xref: /linux/fs/btrfs/ctree.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 
43 static const struct btrfs_csums {
44 	u16		size;
45 	const char	name[10];
46 	const char	driver[12];
47 } btrfs_csums[] = {
48 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52 				     .driver = "blake2b-256" },
53 };
54 
55 /*
56  * The leaf data grows from end-to-front in the node.  this returns the address
57  * of the start of the last item, which is the stop of the leaf data stack.
58  */
59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
60 {
61 	u32 nr = btrfs_header_nritems(leaf);
62 
63 	if (nr == 0)
64 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65 	return btrfs_item_offset(leaf, nr - 1);
66 }
67 
68 /*
69  * Move data in a @leaf (using memmove, safe for overlapping ranges).
70  *
71  * @leaf:	leaf that we're doing a memmove on
72  * @dst_offset:	item data offset we're moving to
73  * @src_offset:	item data offset were' moving from
74  * @len:	length of the data we're moving
75  *
76  * Wrapper around memmove_extent_buffer() that takes into account the header on
77  * the leaf.  The btrfs_item offset's start directly after the header, so we
78  * have to adjust any offsets to account for the header in the leaf.  This
79  * handles that math to simplify the callers.
80  */
81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82 				     unsigned long dst_offset,
83 				     unsigned long src_offset,
84 				     unsigned long len)
85 {
86 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
88 }
89 
90 /*
91  * Copy item data from @src into @dst at the given @offset.
92  *
93  * @dst:	destination leaf that we're copying into
94  * @src:	source leaf that we're copying from
95  * @dst_offset:	item data offset we're copying to
96  * @src_offset:	item data offset were' copying from
97  * @len:	length of the data we're copying
98  *
99  * Wrapper around copy_extent_buffer() that takes into account the header on
100  * the leaf.  The btrfs_item offset's start directly after the header, so we
101  * have to adjust any offsets to account for the header in the leaf.  This
102  * handles that math to simplify the callers.
103  */
104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105 				  const struct extent_buffer *src,
106 				  unsigned long dst_offset,
107 				  unsigned long src_offset, unsigned long len)
108 {
109 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
111 }
112 
113 /*
114  * Move items in a @leaf (using memmove).
115  *
116  * @dst:	destination leaf for the items
117  * @dst_item:	the item nr we're copying into
118  * @src_item:	the item nr we're copying from
119  * @nr_items:	the number of items to copy
120  *
121  * Wrapper around memmove_extent_buffer() that does the math to get the
122  * appropriate offsets into the leaf from the item numbers.
123  */
124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125 				      int dst_item, int src_item, int nr_items)
126 {
127 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128 			      btrfs_item_nr_offset(leaf, src_item),
129 			      nr_items * sizeof(struct btrfs_item));
130 }
131 
132 /*
133  * Copy items from @src into @dst at the given @offset.
134  *
135  * @dst:	destination leaf for the items
136  * @src:	source leaf for the items
137  * @dst_item:	the item nr we're copying into
138  * @src_item:	the item nr we're copying from
139  * @nr_items:	the number of items to copy
140  *
141  * Wrapper around copy_extent_buffer() that does the math to get the
142  * appropriate offsets into the leaf from the item numbers.
143  */
144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145 				   const struct extent_buffer *src,
146 				   int dst_item, int src_item, int nr_items)
147 {
148 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149 			      btrfs_item_nr_offset(src, src_item),
150 			      nr_items * sizeof(struct btrfs_item));
151 }
152 
153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
154 {
155 	u16 t = btrfs_super_csum_type(s);
156 	/*
157 	 * csum type is validated at mount time
158 	 */
159 	return btrfs_csums[t].size;
160 }
161 
162 const char *btrfs_super_csum_name(u16 csum_type)
163 {
164 	/* csum type is validated at mount time */
165 	return btrfs_csums[csum_type].name;
166 }
167 
168 /*
169  * Return driver name if defined, otherwise the name that's also a valid driver
170  * name
171  */
172 const char *btrfs_super_csum_driver(u16 csum_type)
173 {
174 	/* csum type is validated at mount time */
175 	return btrfs_csums[csum_type].driver[0] ?
176 		btrfs_csums[csum_type].driver :
177 		btrfs_csums[csum_type].name;
178 }
179 
180 size_t __attribute_const__ btrfs_get_num_csums(void)
181 {
182 	return ARRAY_SIZE(btrfs_csums);
183 }
184 
185 struct btrfs_path *btrfs_alloc_path(void)
186 {
187 	might_sleep();
188 
189 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
190 }
191 
192 /* this also releases the path */
193 void btrfs_free_path(struct btrfs_path *p)
194 {
195 	if (!p)
196 		return;
197 	btrfs_release_path(p);
198 	kmem_cache_free(btrfs_path_cachep, p);
199 }
200 
201 /*
202  * path release drops references on the extent buffers in the path
203  * and it drops any locks held by this path
204  *
205  * It is safe to call this on paths that no locks or extent buffers held.
206  */
207 noinline void btrfs_release_path(struct btrfs_path *p)
208 {
209 	int i;
210 
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
212 		p->slots[i] = 0;
213 		if (!p->nodes[i])
214 			continue;
215 		if (p->locks[i]) {
216 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
217 			p->locks[i] = 0;
218 		}
219 		free_extent_buffer(p->nodes[i]);
220 		p->nodes[i] = NULL;
221 	}
222 }
223 
224 /*
225  * We want the transaction abort to print stack trace only for errors where the
226  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227  * caused by external factors.
228  */
229 bool __cold abort_should_print_stack(int errno)
230 {
231 	switch (errno) {
232 	case -EIO:
233 	case -EROFS:
234 	case -ENOMEM:
235 		return false;
236 	}
237 	return true;
238 }
239 
240 /*
241  * safely gets a reference on the root node of a tree.  A lock
242  * is not taken, so a concurrent writer may put a different node
243  * at the root of the tree.  See btrfs_lock_root_node for the
244  * looping required.
245  *
246  * The extent buffer returned by this has a reference taken, so
247  * it won't disappear.  It may stop being the root of the tree
248  * at any time because there are no locks held.
249  */
250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
251 {
252 	struct extent_buffer *eb;
253 
254 	while (1) {
255 		rcu_read_lock();
256 		eb = rcu_dereference(root->node);
257 
258 		/*
259 		 * RCU really hurts here, we could free up the root node because
260 		 * it was COWed but we may not get the new root node yet so do
261 		 * the inc_not_zero dance and if it doesn't work then
262 		 * synchronize_rcu and try again.
263 		 */
264 		if (atomic_inc_not_zero(&eb->refs)) {
265 			rcu_read_unlock();
266 			break;
267 		}
268 		rcu_read_unlock();
269 		synchronize_rcu();
270 	}
271 	return eb;
272 }
273 
274 /*
275  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276  * just get put onto a simple dirty list.  Transaction walks this list to make
277  * sure they get properly updated on disk.
278  */
279 static void add_root_to_dirty_list(struct btrfs_root *root)
280 {
281 	struct btrfs_fs_info *fs_info = root->fs_info;
282 
283 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
285 		return;
286 
287 	spin_lock(&fs_info->trans_lock);
288 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289 		/* Want the extent tree to be the last on the list */
290 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291 			list_move_tail(&root->dirty_list,
292 				       &fs_info->dirty_cowonly_roots);
293 		else
294 			list_move(&root->dirty_list,
295 				  &fs_info->dirty_cowonly_roots);
296 	}
297 	spin_unlock(&fs_info->trans_lock);
298 }
299 
300 /*
301  * used by snapshot creation to make a copy of a root for a tree with
302  * a given objectid.  The buffer with the new root node is returned in
303  * cow_ret, and this func returns zero on success or a negative error code.
304  */
305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306 		      struct btrfs_root *root,
307 		      struct extent_buffer *buf,
308 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
309 {
310 	struct btrfs_fs_info *fs_info = root->fs_info;
311 	struct extent_buffer *cow;
312 	int ret = 0;
313 	int level;
314 	struct btrfs_disk_key disk_key;
315 
316 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317 		trans->transid != fs_info->running_transaction->transid);
318 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319 		trans->transid != root->last_trans);
320 
321 	level = btrfs_header_level(buf);
322 	if (level == 0)
323 		btrfs_item_key(buf, &disk_key, 0);
324 	else
325 		btrfs_node_key(buf, &disk_key, 0);
326 
327 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328 				     &disk_key, level, buf->start, 0,
329 				     BTRFS_NESTING_NEW_ROOT);
330 	if (IS_ERR(cow))
331 		return PTR_ERR(cow);
332 
333 	copy_extent_buffer_full(cow, buf);
334 	btrfs_set_header_bytenr(cow, cow->start);
335 	btrfs_set_header_generation(cow, trans->transid);
336 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338 				     BTRFS_HEADER_FLAG_RELOC);
339 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
341 	else
342 		btrfs_set_header_owner(cow, new_root_objectid);
343 
344 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
345 
346 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
347 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348 		ret = btrfs_inc_ref(trans, root, cow, 1);
349 	else
350 		ret = btrfs_inc_ref(trans, root, cow, 0);
351 	if (ret) {
352 		btrfs_tree_unlock(cow);
353 		free_extent_buffer(cow);
354 		btrfs_abort_transaction(trans, ret);
355 		return ret;
356 	}
357 
358 	btrfs_mark_buffer_dirty(cow);
359 	*cow_ret = cow;
360 	return 0;
361 }
362 
363 /*
364  * check if the tree block can be shared by multiple trees
365  */
366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367 			      struct extent_buffer *buf)
368 {
369 	/*
370 	 * Tree blocks not in shareable trees and tree roots are never shared.
371 	 * If a block was allocated after the last snapshot and the block was
372 	 * not allocated by tree relocation, we know the block is not shared.
373 	 */
374 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375 	    buf != root->node && buf != root->commit_root &&
376 	    (btrfs_header_generation(buf) <=
377 	     btrfs_root_last_snapshot(&root->root_item) ||
378 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
379 		return 1;
380 
381 	return 0;
382 }
383 
384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385 				       struct btrfs_root *root,
386 				       struct extent_buffer *buf,
387 				       struct extent_buffer *cow,
388 				       int *last_ref)
389 {
390 	struct btrfs_fs_info *fs_info = root->fs_info;
391 	u64 refs;
392 	u64 owner;
393 	u64 flags;
394 	u64 new_flags = 0;
395 	int ret;
396 
397 	/*
398 	 * Backrefs update rules:
399 	 *
400 	 * Always use full backrefs for extent pointers in tree block
401 	 * allocated by tree relocation.
402 	 *
403 	 * If a shared tree block is no longer referenced by its owner
404 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405 	 * use full backrefs for extent pointers in tree block.
406 	 *
407 	 * If a tree block is been relocating
408 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409 	 * use full backrefs for extent pointers in tree block.
410 	 * The reason for this is some operations (such as drop tree)
411 	 * are only allowed for blocks use full backrefs.
412 	 */
413 
414 	if (btrfs_block_can_be_shared(root, buf)) {
415 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416 					       btrfs_header_level(buf), 1,
417 					       &refs, &flags);
418 		if (ret)
419 			return ret;
420 		if (refs == 0) {
421 			ret = -EROFS;
422 			btrfs_handle_fs_error(fs_info, ret, NULL);
423 			return ret;
424 		}
425 	} else {
426 		refs = 1;
427 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
430 		else
431 			flags = 0;
432 	}
433 
434 	owner = btrfs_header_owner(buf);
435 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
437 
438 	if (refs > 1) {
439 		if ((owner == root->root_key.objectid ||
440 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442 			ret = btrfs_inc_ref(trans, root, buf, 1);
443 			if (ret)
444 				return ret;
445 
446 			if (root->root_key.objectid ==
447 			    BTRFS_TREE_RELOC_OBJECTID) {
448 				ret = btrfs_dec_ref(trans, root, buf, 0);
449 				if (ret)
450 					return ret;
451 				ret = btrfs_inc_ref(trans, root, cow, 1);
452 				if (ret)
453 					return ret;
454 			}
455 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
456 		} else {
457 
458 			if (root->root_key.objectid ==
459 			    BTRFS_TREE_RELOC_OBJECTID)
460 				ret = btrfs_inc_ref(trans, root, cow, 1);
461 			else
462 				ret = btrfs_inc_ref(trans, root, cow, 0);
463 			if (ret)
464 				return ret;
465 		}
466 		if (new_flags != 0) {
467 			int level = btrfs_header_level(buf);
468 
469 			ret = btrfs_set_disk_extent_flags(trans, buf,
470 							  new_flags, level);
471 			if (ret)
472 				return ret;
473 		}
474 	} else {
475 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476 			if (root->root_key.objectid ==
477 			    BTRFS_TREE_RELOC_OBJECTID)
478 				ret = btrfs_inc_ref(trans, root, cow, 1);
479 			else
480 				ret = btrfs_inc_ref(trans, root, cow, 0);
481 			if (ret)
482 				return ret;
483 			ret = btrfs_dec_ref(trans, root, buf, 1);
484 			if (ret)
485 				return ret;
486 		}
487 		btrfs_clear_buffer_dirty(trans, buf);
488 		*last_ref = 1;
489 	}
490 	return 0;
491 }
492 
493 /*
494  * does the dirty work in cow of a single block.  The parent block (if
495  * supplied) is updated to point to the new cow copy.  The new buffer is marked
496  * dirty and returned locked.  If you modify the block it needs to be marked
497  * dirty again.
498  *
499  * search_start -- an allocation hint for the new block
500  *
501  * empty_size -- a hint that you plan on doing more cow.  This is the size in
502  * bytes the allocator should try to find free next to the block it returns.
503  * This is just a hint and may be ignored by the allocator.
504  */
505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506 			     struct btrfs_root *root,
507 			     struct extent_buffer *buf,
508 			     struct extent_buffer *parent, int parent_slot,
509 			     struct extent_buffer **cow_ret,
510 			     u64 search_start, u64 empty_size,
511 			     enum btrfs_lock_nesting nest)
512 {
513 	struct btrfs_fs_info *fs_info = root->fs_info;
514 	struct btrfs_disk_key disk_key;
515 	struct extent_buffer *cow;
516 	int level, ret;
517 	int last_ref = 0;
518 	int unlock_orig = 0;
519 	u64 parent_start = 0;
520 
521 	if (*cow_ret == buf)
522 		unlock_orig = 1;
523 
524 	btrfs_assert_tree_write_locked(buf);
525 
526 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527 		trans->transid != fs_info->running_transaction->transid);
528 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529 		trans->transid != root->last_trans);
530 
531 	level = btrfs_header_level(buf);
532 
533 	if (level == 0)
534 		btrfs_item_key(buf, &disk_key, 0);
535 	else
536 		btrfs_node_key(buf, &disk_key, 0);
537 
538 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539 		parent_start = parent->start;
540 
541 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
542 				     root->root_key.objectid, &disk_key, level,
543 				     search_start, empty_size, nest);
544 	if (IS_ERR(cow))
545 		return PTR_ERR(cow);
546 
547 	/* cow is set to blocking by btrfs_init_new_buffer */
548 
549 	copy_extent_buffer_full(cow, buf);
550 	btrfs_set_header_bytenr(cow, cow->start);
551 	btrfs_set_header_generation(cow, trans->transid);
552 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554 				     BTRFS_HEADER_FLAG_RELOC);
555 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
557 	else
558 		btrfs_set_header_owner(cow, root->root_key.objectid);
559 
560 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
561 
562 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
563 	if (ret) {
564 		btrfs_tree_unlock(cow);
565 		free_extent_buffer(cow);
566 		btrfs_abort_transaction(trans, ret);
567 		return ret;
568 	}
569 
570 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
572 		if (ret) {
573 			btrfs_tree_unlock(cow);
574 			free_extent_buffer(cow);
575 			btrfs_abort_transaction(trans, ret);
576 			return ret;
577 		}
578 	}
579 
580 	if (buf == root->node) {
581 		WARN_ON(parent && parent != buf);
582 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584 			parent_start = buf->start;
585 
586 		atomic_inc(&cow->refs);
587 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
588 		BUG_ON(ret < 0);
589 		rcu_assign_pointer(root->node, cow);
590 
591 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592 				      parent_start, last_ref);
593 		free_extent_buffer(buf);
594 		add_root_to_dirty_list(root);
595 	} else {
596 		WARN_ON(trans->transid != btrfs_header_generation(parent));
597 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
598 					      BTRFS_MOD_LOG_KEY_REPLACE);
599 		btrfs_set_node_blockptr(parent, parent_slot,
600 					cow->start);
601 		btrfs_set_node_ptr_generation(parent, parent_slot,
602 					      trans->transid);
603 		btrfs_mark_buffer_dirty(parent);
604 		if (last_ref) {
605 			ret = btrfs_tree_mod_log_free_eb(buf);
606 			if (ret) {
607 				btrfs_tree_unlock(cow);
608 				free_extent_buffer(cow);
609 				btrfs_abort_transaction(trans, ret);
610 				return ret;
611 			}
612 		}
613 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614 				      parent_start, last_ref);
615 	}
616 	if (unlock_orig)
617 		btrfs_tree_unlock(buf);
618 	free_extent_buffer_stale(buf);
619 	btrfs_mark_buffer_dirty(cow);
620 	*cow_ret = cow;
621 	return 0;
622 }
623 
624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625 				   struct btrfs_root *root,
626 				   struct extent_buffer *buf)
627 {
628 	if (btrfs_is_testing(root->fs_info))
629 		return 0;
630 
631 	/* Ensure we can see the FORCE_COW bit */
632 	smp_mb__before_atomic();
633 
634 	/*
635 	 * We do not need to cow a block if
636 	 * 1) this block is not created or changed in this transaction;
637 	 * 2) this block does not belong to TREE_RELOC tree;
638 	 * 3) the root is not forced COW.
639 	 *
640 	 * What is forced COW:
641 	 *    when we create snapshot during committing the transaction,
642 	 *    after we've finished copying src root, we must COW the shared
643 	 *    block to ensure the metadata consistency.
644 	 */
645 	if (btrfs_header_generation(buf) == trans->transid &&
646 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
650 		return 0;
651 	return 1;
652 }
653 
654 /*
655  * cows a single block, see __btrfs_cow_block for the real work.
656  * This version of it has extra checks so that a block isn't COWed more than
657  * once per transaction, as long as it hasn't been written yet
658  */
659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660 		    struct btrfs_root *root, struct extent_buffer *buf,
661 		    struct extent_buffer *parent, int parent_slot,
662 		    struct extent_buffer **cow_ret,
663 		    enum btrfs_lock_nesting nest)
664 {
665 	struct btrfs_fs_info *fs_info = root->fs_info;
666 	u64 search_start;
667 	int ret;
668 
669 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
670 		btrfs_err(fs_info,
671 			"COW'ing blocks on a fs root that's being dropped");
672 
673 	if (trans->transaction != fs_info->running_transaction)
674 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
675 		       trans->transid,
676 		       fs_info->running_transaction->transid);
677 
678 	if (trans->transid != fs_info->generation)
679 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
680 		       trans->transid, fs_info->generation);
681 
682 	if (!should_cow_block(trans, root, buf)) {
683 		*cow_ret = buf;
684 		return 0;
685 	}
686 
687 	search_start = buf->start & ~((u64)SZ_1G - 1);
688 
689 	/*
690 	 * Before CoWing this block for later modification, check if it's
691 	 * the subtree root and do the delayed subtree trace if needed.
692 	 *
693 	 * Also We don't care about the error, as it's handled internally.
694 	 */
695 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696 	ret = __btrfs_cow_block(trans, root, buf, parent,
697 				 parent_slot, cow_ret, search_start, 0, nest);
698 
699 	trace_btrfs_cow_block(root, buf, *cow_ret);
700 
701 	return ret;
702 }
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
704 
705 /*
706  * helper function for defrag to decide if two blocks pointed to by a
707  * node are actually close by
708  */
709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
710 {
711 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
712 		return 1;
713 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
714 		return 1;
715 	return 0;
716 }
717 
718 #ifdef __LITTLE_ENDIAN
719 
720 /*
721  * Compare two keys, on little-endian the disk order is same as CPU order and
722  * we can avoid the conversion.
723  */
724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725 		     const struct btrfs_key *k2)
726 {
727 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
728 
729 	return btrfs_comp_cpu_keys(k1, k2);
730 }
731 
732 #else
733 
734 /*
735  * compare two keys in a memcmp fashion
736  */
737 static int comp_keys(const struct btrfs_disk_key *disk,
738 		     const struct btrfs_key *k2)
739 {
740 	struct btrfs_key k1;
741 
742 	btrfs_disk_key_to_cpu(&k1, disk);
743 
744 	return btrfs_comp_cpu_keys(&k1, k2);
745 }
746 #endif
747 
748 /*
749  * same as comp_keys only with two btrfs_key's
750  */
751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
752 {
753 	if (k1->objectid > k2->objectid)
754 		return 1;
755 	if (k1->objectid < k2->objectid)
756 		return -1;
757 	if (k1->type > k2->type)
758 		return 1;
759 	if (k1->type < k2->type)
760 		return -1;
761 	if (k1->offset > k2->offset)
762 		return 1;
763 	if (k1->offset < k2->offset)
764 		return -1;
765 	return 0;
766 }
767 
768 /*
769  * this is used by the defrag code to go through all the
770  * leaves pointed to by a node and reallocate them so that
771  * disk order is close to key order
772  */
773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774 		       struct btrfs_root *root, struct extent_buffer *parent,
775 		       int start_slot, u64 *last_ret,
776 		       struct btrfs_key *progress)
777 {
778 	struct btrfs_fs_info *fs_info = root->fs_info;
779 	struct extent_buffer *cur;
780 	u64 blocknr;
781 	u64 search_start = *last_ret;
782 	u64 last_block = 0;
783 	u64 other;
784 	u32 parent_nritems;
785 	int end_slot;
786 	int i;
787 	int err = 0;
788 	u32 blocksize;
789 	int progress_passed = 0;
790 	struct btrfs_disk_key disk_key;
791 
792 	WARN_ON(trans->transaction != fs_info->running_transaction);
793 	WARN_ON(trans->transid != fs_info->generation);
794 
795 	parent_nritems = btrfs_header_nritems(parent);
796 	blocksize = fs_info->nodesize;
797 	end_slot = parent_nritems - 1;
798 
799 	if (parent_nritems <= 1)
800 		return 0;
801 
802 	for (i = start_slot; i <= end_slot; i++) {
803 		int close = 1;
804 
805 		btrfs_node_key(parent, &disk_key, i);
806 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
807 			continue;
808 
809 		progress_passed = 1;
810 		blocknr = btrfs_node_blockptr(parent, i);
811 		if (last_block == 0)
812 			last_block = blocknr;
813 
814 		if (i > 0) {
815 			other = btrfs_node_blockptr(parent, i - 1);
816 			close = close_blocks(blocknr, other, blocksize);
817 		}
818 		if (!close && i < end_slot) {
819 			other = btrfs_node_blockptr(parent, i + 1);
820 			close = close_blocks(blocknr, other, blocksize);
821 		}
822 		if (close) {
823 			last_block = blocknr;
824 			continue;
825 		}
826 
827 		cur = btrfs_read_node_slot(parent, i);
828 		if (IS_ERR(cur))
829 			return PTR_ERR(cur);
830 		if (search_start == 0)
831 			search_start = last_block;
832 
833 		btrfs_tree_lock(cur);
834 		err = __btrfs_cow_block(trans, root, cur, parent, i,
835 					&cur, search_start,
836 					min(16 * blocksize,
837 					    (end_slot - i) * blocksize),
838 					BTRFS_NESTING_COW);
839 		if (err) {
840 			btrfs_tree_unlock(cur);
841 			free_extent_buffer(cur);
842 			break;
843 		}
844 		search_start = cur->start;
845 		last_block = cur->start;
846 		*last_ret = search_start;
847 		btrfs_tree_unlock(cur);
848 		free_extent_buffer(cur);
849 	}
850 	return err;
851 }
852 
853 /*
854  * Search for a key in the given extent_buffer.
855  *
856  * The lower boundary for the search is specified by the slot number @first_slot.
857  * Use a value of 0 to search over the whole extent buffer.
858  *
859  * The slot in the extent buffer is returned via @slot. If the key exists in the
860  * extent buffer, then @slot will point to the slot where the key is, otherwise
861  * it points to the slot where you would insert the key.
862  *
863  * Slot may point to the total number of items (i.e. one position beyond the last
864  * key) if the key is bigger than the last key in the extent buffer.
865  */
866 int btrfs_generic_bin_search(struct extent_buffer *eb, int first_slot,
867 			     const struct btrfs_key *key, int *slot)
868 {
869 	unsigned long p;
870 	int item_size;
871 	/*
872 	 * Use unsigned types for the low and high slots, so that we get a more
873 	 * efficient division in the search loop below.
874 	 */
875 	u32 low = first_slot;
876 	u32 high = btrfs_header_nritems(eb);
877 	int ret;
878 	const int key_size = sizeof(struct btrfs_disk_key);
879 
880 	if (unlikely(low > high)) {
881 		btrfs_err(eb->fs_info,
882 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
883 			  __func__, low, high, eb->start,
884 			  btrfs_header_owner(eb), btrfs_header_level(eb));
885 		return -EINVAL;
886 	}
887 
888 	if (btrfs_header_level(eb) == 0) {
889 		p = offsetof(struct btrfs_leaf, items);
890 		item_size = sizeof(struct btrfs_item);
891 	} else {
892 		p = offsetof(struct btrfs_node, ptrs);
893 		item_size = sizeof(struct btrfs_key_ptr);
894 	}
895 
896 	while (low < high) {
897 		unsigned long oip;
898 		unsigned long offset;
899 		struct btrfs_disk_key *tmp;
900 		struct btrfs_disk_key unaligned;
901 		int mid;
902 
903 		mid = (low + high) / 2;
904 		offset = p + mid * item_size;
905 		oip = offset_in_page(offset);
906 
907 		if (oip + key_size <= PAGE_SIZE) {
908 			const unsigned long idx = get_eb_page_index(offset);
909 			char *kaddr = page_address(eb->pages[idx]);
910 
911 			oip = get_eb_offset_in_page(eb, offset);
912 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
913 		} else {
914 			read_extent_buffer(eb, &unaligned, offset, key_size);
915 			tmp = &unaligned;
916 		}
917 
918 		ret = comp_keys(tmp, key);
919 
920 		if (ret < 0)
921 			low = mid + 1;
922 		else if (ret > 0)
923 			high = mid;
924 		else {
925 			*slot = mid;
926 			return 0;
927 		}
928 	}
929 	*slot = low;
930 	return 1;
931 }
932 
933 static void root_add_used(struct btrfs_root *root, u32 size)
934 {
935 	spin_lock(&root->accounting_lock);
936 	btrfs_set_root_used(&root->root_item,
937 			    btrfs_root_used(&root->root_item) + size);
938 	spin_unlock(&root->accounting_lock);
939 }
940 
941 static void root_sub_used(struct btrfs_root *root, u32 size)
942 {
943 	spin_lock(&root->accounting_lock);
944 	btrfs_set_root_used(&root->root_item,
945 			    btrfs_root_used(&root->root_item) - size);
946 	spin_unlock(&root->accounting_lock);
947 }
948 
949 /* given a node and slot number, this reads the blocks it points to.  The
950  * extent buffer is returned with a reference taken (but unlocked).
951  */
952 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
953 					   int slot)
954 {
955 	int level = btrfs_header_level(parent);
956 	struct btrfs_tree_parent_check check = { 0 };
957 	struct extent_buffer *eb;
958 
959 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
960 		return ERR_PTR(-ENOENT);
961 
962 	BUG_ON(level == 0);
963 
964 	check.level = level - 1;
965 	check.transid = btrfs_node_ptr_generation(parent, slot);
966 	check.owner_root = btrfs_header_owner(parent);
967 	check.has_first_key = true;
968 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
969 
970 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
971 			     &check);
972 	if (IS_ERR(eb))
973 		return eb;
974 	if (!extent_buffer_uptodate(eb)) {
975 		free_extent_buffer(eb);
976 		return ERR_PTR(-EIO);
977 	}
978 
979 	return eb;
980 }
981 
982 /*
983  * node level balancing, used to make sure nodes are in proper order for
984  * item deletion.  We balance from the top down, so we have to make sure
985  * that a deletion won't leave an node completely empty later on.
986  */
987 static noinline int balance_level(struct btrfs_trans_handle *trans,
988 			 struct btrfs_root *root,
989 			 struct btrfs_path *path, int level)
990 {
991 	struct btrfs_fs_info *fs_info = root->fs_info;
992 	struct extent_buffer *right = NULL;
993 	struct extent_buffer *mid;
994 	struct extent_buffer *left = NULL;
995 	struct extent_buffer *parent = NULL;
996 	int ret = 0;
997 	int wret;
998 	int pslot;
999 	int orig_slot = path->slots[level];
1000 	u64 orig_ptr;
1001 
1002 	ASSERT(level > 0);
1003 
1004 	mid = path->nodes[level];
1005 
1006 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1007 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1008 
1009 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1010 
1011 	if (level < BTRFS_MAX_LEVEL - 1) {
1012 		parent = path->nodes[level + 1];
1013 		pslot = path->slots[level + 1];
1014 	}
1015 
1016 	/*
1017 	 * deal with the case where there is only one pointer in the root
1018 	 * by promoting the node below to a root
1019 	 */
1020 	if (!parent) {
1021 		struct extent_buffer *child;
1022 
1023 		if (btrfs_header_nritems(mid) != 1)
1024 			return 0;
1025 
1026 		/* promote the child to a root */
1027 		child = btrfs_read_node_slot(mid, 0);
1028 		if (IS_ERR(child)) {
1029 			ret = PTR_ERR(child);
1030 			btrfs_handle_fs_error(fs_info, ret, NULL);
1031 			goto enospc;
1032 		}
1033 
1034 		btrfs_tree_lock(child);
1035 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1036 				      BTRFS_NESTING_COW);
1037 		if (ret) {
1038 			btrfs_tree_unlock(child);
1039 			free_extent_buffer(child);
1040 			goto enospc;
1041 		}
1042 
1043 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1044 		BUG_ON(ret < 0);
1045 		rcu_assign_pointer(root->node, child);
1046 
1047 		add_root_to_dirty_list(root);
1048 		btrfs_tree_unlock(child);
1049 
1050 		path->locks[level] = 0;
1051 		path->nodes[level] = NULL;
1052 		btrfs_clear_buffer_dirty(trans, mid);
1053 		btrfs_tree_unlock(mid);
1054 		/* once for the path */
1055 		free_extent_buffer(mid);
1056 
1057 		root_sub_used(root, mid->len);
1058 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1059 		/* once for the root ptr */
1060 		free_extent_buffer_stale(mid);
1061 		return 0;
1062 	}
1063 	if (btrfs_header_nritems(mid) >
1064 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1065 		return 0;
1066 
1067 	left = btrfs_read_node_slot(parent, pslot - 1);
1068 	if (IS_ERR(left))
1069 		left = NULL;
1070 
1071 	if (left) {
1072 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1073 		wret = btrfs_cow_block(trans, root, left,
1074 				       parent, pslot - 1, &left,
1075 				       BTRFS_NESTING_LEFT_COW);
1076 		if (wret) {
1077 			ret = wret;
1078 			goto enospc;
1079 		}
1080 	}
1081 
1082 	right = btrfs_read_node_slot(parent, pslot + 1);
1083 	if (IS_ERR(right))
1084 		right = NULL;
1085 
1086 	if (right) {
1087 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1088 		wret = btrfs_cow_block(trans, root, right,
1089 				       parent, pslot + 1, &right,
1090 				       BTRFS_NESTING_RIGHT_COW);
1091 		if (wret) {
1092 			ret = wret;
1093 			goto enospc;
1094 		}
1095 	}
1096 
1097 	/* first, try to make some room in the middle buffer */
1098 	if (left) {
1099 		orig_slot += btrfs_header_nritems(left);
1100 		wret = push_node_left(trans, left, mid, 1);
1101 		if (wret < 0)
1102 			ret = wret;
1103 	}
1104 
1105 	/*
1106 	 * then try to empty the right most buffer into the middle
1107 	 */
1108 	if (right) {
1109 		wret = push_node_left(trans, mid, right, 1);
1110 		if (wret < 0 && wret != -ENOSPC)
1111 			ret = wret;
1112 		if (btrfs_header_nritems(right) == 0) {
1113 			btrfs_clear_buffer_dirty(trans, right);
1114 			btrfs_tree_unlock(right);
1115 			del_ptr(root, path, level + 1, pslot + 1);
1116 			root_sub_used(root, right->len);
1117 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1118 					      0, 1);
1119 			free_extent_buffer_stale(right);
1120 			right = NULL;
1121 		} else {
1122 			struct btrfs_disk_key right_key;
1123 			btrfs_node_key(right, &right_key, 0);
1124 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1125 					BTRFS_MOD_LOG_KEY_REPLACE);
1126 			BUG_ON(ret < 0);
1127 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1128 			btrfs_mark_buffer_dirty(parent);
1129 		}
1130 	}
1131 	if (btrfs_header_nritems(mid) == 1) {
1132 		/*
1133 		 * we're not allowed to leave a node with one item in the
1134 		 * tree during a delete.  A deletion from lower in the tree
1135 		 * could try to delete the only pointer in this node.
1136 		 * So, pull some keys from the left.
1137 		 * There has to be a left pointer at this point because
1138 		 * otherwise we would have pulled some pointers from the
1139 		 * right
1140 		 */
1141 		if (!left) {
1142 			ret = -EROFS;
1143 			btrfs_handle_fs_error(fs_info, ret, NULL);
1144 			goto enospc;
1145 		}
1146 		wret = balance_node_right(trans, mid, left);
1147 		if (wret < 0) {
1148 			ret = wret;
1149 			goto enospc;
1150 		}
1151 		if (wret == 1) {
1152 			wret = push_node_left(trans, left, mid, 1);
1153 			if (wret < 0)
1154 				ret = wret;
1155 		}
1156 		BUG_ON(wret == 1);
1157 	}
1158 	if (btrfs_header_nritems(mid) == 0) {
1159 		btrfs_clear_buffer_dirty(trans, mid);
1160 		btrfs_tree_unlock(mid);
1161 		del_ptr(root, path, level + 1, pslot);
1162 		root_sub_used(root, mid->len);
1163 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1164 		free_extent_buffer_stale(mid);
1165 		mid = NULL;
1166 	} else {
1167 		/* update the parent key to reflect our changes */
1168 		struct btrfs_disk_key mid_key;
1169 		btrfs_node_key(mid, &mid_key, 0);
1170 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1171 						    BTRFS_MOD_LOG_KEY_REPLACE);
1172 		BUG_ON(ret < 0);
1173 		btrfs_set_node_key(parent, &mid_key, pslot);
1174 		btrfs_mark_buffer_dirty(parent);
1175 	}
1176 
1177 	/* update the path */
1178 	if (left) {
1179 		if (btrfs_header_nritems(left) > orig_slot) {
1180 			atomic_inc(&left->refs);
1181 			/* left was locked after cow */
1182 			path->nodes[level] = left;
1183 			path->slots[level + 1] -= 1;
1184 			path->slots[level] = orig_slot;
1185 			if (mid) {
1186 				btrfs_tree_unlock(mid);
1187 				free_extent_buffer(mid);
1188 			}
1189 		} else {
1190 			orig_slot -= btrfs_header_nritems(left);
1191 			path->slots[level] = orig_slot;
1192 		}
1193 	}
1194 	/* double check we haven't messed things up */
1195 	if (orig_ptr !=
1196 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1197 		BUG();
1198 enospc:
1199 	if (right) {
1200 		btrfs_tree_unlock(right);
1201 		free_extent_buffer(right);
1202 	}
1203 	if (left) {
1204 		if (path->nodes[level] != left)
1205 			btrfs_tree_unlock(left);
1206 		free_extent_buffer(left);
1207 	}
1208 	return ret;
1209 }
1210 
1211 /* Node balancing for insertion.  Here we only split or push nodes around
1212  * when they are completely full.  This is also done top down, so we
1213  * have to be pessimistic.
1214  */
1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1216 					  struct btrfs_root *root,
1217 					  struct btrfs_path *path, int level)
1218 {
1219 	struct btrfs_fs_info *fs_info = root->fs_info;
1220 	struct extent_buffer *right = NULL;
1221 	struct extent_buffer *mid;
1222 	struct extent_buffer *left = NULL;
1223 	struct extent_buffer *parent = NULL;
1224 	int ret = 0;
1225 	int wret;
1226 	int pslot;
1227 	int orig_slot = path->slots[level];
1228 
1229 	if (level == 0)
1230 		return 1;
1231 
1232 	mid = path->nodes[level];
1233 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1234 
1235 	if (level < BTRFS_MAX_LEVEL - 1) {
1236 		parent = path->nodes[level + 1];
1237 		pslot = path->slots[level + 1];
1238 	}
1239 
1240 	if (!parent)
1241 		return 1;
1242 
1243 	left = btrfs_read_node_slot(parent, pslot - 1);
1244 	if (IS_ERR(left))
1245 		left = NULL;
1246 
1247 	/* first, try to make some room in the middle buffer */
1248 	if (left) {
1249 		u32 left_nr;
1250 
1251 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1252 
1253 		left_nr = btrfs_header_nritems(left);
1254 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1255 			wret = 1;
1256 		} else {
1257 			ret = btrfs_cow_block(trans, root, left, parent,
1258 					      pslot - 1, &left,
1259 					      BTRFS_NESTING_LEFT_COW);
1260 			if (ret)
1261 				wret = 1;
1262 			else {
1263 				wret = push_node_left(trans, left, mid, 0);
1264 			}
1265 		}
1266 		if (wret < 0)
1267 			ret = wret;
1268 		if (wret == 0) {
1269 			struct btrfs_disk_key disk_key;
1270 			orig_slot += left_nr;
1271 			btrfs_node_key(mid, &disk_key, 0);
1272 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1273 					BTRFS_MOD_LOG_KEY_REPLACE);
1274 			BUG_ON(ret < 0);
1275 			btrfs_set_node_key(parent, &disk_key, pslot);
1276 			btrfs_mark_buffer_dirty(parent);
1277 			if (btrfs_header_nritems(left) > orig_slot) {
1278 				path->nodes[level] = left;
1279 				path->slots[level + 1] -= 1;
1280 				path->slots[level] = orig_slot;
1281 				btrfs_tree_unlock(mid);
1282 				free_extent_buffer(mid);
1283 			} else {
1284 				orig_slot -=
1285 					btrfs_header_nritems(left);
1286 				path->slots[level] = orig_slot;
1287 				btrfs_tree_unlock(left);
1288 				free_extent_buffer(left);
1289 			}
1290 			return 0;
1291 		}
1292 		btrfs_tree_unlock(left);
1293 		free_extent_buffer(left);
1294 	}
1295 	right = btrfs_read_node_slot(parent, pslot + 1);
1296 	if (IS_ERR(right))
1297 		right = NULL;
1298 
1299 	/*
1300 	 * then try to empty the right most buffer into the middle
1301 	 */
1302 	if (right) {
1303 		u32 right_nr;
1304 
1305 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1306 
1307 		right_nr = btrfs_header_nritems(right);
1308 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1309 			wret = 1;
1310 		} else {
1311 			ret = btrfs_cow_block(trans, root, right,
1312 					      parent, pslot + 1,
1313 					      &right, BTRFS_NESTING_RIGHT_COW);
1314 			if (ret)
1315 				wret = 1;
1316 			else {
1317 				wret = balance_node_right(trans, right, mid);
1318 			}
1319 		}
1320 		if (wret < 0)
1321 			ret = wret;
1322 		if (wret == 0) {
1323 			struct btrfs_disk_key disk_key;
1324 
1325 			btrfs_node_key(right, &disk_key, 0);
1326 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1327 					BTRFS_MOD_LOG_KEY_REPLACE);
1328 			BUG_ON(ret < 0);
1329 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1330 			btrfs_mark_buffer_dirty(parent);
1331 
1332 			if (btrfs_header_nritems(mid) <= orig_slot) {
1333 				path->nodes[level] = right;
1334 				path->slots[level + 1] += 1;
1335 				path->slots[level] = orig_slot -
1336 					btrfs_header_nritems(mid);
1337 				btrfs_tree_unlock(mid);
1338 				free_extent_buffer(mid);
1339 			} else {
1340 				btrfs_tree_unlock(right);
1341 				free_extent_buffer(right);
1342 			}
1343 			return 0;
1344 		}
1345 		btrfs_tree_unlock(right);
1346 		free_extent_buffer(right);
1347 	}
1348 	return 1;
1349 }
1350 
1351 /*
1352  * readahead one full node of leaves, finding things that are close
1353  * to the block in 'slot', and triggering ra on them.
1354  */
1355 static void reada_for_search(struct btrfs_fs_info *fs_info,
1356 			     struct btrfs_path *path,
1357 			     int level, int slot, u64 objectid)
1358 {
1359 	struct extent_buffer *node;
1360 	struct btrfs_disk_key disk_key;
1361 	u32 nritems;
1362 	u64 search;
1363 	u64 target;
1364 	u64 nread = 0;
1365 	u64 nread_max;
1366 	u32 nr;
1367 	u32 blocksize;
1368 	u32 nscan = 0;
1369 
1370 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1371 		return;
1372 
1373 	if (!path->nodes[level])
1374 		return;
1375 
1376 	node = path->nodes[level];
1377 
1378 	/*
1379 	 * Since the time between visiting leaves is much shorter than the time
1380 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1381 	 * much IO at once (possibly random).
1382 	 */
1383 	if (path->reada == READA_FORWARD_ALWAYS) {
1384 		if (level > 1)
1385 			nread_max = node->fs_info->nodesize;
1386 		else
1387 			nread_max = SZ_128K;
1388 	} else {
1389 		nread_max = SZ_64K;
1390 	}
1391 
1392 	search = btrfs_node_blockptr(node, slot);
1393 	blocksize = fs_info->nodesize;
1394 	if (path->reada != READA_FORWARD_ALWAYS) {
1395 		struct extent_buffer *eb;
1396 
1397 		eb = find_extent_buffer(fs_info, search);
1398 		if (eb) {
1399 			free_extent_buffer(eb);
1400 			return;
1401 		}
1402 	}
1403 
1404 	target = search;
1405 
1406 	nritems = btrfs_header_nritems(node);
1407 	nr = slot;
1408 
1409 	while (1) {
1410 		if (path->reada == READA_BACK) {
1411 			if (nr == 0)
1412 				break;
1413 			nr--;
1414 		} else if (path->reada == READA_FORWARD ||
1415 			   path->reada == READA_FORWARD_ALWAYS) {
1416 			nr++;
1417 			if (nr >= nritems)
1418 				break;
1419 		}
1420 		if (path->reada == READA_BACK && objectid) {
1421 			btrfs_node_key(node, &disk_key, nr);
1422 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1423 				break;
1424 		}
1425 		search = btrfs_node_blockptr(node, nr);
1426 		if (path->reada == READA_FORWARD_ALWAYS ||
1427 		    (search <= target && target - search <= 65536) ||
1428 		    (search > target && search - target <= 65536)) {
1429 			btrfs_readahead_node_child(node, nr);
1430 			nread += blocksize;
1431 		}
1432 		nscan++;
1433 		if (nread > nread_max || nscan > 32)
1434 			break;
1435 	}
1436 }
1437 
1438 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1439 {
1440 	struct extent_buffer *parent;
1441 	int slot;
1442 	int nritems;
1443 
1444 	parent = path->nodes[level + 1];
1445 	if (!parent)
1446 		return;
1447 
1448 	nritems = btrfs_header_nritems(parent);
1449 	slot = path->slots[level + 1];
1450 
1451 	if (slot > 0)
1452 		btrfs_readahead_node_child(parent, slot - 1);
1453 	if (slot + 1 < nritems)
1454 		btrfs_readahead_node_child(parent, slot + 1);
1455 }
1456 
1457 
1458 /*
1459  * when we walk down the tree, it is usually safe to unlock the higher layers
1460  * in the tree.  The exceptions are when our path goes through slot 0, because
1461  * operations on the tree might require changing key pointers higher up in the
1462  * tree.
1463  *
1464  * callers might also have set path->keep_locks, which tells this code to keep
1465  * the lock if the path points to the last slot in the block.  This is part of
1466  * walking through the tree, and selecting the next slot in the higher block.
1467  *
1468  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1469  * if lowest_unlock is 1, level 0 won't be unlocked
1470  */
1471 static noinline void unlock_up(struct btrfs_path *path, int level,
1472 			       int lowest_unlock, int min_write_lock_level,
1473 			       int *write_lock_level)
1474 {
1475 	int i;
1476 	int skip_level = level;
1477 	bool check_skip = true;
1478 
1479 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1480 		if (!path->nodes[i])
1481 			break;
1482 		if (!path->locks[i])
1483 			break;
1484 
1485 		if (check_skip) {
1486 			if (path->slots[i] == 0) {
1487 				skip_level = i + 1;
1488 				continue;
1489 			}
1490 
1491 			if (path->keep_locks) {
1492 				u32 nritems;
1493 
1494 				nritems = btrfs_header_nritems(path->nodes[i]);
1495 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1496 					skip_level = i + 1;
1497 					continue;
1498 				}
1499 			}
1500 		}
1501 
1502 		if (i >= lowest_unlock && i > skip_level) {
1503 			check_skip = false;
1504 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1505 			path->locks[i] = 0;
1506 			if (write_lock_level &&
1507 			    i > min_write_lock_level &&
1508 			    i <= *write_lock_level) {
1509 				*write_lock_level = i - 1;
1510 			}
1511 		}
1512 	}
1513 }
1514 
1515 /*
1516  * Helper function for btrfs_search_slot() and other functions that do a search
1517  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1518  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1519  * its pages from disk.
1520  *
1521  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1522  * whole btree search, starting again from the current root node.
1523  */
1524 static int
1525 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1526 		      struct extent_buffer **eb_ret, int level, int slot,
1527 		      const struct btrfs_key *key)
1528 {
1529 	struct btrfs_fs_info *fs_info = root->fs_info;
1530 	struct btrfs_tree_parent_check check = { 0 };
1531 	u64 blocknr;
1532 	u64 gen;
1533 	struct extent_buffer *tmp;
1534 	int ret;
1535 	int parent_level;
1536 	bool unlock_up;
1537 
1538 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1539 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1540 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1541 	parent_level = btrfs_header_level(*eb_ret);
1542 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1543 	check.has_first_key = true;
1544 	check.level = parent_level - 1;
1545 	check.transid = gen;
1546 	check.owner_root = root->root_key.objectid;
1547 
1548 	/*
1549 	 * If we need to read an extent buffer from disk and we are holding locks
1550 	 * on upper level nodes, we unlock all the upper nodes before reading the
1551 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1552 	 * restart the search. We don't release the lock on the current level
1553 	 * because we need to walk this node to figure out which blocks to read.
1554 	 */
1555 	tmp = find_extent_buffer(fs_info, blocknr);
1556 	if (tmp) {
1557 		if (p->reada == READA_FORWARD_ALWAYS)
1558 			reada_for_search(fs_info, p, level, slot, key->objectid);
1559 
1560 		/* first we do an atomic uptodate check */
1561 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1562 			/*
1563 			 * Do extra check for first_key, eb can be stale due to
1564 			 * being cached, read from scrub, or have multiple
1565 			 * parents (shared tree blocks).
1566 			 */
1567 			if (btrfs_verify_level_key(tmp,
1568 					parent_level - 1, &check.first_key, gen)) {
1569 				free_extent_buffer(tmp);
1570 				return -EUCLEAN;
1571 			}
1572 			*eb_ret = tmp;
1573 			return 0;
1574 		}
1575 
1576 		if (p->nowait) {
1577 			free_extent_buffer(tmp);
1578 			return -EAGAIN;
1579 		}
1580 
1581 		if (unlock_up)
1582 			btrfs_unlock_up_safe(p, level + 1);
1583 
1584 		/* now we're allowed to do a blocking uptodate check */
1585 		ret = btrfs_read_extent_buffer(tmp, &check);
1586 		if (ret) {
1587 			free_extent_buffer(tmp);
1588 			btrfs_release_path(p);
1589 			return -EIO;
1590 		}
1591 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1592 			free_extent_buffer(tmp);
1593 			btrfs_release_path(p);
1594 			return -EUCLEAN;
1595 		}
1596 
1597 		if (unlock_up)
1598 			ret = -EAGAIN;
1599 
1600 		goto out;
1601 	} else if (p->nowait) {
1602 		return -EAGAIN;
1603 	}
1604 
1605 	if (unlock_up) {
1606 		btrfs_unlock_up_safe(p, level + 1);
1607 		ret = -EAGAIN;
1608 	} else {
1609 		ret = 0;
1610 	}
1611 
1612 	if (p->reada != READA_NONE)
1613 		reada_for_search(fs_info, p, level, slot, key->objectid);
1614 
1615 	tmp = read_tree_block(fs_info, blocknr, &check);
1616 	if (IS_ERR(tmp)) {
1617 		btrfs_release_path(p);
1618 		return PTR_ERR(tmp);
1619 	}
1620 	/*
1621 	 * If the read above didn't mark this buffer up to date,
1622 	 * it will never end up being up to date.  Set ret to EIO now
1623 	 * and give up so that our caller doesn't loop forever
1624 	 * on our EAGAINs.
1625 	 */
1626 	if (!extent_buffer_uptodate(tmp))
1627 		ret = -EIO;
1628 
1629 out:
1630 	if (ret == 0) {
1631 		*eb_ret = tmp;
1632 	} else {
1633 		free_extent_buffer(tmp);
1634 		btrfs_release_path(p);
1635 	}
1636 
1637 	return ret;
1638 }
1639 
1640 /*
1641  * helper function for btrfs_search_slot.  This does all of the checks
1642  * for node-level blocks and does any balancing required based on
1643  * the ins_len.
1644  *
1645  * If no extra work was required, zero is returned.  If we had to
1646  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1647  * start over
1648  */
1649 static int
1650 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1651 		       struct btrfs_root *root, struct btrfs_path *p,
1652 		       struct extent_buffer *b, int level, int ins_len,
1653 		       int *write_lock_level)
1654 {
1655 	struct btrfs_fs_info *fs_info = root->fs_info;
1656 	int ret = 0;
1657 
1658 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1659 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1660 
1661 		if (*write_lock_level < level + 1) {
1662 			*write_lock_level = level + 1;
1663 			btrfs_release_path(p);
1664 			return -EAGAIN;
1665 		}
1666 
1667 		reada_for_balance(p, level);
1668 		ret = split_node(trans, root, p, level);
1669 
1670 		b = p->nodes[level];
1671 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1672 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1673 
1674 		if (*write_lock_level < level + 1) {
1675 			*write_lock_level = level + 1;
1676 			btrfs_release_path(p);
1677 			return -EAGAIN;
1678 		}
1679 
1680 		reada_for_balance(p, level);
1681 		ret = balance_level(trans, root, p, level);
1682 		if (ret)
1683 			return ret;
1684 
1685 		b = p->nodes[level];
1686 		if (!b) {
1687 			btrfs_release_path(p);
1688 			return -EAGAIN;
1689 		}
1690 		BUG_ON(btrfs_header_nritems(b) == 1);
1691 	}
1692 	return ret;
1693 }
1694 
1695 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1696 		u64 iobjectid, u64 ioff, u8 key_type,
1697 		struct btrfs_key *found_key)
1698 {
1699 	int ret;
1700 	struct btrfs_key key;
1701 	struct extent_buffer *eb;
1702 
1703 	ASSERT(path);
1704 	ASSERT(found_key);
1705 
1706 	key.type = key_type;
1707 	key.objectid = iobjectid;
1708 	key.offset = ioff;
1709 
1710 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1711 	if (ret < 0)
1712 		return ret;
1713 
1714 	eb = path->nodes[0];
1715 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1716 		ret = btrfs_next_leaf(fs_root, path);
1717 		if (ret)
1718 			return ret;
1719 		eb = path->nodes[0];
1720 	}
1721 
1722 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1723 	if (found_key->type != key.type ||
1724 			found_key->objectid != key.objectid)
1725 		return 1;
1726 
1727 	return 0;
1728 }
1729 
1730 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1731 							struct btrfs_path *p,
1732 							int write_lock_level)
1733 {
1734 	struct extent_buffer *b;
1735 	int root_lock = 0;
1736 	int level = 0;
1737 
1738 	if (p->search_commit_root) {
1739 		b = root->commit_root;
1740 		atomic_inc(&b->refs);
1741 		level = btrfs_header_level(b);
1742 		/*
1743 		 * Ensure that all callers have set skip_locking when
1744 		 * p->search_commit_root = 1.
1745 		 */
1746 		ASSERT(p->skip_locking == 1);
1747 
1748 		goto out;
1749 	}
1750 
1751 	if (p->skip_locking) {
1752 		b = btrfs_root_node(root);
1753 		level = btrfs_header_level(b);
1754 		goto out;
1755 	}
1756 
1757 	/* We try very hard to do read locks on the root */
1758 	root_lock = BTRFS_READ_LOCK;
1759 
1760 	/*
1761 	 * If the level is set to maximum, we can skip trying to get the read
1762 	 * lock.
1763 	 */
1764 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1765 		/*
1766 		 * We don't know the level of the root node until we actually
1767 		 * have it read locked
1768 		 */
1769 		if (p->nowait) {
1770 			b = btrfs_try_read_lock_root_node(root);
1771 			if (IS_ERR(b))
1772 				return b;
1773 		} else {
1774 			b = btrfs_read_lock_root_node(root);
1775 		}
1776 		level = btrfs_header_level(b);
1777 		if (level > write_lock_level)
1778 			goto out;
1779 
1780 		/* Whoops, must trade for write lock */
1781 		btrfs_tree_read_unlock(b);
1782 		free_extent_buffer(b);
1783 	}
1784 
1785 	b = btrfs_lock_root_node(root);
1786 	root_lock = BTRFS_WRITE_LOCK;
1787 
1788 	/* The level might have changed, check again */
1789 	level = btrfs_header_level(b);
1790 
1791 out:
1792 	/*
1793 	 * The root may have failed to write out at some point, and thus is no
1794 	 * longer valid, return an error in this case.
1795 	 */
1796 	if (!extent_buffer_uptodate(b)) {
1797 		if (root_lock)
1798 			btrfs_tree_unlock_rw(b, root_lock);
1799 		free_extent_buffer(b);
1800 		return ERR_PTR(-EIO);
1801 	}
1802 
1803 	p->nodes[level] = b;
1804 	if (!p->skip_locking)
1805 		p->locks[level] = root_lock;
1806 	/*
1807 	 * Callers are responsible for dropping b's references.
1808 	 */
1809 	return b;
1810 }
1811 
1812 /*
1813  * Replace the extent buffer at the lowest level of the path with a cloned
1814  * version. The purpose is to be able to use it safely, after releasing the
1815  * commit root semaphore, even if relocation is happening in parallel, the
1816  * transaction used for relocation is committed and the extent buffer is
1817  * reallocated in the next transaction.
1818  *
1819  * This is used in a context where the caller does not prevent transaction
1820  * commits from happening, either by holding a transaction handle or holding
1821  * some lock, while it's doing searches through a commit root.
1822  * At the moment it's only used for send operations.
1823  */
1824 static int finish_need_commit_sem_search(struct btrfs_path *path)
1825 {
1826 	const int i = path->lowest_level;
1827 	const int slot = path->slots[i];
1828 	struct extent_buffer *lowest = path->nodes[i];
1829 	struct extent_buffer *clone;
1830 
1831 	ASSERT(path->need_commit_sem);
1832 
1833 	if (!lowest)
1834 		return 0;
1835 
1836 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1837 
1838 	clone = btrfs_clone_extent_buffer(lowest);
1839 	if (!clone)
1840 		return -ENOMEM;
1841 
1842 	btrfs_release_path(path);
1843 	path->nodes[i] = clone;
1844 	path->slots[i] = slot;
1845 
1846 	return 0;
1847 }
1848 
1849 static inline int search_for_key_slot(struct extent_buffer *eb,
1850 				      int search_low_slot,
1851 				      const struct btrfs_key *key,
1852 				      int prev_cmp,
1853 				      int *slot)
1854 {
1855 	/*
1856 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1857 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1858 	 * always be at slot 0 on lower levels, since each key pointer
1859 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1860 	 * subtree it points to. Thus we can skip searching lower levels.
1861 	 */
1862 	if (prev_cmp == 0) {
1863 		*slot = 0;
1864 		return 0;
1865 	}
1866 
1867 	return btrfs_generic_bin_search(eb, search_low_slot, key, slot);
1868 }
1869 
1870 static int search_leaf(struct btrfs_trans_handle *trans,
1871 		       struct btrfs_root *root,
1872 		       const struct btrfs_key *key,
1873 		       struct btrfs_path *path,
1874 		       int ins_len,
1875 		       int prev_cmp)
1876 {
1877 	struct extent_buffer *leaf = path->nodes[0];
1878 	int leaf_free_space = -1;
1879 	int search_low_slot = 0;
1880 	int ret;
1881 	bool do_bin_search = true;
1882 
1883 	/*
1884 	 * If we are doing an insertion, the leaf has enough free space and the
1885 	 * destination slot for the key is not slot 0, then we can unlock our
1886 	 * write lock on the parent, and any other upper nodes, before doing the
1887 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1888 	 * tasks to lock the parent and any other upper nodes.
1889 	 */
1890 	if (ins_len > 0) {
1891 		/*
1892 		 * Cache the leaf free space, since we will need it later and it
1893 		 * will not change until then.
1894 		 */
1895 		leaf_free_space = btrfs_leaf_free_space(leaf);
1896 
1897 		/*
1898 		 * !path->locks[1] means we have a single node tree, the leaf is
1899 		 * the root of the tree.
1900 		 */
1901 		if (path->locks[1] && leaf_free_space >= ins_len) {
1902 			struct btrfs_disk_key first_key;
1903 
1904 			ASSERT(btrfs_header_nritems(leaf) > 0);
1905 			btrfs_item_key(leaf, &first_key, 0);
1906 
1907 			/*
1908 			 * Doing the extra comparison with the first key is cheap,
1909 			 * taking into account that the first key is very likely
1910 			 * already in a cache line because it immediately follows
1911 			 * the extent buffer's header and we have recently accessed
1912 			 * the header's level field.
1913 			 */
1914 			ret = comp_keys(&first_key, key);
1915 			if (ret < 0) {
1916 				/*
1917 				 * The first key is smaller than the key we want
1918 				 * to insert, so we are safe to unlock all upper
1919 				 * nodes and we have to do the binary search.
1920 				 *
1921 				 * We do use btrfs_unlock_up_safe() and not
1922 				 * unlock_up() because the later does not unlock
1923 				 * nodes with a slot of 0 - we can safely unlock
1924 				 * any node even if its slot is 0 since in this
1925 				 * case the key does not end up at slot 0 of the
1926 				 * leaf and there's no need to split the leaf.
1927 				 */
1928 				btrfs_unlock_up_safe(path, 1);
1929 				search_low_slot = 1;
1930 			} else {
1931 				/*
1932 				 * The first key is >= then the key we want to
1933 				 * insert, so we can skip the binary search as
1934 				 * the target key will be at slot 0.
1935 				 *
1936 				 * We can not unlock upper nodes when the key is
1937 				 * less than the first key, because we will need
1938 				 * to update the key at slot 0 of the parent node
1939 				 * and possibly of other upper nodes too.
1940 				 * If the key matches the first key, then we can
1941 				 * unlock all the upper nodes, using
1942 				 * btrfs_unlock_up_safe() instead of unlock_up()
1943 				 * as stated above.
1944 				 */
1945 				if (ret == 0)
1946 					btrfs_unlock_up_safe(path, 1);
1947 				/*
1948 				 * ret is already 0 or 1, matching the result of
1949 				 * a btrfs_bin_search() call, so there is no need
1950 				 * to adjust it.
1951 				 */
1952 				do_bin_search = false;
1953 				path->slots[0] = 0;
1954 			}
1955 		}
1956 	}
1957 
1958 	if (do_bin_search) {
1959 		ret = search_for_key_slot(leaf, search_low_slot, key,
1960 					  prev_cmp, &path->slots[0]);
1961 		if (ret < 0)
1962 			return ret;
1963 	}
1964 
1965 	if (ins_len > 0) {
1966 		/*
1967 		 * Item key already exists. In this case, if we are allowed to
1968 		 * insert the item (for example, in dir_item case, item key
1969 		 * collision is allowed), it will be merged with the original
1970 		 * item. Only the item size grows, no new btrfs item will be
1971 		 * added. If search_for_extension is not set, ins_len already
1972 		 * accounts the size btrfs_item, deduct it here so leaf space
1973 		 * check will be correct.
1974 		 */
1975 		if (ret == 0 && !path->search_for_extension) {
1976 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1977 			ins_len -= sizeof(struct btrfs_item);
1978 		}
1979 
1980 		ASSERT(leaf_free_space >= 0);
1981 
1982 		if (leaf_free_space < ins_len) {
1983 			int err;
1984 
1985 			err = split_leaf(trans, root, key, path, ins_len,
1986 					 (ret == 0));
1987 			ASSERT(err <= 0);
1988 			if (WARN_ON(err > 0))
1989 				err = -EUCLEAN;
1990 			if (err)
1991 				ret = err;
1992 		}
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 /*
1999  * btrfs_search_slot - look for a key in a tree and perform necessary
2000  * modifications to preserve tree invariants.
2001  *
2002  * @trans:	Handle of transaction, used when modifying the tree
2003  * @p:		Holds all btree nodes along the search path
2004  * @root:	The root node of the tree
2005  * @key:	The key we are looking for
2006  * @ins_len:	Indicates purpose of search:
2007  *              >0  for inserts it's size of item inserted (*)
2008  *              <0  for deletions
2009  *               0  for plain searches, not modifying the tree
2010  *
2011  *              (*) If size of item inserted doesn't include
2012  *              sizeof(struct btrfs_item), then p->search_for_extension must
2013  *              be set.
2014  * @cow:	boolean should CoW operations be performed. Must always be 1
2015  *		when modifying the tree.
2016  *
2017  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2018  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2019  *
2020  * If @key is found, 0 is returned and you can find the item in the leaf level
2021  * of the path (level 0)
2022  *
2023  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2024  * points to the slot where it should be inserted
2025  *
2026  * If an error is encountered while searching the tree a negative error number
2027  * is returned
2028  */
2029 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2030 		      const struct btrfs_key *key, struct btrfs_path *p,
2031 		      int ins_len, int cow)
2032 {
2033 	struct btrfs_fs_info *fs_info = root->fs_info;
2034 	struct extent_buffer *b;
2035 	int slot;
2036 	int ret;
2037 	int err;
2038 	int level;
2039 	int lowest_unlock = 1;
2040 	/* everything at write_lock_level or lower must be write locked */
2041 	int write_lock_level = 0;
2042 	u8 lowest_level = 0;
2043 	int min_write_lock_level;
2044 	int prev_cmp;
2045 
2046 	might_sleep();
2047 
2048 	lowest_level = p->lowest_level;
2049 	WARN_ON(lowest_level && ins_len > 0);
2050 	WARN_ON(p->nodes[0] != NULL);
2051 	BUG_ON(!cow && ins_len);
2052 
2053 	/*
2054 	 * For now only allow nowait for read only operations.  There's no
2055 	 * strict reason why we can't, we just only need it for reads so it's
2056 	 * only implemented for reads.
2057 	 */
2058 	ASSERT(!p->nowait || !cow);
2059 
2060 	if (ins_len < 0) {
2061 		lowest_unlock = 2;
2062 
2063 		/* when we are removing items, we might have to go up to level
2064 		 * two as we update tree pointers  Make sure we keep write
2065 		 * for those levels as well
2066 		 */
2067 		write_lock_level = 2;
2068 	} else if (ins_len > 0) {
2069 		/*
2070 		 * for inserting items, make sure we have a write lock on
2071 		 * level 1 so we can update keys
2072 		 */
2073 		write_lock_level = 1;
2074 	}
2075 
2076 	if (!cow)
2077 		write_lock_level = -1;
2078 
2079 	if (cow && (p->keep_locks || p->lowest_level))
2080 		write_lock_level = BTRFS_MAX_LEVEL;
2081 
2082 	min_write_lock_level = write_lock_level;
2083 
2084 	if (p->need_commit_sem) {
2085 		ASSERT(p->search_commit_root);
2086 		if (p->nowait) {
2087 			if (!down_read_trylock(&fs_info->commit_root_sem))
2088 				return -EAGAIN;
2089 		} else {
2090 			down_read(&fs_info->commit_root_sem);
2091 		}
2092 	}
2093 
2094 again:
2095 	prev_cmp = -1;
2096 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2097 	if (IS_ERR(b)) {
2098 		ret = PTR_ERR(b);
2099 		goto done;
2100 	}
2101 
2102 	while (b) {
2103 		int dec = 0;
2104 
2105 		level = btrfs_header_level(b);
2106 
2107 		if (cow) {
2108 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2109 
2110 			/*
2111 			 * if we don't really need to cow this block
2112 			 * then we don't want to set the path blocking,
2113 			 * so we test it here
2114 			 */
2115 			if (!should_cow_block(trans, root, b))
2116 				goto cow_done;
2117 
2118 			/*
2119 			 * must have write locks on this node and the
2120 			 * parent
2121 			 */
2122 			if (level > write_lock_level ||
2123 			    (level + 1 > write_lock_level &&
2124 			    level + 1 < BTRFS_MAX_LEVEL &&
2125 			    p->nodes[level + 1])) {
2126 				write_lock_level = level + 1;
2127 				btrfs_release_path(p);
2128 				goto again;
2129 			}
2130 
2131 			if (last_level)
2132 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2133 						      &b,
2134 						      BTRFS_NESTING_COW);
2135 			else
2136 				err = btrfs_cow_block(trans, root, b,
2137 						      p->nodes[level + 1],
2138 						      p->slots[level + 1], &b,
2139 						      BTRFS_NESTING_COW);
2140 			if (err) {
2141 				ret = err;
2142 				goto done;
2143 			}
2144 		}
2145 cow_done:
2146 		p->nodes[level] = b;
2147 
2148 		/*
2149 		 * we have a lock on b and as long as we aren't changing
2150 		 * the tree, there is no way to for the items in b to change.
2151 		 * It is safe to drop the lock on our parent before we
2152 		 * go through the expensive btree search on b.
2153 		 *
2154 		 * If we're inserting or deleting (ins_len != 0), then we might
2155 		 * be changing slot zero, which may require changing the parent.
2156 		 * So, we can't drop the lock until after we know which slot
2157 		 * we're operating on.
2158 		 */
2159 		if (!ins_len && !p->keep_locks) {
2160 			int u = level + 1;
2161 
2162 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2163 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2164 				p->locks[u] = 0;
2165 			}
2166 		}
2167 
2168 		if (level == 0) {
2169 			if (ins_len > 0)
2170 				ASSERT(write_lock_level >= 1);
2171 
2172 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2173 			if (!p->search_for_split)
2174 				unlock_up(p, level, lowest_unlock,
2175 					  min_write_lock_level, NULL);
2176 			goto done;
2177 		}
2178 
2179 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2180 		if (ret < 0)
2181 			goto done;
2182 		prev_cmp = ret;
2183 
2184 		if (ret && slot > 0) {
2185 			dec = 1;
2186 			slot--;
2187 		}
2188 		p->slots[level] = slot;
2189 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2190 					     &write_lock_level);
2191 		if (err == -EAGAIN)
2192 			goto again;
2193 		if (err) {
2194 			ret = err;
2195 			goto done;
2196 		}
2197 		b = p->nodes[level];
2198 		slot = p->slots[level];
2199 
2200 		/*
2201 		 * Slot 0 is special, if we change the key we have to update
2202 		 * the parent pointer which means we must have a write lock on
2203 		 * the parent
2204 		 */
2205 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2206 			write_lock_level = level + 1;
2207 			btrfs_release_path(p);
2208 			goto again;
2209 		}
2210 
2211 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2212 			  &write_lock_level);
2213 
2214 		if (level == lowest_level) {
2215 			if (dec)
2216 				p->slots[level]++;
2217 			goto done;
2218 		}
2219 
2220 		err = read_block_for_search(root, p, &b, level, slot, key);
2221 		if (err == -EAGAIN)
2222 			goto again;
2223 		if (err) {
2224 			ret = err;
2225 			goto done;
2226 		}
2227 
2228 		if (!p->skip_locking) {
2229 			level = btrfs_header_level(b);
2230 
2231 			btrfs_maybe_reset_lockdep_class(root, b);
2232 
2233 			if (level <= write_lock_level) {
2234 				btrfs_tree_lock(b);
2235 				p->locks[level] = BTRFS_WRITE_LOCK;
2236 			} else {
2237 				if (p->nowait) {
2238 					if (!btrfs_try_tree_read_lock(b)) {
2239 						free_extent_buffer(b);
2240 						ret = -EAGAIN;
2241 						goto done;
2242 					}
2243 				} else {
2244 					btrfs_tree_read_lock(b);
2245 				}
2246 				p->locks[level] = BTRFS_READ_LOCK;
2247 			}
2248 			p->nodes[level] = b;
2249 		}
2250 	}
2251 	ret = 1;
2252 done:
2253 	if (ret < 0 && !p->skip_release_on_error)
2254 		btrfs_release_path(p);
2255 
2256 	if (p->need_commit_sem) {
2257 		int ret2;
2258 
2259 		ret2 = finish_need_commit_sem_search(p);
2260 		up_read(&fs_info->commit_root_sem);
2261 		if (ret2)
2262 			ret = ret2;
2263 	}
2264 
2265 	return ret;
2266 }
2267 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2268 
2269 /*
2270  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2271  * current state of the tree together with the operations recorded in the tree
2272  * modification log to search for the key in a previous version of this tree, as
2273  * denoted by the time_seq parameter.
2274  *
2275  * Naturally, there is no support for insert, delete or cow operations.
2276  *
2277  * The resulting path and return value will be set up as if we called
2278  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2279  */
2280 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2281 			  struct btrfs_path *p, u64 time_seq)
2282 {
2283 	struct btrfs_fs_info *fs_info = root->fs_info;
2284 	struct extent_buffer *b;
2285 	int slot;
2286 	int ret;
2287 	int err;
2288 	int level;
2289 	int lowest_unlock = 1;
2290 	u8 lowest_level = 0;
2291 
2292 	lowest_level = p->lowest_level;
2293 	WARN_ON(p->nodes[0] != NULL);
2294 	ASSERT(!p->nowait);
2295 
2296 	if (p->search_commit_root) {
2297 		BUG_ON(time_seq);
2298 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2299 	}
2300 
2301 again:
2302 	b = btrfs_get_old_root(root, time_seq);
2303 	if (!b) {
2304 		ret = -EIO;
2305 		goto done;
2306 	}
2307 	level = btrfs_header_level(b);
2308 	p->locks[level] = BTRFS_READ_LOCK;
2309 
2310 	while (b) {
2311 		int dec = 0;
2312 
2313 		level = btrfs_header_level(b);
2314 		p->nodes[level] = b;
2315 
2316 		/*
2317 		 * we have a lock on b and as long as we aren't changing
2318 		 * the tree, there is no way to for the items in b to change.
2319 		 * It is safe to drop the lock on our parent before we
2320 		 * go through the expensive btree search on b.
2321 		 */
2322 		btrfs_unlock_up_safe(p, level + 1);
2323 
2324 		ret = btrfs_bin_search(b, key, &slot);
2325 		if (ret < 0)
2326 			goto done;
2327 
2328 		if (level == 0) {
2329 			p->slots[level] = slot;
2330 			unlock_up(p, level, lowest_unlock, 0, NULL);
2331 			goto done;
2332 		}
2333 
2334 		if (ret && slot > 0) {
2335 			dec = 1;
2336 			slot--;
2337 		}
2338 		p->slots[level] = slot;
2339 		unlock_up(p, level, lowest_unlock, 0, NULL);
2340 
2341 		if (level == lowest_level) {
2342 			if (dec)
2343 				p->slots[level]++;
2344 			goto done;
2345 		}
2346 
2347 		err = read_block_for_search(root, p, &b, level, slot, key);
2348 		if (err == -EAGAIN)
2349 			goto again;
2350 		if (err) {
2351 			ret = err;
2352 			goto done;
2353 		}
2354 
2355 		level = btrfs_header_level(b);
2356 		btrfs_tree_read_lock(b);
2357 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2358 		if (!b) {
2359 			ret = -ENOMEM;
2360 			goto done;
2361 		}
2362 		p->locks[level] = BTRFS_READ_LOCK;
2363 		p->nodes[level] = b;
2364 	}
2365 	ret = 1;
2366 done:
2367 	if (ret < 0)
2368 		btrfs_release_path(p);
2369 
2370 	return ret;
2371 }
2372 
2373 /*
2374  * helper to use instead of search slot if no exact match is needed but
2375  * instead the next or previous item should be returned.
2376  * When find_higher is true, the next higher item is returned, the next lower
2377  * otherwise.
2378  * When return_any and find_higher are both true, and no higher item is found,
2379  * return the next lower instead.
2380  * When return_any is true and find_higher is false, and no lower item is found,
2381  * return the next higher instead.
2382  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2383  * < 0 on error
2384  */
2385 int btrfs_search_slot_for_read(struct btrfs_root *root,
2386 			       const struct btrfs_key *key,
2387 			       struct btrfs_path *p, int find_higher,
2388 			       int return_any)
2389 {
2390 	int ret;
2391 	struct extent_buffer *leaf;
2392 
2393 again:
2394 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2395 	if (ret <= 0)
2396 		return ret;
2397 	/*
2398 	 * a return value of 1 means the path is at the position where the
2399 	 * item should be inserted. Normally this is the next bigger item,
2400 	 * but in case the previous item is the last in a leaf, path points
2401 	 * to the first free slot in the previous leaf, i.e. at an invalid
2402 	 * item.
2403 	 */
2404 	leaf = p->nodes[0];
2405 
2406 	if (find_higher) {
2407 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2408 			ret = btrfs_next_leaf(root, p);
2409 			if (ret <= 0)
2410 				return ret;
2411 			if (!return_any)
2412 				return 1;
2413 			/*
2414 			 * no higher item found, return the next
2415 			 * lower instead
2416 			 */
2417 			return_any = 0;
2418 			find_higher = 0;
2419 			btrfs_release_path(p);
2420 			goto again;
2421 		}
2422 	} else {
2423 		if (p->slots[0] == 0) {
2424 			ret = btrfs_prev_leaf(root, p);
2425 			if (ret < 0)
2426 				return ret;
2427 			if (!ret) {
2428 				leaf = p->nodes[0];
2429 				if (p->slots[0] == btrfs_header_nritems(leaf))
2430 					p->slots[0]--;
2431 				return 0;
2432 			}
2433 			if (!return_any)
2434 				return 1;
2435 			/*
2436 			 * no lower item found, return the next
2437 			 * higher instead
2438 			 */
2439 			return_any = 0;
2440 			find_higher = 1;
2441 			btrfs_release_path(p);
2442 			goto again;
2443 		} else {
2444 			--p->slots[0];
2445 		}
2446 	}
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Execute search and call btrfs_previous_item to traverse backwards if the item
2452  * was not found.
2453  *
2454  * Return 0 if found, 1 if not found and < 0 if error.
2455  */
2456 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2457 			   struct btrfs_path *path)
2458 {
2459 	int ret;
2460 
2461 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2462 	if (ret > 0)
2463 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2464 
2465 	if (ret == 0)
2466 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2467 
2468 	return ret;
2469 }
2470 
2471 /*
2472  * Search for a valid slot for the given path.
2473  *
2474  * @root:	The root node of the tree.
2475  * @key:	Will contain a valid item if found.
2476  * @path:	The starting point to validate the slot.
2477  *
2478  * Return: 0  if the item is valid
2479  *         1  if not found
2480  *         <0 if error.
2481  */
2482 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2483 			      struct btrfs_path *path)
2484 {
2485 	while (1) {
2486 		int ret;
2487 		const int slot = path->slots[0];
2488 		const struct extent_buffer *leaf = path->nodes[0];
2489 
2490 		/* This is where we start walking the path. */
2491 		if (slot >= btrfs_header_nritems(leaf)) {
2492 			/*
2493 			 * If we've reached the last slot in this leaf we need
2494 			 * to go to the next leaf and reset the path.
2495 			 */
2496 			ret = btrfs_next_leaf(root, path);
2497 			if (ret)
2498 				return ret;
2499 			continue;
2500 		}
2501 		/* Store the found, valid item in @key. */
2502 		btrfs_item_key_to_cpu(leaf, key, slot);
2503 		break;
2504 	}
2505 	return 0;
2506 }
2507 
2508 /*
2509  * adjust the pointers going up the tree, starting at level
2510  * making sure the right key of each node is points to 'key'.
2511  * This is used after shifting pointers to the left, so it stops
2512  * fixing up pointers when a given leaf/node is not in slot 0 of the
2513  * higher levels
2514  *
2515  */
2516 static void fixup_low_keys(struct btrfs_path *path,
2517 			   struct btrfs_disk_key *key, int level)
2518 {
2519 	int i;
2520 	struct extent_buffer *t;
2521 	int ret;
2522 
2523 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2524 		int tslot = path->slots[i];
2525 
2526 		if (!path->nodes[i])
2527 			break;
2528 		t = path->nodes[i];
2529 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2530 						    BTRFS_MOD_LOG_KEY_REPLACE);
2531 		BUG_ON(ret < 0);
2532 		btrfs_set_node_key(t, key, tslot);
2533 		btrfs_mark_buffer_dirty(path->nodes[i]);
2534 		if (tslot != 0)
2535 			break;
2536 	}
2537 }
2538 
2539 /*
2540  * update item key.
2541  *
2542  * This function isn't completely safe. It's the caller's responsibility
2543  * that the new key won't break the order
2544  */
2545 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2546 			     struct btrfs_path *path,
2547 			     const struct btrfs_key *new_key)
2548 {
2549 	struct btrfs_disk_key disk_key;
2550 	struct extent_buffer *eb;
2551 	int slot;
2552 
2553 	eb = path->nodes[0];
2554 	slot = path->slots[0];
2555 	if (slot > 0) {
2556 		btrfs_item_key(eb, &disk_key, slot - 1);
2557 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2558 			btrfs_crit(fs_info,
2559 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2560 				   slot, btrfs_disk_key_objectid(&disk_key),
2561 				   btrfs_disk_key_type(&disk_key),
2562 				   btrfs_disk_key_offset(&disk_key),
2563 				   new_key->objectid, new_key->type,
2564 				   new_key->offset);
2565 			btrfs_print_leaf(eb);
2566 			BUG();
2567 		}
2568 	}
2569 	if (slot < btrfs_header_nritems(eb) - 1) {
2570 		btrfs_item_key(eb, &disk_key, slot + 1);
2571 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2572 			btrfs_crit(fs_info,
2573 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2574 				   slot, btrfs_disk_key_objectid(&disk_key),
2575 				   btrfs_disk_key_type(&disk_key),
2576 				   btrfs_disk_key_offset(&disk_key),
2577 				   new_key->objectid, new_key->type,
2578 				   new_key->offset);
2579 			btrfs_print_leaf(eb);
2580 			BUG();
2581 		}
2582 	}
2583 
2584 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2585 	btrfs_set_item_key(eb, &disk_key, slot);
2586 	btrfs_mark_buffer_dirty(eb);
2587 	if (slot == 0)
2588 		fixup_low_keys(path, &disk_key, 1);
2589 }
2590 
2591 /*
2592  * Check key order of two sibling extent buffers.
2593  *
2594  * Return true if something is wrong.
2595  * Return false if everything is fine.
2596  *
2597  * Tree-checker only works inside one tree block, thus the following
2598  * corruption can not be detected by tree-checker:
2599  *
2600  * Leaf @left			| Leaf @right
2601  * --------------------------------------------------------------
2602  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2603  *
2604  * Key f6 in leaf @left itself is valid, but not valid when the next
2605  * key in leaf @right is 7.
2606  * This can only be checked at tree block merge time.
2607  * And since tree checker has ensured all key order in each tree block
2608  * is correct, we only need to bother the last key of @left and the first
2609  * key of @right.
2610  */
2611 static bool check_sibling_keys(struct extent_buffer *left,
2612 			       struct extent_buffer *right)
2613 {
2614 	struct btrfs_key left_last;
2615 	struct btrfs_key right_first;
2616 	int level = btrfs_header_level(left);
2617 	int nr_left = btrfs_header_nritems(left);
2618 	int nr_right = btrfs_header_nritems(right);
2619 
2620 	/* No key to check in one of the tree blocks */
2621 	if (!nr_left || !nr_right)
2622 		return false;
2623 
2624 	if (level) {
2625 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2626 		btrfs_node_key_to_cpu(right, &right_first, 0);
2627 	} else {
2628 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2629 		btrfs_item_key_to_cpu(right, &right_first, 0);
2630 	}
2631 
2632 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2633 		btrfs_crit(left->fs_info,
2634 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2635 			   left_last.objectid, left_last.type,
2636 			   left_last.offset, right_first.objectid,
2637 			   right_first.type, right_first.offset);
2638 		return true;
2639 	}
2640 	return false;
2641 }
2642 
2643 /*
2644  * try to push data from one node into the next node left in the
2645  * tree.
2646  *
2647  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2648  * error, and > 0 if there was no room in the left hand block.
2649  */
2650 static int push_node_left(struct btrfs_trans_handle *trans,
2651 			  struct extent_buffer *dst,
2652 			  struct extent_buffer *src, int empty)
2653 {
2654 	struct btrfs_fs_info *fs_info = trans->fs_info;
2655 	int push_items = 0;
2656 	int src_nritems;
2657 	int dst_nritems;
2658 	int ret = 0;
2659 
2660 	src_nritems = btrfs_header_nritems(src);
2661 	dst_nritems = btrfs_header_nritems(dst);
2662 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2663 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2664 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2665 
2666 	if (!empty && src_nritems <= 8)
2667 		return 1;
2668 
2669 	if (push_items <= 0)
2670 		return 1;
2671 
2672 	if (empty) {
2673 		push_items = min(src_nritems, push_items);
2674 		if (push_items < src_nritems) {
2675 			/* leave at least 8 pointers in the node if
2676 			 * we aren't going to empty it
2677 			 */
2678 			if (src_nritems - push_items < 8) {
2679 				if (push_items <= 8)
2680 					return 1;
2681 				push_items -= 8;
2682 			}
2683 		}
2684 	} else
2685 		push_items = min(src_nritems - 8, push_items);
2686 
2687 	/* dst is the left eb, src is the middle eb */
2688 	if (check_sibling_keys(dst, src)) {
2689 		ret = -EUCLEAN;
2690 		btrfs_abort_transaction(trans, ret);
2691 		return ret;
2692 	}
2693 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2694 	if (ret) {
2695 		btrfs_abort_transaction(trans, ret);
2696 		return ret;
2697 	}
2698 	copy_extent_buffer(dst, src,
2699 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2700 			   btrfs_node_key_ptr_offset(src, 0),
2701 			   push_items * sizeof(struct btrfs_key_ptr));
2702 
2703 	if (push_items < src_nritems) {
2704 		/*
2705 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2706 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2707 		 */
2708 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2709 				      btrfs_node_key_ptr_offset(src, push_items),
2710 				      (src_nritems - push_items) *
2711 				      sizeof(struct btrfs_key_ptr));
2712 	}
2713 	btrfs_set_header_nritems(src, src_nritems - push_items);
2714 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2715 	btrfs_mark_buffer_dirty(src);
2716 	btrfs_mark_buffer_dirty(dst);
2717 
2718 	return ret;
2719 }
2720 
2721 /*
2722  * try to push data from one node into the next node right in the
2723  * tree.
2724  *
2725  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2726  * error, and > 0 if there was no room in the right hand block.
2727  *
2728  * this will  only push up to 1/2 the contents of the left node over
2729  */
2730 static int balance_node_right(struct btrfs_trans_handle *trans,
2731 			      struct extent_buffer *dst,
2732 			      struct extent_buffer *src)
2733 {
2734 	struct btrfs_fs_info *fs_info = trans->fs_info;
2735 	int push_items = 0;
2736 	int max_push;
2737 	int src_nritems;
2738 	int dst_nritems;
2739 	int ret = 0;
2740 
2741 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2742 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2743 
2744 	src_nritems = btrfs_header_nritems(src);
2745 	dst_nritems = btrfs_header_nritems(dst);
2746 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2747 	if (push_items <= 0)
2748 		return 1;
2749 
2750 	if (src_nritems < 4)
2751 		return 1;
2752 
2753 	max_push = src_nritems / 2 + 1;
2754 	/* don't try to empty the node */
2755 	if (max_push >= src_nritems)
2756 		return 1;
2757 
2758 	if (max_push < push_items)
2759 		push_items = max_push;
2760 
2761 	/* dst is the right eb, src is the middle eb */
2762 	if (check_sibling_keys(src, dst)) {
2763 		ret = -EUCLEAN;
2764 		btrfs_abort_transaction(trans, ret);
2765 		return ret;
2766 	}
2767 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2768 	BUG_ON(ret < 0);
2769 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2770 				      btrfs_node_key_ptr_offset(dst, 0),
2771 				      (dst_nritems) *
2772 				      sizeof(struct btrfs_key_ptr));
2773 
2774 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2775 					 push_items);
2776 	if (ret) {
2777 		btrfs_abort_transaction(trans, ret);
2778 		return ret;
2779 	}
2780 	copy_extent_buffer(dst, src,
2781 			   btrfs_node_key_ptr_offset(dst, 0),
2782 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2783 			   push_items * sizeof(struct btrfs_key_ptr));
2784 
2785 	btrfs_set_header_nritems(src, src_nritems - push_items);
2786 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2787 
2788 	btrfs_mark_buffer_dirty(src);
2789 	btrfs_mark_buffer_dirty(dst);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * helper function to insert a new root level in the tree.
2796  * A new node is allocated, and a single item is inserted to
2797  * point to the existing root
2798  *
2799  * returns zero on success or < 0 on failure.
2800  */
2801 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2802 			   struct btrfs_root *root,
2803 			   struct btrfs_path *path, int level)
2804 {
2805 	struct btrfs_fs_info *fs_info = root->fs_info;
2806 	u64 lower_gen;
2807 	struct extent_buffer *lower;
2808 	struct extent_buffer *c;
2809 	struct extent_buffer *old;
2810 	struct btrfs_disk_key lower_key;
2811 	int ret;
2812 
2813 	BUG_ON(path->nodes[level]);
2814 	BUG_ON(path->nodes[level-1] != root->node);
2815 
2816 	lower = path->nodes[level-1];
2817 	if (level == 1)
2818 		btrfs_item_key(lower, &lower_key, 0);
2819 	else
2820 		btrfs_node_key(lower, &lower_key, 0);
2821 
2822 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2823 				   &lower_key, level, root->node->start, 0,
2824 				   BTRFS_NESTING_NEW_ROOT);
2825 	if (IS_ERR(c))
2826 		return PTR_ERR(c);
2827 
2828 	root_add_used(root, fs_info->nodesize);
2829 
2830 	btrfs_set_header_nritems(c, 1);
2831 	btrfs_set_node_key(c, &lower_key, 0);
2832 	btrfs_set_node_blockptr(c, 0, lower->start);
2833 	lower_gen = btrfs_header_generation(lower);
2834 	WARN_ON(lower_gen != trans->transid);
2835 
2836 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2837 
2838 	btrfs_mark_buffer_dirty(c);
2839 
2840 	old = root->node;
2841 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2842 	BUG_ON(ret < 0);
2843 	rcu_assign_pointer(root->node, c);
2844 
2845 	/* the super has an extra ref to root->node */
2846 	free_extent_buffer(old);
2847 
2848 	add_root_to_dirty_list(root);
2849 	atomic_inc(&c->refs);
2850 	path->nodes[level] = c;
2851 	path->locks[level] = BTRFS_WRITE_LOCK;
2852 	path->slots[level] = 0;
2853 	return 0;
2854 }
2855 
2856 /*
2857  * worker function to insert a single pointer in a node.
2858  * the node should have enough room for the pointer already
2859  *
2860  * slot and level indicate where you want the key to go, and
2861  * blocknr is the block the key points to.
2862  */
2863 static void insert_ptr(struct btrfs_trans_handle *trans,
2864 		       struct btrfs_path *path,
2865 		       struct btrfs_disk_key *key, u64 bytenr,
2866 		       int slot, int level)
2867 {
2868 	struct extent_buffer *lower;
2869 	int nritems;
2870 	int ret;
2871 
2872 	BUG_ON(!path->nodes[level]);
2873 	btrfs_assert_tree_write_locked(path->nodes[level]);
2874 	lower = path->nodes[level];
2875 	nritems = btrfs_header_nritems(lower);
2876 	BUG_ON(slot > nritems);
2877 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2878 	if (slot != nritems) {
2879 		if (level) {
2880 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2881 					slot, nritems - slot);
2882 			BUG_ON(ret < 0);
2883 		}
2884 		memmove_extent_buffer(lower,
2885 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2886 			      btrfs_node_key_ptr_offset(lower, slot),
2887 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2888 	}
2889 	if (level) {
2890 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2891 						    BTRFS_MOD_LOG_KEY_ADD);
2892 		BUG_ON(ret < 0);
2893 	}
2894 	btrfs_set_node_key(lower, key, slot);
2895 	btrfs_set_node_blockptr(lower, slot, bytenr);
2896 	WARN_ON(trans->transid == 0);
2897 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2898 	btrfs_set_header_nritems(lower, nritems + 1);
2899 	btrfs_mark_buffer_dirty(lower);
2900 }
2901 
2902 /*
2903  * split the node at the specified level in path in two.
2904  * The path is corrected to point to the appropriate node after the split
2905  *
2906  * Before splitting this tries to make some room in the node by pushing
2907  * left and right, if either one works, it returns right away.
2908  *
2909  * returns 0 on success and < 0 on failure
2910  */
2911 static noinline int split_node(struct btrfs_trans_handle *trans,
2912 			       struct btrfs_root *root,
2913 			       struct btrfs_path *path, int level)
2914 {
2915 	struct btrfs_fs_info *fs_info = root->fs_info;
2916 	struct extent_buffer *c;
2917 	struct extent_buffer *split;
2918 	struct btrfs_disk_key disk_key;
2919 	int mid;
2920 	int ret;
2921 	u32 c_nritems;
2922 
2923 	c = path->nodes[level];
2924 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2925 	if (c == root->node) {
2926 		/*
2927 		 * trying to split the root, lets make a new one
2928 		 *
2929 		 * tree mod log: We don't log_removal old root in
2930 		 * insert_new_root, because that root buffer will be kept as a
2931 		 * normal node. We are going to log removal of half of the
2932 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2933 		 * holding a tree lock on the buffer, which is why we cannot
2934 		 * race with other tree_mod_log users.
2935 		 */
2936 		ret = insert_new_root(trans, root, path, level + 1);
2937 		if (ret)
2938 			return ret;
2939 	} else {
2940 		ret = push_nodes_for_insert(trans, root, path, level);
2941 		c = path->nodes[level];
2942 		if (!ret && btrfs_header_nritems(c) <
2943 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2944 			return 0;
2945 		if (ret < 0)
2946 			return ret;
2947 	}
2948 
2949 	c_nritems = btrfs_header_nritems(c);
2950 	mid = (c_nritems + 1) / 2;
2951 	btrfs_node_key(c, &disk_key, mid);
2952 
2953 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2954 				       &disk_key, level, c->start, 0,
2955 				       BTRFS_NESTING_SPLIT);
2956 	if (IS_ERR(split))
2957 		return PTR_ERR(split);
2958 
2959 	root_add_used(root, fs_info->nodesize);
2960 	ASSERT(btrfs_header_level(c) == level);
2961 
2962 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2963 	if (ret) {
2964 		btrfs_abort_transaction(trans, ret);
2965 		return ret;
2966 	}
2967 	copy_extent_buffer(split, c,
2968 			   btrfs_node_key_ptr_offset(split, 0),
2969 			   btrfs_node_key_ptr_offset(c, mid),
2970 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2971 	btrfs_set_header_nritems(split, c_nritems - mid);
2972 	btrfs_set_header_nritems(c, mid);
2973 
2974 	btrfs_mark_buffer_dirty(c);
2975 	btrfs_mark_buffer_dirty(split);
2976 
2977 	insert_ptr(trans, path, &disk_key, split->start,
2978 		   path->slots[level + 1] + 1, level + 1);
2979 
2980 	if (path->slots[level] >= mid) {
2981 		path->slots[level] -= mid;
2982 		btrfs_tree_unlock(c);
2983 		free_extent_buffer(c);
2984 		path->nodes[level] = split;
2985 		path->slots[level + 1] += 1;
2986 	} else {
2987 		btrfs_tree_unlock(split);
2988 		free_extent_buffer(split);
2989 	}
2990 	return 0;
2991 }
2992 
2993 /*
2994  * how many bytes are required to store the items in a leaf.  start
2995  * and nr indicate which items in the leaf to check.  This totals up the
2996  * space used both by the item structs and the item data
2997  */
2998 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2999 {
3000 	int data_len;
3001 	int nritems = btrfs_header_nritems(l);
3002 	int end = min(nritems, start + nr) - 1;
3003 
3004 	if (!nr)
3005 		return 0;
3006 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3007 	data_len = data_len - btrfs_item_offset(l, end);
3008 	data_len += sizeof(struct btrfs_item) * nr;
3009 	WARN_ON(data_len < 0);
3010 	return data_len;
3011 }
3012 
3013 /*
3014  * The space between the end of the leaf items and
3015  * the start of the leaf data.  IOW, how much room
3016  * the leaf has left for both items and data
3017  */
3018 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3019 {
3020 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3021 	int nritems = btrfs_header_nritems(leaf);
3022 	int ret;
3023 
3024 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3025 	if (ret < 0) {
3026 		btrfs_crit(fs_info,
3027 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3028 			   ret,
3029 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3030 			   leaf_space_used(leaf, 0, nritems), nritems);
3031 	}
3032 	return ret;
3033 }
3034 
3035 /*
3036  * min slot controls the lowest index we're willing to push to the
3037  * right.  We'll push up to and including min_slot, but no lower
3038  */
3039 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3040 				      struct btrfs_path *path,
3041 				      int data_size, int empty,
3042 				      struct extent_buffer *right,
3043 				      int free_space, u32 left_nritems,
3044 				      u32 min_slot)
3045 {
3046 	struct btrfs_fs_info *fs_info = right->fs_info;
3047 	struct extent_buffer *left = path->nodes[0];
3048 	struct extent_buffer *upper = path->nodes[1];
3049 	struct btrfs_map_token token;
3050 	struct btrfs_disk_key disk_key;
3051 	int slot;
3052 	u32 i;
3053 	int push_space = 0;
3054 	int push_items = 0;
3055 	u32 nr;
3056 	u32 right_nritems;
3057 	u32 data_end;
3058 	u32 this_item_size;
3059 
3060 	if (empty)
3061 		nr = 0;
3062 	else
3063 		nr = max_t(u32, 1, min_slot);
3064 
3065 	if (path->slots[0] >= left_nritems)
3066 		push_space += data_size;
3067 
3068 	slot = path->slots[1];
3069 	i = left_nritems - 1;
3070 	while (i >= nr) {
3071 		if (!empty && push_items > 0) {
3072 			if (path->slots[0] > i)
3073 				break;
3074 			if (path->slots[0] == i) {
3075 				int space = btrfs_leaf_free_space(left);
3076 
3077 				if (space + push_space * 2 > free_space)
3078 					break;
3079 			}
3080 		}
3081 
3082 		if (path->slots[0] == i)
3083 			push_space += data_size;
3084 
3085 		this_item_size = btrfs_item_size(left, i);
3086 		if (this_item_size + sizeof(struct btrfs_item) +
3087 		    push_space > free_space)
3088 			break;
3089 
3090 		push_items++;
3091 		push_space += this_item_size + sizeof(struct btrfs_item);
3092 		if (i == 0)
3093 			break;
3094 		i--;
3095 	}
3096 
3097 	if (push_items == 0)
3098 		goto out_unlock;
3099 
3100 	WARN_ON(!empty && push_items == left_nritems);
3101 
3102 	/* push left to right */
3103 	right_nritems = btrfs_header_nritems(right);
3104 
3105 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3106 	push_space -= leaf_data_end(left);
3107 
3108 	/* make room in the right data area */
3109 	data_end = leaf_data_end(right);
3110 	memmove_leaf_data(right, data_end - push_space, data_end,
3111 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3112 
3113 	/* copy from the left data area */
3114 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3115 		       leaf_data_end(left), push_space);
3116 
3117 	memmove_leaf_items(right, push_items, 0, right_nritems);
3118 
3119 	/* copy the items from left to right */
3120 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3121 
3122 	/* update the item pointers */
3123 	btrfs_init_map_token(&token, right);
3124 	right_nritems += push_items;
3125 	btrfs_set_header_nritems(right, right_nritems);
3126 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3127 	for (i = 0; i < right_nritems; i++) {
3128 		push_space -= btrfs_token_item_size(&token, i);
3129 		btrfs_set_token_item_offset(&token, i, push_space);
3130 	}
3131 
3132 	left_nritems -= push_items;
3133 	btrfs_set_header_nritems(left, left_nritems);
3134 
3135 	if (left_nritems)
3136 		btrfs_mark_buffer_dirty(left);
3137 	else
3138 		btrfs_clear_buffer_dirty(trans, left);
3139 
3140 	btrfs_mark_buffer_dirty(right);
3141 
3142 	btrfs_item_key(right, &disk_key, 0);
3143 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3144 	btrfs_mark_buffer_dirty(upper);
3145 
3146 	/* then fixup the leaf pointer in the path */
3147 	if (path->slots[0] >= left_nritems) {
3148 		path->slots[0] -= left_nritems;
3149 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3150 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3151 		btrfs_tree_unlock(path->nodes[0]);
3152 		free_extent_buffer(path->nodes[0]);
3153 		path->nodes[0] = right;
3154 		path->slots[1] += 1;
3155 	} else {
3156 		btrfs_tree_unlock(right);
3157 		free_extent_buffer(right);
3158 	}
3159 	return 0;
3160 
3161 out_unlock:
3162 	btrfs_tree_unlock(right);
3163 	free_extent_buffer(right);
3164 	return 1;
3165 }
3166 
3167 /*
3168  * push some data in the path leaf to the right, trying to free up at
3169  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3170  *
3171  * returns 1 if the push failed because the other node didn't have enough
3172  * room, 0 if everything worked out and < 0 if there were major errors.
3173  *
3174  * this will push starting from min_slot to the end of the leaf.  It won't
3175  * push any slot lower than min_slot
3176  */
3177 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3178 			   *root, struct btrfs_path *path,
3179 			   int min_data_size, int data_size,
3180 			   int empty, u32 min_slot)
3181 {
3182 	struct extent_buffer *left = path->nodes[0];
3183 	struct extent_buffer *right;
3184 	struct extent_buffer *upper;
3185 	int slot;
3186 	int free_space;
3187 	u32 left_nritems;
3188 	int ret;
3189 
3190 	if (!path->nodes[1])
3191 		return 1;
3192 
3193 	slot = path->slots[1];
3194 	upper = path->nodes[1];
3195 	if (slot >= btrfs_header_nritems(upper) - 1)
3196 		return 1;
3197 
3198 	btrfs_assert_tree_write_locked(path->nodes[1]);
3199 
3200 	right = btrfs_read_node_slot(upper, slot + 1);
3201 	/*
3202 	 * slot + 1 is not valid or we fail to read the right node,
3203 	 * no big deal, just return.
3204 	 */
3205 	if (IS_ERR(right))
3206 		return 1;
3207 
3208 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3209 
3210 	free_space = btrfs_leaf_free_space(right);
3211 	if (free_space < data_size)
3212 		goto out_unlock;
3213 
3214 	ret = btrfs_cow_block(trans, root, right, upper,
3215 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3216 	if (ret)
3217 		goto out_unlock;
3218 
3219 	left_nritems = btrfs_header_nritems(left);
3220 	if (left_nritems == 0)
3221 		goto out_unlock;
3222 
3223 	if (check_sibling_keys(left, right)) {
3224 		ret = -EUCLEAN;
3225 		btrfs_tree_unlock(right);
3226 		free_extent_buffer(right);
3227 		return ret;
3228 	}
3229 	if (path->slots[0] == left_nritems && !empty) {
3230 		/* Key greater than all keys in the leaf, right neighbor has
3231 		 * enough room for it and we're not emptying our leaf to delete
3232 		 * it, therefore use right neighbor to insert the new item and
3233 		 * no need to touch/dirty our left leaf. */
3234 		btrfs_tree_unlock(left);
3235 		free_extent_buffer(left);
3236 		path->nodes[0] = right;
3237 		path->slots[0] = 0;
3238 		path->slots[1]++;
3239 		return 0;
3240 	}
3241 
3242 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3243 				 free_space, left_nritems, min_slot);
3244 out_unlock:
3245 	btrfs_tree_unlock(right);
3246 	free_extent_buffer(right);
3247 	return 1;
3248 }
3249 
3250 /*
3251  * push some data in the path leaf to the left, trying to free up at
3252  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3253  *
3254  * max_slot can put a limit on how far into the leaf we'll push items.  The
3255  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3256  * items
3257  */
3258 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3259 				     struct btrfs_path *path, int data_size,
3260 				     int empty, struct extent_buffer *left,
3261 				     int free_space, u32 right_nritems,
3262 				     u32 max_slot)
3263 {
3264 	struct btrfs_fs_info *fs_info = left->fs_info;
3265 	struct btrfs_disk_key disk_key;
3266 	struct extent_buffer *right = path->nodes[0];
3267 	int i;
3268 	int push_space = 0;
3269 	int push_items = 0;
3270 	u32 old_left_nritems;
3271 	u32 nr;
3272 	int ret = 0;
3273 	u32 this_item_size;
3274 	u32 old_left_item_size;
3275 	struct btrfs_map_token token;
3276 
3277 	if (empty)
3278 		nr = min(right_nritems, max_slot);
3279 	else
3280 		nr = min(right_nritems - 1, max_slot);
3281 
3282 	for (i = 0; i < nr; i++) {
3283 		if (!empty && push_items > 0) {
3284 			if (path->slots[0] < i)
3285 				break;
3286 			if (path->slots[0] == i) {
3287 				int space = btrfs_leaf_free_space(right);
3288 
3289 				if (space + push_space * 2 > free_space)
3290 					break;
3291 			}
3292 		}
3293 
3294 		if (path->slots[0] == i)
3295 			push_space += data_size;
3296 
3297 		this_item_size = btrfs_item_size(right, i);
3298 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3299 		    free_space)
3300 			break;
3301 
3302 		push_items++;
3303 		push_space += this_item_size + sizeof(struct btrfs_item);
3304 	}
3305 
3306 	if (push_items == 0) {
3307 		ret = 1;
3308 		goto out;
3309 	}
3310 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3311 
3312 	/* push data from right to left */
3313 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3314 
3315 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3316 		     btrfs_item_offset(right, push_items - 1);
3317 
3318 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3319 		       btrfs_item_offset(right, push_items - 1), push_space);
3320 	old_left_nritems = btrfs_header_nritems(left);
3321 	BUG_ON(old_left_nritems <= 0);
3322 
3323 	btrfs_init_map_token(&token, left);
3324 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3325 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3326 		u32 ioff;
3327 
3328 		ioff = btrfs_token_item_offset(&token, i);
3329 		btrfs_set_token_item_offset(&token, i,
3330 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3331 	}
3332 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3333 
3334 	/* fixup right node */
3335 	if (push_items > right_nritems)
3336 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3337 		       right_nritems);
3338 
3339 	if (push_items < right_nritems) {
3340 		push_space = btrfs_item_offset(right, push_items - 1) -
3341 						  leaf_data_end(right);
3342 		memmove_leaf_data(right,
3343 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3344 				  leaf_data_end(right), push_space);
3345 
3346 		memmove_leaf_items(right, 0, push_items,
3347 				   btrfs_header_nritems(right) - push_items);
3348 	}
3349 
3350 	btrfs_init_map_token(&token, right);
3351 	right_nritems -= push_items;
3352 	btrfs_set_header_nritems(right, right_nritems);
3353 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3354 	for (i = 0; i < right_nritems; i++) {
3355 		push_space = push_space - btrfs_token_item_size(&token, i);
3356 		btrfs_set_token_item_offset(&token, i, push_space);
3357 	}
3358 
3359 	btrfs_mark_buffer_dirty(left);
3360 	if (right_nritems)
3361 		btrfs_mark_buffer_dirty(right);
3362 	else
3363 		btrfs_clear_buffer_dirty(trans, right);
3364 
3365 	btrfs_item_key(right, &disk_key, 0);
3366 	fixup_low_keys(path, &disk_key, 1);
3367 
3368 	/* then fixup the leaf pointer in the path */
3369 	if (path->slots[0] < push_items) {
3370 		path->slots[0] += old_left_nritems;
3371 		btrfs_tree_unlock(path->nodes[0]);
3372 		free_extent_buffer(path->nodes[0]);
3373 		path->nodes[0] = left;
3374 		path->slots[1] -= 1;
3375 	} else {
3376 		btrfs_tree_unlock(left);
3377 		free_extent_buffer(left);
3378 		path->slots[0] -= push_items;
3379 	}
3380 	BUG_ON(path->slots[0] < 0);
3381 	return ret;
3382 out:
3383 	btrfs_tree_unlock(left);
3384 	free_extent_buffer(left);
3385 	return ret;
3386 }
3387 
3388 /*
3389  * push some data in the path leaf to the left, trying to free up at
3390  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3391  *
3392  * max_slot can put a limit on how far into the leaf we'll push items.  The
3393  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3394  * items
3395  */
3396 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3397 			  *root, struct btrfs_path *path, int min_data_size,
3398 			  int data_size, int empty, u32 max_slot)
3399 {
3400 	struct extent_buffer *right = path->nodes[0];
3401 	struct extent_buffer *left;
3402 	int slot;
3403 	int free_space;
3404 	u32 right_nritems;
3405 	int ret = 0;
3406 
3407 	slot = path->slots[1];
3408 	if (slot == 0)
3409 		return 1;
3410 	if (!path->nodes[1])
3411 		return 1;
3412 
3413 	right_nritems = btrfs_header_nritems(right);
3414 	if (right_nritems == 0)
3415 		return 1;
3416 
3417 	btrfs_assert_tree_write_locked(path->nodes[1]);
3418 
3419 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3420 	/*
3421 	 * slot - 1 is not valid or we fail to read the left node,
3422 	 * no big deal, just return.
3423 	 */
3424 	if (IS_ERR(left))
3425 		return 1;
3426 
3427 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3428 
3429 	free_space = btrfs_leaf_free_space(left);
3430 	if (free_space < data_size) {
3431 		ret = 1;
3432 		goto out;
3433 	}
3434 
3435 	ret = btrfs_cow_block(trans, root, left,
3436 			      path->nodes[1], slot - 1, &left,
3437 			      BTRFS_NESTING_LEFT_COW);
3438 	if (ret) {
3439 		/* we hit -ENOSPC, but it isn't fatal here */
3440 		if (ret == -ENOSPC)
3441 			ret = 1;
3442 		goto out;
3443 	}
3444 
3445 	if (check_sibling_keys(left, right)) {
3446 		ret = -EUCLEAN;
3447 		goto out;
3448 	}
3449 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3450 				free_space, right_nritems, max_slot);
3451 out:
3452 	btrfs_tree_unlock(left);
3453 	free_extent_buffer(left);
3454 	return ret;
3455 }
3456 
3457 /*
3458  * split the path's leaf in two, making sure there is at least data_size
3459  * available for the resulting leaf level of the path.
3460  */
3461 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3462 				    struct btrfs_path *path,
3463 				    struct extent_buffer *l,
3464 				    struct extent_buffer *right,
3465 				    int slot, int mid, int nritems)
3466 {
3467 	struct btrfs_fs_info *fs_info = trans->fs_info;
3468 	int data_copy_size;
3469 	int rt_data_off;
3470 	int i;
3471 	struct btrfs_disk_key disk_key;
3472 	struct btrfs_map_token token;
3473 
3474 	nritems = nritems - mid;
3475 	btrfs_set_header_nritems(right, nritems);
3476 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3477 
3478 	copy_leaf_items(right, l, 0, mid, nritems);
3479 
3480 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3481 		       leaf_data_end(l), data_copy_size);
3482 
3483 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3484 
3485 	btrfs_init_map_token(&token, right);
3486 	for (i = 0; i < nritems; i++) {
3487 		u32 ioff;
3488 
3489 		ioff = btrfs_token_item_offset(&token, i);
3490 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3491 	}
3492 
3493 	btrfs_set_header_nritems(l, mid);
3494 	btrfs_item_key(right, &disk_key, 0);
3495 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3496 
3497 	btrfs_mark_buffer_dirty(right);
3498 	btrfs_mark_buffer_dirty(l);
3499 	BUG_ON(path->slots[0] != slot);
3500 
3501 	if (mid <= slot) {
3502 		btrfs_tree_unlock(path->nodes[0]);
3503 		free_extent_buffer(path->nodes[0]);
3504 		path->nodes[0] = right;
3505 		path->slots[0] -= mid;
3506 		path->slots[1] += 1;
3507 	} else {
3508 		btrfs_tree_unlock(right);
3509 		free_extent_buffer(right);
3510 	}
3511 
3512 	BUG_ON(path->slots[0] < 0);
3513 }
3514 
3515 /*
3516  * double splits happen when we need to insert a big item in the middle
3517  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3518  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3519  *          A                 B                 C
3520  *
3521  * We avoid this by trying to push the items on either side of our target
3522  * into the adjacent leaves.  If all goes well we can avoid the double split
3523  * completely.
3524  */
3525 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3526 					  struct btrfs_root *root,
3527 					  struct btrfs_path *path,
3528 					  int data_size)
3529 {
3530 	int ret;
3531 	int progress = 0;
3532 	int slot;
3533 	u32 nritems;
3534 	int space_needed = data_size;
3535 
3536 	slot = path->slots[0];
3537 	if (slot < btrfs_header_nritems(path->nodes[0]))
3538 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3539 
3540 	/*
3541 	 * try to push all the items after our slot into the
3542 	 * right leaf
3543 	 */
3544 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3545 	if (ret < 0)
3546 		return ret;
3547 
3548 	if (ret == 0)
3549 		progress++;
3550 
3551 	nritems = btrfs_header_nritems(path->nodes[0]);
3552 	/*
3553 	 * our goal is to get our slot at the start or end of a leaf.  If
3554 	 * we've done so we're done
3555 	 */
3556 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3557 		return 0;
3558 
3559 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3560 		return 0;
3561 
3562 	/* try to push all the items before our slot into the next leaf */
3563 	slot = path->slots[0];
3564 	space_needed = data_size;
3565 	if (slot > 0)
3566 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3567 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3568 	if (ret < 0)
3569 		return ret;
3570 
3571 	if (ret == 0)
3572 		progress++;
3573 
3574 	if (progress)
3575 		return 0;
3576 	return 1;
3577 }
3578 
3579 /*
3580  * split the path's leaf in two, making sure there is at least data_size
3581  * available for the resulting leaf level of the path.
3582  *
3583  * returns 0 if all went well and < 0 on failure.
3584  */
3585 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3586 			       struct btrfs_root *root,
3587 			       const struct btrfs_key *ins_key,
3588 			       struct btrfs_path *path, int data_size,
3589 			       int extend)
3590 {
3591 	struct btrfs_disk_key disk_key;
3592 	struct extent_buffer *l;
3593 	u32 nritems;
3594 	int mid;
3595 	int slot;
3596 	struct extent_buffer *right;
3597 	struct btrfs_fs_info *fs_info = root->fs_info;
3598 	int ret = 0;
3599 	int wret;
3600 	int split;
3601 	int num_doubles = 0;
3602 	int tried_avoid_double = 0;
3603 
3604 	l = path->nodes[0];
3605 	slot = path->slots[0];
3606 	if (extend && data_size + btrfs_item_size(l, slot) +
3607 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3608 		return -EOVERFLOW;
3609 
3610 	/* first try to make some room by pushing left and right */
3611 	if (data_size && path->nodes[1]) {
3612 		int space_needed = data_size;
3613 
3614 		if (slot < btrfs_header_nritems(l))
3615 			space_needed -= btrfs_leaf_free_space(l);
3616 
3617 		wret = push_leaf_right(trans, root, path, space_needed,
3618 				       space_needed, 0, 0);
3619 		if (wret < 0)
3620 			return wret;
3621 		if (wret) {
3622 			space_needed = data_size;
3623 			if (slot > 0)
3624 				space_needed -= btrfs_leaf_free_space(l);
3625 			wret = push_leaf_left(trans, root, path, space_needed,
3626 					      space_needed, 0, (u32)-1);
3627 			if (wret < 0)
3628 				return wret;
3629 		}
3630 		l = path->nodes[0];
3631 
3632 		/* did the pushes work? */
3633 		if (btrfs_leaf_free_space(l) >= data_size)
3634 			return 0;
3635 	}
3636 
3637 	if (!path->nodes[1]) {
3638 		ret = insert_new_root(trans, root, path, 1);
3639 		if (ret)
3640 			return ret;
3641 	}
3642 again:
3643 	split = 1;
3644 	l = path->nodes[0];
3645 	slot = path->slots[0];
3646 	nritems = btrfs_header_nritems(l);
3647 	mid = (nritems + 1) / 2;
3648 
3649 	if (mid <= slot) {
3650 		if (nritems == 1 ||
3651 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3652 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3653 			if (slot >= nritems) {
3654 				split = 0;
3655 			} else {
3656 				mid = slot;
3657 				if (mid != nritems &&
3658 				    leaf_space_used(l, mid, nritems - mid) +
3659 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3660 					if (data_size && !tried_avoid_double)
3661 						goto push_for_double;
3662 					split = 2;
3663 				}
3664 			}
3665 		}
3666 	} else {
3667 		if (leaf_space_used(l, 0, mid) + data_size >
3668 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3669 			if (!extend && data_size && slot == 0) {
3670 				split = 0;
3671 			} else if ((extend || !data_size) && slot == 0) {
3672 				mid = 1;
3673 			} else {
3674 				mid = slot;
3675 				if (mid != nritems &&
3676 				    leaf_space_used(l, mid, nritems - mid) +
3677 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3678 					if (data_size && !tried_avoid_double)
3679 						goto push_for_double;
3680 					split = 2;
3681 				}
3682 			}
3683 		}
3684 	}
3685 
3686 	if (split == 0)
3687 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3688 	else
3689 		btrfs_item_key(l, &disk_key, mid);
3690 
3691 	/*
3692 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3693 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3694 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3695 	 * out.  In the future we could add a
3696 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3697 	 * use BTRFS_NESTING_NEW_ROOT.
3698 	 */
3699 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3700 				       &disk_key, 0, l->start, 0,
3701 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3702 				       BTRFS_NESTING_SPLIT);
3703 	if (IS_ERR(right))
3704 		return PTR_ERR(right);
3705 
3706 	root_add_used(root, fs_info->nodesize);
3707 
3708 	if (split == 0) {
3709 		if (mid <= slot) {
3710 			btrfs_set_header_nritems(right, 0);
3711 			insert_ptr(trans, path, &disk_key,
3712 				   right->start, path->slots[1] + 1, 1);
3713 			btrfs_tree_unlock(path->nodes[0]);
3714 			free_extent_buffer(path->nodes[0]);
3715 			path->nodes[0] = right;
3716 			path->slots[0] = 0;
3717 			path->slots[1] += 1;
3718 		} else {
3719 			btrfs_set_header_nritems(right, 0);
3720 			insert_ptr(trans, path, &disk_key,
3721 				   right->start, path->slots[1], 1);
3722 			btrfs_tree_unlock(path->nodes[0]);
3723 			free_extent_buffer(path->nodes[0]);
3724 			path->nodes[0] = right;
3725 			path->slots[0] = 0;
3726 			if (path->slots[1] == 0)
3727 				fixup_low_keys(path, &disk_key, 1);
3728 		}
3729 		/*
3730 		 * We create a new leaf 'right' for the required ins_len and
3731 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3732 		 * the content of ins_len to 'right'.
3733 		 */
3734 		return ret;
3735 	}
3736 
3737 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3738 
3739 	if (split == 2) {
3740 		BUG_ON(num_doubles != 0);
3741 		num_doubles++;
3742 		goto again;
3743 	}
3744 
3745 	return 0;
3746 
3747 push_for_double:
3748 	push_for_double_split(trans, root, path, data_size);
3749 	tried_avoid_double = 1;
3750 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3751 		return 0;
3752 	goto again;
3753 }
3754 
3755 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3756 					 struct btrfs_root *root,
3757 					 struct btrfs_path *path, int ins_len)
3758 {
3759 	struct btrfs_key key;
3760 	struct extent_buffer *leaf;
3761 	struct btrfs_file_extent_item *fi;
3762 	u64 extent_len = 0;
3763 	u32 item_size;
3764 	int ret;
3765 
3766 	leaf = path->nodes[0];
3767 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3768 
3769 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3770 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3771 
3772 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3773 		return 0;
3774 
3775 	item_size = btrfs_item_size(leaf, path->slots[0]);
3776 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3777 		fi = btrfs_item_ptr(leaf, path->slots[0],
3778 				    struct btrfs_file_extent_item);
3779 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3780 	}
3781 	btrfs_release_path(path);
3782 
3783 	path->keep_locks = 1;
3784 	path->search_for_split = 1;
3785 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3786 	path->search_for_split = 0;
3787 	if (ret > 0)
3788 		ret = -EAGAIN;
3789 	if (ret < 0)
3790 		goto err;
3791 
3792 	ret = -EAGAIN;
3793 	leaf = path->nodes[0];
3794 	/* if our item isn't there, return now */
3795 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3796 		goto err;
3797 
3798 	/* the leaf has  changed, it now has room.  return now */
3799 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3800 		goto err;
3801 
3802 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3803 		fi = btrfs_item_ptr(leaf, path->slots[0],
3804 				    struct btrfs_file_extent_item);
3805 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3806 			goto err;
3807 	}
3808 
3809 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3810 	if (ret)
3811 		goto err;
3812 
3813 	path->keep_locks = 0;
3814 	btrfs_unlock_up_safe(path, 1);
3815 	return 0;
3816 err:
3817 	path->keep_locks = 0;
3818 	return ret;
3819 }
3820 
3821 static noinline int split_item(struct btrfs_path *path,
3822 			       const struct btrfs_key *new_key,
3823 			       unsigned long split_offset)
3824 {
3825 	struct extent_buffer *leaf;
3826 	int orig_slot, slot;
3827 	char *buf;
3828 	u32 nritems;
3829 	u32 item_size;
3830 	u32 orig_offset;
3831 	struct btrfs_disk_key disk_key;
3832 
3833 	leaf = path->nodes[0];
3834 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3835 
3836 	orig_slot = path->slots[0];
3837 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3838 	item_size = btrfs_item_size(leaf, path->slots[0]);
3839 
3840 	buf = kmalloc(item_size, GFP_NOFS);
3841 	if (!buf)
3842 		return -ENOMEM;
3843 
3844 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3845 			    path->slots[0]), item_size);
3846 
3847 	slot = path->slots[0] + 1;
3848 	nritems = btrfs_header_nritems(leaf);
3849 	if (slot != nritems) {
3850 		/* shift the items */
3851 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3852 	}
3853 
3854 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3855 	btrfs_set_item_key(leaf, &disk_key, slot);
3856 
3857 	btrfs_set_item_offset(leaf, slot, orig_offset);
3858 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3859 
3860 	btrfs_set_item_offset(leaf, orig_slot,
3861 				 orig_offset + item_size - split_offset);
3862 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3863 
3864 	btrfs_set_header_nritems(leaf, nritems + 1);
3865 
3866 	/* write the data for the start of the original item */
3867 	write_extent_buffer(leaf, buf,
3868 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3869 			    split_offset);
3870 
3871 	/* write the data for the new item */
3872 	write_extent_buffer(leaf, buf + split_offset,
3873 			    btrfs_item_ptr_offset(leaf, slot),
3874 			    item_size - split_offset);
3875 	btrfs_mark_buffer_dirty(leaf);
3876 
3877 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3878 	kfree(buf);
3879 	return 0;
3880 }
3881 
3882 /*
3883  * This function splits a single item into two items,
3884  * giving 'new_key' to the new item and splitting the
3885  * old one at split_offset (from the start of the item).
3886  *
3887  * The path may be released by this operation.  After
3888  * the split, the path is pointing to the old item.  The
3889  * new item is going to be in the same node as the old one.
3890  *
3891  * Note, the item being split must be smaller enough to live alone on
3892  * a tree block with room for one extra struct btrfs_item
3893  *
3894  * This allows us to split the item in place, keeping a lock on the
3895  * leaf the entire time.
3896  */
3897 int btrfs_split_item(struct btrfs_trans_handle *trans,
3898 		     struct btrfs_root *root,
3899 		     struct btrfs_path *path,
3900 		     const struct btrfs_key *new_key,
3901 		     unsigned long split_offset)
3902 {
3903 	int ret;
3904 	ret = setup_leaf_for_split(trans, root, path,
3905 				   sizeof(struct btrfs_item));
3906 	if (ret)
3907 		return ret;
3908 
3909 	ret = split_item(path, new_key, split_offset);
3910 	return ret;
3911 }
3912 
3913 /*
3914  * make the item pointed to by the path smaller.  new_size indicates
3915  * how small to make it, and from_end tells us if we just chop bytes
3916  * off the end of the item or if we shift the item to chop bytes off
3917  * the front.
3918  */
3919 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3920 {
3921 	int slot;
3922 	struct extent_buffer *leaf;
3923 	u32 nritems;
3924 	unsigned int data_end;
3925 	unsigned int old_data_start;
3926 	unsigned int old_size;
3927 	unsigned int size_diff;
3928 	int i;
3929 	struct btrfs_map_token token;
3930 
3931 	leaf = path->nodes[0];
3932 	slot = path->slots[0];
3933 
3934 	old_size = btrfs_item_size(leaf, slot);
3935 	if (old_size == new_size)
3936 		return;
3937 
3938 	nritems = btrfs_header_nritems(leaf);
3939 	data_end = leaf_data_end(leaf);
3940 
3941 	old_data_start = btrfs_item_offset(leaf, slot);
3942 
3943 	size_diff = old_size - new_size;
3944 
3945 	BUG_ON(slot < 0);
3946 	BUG_ON(slot >= nritems);
3947 
3948 	/*
3949 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3950 	 */
3951 	/* first correct the data pointers */
3952 	btrfs_init_map_token(&token, leaf);
3953 	for (i = slot; i < nritems; i++) {
3954 		u32 ioff;
3955 
3956 		ioff = btrfs_token_item_offset(&token, i);
3957 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3958 	}
3959 
3960 	/* shift the data */
3961 	if (from_end) {
3962 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3963 				  old_data_start + new_size - data_end);
3964 	} else {
3965 		struct btrfs_disk_key disk_key;
3966 		u64 offset;
3967 
3968 		btrfs_item_key(leaf, &disk_key, slot);
3969 
3970 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3971 			unsigned long ptr;
3972 			struct btrfs_file_extent_item *fi;
3973 
3974 			fi = btrfs_item_ptr(leaf, slot,
3975 					    struct btrfs_file_extent_item);
3976 			fi = (struct btrfs_file_extent_item *)(
3977 			     (unsigned long)fi - size_diff);
3978 
3979 			if (btrfs_file_extent_type(leaf, fi) ==
3980 			    BTRFS_FILE_EXTENT_INLINE) {
3981 				ptr = btrfs_item_ptr_offset(leaf, slot);
3982 				memmove_extent_buffer(leaf, ptr,
3983 				      (unsigned long)fi,
3984 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3985 			}
3986 		}
3987 
3988 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3989 				  old_data_start - data_end);
3990 
3991 		offset = btrfs_disk_key_offset(&disk_key);
3992 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3993 		btrfs_set_item_key(leaf, &disk_key, slot);
3994 		if (slot == 0)
3995 			fixup_low_keys(path, &disk_key, 1);
3996 	}
3997 
3998 	btrfs_set_item_size(leaf, slot, new_size);
3999 	btrfs_mark_buffer_dirty(leaf);
4000 
4001 	if (btrfs_leaf_free_space(leaf) < 0) {
4002 		btrfs_print_leaf(leaf);
4003 		BUG();
4004 	}
4005 }
4006 
4007 /*
4008  * make the item pointed to by the path bigger, data_size is the added size.
4009  */
4010 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4011 {
4012 	int slot;
4013 	struct extent_buffer *leaf;
4014 	u32 nritems;
4015 	unsigned int data_end;
4016 	unsigned int old_data;
4017 	unsigned int old_size;
4018 	int i;
4019 	struct btrfs_map_token token;
4020 
4021 	leaf = path->nodes[0];
4022 
4023 	nritems = btrfs_header_nritems(leaf);
4024 	data_end = leaf_data_end(leaf);
4025 
4026 	if (btrfs_leaf_free_space(leaf) < data_size) {
4027 		btrfs_print_leaf(leaf);
4028 		BUG();
4029 	}
4030 	slot = path->slots[0];
4031 	old_data = btrfs_item_data_end(leaf, slot);
4032 
4033 	BUG_ON(slot < 0);
4034 	if (slot >= nritems) {
4035 		btrfs_print_leaf(leaf);
4036 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4037 			   slot, nritems);
4038 		BUG();
4039 	}
4040 
4041 	/*
4042 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4043 	 */
4044 	/* first correct the data pointers */
4045 	btrfs_init_map_token(&token, leaf);
4046 	for (i = slot; i < nritems; i++) {
4047 		u32 ioff;
4048 
4049 		ioff = btrfs_token_item_offset(&token, i);
4050 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4051 	}
4052 
4053 	/* shift the data */
4054 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4055 			  old_data - data_end);
4056 
4057 	data_end = old_data;
4058 	old_size = btrfs_item_size(leaf, slot);
4059 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4060 	btrfs_mark_buffer_dirty(leaf);
4061 
4062 	if (btrfs_leaf_free_space(leaf) < 0) {
4063 		btrfs_print_leaf(leaf);
4064 		BUG();
4065 	}
4066 }
4067 
4068 /*
4069  * Make space in the node before inserting one or more items.
4070  *
4071  * @root:	root we are inserting items to
4072  * @path:	points to the leaf/slot where we are going to insert new items
4073  * @batch:      information about the batch of items to insert
4074  *
4075  * Main purpose is to save stack depth by doing the bulk of the work in a
4076  * function that doesn't call btrfs_search_slot
4077  */
4078 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4079 				   const struct btrfs_item_batch *batch)
4080 {
4081 	struct btrfs_fs_info *fs_info = root->fs_info;
4082 	int i;
4083 	u32 nritems;
4084 	unsigned int data_end;
4085 	struct btrfs_disk_key disk_key;
4086 	struct extent_buffer *leaf;
4087 	int slot;
4088 	struct btrfs_map_token token;
4089 	u32 total_size;
4090 
4091 	/*
4092 	 * Before anything else, update keys in the parent and other ancestors
4093 	 * if needed, then release the write locks on them, so that other tasks
4094 	 * can use them while we modify the leaf.
4095 	 */
4096 	if (path->slots[0] == 0) {
4097 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4098 		fixup_low_keys(path, &disk_key, 1);
4099 	}
4100 	btrfs_unlock_up_safe(path, 1);
4101 
4102 	leaf = path->nodes[0];
4103 	slot = path->slots[0];
4104 
4105 	nritems = btrfs_header_nritems(leaf);
4106 	data_end = leaf_data_end(leaf);
4107 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4108 
4109 	if (btrfs_leaf_free_space(leaf) < total_size) {
4110 		btrfs_print_leaf(leaf);
4111 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4112 			   total_size, btrfs_leaf_free_space(leaf));
4113 		BUG();
4114 	}
4115 
4116 	btrfs_init_map_token(&token, leaf);
4117 	if (slot != nritems) {
4118 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4119 
4120 		if (old_data < data_end) {
4121 			btrfs_print_leaf(leaf);
4122 			btrfs_crit(fs_info,
4123 		"item at slot %d with data offset %u beyond data end of leaf %u",
4124 				   slot, old_data, data_end);
4125 			BUG();
4126 		}
4127 		/*
4128 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4129 		 */
4130 		/* first correct the data pointers */
4131 		for (i = slot; i < nritems; i++) {
4132 			u32 ioff;
4133 
4134 			ioff = btrfs_token_item_offset(&token, i);
4135 			btrfs_set_token_item_offset(&token, i,
4136 						       ioff - batch->total_data_size);
4137 		}
4138 		/* shift the items */
4139 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4140 
4141 		/* shift the data */
4142 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4143 				  data_end, old_data - data_end);
4144 		data_end = old_data;
4145 	}
4146 
4147 	/* setup the item for the new data */
4148 	for (i = 0; i < batch->nr; i++) {
4149 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4150 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4151 		data_end -= batch->data_sizes[i];
4152 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4153 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4154 	}
4155 
4156 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4157 	btrfs_mark_buffer_dirty(leaf);
4158 
4159 	if (btrfs_leaf_free_space(leaf) < 0) {
4160 		btrfs_print_leaf(leaf);
4161 		BUG();
4162 	}
4163 }
4164 
4165 /*
4166  * Insert a new item into a leaf.
4167  *
4168  * @root:      The root of the btree.
4169  * @path:      A path pointing to the target leaf and slot.
4170  * @key:       The key of the new item.
4171  * @data_size: The size of the data associated with the new key.
4172  */
4173 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4174 				 struct btrfs_path *path,
4175 				 const struct btrfs_key *key,
4176 				 u32 data_size)
4177 {
4178 	struct btrfs_item_batch batch;
4179 
4180 	batch.keys = key;
4181 	batch.data_sizes = &data_size;
4182 	batch.total_data_size = data_size;
4183 	batch.nr = 1;
4184 
4185 	setup_items_for_insert(root, path, &batch);
4186 }
4187 
4188 /*
4189  * Given a key and some data, insert items into the tree.
4190  * This does all the path init required, making room in the tree if needed.
4191  */
4192 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4193 			    struct btrfs_root *root,
4194 			    struct btrfs_path *path,
4195 			    const struct btrfs_item_batch *batch)
4196 {
4197 	int ret = 0;
4198 	int slot;
4199 	u32 total_size;
4200 
4201 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4202 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4203 	if (ret == 0)
4204 		return -EEXIST;
4205 	if (ret < 0)
4206 		return ret;
4207 
4208 	slot = path->slots[0];
4209 	BUG_ON(slot < 0);
4210 
4211 	setup_items_for_insert(root, path, batch);
4212 	return 0;
4213 }
4214 
4215 /*
4216  * Given a key and some data, insert an item into the tree.
4217  * This does all the path init required, making room in the tree if needed.
4218  */
4219 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4220 		      const struct btrfs_key *cpu_key, void *data,
4221 		      u32 data_size)
4222 {
4223 	int ret = 0;
4224 	struct btrfs_path *path;
4225 	struct extent_buffer *leaf;
4226 	unsigned long ptr;
4227 
4228 	path = btrfs_alloc_path();
4229 	if (!path)
4230 		return -ENOMEM;
4231 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4232 	if (!ret) {
4233 		leaf = path->nodes[0];
4234 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4235 		write_extent_buffer(leaf, data, ptr, data_size);
4236 		btrfs_mark_buffer_dirty(leaf);
4237 	}
4238 	btrfs_free_path(path);
4239 	return ret;
4240 }
4241 
4242 /*
4243  * This function duplicates an item, giving 'new_key' to the new item.
4244  * It guarantees both items live in the same tree leaf and the new item is
4245  * contiguous with the original item.
4246  *
4247  * This allows us to split a file extent in place, keeping a lock on the leaf
4248  * the entire time.
4249  */
4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251 			 struct btrfs_root *root,
4252 			 struct btrfs_path *path,
4253 			 const struct btrfs_key *new_key)
4254 {
4255 	struct extent_buffer *leaf;
4256 	int ret;
4257 	u32 item_size;
4258 
4259 	leaf = path->nodes[0];
4260 	item_size = btrfs_item_size(leaf, path->slots[0]);
4261 	ret = setup_leaf_for_split(trans, root, path,
4262 				   item_size + sizeof(struct btrfs_item));
4263 	if (ret)
4264 		return ret;
4265 
4266 	path->slots[0]++;
4267 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4268 	leaf = path->nodes[0];
4269 	memcpy_extent_buffer(leaf,
4270 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4271 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4272 			     item_size);
4273 	return 0;
4274 }
4275 
4276 /*
4277  * delete the pointer from a given node.
4278  *
4279  * the tree should have been previously balanced so the deletion does not
4280  * empty a node.
4281  */
4282 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4283 		    int level, int slot)
4284 {
4285 	struct extent_buffer *parent = path->nodes[level];
4286 	u32 nritems;
4287 	int ret;
4288 
4289 	nritems = btrfs_header_nritems(parent);
4290 	if (slot != nritems - 1) {
4291 		if (level) {
4292 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4293 					slot + 1, nritems - slot - 1);
4294 			BUG_ON(ret < 0);
4295 		}
4296 		memmove_extent_buffer(parent,
4297 			      btrfs_node_key_ptr_offset(parent, slot),
4298 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4299 			      sizeof(struct btrfs_key_ptr) *
4300 			      (nritems - slot - 1));
4301 	} else if (level) {
4302 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4303 						    BTRFS_MOD_LOG_KEY_REMOVE);
4304 		BUG_ON(ret < 0);
4305 	}
4306 
4307 	nritems--;
4308 	btrfs_set_header_nritems(parent, nritems);
4309 	if (nritems == 0 && parent == root->node) {
4310 		BUG_ON(btrfs_header_level(root->node) != 1);
4311 		/* just turn the root into a leaf and break */
4312 		btrfs_set_header_level(root->node, 0);
4313 	} else if (slot == 0) {
4314 		struct btrfs_disk_key disk_key;
4315 
4316 		btrfs_node_key(parent, &disk_key, 0);
4317 		fixup_low_keys(path, &disk_key, level + 1);
4318 	}
4319 	btrfs_mark_buffer_dirty(parent);
4320 }
4321 
4322 /*
4323  * a helper function to delete the leaf pointed to by path->slots[1] and
4324  * path->nodes[1].
4325  *
4326  * This deletes the pointer in path->nodes[1] and frees the leaf
4327  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4328  *
4329  * The path must have already been setup for deleting the leaf, including
4330  * all the proper balancing.  path->nodes[1] must be locked.
4331  */
4332 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4333 				    struct btrfs_root *root,
4334 				    struct btrfs_path *path,
4335 				    struct extent_buffer *leaf)
4336 {
4337 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4338 	del_ptr(root, path, 1, path->slots[1]);
4339 
4340 	/*
4341 	 * btrfs_free_extent is expensive, we want to make sure we
4342 	 * aren't holding any locks when we call it
4343 	 */
4344 	btrfs_unlock_up_safe(path, 0);
4345 
4346 	root_sub_used(root, leaf->len);
4347 
4348 	atomic_inc(&leaf->refs);
4349 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4350 	free_extent_buffer_stale(leaf);
4351 }
4352 /*
4353  * delete the item at the leaf level in path.  If that empties
4354  * the leaf, remove it from the tree
4355  */
4356 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4357 		    struct btrfs_path *path, int slot, int nr)
4358 {
4359 	struct btrfs_fs_info *fs_info = root->fs_info;
4360 	struct extent_buffer *leaf;
4361 	int ret = 0;
4362 	int wret;
4363 	u32 nritems;
4364 
4365 	leaf = path->nodes[0];
4366 	nritems = btrfs_header_nritems(leaf);
4367 
4368 	if (slot + nr != nritems) {
4369 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4370 		const int data_end = leaf_data_end(leaf);
4371 		struct btrfs_map_token token;
4372 		u32 dsize = 0;
4373 		int i;
4374 
4375 		for (i = 0; i < nr; i++)
4376 			dsize += btrfs_item_size(leaf, slot + i);
4377 
4378 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4379 				  last_off - data_end);
4380 
4381 		btrfs_init_map_token(&token, leaf);
4382 		for (i = slot + nr; i < nritems; i++) {
4383 			u32 ioff;
4384 
4385 			ioff = btrfs_token_item_offset(&token, i);
4386 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4387 		}
4388 
4389 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4390 	}
4391 	btrfs_set_header_nritems(leaf, nritems - nr);
4392 	nritems -= nr;
4393 
4394 	/* delete the leaf if we've emptied it */
4395 	if (nritems == 0) {
4396 		if (leaf == root->node) {
4397 			btrfs_set_header_level(leaf, 0);
4398 		} else {
4399 			btrfs_clear_buffer_dirty(trans, leaf);
4400 			btrfs_del_leaf(trans, root, path, leaf);
4401 		}
4402 	} else {
4403 		int used = leaf_space_used(leaf, 0, nritems);
4404 		if (slot == 0) {
4405 			struct btrfs_disk_key disk_key;
4406 
4407 			btrfs_item_key(leaf, &disk_key, 0);
4408 			fixup_low_keys(path, &disk_key, 1);
4409 		}
4410 
4411 		/*
4412 		 * Try to delete the leaf if it is mostly empty. We do this by
4413 		 * trying to move all its items into its left and right neighbours.
4414 		 * If we can't move all the items, then we don't delete it - it's
4415 		 * not ideal, but future insertions might fill the leaf with more
4416 		 * items, or items from other leaves might be moved later into our
4417 		 * leaf due to deletions on those leaves.
4418 		 */
4419 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4420 			u32 min_push_space;
4421 
4422 			/* push_leaf_left fixes the path.
4423 			 * make sure the path still points to our leaf
4424 			 * for possible call to del_ptr below
4425 			 */
4426 			slot = path->slots[1];
4427 			atomic_inc(&leaf->refs);
4428 			/*
4429 			 * We want to be able to at least push one item to the
4430 			 * left neighbour leaf, and that's the first item.
4431 			 */
4432 			min_push_space = sizeof(struct btrfs_item) +
4433 				btrfs_item_size(leaf, 0);
4434 			wret = push_leaf_left(trans, root, path, 0,
4435 					      min_push_space, 1, (u32)-1);
4436 			if (wret < 0 && wret != -ENOSPC)
4437 				ret = wret;
4438 
4439 			if (path->nodes[0] == leaf &&
4440 			    btrfs_header_nritems(leaf)) {
4441 				/*
4442 				 * If we were not able to push all items from our
4443 				 * leaf to its left neighbour, then attempt to
4444 				 * either push all the remaining items to the
4445 				 * right neighbour or none. There's no advantage
4446 				 * in pushing only some items, instead of all, as
4447 				 * it's pointless to end up with a leaf having
4448 				 * too few items while the neighbours can be full
4449 				 * or nearly full.
4450 				 */
4451 				nritems = btrfs_header_nritems(leaf);
4452 				min_push_space = leaf_space_used(leaf, 0, nritems);
4453 				wret = push_leaf_right(trans, root, path, 0,
4454 						       min_push_space, 1, 0);
4455 				if (wret < 0 && wret != -ENOSPC)
4456 					ret = wret;
4457 			}
4458 
4459 			if (btrfs_header_nritems(leaf) == 0) {
4460 				path->slots[1] = slot;
4461 				btrfs_del_leaf(trans, root, path, leaf);
4462 				free_extent_buffer(leaf);
4463 				ret = 0;
4464 			} else {
4465 				/* if we're still in the path, make sure
4466 				 * we're dirty.  Otherwise, one of the
4467 				 * push_leaf functions must have already
4468 				 * dirtied this buffer
4469 				 */
4470 				if (path->nodes[0] == leaf)
4471 					btrfs_mark_buffer_dirty(leaf);
4472 				free_extent_buffer(leaf);
4473 			}
4474 		} else {
4475 			btrfs_mark_buffer_dirty(leaf);
4476 		}
4477 	}
4478 	return ret;
4479 }
4480 
4481 /*
4482  * search the tree again to find a leaf with lesser keys
4483  * returns 0 if it found something or 1 if there are no lesser leaves.
4484  * returns < 0 on io errors.
4485  *
4486  * This may release the path, and so you may lose any locks held at the
4487  * time you call it.
4488  */
4489 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4490 {
4491 	struct btrfs_key key;
4492 	struct btrfs_disk_key found_key;
4493 	int ret;
4494 
4495 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4496 
4497 	if (key.offset > 0) {
4498 		key.offset--;
4499 	} else if (key.type > 0) {
4500 		key.type--;
4501 		key.offset = (u64)-1;
4502 	} else if (key.objectid > 0) {
4503 		key.objectid--;
4504 		key.type = (u8)-1;
4505 		key.offset = (u64)-1;
4506 	} else {
4507 		return 1;
4508 	}
4509 
4510 	btrfs_release_path(path);
4511 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4512 	if (ret < 0)
4513 		return ret;
4514 	btrfs_item_key(path->nodes[0], &found_key, 0);
4515 	ret = comp_keys(&found_key, &key);
4516 	/*
4517 	 * We might have had an item with the previous key in the tree right
4518 	 * before we released our path. And after we released our path, that
4519 	 * item might have been pushed to the first slot (0) of the leaf we
4520 	 * were holding due to a tree balance. Alternatively, an item with the
4521 	 * previous key can exist as the only element of a leaf (big fat item).
4522 	 * Therefore account for these 2 cases, so that our callers (like
4523 	 * btrfs_previous_item) don't miss an existing item with a key matching
4524 	 * the previous key we computed above.
4525 	 */
4526 	if (ret <= 0)
4527 		return 0;
4528 	return 1;
4529 }
4530 
4531 /*
4532  * A helper function to walk down the tree starting at min_key, and looking
4533  * for nodes or leaves that are have a minimum transaction id.
4534  * This is used by the btree defrag code, and tree logging
4535  *
4536  * This does not cow, but it does stuff the starting key it finds back
4537  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4538  * key and get a writable path.
4539  *
4540  * This honors path->lowest_level to prevent descent past a given level
4541  * of the tree.
4542  *
4543  * min_trans indicates the oldest transaction that you are interested
4544  * in walking through.  Any nodes or leaves older than min_trans are
4545  * skipped over (without reading them).
4546  *
4547  * returns zero if something useful was found, < 0 on error and 1 if there
4548  * was nothing in the tree that matched the search criteria.
4549  */
4550 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4551 			 struct btrfs_path *path,
4552 			 u64 min_trans)
4553 {
4554 	struct extent_buffer *cur;
4555 	struct btrfs_key found_key;
4556 	int slot;
4557 	int sret;
4558 	u32 nritems;
4559 	int level;
4560 	int ret = 1;
4561 	int keep_locks = path->keep_locks;
4562 
4563 	ASSERT(!path->nowait);
4564 	path->keep_locks = 1;
4565 again:
4566 	cur = btrfs_read_lock_root_node(root);
4567 	level = btrfs_header_level(cur);
4568 	WARN_ON(path->nodes[level]);
4569 	path->nodes[level] = cur;
4570 	path->locks[level] = BTRFS_READ_LOCK;
4571 
4572 	if (btrfs_header_generation(cur) < min_trans) {
4573 		ret = 1;
4574 		goto out;
4575 	}
4576 	while (1) {
4577 		nritems = btrfs_header_nritems(cur);
4578 		level = btrfs_header_level(cur);
4579 		sret = btrfs_bin_search(cur, min_key, &slot);
4580 		if (sret < 0) {
4581 			ret = sret;
4582 			goto out;
4583 		}
4584 
4585 		/* at the lowest level, we're done, setup the path and exit */
4586 		if (level == path->lowest_level) {
4587 			if (slot >= nritems)
4588 				goto find_next_key;
4589 			ret = 0;
4590 			path->slots[level] = slot;
4591 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4592 			goto out;
4593 		}
4594 		if (sret && slot > 0)
4595 			slot--;
4596 		/*
4597 		 * check this node pointer against the min_trans parameters.
4598 		 * If it is too old, skip to the next one.
4599 		 */
4600 		while (slot < nritems) {
4601 			u64 gen;
4602 
4603 			gen = btrfs_node_ptr_generation(cur, slot);
4604 			if (gen < min_trans) {
4605 				slot++;
4606 				continue;
4607 			}
4608 			break;
4609 		}
4610 find_next_key:
4611 		/*
4612 		 * we didn't find a candidate key in this node, walk forward
4613 		 * and find another one
4614 		 */
4615 		if (slot >= nritems) {
4616 			path->slots[level] = slot;
4617 			sret = btrfs_find_next_key(root, path, min_key, level,
4618 						  min_trans);
4619 			if (sret == 0) {
4620 				btrfs_release_path(path);
4621 				goto again;
4622 			} else {
4623 				goto out;
4624 			}
4625 		}
4626 		/* save our key for returning back */
4627 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4628 		path->slots[level] = slot;
4629 		if (level == path->lowest_level) {
4630 			ret = 0;
4631 			goto out;
4632 		}
4633 		cur = btrfs_read_node_slot(cur, slot);
4634 		if (IS_ERR(cur)) {
4635 			ret = PTR_ERR(cur);
4636 			goto out;
4637 		}
4638 
4639 		btrfs_tree_read_lock(cur);
4640 
4641 		path->locks[level - 1] = BTRFS_READ_LOCK;
4642 		path->nodes[level - 1] = cur;
4643 		unlock_up(path, level, 1, 0, NULL);
4644 	}
4645 out:
4646 	path->keep_locks = keep_locks;
4647 	if (ret == 0) {
4648 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4649 		memcpy(min_key, &found_key, sizeof(found_key));
4650 	}
4651 	return ret;
4652 }
4653 
4654 /*
4655  * this is similar to btrfs_next_leaf, but does not try to preserve
4656  * and fixup the path.  It looks for and returns the next key in the
4657  * tree based on the current path and the min_trans parameters.
4658  *
4659  * 0 is returned if another key is found, < 0 if there are any errors
4660  * and 1 is returned if there are no higher keys in the tree
4661  *
4662  * path->keep_locks should be set to 1 on the search made before
4663  * calling this function.
4664  */
4665 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4666 			struct btrfs_key *key, int level, u64 min_trans)
4667 {
4668 	int slot;
4669 	struct extent_buffer *c;
4670 
4671 	WARN_ON(!path->keep_locks && !path->skip_locking);
4672 	while (level < BTRFS_MAX_LEVEL) {
4673 		if (!path->nodes[level])
4674 			return 1;
4675 
4676 		slot = path->slots[level] + 1;
4677 		c = path->nodes[level];
4678 next:
4679 		if (slot >= btrfs_header_nritems(c)) {
4680 			int ret;
4681 			int orig_lowest;
4682 			struct btrfs_key cur_key;
4683 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4684 			    !path->nodes[level + 1])
4685 				return 1;
4686 
4687 			if (path->locks[level + 1] || path->skip_locking) {
4688 				level++;
4689 				continue;
4690 			}
4691 
4692 			slot = btrfs_header_nritems(c) - 1;
4693 			if (level == 0)
4694 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4695 			else
4696 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4697 
4698 			orig_lowest = path->lowest_level;
4699 			btrfs_release_path(path);
4700 			path->lowest_level = level;
4701 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4702 						0, 0);
4703 			path->lowest_level = orig_lowest;
4704 			if (ret < 0)
4705 				return ret;
4706 
4707 			c = path->nodes[level];
4708 			slot = path->slots[level];
4709 			if (ret == 0)
4710 				slot++;
4711 			goto next;
4712 		}
4713 
4714 		if (level == 0)
4715 			btrfs_item_key_to_cpu(c, key, slot);
4716 		else {
4717 			u64 gen = btrfs_node_ptr_generation(c, slot);
4718 
4719 			if (gen < min_trans) {
4720 				slot++;
4721 				goto next;
4722 			}
4723 			btrfs_node_key_to_cpu(c, key, slot);
4724 		}
4725 		return 0;
4726 	}
4727 	return 1;
4728 }
4729 
4730 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4731 			u64 time_seq)
4732 {
4733 	int slot;
4734 	int level;
4735 	struct extent_buffer *c;
4736 	struct extent_buffer *next;
4737 	struct btrfs_fs_info *fs_info = root->fs_info;
4738 	struct btrfs_key key;
4739 	bool need_commit_sem = false;
4740 	u32 nritems;
4741 	int ret;
4742 	int i;
4743 
4744 	/*
4745 	 * The nowait semantics are used only for write paths, where we don't
4746 	 * use the tree mod log and sequence numbers.
4747 	 */
4748 	if (time_seq)
4749 		ASSERT(!path->nowait);
4750 
4751 	nritems = btrfs_header_nritems(path->nodes[0]);
4752 	if (nritems == 0)
4753 		return 1;
4754 
4755 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4756 again:
4757 	level = 1;
4758 	next = NULL;
4759 	btrfs_release_path(path);
4760 
4761 	path->keep_locks = 1;
4762 
4763 	if (time_seq) {
4764 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4765 	} else {
4766 		if (path->need_commit_sem) {
4767 			path->need_commit_sem = 0;
4768 			need_commit_sem = true;
4769 			if (path->nowait) {
4770 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4771 					ret = -EAGAIN;
4772 					goto done;
4773 				}
4774 			} else {
4775 				down_read(&fs_info->commit_root_sem);
4776 			}
4777 		}
4778 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4779 	}
4780 	path->keep_locks = 0;
4781 
4782 	if (ret < 0)
4783 		goto done;
4784 
4785 	nritems = btrfs_header_nritems(path->nodes[0]);
4786 	/*
4787 	 * by releasing the path above we dropped all our locks.  A balance
4788 	 * could have added more items next to the key that used to be
4789 	 * at the very end of the block.  So, check again here and
4790 	 * advance the path if there are now more items available.
4791 	 */
4792 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4793 		if (ret == 0)
4794 			path->slots[0]++;
4795 		ret = 0;
4796 		goto done;
4797 	}
4798 	/*
4799 	 * So the above check misses one case:
4800 	 * - after releasing the path above, someone has removed the item that
4801 	 *   used to be at the very end of the block, and balance between leafs
4802 	 *   gets another one with bigger key.offset to replace it.
4803 	 *
4804 	 * This one should be returned as well, or we can get leaf corruption
4805 	 * later(esp. in __btrfs_drop_extents()).
4806 	 *
4807 	 * And a bit more explanation about this check,
4808 	 * with ret > 0, the key isn't found, the path points to the slot
4809 	 * where it should be inserted, so the path->slots[0] item must be the
4810 	 * bigger one.
4811 	 */
4812 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4813 		ret = 0;
4814 		goto done;
4815 	}
4816 
4817 	while (level < BTRFS_MAX_LEVEL) {
4818 		if (!path->nodes[level]) {
4819 			ret = 1;
4820 			goto done;
4821 		}
4822 
4823 		slot = path->slots[level] + 1;
4824 		c = path->nodes[level];
4825 		if (slot >= btrfs_header_nritems(c)) {
4826 			level++;
4827 			if (level == BTRFS_MAX_LEVEL) {
4828 				ret = 1;
4829 				goto done;
4830 			}
4831 			continue;
4832 		}
4833 
4834 
4835 		/*
4836 		 * Our current level is where we're going to start from, and to
4837 		 * make sure lockdep doesn't complain we need to drop our locks
4838 		 * and nodes from 0 to our current level.
4839 		 */
4840 		for (i = 0; i < level; i++) {
4841 			if (path->locks[level]) {
4842 				btrfs_tree_read_unlock(path->nodes[i]);
4843 				path->locks[i] = 0;
4844 			}
4845 			free_extent_buffer(path->nodes[i]);
4846 			path->nodes[i] = NULL;
4847 		}
4848 
4849 		next = c;
4850 		ret = read_block_for_search(root, path, &next, level,
4851 					    slot, &key);
4852 		if (ret == -EAGAIN && !path->nowait)
4853 			goto again;
4854 
4855 		if (ret < 0) {
4856 			btrfs_release_path(path);
4857 			goto done;
4858 		}
4859 
4860 		if (!path->skip_locking) {
4861 			ret = btrfs_try_tree_read_lock(next);
4862 			if (!ret && path->nowait) {
4863 				ret = -EAGAIN;
4864 				goto done;
4865 			}
4866 			if (!ret && time_seq) {
4867 				/*
4868 				 * If we don't get the lock, we may be racing
4869 				 * with push_leaf_left, holding that lock while
4870 				 * itself waiting for the leaf we've currently
4871 				 * locked. To solve this situation, we give up
4872 				 * on our lock and cycle.
4873 				 */
4874 				free_extent_buffer(next);
4875 				btrfs_release_path(path);
4876 				cond_resched();
4877 				goto again;
4878 			}
4879 			if (!ret)
4880 				btrfs_tree_read_lock(next);
4881 		}
4882 		break;
4883 	}
4884 	path->slots[level] = slot;
4885 	while (1) {
4886 		level--;
4887 		path->nodes[level] = next;
4888 		path->slots[level] = 0;
4889 		if (!path->skip_locking)
4890 			path->locks[level] = BTRFS_READ_LOCK;
4891 		if (!level)
4892 			break;
4893 
4894 		ret = read_block_for_search(root, path, &next, level,
4895 					    0, &key);
4896 		if (ret == -EAGAIN && !path->nowait)
4897 			goto again;
4898 
4899 		if (ret < 0) {
4900 			btrfs_release_path(path);
4901 			goto done;
4902 		}
4903 
4904 		if (!path->skip_locking) {
4905 			if (path->nowait) {
4906 				if (!btrfs_try_tree_read_lock(next)) {
4907 					ret = -EAGAIN;
4908 					goto done;
4909 				}
4910 			} else {
4911 				btrfs_tree_read_lock(next);
4912 			}
4913 		}
4914 	}
4915 	ret = 0;
4916 done:
4917 	unlock_up(path, 0, 1, 0, NULL);
4918 	if (need_commit_sem) {
4919 		int ret2;
4920 
4921 		path->need_commit_sem = 1;
4922 		ret2 = finish_need_commit_sem_search(path);
4923 		up_read(&fs_info->commit_root_sem);
4924 		if (ret2)
4925 			ret = ret2;
4926 	}
4927 
4928 	return ret;
4929 }
4930 
4931 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4932 {
4933 	path->slots[0]++;
4934 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4935 		return btrfs_next_old_leaf(root, path, time_seq);
4936 	return 0;
4937 }
4938 
4939 /*
4940  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4941  * searching until it gets past min_objectid or finds an item of 'type'
4942  *
4943  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4944  */
4945 int btrfs_previous_item(struct btrfs_root *root,
4946 			struct btrfs_path *path, u64 min_objectid,
4947 			int type)
4948 {
4949 	struct btrfs_key found_key;
4950 	struct extent_buffer *leaf;
4951 	u32 nritems;
4952 	int ret;
4953 
4954 	while (1) {
4955 		if (path->slots[0] == 0) {
4956 			ret = btrfs_prev_leaf(root, path);
4957 			if (ret != 0)
4958 				return ret;
4959 		} else {
4960 			path->slots[0]--;
4961 		}
4962 		leaf = path->nodes[0];
4963 		nritems = btrfs_header_nritems(leaf);
4964 		if (nritems == 0)
4965 			return 1;
4966 		if (path->slots[0] == nritems)
4967 			path->slots[0]--;
4968 
4969 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4970 		if (found_key.objectid < min_objectid)
4971 			break;
4972 		if (found_key.type == type)
4973 			return 0;
4974 		if (found_key.objectid == min_objectid &&
4975 		    found_key.type < type)
4976 			break;
4977 	}
4978 	return 1;
4979 }
4980 
4981 /*
4982  * search in extent tree to find a previous Metadata/Data extent item with
4983  * min objecitd.
4984  *
4985  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4986  */
4987 int btrfs_previous_extent_item(struct btrfs_root *root,
4988 			struct btrfs_path *path, u64 min_objectid)
4989 {
4990 	struct btrfs_key found_key;
4991 	struct extent_buffer *leaf;
4992 	u32 nritems;
4993 	int ret;
4994 
4995 	while (1) {
4996 		if (path->slots[0] == 0) {
4997 			ret = btrfs_prev_leaf(root, path);
4998 			if (ret != 0)
4999 				return ret;
5000 		} else {
5001 			path->slots[0]--;
5002 		}
5003 		leaf = path->nodes[0];
5004 		nritems = btrfs_header_nritems(leaf);
5005 		if (nritems == 0)
5006 			return 1;
5007 		if (path->slots[0] == nritems)
5008 			path->slots[0]--;
5009 
5010 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5011 		if (found_key.objectid < min_objectid)
5012 			break;
5013 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5014 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5015 			return 0;
5016 		if (found_key.objectid == min_objectid &&
5017 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5018 			break;
5019 	}
5020 	return 1;
5021 }
5022 
5023 int __init btrfs_ctree_init(void)
5024 {
5025 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5026 			sizeof(struct btrfs_path), 0,
5027 			SLAB_MEM_SPREAD, NULL);
5028 	if (!btrfs_path_cachep)
5029 		return -ENOMEM;
5030 	return 0;
5031 }
5032 
5033 void __cold btrfs_ctree_exit(void)
5034 {
5035 	kmem_cache_destroy(btrfs_path_cachep);
5036 }
5037