xref: /linux/fs/btrfs/delalloc-space.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "ctree.h"
4 #include "delalloc-space.h"
5 #include "block-rsv.h"
6 #include "btrfs_inode.h"
7 #include "space-info.h"
8 #include "transaction.h"
9 #include "qgroup.h"
10 #include "block-group.h"
11 
12 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
13 {
14 	struct btrfs_root *root = inode->root;
15 	struct btrfs_fs_info *fs_info = root->fs_info;
16 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
17 	u64 used;
18 	int ret = 0;
19 	int need_commit = 2;
20 	int have_pinned_space;
21 
22 	/* Make sure bytes are sectorsize aligned */
23 	bytes = ALIGN(bytes, fs_info->sectorsize);
24 
25 	if (btrfs_is_free_space_inode(inode)) {
26 		need_commit = 0;
27 		ASSERT(current->journal_info);
28 	}
29 
30 again:
31 	/* Make sure we have enough space to handle the data first */
32 	spin_lock(&data_sinfo->lock);
33 	used = btrfs_space_info_used(data_sinfo, true);
34 
35 	if (used + bytes > data_sinfo->total_bytes) {
36 		struct btrfs_trans_handle *trans;
37 
38 		/*
39 		 * If we don't have enough free bytes in this space then we need
40 		 * to alloc a new chunk.
41 		 */
42 		if (!data_sinfo->full) {
43 			u64 alloc_target;
44 
45 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
46 			spin_unlock(&data_sinfo->lock);
47 
48 			alloc_target = btrfs_data_alloc_profile(fs_info);
49 			/*
50 			 * It is ugly that we don't call nolock join
51 			 * transaction for the free space inode case here.
52 			 * But it is safe because we only do the data space
53 			 * reservation for the free space cache in the
54 			 * transaction context, the common join transaction
55 			 * just increase the counter of the current transaction
56 			 * handler, doesn't try to acquire the trans_lock of
57 			 * the fs.
58 			 */
59 			trans = btrfs_join_transaction(root);
60 			if (IS_ERR(trans))
61 				return PTR_ERR(trans);
62 
63 			ret = btrfs_chunk_alloc(trans, alloc_target,
64 						CHUNK_ALLOC_NO_FORCE);
65 			btrfs_end_transaction(trans);
66 			if (ret < 0) {
67 				if (ret != -ENOSPC)
68 					return ret;
69 				else {
70 					have_pinned_space = 1;
71 					goto commit_trans;
72 				}
73 			}
74 
75 			goto again;
76 		}
77 
78 		/*
79 		 * If we don't have enough pinned space to deal with this
80 		 * allocation, and no removed chunk in current transaction,
81 		 * don't bother committing the transaction.
82 		 */
83 		have_pinned_space = __percpu_counter_compare(
84 			&data_sinfo->total_bytes_pinned,
85 			used + bytes - data_sinfo->total_bytes,
86 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
87 		spin_unlock(&data_sinfo->lock);
88 
89 		/* Commit the current transaction and try again */
90 commit_trans:
91 		if (need_commit) {
92 			need_commit--;
93 
94 			if (need_commit > 0) {
95 				btrfs_start_delalloc_roots(fs_info, -1);
96 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
97 							 (u64)-1);
98 			}
99 
100 			trans = btrfs_join_transaction(root);
101 			if (IS_ERR(trans))
102 				return PTR_ERR(trans);
103 			if (have_pinned_space >= 0 ||
104 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
105 				     &trans->transaction->flags) ||
106 			    need_commit > 0) {
107 				ret = btrfs_commit_transaction(trans);
108 				if (ret)
109 					return ret;
110 				/*
111 				 * The cleaner kthread might still be doing iput
112 				 * operations. Wait for it to finish so that
113 				 * more space is released.  We don't need to
114 				 * explicitly run the delayed iputs here because
115 				 * the commit_transaction would have woken up
116 				 * the cleaner.
117 				 */
118 				ret = btrfs_wait_on_delayed_iputs(fs_info);
119 				if (ret)
120 					return ret;
121 				goto again;
122 			} else {
123 				btrfs_end_transaction(trans);
124 			}
125 		}
126 
127 		trace_btrfs_space_reservation(fs_info,
128 					      "space_info:enospc",
129 					      data_sinfo->flags, bytes, 1);
130 		return -ENOSPC;
131 	}
132 	btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, bytes);
133 	spin_unlock(&data_sinfo->lock);
134 
135 	return 0;
136 }
137 
138 int btrfs_check_data_free_space(struct inode *inode,
139 			struct extent_changeset **reserved, u64 start, u64 len)
140 {
141 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
142 	int ret;
143 
144 	/* align the range */
145 	len = round_up(start + len, fs_info->sectorsize) -
146 	      round_down(start, fs_info->sectorsize);
147 	start = round_down(start, fs_info->sectorsize);
148 
149 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
150 	if (ret < 0)
151 		return ret;
152 
153 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
154 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
155 	if (ret < 0)
156 		btrfs_free_reserved_data_space_noquota(inode, start, len);
157 	else
158 		ret = 0;
159 	return ret;
160 }
161 
162 /*
163  * Called if we need to clear a data reservation for this inode
164  * Normally in a error case.
165  *
166  * This one will *NOT* use accurate qgroup reserved space API, just for case
167  * which we can't sleep and is sure it won't affect qgroup reserved space.
168  * Like clear_bit_hook().
169  */
170 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
171 					    u64 len)
172 {
173 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
174 	struct btrfs_space_info *data_sinfo;
175 
176 	/* Make sure the range is aligned to sectorsize */
177 	len = round_up(start + len, fs_info->sectorsize) -
178 	      round_down(start, fs_info->sectorsize);
179 	start = round_down(start, fs_info->sectorsize);
180 
181 	data_sinfo = fs_info->data_sinfo;
182 	spin_lock(&data_sinfo->lock);
183 	btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, -len);
184 	spin_unlock(&data_sinfo->lock);
185 }
186 
187 /*
188  * Called if we need to clear a data reservation for this inode
189  * Normally in a error case.
190  *
191  * This one will handle the per-inode data rsv map for accurate reserved
192  * space framework.
193  */
194 void btrfs_free_reserved_data_space(struct inode *inode,
195 			struct extent_changeset *reserved, u64 start, u64 len)
196 {
197 	struct btrfs_root *root = BTRFS_I(inode)->root;
198 
199 	/* Make sure the range is aligned to sectorsize */
200 	len = round_up(start + len, root->fs_info->sectorsize) -
201 	      round_down(start, root->fs_info->sectorsize);
202 	start = round_down(start, root->fs_info->sectorsize);
203 
204 	btrfs_free_reserved_data_space_noquota(inode, start, len);
205 	btrfs_qgroup_free_data(inode, reserved, start, len);
206 }
207 
208 /**
209  * btrfs_inode_rsv_release - release any excessive reservation.
210  * @inode - the inode we need to release from.
211  * @qgroup_free - free or convert qgroup meta.
212  *   Unlike normal operation, qgroup meta reservation needs to know if we are
213  *   freeing qgroup reservation or just converting it into per-trans.  Normally
214  *   @qgroup_free is true for error handling, and false for normal release.
215  *
216  * This is the same as btrfs_block_rsv_release, except that it handles the
217  * tracepoint for the reservation.
218  */
219 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
220 {
221 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
222 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
223 	u64 released = 0;
224 	u64 qgroup_to_release = 0;
225 
226 	/*
227 	 * Since we statically set the block_rsv->size we just want to say we
228 	 * are releasing 0 bytes, and then we'll just get the reservation over
229 	 * the size free'd.
230 	 */
231 	released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
232 					     &qgroup_to_release);
233 	if (released > 0)
234 		trace_btrfs_space_reservation(fs_info, "delalloc",
235 					      btrfs_ino(inode), released, 0);
236 	if (qgroup_free)
237 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
238 	else
239 		btrfs_qgroup_convert_reserved_meta(inode->root,
240 						   qgroup_to_release);
241 }
242 
243 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
244 						 struct btrfs_inode *inode)
245 {
246 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
247 	u64 reserve_size = 0;
248 	u64 qgroup_rsv_size = 0;
249 	u64 csum_leaves;
250 	unsigned outstanding_extents;
251 
252 	lockdep_assert_held(&inode->lock);
253 	outstanding_extents = inode->outstanding_extents;
254 
255 	/*
256 	 * Insert size for the number of outstanding extents, 1 normal size for
257 	 * updating the inode.
258 	 */
259 	if (outstanding_extents) {
260 		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
261 						outstanding_extents);
262 		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
263 	}
264 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
265 						 inode->csum_bytes);
266 	reserve_size += btrfs_calc_insert_metadata_size(fs_info,
267 							csum_leaves);
268 	/*
269 	 * For qgroup rsv, the calculation is very simple:
270 	 * account one nodesize for each outstanding extent
271 	 *
272 	 * This is overestimating in most cases.
273 	 */
274 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
275 
276 	spin_lock(&block_rsv->lock);
277 	block_rsv->size = reserve_size;
278 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
279 	spin_unlock(&block_rsv->lock);
280 }
281 
282 static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
283 				    u64 num_bytes, u64 *meta_reserve,
284 				    u64 *qgroup_reserve)
285 {
286 	u64 nr_extents = count_max_extents(num_bytes);
287 	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
288 	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
289 
290 	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
291 						nr_extents + csum_leaves);
292 
293 	/*
294 	 * finish_ordered_io has to update the inode, so add the space required
295 	 * for an inode update.
296 	 */
297 	*meta_reserve += inode_update;
298 	*qgroup_reserve = nr_extents * fs_info->nodesize;
299 }
300 
301 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
302 {
303 	struct btrfs_root *root = inode->root;
304 	struct btrfs_fs_info *fs_info = root->fs_info;
305 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
306 	u64 meta_reserve, qgroup_reserve;
307 	unsigned nr_extents;
308 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
309 	int ret = 0;
310 
311 	/*
312 	 * If we are a free space inode we need to not flush since we will be in
313 	 * the middle of a transaction commit.  We also don't need the delalloc
314 	 * mutex since we won't race with anybody.  We need this mostly to make
315 	 * lockdep shut its filthy mouth.
316 	 *
317 	 * If we have a transaction open (can happen if we call truncate_block
318 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
319 	 */
320 	if (btrfs_is_free_space_inode(inode)) {
321 		flush = BTRFS_RESERVE_NO_FLUSH;
322 	} else {
323 		if (current->journal_info)
324 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
325 
326 		if (btrfs_transaction_in_commit(fs_info))
327 			schedule_timeout(1);
328 	}
329 
330 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
331 
332 	/*
333 	 * We always want to do it this way, every other way is wrong and ends
334 	 * in tears.  Pre-reserving the amount we are going to add will always
335 	 * be the right way, because otherwise if we have enough parallelism we
336 	 * could end up with thousands of inodes all holding little bits of
337 	 * reservations they were able to make previously and the only way to
338 	 * reclaim that space is to ENOSPC out the operations and clear
339 	 * everything out and try again, which is bad.  This way we just
340 	 * over-reserve slightly, and clean up the mess when we are done.
341 	 */
342 	calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
343 				&qgroup_reserve);
344 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
345 	if (ret)
346 		return ret;
347 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
348 	if (ret) {
349 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
350 		return ret;
351 	}
352 
353 	/*
354 	 * Now we need to update our outstanding extents and csum bytes _first_
355 	 * and then add the reservation to the block_rsv.  This keeps us from
356 	 * racing with an ordered completion or some such that would think it
357 	 * needs to free the reservation we just made.
358 	 */
359 	spin_lock(&inode->lock);
360 	nr_extents = count_max_extents(num_bytes);
361 	btrfs_mod_outstanding_extents(inode, nr_extents);
362 	inode->csum_bytes += num_bytes;
363 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
364 	spin_unlock(&inode->lock);
365 
366 	/* Now we can safely add our space to our block rsv */
367 	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
368 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
369 				      btrfs_ino(inode), meta_reserve, 1);
370 
371 	spin_lock(&block_rsv->lock);
372 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
373 	spin_unlock(&block_rsv->lock);
374 
375 	return 0;
376 }
377 
378 /**
379  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
380  * @inode: the inode to release the reservation for.
381  * @num_bytes: the number of bytes we are releasing.
382  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
383  *
384  * This will release the metadata reservation for an inode.  This can be called
385  * once we complete IO for a given set of bytes to release their metadata
386  * reservations, or on error for the same reason.
387  */
388 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
389 				     bool qgroup_free)
390 {
391 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
392 
393 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
394 	spin_lock(&inode->lock);
395 	inode->csum_bytes -= num_bytes;
396 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
397 	spin_unlock(&inode->lock);
398 
399 	if (btrfs_is_testing(fs_info))
400 		return;
401 
402 	btrfs_inode_rsv_release(inode, qgroup_free);
403 }
404 
405 /**
406  * btrfs_delalloc_release_extents - release our outstanding_extents
407  * @inode: the inode to balance the reservation for.
408  * @num_bytes: the number of bytes we originally reserved with
409  *
410  * When we reserve space we increase outstanding_extents for the extents we may
411  * add.  Once we've set the range as delalloc or created our ordered extents we
412  * have outstanding_extents to track the real usage, so we use this to free our
413  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
414  * with btrfs_delalloc_reserve_metadata.
415  */
416 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
417 {
418 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
419 	unsigned num_extents;
420 
421 	spin_lock(&inode->lock);
422 	num_extents = count_max_extents(num_bytes);
423 	btrfs_mod_outstanding_extents(inode, -num_extents);
424 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
425 	spin_unlock(&inode->lock);
426 
427 	if (btrfs_is_testing(fs_info))
428 		return;
429 
430 	btrfs_inode_rsv_release(inode, true);
431 }
432 
433 /**
434  * btrfs_delalloc_reserve_space - reserve data and metadata space for
435  * delalloc
436  * @inode: inode we're writing to
437  * @start: start range we are writing to
438  * @len: how long the range we are writing to
439  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
440  * 	      current reservation.
441  *
442  * This will do the following things
443  *
444  * - reserve space in data space info for num bytes
445  *   and reserve precious corresponding qgroup space
446  *   (Done in check_data_free_space)
447  *
448  * - reserve space for metadata space, based on the number of outstanding
449  *   extents and how much csums will be needed
450  *   also reserve metadata space in a per root over-reserve method.
451  * - add to the inodes->delalloc_bytes
452  * - add it to the fs_info's delalloc inodes list.
453  *   (Above 3 all done in delalloc_reserve_metadata)
454  *
455  * Return 0 for success
456  * Return <0 for error(-ENOSPC or -EQUOT)
457  */
458 int btrfs_delalloc_reserve_space(struct inode *inode,
459 			struct extent_changeset **reserved, u64 start, u64 len)
460 {
461 	int ret;
462 
463 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
464 	if (ret < 0)
465 		return ret;
466 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
467 	if (ret < 0)
468 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
469 	return ret;
470 }
471 
472 /**
473  * btrfs_delalloc_release_space - release data and metadata space for delalloc
474  * @inode: inode we're releasing space for
475  * @start: start position of the space already reserved
476  * @len: the len of the space already reserved
477  * @release_bytes: the len of the space we consumed or didn't use
478  *
479  * This function will release the metadata space that was not used and will
480  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
481  * list if there are no delalloc bytes left.
482  * Also it will handle the qgroup reserved space.
483  */
484 void btrfs_delalloc_release_space(struct inode *inode,
485 				  struct extent_changeset *reserved,
486 				  u64 start, u64 len, bool qgroup_free)
487 {
488 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
489 	btrfs_free_reserved_data_space(inode, reserved, start, len);
490 }
491