xref: /linux/fs/btrfs/extent-tree.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 
36 #undef SCRAMBLE_DELAYED_REFS
37 
38 
39 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
40 			       struct btrfs_delayed_ref_node *node, u64 parent,
41 			       u64 root_objectid, u64 owner_objectid,
42 			       u64 owner_offset, int refs_to_drop,
43 			       struct btrfs_delayed_extent_op *extra_op);
44 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
45 				    struct extent_buffer *leaf,
46 				    struct btrfs_extent_item *ei);
47 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
48 				      u64 parent, u64 root_objectid,
49 				      u64 flags, u64 owner, u64 offset,
50 				      struct btrfs_key *ins, int ref_mod);
51 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
52 				     struct btrfs_delayed_ref_node *node,
53 				     struct btrfs_delayed_extent_op *extent_op);
54 static int find_next_key(struct btrfs_path *path, int level,
55 			 struct btrfs_key *key);
56 
57 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
58 {
59 	return (cache->flags & bits) == bits;
60 }
61 
62 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
63 			      u64 start, u64 num_bytes)
64 {
65 	u64 end = start + num_bytes - 1;
66 	set_extent_bits(&fs_info->freed_extents[0],
67 			start, end, EXTENT_UPTODATE);
68 	set_extent_bits(&fs_info->freed_extents[1],
69 			start, end, EXTENT_UPTODATE);
70 	return 0;
71 }
72 
73 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
74 {
75 	struct btrfs_fs_info *fs_info = cache->fs_info;
76 	u64 start, end;
77 
78 	start = cache->start;
79 	end = start + cache->length - 1;
80 
81 	clear_extent_bits(&fs_info->freed_extents[0],
82 			  start, end, EXTENT_UPTODATE);
83 	clear_extent_bits(&fs_info->freed_extents[1],
84 			  start, end, EXTENT_UPTODATE);
85 }
86 
87 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
88 {
89 	if (ref->type == BTRFS_REF_METADATA) {
90 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
91 			return BTRFS_BLOCK_GROUP_SYSTEM;
92 		else
93 			return BTRFS_BLOCK_GROUP_METADATA;
94 	}
95 	return BTRFS_BLOCK_GROUP_DATA;
96 }
97 
98 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
99 			     struct btrfs_ref *ref)
100 {
101 	struct btrfs_space_info *space_info;
102 	u64 flags = generic_ref_to_space_flags(ref);
103 
104 	space_info = btrfs_find_space_info(fs_info, flags);
105 	ASSERT(space_info);
106 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
107 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
108 }
109 
110 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
111 			     struct btrfs_ref *ref)
112 {
113 	struct btrfs_space_info *space_info;
114 	u64 flags = generic_ref_to_space_flags(ref);
115 
116 	space_info = btrfs_find_space_info(fs_info, flags);
117 	ASSERT(space_info);
118 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
119 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
120 }
121 
122 /* simple helper to search for an existing data extent at a given offset */
123 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
124 {
125 	int ret;
126 	struct btrfs_key key;
127 	struct btrfs_path *path;
128 
129 	path = btrfs_alloc_path();
130 	if (!path)
131 		return -ENOMEM;
132 
133 	key.objectid = start;
134 	key.offset = len;
135 	key.type = BTRFS_EXTENT_ITEM_KEY;
136 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
137 	btrfs_free_path(path);
138 	return ret;
139 }
140 
141 /*
142  * helper function to lookup reference count and flags of a tree block.
143  *
144  * the head node for delayed ref is used to store the sum of all the
145  * reference count modifications queued up in the rbtree. the head
146  * node may also store the extent flags to set. This way you can check
147  * to see what the reference count and extent flags would be if all of
148  * the delayed refs are not processed.
149  */
150 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
151 			     struct btrfs_fs_info *fs_info, u64 bytenr,
152 			     u64 offset, int metadata, u64 *refs, u64 *flags)
153 {
154 	struct btrfs_delayed_ref_head *head;
155 	struct btrfs_delayed_ref_root *delayed_refs;
156 	struct btrfs_path *path;
157 	struct btrfs_extent_item *ei;
158 	struct extent_buffer *leaf;
159 	struct btrfs_key key;
160 	u32 item_size;
161 	u64 num_refs;
162 	u64 extent_flags;
163 	int ret;
164 
165 	/*
166 	 * If we don't have skinny metadata, don't bother doing anything
167 	 * different
168 	 */
169 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
170 		offset = fs_info->nodesize;
171 		metadata = 0;
172 	}
173 
174 	path = btrfs_alloc_path();
175 	if (!path)
176 		return -ENOMEM;
177 
178 	if (!trans) {
179 		path->skip_locking = 1;
180 		path->search_commit_root = 1;
181 	}
182 
183 search_again:
184 	key.objectid = bytenr;
185 	key.offset = offset;
186 	if (metadata)
187 		key.type = BTRFS_METADATA_ITEM_KEY;
188 	else
189 		key.type = BTRFS_EXTENT_ITEM_KEY;
190 
191 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
192 	if (ret < 0)
193 		goto out_free;
194 
195 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
196 		if (path->slots[0]) {
197 			path->slots[0]--;
198 			btrfs_item_key_to_cpu(path->nodes[0], &key,
199 					      path->slots[0]);
200 			if (key.objectid == bytenr &&
201 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
202 			    key.offset == fs_info->nodesize)
203 				ret = 0;
204 		}
205 	}
206 
207 	if (ret == 0) {
208 		leaf = path->nodes[0];
209 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
210 		if (item_size >= sizeof(*ei)) {
211 			ei = btrfs_item_ptr(leaf, path->slots[0],
212 					    struct btrfs_extent_item);
213 			num_refs = btrfs_extent_refs(leaf, ei);
214 			extent_flags = btrfs_extent_flags(leaf, ei);
215 		} else {
216 			ret = -EINVAL;
217 			btrfs_print_v0_err(fs_info);
218 			if (trans)
219 				btrfs_abort_transaction(trans, ret);
220 			else
221 				btrfs_handle_fs_error(fs_info, ret, NULL);
222 
223 			goto out_free;
224 		}
225 
226 		BUG_ON(num_refs == 0);
227 	} else {
228 		num_refs = 0;
229 		extent_flags = 0;
230 		ret = 0;
231 	}
232 
233 	if (!trans)
234 		goto out;
235 
236 	delayed_refs = &trans->transaction->delayed_refs;
237 	spin_lock(&delayed_refs->lock);
238 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
239 	if (head) {
240 		if (!mutex_trylock(&head->mutex)) {
241 			refcount_inc(&head->refs);
242 			spin_unlock(&delayed_refs->lock);
243 
244 			btrfs_release_path(path);
245 
246 			/*
247 			 * Mutex was contended, block until it's released and try
248 			 * again
249 			 */
250 			mutex_lock(&head->mutex);
251 			mutex_unlock(&head->mutex);
252 			btrfs_put_delayed_ref_head(head);
253 			goto search_again;
254 		}
255 		spin_lock(&head->lock);
256 		if (head->extent_op && head->extent_op->update_flags)
257 			extent_flags |= head->extent_op->flags_to_set;
258 		else
259 			BUG_ON(num_refs == 0);
260 
261 		num_refs += head->ref_mod;
262 		spin_unlock(&head->lock);
263 		mutex_unlock(&head->mutex);
264 	}
265 	spin_unlock(&delayed_refs->lock);
266 out:
267 	WARN_ON(num_refs == 0);
268 	if (refs)
269 		*refs = num_refs;
270 	if (flags)
271 		*flags = extent_flags;
272 out_free:
273 	btrfs_free_path(path);
274 	return ret;
275 }
276 
277 /*
278  * Back reference rules.  Back refs have three main goals:
279  *
280  * 1) differentiate between all holders of references to an extent so that
281  *    when a reference is dropped we can make sure it was a valid reference
282  *    before freeing the extent.
283  *
284  * 2) Provide enough information to quickly find the holders of an extent
285  *    if we notice a given block is corrupted or bad.
286  *
287  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
288  *    maintenance.  This is actually the same as #2, but with a slightly
289  *    different use case.
290  *
291  * There are two kinds of back refs. The implicit back refs is optimized
292  * for pointers in non-shared tree blocks. For a given pointer in a block,
293  * back refs of this kind provide information about the block's owner tree
294  * and the pointer's key. These information allow us to find the block by
295  * b-tree searching. The full back refs is for pointers in tree blocks not
296  * referenced by their owner trees. The location of tree block is recorded
297  * in the back refs. Actually the full back refs is generic, and can be
298  * used in all cases the implicit back refs is used. The major shortcoming
299  * of the full back refs is its overhead. Every time a tree block gets
300  * COWed, we have to update back refs entry for all pointers in it.
301  *
302  * For a newly allocated tree block, we use implicit back refs for
303  * pointers in it. This means most tree related operations only involve
304  * implicit back refs. For a tree block created in old transaction, the
305  * only way to drop a reference to it is COW it. So we can detect the
306  * event that tree block loses its owner tree's reference and do the
307  * back refs conversion.
308  *
309  * When a tree block is COWed through a tree, there are four cases:
310  *
311  * The reference count of the block is one and the tree is the block's
312  * owner tree. Nothing to do in this case.
313  *
314  * The reference count of the block is one and the tree is not the
315  * block's owner tree. In this case, full back refs is used for pointers
316  * in the block. Remove these full back refs, add implicit back refs for
317  * every pointers in the new block.
318  *
319  * The reference count of the block is greater than one and the tree is
320  * the block's owner tree. In this case, implicit back refs is used for
321  * pointers in the block. Add full back refs for every pointers in the
322  * block, increase lower level extents' reference counts. The original
323  * implicit back refs are entailed to the new block.
324  *
325  * The reference count of the block is greater than one and the tree is
326  * not the block's owner tree. Add implicit back refs for every pointer in
327  * the new block, increase lower level extents' reference count.
328  *
329  * Back Reference Key composing:
330  *
331  * The key objectid corresponds to the first byte in the extent,
332  * The key type is used to differentiate between types of back refs.
333  * There are different meanings of the key offset for different types
334  * of back refs.
335  *
336  * File extents can be referenced by:
337  *
338  * - multiple snapshots, subvolumes, or different generations in one subvol
339  * - different files inside a single subvolume
340  * - different offsets inside a file (bookend extents in file.c)
341  *
342  * The extent ref structure for the implicit back refs has fields for:
343  *
344  * - Objectid of the subvolume root
345  * - objectid of the file holding the reference
346  * - original offset in the file
347  * - how many bookend extents
348  *
349  * The key offset for the implicit back refs is hash of the first
350  * three fields.
351  *
352  * The extent ref structure for the full back refs has field for:
353  *
354  * - number of pointers in the tree leaf
355  *
356  * The key offset for the implicit back refs is the first byte of
357  * the tree leaf
358  *
359  * When a file extent is allocated, The implicit back refs is used.
360  * the fields are filled in:
361  *
362  *     (root_key.objectid, inode objectid, offset in file, 1)
363  *
364  * When a file extent is removed file truncation, we find the
365  * corresponding implicit back refs and check the following fields:
366  *
367  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
368  *
369  * Btree extents can be referenced by:
370  *
371  * - Different subvolumes
372  *
373  * Both the implicit back refs and the full back refs for tree blocks
374  * only consist of key. The key offset for the implicit back refs is
375  * objectid of block's owner tree. The key offset for the full back refs
376  * is the first byte of parent block.
377  *
378  * When implicit back refs is used, information about the lowest key and
379  * level of the tree block are required. These information are stored in
380  * tree block info structure.
381  */
382 
383 /*
384  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
385  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
386  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
387  */
388 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
389 				     struct btrfs_extent_inline_ref *iref,
390 				     enum btrfs_inline_ref_type is_data)
391 {
392 	int type = btrfs_extent_inline_ref_type(eb, iref);
393 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
394 
395 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
396 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
397 	    type == BTRFS_SHARED_DATA_REF_KEY ||
398 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
399 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
400 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
401 				return type;
402 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
403 				ASSERT(eb->fs_info);
404 				/*
405 				 * Every shared one has parent tree
406 				 * block, which must be aligned to
407 				 * nodesize.
408 				 */
409 				if (offset &&
410 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
411 					return type;
412 			}
413 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
414 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
415 				return type;
416 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
417 				ASSERT(eb->fs_info);
418 				/*
419 				 * Every shared one has parent tree
420 				 * block, which must be aligned to
421 				 * nodesize.
422 				 */
423 				if (offset &&
424 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
425 					return type;
426 			}
427 		} else {
428 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
429 			return type;
430 		}
431 	}
432 
433 	btrfs_print_leaf((struct extent_buffer *)eb);
434 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
435 		  eb->start, type);
436 	WARN_ON(1);
437 
438 	return BTRFS_REF_TYPE_INVALID;
439 }
440 
441 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
442 {
443 	u32 high_crc = ~(u32)0;
444 	u32 low_crc = ~(u32)0;
445 	__le64 lenum;
446 
447 	lenum = cpu_to_le64(root_objectid);
448 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
449 	lenum = cpu_to_le64(owner);
450 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
451 	lenum = cpu_to_le64(offset);
452 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
453 
454 	return ((u64)high_crc << 31) ^ (u64)low_crc;
455 }
456 
457 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
458 				     struct btrfs_extent_data_ref *ref)
459 {
460 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
461 				    btrfs_extent_data_ref_objectid(leaf, ref),
462 				    btrfs_extent_data_ref_offset(leaf, ref));
463 }
464 
465 static int match_extent_data_ref(struct extent_buffer *leaf,
466 				 struct btrfs_extent_data_ref *ref,
467 				 u64 root_objectid, u64 owner, u64 offset)
468 {
469 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
470 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
471 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
472 		return 0;
473 	return 1;
474 }
475 
476 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
477 					   struct btrfs_path *path,
478 					   u64 bytenr, u64 parent,
479 					   u64 root_objectid,
480 					   u64 owner, u64 offset)
481 {
482 	struct btrfs_root *root = trans->fs_info->extent_root;
483 	struct btrfs_key key;
484 	struct btrfs_extent_data_ref *ref;
485 	struct extent_buffer *leaf;
486 	u32 nritems;
487 	int ret;
488 	int recow;
489 	int err = -ENOENT;
490 
491 	key.objectid = bytenr;
492 	if (parent) {
493 		key.type = BTRFS_SHARED_DATA_REF_KEY;
494 		key.offset = parent;
495 	} else {
496 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
497 		key.offset = hash_extent_data_ref(root_objectid,
498 						  owner, offset);
499 	}
500 again:
501 	recow = 0;
502 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
503 	if (ret < 0) {
504 		err = ret;
505 		goto fail;
506 	}
507 
508 	if (parent) {
509 		if (!ret)
510 			return 0;
511 		goto fail;
512 	}
513 
514 	leaf = path->nodes[0];
515 	nritems = btrfs_header_nritems(leaf);
516 	while (1) {
517 		if (path->slots[0] >= nritems) {
518 			ret = btrfs_next_leaf(root, path);
519 			if (ret < 0)
520 				err = ret;
521 			if (ret)
522 				goto fail;
523 
524 			leaf = path->nodes[0];
525 			nritems = btrfs_header_nritems(leaf);
526 			recow = 1;
527 		}
528 
529 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
530 		if (key.objectid != bytenr ||
531 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
532 			goto fail;
533 
534 		ref = btrfs_item_ptr(leaf, path->slots[0],
535 				     struct btrfs_extent_data_ref);
536 
537 		if (match_extent_data_ref(leaf, ref, root_objectid,
538 					  owner, offset)) {
539 			if (recow) {
540 				btrfs_release_path(path);
541 				goto again;
542 			}
543 			err = 0;
544 			break;
545 		}
546 		path->slots[0]++;
547 	}
548 fail:
549 	return err;
550 }
551 
552 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
553 					   struct btrfs_path *path,
554 					   u64 bytenr, u64 parent,
555 					   u64 root_objectid, u64 owner,
556 					   u64 offset, int refs_to_add)
557 {
558 	struct btrfs_root *root = trans->fs_info->extent_root;
559 	struct btrfs_key key;
560 	struct extent_buffer *leaf;
561 	u32 size;
562 	u32 num_refs;
563 	int ret;
564 
565 	key.objectid = bytenr;
566 	if (parent) {
567 		key.type = BTRFS_SHARED_DATA_REF_KEY;
568 		key.offset = parent;
569 		size = sizeof(struct btrfs_shared_data_ref);
570 	} else {
571 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
572 		key.offset = hash_extent_data_ref(root_objectid,
573 						  owner, offset);
574 		size = sizeof(struct btrfs_extent_data_ref);
575 	}
576 
577 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
578 	if (ret && ret != -EEXIST)
579 		goto fail;
580 
581 	leaf = path->nodes[0];
582 	if (parent) {
583 		struct btrfs_shared_data_ref *ref;
584 		ref = btrfs_item_ptr(leaf, path->slots[0],
585 				     struct btrfs_shared_data_ref);
586 		if (ret == 0) {
587 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
588 		} else {
589 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
590 			num_refs += refs_to_add;
591 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
592 		}
593 	} else {
594 		struct btrfs_extent_data_ref *ref;
595 		while (ret == -EEXIST) {
596 			ref = btrfs_item_ptr(leaf, path->slots[0],
597 					     struct btrfs_extent_data_ref);
598 			if (match_extent_data_ref(leaf, ref, root_objectid,
599 						  owner, offset))
600 				break;
601 			btrfs_release_path(path);
602 			key.offset++;
603 			ret = btrfs_insert_empty_item(trans, root, path, &key,
604 						      size);
605 			if (ret && ret != -EEXIST)
606 				goto fail;
607 
608 			leaf = path->nodes[0];
609 		}
610 		ref = btrfs_item_ptr(leaf, path->slots[0],
611 				     struct btrfs_extent_data_ref);
612 		if (ret == 0) {
613 			btrfs_set_extent_data_ref_root(leaf, ref,
614 						       root_objectid);
615 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
616 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
617 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
618 		} else {
619 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
620 			num_refs += refs_to_add;
621 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
622 		}
623 	}
624 	btrfs_mark_buffer_dirty(leaf);
625 	ret = 0;
626 fail:
627 	btrfs_release_path(path);
628 	return ret;
629 }
630 
631 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
632 					   struct btrfs_path *path,
633 					   int refs_to_drop, int *last_ref)
634 {
635 	struct btrfs_key key;
636 	struct btrfs_extent_data_ref *ref1 = NULL;
637 	struct btrfs_shared_data_ref *ref2 = NULL;
638 	struct extent_buffer *leaf;
639 	u32 num_refs = 0;
640 	int ret = 0;
641 
642 	leaf = path->nodes[0];
643 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
644 
645 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
646 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
647 				      struct btrfs_extent_data_ref);
648 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
649 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
650 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
651 				      struct btrfs_shared_data_ref);
652 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
653 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
654 		btrfs_print_v0_err(trans->fs_info);
655 		btrfs_abort_transaction(trans, -EINVAL);
656 		return -EINVAL;
657 	} else {
658 		BUG();
659 	}
660 
661 	BUG_ON(num_refs < refs_to_drop);
662 	num_refs -= refs_to_drop;
663 
664 	if (num_refs == 0) {
665 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
666 		*last_ref = 1;
667 	} else {
668 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
669 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
670 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
671 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
672 		btrfs_mark_buffer_dirty(leaf);
673 	}
674 	return ret;
675 }
676 
677 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
678 					  struct btrfs_extent_inline_ref *iref)
679 {
680 	struct btrfs_key key;
681 	struct extent_buffer *leaf;
682 	struct btrfs_extent_data_ref *ref1;
683 	struct btrfs_shared_data_ref *ref2;
684 	u32 num_refs = 0;
685 	int type;
686 
687 	leaf = path->nodes[0];
688 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
689 
690 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
691 	if (iref) {
692 		/*
693 		 * If type is invalid, we should have bailed out earlier than
694 		 * this call.
695 		 */
696 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
697 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
698 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
699 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
700 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
701 		} else {
702 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
703 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
704 		}
705 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
706 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
707 				      struct btrfs_extent_data_ref);
708 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
709 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
710 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
711 				      struct btrfs_shared_data_ref);
712 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
713 	} else {
714 		WARN_ON(1);
715 	}
716 	return num_refs;
717 }
718 
719 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
720 					  struct btrfs_path *path,
721 					  u64 bytenr, u64 parent,
722 					  u64 root_objectid)
723 {
724 	struct btrfs_root *root = trans->fs_info->extent_root;
725 	struct btrfs_key key;
726 	int ret;
727 
728 	key.objectid = bytenr;
729 	if (parent) {
730 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
731 		key.offset = parent;
732 	} else {
733 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
734 		key.offset = root_objectid;
735 	}
736 
737 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
738 	if (ret > 0)
739 		ret = -ENOENT;
740 	return ret;
741 }
742 
743 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
744 					  struct btrfs_path *path,
745 					  u64 bytenr, u64 parent,
746 					  u64 root_objectid)
747 {
748 	struct btrfs_key key;
749 	int ret;
750 
751 	key.objectid = bytenr;
752 	if (parent) {
753 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
754 		key.offset = parent;
755 	} else {
756 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
757 		key.offset = root_objectid;
758 	}
759 
760 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
761 				      path, &key, 0);
762 	btrfs_release_path(path);
763 	return ret;
764 }
765 
766 static inline int extent_ref_type(u64 parent, u64 owner)
767 {
768 	int type;
769 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
770 		if (parent > 0)
771 			type = BTRFS_SHARED_BLOCK_REF_KEY;
772 		else
773 			type = BTRFS_TREE_BLOCK_REF_KEY;
774 	} else {
775 		if (parent > 0)
776 			type = BTRFS_SHARED_DATA_REF_KEY;
777 		else
778 			type = BTRFS_EXTENT_DATA_REF_KEY;
779 	}
780 	return type;
781 }
782 
783 static int find_next_key(struct btrfs_path *path, int level,
784 			 struct btrfs_key *key)
785 
786 {
787 	for (; level < BTRFS_MAX_LEVEL; level++) {
788 		if (!path->nodes[level])
789 			break;
790 		if (path->slots[level] + 1 >=
791 		    btrfs_header_nritems(path->nodes[level]))
792 			continue;
793 		if (level == 0)
794 			btrfs_item_key_to_cpu(path->nodes[level], key,
795 					      path->slots[level] + 1);
796 		else
797 			btrfs_node_key_to_cpu(path->nodes[level], key,
798 					      path->slots[level] + 1);
799 		return 0;
800 	}
801 	return 1;
802 }
803 
804 /*
805  * look for inline back ref. if back ref is found, *ref_ret is set
806  * to the address of inline back ref, and 0 is returned.
807  *
808  * if back ref isn't found, *ref_ret is set to the address where it
809  * should be inserted, and -ENOENT is returned.
810  *
811  * if insert is true and there are too many inline back refs, the path
812  * points to the extent item, and -EAGAIN is returned.
813  *
814  * NOTE: inline back refs are ordered in the same way that back ref
815  *	 items in the tree are ordered.
816  */
817 static noinline_for_stack
818 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
819 				 struct btrfs_path *path,
820 				 struct btrfs_extent_inline_ref **ref_ret,
821 				 u64 bytenr, u64 num_bytes,
822 				 u64 parent, u64 root_objectid,
823 				 u64 owner, u64 offset, int insert)
824 {
825 	struct btrfs_fs_info *fs_info = trans->fs_info;
826 	struct btrfs_root *root = fs_info->extent_root;
827 	struct btrfs_key key;
828 	struct extent_buffer *leaf;
829 	struct btrfs_extent_item *ei;
830 	struct btrfs_extent_inline_ref *iref;
831 	u64 flags;
832 	u64 item_size;
833 	unsigned long ptr;
834 	unsigned long end;
835 	int extra_size;
836 	int type;
837 	int want;
838 	int ret;
839 	int err = 0;
840 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
841 	int needed;
842 
843 	key.objectid = bytenr;
844 	key.type = BTRFS_EXTENT_ITEM_KEY;
845 	key.offset = num_bytes;
846 
847 	want = extent_ref_type(parent, owner);
848 	if (insert) {
849 		extra_size = btrfs_extent_inline_ref_size(want);
850 		path->keep_locks = 1;
851 	} else
852 		extra_size = -1;
853 
854 	/*
855 	 * Owner is our level, so we can just add one to get the level for the
856 	 * block we are interested in.
857 	 */
858 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
859 		key.type = BTRFS_METADATA_ITEM_KEY;
860 		key.offset = owner;
861 	}
862 
863 again:
864 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
865 	if (ret < 0) {
866 		err = ret;
867 		goto out;
868 	}
869 
870 	/*
871 	 * We may be a newly converted file system which still has the old fat
872 	 * extent entries for metadata, so try and see if we have one of those.
873 	 */
874 	if (ret > 0 && skinny_metadata) {
875 		skinny_metadata = false;
876 		if (path->slots[0]) {
877 			path->slots[0]--;
878 			btrfs_item_key_to_cpu(path->nodes[0], &key,
879 					      path->slots[0]);
880 			if (key.objectid == bytenr &&
881 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
882 			    key.offset == num_bytes)
883 				ret = 0;
884 		}
885 		if (ret) {
886 			key.objectid = bytenr;
887 			key.type = BTRFS_EXTENT_ITEM_KEY;
888 			key.offset = num_bytes;
889 			btrfs_release_path(path);
890 			goto again;
891 		}
892 	}
893 
894 	if (ret && !insert) {
895 		err = -ENOENT;
896 		goto out;
897 	} else if (WARN_ON(ret)) {
898 		err = -EIO;
899 		goto out;
900 	}
901 
902 	leaf = path->nodes[0];
903 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
904 	if (unlikely(item_size < sizeof(*ei))) {
905 		err = -EINVAL;
906 		btrfs_print_v0_err(fs_info);
907 		btrfs_abort_transaction(trans, err);
908 		goto out;
909 	}
910 
911 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
912 	flags = btrfs_extent_flags(leaf, ei);
913 
914 	ptr = (unsigned long)(ei + 1);
915 	end = (unsigned long)ei + item_size;
916 
917 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
918 		ptr += sizeof(struct btrfs_tree_block_info);
919 		BUG_ON(ptr > end);
920 	}
921 
922 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
923 		needed = BTRFS_REF_TYPE_DATA;
924 	else
925 		needed = BTRFS_REF_TYPE_BLOCK;
926 
927 	err = -ENOENT;
928 	while (1) {
929 		if (ptr >= end) {
930 			WARN_ON(ptr > end);
931 			break;
932 		}
933 		iref = (struct btrfs_extent_inline_ref *)ptr;
934 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
935 		if (type == BTRFS_REF_TYPE_INVALID) {
936 			err = -EUCLEAN;
937 			goto out;
938 		}
939 
940 		if (want < type)
941 			break;
942 		if (want > type) {
943 			ptr += btrfs_extent_inline_ref_size(type);
944 			continue;
945 		}
946 
947 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
948 			struct btrfs_extent_data_ref *dref;
949 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
950 			if (match_extent_data_ref(leaf, dref, root_objectid,
951 						  owner, offset)) {
952 				err = 0;
953 				break;
954 			}
955 			if (hash_extent_data_ref_item(leaf, dref) <
956 			    hash_extent_data_ref(root_objectid, owner, offset))
957 				break;
958 		} else {
959 			u64 ref_offset;
960 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
961 			if (parent > 0) {
962 				if (parent == ref_offset) {
963 					err = 0;
964 					break;
965 				}
966 				if (ref_offset < parent)
967 					break;
968 			} else {
969 				if (root_objectid == ref_offset) {
970 					err = 0;
971 					break;
972 				}
973 				if (ref_offset < root_objectid)
974 					break;
975 			}
976 		}
977 		ptr += btrfs_extent_inline_ref_size(type);
978 	}
979 	if (err == -ENOENT && insert) {
980 		if (item_size + extra_size >=
981 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
982 			err = -EAGAIN;
983 			goto out;
984 		}
985 		/*
986 		 * To add new inline back ref, we have to make sure
987 		 * there is no corresponding back ref item.
988 		 * For simplicity, we just do not add new inline back
989 		 * ref if there is any kind of item for this block
990 		 */
991 		if (find_next_key(path, 0, &key) == 0 &&
992 		    key.objectid == bytenr &&
993 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
994 			err = -EAGAIN;
995 			goto out;
996 		}
997 	}
998 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
999 out:
1000 	if (insert) {
1001 		path->keep_locks = 0;
1002 		btrfs_unlock_up_safe(path, 1);
1003 	}
1004 	return err;
1005 }
1006 
1007 /*
1008  * helper to add new inline back ref
1009  */
1010 static noinline_for_stack
1011 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1012 				 struct btrfs_path *path,
1013 				 struct btrfs_extent_inline_ref *iref,
1014 				 u64 parent, u64 root_objectid,
1015 				 u64 owner, u64 offset, int refs_to_add,
1016 				 struct btrfs_delayed_extent_op *extent_op)
1017 {
1018 	struct extent_buffer *leaf;
1019 	struct btrfs_extent_item *ei;
1020 	unsigned long ptr;
1021 	unsigned long end;
1022 	unsigned long item_offset;
1023 	u64 refs;
1024 	int size;
1025 	int type;
1026 
1027 	leaf = path->nodes[0];
1028 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1029 	item_offset = (unsigned long)iref - (unsigned long)ei;
1030 
1031 	type = extent_ref_type(parent, owner);
1032 	size = btrfs_extent_inline_ref_size(type);
1033 
1034 	btrfs_extend_item(path, size);
1035 
1036 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1037 	refs = btrfs_extent_refs(leaf, ei);
1038 	refs += refs_to_add;
1039 	btrfs_set_extent_refs(leaf, ei, refs);
1040 	if (extent_op)
1041 		__run_delayed_extent_op(extent_op, leaf, ei);
1042 
1043 	ptr = (unsigned long)ei + item_offset;
1044 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1045 	if (ptr < end - size)
1046 		memmove_extent_buffer(leaf, ptr + size, ptr,
1047 				      end - size - ptr);
1048 
1049 	iref = (struct btrfs_extent_inline_ref *)ptr;
1050 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1051 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1052 		struct btrfs_extent_data_ref *dref;
1053 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1054 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1055 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1056 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1057 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1058 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1059 		struct btrfs_shared_data_ref *sref;
1060 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1061 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1062 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1063 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1064 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1065 	} else {
1066 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1067 	}
1068 	btrfs_mark_buffer_dirty(leaf);
1069 }
1070 
1071 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1072 				 struct btrfs_path *path,
1073 				 struct btrfs_extent_inline_ref **ref_ret,
1074 				 u64 bytenr, u64 num_bytes, u64 parent,
1075 				 u64 root_objectid, u64 owner, u64 offset)
1076 {
1077 	int ret;
1078 
1079 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1080 					   num_bytes, parent, root_objectid,
1081 					   owner, offset, 0);
1082 	if (ret != -ENOENT)
1083 		return ret;
1084 
1085 	btrfs_release_path(path);
1086 	*ref_ret = NULL;
1087 
1088 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1089 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1090 					    root_objectid);
1091 	} else {
1092 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1093 					     root_objectid, owner, offset);
1094 	}
1095 	return ret;
1096 }
1097 
1098 /*
1099  * helper to update/remove inline back ref
1100  */
1101 static noinline_for_stack
1102 void update_inline_extent_backref(struct btrfs_path *path,
1103 				  struct btrfs_extent_inline_ref *iref,
1104 				  int refs_to_mod,
1105 				  struct btrfs_delayed_extent_op *extent_op,
1106 				  int *last_ref)
1107 {
1108 	struct extent_buffer *leaf = path->nodes[0];
1109 	struct btrfs_extent_item *ei;
1110 	struct btrfs_extent_data_ref *dref = NULL;
1111 	struct btrfs_shared_data_ref *sref = NULL;
1112 	unsigned long ptr;
1113 	unsigned long end;
1114 	u32 item_size;
1115 	int size;
1116 	int type;
1117 	u64 refs;
1118 
1119 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 	refs = btrfs_extent_refs(leaf, ei);
1121 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1122 	refs += refs_to_mod;
1123 	btrfs_set_extent_refs(leaf, ei, refs);
1124 	if (extent_op)
1125 		__run_delayed_extent_op(extent_op, leaf, ei);
1126 
1127 	/*
1128 	 * If type is invalid, we should have bailed out after
1129 	 * lookup_inline_extent_backref().
1130 	 */
1131 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1132 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1133 
1134 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1135 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1136 		refs = btrfs_extent_data_ref_count(leaf, dref);
1137 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1138 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1139 		refs = btrfs_shared_data_ref_count(leaf, sref);
1140 	} else {
1141 		refs = 1;
1142 		BUG_ON(refs_to_mod != -1);
1143 	}
1144 
1145 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1146 	refs += refs_to_mod;
1147 
1148 	if (refs > 0) {
1149 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1150 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1151 		else
1152 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1153 	} else {
1154 		*last_ref = 1;
1155 		size =  btrfs_extent_inline_ref_size(type);
1156 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1157 		ptr = (unsigned long)iref;
1158 		end = (unsigned long)ei + item_size;
1159 		if (ptr + size < end)
1160 			memmove_extent_buffer(leaf, ptr, ptr + size,
1161 					      end - ptr - size);
1162 		item_size -= size;
1163 		btrfs_truncate_item(path, item_size, 1);
1164 	}
1165 	btrfs_mark_buffer_dirty(leaf);
1166 }
1167 
1168 static noinline_for_stack
1169 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1170 				 struct btrfs_path *path,
1171 				 u64 bytenr, u64 num_bytes, u64 parent,
1172 				 u64 root_objectid, u64 owner,
1173 				 u64 offset, int refs_to_add,
1174 				 struct btrfs_delayed_extent_op *extent_op)
1175 {
1176 	struct btrfs_extent_inline_ref *iref;
1177 	int ret;
1178 
1179 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1180 					   num_bytes, parent, root_objectid,
1181 					   owner, offset, 1);
1182 	if (ret == 0) {
1183 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1184 		update_inline_extent_backref(path, iref, refs_to_add,
1185 					     extent_op, NULL);
1186 	} else if (ret == -ENOENT) {
1187 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1188 					    root_objectid, owner, offset,
1189 					    refs_to_add, extent_op);
1190 		ret = 0;
1191 	}
1192 	return ret;
1193 }
1194 
1195 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1196 				 struct btrfs_path *path,
1197 				 u64 bytenr, u64 parent, u64 root_objectid,
1198 				 u64 owner, u64 offset, int refs_to_add)
1199 {
1200 	int ret;
1201 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1202 		BUG_ON(refs_to_add != 1);
1203 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1204 					    root_objectid);
1205 	} else {
1206 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1207 					     root_objectid, owner, offset,
1208 					     refs_to_add);
1209 	}
1210 	return ret;
1211 }
1212 
1213 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1214 				 struct btrfs_path *path,
1215 				 struct btrfs_extent_inline_ref *iref,
1216 				 int refs_to_drop, int is_data, int *last_ref)
1217 {
1218 	int ret = 0;
1219 
1220 	BUG_ON(!is_data && refs_to_drop != 1);
1221 	if (iref) {
1222 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1223 					     last_ref);
1224 	} else if (is_data) {
1225 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1226 					     last_ref);
1227 	} else {
1228 		*last_ref = 1;
1229 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1230 	}
1231 	return ret;
1232 }
1233 
1234 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1235 			       u64 *discarded_bytes)
1236 {
1237 	int j, ret = 0;
1238 	u64 bytes_left, end;
1239 	u64 aligned_start = ALIGN(start, 1 << 9);
1240 
1241 	if (WARN_ON(start != aligned_start)) {
1242 		len -= aligned_start - start;
1243 		len = round_down(len, 1 << 9);
1244 		start = aligned_start;
1245 	}
1246 
1247 	*discarded_bytes = 0;
1248 
1249 	if (!len)
1250 		return 0;
1251 
1252 	end = start + len;
1253 	bytes_left = len;
1254 
1255 	/* Skip any superblocks on this device. */
1256 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1257 		u64 sb_start = btrfs_sb_offset(j);
1258 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1259 		u64 size = sb_start - start;
1260 
1261 		if (!in_range(sb_start, start, bytes_left) &&
1262 		    !in_range(sb_end, start, bytes_left) &&
1263 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1264 			continue;
1265 
1266 		/*
1267 		 * Superblock spans beginning of range.  Adjust start and
1268 		 * try again.
1269 		 */
1270 		if (sb_start <= start) {
1271 			start += sb_end - start;
1272 			if (start > end) {
1273 				bytes_left = 0;
1274 				break;
1275 			}
1276 			bytes_left = end - start;
1277 			continue;
1278 		}
1279 
1280 		if (size) {
1281 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1282 						   GFP_NOFS, 0);
1283 			if (!ret)
1284 				*discarded_bytes += size;
1285 			else if (ret != -EOPNOTSUPP)
1286 				return ret;
1287 		}
1288 
1289 		start = sb_end;
1290 		if (start > end) {
1291 			bytes_left = 0;
1292 			break;
1293 		}
1294 		bytes_left = end - start;
1295 	}
1296 
1297 	if (bytes_left) {
1298 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1299 					   GFP_NOFS, 0);
1300 		if (!ret)
1301 			*discarded_bytes += bytes_left;
1302 	}
1303 	return ret;
1304 }
1305 
1306 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1307 			 u64 num_bytes, u64 *actual_bytes)
1308 {
1309 	int ret = 0;
1310 	u64 discarded_bytes = 0;
1311 	u64 end = bytenr + num_bytes;
1312 	u64 cur = bytenr;
1313 	struct btrfs_bio *bbio = NULL;
1314 
1315 
1316 	/*
1317 	 * Avoid races with device replace and make sure our bbio has devices
1318 	 * associated to its stripes that don't go away while we are discarding.
1319 	 */
1320 	btrfs_bio_counter_inc_blocked(fs_info);
1321 	while (cur < end) {
1322 		struct btrfs_bio_stripe *stripe;
1323 		int i;
1324 
1325 		num_bytes = end - cur;
1326 		/* Tell the block device(s) that the sectors can be discarded */
1327 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1328 				      &num_bytes, &bbio, 0);
1329 		/*
1330 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1331 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1332 		 * thus we can't continue anyway.
1333 		 */
1334 		if (ret < 0)
1335 			goto out;
1336 
1337 		stripe = bbio->stripes;
1338 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1339 			u64 bytes;
1340 			struct request_queue *req_q;
1341 
1342 			if (!stripe->dev->bdev) {
1343 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1344 				continue;
1345 			}
1346 			req_q = bdev_get_queue(stripe->dev->bdev);
1347 			if (!blk_queue_discard(req_q))
1348 				continue;
1349 
1350 			ret = btrfs_issue_discard(stripe->dev->bdev,
1351 						  stripe->physical,
1352 						  stripe->length,
1353 						  &bytes);
1354 			if (!ret) {
1355 				discarded_bytes += bytes;
1356 			} else if (ret != -EOPNOTSUPP) {
1357 				/*
1358 				 * Logic errors or -ENOMEM, or -EIO, but
1359 				 * unlikely to happen.
1360 				 *
1361 				 * And since there are two loops, explicitly
1362 				 * go to out to avoid confusion.
1363 				 */
1364 				btrfs_put_bbio(bbio);
1365 				goto out;
1366 			}
1367 
1368 			/*
1369 			 * Just in case we get back EOPNOTSUPP for some reason,
1370 			 * just ignore the return value so we don't screw up
1371 			 * people calling discard_extent.
1372 			 */
1373 			ret = 0;
1374 		}
1375 		btrfs_put_bbio(bbio);
1376 		cur += num_bytes;
1377 	}
1378 out:
1379 	btrfs_bio_counter_dec(fs_info);
1380 
1381 	if (actual_bytes)
1382 		*actual_bytes = discarded_bytes;
1383 
1384 
1385 	if (ret == -EOPNOTSUPP)
1386 		ret = 0;
1387 	return ret;
1388 }
1389 
1390 /* Can return -ENOMEM */
1391 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1392 			 struct btrfs_ref *generic_ref)
1393 {
1394 	struct btrfs_fs_info *fs_info = trans->fs_info;
1395 	int old_ref_mod, new_ref_mod;
1396 	int ret;
1397 
1398 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1399 	       generic_ref->action);
1400 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1401 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1402 
1403 	if (generic_ref->type == BTRFS_REF_METADATA)
1404 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1405 				NULL, &old_ref_mod, &new_ref_mod);
1406 	else
1407 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1408 						 &old_ref_mod, &new_ref_mod);
1409 
1410 	btrfs_ref_tree_mod(fs_info, generic_ref);
1411 
1412 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1413 		sub_pinned_bytes(fs_info, generic_ref);
1414 
1415 	return ret;
1416 }
1417 
1418 /*
1419  * __btrfs_inc_extent_ref - insert backreference for a given extent
1420  *
1421  * @trans:	    Handle of transaction
1422  *
1423  * @node:	    The delayed ref node used to get the bytenr/length for
1424  *		    extent whose references are incremented.
1425  *
1426  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1427  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1428  *		    bytenr of the parent block. Since new extents are always
1429  *		    created with indirect references, this will only be the case
1430  *		    when relocating a shared extent. In that case, root_objectid
1431  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1432  *		    be 0
1433  *
1434  * @root_objectid:  The id of the root where this modification has originated,
1435  *		    this can be either one of the well-known metadata trees or
1436  *		    the subvolume id which references this extent.
1437  *
1438  * @owner:	    For data extents it is the inode number of the owning file.
1439  *		    For metadata extents this parameter holds the level in the
1440  *		    tree of the extent.
1441  *
1442  * @offset:	    For metadata extents the offset is ignored and is currently
1443  *		    always passed as 0. For data extents it is the fileoffset
1444  *		    this extent belongs to.
1445  *
1446  * @refs_to_add     Number of references to add
1447  *
1448  * @extent_op       Pointer to a structure, holding information necessary when
1449  *                  updating a tree block's flags
1450  *
1451  */
1452 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1453 				  struct btrfs_delayed_ref_node *node,
1454 				  u64 parent, u64 root_objectid,
1455 				  u64 owner, u64 offset, int refs_to_add,
1456 				  struct btrfs_delayed_extent_op *extent_op)
1457 {
1458 	struct btrfs_path *path;
1459 	struct extent_buffer *leaf;
1460 	struct btrfs_extent_item *item;
1461 	struct btrfs_key key;
1462 	u64 bytenr = node->bytenr;
1463 	u64 num_bytes = node->num_bytes;
1464 	u64 refs;
1465 	int ret;
1466 
1467 	path = btrfs_alloc_path();
1468 	if (!path)
1469 		return -ENOMEM;
1470 
1471 	path->reada = READA_FORWARD;
1472 	path->leave_spinning = 1;
1473 	/* this will setup the path even if it fails to insert the back ref */
1474 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1475 					   parent, root_objectid, owner,
1476 					   offset, refs_to_add, extent_op);
1477 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1478 		goto out;
1479 
1480 	/*
1481 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1482 	 * inline extent ref, so just update the reference count and add a
1483 	 * normal backref.
1484 	 */
1485 	leaf = path->nodes[0];
1486 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1487 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1488 	refs = btrfs_extent_refs(leaf, item);
1489 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1490 	if (extent_op)
1491 		__run_delayed_extent_op(extent_op, leaf, item);
1492 
1493 	btrfs_mark_buffer_dirty(leaf);
1494 	btrfs_release_path(path);
1495 
1496 	path->reada = READA_FORWARD;
1497 	path->leave_spinning = 1;
1498 	/* now insert the actual backref */
1499 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1500 				    owner, offset, refs_to_add);
1501 	if (ret)
1502 		btrfs_abort_transaction(trans, ret);
1503 out:
1504 	btrfs_free_path(path);
1505 	return ret;
1506 }
1507 
1508 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1509 				struct btrfs_delayed_ref_node *node,
1510 				struct btrfs_delayed_extent_op *extent_op,
1511 				int insert_reserved)
1512 {
1513 	int ret = 0;
1514 	struct btrfs_delayed_data_ref *ref;
1515 	struct btrfs_key ins;
1516 	u64 parent = 0;
1517 	u64 ref_root = 0;
1518 	u64 flags = 0;
1519 
1520 	ins.objectid = node->bytenr;
1521 	ins.offset = node->num_bytes;
1522 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1523 
1524 	ref = btrfs_delayed_node_to_data_ref(node);
1525 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1526 
1527 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1528 		parent = ref->parent;
1529 	ref_root = ref->root;
1530 
1531 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1532 		if (extent_op)
1533 			flags |= extent_op->flags_to_set;
1534 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1535 						 flags, ref->objectid,
1536 						 ref->offset, &ins,
1537 						 node->ref_mod);
1538 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1539 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1540 					     ref->objectid, ref->offset,
1541 					     node->ref_mod, extent_op);
1542 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1543 		ret = __btrfs_free_extent(trans, node, parent,
1544 					  ref_root, ref->objectid,
1545 					  ref->offset, node->ref_mod,
1546 					  extent_op);
1547 	} else {
1548 		BUG();
1549 	}
1550 	return ret;
1551 }
1552 
1553 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1554 				    struct extent_buffer *leaf,
1555 				    struct btrfs_extent_item *ei)
1556 {
1557 	u64 flags = btrfs_extent_flags(leaf, ei);
1558 	if (extent_op->update_flags) {
1559 		flags |= extent_op->flags_to_set;
1560 		btrfs_set_extent_flags(leaf, ei, flags);
1561 	}
1562 
1563 	if (extent_op->update_key) {
1564 		struct btrfs_tree_block_info *bi;
1565 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1566 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1567 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1568 	}
1569 }
1570 
1571 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1572 				 struct btrfs_delayed_ref_head *head,
1573 				 struct btrfs_delayed_extent_op *extent_op)
1574 {
1575 	struct btrfs_fs_info *fs_info = trans->fs_info;
1576 	struct btrfs_key key;
1577 	struct btrfs_path *path;
1578 	struct btrfs_extent_item *ei;
1579 	struct extent_buffer *leaf;
1580 	u32 item_size;
1581 	int ret;
1582 	int err = 0;
1583 	int metadata = !extent_op->is_data;
1584 
1585 	if (trans->aborted)
1586 		return 0;
1587 
1588 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1589 		metadata = 0;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	key.objectid = head->bytenr;
1596 
1597 	if (metadata) {
1598 		key.type = BTRFS_METADATA_ITEM_KEY;
1599 		key.offset = extent_op->level;
1600 	} else {
1601 		key.type = BTRFS_EXTENT_ITEM_KEY;
1602 		key.offset = head->num_bytes;
1603 	}
1604 
1605 again:
1606 	path->reada = READA_FORWARD;
1607 	path->leave_spinning = 1;
1608 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1609 	if (ret < 0) {
1610 		err = ret;
1611 		goto out;
1612 	}
1613 	if (ret > 0) {
1614 		if (metadata) {
1615 			if (path->slots[0] > 0) {
1616 				path->slots[0]--;
1617 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1618 						      path->slots[0]);
1619 				if (key.objectid == head->bytenr &&
1620 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1621 				    key.offset == head->num_bytes)
1622 					ret = 0;
1623 			}
1624 			if (ret > 0) {
1625 				btrfs_release_path(path);
1626 				metadata = 0;
1627 
1628 				key.objectid = head->bytenr;
1629 				key.offset = head->num_bytes;
1630 				key.type = BTRFS_EXTENT_ITEM_KEY;
1631 				goto again;
1632 			}
1633 		} else {
1634 			err = -EIO;
1635 			goto out;
1636 		}
1637 	}
1638 
1639 	leaf = path->nodes[0];
1640 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641 
1642 	if (unlikely(item_size < sizeof(*ei))) {
1643 		err = -EINVAL;
1644 		btrfs_print_v0_err(fs_info);
1645 		btrfs_abort_transaction(trans, err);
1646 		goto out;
1647 	}
1648 
1649 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1650 	__run_delayed_extent_op(extent_op, leaf, ei);
1651 
1652 	btrfs_mark_buffer_dirty(leaf);
1653 out:
1654 	btrfs_free_path(path);
1655 	return err;
1656 }
1657 
1658 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1659 				struct btrfs_delayed_ref_node *node,
1660 				struct btrfs_delayed_extent_op *extent_op,
1661 				int insert_reserved)
1662 {
1663 	int ret = 0;
1664 	struct btrfs_delayed_tree_ref *ref;
1665 	u64 parent = 0;
1666 	u64 ref_root = 0;
1667 
1668 	ref = btrfs_delayed_node_to_tree_ref(node);
1669 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1670 
1671 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1672 		parent = ref->parent;
1673 	ref_root = ref->root;
1674 
1675 	if (node->ref_mod != 1) {
1676 		btrfs_err(trans->fs_info,
1677 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1678 			  node->bytenr, node->ref_mod, node->action, ref_root,
1679 			  parent);
1680 		return -EIO;
1681 	}
1682 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1683 		BUG_ON(!extent_op || !extent_op->update_flags);
1684 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1685 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1686 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1687 					     ref->level, 0, 1, extent_op);
1688 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1689 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1690 					  ref->level, 0, 1, extent_op);
1691 	} else {
1692 		BUG();
1693 	}
1694 	return ret;
1695 }
1696 
1697 /* helper function to actually process a single delayed ref entry */
1698 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1699 			       struct btrfs_delayed_ref_node *node,
1700 			       struct btrfs_delayed_extent_op *extent_op,
1701 			       int insert_reserved)
1702 {
1703 	int ret = 0;
1704 
1705 	if (trans->aborted) {
1706 		if (insert_reserved)
1707 			btrfs_pin_extent(trans->fs_info, node->bytenr,
1708 					 node->num_bytes, 1);
1709 		return 0;
1710 	}
1711 
1712 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1713 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1714 		ret = run_delayed_tree_ref(trans, node, extent_op,
1715 					   insert_reserved);
1716 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1717 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1718 		ret = run_delayed_data_ref(trans, node, extent_op,
1719 					   insert_reserved);
1720 	else
1721 		BUG();
1722 	if (ret && insert_reserved)
1723 		btrfs_pin_extent(trans->fs_info, node->bytenr,
1724 				 node->num_bytes, 1);
1725 	return ret;
1726 }
1727 
1728 static inline struct btrfs_delayed_ref_node *
1729 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1730 {
1731 	struct btrfs_delayed_ref_node *ref;
1732 
1733 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1734 		return NULL;
1735 
1736 	/*
1737 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1738 	 * This is to prevent a ref count from going down to zero, which deletes
1739 	 * the extent item from the extent tree, when there still are references
1740 	 * to add, which would fail because they would not find the extent item.
1741 	 */
1742 	if (!list_empty(&head->ref_add_list))
1743 		return list_first_entry(&head->ref_add_list,
1744 				struct btrfs_delayed_ref_node, add_list);
1745 
1746 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1747 		       struct btrfs_delayed_ref_node, ref_node);
1748 	ASSERT(list_empty(&ref->add_list));
1749 	return ref;
1750 }
1751 
1752 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1753 				      struct btrfs_delayed_ref_head *head)
1754 {
1755 	spin_lock(&delayed_refs->lock);
1756 	head->processing = 0;
1757 	delayed_refs->num_heads_ready++;
1758 	spin_unlock(&delayed_refs->lock);
1759 	btrfs_delayed_ref_unlock(head);
1760 }
1761 
1762 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1763 				struct btrfs_delayed_ref_head *head)
1764 {
1765 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1766 
1767 	if (!extent_op)
1768 		return NULL;
1769 
1770 	if (head->must_insert_reserved) {
1771 		head->extent_op = NULL;
1772 		btrfs_free_delayed_extent_op(extent_op);
1773 		return NULL;
1774 	}
1775 	return extent_op;
1776 }
1777 
1778 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1779 				     struct btrfs_delayed_ref_head *head)
1780 {
1781 	struct btrfs_delayed_extent_op *extent_op;
1782 	int ret;
1783 
1784 	extent_op = cleanup_extent_op(head);
1785 	if (!extent_op)
1786 		return 0;
1787 	head->extent_op = NULL;
1788 	spin_unlock(&head->lock);
1789 	ret = run_delayed_extent_op(trans, head, extent_op);
1790 	btrfs_free_delayed_extent_op(extent_op);
1791 	return ret ? ret : 1;
1792 }
1793 
1794 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1795 				  struct btrfs_delayed_ref_root *delayed_refs,
1796 				  struct btrfs_delayed_ref_head *head)
1797 {
1798 	int nr_items = 1;	/* Dropping this ref head update. */
1799 
1800 	if (head->total_ref_mod < 0) {
1801 		struct btrfs_space_info *space_info;
1802 		u64 flags;
1803 
1804 		if (head->is_data)
1805 			flags = BTRFS_BLOCK_GROUP_DATA;
1806 		else if (head->is_system)
1807 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1808 		else
1809 			flags = BTRFS_BLOCK_GROUP_METADATA;
1810 		space_info = btrfs_find_space_info(fs_info, flags);
1811 		ASSERT(space_info);
1812 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1813 				   -head->num_bytes,
1814 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1815 
1816 		/*
1817 		 * We had csum deletions accounted for in our delayed refs rsv,
1818 		 * we need to drop the csum leaves for this update from our
1819 		 * delayed_refs_rsv.
1820 		 */
1821 		if (head->is_data) {
1822 			spin_lock(&delayed_refs->lock);
1823 			delayed_refs->pending_csums -= head->num_bytes;
1824 			spin_unlock(&delayed_refs->lock);
1825 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1826 				head->num_bytes);
1827 		}
1828 	}
1829 
1830 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1831 }
1832 
1833 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1834 			    struct btrfs_delayed_ref_head *head)
1835 {
1836 
1837 	struct btrfs_fs_info *fs_info = trans->fs_info;
1838 	struct btrfs_delayed_ref_root *delayed_refs;
1839 	int ret;
1840 
1841 	delayed_refs = &trans->transaction->delayed_refs;
1842 
1843 	ret = run_and_cleanup_extent_op(trans, head);
1844 	if (ret < 0) {
1845 		unselect_delayed_ref_head(delayed_refs, head);
1846 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1847 		return ret;
1848 	} else if (ret) {
1849 		return ret;
1850 	}
1851 
1852 	/*
1853 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1854 	 * and then re-check to make sure nobody got added.
1855 	 */
1856 	spin_unlock(&head->lock);
1857 	spin_lock(&delayed_refs->lock);
1858 	spin_lock(&head->lock);
1859 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1860 		spin_unlock(&head->lock);
1861 		spin_unlock(&delayed_refs->lock);
1862 		return 1;
1863 	}
1864 	btrfs_delete_ref_head(delayed_refs, head);
1865 	spin_unlock(&head->lock);
1866 	spin_unlock(&delayed_refs->lock);
1867 
1868 	if (head->must_insert_reserved) {
1869 		btrfs_pin_extent(fs_info, head->bytenr,
1870 				 head->num_bytes, 1);
1871 		if (head->is_data) {
1872 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1873 					      head->bytenr, head->num_bytes);
1874 		}
1875 	}
1876 
1877 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1878 
1879 	trace_run_delayed_ref_head(fs_info, head, 0);
1880 	btrfs_delayed_ref_unlock(head);
1881 	btrfs_put_delayed_ref_head(head);
1882 	return 0;
1883 }
1884 
1885 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1886 					struct btrfs_trans_handle *trans)
1887 {
1888 	struct btrfs_delayed_ref_root *delayed_refs =
1889 		&trans->transaction->delayed_refs;
1890 	struct btrfs_delayed_ref_head *head = NULL;
1891 	int ret;
1892 
1893 	spin_lock(&delayed_refs->lock);
1894 	head = btrfs_select_ref_head(delayed_refs);
1895 	if (!head) {
1896 		spin_unlock(&delayed_refs->lock);
1897 		return head;
1898 	}
1899 
1900 	/*
1901 	 * Grab the lock that says we are going to process all the refs for
1902 	 * this head
1903 	 */
1904 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1905 	spin_unlock(&delayed_refs->lock);
1906 
1907 	/*
1908 	 * We may have dropped the spin lock to get the head mutex lock, and
1909 	 * that might have given someone else time to free the head.  If that's
1910 	 * true, it has been removed from our list and we can move on.
1911 	 */
1912 	if (ret == -EAGAIN)
1913 		head = ERR_PTR(-EAGAIN);
1914 
1915 	return head;
1916 }
1917 
1918 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1919 				    struct btrfs_delayed_ref_head *locked_ref,
1920 				    unsigned long *run_refs)
1921 {
1922 	struct btrfs_fs_info *fs_info = trans->fs_info;
1923 	struct btrfs_delayed_ref_root *delayed_refs;
1924 	struct btrfs_delayed_extent_op *extent_op;
1925 	struct btrfs_delayed_ref_node *ref;
1926 	int must_insert_reserved = 0;
1927 	int ret;
1928 
1929 	delayed_refs = &trans->transaction->delayed_refs;
1930 
1931 	lockdep_assert_held(&locked_ref->mutex);
1932 	lockdep_assert_held(&locked_ref->lock);
1933 
1934 	while ((ref = select_delayed_ref(locked_ref))) {
1935 		if (ref->seq &&
1936 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1937 			spin_unlock(&locked_ref->lock);
1938 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1939 			return -EAGAIN;
1940 		}
1941 
1942 		(*run_refs)++;
1943 		ref->in_tree = 0;
1944 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1945 		RB_CLEAR_NODE(&ref->ref_node);
1946 		if (!list_empty(&ref->add_list))
1947 			list_del(&ref->add_list);
1948 		/*
1949 		 * When we play the delayed ref, also correct the ref_mod on
1950 		 * head
1951 		 */
1952 		switch (ref->action) {
1953 		case BTRFS_ADD_DELAYED_REF:
1954 		case BTRFS_ADD_DELAYED_EXTENT:
1955 			locked_ref->ref_mod -= ref->ref_mod;
1956 			break;
1957 		case BTRFS_DROP_DELAYED_REF:
1958 			locked_ref->ref_mod += ref->ref_mod;
1959 			break;
1960 		default:
1961 			WARN_ON(1);
1962 		}
1963 		atomic_dec(&delayed_refs->num_entries);
1964 
1965 		/*
1966 		 * Record the must_insert_reserved flag before we drop the
1967 		 * spin lock.
1968 		 */
1969 		must_insert_reserved = locked_ref->must_insert_reserved;
1970 		locked_ref->must_insert_reserved = 0;
1971 
1972 		extent_op = locked_ref->extent_op;
1973 		locked_ref->extent_op = NULL;
1974 		spin_unlock(&locked_ref->lock);
1975 
1976 		ret = run_one_delayed_ref(trans, ref, extent_op,
1977 					  must_insert_reserved);
1978 
1979 		btrfs_free_delayed_extent_op(extent_op);
1980 		if (ret) {
1981 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1982 			btrfs_put_delayed_ref(ref);
1983 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1984 				    ret);
1985 			return ret;
1986 		}
1987 
1988 		btrfs_put_delayed_ref(ref);
1989 		cond_resched();
1990 
1991 		spin_lock(&locked_ref->lock);
1992 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 /*
1999  * Returns 0 on success or if called with an already aborted transaction.
2000  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2001  */
2002 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2003 					     unsigned long nr)
2004 {
2005 	struct btrfs_fs_info *fs_info = trans->fs_info;
2006 	struct btrfs_delayed_ref_root *delayed_refs;
2007 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2008 	ktime_t start = ktime_get();
2009 	int ret;
2010 	unsigned long count = 0;
2011 	unsigned long actual_count = 0;
2012 
2013 	delayed_refs = &trans->transaction->delayed_refs;
2014 	do {
2015 		if (!locked_ref) {
2016 			locked_ref = btrfs_obtain_ref_head(trans);
2017 			if (IS_ERR_OR_NULL(locked_ref)) {
2018 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2019 					continue;
2020 				} else {
2021 					break;
2022 				}
2023 			}
2024 			count++;
2025 		}
2026 		/*
2027 		 * We need to try and merge add/drops of the same ref since we
2028 		 * can run into issues with relocate dropping the implicit ref
2029 		 * and then it being added back again before the drop can
2030 		 * finish.  If we merged anything we need to re-loop so we can
2031 		 * get a good ref.
2032 		 * Or we can get node references of the same type that weren't
2033 		 * merged when created due to bumps in the tree mod seq, and
2034 		 * we need to merge them to prevent adding an inline extent
2035 		 * backref before dropping it (triggering a BUG_ON at
2036 		 * insert_inline_extent_backref()).
2037 		 */
2038 		spin_lock(&locked_ref->lock);
2039 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2040 
2041 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2042 						      &actual_count);
2043 		if (ret < 0 && ret != -EAGAIN) {
2044 			/*
2045 			 * Error, btrfs_run_delayed_refs_for_head already
2046 			 * unlocked everything so just bail out
2047 			 */
2048 			return ret;
2049 		} else if (!ret) {
2050 			/*
2051 			 * Success, perform the usual cleanup of a processed
2052 			 * head
2053 			 */
2054 			ret = cleanup_ref_head(trans, locked_ref);
2055 			if (ret > 0 ) {
2056 				/* We dropped our lock, we need to loop. */
2057 				ret = 0;
2058 				continue;
2059 			} else if (ret) {
2060 				return ret;
2061 			}
2062 		}
2063 
2064 		/*
2065 		 * Either success case or btrfs_run_delayed_refs_for_head
2066 		 * returned -EAGAIN, meaning we need to select another head
2067 		 */
2068 
2069 		locked_ref = NULL;
2070 		cond_resched();
2071 	} while ((nr != -1 && count < nr) || locked_ref);
2072 
2073 	/*
2074 	 * We don't want to include ref heads since we can have empty ref heads
2075 	 * and those will drastically skew our runtime down since we just do
2076 	 * accounting, no actual extent tree updates.
2077 	 */
2078 	if (actual_count > 0) {
2079 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2080 		u64 avg;
2081 
2082 		/*
2083 		 * We weigh the current average higher than our current runtime
2084 		 * to avoid large swings in the average.
2085 		 */
2086 		spin_lock(&delayed_refs->lock);
2087 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2088 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2089 		spin_unlock(&delayed_refs->lock);
2090 	}
2091 	return 0;
2092 }
2093 
2094 #ifdef SCRAMBLE_DELAYED_REFS
2095 /*
2096  * Normally delayed refs get processed in ascending bytenr order. This
2097  * correlates in most cases to the order added. To expose dependencies on this
2098  * order, we start to process the tree in the middle instead of the beginning
2099  */
2100 static u64 find_middle(struct rb_root *root)
2101 {
2102 	struct rb_node *n = root->rb_node;
2103 	struct btrfs_delayed_ref_node *entry;
2104 	int alt = 1;
2105 	u64 middle;
2106 	u64 first = 0, last = 0;
2107 
2108 	n = rb_first(root);
2109 	if (n) {
2110 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 		first = entry->bytenr;
2112 	}
2113 	n = rb_last(root);
2114 	if (n) {
2115 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2116 		last = entry->bytenr;
2117 	}
2118 	n = root->rb_node;
2119 
2120 	while (n) {
2121 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2122 		WARN_ON(!entry->in_tree);
2123 
2124 		middle = entry->bytenr;
2125 
2126 		if (alt)
2127 			n = n->rb_left;
2128 		else
2129 			n = n->rb_right;
2130 
2131 		alt = 1 - alt;
2132 	}
2133 	return middle;
2134 }
2135 #endif
2136 
2137 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2138 {
2139 	u64 num_bytes;
2140 
2141 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2142 			     sizeof(struct btrfs_extent_inline_ref));
2143 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2144 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2145 
2146 	/*
2147 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2148 	 * closer to what we're really going to want to use.
2149 	 */
2150 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2151 }
2152 
2153 /*
2154  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2155  * would require to store the csums for that many bytes.
2156  */
2157 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2158 {
2159 	u64 csum_size;
2160 	u64 num_csums_per_leaf;
2161 	u64 num_csums;
2162 
2163 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2164 	num_csums_per_leaf = div64_u64(csum_size,
2165 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2166 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2167 	num_csums += num_csums_per_leaf - 1;
2168 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2169 	return num_csums;
2170 }
2171 
2172 /*
2173  * this starts processing the delayed reference count updates and
2174  * extent insertions we have queued up so far.  count can be
2175  * 0, which means to process everything in the tree at the start
2176  * of the run (but not newly added entries), or it can be some target
2177  * number you'd like to process.
2178  *
2179  * Returns 0 on success or if called with an aborted transaction
2180  * Returns <0 on error and aborts the transaction
2181  */
2182 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2183 			   unsigned long count)
2184 {
2185 	struct btrfs_fs_info *fs_info = trans->fs_info;
2186 	struct rb_node *node;
2187 	struct btrfs_delayed_ref_root *delayed_refs;
2188 	struct btrfs_delayed_ref_head *head;
2189 	int ret;
2190 	int run_all = count == (unsigned long)-1;
2191 
2192 	/* We'll clean this up in btrfs_cleanup_transaction */
2193 	if (trans->aborted)
2194 		return 0;
2195 
2196 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2197 		return 0;
2198 
2199 	delayed_refs = &trans->transaction->delayed_refs;
2200 	if (count == 0)
2201 		count = atomic_read(&delayed_refs->num_entries) * 2;
2202 
2203 again:
2204 #ifdef SCRAMBLE_DELAYED_REFS
2205 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2206 #endif
2207 	ret = __btrfs_run_delayed_refs(trans, count);
2208 	if (ret < 0) {
2209 		btrfs_abort_transaction(trans, ret);
2210 		return ret;
2211 	}
2212 
2213 	if (run_all) {
2214 		btrfs_create_pending_block_groups(trans);
2215 
2216 		spin_lock(&delayed_refs->lock);
2217 		node = rb_first_cached(&delayed_refs->href_root);
2218 		if (!node) {
2219 			spin_unlock(&delayed_refs->lock);
2220 			goto out;
2221 		}
2222 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2223 				href_node);
2224 		refcount_inc(&head->refs);
2225 		spin_unlock(&delayed_refs->lock);
2226 
2227 		/* Mutex was contended, block until it's released and retry. */
2228 		mutex_lock(&head->mutex);
2229 		mutex_unlock(&head->mutex);
2230 
2231 		btrfs_put_delayed_ref_head(head);
2232 		cond_resched();
2233 		goto again;
2234 	}
2235 out:
2236 	return 0;
2237 }
2238 
2239 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2240 				u64 bytenr, u64 num_bytes, u64 flags,
2241 				int level, int is_data)
2242 {
2243 	struct btrfs_delayed_extent_op *extent_op;
2244 	int ret;
2245 
2246 	extent_op = btrfs_alloc_delayed_extent_op();
2247 	if (!extent_op)
2248 		return -ENOMEM;
2249 
2250 	extent_op->flags_to_set = flags;
2251 	extent_op->update_flags = true;
2252 	extent_op->update_key = false;
2253 	extent_op->is_data = is_data ? true : false;
2254 	extent_op->level = level;
2255 
2256 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2257 	if (ret)
2258 		btrfs_free_delayed_extent_op(extent_op);
2259 	return ret;
2260 }
2261 
2262 static noinline int check_delayed_ref(struct btrfs_root *root,
2263 				      struct btrfs_path *path,
2264 				      u64 objectid, u64 offset, u64 bytenr)
2265 {
2266 	struct btrfs_delayed_ref_head *head;
2267 	struct btrfs_delayed_ref_node *ref;
2268 	struct btrfs_delayed_data_ref *data_ref;
2269 	struct btrfs_delayed_ref_root *delayed_refs;
2270 	struct btrfs_transaction *cur_trans;
2271 	struct rb_node *node;
2272 	int ret = 0;
2273 
2274 	spin_lock(&root->fs_info->trans_lock);
2275 	cur_trans = root->fs_info->running_transaction;
2276 	if (cur_trans)
2277 		refcount_inc(&cur_trans->use_count);
2278 	spin_unlock(&root->fs_info->trans_lock);
2279 	if (!cur_trans)
2280 		return 0;
2281 
2282 	delayed_refs = &cur_trans->delayed_refs;
2283 	spin_lock(&delayed_refs->lock);
2284 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2285 	if (!head) {
2286 		spin_unlock(&delayed_refs->lock);
2287 		btrfs_put_transaction(cur_trans);
2288 		return 0;
2289 	}
2290 
2291 	if (!mutex_trylock(&head->mutex)) {
2292 		refcount_inc(&head->refs);
2293 		spin_unlock(&delayed_refs->lock);
2294 
2295 		btrfs_release_path(path);
2296 
2297 		/*
2298 		 * Mutex was contended, block until it's released and let
2299 		 * caller try again
2300 		 */
2301 		mutex_lock(&head->mutex);
2302 		mutex_unlock(&head->mutex);
2303 		btrfs_put_delayed_ref_head(head);
2304 		btrfs_put_transaction(cur_trans);
2305 		return -EAGAIN;
2306 	}
2307 	spin_unlock(&delayed_refs->lock);
2308 
2309 	spin_lock(&head->lock);
2310 	/*
2311 	 * XXX: We should replace this with a proper search function in the
2312 	 * future.
2313 	 */
2314 	for (node = rb_first_cached(&head->ref_tree); node;
2315 	     node = rb_next(node)) {
2316 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2317 		/* If it's a shared ref we know a cross reference exists */
2318 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2319 			ret = 1;
2320 			break;
2321 		}
2322 
2323 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2324 
2325 		/*
2326 		 * If our ref doesn't match the one we're currently looking at
2327 		 * then we have a cross reference.
2328 		 */
2329 		if (data_ref->root != root->root_key.objectid ||
2330 		    data_ref->objectid != objectid ||
2331 		    data_ref->offset != offset) {
2332 			ret = 1;
2333 			break;
2334 		}
2335 	}
2336 	spin_unlock(&head->lock);
2337 	mutex_unlock(&head->mutex);
2338 	btrfs_put_transaction(cur_trans);
2339 	return ret;
2340 }
2341 
2342 static noinline int check_committed_ref(struct btrfs_root *root,
2343 					struct btrfs_path *path,
2344 					u64 objectid, u64 offset, u64 bytenr)
2345 {
2346 	struct btrfs_fs_info *fs_info = root->fs_info;
2347 	struct btrfs_root *extent_root = fs_info->extent_root;
2348 	struct extent_buffer *leaf;
2349 	struct btrfs_extent_data_ref *ref;
2350 	struct btrfs_extent_inline_ref *iref;
2351 	struct btrfs_extent_item *ei;
2352 	struct btrfs_key key;
2353 	u32 item_size;
2354 	int type;
2355 	int ret;
2356 
2357 	key.objectid = bytenr;
2358 	key.offset = (u64)-1;
2359 	key.type = BTRFS_EXTENT_ITEM_KEY;
2360 
2361 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2362 	if (ret < 0)
2363 		goto out;
2364 	BUG_ON(ret == 0); /* Corruption */
2365 
2366 	ret = -ENOENT;
2367 	if (path->slots[0] == 0)
2368 		goto out;
2369 
2370 	path->slots[0]--;
2371 	leaf = path->nodes[0];
2372 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 
2374 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2375 		goto out;
2376 
2377 	ret = 1;
2378 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2379 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2380 
2381 	/* If extent item has more than 1 inline ref then it's shared */
2382 	if (item_size != sizeof(*ei) +
2383 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2384 		goto out;
2385 
2386 	/* If extent created before last snapshot => it's definitely shared */
2387 	if (btrfs_extent_generation(leaf, ei) <=
2388 	    btrfs_root_last_snapshot(&root->root_item))
2389 		goto out;
2390 
2391 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2392 
2393 	/* If this extent has SHARED_DATA_REF then it's shared */
2394 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2395 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2396 		goto out;
2397 
2398 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2399 	if (btrfs_extent_refs(leaf, ei) !=
2400 	    btrfs_extent_data_ref_count(leaf, ref) ||
2401 	    btrfs_extent_data_ref_root(leaf, ref) !=
2402 	    root->root_key.objectid ||
2403 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2404 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2405 		goto out;
2406 
2407 	ret = 0;
2408 out:
2409 	return ret;
2410 }
2411 
2412 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2413 			  u64 bytenr)
2414 {
2415 	struct btrfs_path *path;
2416 	int ret;
2417 
2418 	path = btrfs_alloc_path();
2419 	if (!path)
2420 		return -ENOMEM;
2421 
2422 	do {
2423 		ret = check_committed_ref(root, path, objectid,
2424 					  offset, bytenr);
2425 		if (ret && ret != -ENOENT)
2426 			goto out;
2427 
2428 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2429 	} while (ret == -EAGAIN);
2430 
2431 out:
2432 	btrfs_free_path(path);
2433 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2434 		WARN_ON(ret > 0);
2435 	return ret;
2436 }
2437 
2438 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2439 			   struct btrfs_root *root,
2440 			   struct extent_buffer *buf,
2441 			   int full_backref, int inc)
2442 {
2443 	struct btrfs_fs_info *fs_info = root->fs_info;
2444 	u64 bytenr;
2445 	u64 num_bytes;
2446 	u64 parent;
2447 	u64 ref_root;
2448 	u32 nritems;
2449 	struct btrfs_key key;
2450 	struct btrfs_file_extent_item *fi;
2451 	struct btrfs_ref generic_ref = { 0 };
2452 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2453 	int i;
2454 	int action;
2455 	int level;
2456 	int ret = 0;
2457 
2458 	if (btrfs_is_testing(fs_info))
2459 		return 0;
2460 
2461 	ref_root = btrfs_header_owner(buf);
2462 	nritems = btrfs_header_nritems(buf);
2463 	level = btrfs_header_level(buf);
2464 
2465 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2466 		return 0;
2467 
2468 	if (full_backref)
2469 		parent = buf->start;
2470 	else
2471 		parent = 0;
2472 	if (inc)
2473 		action = BTRFS_ADD_DELAYED_REF;
2474 	else
2475 		action = BTRFS_DROP_DELAYED_REF;
2476 
2477 	for (i = 0; i < nritems; i++) {
2478 		if (level == 0) {
2479 			btrfs_item_key_to_cpu(buf, &key, i);
2480 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2481 				continue;
2482 			fi = btrfs_item_ptr(buf, i,
2483 					    struct btrfs_file_extent_item);
2484 			if (btrfs_file_extent_type(buf, fi) ==
2485 			    BTRFS_FILE_EXTENT_INLINE)
2486 				continue;
2487 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2488 			if (bytenr == 0)
2489 				continue;
2490 
2491 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2492 			key.offset -= btrfs_file_extent_offset(buf, fi);
2493 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2494 					       num_bytes, parent);
2495 			generic_ref.real_root = root->root_key.objectid;
2496 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2497 					    key.offset);
2498 			generic_ref.skip_qgroup = for_reloc;
2499 			if (inc)
2500 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2501 			else
2502 				ret = btrfs_free_extent(trans, &generic_ref);
2503 			if (ret)
2504 				goto fail;
2505 		} else {
2506 			bytenr = btrfs_node_blockptr(buf, i);
2507 			num_bytes = fs_info->nodesize;
2508 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2509 					       num_bytes, parent);
2510 			generic_ref.real_root = root->root_key.objectid;
2511 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2512 			generic_ref.skip_qgroup = for_reloc;
2513 			if (inc)
2514 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2515 			else
2516 				ret = btrfs_free_extent(trans, &generic_ref);
2517 			if (ret)
2518 				goto fail;
2519 		}
2520 	}
2521 	return 0;
2522 fail:
2523 	return ret;
2524 }
2525 
2526 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2527 		  struct extent_buffer *buf, int full_backref)
2528 {
2529 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2530 }
2531 
2532 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2533 		  struct extent_buffer *buf, int full_backref)
2534 {
2535 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2536 }
2537 
2538 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2539 {
2540 	struct btrfs_block_group *block_group;
2541 	int readonly = 0;
2542 
2543 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2544 	if (!block_group || block_group->ro)
2545 		readonly = 1;
2546 	if (block_group)
2547 		btrfs_put_block_group(block_group);
2548 	return readonly;
2549 }
2550 
2551 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2552 {
2553 	struct btrfs_fs_info *fs_info = root->fs_info;
2554 	u64 flags;
2555 	u64 ret;
2556 
2557 	if (data)
2558 		flags = BTRFS_BLOCK_GROUP_DATA;
2559 	else if (root == fs_info->chunk_root)
2560 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2561 	else
2562 		flags = BTRFS_BLOCK_GROUP_METADATA;
2563 
2564 	ret = btrfs_get_alloc_profile(fs_info, flags);
2565 	return ret;
2566 }
2567 
2568 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2569 {
2570 	struct btrfs_block_group *cache;
2571 	u64 bytenr;
2572 
2573 	spin_lock(&fs_info->block_group_cache_lock);
2574 	bytenr = fs_info->first_logical_byte;
2575 	spin_unlock(&fs_info->block_group_cache_lock);
2576 
2577 	if (bytenr < (u64)-1)
2578 		return bytenr;
2579 
2580 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2581 	if (!cache)
2582 		return 0;
2583 
2584 	bytenr = cache->start;
2585 	btrfs_put_block_group(cache);
2586 
2587 	return bytenr;
2588 }
2589 
2590 static int pin_down_extent(struct btrfs_block_group *cache,
2591 			   u64 bytenr, u64 num_bytes, int reserved)
2592 {
2593 	struct btrfs_fs_info *fs_info = cache->fs_info;
2594 
2595 	spin_lock(&cache->space_info->lock);
2596 	spin_lock(&cache->lock);
2597 	cache->pinned += num_bytes;
2598 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2599 					     num_bytes);
2600 	if (reserved) {
2601 		cache->reserved -= num_bytes;
2602 		cache->space_info->bytes_reserved -= num_bytes;
2603 	}
2604 	spin_unlock(&cache->lock);
2605 	spin_unlock(&cache->space_info->lock);
2606 
2607 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2608 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2609 	set_extent_dirty(fs_info->pinned_extents, bytenr,
2610 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2611 	return 0;
2612 }
2613 
2614 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2615 		     u64 bytenr, u64 num_bytes, int reserved)
2616 {
2617 	struct btrfs_block_group *cache;
2618 
2619 	ASSERT(fs_info->running_transaction);
2620 
2621 	cache = btrfs_lookup_block_group(fs_info, bytenr);
2622 	BUG_ON(!cache); /* Logic error */
2623 
2624 	pin_down_extent(cache, bytenr, num_bytes, reserved);
2625 
2626 	btrfs_put_block_group(cache);
2627 	return 0;
2628 }
2629 
2630 /*
2631  * this function must be called within transaction
2632  */
2633 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2634 				    u64 bytenr, u64 num_bytes)
2635 {
2636 	struct btrfs_block_group *cache;
2637 	int ret;
2638 
2639 	cache = btrfs_lookup_block_group(fs_info, bytenr);
2640 	if (!cache)
2641 		return -EINVAL;
2642 
2643 	/*
2644 	 * pull in the free space cache (if any) so that our pin
2645 	 * removes the free space from the cache.  We have load_only set
2646 	 * to one because the slow code to read in the free extents does check
2647 	 * the pinned extents.
2648 	 */
2649 	btrfs_cache_block_group(cache, 1);
2650 
2651 	pin_down_extent(cache, bytenr, num_bytes, 0);
2652 
2653 	/* remove us from the free space cache (if we're there at all) */
2654 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2655 	btrfs_put_block_group(cache);
2656 	return ret;
2657 }
2658 
2659 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2660 				   u64 start, u64 num_bytes)
2661 {
2662 	int ret;
2663 	struct btrfs_block_group *block_group;
2664 	struct btrfs_caching_control *caching_ctl;
2665 
2666 	block_group = btrfs_lookup_block_group(fs_info, start);
2667 	if (!block_group)
2668 		return -EINVAL;
2669 
2670 	btrfs_cache_block_group(block_group, 0);
2671 	caching_ctl = btrfs_get_caching_control(block_group);
2672 
2673 	if (!caching_ctl) {
2674 		/* Logic error */
2675 		BUG_ON(!btrfs_block_group_done(block_group));
2676 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2677 	} else {
2678 		mutex_lock(&caching_ctl->mutex);
2679 
2680 		if (start >= caching_ctl->progress) {
2681 			ret = btrfs_add_excluded_extent(fs_info, start,
2682 							num_bytes);
2683 		} else if (start + num_bytes <= caching_ctl->progress) {
2684 			ret = btrfs_remove_free_space(block_group,
2685 						      start, num_bytes);
2686 		} else {
2687 			num_bytes = caching_ctl->progress - start;
2688 			ret = btrfs_remove_free_space(block_group,
2689 						      start, num_bytes);
2690 			if (ret)
2691 				goto out_lock;
2692 
2693 			num_bytes = (start + num_bytes) -
2694 				caching_ctl->progress;
2695 			start = caching_ctl->progress;
2696 			ret = btrfs_add_excluded_extent(fs_info, start,
2697 							num_bytes);
2698 		}
2699 out_lock:
2700 		mutex_unlock(&caching_ctl->mutex);
2701 		btrfs_put_caching_control(caching_ctl);
2702 	}
2703 	btrfs_put_block_group(block_group);
2704 	return ret;
2705 }
2706 
2707 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2708 {
2709 	struct btrfs_fs_info *fs_info = eb->fs_info;
2710 	struct btrfs_file_extent_item *item;
2711 	struct btrfs_key key;
2712 	int found_type;
2713 	int i;
2714 	int ret = 0;
2715 
2716 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2717 		return 0;
2718 
2719 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2720 		btrfs_item_key_to_cpu(eb, &key, i);
2721 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 			continue;
2723 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2724 		found_type = btrfs_file_extent_type(eb, item);
2725 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2726 			continue;
2727 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2728 			continue;
2729 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2730 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2731 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2732 		if (ret)
2733 			break;
2734 	}
2735 
2736 	return ret;
2737 }
2738 
2739 static void
2740 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2741 {
2742 	atomic_inc(&bg->reservations);
2743 }
2744 
2745 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2746 {
2747 	struct btrfs_caching_control *next;
2748 	struct btrfs_caching_control *caching_ctl;
2749 	struct btrfs_block_group *cache;
2750 
2751 	down_write(&fs_info->commit_root_sem);
2752 
2753 	list_for_each_entry_safe(caching_ctl, next,
2754 				 &fs_info->caching_block_groups, list) {
2755 		cache = caching_ctl->block_group;
2756 		if (btrfs_block_group_done(cache)) {
2757 			cache->last_byte_to_unpin = (u64)-1;
2758 			list_del_init(&caching_ctl->list);
2759 			btrfs_put_caching_control(caching_ctl);
2760 		} else {
2761 			cache->last_byte_to_unpin = caching_ctl->progress;
2762 		}
2763 	}
2764 
2765 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2766 		fs_info->pinned_extents = &fs_info->freed_extents[1];
2767 	else
2768 		fs_info->pinned_extents = &fs_info->freed_extents[0];
2769 
2770 	up_write(&fs_info->commit_root_sem);
2771 
2772 	btrfs_update_global_block_rsv(fs_info);
2773 }
2774 
2775 /*
2776  * Returns the free cluster for the given space info and sets empty_cluster to
2777  * what it should be based on the mount options.
2778  */
2779 static struct btrfs_free_cluster *
2780 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2781 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2782 {
2783 	struct btrfs_free_cluster *ret = NULL;
2784 
2785 	*empty_cluster = 0;
2786 	if (btrfs_mixed_space_info(space_info))
2787 		return ret;
2788 
2789 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2790 		ret = &fs_info->meta_alloc_cluster;
2791 		if (btrfs_test_opt(fs_info, SSD))
2792 			*empty_cluster = SZ_2M;
2793 		else
2794 			*empty_cluster = SZ_64K;
2795 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2796 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2797 		*empty_cluster = SZ_2M;
2798 		ret = &fs_info->data_alloc_cluster;
2799 	}
2800 
2801 	return ret;
2802 }
2803 
2804 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2805 			      u64 start, u64 end,
2806 			      const bool return_free_space)
2807 {
2808 	struct btrfs_block_group *cache = NULL;
2809 	struct btrfs_space_info *space_info;
2810 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2811 	struct btrfs_free_cluster *cluster = NULL;
2812 	u64 len;
2813 	u64 total_unpinned = 0;
2814 	u64 empty_cluster = 0;
2815 	bool readonly;
2816 
2817 	while (start <= end) {
2818 		readonly = false;
2819 		if (!cache ||
2820 		    start >= cache->start + cache->length) {
2821 			if (cache)
2822 				btrfs_put_block_group(cache);
2823 			total_unpinned = 0;
2824 			cache = btrfs_lookup_block_group(fs_info, start);
2825 			BUG_ON(!cache); /* Logic error */
2826 
2827 			cluster = fetch_cluster_info(fs_info,
2828 						     cache->space_info,
2829 						     &empty_cluster);
2830 			empty_cluster <<= 1;
2831 		}
2832 
2833 		len = cache->start + cache->length - start;
2834 		len = min(len, end + 1 - start);
2835 
2836 		if (start < cache->last_byte_to_unpin) {
2837 			len = min(len, cache->last_byte_to_unpin - start);
2838 			if (return_free_space)
2839 				btrfs_add_free_space(cache, start, len);
2840 		}
2841 
2842 		start += len;
2843 		total_unpinned += len;
2844 		space_info = cache->space_info;
2845 
2846 		/*
2847 		 * If this space cluster has been marked as fragmented and we've
2848 		 * unpinned enough in this block group to potentially allow a
2849 		 * cluster to be created inside of it go ahead and clear the
2850 		 * fragmented check.
2851 		 */
2852 		if (cluster && cluster->fragmented &&
2853 		    total_unpinned > empty_cluster) {
2854 			spin_lock(&cluster->lock);
2855 			cluster->fragmented = 0;
2856 			spin_unlock(&cluster->lock);
2857 		}
2858 
2859 		spin_lock(&space_info->lock);
2860 		spin_lock(&cache->lock);
2861 		cache->pinned -= len;
2862 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2863 		space_info->max_extent_size = 0;
2864 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2865 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2866 		if (cache->ro) {
2867 			space_info->bytes_readonly += len;
2868 			readonly = true;
2869 		}
2870 		spin_unlock(&cache->lock);
2871 		if (!readonly && return_free_space &&
2872 		    global_rsv->space_info == space_info) {
2873 			u64 to_add = len;
2874 
2875 			spin_lock(&global_rsv->lock);
2876 			if (!global_rsv->full) {
2877 				to_add = min(len, global_rsv->size -
2878 					     global_rsv->reserved);
2879 				global_rsv->reserved += to_add;
2880 				btrfs_space_info_update_bytes_may_use(fs_info,
2881 						space_info, to_add);
2882 				if (global_rsv->reserved >= global_rsv->size)
2883 					global_rsv->full = 1;
2884 				len -= to_add;
2885 			}
2886 			spin_unlock(&global_rsv->lock);
2887 			/* Add to any tickets we may have */
2888 			if (len)
2889 				btrfs_try_granting_tickets(fs_info,
2890 							   space_info);
2891 		}
2892 		spin_unlock(&space_info->lock);
2893 	}
2894 
2895 	if (cache)
2896 		btrfs_put_block_group(cache);
2897 	return 0;
2898 }
2899 
2900 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2901 {
2902 	struct btrfs_fs_info *fs_info = trans->fs_info;
2903 	struct btrfs_block_group *block_group, *tmp;
2904 	struct list_head *deleted_bgs;
2905 	struct extent_io_tree *unpin;
2906 	u64 start;
2907 	u64 end;
2908 	int ret;
2909 
2910 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2911 		unpin = &fs_info->freed_extents[1];
2912 	else
2913 		unpin = &fs_info->freed_extents[0];
2914 
2915 	while (!trans->aborted) {
2916 		struct extent_state *cached_state = NULL;
2917 
2918 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2919 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2920 					    EXTENT_DIRTY, &cached_state);
2921 		if (ret) {
2922 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2923 			break;
2924 		}
2925 
2926 		if (btrfs_test_opt(fs_info, DISCARD))
2927 			ret = btrfs_discard_extent(fs_info, start,
2928 						   end + 1 - start, NULL);
2929 
2930 		clear_extent_dirty(unpin, start, end, &cached_state);
2931 		unpin_extent_range(fs_info, start, end, true);
2932 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2933 		free_extent_state(cached_state);
2934 		cond_resched();
2935 	}
2936 
2937 	/*
2938 	 * Transaction is finished.  We don't need the lock anymore.  We
2939 	 * do need to clean up the block groups in case of a transaction
2940 	 * abort.
2941 	 */
2942 	deleted_bgs = &trans->transaction->deleted_bgs;
2943 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2944 		u64 trimmed = 0;
2945 
2946 		ret = -EROFS;
2947 		if (!trans->aborted)
2948 			ret = btrfs_discard_extent(fs_info,
2949 						   block_group->start,
2950 						   block_group->length,
2951 						   &trimmed);
2952 
2953 		list_del_init(&block_group->bg_list);
2954 		btrfs_put_block_group_trimming(block_group);
2955 		btrfs_put_block_group(block_group);
2956 
2957 		if (ret) {
2958 			const char *errstr = btrfs_decode_error(ret);
2959 			btrfs_warn(fs_info,
2960 			   "discard failed while removing blockgroup: errno=%d %s",
2961 				   ret, errstr);
2962 		}
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2969 			       struct btrfs_delayed_ref_node *node, u64 parent,
2970 			       u64 root_objectid, u64 owner_objectid,
2971 			       u64 owner_offset, int refs_to_drop,
2972 			       struct btrfs_delayed_extent_op *extent_op)
2973 {
2974 	struct btrfs_fs_info *info = trans->fs_info;
2975 	struct btrfs_key key;
2976 	struct btrfs_path *path;
2977 	struct btrfs_root *extent_root = info->extent_root;
2978 	struct extent_buffer *leaf;
2979 	struct btrfs_extent_item *ei;
2980 	struct btrfs_extent_inline_ref *iref;
2981 	int ret;
2982 	int is_data;
2983 	int extent_slot = 0;
2984 	int found_extent = 0;
2985 	int num_to_del = 1;
2986 	u32 item_size;
2987 	u64 refs;
2988 	u64 bytenr = node->bytenr;
2989 	u64 num_bytes = node->num_bytes;
2990 	int last_ref = 0;
2991 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2992 
2993 	path = btrfs_alloc_path();
2994 	if (!path)
2995 		return -ENOMEM;
2996 
2997 	path->reada = READA_FORWARD;
2998 	path->leave_spinning = 1;
2999 
3000 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3001 	BUG_ON(!is_data && refs_to_drop != 1);
3002 
3003 	if (is_data)
3004 		skinny_metadata = false;
3005 
3006 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3007 				    parent, root_objectid, owner_objectid,
3008 				    owner_offset);
3009 	if (ret == 0) {
3010 		extent_slot = path->slots[0];
3011 		while (extent_slot >= 0) {
3012 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3013 					      extent_slot);
3014 			if (key.objectid != bytenr)
3015 				break;
3016 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3017 			    key.offset == num_bytes) {
3018 				found_extent = 1;
3019 				break;
3020 			}
3021 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3022 			    key.offset == owner_objectid) {
3023 				found_extent = 1;
3024 				break;
3025 			}
3026 			if (path->slots[0] - extent_slot > 5)
3027 				break;
3028 			extent_slot--;
3029 		}
3030 
3031 		if (!found_extent) {
3032 			BUG_ON(iref);
3033 			ret = remove_extent_backref(trans, path, NULL,
3034 						    refs_to_drop,
3035 						    is_data, &last_ref);
3036 			if (ret) {
3037 				btrfs_abort_transaction(trans, ret);
3038 				goto out;
3039 			}
3040 			btrfs_release_path(path);
3041 			path->leave_spinning = 1;
3042 
3043 			key.objectid = bytenr;
3044 			key.type = BTRFS_EXTENT_ITEM_KEY;
3045 			key.offset = num_bytes;
3046 
3047 			if (!is_data && skinny_metadata) {
3048 				key.type = BTRFS_METADATA_ITEM_KEY;
3049 				key.offset = owner_objectid;
3050 			}
3051 
3052 			ret = btrfs_search_slot(trans, extent_root,
3053 						&key, path, -1, 1);
3054 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3055 				/*
3056 				 * Couldn't find our skinny metadata item,
3057 				 * see if we have ye olde extent item.
3058 				 */
3059 				path->slots[0]--;
3060 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3061 						      path->slots[0]);
3062 				if (key.objectid == bytenr &&
3063 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3064 				    key.offset == num_bytes)
3065 					ret = 0;
3066 			}
3067 
3068 			if (ret > 0 && skinny_metadata) {
3069 				skinny_metadata = false;
3070 				key.objectid = bytenr;
3071 				key.type = BTRFS_EXTENT_ITEM_KEY;
3072 				key.offset = num_bytes;
3073 				btrfs_release_path(path);
3074 				ret = btrfs_search_slot(trans, extent_root,
3075 							&key, path, -1, 1);
3076 			}
3077 
3078 			if (ret) {
3079 				btrfs_err(info,
3080 					  "umm, got %d back from search, was looking for %llu",
3081 					  ret, bytenr);
3082 				if (ret > 0)
3083 					btrfs_print_leaf(path->nodes[0]);
3084 			}
3085 			if (ret < 0) {
3086 				btrfs_abort_transaction(trans, ret);
3087 				goto out;
3088 			}
3089 			extent_slot = path->slots[0];
3090 		}
3091 	} else if (WARN_ON(ret == -ENOENT)) {
3092 		btrfs_print_leaf(path->nodes[0]);
3093 		btrfs_err(info,
3094 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3095 			bytenr, parent, root_objectid, owner_objectid,
3096 			owner_offset);
3097 		btrfs_abort_transaction(trans, ret);
3098 		goto out;
3099 	} else {
3100 		btrfs_abort_transaction(trans, ret);
3101 		goto out;
3102 	}
3103 
3104 	leaf = path->nodes[0];
3105 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3106 	if (unlikely(item_size < sizeof(*ei))) {
3107 		ret = -EINVAL;
3108 		btrfs_print_v0_err(info);
3109 		btrfs_abort_transaction(trans, ret);
3110 		goto out;
3111 	}
3112 	ei = btrfs_item_ptr(leaf, extent_slot,
3113 			    struct btrfs_extent_item);
3114 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3115 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3116 		struct btrfs_tree_block_info *bi;
3117 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3118 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3119 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3120 	}
3121 
3122 	refs = btrfs_extent_refs(leaf, ei);
3123 	if (refs < refs_to_drop) {
3124 		btrfs_err(info,
3125 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3126 			  refs_to_drop, refs, bytenr);
3127 		ret = -EINVAL;
3128 		btrfs_abort_transaction(trans, ret);
3129 		goto out;
3130 	}
3131 	refs -= refs_to_drop;
3132 
3133 	if (refs > 0) {
3134 		if (extent_op)
3135 			__run_delayed_extent_op(extent_op, leaf, ei);
3136 		/*
3137 		 * In the case of inline back ref, reference count will
3138 		 * be updated by remove_extent_backref
3139 		 */
3140 		if (iref) {
3141 			BUG_ON(!found_extent);
3142 		} else {
3143 			btrfs_set_extent_refs(leaf, ei, refs);
3144 			btrfs_mark_buffer_dirty(leaf);
3145 		}
3146 		if (found_extent) {
3147 			ret = remove_extent_backref(trans, path, iref,
3148 						    refs_to_drop, is_data,
3149 						    &last_ref);
3150 			if (ret) {
3151 				btrfs_abort_transaction(trans, ret);
3152 				goto out;
3153 			}
3154 		}
3155 	} else {
3156 		if (found_extent) {
3157 			BUG_ON(is_data && refs_to_drop !=
3158 			       extent_data_ref_count(path, iref));
3159 			if (iref) {
3160 				BUG_ON(path->slots[0] != extent_slot);
3161 			} else {
3162 				BUG_ON(path->slots[0] != extent_slot + 1);
3163 				path->slots[0] = extent_slot;
3164 				num_to_del = 2;
3165 			}
3166 		}
3167 
3168 		last_ref = 1;
3169 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3170 				      num_to_del);
3171 		if (ret) {
3172 			btrfs_abort_transaction(trans, ret);
3173 			goto out;
3174 		}
3175 		btrfs_release_path(path);
3176 
3177 		if (is_data) {
3178 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3179 					      num_bytes);
3180 			if (ret) {
3181 				btrfs_abort_transaction(trans, ret);
3182 				goto out;
3183 			}
3184 		}
3185 
3186 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3187 		if (ret) {
3188 			btrfs_abort_transaction(trans, ret);
3189 			goto out;
3190 		}
3191 
3192 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3193 		if (ret) {
3194 			btrfs_abort_transaction(trans, ret);
3195 			goto out;
3196 		}
3197 	}
3198 	btrfs_release_path(path);
3199 
3200 out:
3201 	btrfs_free_path(path);
3202 	return ret;
3203 }
3204 
3205 /*
3206  * when we free an block, it is possible (and likely) that we free the last
3207  * delayed ref for that extent as well.  This searches the delayed ref tree for
3208  * a given extent, and if there are no other delayed refs to be processed, it
3209  * removes it from the tree.
3210  */
3211 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3212 				      u64 bytenr)
3213 {
3214 	struct btrfs_delayed_ref_head *head;
3215 	struct btrfs_delayed_ref_root *delayed_refs;
3216 	int ret = 0;
3217 
3218 	delayed_refs = &trans->transaction->delayed_refs;
3219 	spin_lock(&delayed_refs->lock);
3220 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3221 	if (!head)
3222 		goto out_delayed_unlock;
3223 
3224 	spin_lock(&head->lock);
3225 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3226 		goto out;
3227 
3228 	if (cleanup_extent_op(head) != NULL)
3229 		goto out;
3230 
3231 	/*
3232 	 * waiting for the lock here would deadlock.  If someone else has it
3233 	 * locked they are already in the process of dropping it anyway
3234 	 */
3235 	if (!mutex_trylock(&head->mutex))
3236 		goto out;
3237 
3238 	btrfs_delete_ref_head(delayed_refs, head);
3239 	head->processing = 0;
3240 
3241 	spin_unlock(&head->lock);
3242 	spin_unlock(&delayed_refs->lock);
3243 
3244 	BUG_ON(head->extent_op);
3245 	if (head->must_insert_reserved)
3246 		ret = 1;
3247 
3248 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3249 	mutex_unlock(&head->mutex);
3250 	btrfs_put_delayed_ref_head(head);
3251 	return ret;
3252 out:
3253 	spin_unlock(&head->lock);
3254 
3255 out_delayed_unlock:
3256 	spin_unlock(&delayed_refs->lock);
3257 	return 0;
3258 }
3259 
3260 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3261 			   struct btrfs_root *root,
3262 			   struct extent_buffer *buf,
3263 			   u64 parent, int last_ref)
3264 {
3265 	struct btrfs_fs_info *fs_info = root->fs_info;
3266 	struct btrfs_ref generic_ref = { 0 };
3267 	int pin = 1;
3268 	int ret;
3269 
3270 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3271 			       buf->start, buf->len, parent);
3272 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3273 			    root->root_key.objectid);
3274 
3275 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3276 		int old_ref_mod, new_ref_mod;
3277 
3278 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3279 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3280 						 &old_ref_mod, &new_ref_mod);
3281 		BUG_ON(ret); /* -ENOMEM */
3282 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3283 	}
3284 
3285 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3286 		struct btrfs_block_group *cache;
3287 
3288 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3289 			ret = check_ref_cleanup(trans, buf->start);
3290 			if (!ret)
3291 				goto out;
3292 		}
3293 
3294 		pin = 0;
3295 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3296 
3297 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3298 			pin_down_extent(cache, buf->start, buf->len, 1);
3299 			btrfs_put_block_group(cache);
3300 			goto out;
3301 		}
3302 
3303 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3304 
3305 		btrfs_add_free_space(cache, buf->start, buf->len);
3306 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3307 		btrfs_put_block_group(cache);
3308 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3309 	}
3310 out:
3311 	if (pin)
3312 		add_pinned_bytes(fs_info, &generic_ref);
3313 
3314 	if (last_ref) {
3315 		/*
3316 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3317 		 * matter anymore.
3318 		 */
3319 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3320 	}
3321 }
3322 
3323 /* Can return -ENOMEM */
3324 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3325 {
3326 	struct btrfs_fs_info *fs_info = trans->fs_info;
3327 	int old_ref_mod, new_ref_mod;
3328 	int ret;
3329 
3330 	if (btrfs_is_testing(fs_info))
3331 		return 0;
3332 
3333 	/*
3334 	 * tree log blocks never actually go into the extent allocation
3335 	 * tree, just update pinning info and exit early.
3336 	 */
3337 	if ((ref->type == BTRFS_REF_METADATA &&
3338 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3339 	    (ref->type == BTRFS_REF_DATA &&
3340 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3341 		/* unlocks the pinned mutex */
3342 		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3343 		old_ref_mod = new_ref_mod = 0;
3344 		ret = 0;
3345 	} else if (ref->type == BTRFS_REF_METADATA) {
3346 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3347 						 &old_ref_mod, &new_ref_mod);
3348 	} else {
3349 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3350 						 &old_ref_mod, &new_ref_mod);
3351 	}
3352 
3353 	if (!((ref->type == BTRFS_REF_METADATA &&
3354 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3355 	      (ref->type == BTRFS_REF_DATA &&
3356 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3357 		btrfs_ref_tree_mod(fs_info, ref);
3358 
3359 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3360 		add_pinned_bytes(fs_info, ref);
3361 
3362 	return ret;
3363 }
3364 
3365 enum btrfs_loop_type {
3366 	LOOP_CACHING_NOWAIT,
3367 	LOOP_CACHING_WAIT,
3368 	LOOP_ALLOC_CHUNK,
3369 	LOOP_NO_EMPTY_SIZE,
3370 };
3371 
3372 static inline void
3373 btrfs_lock_block_group(struct btrfs_block_group *cache,
3374 		       int delalloc)
3375 {
3376 	if (delalloc)
3377 		down_read(&cache->data_rwsem);
3378 }
3379 
3380 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3381 		       int delalloc)
3382 {
3383 	btrfs_get_block_group(cache);
3384 	if (delalloc)
3385 		down_read(&cache->data_rwsem);
3386 }
3387 
3388 static struct btrfs_block_group *btrfs_lock_cluster(
3389 		   struct btrfs_block_group *block_group,
3390 		   struct btrfs_free_cluster *cluster,
3391 		   int delalloc)
3392 {
3393 	struct btrfs_block_group *used_bg = NULL;
3394 
3395 	spin_lock(&cluster->refill_lock);
3396 	while (1) {
3397 		used_bg = cluster->block_group;
3398 		if (!used_bg)
3399 			return NULL;
3400 
3401 		if (used_bg == block_group)
3402 			return used_bg;
3403 
3404 		btrfs_get_block_group(used_bg);
3405 
3406 		if (!delalloc)
3407 			return used_bg;
3408 
3409 		if (down_read_trylock(&used_bg->data_rwsem))
3410 			return used_bg;
3411 
3412 		spin_unlock(&cluster->refill_lock);
3413 
3414 		/* We should only have one-level nested. */
3415 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3416 
3417 		spin_lock(&cluster->refill_lock);
3418 		if (used_bg == cluster->block_group)
3419 			return used_bg;
3420 
3421 		up_read(&used_bg->data_rwsem);
3422 		btrfs_put_block_group(used_bg);
3423 	}
3424 }
3425 
3426 static inline void
3427 btrfs_release_block_group(struct btrfs_block_group *cache,
3428 			 int delalloc)
3429 {
3430 	if (delalloc)
3431 		up_read(&cache->data_rwsem);
3432 	btrfs_put_block_group(cache);
3433 }
3434 
3435 /*
3436  * Structure used internally for find_free_extent() function.  Wraps needed
3437  * parameters.
3438  */
3439 struct find_free_extent_ctl {
3440 	/* Basic allocation info */
3441 	u64 ram_bytes;
3442 	u64 num_bytes;
3443 	u64 empty_size;
3444 	u64 flags;
3445 	int delalloc;
3446 
3447 	/* Where to start the search inside the bg */
3448 	u64 search_start;
3449 
3450 	/* For clustered allocation */
3451 	u64 empty_cluster;
3452 
3453 	bool have_caching_bg;
3454 	bool orig_have_caching_bg;
3455 
3456 	/* RAID index, converted from flags */
3457 	int index;
3458 
3459 	/*
3460 	 * Current loop number, check find_free_extent_update_loop() for details
3461 	 */
3462 	int loop;
3463 
3464 	/*
3465 	 * Whether we're refilling a cluster, if true we need to re-search
3466 	 * current block group but don't try to refill the cluster again.
3467 	 */
3468 	bool retry_clustered;
3469 
3470 	/*
3471 	 * Whether we're updating free space cache, if true we need to re-search
3472 	 * current block group but don't try updating free space cache again.
3473 	 */
3474 	bool retry_unclustered;
3475 
3476 	/* If current block group is cached */
3477 	int cached;
3478 
3479 	/* Max contiguous hole found */
3480 	u64 max_extent_size;
3481 
3482 	/* Total free space from free space cache, not always contiguous */
3483 	u64 total_free_space;
3484 
3485 	/* Found result */
3486 	u64 found_offset;
3487 };
3488 
3489 
3490 /*
3491  * Helper function for find_free_extent().
3492  *
3493  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3494  * Return -EAGAIN to inform caller that we need to re-search this block group
3495  * Return >0 to inform caller that we find nothing
3496  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3497  */
3498 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3499 		struct btrfs_free_cluster *last_ptr,
3500 		struct find_free_extent_ctl *ffe_ctl,
3501 		struct btrfs_block_group **cluster_bg_ret)
3502 {
3503 	struct btrfs_block_group *cluster_bg;
3504 	u64 aligned_cluster;
3505 	u64 offset;
3506 	int ret;
3507 
3508 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3509 	if (!cluster_bg)
3510 		goto refill_cluster;
3511 	if (cluster_bg != bg && (cluster_bg->ro ||
3512 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3513 		goto release_cluster;
3514 
3515 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3516 			ffe_ctl->num_bytes, cluster_bg->start,
3517 			&ffe_ctl->max_extent_size);
3518 	if (offset) {
3519 		/* We have a block, we're done */
3520 		spin_unlock(&last_ptr->refill_lock);
3521 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3522 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3523 		*cluster_bg_ret = cluster_bg;
3524 		ffe_ctl->found_offset = offset;
3525 		return 0;
3526 	}
3527 	WARN_ON(last_ptr->block_group != cluster_bg);
3528 
3529 release_cluster:
3530 	/*
3531 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3532 	 * lets just skip it and let the allocator find whatever block it can
3533 	 * find. If we reach this point, we will have tried the cluster
3534 	 * allocator plenty of times and not have found anything, so we are
3535 	 * likely way too fragmented for the clustering stuff to find anything.
3536 	 *
3537 	 * However, if the cluster is taken from the current block group,
3538 	 * release the cluster first, so that we stand a better chance of
3539 	 * succeeding in the unclustered allocation.
3540 	 */
3541 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3542 		spin_unlock(&last_ptr->refill_lock);
3543 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3544 		return -ENOENT;
3545 	}
3546 
3547 	/* This cluster didn't work out, free it and start over */
3548 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3549 
3550 	if (cluster_bg != bg)
3551 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3552 
3553 refill_cluster:
3554 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3555 		spin_unlock(&last_ptr->refill_lock);
3556 		return -ENOENT;
3557 	}
3558 
3559 	aligned_cluster = max_t(u64,
3560 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3561 			bg->full_stripe_len);
3562 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3563 			ffe_ctl->num_bytes, aligned_cluster);
3564 	if (ret == 0) {
3565 		/* Now pull our allocation out of this cluster */
3566 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3567 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3568 				&ffe_ctl->max_extent_size);
3569 		if (offset) {
3570 			/* We found one, proceed */
3571 			spin_unlock(&last_ptr->refill_lock);
3572 			trace_btrfs_reserve_extent_cluster(bg,
3573 					ffe_ctl->search_start,
3574 					ffe_ctl->num_bytes);
3575 			ffe_ctl->found_offset = offset;
3576 			return 0;
3577 		}
3578 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3579 		   !ffe_ctl->retry_clustered) {
3580 		spin_unlock(&last_ptr->refill_lock);
3581 
3582 		ffe_ctl->retry_clustered = true;
3583 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3584 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3585 		return -EAGAIN;
3586 	}
3587 	/*
3588 	 * At this point we either didn't find a cluster or we weren't able to
3589 	 * allocate a block from our cluster.  Free the cluster we've been
3590 	 * trying to use, and go to the next block group.
3591 	 */
3592 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3593 	spin_unlock(&last_ptr->refill_lock);
3594 	return 1;
3595 }
3596 
3597 /*
3598  * Return >0 to inform caller that we find nothing
3599  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3600  * Return -EAGAIN to inform caller that we need to re-search this block group
3601  */
3602 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3603 		struct btrfs_free_cluster *last_ptr,
3604 		struct find_free_extent_ctl *ffe_ctl)
3605 {
3606 	u64 offset;
3607 
3608 	/*
3609 	 * We are doing an unclustered allocation, set the fragmented flag so
3610 	 * we don't bother trying to setup a cluster again until we get more
3611 	 * space.
3612 	 */
3613 	if (unlikely(last_ptr)) {
3614 		spin_lock(&last_ptr->lock);
3615 		last_ptr->fragmented = 1;
3616 		spin_unlock(&last_ptr->lock);
3617 	}
3618 	if (ffe_ctl->cached) {
3619 		struct btrfs_free_space_ctl *free_space_ctl;
3620 
3621 		free_space_ctl = bg->free_space_ctl;
3622 		spin_lock(&free_space_ctl->tree_lock);
3623 		if (free_space_ctl->free_space <
3624 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3625 		    ffe_ctl->empty_size) {
3626 			ffe_ctl->total_free_space = max_t(u64,
3627 					ffe_ctl->total_free_space,
3628 					free_space_ctl->free_space);
3629 			spin_unlock(&free_space_ctl->tree_lock);
3630 			return 1;
3631 		}
3632 		spin_unlock(&free_space_ctl->tree_lock);
3633 	}
3634 
3635 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3636 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3637 			&ffe_ctl->max_extent_size);
3638 
3639 	/*
3640 	 * If we didn't find a chunk, and we haven't failed on this block group
3641 	 * before, and this block group is in the middle of caching and we are
3642 	 * ok with waiting, then go ahead and wait for progress to be made, and
3643 	 * set @retry_unclustered to true.
3644 	 *
3645 	 * If @retry_unclustered is true then we've already waited on this
3646 	 * block group once and should move on to the next block group.
3647 	 */
3648 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3649 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3650 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3651 						      ffe_ctl->empty_size);
3652 		ffe_ctl->retry_unclustered = true;
3653 		return -EAGAIN;
3654 	} else if (!offset) {
3655 		return 1;
3656 	}
3657 	ffe_ctl->found_offset = offset;
3658 	return 0;
3659 }
3660 
3661 /*
3662  * Return >0 means caller needs to re-search for free extent
3663  * Return 0 means we have the needed free extent.
3664  * Return <0 means we failed to locate any free extent.
3665  */
3666 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3667 					struct btrfs_free_cluster *last_ptr,
3668 					struct btrfs_key *ins,
3669 					struct find_free_extent_ctl *ffe_ctl,
3670 					int full_search, bool use_cluster)
3671 {
3672 	struct btrfs_root *root = fs_info->extent_root;
3673 	int ret;
3674 
3675 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3676 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3677 		ffe_ctl->orig_have_caching_bg = true;
3678 
3679 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3680 	    ffe_ctl->have_caching_bg)
3681 		return 1;
3682 
3683 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3684 		return 1;
3685 
3686 	if (ins->objectid) {
3687 		if (!use_cluster && last_ptr) {
3688 			spin_lock(&last_ptr->lock);
3689 			last_ptr->window_start = ins->objectid;
3690 			spin_unlock(&last_ptr->lock);
3691 		}
3692 		return 0;
3693 	}
3694 
3695 	/*
3696 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3697 	 *			caching kthreads as we move along
3698 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3699 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3700 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3701 	 *		       again
3702 	 */
3703 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3704 		ffe_ctl->index = 0;
3705 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3706 			/*
3707 			 * We want to skip the LOOP_CACHING_WAIT step if we
3708 			 * don't have any uncached bgs and we've already done a
3709 			 * full search through.
3710 			 */
3711 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3712 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3713 			else
3714 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3715 		} else {
3716 			ffe_ctl->loop++;
3717 		}
3718 
3719 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3720 			struct btrfs_trans_handle *trans;
3721 			int exist = 0;
3722 
3723 			trans = current->journal_info;
3724 			if (trans)
3725 				exist = 1;
3726 			else
3727 				trans = btrfs_join_transaction(root);
3728 
3729 			if (IS_ERR(trans)) {
3730 				ret = PTR_ERR(trans);
3731 				return ret;
3732 			}
3733 
3734 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3735 						CHUNK_ALLOC_FORCE);
3736 
3737 			/*
3738 			 * If we can't allocate a new chunk we've already looped
3739 			 * through at least once, move on to the NO_EMPTY_SIZE
3740 			 * case.
3741 			 */
3742 			if (ret == -ENOSPC)
3743 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3744 
3745 			/* Do not bail out on ENOSPC since we can do more. */
3746 			if (ret < 0 && ret != -ENOSPC)
3747 				btrfs_abort_transaction(trans, ret);
3748 			else
3749 				ret = 0;
3750 			if (!exist)
3751 				btrfs_end_transaction(trans);
3752 			if (ret)
3753 				return ret;
3754 		}
3755 
3756 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3757 			/*
3758 			 * Don't loop again if we already have no empty_size and
3759 			 * no empty_cluster.
3760 			 */
3761 			if (ffe_ctl->empty_size == 0 &&
3762 			    ffe_ctl->empty_cluster == 0)
3763 				return -ENOSPC;
3764 			ffe_ctl->empty_size = 0;
3765 			ffe_ctl->empty_cluster = 0;
3766 		}
3767 		return 1;
3768 	}
3769 	return -ENOSPC;
3770 }
3771 
3772 /*
3773  * walks the btree of allocated extents and find a hole of a given size.
3774  * The key ins is changed to record the hole:
3775  * ins->objectid == start position
3776  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3777  * ins->offset == the size of the hole.
3778  * Any available blocks before search_start are skipped.
3779  *
3780  * If there is no suitable free space, we will record the max size of
3781  * the free space extent currently.
3782  *
3783  * The overall logic and call chain:
3784  *
3785  * find_free_extent()
3786  * |- Iterate through all block groups
3787  * |  |- Get a valid block group
3788  * |  |- Try to do clustered allocation in that block group
3789  * |  |- Try to do unclustered allocation in that block group
3790  * |  |- Check if the result is valid
3791  * |  |  |- If valid, then exit
3792  * |  |- Jump to next block group
3793  * |
3794  * |- Push harder to find free extents
3795  *    |- If not found, re-iterate all block groups
3796  */
3797 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3798 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3799 				u64 hint_byte, struct btrfs_key *ins,
3800 				u64 flags, int delalloc)
3801 {
3802 	int ret = 0;
3803 	int cache_block_group_error = 0;
3804 	struct btrfs_free_cluster *last_ptr = NULL;
3805 	struct btrfs_block_group *block_group = NULL;
3806 	struct find_free_extent_ctl ffe_ctl = {0};
3807 	struct btrfs_space_info *space_info;
3808 	bool use_cluster = true;
3809 	bool full_search = false;
3810 
3811 	WARN_ON(num_bytes < fs_info->sectorsize);
3812 
3813 	ffe_ctl.ram_bytes = ram_bytes;
3814 	ffe_ctl.num_bytes = num_bytes;
3815 	ffe_ctl.empty_size = empty_size;
3816 	ffe_ctl.flags = flags;
3817 	ffe_ctl.search_start = 0;
3818 	ffe_ctl.retry_clustered = false;
3819 	ffe_ctl.retry_unclustered = false;
3820 	ffe_ctl.delalloc = delalloc;
3821 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3822 	ffe_ctl.have_caching_bg = false;
3823 	ffe_ctl.orig_have_caching_bg = false;
3824 	ffe_ctl.found_offset = 0;
3825 
3826 	ins->type = BTRFS_EXTENT_ITEM_KEY;
3827 	ins->objectid = 0;
3828 	ins->offset = 0;
3829 
3830 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3831 
3832 	space_info = btrfs_find_space_info(fs_info, flags);
3833 	if (!space_info) {
3834 		btrfs_err(fs_info, "No space info for %llu", flags);
3835 		return -ENOSPC;
3836 	}
3837 
3838 	/*
3839 	 * If our free space is heavily fragmented we may not be able to make
3840 	 * big contiguous allocations, so instead of doing the expensive search
3841 	 * for free space, simply return ENOSPC with our max_extent_size so we
3842 	 * can go ahead and search for a more manageable chunk.
3843 	 *
3844 	 * If our max_extent_size is large enough for our allocation simply
3845 	 * disable clustering since we will likely not be able to find enough
3846 	 * space to create a cluster and induce latency trying.
3847 	 */
3848 	if (unlikely(space_info->max_extent_size)) {
3849 		spin_lock(&space_info->lock);
3850 		if (space_info->max_extent_size &&
3851 		    num_bytes > space_info->max_extent_size) {
3852 			ins->offset = space_info->max_extent_size;
3853 			spin_unlock(&space_info->lock);
3854 			return -ENOSPC;
3855 		} else if (space_info->max_extent_size) {
3856 			use_cluster = false;
3857 		}
3858 		spin_unlock(&space_info->lock);
3859 	}
3860 
3861 	last_ptr = fetch_cluster_info(fs_info, space_info,
3862 				      &ffe_ctl.empty_cluster);
3863 	if (last_ptr) {
3864 		spin_lock(&last_ptr->lock);
3865 		if (last_ptr->block_group)
3866 			hint_byte = last_ptr->window_start;
3867 		if (last_ptr->fragmented) {
3868 			/*
3869 			 * We still set window_start so we can keep track of the
3870 			 * last place we found an allocation to try and save
3871 			 * some time.
3872 			 */
3873 			hint_byte = last_ptr->window_start;
3874 			use_cluster = false;
3875 		}
3876 		spin_unlock(&last_ptr->lock);
3877 	}
3878 
3879 	ffe_ctl.search_start = max(ffe_ctl.search_start,
3880 				   first_logical_byte(fs_info, 0));
3881 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3882 	if (ffe_ctl.search_start == hint_byte) {
3883 		block_group = btrfs_lookup_block_group(fs_info,
3884 						       ffe_ctl.search_start);
3885 		/*
3886 		 * we don't want to use the block group if it doesn't match our
3887 		 * allocation bits, or if its not cached.
3888 		 *
3889 		 * However if we are re-searching with an ideal block group
3890 		 * picked out then we don't care that the block group is cached.
3891 		 */
3892 		if (block_group && block_group_bits(block_group, flags) &&
3893 		    block_group->cached != BTRFS_CACHE_NO) {
3894 			down_read(&space_info->groups_sem);
3895 			if (list_empty(&block_group->list) ||
3896 			    block_group->ro) {
3897 				/*
3898 				 * someone is removing this block group,
3899 				 * we can't jump into the have_block_group
3900 				 * target because our list pointers are not
3901 				 * valid
3902 				 */
3903 				btrfs_put_block_group(block_group);
3904 				up_read(&space_info->groups_sem);
3905 			} else {
3906 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3907 						block_group->flags);
3908 				btrfs_lock_block_group(block_group, delalloc);
3909 				goto have_block_group;
3910 			}
3911 		} else if (block_group) {
3912 			btrfs_put_block_group(block_group);
3913 		}
3914 	}
3915 search:
3916 	ffe_ctl.have_caching_bg = false;
3917 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3918 	    ffe_ctl.index == 0)
3919 		full_search = true;
3920 	down_read(&space_info->groups_sem);
3921 	list_for_each_entry(block_group,
3922 			    &space_info->block_groups[ffe_ctl.index], list) {
3923 		/* If the block group is read-only, we can skip it entirely. */
3924 		if (unlikely(block_group->ro))
3925 			continue;
3926 
3927 		btrfs_grab_block_group(block_group, delalloc);
3928 		ffe_ctl.search_start = block_group->start;
3929 
3930 		/*
3931 		 * this can happen if we end up cycling through all the
3932 		 * raid types, but we want to make sure we only allocate
3933 		 * for the proper type.
3934 		 */
3935 		if (!block_group_bits(block_group, flags)) {
3936 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
3937 				BTRFS_BLOCK_GROUP_RAID1_MASK |
3938 				BTRFS_BLOCK_GROUP_RAID56_MASK |
3939 				BTRFS_BLOCK_GROUP_RAID10;
3940 
3941 			/*
3942 			 * if they asked for extra copies and this block group
3943 			 * doesn't provide them, bail.  This does allow us to
3944 			 * fill raid0 from raid1.
3945 			 */
3946 			if ((flags & extra) && !(block_group->flags & extra))
3947 				goto loop;
3948 
3949 			/*
3950 			 * This block group has different flags than we want.
3951 			 * It's possible that we have MIXED_GROUP flag but no
3952 			 * block group is mixed.  Just skip such block group.
3953 			 */
3954 			btrfs_release_block_group(block_group, delalloc);
3955 			continue;
3956 		}
3957 
3958 have_block_group:
3959 		ffe_ctl.cached = btrfs_block_group_done(block_group);
3960 		if (unlikely(!ffe_ctl.cached)) {
3961 			ffe_ctl.have_caching_bg = true;
3962 			ret = btrfs_cache_block_group(block_group, 0);
3963 
3964 			/*
3965 			 * If we get ENOMEM here or something else we want to
3966 			 * try other block groups, because it may not be fatal.
3967 			 * However if we can't find anything else we need to
3968 			 * save our return here so that we return the actual
3969 			 * error that caused problems, not ENOSPC.
3970 			 */
3971 			if (ret < 0) {
3972 				if (!cache_block_group_error)
3973 					cache_block_group_error = ret;
3974 				ret = 0;
3975 				goto loop;
3976 			}
3977 			ret = 0;
3978 		}
3979 
3980 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3981 			goto loop;
3982 
3983 		/*
3984 		 * Ok we want to try and use the cluster allocator, so
3985 		 * lets look there
3986 		 */
3987 		if (last_ptr && use_cluster) {
3988 			struct btrfs_block_group *cluster_bg = NULL;
3989 
3990 			ret = find_free_extent_clustered(block_group, last_ptr,
3991 							 &ffe_ctl, &cluster_bg);
3992 
3993 			if (ret == 0) {
3994 				if (cluster_bg && cluster_bg != block_group) {
3995 					btrfs_release_block_group(block_group,
3996 								  delalloc);
3997 					block_group = cluster_bg;
3998 				}
3999 				goto checks;
4000 			} else if (ret == -EAGAIN) {
4001 				goto have_block_group;
4002 			} else if (ret > 0) {
4003 				goto loop;
4004 			}
4005 			/* ret == -ENOENT case falls through */
4006 		}
4007 
4008 		ret = find_free_extent_unclustered(block_group, last_ptr,
4009 						   &ffe_ctl);
4010 		if (ret == -EAGAIN)
4011 			goto have_block_group;
4012 		else if (ret > 0)
4013 			goto loop;
4014 		/* ret == 0 case falls through */
4015 checks:
4016 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4017 					     fs_info->stripesize);
4018 
4019 		/* move on to the next group */
4020 		if (ffe_ctl.search_start + num_bytes >
4021 		    block_group->start + block_group->length) {
4022 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4023 					     num_bytes);
4024 			goto loop;
4025 		}
4026 
4027 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4028 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4029 				ffe_ctl.search_start - ffe_ctl.found_offset);
4030 
4031 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4032 				num_bytes, delalloc);
4033 		if (ret == -EAGAIN) {
4034 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4035 					     num_bytes);
4036 			goto loop;
4037 		}
4038 		btrfs_inc_block_group_reservations(block_group);
4039 
4040 		/* we are all good, lets return */
4041 		ins->objectid = ffe_ctl.search_start;
4042 		ins->offset = num_bytes;
4043 
4044 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4045 					   num_bytes);
4046 		btrfs_release_block_group(block_group, delalloc);
4047 		break;
4048 loop:
4049 		ffe_ctl.retry_clustered = false;
4050 		ffe_ctl.retry_unclustered = false;
4051 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4052 		       ffe_ctl.index);
4053 		btrfs_release_block_group(block_group, delalloc);
4054 		cond_resched();
4055 	}
4056 	up_read(&space_info->groups_sem);
4057 
4058 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4059 					   full_search, use_cluster);
4060 	if (ret > 0)
4061 		goto search;
4062 
4063 	if (ret == -ENOSPC && !cache_block_group_error) {
4064 		/*
4065 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4066 		 * any contiguous hole.
4067 		 */
4068 		if (!ffe_ctl.max_extent_size)
4069 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4070 		spin_lock(&space_info->lock);
4071 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4072 		spin_unlock(&space_info->lock);
4073 		ins->offset = ffe_ctl.max_extent_size;
4074 	} else if (ret == -ENOSPC) {
4075 		ret = cache_block_group_error;
4076 	}
4077 	return ret;
4078 }
4079 
4080 /*
4081  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4082  *			  hole that is at least as big as @num_bytes.
4083  *
4084  * @root           -	The root that will contain this extent
4085  *
4086  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4087  *			is used for accounting purposes. This value differs
4088  *			from @num_bytes only in the case of compressed extents.
4089  *
4090  * @num_bytes      -	Number of bytes to allocate on-disk.
4091  *
4092  * @min_alloc_size -	Indicates the minimum amount of space that the
4093  *			allocator should try to satisfy. In some cases
4094  *			@num_bytes may be larger than what is required and if
4095  *			the filesystem is fragmented then allocation fails.
4096  *			However, the presence of @min_alloc_size gives a
4097  *			chance to try and satisfy the smaller allocation.
4098  *
4099  * @empty_size     -	A hint that you plan on doing more COW. This is the
4100  *			size in bytes the allocator should try to find free
4101  *			next to the block it returns.  This is just a hint and
4102  *			may be ignored by the allocator.
4103  *
4104  * @hint_byte      -	Hint to the allocator to start searching above the byte
4105  *			address passed. It might be ignored.
4106  *
4107  * @ins            -	This key is modified to record the found hole. It will
4108  *			have the following values:
4109  *			ins->objectid == start position
4110  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4111  *			ins->offset == the size of the hole.
4112  *
4113  * @is_data        -	Boolean flag indicating whether an extent is
4114  *			allocated for data (true) or metadata (false)
4115  *
4116  * @delalloc       -	Boolean flag indicating whether this allocation is for
4117  *			delalloc or not. If 'true' data_rwsem of block groups
4118  *			is going to be acquired.
4119  *
4120  *
4121  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4122  * case -ENOSPC is returned then @ins->offset will contain the size of the
4123  * largest available hole the allocator managed to find.
4124  */
4125 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4126 			 u64 num_bytes, u64 min_alloc_size,
4127 			 u64 empty_size, u64 hint_byte,
4128 			 struct btrfs_key *ins, int is_data, int delalloc)
4129 {
4130 	struct btrfs_fs_info *fs_info = root->fs_info;
4131 	bool final_tried = num_bytes == min_alloc_size;
4132 	u64 flags;
4133 	int ret;
4134 
4135 	flags = get_alloc_profile_by_root(root, is_data);
4136 again:
4137 	WARN_ON(num_bytes < fs_info->sectorsize);
4138 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4139 			       hint_byte, ins, flags, delalloc);
4140 	if (!ret && !is_data) {
4141 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4142 	} else if (ret == -ENOSPC) {
4143 		if (!final_tried && ins->offset) {
4144 			num_bytes = min(num_bytes >> 1, ins->offset);
4145 			num_bytes = round_down(num_bytes,
4146 					       fs_info->sectorsize);
4147 			num_bytes = max(num_bytes, min_alloc_size);
4148 			ram_bytes = num_bytes;
4149 			if (num_bytes == min_alloc_size)
4150 				final_tried = true;
4151 			goto again;
4152 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4153 			struct btrfs_space_info *sinfo;
4154 
4155 			sinfo = btrfs_find_space_info(fs_info, flags);
4156 			btrfs_err(fs_info,
4157 				  "allocation failed flags %llu, wanted %llu",
4158 				  flags, num_bytes);
4159 			if (sinfo)
4160 				btrfs_dump_space_info(fs_info, sinfo,
4161 						      num_bytes, 1);
4162 		}
4163 	}
4164 
4165 	return ret;
4166 }
4167 
4168 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4169 					u64 start, u64 len,
4170 					int pin, int delalloc)
4171 {
4172 	struct btrfs_block_group *cache;
4173 	int ret = 0;
4174 
4175 	cache = btrfs_lookup_block_group(fs_info, start);
4176 	if (!cache) {
4177 		btrfs_err(fs_info, "Unable to find block group for %llu",
4178 			  start);
4179 		return -ENOSPC;
4180 	}
4181 
4182 	if (pin)
4183 		pin_down_extent(cache, start, len, 1);
4184 	else {
4185 		if (btrfs_test_opt(fs_info, DISCARD))
4186 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
4187 		btrfs_add_free_space(cache, start, len);
4188 		btrfs_free_reserved_bytes(cache, len, delalloc);
4189 		trace_btrfs_reserved_extent_free(fs_info, start, len);
4190 	}
4191 
4192 	btrfs_put_block_group(cache);
4193 	return ret;
4194 }
4195 
4196 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4197 			       u64 start, u64 len, int delalloc)
4198 {
4199 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
4200 }
4201 
4202 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
4203 				       u64 start, u64 len)
4204 {
4205 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
4206 }
4207 
4208 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4209 				      u64 parent, u64 root_objectid,
4210 				      u64 flags, u64 owner, u64 offset,
4211 				      struct btrfs_key *ins, int ref_mod)
4212 {
4213 	struct btrfs_fs_info *fs_info = trans->fs_info;
4214 	int ret;
4215 	struct btrfs_extent_item *extent_item;
4216 	struct btrfs_extent_inline_ref *iref;
4217 	struct btrfs_path *path;
4218 	struct extent_buffer *leaf;
4219 	int type;
4220 	u32 size;
4221 
4222 	if (parent > 0)
4223 		type = BTRFS_SHARED_DATA_REF_KEY;
4224 	else
4225 		type = BTRFS_EXTENT_DATA_REF_KEY;
4226 
4227 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4228 
4229 	path = btrfs_alloc_path();
4230 	if (!path)
4231 		return -ENOMEM;
4232 
4233 	path->leave_spinning = 1;
4234 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4235 				      ins, size);
4236 	if (ret) {
4237 		btrfs_free_path(path);
4238 		return ret;
4239 	}
4240 
4241 	leaf = path->nodes[0];
4242 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4243 				     struct btrfs_extent_item);
4244 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4245 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4246 	btrfs_set_extent_flags(leaf, extent_item,
4247 			       flags | BTRFS_EXTENT_FLAG_DATA);
4248 
4249 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4250 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4251 	if (parent > 0) {
4252 		struct btrfs_shared_data_ref *ref;
4253 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4254 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4255 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4256 	} else {
4257 		struct btrfs_extent_data_ref *ref;
4258 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4259 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4260 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4261 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4262 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4263 	}
4264 
4265 	btrfs_mark_buffer_dirty(path->nodes[0]);
4266 	btrfs_free_path(path);
4267 
4268 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4269 	if (ret)
4270 		return ret;
4271 
4272 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4273 	if (ret) { /* -ENOENT, logic error */
4274 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4275 			ins->objectid, ins->offset);
4276 		BUG();
4277 	}
4278 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4279 	return ret;
4280 }
4281 
4282 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4283 				     struct btrfs_delayed_ref_node *node,
4284 				     struct btrfs_delayed_extent_op *extent_op)
4285 {
4286 	struct btrfs_fs_info *fs_info = trans->fs_info;
4287 	int ret;
4288 	struct btrfs_extent_item *extent_item;
4289 	struct btrfs_key extent_key;
4290 	struct btrfs_tree_block_info *block_info;
4291 	struct btrfs_extent_inline_ref *iref;
4292 	struct btrfs_path *path;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_delayed_tree_ref *ref;
4295 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4296 	u64 num_bytes;
4297 	u64 flags = extent_op->flags_to_set;
4298 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4299 
4300 	ref = btrfs_delayed_node_to_tree_ref(node);
4301 
4302 	extent_key.objectid = node->bytenr;
4303 	if (skinny_metadata) {
4304 		extent_key.offset = ref->level;
4305 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4306 		num_bytes = fs_info->nodesize;
4307 	} else {
4308 		extent_key.offset = node->num_bytes;
4309 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4310 		size += sizeof(*block_info);
4311 		num_bytes = node->num_bytes;
4312 	}
4313 
4314 	path = btrfs_alloc_path();
4315 	if (!path)
4316 		return -ENOMEM;
4317 
4318 	path->leave_spinning = 1;
4319 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4320 				      &extent_key, size);
4321 	if (ret) {
4322 		btrfs_free_path(path);
4323 		return ret;
4324 	}
4325 
4326 	leaf = path->nodes[0];
4327 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4328 				     struct btrfs_extent_item);
4329 	btrfs_set_extent_refs(leaf, extent_item, 1);
4330 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4331 	btrfs_set_extent_flags(leaf, extent_item,
4332 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4333 
4334 	if (skinny_metadata) {
4335 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4336 	} else {
4337 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4338 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4339 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4340 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4341 	}
4342 
4343 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4344 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4345 		btrfs_set_extent_inline_ref_type(leaf, iref,
4346 						 BTRFS_SHARED_BLOCK_REF_KEY);
4347 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4348 	} else {
4349 		btrfs_set_extent_inline_ref_type(leaf, iref,
4350 						 BTRFS_TREE_BLOCK_REF_KEY);
4351 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4352 	}
4353 
4354 	btrfs_mark_buffer_dirty(leaf);
4355 	btrfs_free_path(path);
4356 
4357 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4358 					  num_bytes);
4359 	if (ret)
4360 		return ret;
4361 
4362 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4363 				       fs_info->nodesize, 1);
4364 	if (ret) { /* -ENOENT, logic error */
4365 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4366 			extent_key.objectid, extent_key.offset);
4367 		BUG();
4368 	}
4369 
4370 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4371 					  fs_info->nodesize);
4372 	return ret;
4373 }
4374 
4375 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4376 				     struct btrfs_root *root, u64 owner,
4377 				     u64 offset, u64 ram_bytes,
4378 				     struct btrfs_key *ins)
4379 {
4380 	struct btrfs_ref generic_ref = { 0 };
4381 	int ret;
4382 
4383 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4384 
4385 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4386 			       ins->objectid, ins->offset, 0);
4387 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4388 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4389 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4390 					 ram_bytes, NULL, NULL);
4391 	return ret;
4392 }
4393 
4394 /*
4395  * this is used by the tree logging recovery code.  It records that
4396  * an extent has been allocated and makes sure to clear the free
4397  * space cache bits as well
4398  */
4399 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4400 				   u64 root_objectid, u64 owner, u64 offset,
4401 				   struct btrfs_key *ins)
4402 {
4403 	struct btrfs_fs_info *fs_info = trans->fs_info;
4404 	int ret;
4405 	struct btrfs_block_group *block_group;
4406 	struct btrfs_space_info *space_info;
4407 
4408 	/*
4409 	 * Mixed block groups will exclude before processing the log so we only
4410 	 * need to do the exclude dance if this fs isn't mixed.
4411 	 */
4412 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4413 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4414 					      ins->offset);
4415 		if (ret)
4416 			return ret;
4417 	}
4418 
4419 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4420 	if (!block_group)
4421 		return -EINVAL;
4422 
4423 	space_info = block_group->space_info;
4424 	spin_lock(&space_info->lock);
4425 	spin_lock(&block_group->lock);
4426 	space_info->bytes_reserved += ins->offset;
4427 	block_group->reserved += ins->offset;
4428 	spin_unlock(&block_group->lock);
4429 	spin_unlock(&space_info->lock);
4430 
4431 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4432 					 offset, ins, 1);
4433 	btrfs_put_block_group(block_group);
4434 	return ret;
4435 }
4436 
4437 static struct extent_buffer *
4438 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4439 		      u64 bytenr, int level, u64 owner)
4440 {
4441 	struct btrfs_fs_info *fs_info = root->fs_info;
4442 	struct extent_buffer *buf;
4443 
4444 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4445 	if (IS_ERR(buf))
4446 		return buf;
4447 
4448 	/*
4449 	 * Extra safety check in case the extent tree is corrupted and extent
4450 	 * allocator chooses to use a tree block which is already used and
4451 	 * locked.
4452 	 */
4453 	if (buf->lock_owner == current->pid) {
4454 		btrfs_err_rl(fs_info,
4455 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4456 			buf->start, btrfs_header_owner(buf), current->pid);
4457 		free_extent_buffer(buf);
4458 		return ERR_PTR(-EUCLEAN);
4459 	}
4460 
4461 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4462 	btrfs_tree_lock(buf);
4463 	btrfs_clean_tree_block(buf);
4464 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4465 
4466 	btrfs_set_lock_blocking_write(buf);
4467 	set_extent_buffer_uptodate(buf);
4468 
4469 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4470 	btrfs_set_header_level(buf, level);
4471 	btrfs_set_header_bytenr(buf, buf->start);
4472 	btrfs_set_header_generation(buf, trans->transid);
4473 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4474 	btrfs_set_header_owner(buf, owner);
4475 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4476 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4477 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4478 		buf->log_index = root->log_transid % 2;
4479 		/*
4480 		 * we allow two log transactions at a time, use different
4481 		 * EXTENT bit to differentiate dirty pages.
4482 		 */
4483 		if (buf->log_index == 0)
4484 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4485 					buf->start + buf->len - 1, GFP_NOFS);
4486 		else
4487 			set_extent_new(&root->dirty_log_pages, buf->start,
4488 					buf->start + buf->len - 1);
4489 	} else {
4490 		buf->log_index = -1;
4491 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4492 			 buf->start + buf->len - 1, GFP_NOFS);
4493 	}
4494 	trans->dirty = true;
4495 	/* this returns a buffer locked for blocking */
4496 	return buf;
4497 }
4498 
4499 /*
4500  * finds a free extent and does all the dirty work required for allocation
4501  * returns the tree buffer or an ERR_PTR on error.
4502  */
4503 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4504 					     struct btrfs_root *root,
4505 					     u64 parent, u64 root_objectid,
4506 					     const struct btrfs_disk_key *key,
4507 					     int level, u64 hint,
4508 					     u64 empty_size)
4509 {
4510 	struct btrfs_fs_info *fs_info = root->fs_info;
4511 	struct btrfs_key ins;
4512 	struct btrfs_block_rsv *block_rsv;
4513 	struct extent_buffer *buf;
4514 	struct btrfs_delayed_extent_op *extent_op;
4515 	struct btrfs_ref generic_ref = { 0 };
4516 	u64 flags = 0;
4517 	int ret;
4518 	u32 blocksize = fs_info->nodesize;
4519 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4520 
4521 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4522 	if (btrfs_is_testing(fs_info)) {
4523 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4524 					    level, root_objectid);
4525 		if (!IS_ERR(buf))
4526 			root->alloc_bytenr += blocksize;
4527 		return buf;
4528 	}
4529 #endif
4530 
4531 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4532 	if (IS_ERR(block_rsv))
4533 		return ERR_CAST(block_rsv);
4534 
4535 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4536 				   empty_size, hint, &ins, 0, 0);
4537 	if (ret)
4538 		goto out_unuse;
4539 
4540 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4541 				    root_objectid);
4542 	if (IS_ERR(buf)) {
4543 		ret = PTR_ERR(buf);
4544 		goto out_free_reserved;
4545 	}
4546 
4547 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4548 		if (parent == 0)
4549 			parent = ins.objectid;
4550 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4551 	} else
4552 		BUG_ON(parent > 0);
4553 
4554 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4555 		extent_op = btrfs_alloc_delayed_extent_op();
4556 		if (!extent_op) {
4557 			ret = -ENOMEM;
4558 			goto out_free_buf;
4559 		}
4560 		if (key)
4561 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4562 		else
4563 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4564 		extent_op->flags_to_set = flags;
4565 		extent_op->update_key = skinny_metadata ? false : true;
4566 		extent_op->update_flags = true;
4567 		extent_op->is_data = false;
4568 		extent_op->level = level;
4569 
4570 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4571 				       ins.objectid, ins.offset, parent);
4572 		generic_ref.real_root = root->root_key.objectid;
4573 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4574 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4575 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4576 						 extent_op, NULL, NULL);
4577 		if (ret)
4578 			goto out_free_delayed;
4579 	}
4580 	return buf;
4581 
4582 out_free_delayed:
4583 	btrfs_free_delayed_extent_op(extent_op);
4584 out_free_buf:
4585 	free_extent_buffer(buf);
4586 out_free_reserved:
4587 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4588 out_unuse:
4589 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4590 	return ERR_PTR(ret);
4591 }
4592 
4593 struct walk_control {
4594 	u64 refs[BTRFS_MAX_LEVEL];
4595 	u64 flags[BTRFS_MAX_LEVEL];
4596 	struct btrfs_key update_progress;
4597 	struct btrfs_key drop_progress;
4598 	int drop_level;
4599 	int stage;
4600 	int level;
4601 	int shared_level;
4602 	int update_ref;
4603 	int keep_locks;
4604 	int reada_slot;
4605 	int reada_count;
4606 	int restarted;
4607 };
4608 
4609 #define DROP_REFERENCE	1
4610 #define UPDATE_BACKREF	2
4611 
4612 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4613 				     struct btrfs_root *root,
4614 				     struct walk_control *wc,
4615 				     struct btrfs_path *path)
4616 {
4617 	struct btrfs_fs_info *fs_info = root->fs_info;
4618 	u64 bytenr;
4619 	u64 generation;
4620 	u64 refs;
4621 	u64 flags;
4622 	u32 nritems;
4623 	struct btrfs_key key;
4624 	struct extent_buffer *eb;
4625 	int ret;
4626 	int slot;
4627 	int nread = 0;
4628 
4629 	if (path->slots[wc->level] < wc->reada_slot) {
4630 		wc->reada_count = wc->reada_count * 2 / 3;
4631 		wc->reada_count = max(wc->reada_count, 2);
4632 	} else {
4633 		wc->reada_count = wc->reada_count * 3 / 2;
4634 		wc->reada_count = min_t(int, wc->reada_count,
4635 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4636 	}
4637 
4638 	eb = path->nodes[wc->level];
4639 	nritems = btrfs_header_nritems(eb);
4640 
4641 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4642 		if (nread >= wc->reada_count)
4643 			break;
4644 
4645 		cond_resched();
4646 		bytenr = btrfs_node_blockptr(eb, slot);
4647 		generation = btrfs_node_ptr_generation(eb, slot);
4648 
4649 		if (slot == path->slots[wc->level])
4650 			goto reada;
4651 
4652 		if (wc->stage == UPDATE_BACKREF &&
4653 		    generation <= root->root_key.offset)
4654 			continue;
4655 
4656 		/* We don't lock the tree block, it's OK to be racy here */
4657 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4658 					       wc->level - 1, 1, &refs,
4659 					       &flags);
4660 		/* We don't care about errors in readahead. */
4661 		if (ret < 0)
4662 			continue;
4663 		BUG_ON(refs == 0);
4664 
4665 		if (wc->stage == DROP_REFERENCE) {
4666 			if (refs == 1)
4667 				goto reada;
4668 
4669 			if (wc->level == 1 &&
4670 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4671 				continue;
4672 			if (!wc->update_ref ||
4673 			    generation <= root->root_key.offset)
4674 				continue;
4675 			btrfs_node_key_to_cpu(eb, &key, slot);
4676 			ret = btrfs_comp_cpu_keys(&key,
4677 						  &wc->update_progress);
4678 			if (ret < 0)
4679 				continue;
4680 		} else {
4681 			if (wc->level == 1 &&
4682 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4683 				continue;
4684 		}
4685 reada:
4686 		readahead_tree_block(fs_info, bytenr);
4687 		nread++;
4688 	}
4689 	wc->reada_slot = slot;
4690 }
4691 
4692 /*
4693  * helper to process tree block while walking down the tree.
4694  *
4695  * when wc->stage == UPDATE_BACKREF, this function updates
4696  * back refs for pointers in the block.
4697  *
4698  * NOTE: return value 1 means we should stop walking down.
4699  */
4700 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4701 				   struct btrfs_root *root,
4702 				   struct btrfs_path *path,
4703 				   struct walk_control *wc, int lookup_info)
4704 {
4705 	struct btrfs_fs_info *fs_info = root->fs_info;
4706 	int level = wc->level;
4707 	struct extent_buffer *eb = path->nodes[level];
4708 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4709 	int ret;
4710 
4711 	if (wc->stage == UPDATE_BACKREF &&
4712 	    btrfs_header_owner(eb) != root->root_key.objectid)
4713 		return 1;
4714 
4715 	/*
4716 	 * when reference count of tree block is 1, it won't increase
4717 	 * again. once full backref flag is set, we never clear it.
4718 	 */
4719 	if (lookup_info &&
4720 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4721 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4722 		BUG_ON(!path->locks[level]);
4723 		ret = btrfs_lookup_extent_info(trans, fs_info,
4724 					       eb->start, level, 1,
4725 					       &wc->refs[level],
4726 					       &wc->flags[level]);
4727 		BUG_ON(ret == -ENOMEM);
4728 		if (ret)
4729 			return ret;
4730 		BUG_ON(wc->refs[level] == 0);
4731 	}
4732 
4733 	if (wc->stage == DROP_REFERENCE) {
4734 		if (wc->refs[level] > 1)
4735 			return 1;
4736 
4737 		if (path->locks[level] && !wc->keep_locks) {
4738 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4739 			path->locks[level] = 0;
4740 		}
4741 		return 0;
4742 	}
4743 
4744 	/* wc->stage == UPDATE_BACKREF */
4745 	if (!(wc->flags[level] & flag)) {
4746 		BUG_ON(!path->locks[level]);
4747 		ret = btrfs_inc_ref(trans, root, eb, 1);
4748 		BUG_ON(ret); /* -ENOMEM */
4749 		ret = btrfs_dec_ref(trans, root, eb, 0);
4750 		BUG_ON(ret); /* -ENOMEM */
4751 		ret = btrfs_set_disk_extent_flags(trans, eb->start,
4752 						  eb->len, flag,
4753 						  btrfs_header_level(eb), 0);
4754 		BUG_ON(ret); /* -ENOMEM */
4755 		wc->flags[level] |= flag;
4756 	}
4757 
4758 	/*
4759 	 * the block is shared by multiple trees, so it's not good to
4760 	 * keep the tree lock
4761 	 */
4762 	if (path->locks[level] && level > 0) {
4763 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4764 		path->locks[level] = 0;
4765 	}
4766 	return 0;
4767 }
4768 
4769 /*
4770  * This is used to verify a ref exists for this root to deal with a bug where we
4771  * would have a drop_progress key that hadn't been updated properly.
4772  */
4773 static int check_ref_exists(struct btrfs_trans_handle *trans,
4774 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4775 			    int level)
4776 {
4777 	struct btrfs_path *path;
4778 	struct btrfs_extent_inline_ref *iref;
4779 	int ret;
4780 
4781 	path = btrfs_alloc_path();
4782 	if (!path)
4783 		return -ENOMEM;
4784 
4785 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4786 				    root->fs_info->nodesize, parent,
4787 				    root->root_key.objectid, level, 0);
4788 	btrfs_free_path(path);
4789 	if (ret == -ENOENT)
4790 		return 0;
4791 	if (ret < 0)
4792 		return ret;
4793 	return 1;
4794 }
4795 
4796 /*
4797  * helper to process tree block pointer.
4798  *
4799  * when wc->stage == DROP_REFERENCE, this function checks
4800  * reference count of the block pointed to. if the block
4801  * is shared and we need update back refs for the subtree
4802  * rooted at the block, this function changes wc->stage to
4803  * UPDATE_BACKREF. if the block is shared and there is no
4804  * need to update back, this function drops the reference
4805  * to the block.
4806  *
4807  * NOTE: return value 1 means we should stop walking down.
4808  */
4809 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4810 				 struct btrfs_root *root,
4811 				 struct btrfs_path *path,
4812 				 struct walk_control *wc, int *lookup_info)
4813 {
4814 	struct btrfs_fs_info *fs_info = root->fs_info;
4815 	u64 bytenr;
4816 	u64 generation;
4817 	u64 parent;
4818 	struct btrfs_key key;
4819 	struct btrfs_key first_key;
4820 	struct btrfs_ref ref = { 0 };
4821 	struct extent_buffer *next;
4822 	int level = wc->level;
4823 	int reada = 0;
4824 	int ret = 0;
4825 	bool need_account = false;
4826 
4827 	generation = btrfs_node_ptr_generation(path->nodes[level],
4828 					       path->slots[level]);
4829 	/*
4830 	 * if the lower level block was created before the snapshot
4831 	 * was created, we know there is no need to update back refs
4832 	 * for the subtree
4833 	 */
4834 	if (wc->stage == UPDATE_BACKREF &&
4835 	    generation <= root->root_key.offset) {
4836 		*lookup_info = 1;
4837 		return 1;
4838 	}
4839 
4840 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4841 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4842 			      path->slots[level]);
4843 
4844 	next = find_extent_buffer(fs_info, bytenr);
4845 	if (!next) {
4846 		next = btrfs_find_create_tree_block(fs_info, bytenr);
4847 		if (IS_ERR(next))
4848 			return PTR_ERR(next);
4849 
4850 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4851 					       level - 1);
4852 		reada = 1;
4853 	}
4854 	btrfs_tree_lock(next);
4855 	btrfs_set_lock_blocking_write(next);
4856 
4857 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4858 				       &wc->refs[level - 1],
4859 				       &wc->flags[level - 1]);
4860 	if (ret < 0)
4861 		goto out_unlock;
4862 
4863 	if (unlikely(wc->refs[level - 1] == 0)) {
4864 		btrfs_err(fs_info, "Missing references.");
4865 		ret = -EIO;
4866 		goto out_unlock;
4867 	}
4868 	*lookup_info = 0;
4869 
4870 	if (wc->stage == DROP_REFERENCE) {
4871 		if (wc->refs[level - 1] > 1) {
4872 			need_account = true;
4873 			if (level == 1 &&
4874 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4875 				goto skip;
4876 
4877 			if (!wc->update_ref ||
4878 			    generation <= root->root_key.offset)
4879 				goto skip;
4880 
4881 			btrfs_node_key_to_cpu(path->nodes[level], &key,
4882 					      path->slots[level]);
4883 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4884 			if (ret < 0)
4885 				goto skip;
4886 
4887 			wc->stage = UPDATE_BACKREF;
4888 			wc->shared_level = level - 1;
4889 		}
4890 	} else {
4891 		if (level == 1 &&
4892 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4893 			goto skip;
4894 	}
4895 
4896 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4897 		btrfs_tree_unlock(next);
4898 		free_extent_buffer(next);
4899 		next = NULL;
4900 		*lookup_info = 1;
4901 	}
4902 
4903 	if (!next) {
4904 		if (reada && level == 1)
4905 			reada_walk_down(trans, root, wc, path);
4906 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4907 				       &first_key);
4908 		if (IS_ERR(next)) {
4909 			return PTR_ERR(next);
4910 		} else if (!extent_buffer_uptodate(next)) {
4911 			free_extent_buffer(next);
4912 			return -EIO;
4913 		}
4914 		btrfs_tree_lock(next);
4915 		btrfs_set_lock_blocking_write(next);
4916 	}
4917 
4918 	level--;
4919 	ASSERT(level == btrfs_header_level(next));
4920 	if (level != btrfs_header_level(next)) {
4921 		btrfs_err(root->fs_info, "mismatched level");
4922 		ret = -EIO;
4923 		goto out_unlock;
4924 	}
4925 	path->nodes[level] = next;
4926 	path->slots[level] = 0;
4927 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4928 	wc->level = level;
4929 	if (wc->level == 1)
4930 		wc->reada_slot = 0;
4931 	return 0;
4932 skip:
4933 	wc->refs[level - 1] = 0;
4934 	wc->flags[level - 1] = 0;
4935 	if (wc->stage == DROP_REFERENCE) {
4936 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4937 			parent = path->nodes[level]->start;
4938 		} else {
4939 			ASSERT(root->root_key.objectid ==
4940 			       btrfs_header_owner(path->nodes[level]));
4941 			if (root->root_key.objectid !=
4942 			    btrfs_header_owner(path->nodes[level])) {
4943 				btrfs_err(root->fs_info,
4944 						"mismatched block owner");
4945 				ret = -EIO;
4946 				goto out_unlock;
4947 			}
4948 			parent = 0;
4949 		}
4950 
4951 		/*
4952 		 * If we had a drop_progress we need to verify the refs are set
4953 		 * as expected.  If we find our ref then we know that from here
4954 		 * on out everything should be correct, and we can clear the
4955 		 * ->restarted flag.
4956 		 */
4957 		if (wc->restarted) {
4958 			ret = check_ref_exists(trans, root, bytenr, parent,
4959 					       level - 1);
4960 			if (ret < 0)
4961 				goto out_unlock;
4962 			if (ret == 0)
4963 				goto no_delete;
4964 			ret = 0;
4965 			wc->restarted = 0;
4966 		}
4967 
4968 		/*
4969 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
4970 		 * already accounted them at merge time (replace_path),
4971 		 * thus we could skip expensive subtree trace here.
4972 		 */
4973 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4974 		    need_account) {
4975 			ret = btrfs_qgroup_trace_subtree(trans, next,
4976 							 generation, level - 1);
4977 			if (ret) {
4978 				btrfs_err_rl(fs_info,
4979 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4980 					     ret);
4981 			}
4982 		}
4983 
4984 		/*
4985 		 * We need to update the next key in our walk control so we can
4986 		 * update the drop_progress key accordingly.  We don't care if
4987 		 * find_next_key doesn't find a key because that means we're at
4988 		 * the end and are going to clean up now.
4989 		 */
4990 		wc->drop_level = level;
4991 		find_next_key(path, level, &wc->drop_progress);
4992 
4993 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4994 				       fs_info->nodesize, parent);
4995 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4996 		ret = btrfs_free_extent(trans, &ref);
4997 		if (ret)
4998 			goto out_unlock;
4999 	}
5000 no_delete:
5001 	*lookup_info = 1;
5002 	ret = 1;
5003 
5004 out_unlock:
5005 	btrfs_tree_unlock(next);
5006 	free_extent_buffer(next);
5007 
5008 	return ret;
5009 }
5010 
5011 /*
5012  * helper to process tree block while walking up the tree.
5013  *
5014  * when wc->stage == DROP_REFERENCE, this function drops
5015  * reference count on the block.
5016  *
5017  * when wc->stage == UPDATE_BACKREF, this function changes
5018  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5019  * to UPDATE_BACKREF previously while processing the block.
5020  *
5021  * NOTE: return value 1 means we should stop walking up.
5022  */
5023 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5024 				 struct btrfs_root *root,
5025 				 struct btrfs_path *path,
5026 				 struct walk_control *wc)
5027 {
5028 	struct btrfs_fs_info *fs_info = root->fs_info;
5029 	int ret;
5030 	int level = wc->level;
5031 	struct extent_buffer *eb = path->nodes[level];
5032 	u64 parent = 0;
5033 
5034 	if (wc->stage == UPDATE_BACKREF) {
5035 		BUG_ON(wc->shared_level < level);
5036 		if (level < wc->shared_level)
5037 			goto out;
5038 
5039 		ret = find_next_key(path, level + 1, &wc->update_progress);
5040 		if (ret > 0)
5041 			wc->update_ref = 0;
5042 
5043 		wc->stage = DROP_REFERENCE;
5044 		wc->shared_level = -1;
5045 		path->slots[level] = 0;
5046 
5047 		/*
5048 		 * check reference count again if the block isn't locked.
5049 		 * we should start walking down the tree again if reference
5050 		 * count is one.
5051 		 */
5052 		if (!path->locks[level]) {
5053 			BUG_ON(level == 0);
5054 			btrfs_tree_lock(eb);
5055 			btrfs_set_lock_blocking_write(eb);
5056 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5057 
5058 			ret = btrfs_lookup_extent_info(trans, fs_info,
5059 						       eb->start, level, 1,
5060 						       &wc->refs[level],
5061 						       &wc->flags[level]);
5062 			if (ret < 0) {
5063 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5064 				path->locks[level] = 0;
5065 				return ret;
5066 			}
5067 			BUG_ON(wc->refs[level] == 0);
5068 			if (wc->refs[level] == 1) {
5069 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5070 				path->locks[level] = 0;
5071 				return 1;
5072 			}
5073 		}
5074 	}
5075 
5076 	/* wc->stage == DROP_REFERENCE */
5077 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5078 
5079 	if (wc->refs[level] == 1) {
5080 		if (level == 0) {
5081 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5082 				ret = btrfs_dec_ref(trans, root, eb, 1);
5083 			else
5084 				ret = btrfs_dec_ref(trans, root, eb, 0);
5085 			BUG_ON(ret); /* -ENOMEM */
5086 			if (is_fstree(root->root_key.objectid)) {
5087 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5088 				if (ret) {
5089 					btrfs_err_rl(fs_info,
5090 	"error %d accounting leaf items, quota is out of sync, rescan required",
5091 					     ret);
5092 				}
5093 			}
5094 		}
5095 		/* make block locked assertion in btrfs_clean_tree_block happy */
5096 		if (!path->locks[level] &&
5097 		    btrfs_header_generation(eb) == trans->transid) {
5098 			btrfs_tree_lock(eb);
5099 			btrfs_set_lock_blocking_write(eb);
5100 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5101 		}
5102 		btrfs_clean_tree_block(eb);
5103 	}
5104 
5105 	if (eb == root->node) {
5106 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5107 			parent = eb->start;
5108 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5109 			goto owner_mismatch;
5110 	} else {
5111 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5112 			parent = path->nodes[level + 1]->start;
5113 		else if (root->root_key.objectid !=
5114 			 btrfs_header_owner(path->nodes[level + 1]))
5115 			goto owner_mismatch;
5116 	}
5117 
5118 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5119 out:
5120 	wc->refs[level] = 0;
5121 	wc->flags[level] = 0;
5122 	return 0;
5123 
5124 owner_mismatch:
5125 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5126 		     btrfs_header_owner(eb), root->root_key.objectid);
5127 	return -EUCLEAN;
5128 }
5129 
5130 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5131 				   struct btrfs_root *root,
5132 				   struct btrfs_path *path,
5133 				   struct walk_control *wc)
5134 {
5135 	int level = wc->level;
5136 	int lookup_info = 1;
5137 	int ret;
5138 
5139 	while (level >= 0) {
5140 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5141 		if (ret > 0)
5142 			break;
5143 
5144 		if (level == 0)
5145 			break;
5146 
5147 		if (path->slots[level] >=
5148 		    btrfs_header_nritems(path->nodes[level]))
5149 			break;
5150 
5151 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5152 		if (ret > 0) {
5153 			path->slots[level]++;
5154 			continue;
5155 		} else if (ret < 0)
5156 			return ret;
5157 		level = wc->level;
5158 	}
5159 	return 0;
5160 }
5161 
5162 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5163 				 struct btrfs_root *root,
5164 				 struct btrfs_path *path,
5165 				 struct walk_control *wc, int max_level)
5166 {
5167 	int level = wc->level;
5168 	int ret;
5169 
5170 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5171 	while (level < max_level && path->nodes[level]) {
5172 		wc->level = level;
5173 		if (path->slots[level] + 1 <
5174 		    btrfs_header_nritems(path->nodes[level])) {
5175 			path->slots[level]++;
5176 			return 0;
5177 		} else {
5178 			ret = walk_up_proc(trans, root, path, wc);
5179 			if (ret > 0)
5180 				return 0;
5181 			if (ret < 0)
5182 				return ret;
5183 
5184 			if (path->locks[level]) {
5185 				btrfs_tree_unlock_rw(path->nodes[level],
5186 						     path->locks[level]);
5187 				path->locks[level] = 0;
5188 			}
5189 			free_extent_buffer(path->nodes[level]);
5190 			path->nodes[level] = NULL;
5191 			level++;
5192 		}
5193 	}
5194 	return 1;
5195 }
5196 
5197 /*
5198  * drop a subvolume tree.
5199  *
5200  * this function traverses the tree freeing any blocks that only
5201  * referenced by the tree.
5202  *
5203  * when a shared tree block is found. this function decreases its
5204  * reference count by one. if update_ref is true, this function
5205  * also make sure backrefs for the shared block and all lower level
5206  * blocks are properly updated.
5207  *
5208  * If called with for_reloc == 0, may exit early with -EAGAIN
5209  */
5210 int btrfs_drop_snapshot(struct btrfs_root *root,
5211 			 struct btrfs_block_rsv *block_rsv, int update_ref,
5212 			 int for_reloc)
5213 {
5214 	struct btrfs_fs_info *fs_info = root->fs_info;
5215 	struct btrfs_path *path;
5216 	struct btrfs_trans_handle *trans;
5217 	struct btrfs_root *tree_root = fs_info->tree_root;
5218 	struct btrfs_root_item *root_item = &root->root_item;
5219 	struct walk_control *wc;
5220 	struct btrfs_key key;
5221 	int err = 0;
5222 	int ret;
5223 	int level;
5224 	bool root_dropped = false;
5225 
5226 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5227 
5228 	path = btrfs_alloc_path();
5229 	if (!path) {
5230 		err = -ENOMEM;
5231 		goto out;
5232 	}
5233 
5234 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5235 	if (!wc) {
5236 		btrfs_free_path(path);
5237 		err = -ENOMEM;
5238 		goto out;
5239 	}
5240 
5241 	trans = btrfs_start_transaction(tree_root, 0);
5242 	if (IS_ERR(trans)) {
5243 		err = PTR_ERR(trans);
5244 		goto out_free;
5245 	}
5246 
5247 	err = btrfs_run_delayed_items(trans);
5248 	if (err)
5249 		goto out_end_trans;
5250 
5251 	if (block_rsv)
5252 		trans->block_rsv = block_rsv;
5253 
5254 	/*
5255 	 * This will help us catch people modifying the fs tree while we're
5256 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5257 	 * dropped as we unlock the root node and parent nodes as we walk down
5258 	 * the tree, assuming nothing will change.  If something does change
5259 	 * then we'll have stale information and drop references to blocks we've
5260 	 * already dropped.
5261 	 */
5262 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5263 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5264 		level = btrfs_header_level(root->node);
5265 		path->nodes[level] = btrfs_lock_root_node(root);
5266 		btrfs_set_lock_blocking_write(path->nodes[level]);
5267 		path->slots[level] = 0;
5268 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5269 		memset(&wc->update_progress, 0,
5270 		       sizeof(wc->update_progress));
5271 	} else {
5272 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5273 		memcpy(&wc->update_progress, &key,
5274 		       sizeof(wc->update_progress));
5275 
5276 		level = root_item->drop_level;
5277 		BUG_ON(level == 0);
5278 		path->lowest_level = level;
5279 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5280 		path->lowest_level = 0;
5281 		if (ret < 0) {
5282 			err = ret;
5283 			goto out_end_trans;
5284 		}
5285 		WARN_ON(ret > 0);
5286 
5287 		/*
5288 		 * unlock our path, this is safe because only this
5289 		 * function is allowed to delete this snapshot
5290 		 */
5291 		btrfs_unlock_up_safe(path, 0);
5292 
5293 		level = btrfs_header_level(root->node);
5294 		while (1) {
5295 			btrfs_tree_lock(path->nodes[level]);
5296 			btrfs_set_lock_blocking_write(path->nodes[level]);
5297 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5298 
5299 			ret = btrfs_lookup_extent_info(trans, fs_info,
5300 						path->nodes[level]->start,
5301 						level, 1, &wc->refs[level],
5302 						&wc->flags[level]);
5303 			if (ret < 0) {
5304 				err = ret;
5305 				goto out_end_trans;
5306 			}
5307 			BUG_ON(wc->refs[level] == 0);
5308 
5309 			if (level == root_item->drop_level)
5310 				break;
5311 
5312 			btrfs_tree_unlock(path->nodes[level]);
5313 			path->locks[level] = 0;
5314 			WARN_ON(wc->refs[level] != 1);
5315 			level--;
5316 		}
5317 	}
5318 
5319 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5320 	wc->level = level;
5321 	wc->shared_level = -1;
5322 	wc->stage = DROP_REFERENCE;
5323 	wc->update_ref = update_ref;
5324 	wc->keep_locks = 0;
5325 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5326 
5327 	while (1) {
5328 
5329 		ret = walk_down_tree(trans, root, path, wc);
5330 		if (ret < 0) {
5331 			err = ret;
5332 			break;
5333 		}
5334 
5335 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5336 		if (ret < 0) {
5337 			err = ret;
5338 			break;
5339 		}
5340 
5341 		if (ret > 0) {
5342 			BUG_ON(wc->stage != DROP_REFERENCE);
5343 			break;
5344 		}
5345 
5346 		if (wc->stage == DROP_REFERENCE) {
5347 			wc->drop_level = wc->level;
5348 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5349 					      &wc->drop_progress,
5350 					      path->slots[wc->drop_level]);
5351 		}
5352 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5353 				      &wc->drop_progress);
5354 		root_item->drop_level = wc->drop_level;
5355 
5356 		BUG_ON(wc->level == 0);
5357 		if (btrfs_should_end_transaction(trans) ||
5358 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5359 			ret = btrfs_update_root(trans, tree_root,
5360 						&root->root_key,
5361 						root_item);
5362 			if (ret) {
5363 				btrfs_abort_transaction(trans, ret);
5364 				err = ret;
5365 				goto out_end_trans;
5366 			}
5367 
5368 			btrfs_end_transaction_throttle(trans);
5369 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5370 				btrfs_debug(fs_info,
5371 					    "drop snapshot early exit");
5372 				err = -EAGAIN;
5373 				goto out_free;
5374 			}
5375 
5376 			trans = btrfs_start_transaction(tree_root, 0);
5377 			if (IS_ERR(trans)) {
5378 				err = PTR_ERR(trans);
5379 				goto out_free;
5380 			}
5381 			if (block_rsv)
5382 				trans->block_rsv = block_rsv;
5383 		}
5384 	}
5385 	btrfs_release_path(path);
5386 	if (err)
5387 		goto out_end_trans;
5388 
5389 	ret = btrfs_del_root(trans, &root->root_key);
5390 	if (ret) {
5391 		btrfs_abort_transaction(trans, ret);
5392 		err = ret;
5393 		goto out_end_trans;
5394 	}
5395 
5396 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5397 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5398 				      NULL, NULL);
5399 		if (ret < 0) {
5400 			btrfs_abort_transaction(trans, ret);
5401 			err = ret;
5402 			goto out_end_trans;
5403 		} else if (ret > 0) {
5404 			/* if we fail to delete the orphan item this time
5405 			 * around, it'll get picked up the next time.
5406 			 *
5407 			 * The most common failure here is just -ENOENT.
5408 			 */
5409 			btrfs_del_orphan_item(trans, tree_root,
5410 					      root->root_key.objectid);
5411 		}
5412 	}
5413 
5414 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5415 		btrfs_add_dropped_root(trans, root);
5416 	} else {
5417 		free_extent_buffer(root->node);
5418 		free_extent_buffer(root->commit_root);
5419 		btrfs_put_fs_root(root);
5420 	}
5421 	root_dropped = true;
5422 out_end_trans:
5423 	btrfs_end_transaction_throttle(trans);
5424 out_free:
5425 	kfree(wc);
5426 	btrfs_free_path(path);
5427 out:
5428 	/*
5429 	 * So if we need to stop dropping the snapshot for whatever reason we
5430 	 * need to make sure to add it back to the dead root list so that we
5431 	 * keep trying to do the work later.  This also cleans up roots if we
5432 	 * don't have it in the radix (like when we recover after a power fail
5433 	 * or unmount) so we don't leak memory.
5434 	 */
5435 	if (!for_reloc && !root_dropped)
5436 		btrfs_add_dead_root(root);
5437 	if (err && err != -EAGAIN)
5438 		btrfs_handle_fs_error(fs_info, err, NULL);
5439 	return err;
5440 }
5441 
5442 /*
5443  * drop subtree rooted at tree block 'node'.
5444  *
5445  * NOTE: this function will unlock and release tree block 'node'
5446  * only used by relocation code
5447  */
5448 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5449 			struct btrfs_root *root,
5450 			struct extent_buffer *node,
5451 			struct extent_buffer *parent)
5452 {
5453 	struct btrfs_fs_info *fs_info = root->fs_info;
5454 	struct btrfs_path *path;
5455 	struct walk_control *wc;
5456 	int level;
5457 	int parent_level;
5458 	int ret = 0;
5459 	int wret;
5460 
5461 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5462 
5463 	path = btrfs_alloc_path();
5464 	if (!path)
5465 		return -ENOMEM;
5466 
5467 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5468 	if (!wc) {
5469 		btrfs_free_path(path);
5470 		return -ENOMEM;
5471 	}
5472 
5473 	btrfs_assert_tree_locked(parent);
5474 	parent_level = btrfs_header_level(parent);
5475 	atomic_inc(&parent->refs);
5476 	path->nodes[parent_level] = parent;
5477 	path->slots[parent_level] = btrfs_header_nritems(parent);
5478 
5479 	btrfs_assert_tree_locked(node);
5480 	level = btrfs_header_level(node);
5481 	path->nodes[level] = node;
5482 	path->slots[level] = 0;
5483 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5484 
5485 	wc->refs[parent_level] = 1;
5486 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5487 	wc->level = level;
5488 	wc->shared_level = -1;
5489 	wc->stage = DROP_REFERENCE;
5490 	wc->update_ref = 0;
5491 	wc->keep_locks = 1;
5492 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5493 
5494 	while (1) {
5495 		wret = walk_down_tree(trans, root, path, wc);
5496 		if (wret < 0) {
5497 			ret = wret;
5498 			break;
5499 		}
5500 
5501 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5502 		if (wret < 0)
5503 			ret = wret;
5504 		if (wret != 0)
5505 			break;
5506 	}
5507 
5508 	kfree(wc);
5509 	btrfs_free_path(path);
5510 	return ret;
5511 }
5512 
5513 /*
5514  * helper to account the unused space of all the readonly block group in the
5515  * space_info. takes mirrors into account.
5516  */
5517 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5518 {
5519 	struct btrfs_block_group *block_group;
5520 	u64 free_bytes = 0;
5521 	int factor;
5522 
5523 	/* It's df, we don't care if it's racy */
5524 	if (list_empty(&sinfo->ro_bgs))
5525 		return 0;
5526 
5527 	spin_lock(&sinfo->lock);
5528 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5529 		spin_lock(&block_group->lock);
5530 
5531 		if (!block_group->ro) {
5532 			spin_unlock(&block_group->lock);
5533 			continue;
5534 		}
5535 
5536 		factor = btrfs_bg_type_to_factor(block_group->flags);
5537 		free_bytes += (block_group->length -
5538 			       block_group->used) * factor;
5539 
5540 		spin_unlock(&block_group->lock);
5541 	}
5542 	spin_unlock(&sinfo->lock);
5543 
5544 	return free_bytes;
5545 }
5546 
5547 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5548 				   u64 start, u64 end)
5549 {
5550 	return unpin_extent_range(fs_info, start, end, false);
5551 }
5552 
5553 /*
5554  * It used to be that old block groups would be left around forever.
5555  * Iterating over them would be enough to trim unused space.  Since we
5556  * now automatically remove them, we also need to iterate over unallocated
5557  * space.
5558  *
5559  * We don't want a transaction for this since the discard may take a
5560  * substantial amount of time.  We don't require that a transaction be
5561  * running, but we do need to take a running transaction into account
5562  * to ensure that we're not discarding chunks that were released or
5563  * allocated in the current transaction.
5564  *
5565  * Holding the chunks lock will prevent other threads from allocating
5566  * or releasing chunks, but it won't prevent a running transaction
5567  * from committing and releasing the memory that the pending chunks
5568  * list head uses.  For that, we need to take a reference to the
5569  * transaction and hold the commit root sem.  We only need to hold
5570  * it while performing the free space search since we have already
5571  * held back allocations.
5572  */
5573 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5574 {
5575 	u64 start = SZ_1M, len = 0, end = 0;
5576 	int ret;
5577 
5578 	*trimmed = 0;
5579 
5580 	/* Discard not supported = nothing to do. */
5581 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5582 		return 0;
5583 
5584 	/* Not writable = nothing to do. */
5585 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5586 		return 0;
5587 
5588 	/* No free space = nothing to do. */
5589 	if (device->total_bytes <= device->bytes_used)
5590 		return 0;
5591 
5592 	ret = 0;
5593 
5594 	while (1) {
5595 		struct btrfs_fs_info *fs_info = device->fs_info;
5596 		u64 bytes;
5597 
5598 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5599 		if (ret)
5600 			break;
5601 
5602 		find_first_clear_extent_bit(&device->alloc_state, start,
5603 					    &start, &end,
5604 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5605 
5606 		/* Ensure we skip the reserved area in the first 1M */
5607 		start = max_t(u64, start, SZ_1M);
5608 
5609 		/*
5610 		 * If find_first_clear_extent_bit find a range that spans the
5611 		 * end of the device it will set end to -1, in this case it's up
5612 		 * to the caller to trim the value to the size of the device.
5613 		 */
5614 		end = min(end, device->total_bytes - 1);
5615 
5616 		len = end - start + 1;
5617 
5618 		/* We didn't find any extents */
5619 		if (!len) {
5620 			mutex_unlock(&fs_info->chunk_mutex);
5621 			ret = 0;
5622 			break;
5623 		}
5624 
5625 		ret = btrfs_issue_discard(device->bdev, start, len,
5626 					  &bytes);
5627 		if (!ret)
5628 			set_extent_bits(&device->alloc_state, start,
5629 					start + bytes - 1,
5630 					CHUNK_TRIMMED);
5631 		mutex_unlock(&fs_info->chunk_mutex);
5632 
5633 		if (ret)
5634 			break;
5635 
5636 		start += len;
5637 		*trimmed += bytes;
5638 
5639 		if (fatal_signal_pending(current)) {
5640 			ret = -ERESTARTSYS;
5641 			break;
5642 		}
5643 
5644 		cond_resched();
5645 	}
5646 
5647 	return ret;
5648 }
5649 
5650 /*
5651  * Trim the whole filesystem by:
5652  * 1) trimming the free space in each block group
5653  * 2) trimming the unallocated space on each device
5654  *
5655  * This will also continue trimming even if a block group or device encounters
5656  * an error.  The return value will be the last error, or 0 if nothing bad
5657  * happens.
5658  */
5659 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5660 {
5661 	struct btrfs_block_group *cache = NULL;
5662 	struct btrfs_device *device;
5663 	struct list_head *devices;
5664 	u64 group_trimmed;
5665 	u64 range_end = U64_MAX;
5666 	u64 start;
5667 	u64 end;
5668 	u64 trimmed = 0;
5669 	u64 bg_failed = 0;
5670 	u64 dev_failed = 0;
5671 	int bg_ret = 0;
5672 	int dev_ret = 0;
5673 	int ret = 0;
5674 
5675 	/*
5676 	 * Check range overflow if range->len is set.
5677 	 * The default range->len is U64_MAX.
5678 	 */
5679 	if (range->len != U64_MAX &&
5680 	    check_add_overflow(range->start, range->len, &range_end))
5681 		return -EINVAL;
5682 
5683 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5684 	for (; cache; cache = btrfs_next_block_group(cache)) {
5685 		if (cache->start >= range_end) {
5686 			btrfs_put_block_group(cache);
5687 			break;
5688 		}
5689 
5690 		start = max(range->start, cache->start);
5691 		end = min(range_end, cache->start + cache->length);
5692 
5693 		if (end - start >= range->minlen) {
5694 			if (!btrfs_block_group_done(cache)) {
5695 				ret = btrfs_cache_block_group(cache, 0);
5696 				if (ret) {
5697 					bg_failed++;
5698 					bg_ret = ret;
5699 					continue;
5700 				}
5701 				ret = btrfs_wait_block_group_cache_done(cache);
5702 				if (ret) {
5703 					bg_failed++;
5704 					bg_ret = ret;
5705 					continue;
5706 				}
5707 			}
5708 			ret = btrfs_trim_block_group(cache,
5709 						     &group_trimmed,
5710 						     start,
5711 						     end,
5712 						     range->minlen);
5713 
5714 			trimmed += group_trimmed;
5715 			if (ret) {
5716 				bg_failed++;
5717 				bg_ret = ret;
5718 				continue;
5719 			}
5720 		}
5721 	}
5722 
5723 	if (bg_failed)
5724 		btrfs_warn(fs_info,
5725 			"failed to trim %llu block group(s), last error %d",
5726 			bg_failed, bg_ret);
5727 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5728 	devices = &fs_info->fs_devices->devices;
5729 	list_for_each_entry(device, devices, dev_list) {
5730 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5731 		if (ret) {
5732 			dev_failed++;
5733 			dev_ret = ret;
5734 			break;
5735 		}
5736 
5737 		trimmed += group_trimmed;
5738 	}
5739 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5740 
5741 	if (dev_failed)
5742 		btrfs_warn(fs_info,
5743 			"failed to trim %llu device(s), last error %d",
5744 			dev_failed, dev_ret);
5745 	range->len = trimmed;
5746 	if (bg_ret)
5747 		return bg_ret;
5748 	return dev_ret;
5749 }
5750 
5751 /*
5752  * btrfs_{start,end}_write_no_snapshotting() are similar to
5753  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5754  * data into the page cache through nocow before the subvolume is snapshoted,
5755  * but flush the data into disk after the snapshot creation, or to prevent
5756  * operations while snapshotting is ongoing and that cause the snapshot to be
5757  * inconsistent (writes followed by expanding truncates for example).
5758  */
5759 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5760 {
5761 	percpu_counter_dec(&root->subv_writers->counter);
5762 	cond_wake_up(&root->subv_writers->wait);
5763 }
5764 
5765 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5766 {
5767 	if (atomic_read(&root->will_be_snapshotted))
5768 		return 0;
5769 
5770 	percpu_counter_inc(&root->subv_writers->counter);
5771 	/*
5772 	 * Make sure counter is updated before we check for snapshot creation.
5773 	 */
5774 	smp_mb();
5775 	if (atomic_read(&root->will_be_snapshotted)) {
5776 		btrfs_end_write_no_snapshotting(root);
5777 		return 0;
5778 	}
5779 	return 1;
5780 }
5781 
5782 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5783 {
5784 	while (true) {
5785 		int ret;
5786 
5787 		ret = btrfs_start_write_no_snapshotting(root);
5788 		if (ret)
5789 			break;
5790 		wait_var_event(&root->will_be_snapshotted,
5791 			       !atomic_read(&root->will_be_snapshotted));
5792 	}
5793 }
5794