ws;
1110 	ws_wait	 = &wsm->ws_wait;
1111 	free_ws	 = &wsm->free_ws;
1112 
1113 	spin_lock(ws_lock);
1114 	if (*free_ws <= num_online_cpus()) {
1115 		list_add(ws, idle_ws);
1116 		(*free_ws)++;
1117 		spin_unlock(ws_lock);
1118 		goto wake;
1119 	}
1120 	spin_unlock(ws_lock);
1121 
1122 	free_workspace(type, ws);
1123 	atomic_dec(total_ws);
1124 wake:
1125 	cond_wake_up(ws_wait);
1126 }
1127 
1128 static void put_workspace(int type, struct list_head *ws)
1129 {
1130 	switch (type) {
1131 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1132 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1133 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1134 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1135 	default:
1136 		/*
1137 		 * This can't happen, the type is validated several times
1138 		 * before we get here.
1139 		 */
1140 		BUG();
1141 	}
1142 }
1143 
1144 /*
1145  * Given an address space and start and length, compress the bytes into @pages
1146  * that are allocated on demand.
1147  *
1148  * @type_level is encoded algorithm and level, where level 0 means whatever
1149  * default the algorithm chooses and is opaque here;
1150  * - compression algo are 0-3
1151  * - the level are bits 4-7
1152  *
1153  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1154  * and returns number of actually allocated pages
1155  *
1156  * @total_in is used to return the number of bytes actually read.  It
1157  * may be smaller than the input length if we had to exit early because we
1158  * ran out of room in the pages array or because we cross the
1159  * max_out threshold.
1160  *
1161  * @total_out is an in/out parameter, must be set to the input length and will
1162  * be also used to return the total number of compressed bytes
1163  *
1164  * @max_out tells us the max number of bytes that we're allowed to
1165  * stuff into pages
1166  */
1167 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1168 			 u64 start, struct page **pages,
1169 			 unsigned long *out_pages,
1170 			 unsigned long *total_in,
1171 			 unsigned long *total_out)
1172 {
1173 	int type = btrfs_compress_type(type_level);
1174 	int level = btrfs_compress_level(type_level);
1175 	struct list_head *workspace;
1176 	int ret;
1177 
1178 	level = btrfs_compress_set_level(type, level);
1179 	workspace = get_workspace(type, level);
1180 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1181 					 out_pages, total_in, total_out);
1182 	put_workspace(type, workspace);
1183 	return ret;
1184 }
1185 
1186 /*
1187  * pages_in is an array of pages with compressed data.
1188  *
1189  * disk_start is the starting logical offset of this array in the file
1190  *
1191  * orig_bio contains the pages from the file that we want to decompress into
1192  *
1193  * srclen is the number of bytes in pages_in
1194  *
1195  * The basic idea is that we have a bio that was created by readpages.
1196  * The pages in the bio are for the uncompressed data, and they may not
1197  * be contiguous.  They all correspond to the range of bytes covered by
1198  * the compressed extent.
1199  */
1200 static int btrfs_decompress_bio(struct compressed_bio *cb)
1201 {
1202 	struct list_head *workspace;
1203 	int ret;
1204 	int type = cb->compress_type;
1205 
1206 	workspace = get_workspace(type, 0);
1207 	ret = compression_decompress_bio(type, workspace, cb);
1208 	put_workspace(type, workspace);
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * a less complex decompression routine.  Our compressed data fits in a
1215  * single page, and we want to read a single page out of it.
1216  * start_byte tells us the offset into the compressed data we're interested in
1217  */
1218 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1219 		     unsigned long start_byte, size_t srclen, size_t destlen)
1220 {
1221 	struct list_head *workspace;
1222 	int ret;
1223 
1224 	workspace = get_workspace(type, 0);
1225 	ret = compression_decompress(type, workspace, data_in, dest_page,
1226 				     start_byte, srclen, destlen);
1227 	put_workspace(type, workspace);
1228 
1229 	return ret;
1230 }
1231 
1232 void __init btrfs_init_compress(void)
1233 {
1234 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1235 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1236 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1237 	zstd_init_workspace_manager();
1238 }
1239 
1240 void __cold btrfs_exit_compress(void)
1241 {
1242 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1243 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1244 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1245 	zstd_cleanup_workspace_manager();
1246 }
1247 
1248 /*
1249  * Copy uncompressed data from working buffer to pages.
1250  *
1251  * buf_start is the byte offset we're of the start of our workspace buffer.
1252  *
1253  * total_out is the last byte of the buffer
1254  */
1255 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1256 			      unsigned long total_out, u64 disk_start,
1257 			      struct bio *bio)
1258 {
1259 	unsigned long buf_offset;
1260 	unsigned long current_buf_start;
1261 	unsigned long start_byte;
1262 	unsigned long prev_start_byte;
1263 	unsigned long working_bytes = total_out - buf_start;
1264 	unsigned long bytes;
1265 	char *kaddr;
1266 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1267 
1268 	/*
1269 	 * start byte is the first byte of the page we're currently
1270 	 * copying into relative to the start of the compressed data.
1271 	 */
1272 	start_byte = page_offset(bvec.bv_page) - disk_start;
1273 
1274 	/* we haven't yet hit data corresponding to this page */
1275 	if (total_out <= start_byte)
1276 		return 1;
1277 
1278 	/*
1279 	 * the start of the data we care about is offset into
1280 	 * the middle of our working buffer
1281 	 */
1282 	if (total_out > start_byte && buf_start < start_byte) {
1283 		buf_offset = start_byte - buf_start;
1284 		working_bytes -= buf_offset;
1285 	} else {
1286 		buf_offset = 0;
1287 	}
1288 	current_buf_start = buf_start;
1289 
1290 	/* copy bytes from the working buffer into the pages */
1291 	while (working_bytes > 0) {
1292 		bytes = min_t(unsigned long, bvec.bv_len,
1293 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1294 		bytes = min(bytes, working_bytes);
1295 
1296 		kaddr = kmap_atomic(bvec.bv_page);
1297 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1298 		kunmap_atomic(kaddr);
1299 		flush_dcache_page(bvec.bv_page);
1300 
1301 		buf_offset += bytes;
1302 		working_bytes -= bytes;
1303 		current_buf_start += bytes;
1304 
1305 		/* check if we need to pick another page */
1306 		bio_advance(bio, bytes);
1307 		if (!bio->bi_iter.bi_size)
1308 			return 0;
1309 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1310 		prev_start_byte = start_byte;
1311 		start_byte = page_offset(bvec.bv_page) - disk_start;
1312 
1313 		/*
1314 		 * We need to make sure we're only adjusting
1315 		 * our offset into compression working buffer when
1316 		 * we're switching pages.  Otherwise we can incorrectly
1317 		 * keep copying when we were actually done.
1318 		 */
1319 		if (start_byte != prev_start_byte) {
1320 			/*
1321 			 * make sure our new page is covered by this
1322 			 * working buffer
1323 			 */
1324 			if (total_out <= start_byte)
1325 				return 1;
1326 
1327 			/*
1328 			 * the next page in the biovec might not be adjacent
1329 			 * to the last page, but it might still be found
1330 			 * inside this working buffer. bump our offset pointer
1331 			 */
1332 			if (total_out > start_byte &&
1333 			    current_buf_start < start_byte) {
1334 				buf_offset = start_byte - buf_start;
1335 				working_bytes = total_out - start_byte;
1336 				current_buf_start = buf_start + buf_offset;
1337 			}
1338 		}
1339 	}
1340 
1341 	return 1;
1342 }
1343 
1344 /*
1345  * Shannon Entropy calculation
1346  *
1347  * Pure byte distribution analysis fails to determine compressibility of data.
1348  * Try calculating entropy to estimate the average minimum number of bits
1349  * needed to encode the sampled data.
1350  *
1351  * For convenience, return the percentage of needed bits, instead of amount of
1352  * bits directly.
1353  *
1354  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1355  *			    and can be compressible with high probability
1356  *
1357  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1358  *
1359  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1360  */
1361 #define ENTROPY_LVL_ACEPTABLE		(65)
1362 #define ENTROPY_LVL_HIGH		(80)
1363 
1364 /*
1365  * For increasead precision in shannon_entropy calculation,
1366  * let's do pow(n, M) to save more digits after comma:
1367  *
1368  * - maximum int bit length is 64
1369  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1370  * - 13 * 4 = 52 < 64		-> M = 4
1371  *
1372  * So use pow(n, 4).
1373  */
1374 static inline u32 ilog2_w(u64 n)
1375 {
1376 	return ilog2(n * n * n * n);
1377 }
1378 
1379 static u32 shannon_entropy(struct heuristic_ws *ws)
1380 {
1381 	const u32 entropy_max = 8 * ilog2_w(2);
1382 	u32 entropy_sum = 0;
1383 	u32 p, p_base, sz_base;
1384 	u32 i;
1385 
1386 	sz_base = ilog2_w(ws->sample_size);
1387 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1388 		p = ws->bucket[i].count;
1389 		p_base = ilog2_w(p);
1390 		entropy_sum += p * (sz_base - p_base);
1391 	}
1392 
1393 	entropy_sum /= ws->sample_size;
1394 	return entropy_sum * 100 / entropy_max;
1395 }
1396 
1397 #define RADIX_BASE		4U
1398 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1399 
1400 static u8 get4bits(u64 num, int shift) {
1401 	u8 low4bits;
1402 
1403 	num >>= shift;
1404 	/* Reverse order */
1405 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1406 	return low4bits;
1407 }
1408 
1409 /*
1410  * Use 4 bits as radix base
1411  * Use 16 u32 counters for calculating new position in buf array
1412  *
1413  * @array     - array that will be sorted
1414  * @array_buf - buffer array to store sorting results
1415  *              must be equal in size to @array
1416  * @num       - array size
1417  */
1418 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1419 		       int num)
1420 {
1421 	u64 max_num;
1422 	u64 buf_num;
1423 	u32 counters[COUNTERS_SIZE];
1424 	u32 new_addr;
1425 	u32 addr;
1426 	int bitlen;
1427 	int shift;
1428 	int i;
1429 
1430 	/*
1431 	 * Try avoid useless loop iterations for small numbers stored in big
1432 	 * counters.  Example: 48 33 4 ... in 64bit array
1433 	 */
1434 	max_num = array[0].count;
1435 	for (i = 1; i < num; i++) {
1436 		buf_num = array[i].count;
1437 		if (buf_num > max_num)
1438 			max_num = buf_num;
1439 	}
1440 
1441 	buf_num = ilog2(max_num);
1442 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1443 
1444 	shift = 0;
1445 	while (shift < bitlen) {
1446 		memset(counters, 0, sizeof(counters));
1447 
1448 		for (i = 0; i < num; i++) {
1449 			buf_num = array[i].count;
1450 			addr = get4bits(buf_num, shift);
1451 			counters[addr]++;
1452 		}
1453 
1454 		for (i = 1; i < COUNTERS_SIZE; i++)
1455 			counters[i] += counters[i - 1];
1456 
1457 		for (i = num - 1; i >= 0; i--) {
1458 			buf_num = array[i].count;
1459 			addr = get4bits(buf_num, shift);
1460 			counters[addr]--;
1461 			new_addr = counters[addr];
1462 			array_buf[new_addr] = array[i];
1463 		}
1464 
1465 		shift += RADIX_BASE;
1466 
1467 		/*
1468 		 * Normal radix expects to move data from a temporary array, to
1469 		 * the main one.  But that requires some CPU time. Avoid that
1470 		 * by doing another sort iteration to original array instead of
1471 		 * memcpy()
1472 		 */
1473 		memset(counters, 0, sizeof(counters));
1474 
1475 		for (i = 0; i < num; i ++) {
1476 			buf_num = array_buf[i].count;
1477 			addr = get4bits(buf_num, shift);
1478 			counters[addr]++;
1479 		}
1480 
1481 		for (i = 1; i < COUNTERS_SIZE; i++)
1482 			counters[i] += counters[i - 1];
1483 
1484 		for (i = num - 1; i >= 0; i--) {
1485 			buf_num = array_buf[i].count;
1486 			addr = get4bits(buf_num, shift);
1487 			counters[addr]--;
1488 			new_addr = counters[addr];
1489 			array[new_addr] = array_buf[i];
1490 		}
1491 
1492 		shift += RADIX_BASE;
1493 	}
1494 }
1495 
1496 /*
1497  * Size of the core byte set - how many bytes cover 90% of the sample
1498  *
1499  * There are several types of structured binary data that use nearly all byte
1500  * values. The distribution can be uniform and counts in all buckets will be
1501  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1502  *
1503  * Other possibility is normal (Gaussian) distribution, where the data could
1504  * be potentially compressible, but we have to take a few more steps to decide
1505  * how much.
1506  *
1507  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1508  *                       compression algo can easy fix that
1509  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1510  *                       probability is not compressible
1511  */
1512 #define BYTE_CORE_SET_LOW		(64)
1513 #define BYTE_CORE_SET_HIGH		(200)
1514 
1515 static int byte_core_set_size(struct heuristic_ws *ws)
1516 {
1517 	u32 i;
1518 	u32 coreset_sum = 0;
1519 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1520 	struct bucket_item *bucket = ws->bucket;
1521 
1522 	/* Sort in reverse order */
1523 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1524 
1525 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1526 		coreset_sum += bucket[i].count;
1527 
1528 	if (coreset_sum > core_set_threshold)
1529 		return i;
1530 
1531 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1532 		coreset_sum += bucket[i].count;
1533 		if (coreset_sum > core_set_threshold)
1534 			break;
1535 	}
1536 
1537 	return i;
1538 }
1539 
1540 /*
1541  * Count byte values in buckets.
1542  * This heuristic can detect textual data (configs, xml, json, html, etc).
1543  * Because in most text-like data byte set is restricted to limited number of
1544  * possible characters, and that restriction in most cases makes data easy to
1545  * compress.
1546  *
1547  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1548  *	less - compressible
1549  *	more - need additional analysis
1550  */
1551 #define BYTE_SET_THRESHOLD		(64)
1552 
1553 static u32 byte_set_size(const struct heuristic_ws *ws)
1554 {
1555 	u32 i;
1556 	u32 byte_set_size = 0;
1557 
1558 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1559 		if (ws->bucket[i].count > 0)
1560 			byte_set_size++;
1561 	}
1562 
1563 	/*
1564 	 * Continue collecting count of byte values in buckets.  If the byte
1565 	 * set size is bigger then the threshold, it's pointless to continue,
1566 	 * the detection technique would fail for this type of data.
1567 	 */
1568 	for (; i < BUCKET_SIZE; i++) {
1569 		if (ws->bucket[i].count > 0) {
1570 			byte_set_size++;
1571 			if (byte_set_size > BYTE_SET_THRESHOLD)
1572 				return byte_set_size;
1573 		}
1574 	}
1575 
1576 	return byte_set_size;
1577 }
1578 
1579 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1580 {
1581 	const u32 half_of_sample = ws->sample_size / 2;
1582 	const u8 *data = ws->sample;
1583 
1584 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1585 }
1586 
1587 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1588 				     struct heuristic_ws *ws)
1589 {
1590 	struct page *page;
1591 	u64 index, index_end;
1592 	u32 i, curr_sample_pos;
1593 	u8 *in_data;
1594 
1595 	/*
1596 	 * Compression handles the input data by chunks of 128KiB
1597 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1598 	 *
1599 	 * We do the same for the heuristic and loop over the whole range.
1600 	 *
1601 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1602 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1603 	 */
1604 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1605 		end = start + BTRFS_MAX_UNCOMPRESSED;
1606 
1607 	index = start >> PAGE_SHIFT;
1608 	index_end = end >> PAGE_SHIFT;
1609 
1610 	/* Don't miss unaligned end */
1611 	if (!IS_ALIGNED(end, PAGE_SIZE))
1612 		index_end++;
1613 
1614 	curr_sample_pos = 0;
1615 	while (index < index_end) {
1616 		page = find_get_page(inode->i_mapping, index);
1617 		in_data = kmap(page);
1618 		/* Handle case where the start is not aligned to PAGE_SIZE */
1619 		i = start % PAGE_SIZE;
1620 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1621 			/* Don't sample any garbage from the last page */
1622 			if (start > end - SAMPLING_READ_SIZE)
1623 				break;
1624 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1625 					SAMPLING_READ_SIZE);
1626 			i += SAMPLING_INTERVAL;
1627 			start += SAMPLING_INTERVAL;
1628 			curr_sample_pos += SAMPLING_READ_SIZE;
1629 		}
1630 		kunmap(page);
1631 		put_page(page);
1632 
1633 		index++;
1634 	}
1635 
1636 	ws->sample_size = curr_sample_pos;
1637 }
1638 
1639 /*
1640  * Compression heuristic.
1641  *
1642  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1643  * quickly (compared to direct compression) detect data characteristics
1644  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1645  * data.
1646  *
1647  * The following types of analysis can be performed:
1648  * - detect mostly zero data
1649  * - detect data with low "byte set" size (text, etc)
1650  * - detect data with low/high "core byte" set
1651  *
1652  * Return non-zero if the compression should be done, 0 otherwise.
1653  */
1654 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1655 {
1656 	struct list_head *ws_list = get_workspace(0, 0);
1657 	struct heuristic_ws *ws;
1658 	u32 i;
1659 	u8 byte;
1660 	int ret = 0;
1661 
1662 	ws = list_entry(ws_list, struct heuristic_ws, list);
1663 
1664 	heuristic_collect_sample(inode, start, end, ws);
1665 
1666 	if (sample_repeated_patterns(ws)) {
1667 		ret = 1;
1668 		goto out;
1669 	}
1670 
1671 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1672 
1673 	for (i = 0; i < ws->sample_size; i++) {
1674 		byte = ws->sample[i];
1675 		ws->bucket[byte].count++;
1676 	}
1677 
1678 	i = byte_set_size(ws);
1679 	if (i < BYTE_SET_THRESHOLD) {
1680 		ret = 2;
1681 		goto out;
1682 	}
1683 
1684 	i = byte_core_set_size(ws);
1685 	if (i <= BYTE_CORE_SET_LOW) {
1686 		ret = 3;
1687 		goto out;
1688 	}
1689 
1690 	if (i >= BYTE_CORE_SET_HIGH) {
1691 		ret = 0;
1692 		goto out;
1693 	}
1694 
1695 	i = shannon_entropy(ws);
1696 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1697 		ret = 4;
1698 		goto out;
1699 	}
1700 
1701 	/*
1702 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1703 	 * needed to give green light to compression.
1704 	 *
1705 	 * For now just assume that compression at that level is not worth the
1706 	 * resources because:
1707 	 *
1708 	 * 1. it is possible to defrag the data later
1709 	 *
1710 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1711 	 * values, every bucket has counter at level ~54. The heuristic would
1712 	 * be confused. This can happen when data have some internal repeated
1713 	 * patterns like "abbacbbc...". This can be detected by analyzing
1714 	 * pairs of bytes, which is too costly.
1715 	 */
1716 	if (i < ENTROPY_LVL_HIGH) {
1717 		ret = 5;
1718 		goto out;
1719 	} else {
1720 		ret = 0;
1721 		goto out;
1722 	}
1723 
1724 out:
1725 	put_workspace(0, ws_list);
1726 	return ret;
1727 }
1728 
1729 /*
1730  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1731  * level, unrecognized string will set the default level
1732  */
1733 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1734 {
1735 	unsigned int level = 0;
1736 	int ret;
1737 
1738 	if (!type)
1739 		return 0;
1740 
1741 	if (str[0] == ':') {
1742 		ret = kstrtouint(str + 1, 10, &level);
1743 		if (ret)
1744 			level = 0;
1745 	}
1746 
1747 	level = btrfs_compress_set_level(type, level);
1748 
1749 	return level;
1750 }
1751 
1752 /*
1753  * Adjust @level according to the limits of the compression algorithm or
1754  * fallback to default
1755  */
1756 unsigned int btrfs_compress_set_level(int type, unsigned level)
1757 {
1758 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1759 
1760 	if (level == 0)
1761 		level = ops->default_level;
1762 	else
1763 		level = min(level, ops->max_level);
1764 
1765 	return level;
1766 }
1767