xref: /linux/fs/btrfs/inode.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "props.h"
48 #include "qgroup.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 
52 struct btrfs_iget_args {
53 	struct btrfs_key *location;
54 	struct btrfs_root *root;
55 };
56 
57 struct btrfs_dio_data {
58 	u64 reserve;
59 	u64 unsubmitted_oe_range_start;
60 	u64 unsubmitted_oe_range_end;
61 	int overwrite;
62 };
63 
64 static const struct inode_operations btrfs_dir_inode_operations;
65 static const struct inode_operations btrfs_symlink_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static const struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 struct kmem_cache *btrfs_free_space_cachep;
76 struct kmem_cache *btrfs_free_space_bitmap_cachep;
77 
78 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
79 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
81 static noinline int cow_file_range(struct inode *inode,
82 				   struct page *locked_page,
83 				   u64 start, u64 end, int *page_started,
84 				   unsigned long *nr_written, int unlock);
85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
86 				       u64 orig_start, u64 block_start,
87 				       u64 block_len, u64 orig_block_len,
88 				       u64 ram_bytes, int compress_type,
89 				       int type);
90 
91 static void __endio_write_update_ordered(struct inode *inode,
92 					 const u64 offset, const u64 bytes,
93 					 const bool uptodate);
94 
95 /*
96  * Cleanup all submitted ordered extents in specified range to handle errors
97  * from the btrfs_run_delalloc_range() callback.
98  *
99  * NOTE: caller must ensure that when an error happens, it can not call
100  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
101  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
102  * to be released, which we want to happen only when finishing the ordered
103  * extent (btrfs_finish_ordered_io()).
104  */
105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
106 						 struct page *locked_page,
107 						 u64 offset, u64 bytes)
108 {
109 	unsigned long index = offset >> PAGE_SHIFT;
110 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
111 	u64 page_start = page_offset(locked_page);
112 	u64 page_end = page_start + PAGE_SIZE - 1;
113 
114 	struct page *page;
115 
116 	while (index <= end_index) {
117 		page = find_get_page(inode->i_mapping, index);
118 		index++;
119 		if (!page)
120 			continue;
121 		ClearPagePrivate2(page);
122 		put_page(page);
123 	}
124 
125 	/*
126 	 * In case this page belongs to the delalloc range being instantiated
127 	 * then skip it, since the first page of a range is going to be
128 	 * properly cleaned up by the caller of run_delalloc_range
129 	 */
130 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
131 		offset += PAGE_SIZE;
132 		bytes -= PAGE_SIZE;
133 	}
134 
135 	return __endio_write_update_ordered(inode, offset, bytes, false);
136 }
137 
138 static int btrfs_dirty_inode(struct inode *inode);
139 
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
142 {
143 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144 }
145 #endif
146 
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 				     struct inode *inode,  struct inode *dir,
149 				     const struct qstr *qstr)
150 {
151 	int err;
152 
153 	err = btrfs_init_acl(trans, inode, dir);
154 	if (!err)
155 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156 	return err;
157 }
158 
159 /*
160  * this does all the hard work for inserting an inline extent into
161  * the btree.  The caller should have done a btrfs_drop_extents so that
162  * no overlapping inline items exist in the btree
163  */
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 				struct btrfs_path *path, int extent_inserted,
166 				struct btrfs_root *root, struct inode *inode,
167 				u64 start, size_t size, size_t compressed_size,
168 				int compress_type,
169 				struct page **compressed_pages)
170 {
171 	struct extent_buffer *leaf;
172 	struct page *page = NULL;
173 	char *kaddr;
174 	unsigned long ptr;
175 	struct btrfs_file_extent_item *ei;
176 	int ret;
177 	size_t cur_size = size;
178 	unsigned long offset;
179 
180 	ASSERT((compressed_size > 0 && compressed_pages) ||
181 	       (compressed_size == 0 && !compressed_pages));
182 
183 	if (compressed_size && compressed_pages)
184 		cur_size = compressed_size;
185 
186 	inode_add_bytes(inode, size);
187 
188 	if (!extent_inserted) {
189 		struct btrfs_key key;
190 		size_t datasize;
191 
192 		key.objectid = btrfs_ino(BTRFS_I(inode));
193 		key.offset = start;
194 		key.type = BTRFS_EXTENT_DATA_KEY;
195 
196 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
197 		path->leave_spinning = 1;
198 		ret = btrfs_insert_empty_item(trans, root, path, &key,
199 					      datasize);
200 		if (ret)
201 			goto fail;
202 	}
203 	leaf = path->nodes[0];
204 	ei = btrfs_item_ptr(leaf, path->slots[0],
205 			    struct btrfs_file_extent_item);
206 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
207 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
208 	btrfs_set_file_extent_encryption(leaf, ei, 0);
209 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
210 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
211 	ptr = btrfs_file_extent_inline_start(ei);
212 
213 	if (compress_type != BTRFS_COMPRESS_NONE) {
214 		struct page *cpage;
215 		int i = 0;
216 		while (compressed_size > 0) {
217 			cpage = compressed_pages[i];
218 			cur_size = min_t(unsigned long, compressed_size,
219 				       PAGE_SIZE);
220 
221 			kaddr = kmap_atomic(cpage);
222 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
223 			kunmap_atomic(kaddr);
224 
225 			i++;
226 			ptr += cur_size;
227 			compressed_size -= cur_size;
228 		}
229 		btrfs_set_file_extent_compression(leaf, ei,
230 						  compress_type);
231 	} else {
232 		page = find_get_page(inode->i_mapping,
233 				     start >> PAGE_SHIFT);
234 		btrfs_set_file_extent_compression(leaf, ei, 0);
235 		kaddr = kmap_atomic(page);
236 		offset = offset_in_page(start);
237 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
238 		kunmap_atomic(kaddr);
239 		put_page(page);
240 	}
241 	btrfs_mark_buffer_dirty(leaf);
242 	btrfs_release_path(path);
243 
244 	/*
245 	 * we're an inline extent, so nobody can
246 	 * extend the file past i_size without locking
247 	 * a page we already have locked.
248 	 *
249 	 * We must do any isize and inode updates
250 	 * before we unlock the pages.  Otherwise we
251 	 * could end up racing with unlink.
252 	 */
253 	BTRFS_I(inode)->disk_i_size = inode->i_size;
254 	ret = btrfs_update_inode(trans, root, inode);
255 
256 fail:
257 	return ret;
258 }
259 
260 
261 /*
262  * conditionally insert an inline extent into the file.  This
263  * does the checks required to make sure the data is small enough
264  * to fit as an inline extent.
265  */
266 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
267 					  u64 end, size_t compressed_size,
268 					  int compress_type,
269 					  struct page **compressed_pages)
270 {
271 	struct btrfs_root *root = BTRFS_I(inode)->root;
272 	struct btrfs_fs_info *fs_info = root->fs_info;
273 	struct btrfs_trans_handle *trans;
274 	u64 isize = i_size_read(inode);
275 	u64 actual_end = min(end + 1, isize);
276 	u64 inline_len = actual_end - start;
277 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
278 	u64 data_len = inline_len;
279 	int ret;
280 	struct btrfs_path *path;
281 	int extent_inserted = 0;
282 	u32 extent_item_size;
283 
284 	if (compressed_size)
285 		data_len = compressed_size;
286 
287 	if (start > 0 ||
288 	    actual_end > fs_info->sectorsize ||
289 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
290 	    (!compressed_size &&
291 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
292 	    end + 1 < isize ||
293 	    data_len > fs_info->max_inline) {
294 		return 1;
295 	}
296 
297 	path = btrfs_alloc_path();
298 	if (!path)
299 		return -ENOMEM;
300 
301 	trans = btrfs_join_transaction(root);
302 	if (IS_ERR(trans)) {
303 		btrfs_free_path(path);
304 		return PTR_ERR(trans);
305 	}
306 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
307 
308 	if (compressed_size && compressed_pages)
309 		extent_item_size = btrfs_file_extent_calc_inline_size(
310 		   compressed_size);
311 	else
312 		extent_item_size = btrfs_file_extent_calc_inline_size(
313 		    inline_len);
314 
315 	ret = __btrfs_drop_extents(trans, root, inode, path,
316 				   start, aligned_end, NULL,
317 				   1, 1, extent_item_size, &extent_inserted);
318 	if (ret) {
319 		btrfs_abort_transaction(trans, ret);
320 		goto out;
321 	}
322 
323 	if (isize > actual_end)
324 		inline_len = min_t(u64, isize, actual_end);
325 	ret = insert_inline_extent(trans, path, extent_inserted,
326 				   root, inode, start,
327 				   inline_len, compressed_size,
328 				   compress_type, compressed_pages);
329 	if (ret && ret != -ENOSPC) {
330 		btrfs_abort_transaction(trans, ret);
331 		goto out;
332 	} else if (ret == -ENOSPC) {
333 		ret = 1;
334 		goto out;
335 	}
336 
337 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
338 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
339 out:
340 	/*
341 	 * Don't forget to free the reserved space, as for inlined extent
342 	 * it won't count as data extent, free them directly here.
343 	 * And at reserve time, it's always aligned to page size, so
344 	 * just free one page here.
345 	 */
346 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
347 	btrfs_free_path(path);
348 	btrfs_end_transaction(trans);
349 	return ret;
350 }
351 
352 struct async_extent {
353 	u64 start;
354 	u64 ram_size;
355 	u64 compressed_size;
356 	struct page **pages;
357 	unsigned long nr_pages;
358 	int compress_type;
359 	struct list_head list;
360 };
361 
362 struct async_chunk {
363 	struct inode *inode;
364 	struct page *locked_page;
365 	u64 start;
366 	u64 end;
367 	unsigned int write_flags;
368 	struct list_head extents;
369 	struct cgroup_subsys_state *blkcg_css;
370 	struct btrfs_work work;
371 	atomic_t *pending;
372 };
373 
374 struct async_cow {
375 	/* Number of chunks in flight; must be first in the structure */
376 	atomic_t num_chunks;
377 	struct async_chunk chunks[];
378 };
379 
380 static noinline int add_async_extent(struct async_chunk *cow,
381 				     u64 start, u64 ram_size,
382 				     u64 compressed_size,
383 				     struct page **pages,
384 				     unsigned long nr_pages,
385 				     int compress_type)
386 {
387 	struct async_extent *async_extent;
388 
389 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
390 	BUG_ON(!async_extent); /* -ENOMEM */
391 	async_extent->start = start;
392 	async_extent->ram_size = ram_size;
393 	async_extent->compressed_size = compressed_size;
394 	async_extent->pages = pages;
395 	async_extent->nr_pages = nr_pages;
396 	async_extent->compress_type = compress_type;
397 	list_add_tail(&async_extent->list, &cow->extents);
398 	return 0;
399 }
400 
401 /*
402  * Check if the inode has flags compatible with compression
403  */
404 static inline bool inode_can_compress(struct inode *inode)
405 {
406 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
407 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
408 		return false;
409 	return true;
410 }
411 
412 /*
413  * Check if the inode needs to be submitted to compression, based on mount
414  * options, defragmentation, properties or heuristics.
415  */
416 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
417 {
418 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 
420 	if (!inode_can_compress(inode)) {
421 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
422 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
423 			btrfs_ino(BTRFS_I(inode)));
424 		return 0;
425 	}
426 	/* force compress */
427 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
428 		return 1;
429 	/* defrag ioctl */
430 	if (BTRFS_I(inode)->defrag_compress)
431 		return 1;
432 	/* bad compression ratios */
433 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
434 		return 0;
435 	if (btrfs_test_opt(fs_info, COMPRESS) ||
436 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
437 	    BTRFS_I(inode)->prop_compress)
438 		return btrfs_compress_heuristic(inode, start, end);
439 	return 0;
440 }
441 
442 static inline void inode_should_defrag(struct btrfs_inode *inode,
443 		u64 start, u64 end, u64 num_bytes, u64 small_write)
444 {
445 	/* If this is a small write inside eof, kick off a defrag */
446 	if (num_bytes < small_write &&
447 	    (start > 0 || end + 1 < inode->disk_i_size))
448 		btrfs_add_inode_defrag(NULL, inode);
449 }
450 
451 /*
452  * we create compressed extents in two phases.  The first
453  * phase compresses a range of pages that have already been
454  * locked (both pages and state bits are locked).
455  *
456  * This is done inside an ordered work queue, and the compression
457  * is spread across many cpus.  The actual IO submission is step
458  * two, and the ordered work queue takes care of making sure that
459  * happens in the same order things were put onto the queue by
460  * writepages and friends.
461  *
462  * If this code finds it can't get good compression, it puts an
463  * entry onto the work queue to write the uncompressed bytes.  This
464  * makes sure that both compressed inodes and uncompressed inodes
465  * are written in the same order that the flusher thread sent them
466  * down.
467  */
468 static noinline int compress_file_range(struct async_chunk *async_chunk)
469 {
470 	struct inode *inode = async_chunk->inode;
471 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
472 	u64 blocksize = fs_info->sectorsize;
473 	u64 start = async_chunk->start;
474 	u64 end = async_chunk->end;
475 	u64 actual_end;
476 	u64 i_size;
477 	int ret = 0;
478 	struct page **pages = NULL;
479 	unsigned long nr_pages;
480 	unsigned long total_compressed = 0;
481 	unsigned long total_in = 0;
482 	int i;
483 	int will_compress;
484 	int compress_type = fs_info->compress_type;
485 	int compressed_extents = 0;
486 	int redirty = 0;
487 
488 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
489 			SZ_16K);
490 
491 	/*
492 	 * We need to save i_size before now because it could change in between
493 	 * us evaluating the size and assigning it.  This is because we lock and
494 	 * unlock the page in truncate and fallocate, and then modify the i_size
495 	 * later on.
496 	 *
497 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
498 	 * does that for us.
499 	 */
500 	barrier();
501 	i_size = i_size_read(inode);
502 	barrier();
503 	actual_end = min_t(u64, i_size, end + 1);
504 again:
505 	will_compress = 0;
506 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
507 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
508 	nr_pages = min_t(unsigned long, nr_pages,
509 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
510 
511 	/*
512 	 * we don't want to send crud past the end of i_size through
513 	 * compression, that's just a waste of CPU time.  So, if the
514 	 * end of the file is before the start of our current
515 	 * requested range of bytes, we bail out to the uncompressed
516 	 * cleanup code that can deal with all of this.
517 	 *
518 	 * It isn't really the fastest way to fix things, but this is a
519 	 * very uncommon corner.
520 	 */
521 	if (actual_end <= start)
522 		goto cleanup_and_bail_uncompressed;
523 
524 	total_compressed = actual_end - start;
525 
526 	/*
527 	 * skip compression for a small file range(<=blocksize) that
528 	 * isn't an inline extent, since it doesn't save disk space at all.
529 	 */
530 	if (total_compressed <= blocksize &&
531 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
532 		goto cleanup_and_bail_uncompressed;
533 
534 	total_compressed = min_t(unsigned long, total_compressed,
535 			BTRFS_MAX_UNCOMPRESSED);
536 	total_in = 0;
537 	ret = 0;
538 
539 	/*
540 	 * we do compression for mount -o compress and when the
541 	 * inode has not been flagged as nocompress.  This flag can
542 	 * change at any time if we discover bad compression ratios.
543 	 */
544 	if (inode_need_compress(inode, start, end)) {
545 		WARN_ON(pages);
546 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
547 		if (!pages) {
548 			/* just bail out to the uncompressed code */
549 			nr_pages = 0;
550 			goto cont;
551 		}
552 
553 		if (BTRFS_I(inode)->defrag_compress)
554 			compress_type = BTRFS_I(inode)->defrag_compress;
555 		else if (BTRFS_I(inode)->prop_compress)
556 			compress_type = BTRFS_I(inode)->prop_compress;
557 
558 		/*
559 		 * we need to call clear_page_dirty_for_io on each
560 		 * page in the range.  Otherwise applications with the file
561 		 * mmap'd can wander in and change the page contents while
562 		 * we are compressing them.
563 		 *
564 		 * If the compression fails for any reason, we set the pages
565 		 * dirty again later on.
566 		 *
567 		 * Note that the remaining part is redirtied, the start pointer
568 		 * has moved, the end is the original one.
569 		 */
570 		if (!redirty) {
571 			extent_range_clear_dirty_for_io(inode, start, end);
572 			redirty = 1;
573 		}
574 
575 		/* Compression level is applied here and only here */
576 		ret = btrfs_compress_pages(
577 			compress_type | (fs_info->compress_level << 4),
578 					   inode->i_mapping, start,
579 					   pages,
580 					   &nr_pages,
581 					   &total_in,
582 					   &total_compressed);
583 
584 		if (!ret) {
585 			unsigned long offset = offset_in_page(total_compressed);
586 			struct page *page = pages[nr_pages - 1];
587 			char *kaddr;
588 
589 			/* zero the tail end of the last page, we might be
590 			 * sending it down to disk
591 			 */
592 			if (offset) {
593 				kaddr = kmap_atomic(page);
594 				memset(kaddr + offset, 0,
595 				       PAGE_SIZE - offset);
596 				kunmap_atomic(kaddr);
597 			}
598 			will_compress = 1;
599 		}
600 	}
601 cont:
602 	if (start == 0) {
603 		/* lets try to make an inline extent */
604 		if (ret || total_in < actual_end) {
605 			/* we didn't compress the entire range, try
606 			 * to make an uncompressed inline extent.
607 			 */
608 			ret = cow_file_range_inline(inode, start, end, 0,
609 						    BTRFS_COMPRESS_NONE, NULL);
610 		} else {
611 			/* try making a compressed inline extent */
612 			ret = cow_file_range_inline(inode, start, end,
613 						    total_compressed,
614 						    compress_type, pages);
615 		}
616 		if (ret <= 0) {
617 			unsigned long clear_flags = EXTENT_DELALLOC |
618 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
619 				EXTENT_DO_ACCOUNTING;
620 			unsigned long page_error_op;
621 
622 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
623 
624 			/*
625 			 * inline extent creation worked or returned error,
626 			 * we don't need to create any more async work items.
627 			 * Unlock and free up our temp pages.
628 			 *
629 			 * We use DO_ACCOUNTING here because we need the
630 			 * delalloc_release_metadata to be done _after_ we drop
631 			 * our outstanding extent for clearing delalloc for this
632 			 * range.
633 			 */
634 			extent_clear_unlock_delalloc(inode, start, end, NULL,
635 						     clear_flags,
636 						     PAGE_UNLOCK |
637 						     PAGE_CLEAR_DIRTY |
638 						     PAGE_SET_WRITEBACK |
639 						     page_error_op |
640 						     PAGE_END_WRITEBACK);
641 
642 			for (i = 0; i < nr_pages; i++) {
643 				WARN_ON(pages[i]->mapping);
644 				put_page(pages[i]);
645 			}
646 			kfree(pages);
647 
648 			return 0;
649 		}
650 	}
651 
652 	if (will_compress) {
653 		/*
654 		 * we aren't doing an inline extent round the compressed size
655 		 * up to a block size boundary so the allocator does sane
656 		 * things
657 		 */
658 		total_compressed = ALIGN(total_compressed, blocksize);
659 
660 		/*
661 		 * one last check to make sure the compression is really a
662 		 * win, compare the page count read with the blocks on disk,
663 		 * compression must free at least one sector size
664 		 */
665 		total_in = ALIGN(total_in, PAGE_SIZE);
666 		if (total_compressed + blocksize <= total_in) {
667 			compressed_extents++;
668 
669 			/*
670 			 * The async work queues will take care of doing actual
671 			 * allocation on disk for these compressed pages, and
672 			 * will submit them to the elevator.
673 			 */
674 			add_async_extent(async_chunk, start, total_in,
675 					total_compressed, pages, nr_pages,
676 					compress_type);
677 
678 			if (start + total_in < end) {
679 				start += total_in;
680 				pages = NULL;
681 				cond_resched();
682 				goto again;
683 			}
684 			return compressed_extents;
685 		}
686 	}
687 	if (pages) {
688 		/*
689 		 * the compression code ran but failed to make things smaller,
690 		 * free any pages it allocated and our page pointer array
691 		 */
692 		for (i = 0; i < nr_pages; i++) {
693 			WARN_ON(pages[i]->mapping);
694 			put_page(pages[i]);
695 		}
696 		kfree(pages);
697 		pages = NULL;
698 		total_compressed = 0;
699 		nr_pages = 0;
700 
701 		/* flag the file so we don't compress in the future */
702 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
703 		    !(BTRFS_I(inode)->prop_compress)) {
704 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
705 		}
706 	}
707 cleanup_and_bail_uncompressed:
708 	/*
709 	 * No compression, but we still need to write the pages in the file
710 	 * we've been given so far.  redirty the locked page if it corresponds
711 	 * to our extent and set things up for the async work queue to run
712 	 * cow_file_range to do the normal delalloc dance.
713 	 */
714 	if (async_chunk->locked_page &&
715 	    (page_offset(async_chunk->locked_page) >= start &&
716 	     page_offset(async_chunk->locked_page)) <= end) {
717 		__set_page_dirty_nobuffers(async_chunk->locked_page);
718 		/* unlocked later on in the async handlers */
719 	}
720 
721 	if (redirty)
722 		extent_range_redirty_for_io(inode, start, end);
723 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
724 			 BTRFS_COMPRESS_NONE);
725 	compressed_extents++;
726 
727 	return compressed_extents;
728 }
729 
730 static void free_async_extent_pages(struct async_extent *async_extent)
731 {
732 	int i;
733 
734 	if (!async_extent->pages)
735 		return;
736 
737 	for (i = 0; i < async_extent->nr_pages; i++) {
738 		WARN_ON(async_extent->pages[i]->mapping);
739 		put_page(async_extent->pages[i]);
740 	}
741 	kfree(async_extent->pages);
742 	async_extent->nr_pages = 0;
743 	async_extent->pages = NULL;
744 }
745 
746 /*
747  * phase two of compressed writeback.  This is the ordered portion
748  * of the code, which only gets called in the order the work was
749  * queued.  We walk all the async extents created by compress_file_range
750  * and send them down to the disk.
751  */
752 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
753 {
754 	struct inode *inode = async_chunk->inode;
755 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
756 	struct async_extent *async_extent;
757 	u64 alloc_hint = 0;
758 	struct btrfs_key ins;
759 	struct extent_map *em;
760 	struct btrfs_root *root = BTRFS_I(inode)->root;
761 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
762 	int ret = 0;
763 
764 again:
765 	while (!list_empty(&async_chunk->extents)) {
766 		async_extent = list_entry(async_chunk->extents.next,
767 					  struct async_extent, list);
768 		list_del(&async_extent->list);
769 
770 retry:
771 		lock_extent(io_tree, async_extent->start,
772 			    async_extent->start + async_extent->ram_size - 1);
773 		/* did the compression code fall back to uncompressed IO? */
774 		if (!async_extent->pages) {
775 			int page_started = 0;
776 			unsigned long nr_written = 0;
777 
778 			/* allocate blocks */
779 			ret = cow_file_range(inode, async_chunk->locked_page,
780 					     async_extent->start,
781 					     async_extent->start +
782 					     async_extent->ram_size - 1,
783 					     &page_started, &nr_written, 0);
784 
785 			/* JDM XXX */
786 
787 			/*
788 			 * if page_started, cow_file_range inserted an
789 			 * inline extent and took care of all the unlocking
790 			 * and IO for us.  Otherwise, we need to submit
791 			 * all those pages down to the drive.
792 			 */
793 			if (!page_started && !ret)
794 				extent_write_locked_range(inode,
795 						  async_extent->start,
796 						  async_extent->start +
797 						  async_extent->ram_size - 1,
798 						  WB_SYNC_ALL);
799 			else if (ret && async_chunk->locked_page)
800 				unlock_page(async_chunk->locked_page);
801 			kfree(async_extent);
802 			cond_resched();
803 			continue;
804 		}
805 
806 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
807 					   async_extent->compressed_size,
808 					   async_extent->compressed_size,
809 					   0, alloc_hint, &ins, 1, 1);
810 		if (ret) {
811 			free_async_extent_pages(async_extent);
812 
813 			if (ret == -ENOSPC) {
814 				unlock_extent(io_tree, async_extent->start,
815 					      async_extent->start +
816 					      async_extent->ram_size - 1);
817 
818 				/*
819 				 * we need to redirty the pages if we decide to
820 				 * fallback to uncompressed IO, otherwise we
821 				 * will not submit these pages down to lower
822 				 * layers.
823 				 */
824 				extent_range_redirty_for_io(inode,
825 						async_extent->start,
826 						async_extent->start +
827 						async_extent->ram_size - 1);
828 
829 				goto retry;
830 			}
831 			goto out_free;
832 		}
833 		/*
834 		 * here we're doing allocation and writeback of the
835 		 * compressed pages
836 		 */
837 		em = create_io_em(inode, async_extent->start,
838 				  async_extent->ram_size, /* len */
839 				  async_extent->start, /* orig_start */
840 				  ins.objectid, /* block_start */
841 				  ins.offset, /* block_len */
842 				  ins.offset, /* orig_block_len */
843 				  async_extent->ram_size, /* ram_bytes */
844 				  async_extent->compress_type,
845 				  BTRFS_ORDERED_COMPRESSED);
846 		if (IS_ERR(em))
847 			/* ret value is not necessary due to void function */
848 			goto out_free_reserve;
849 		free_extent_map(em);
850 
851 		ret = btrfs_add_ordered_extent_compress(inode,
852 						async_extent->start,
853 						ins.objectid,
854 						async_extent->ram_size,
855 						ins.offset,
856 						BTRFS_ORDERED_COMPRESSED,
857 						async_extent->compress_type);
858 		if (ret) {
859 			btrfs_drop_extent_cache(BTRFS_I(inode),
860 						async_extent->start,
861 						async_extent->start +
862 						async_extent->ram_size - 1, 0);
863 			goto out_free_reserve;
864 		}
865 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
866 
867 		/*
868 		 * clear dirty, set writeback and unlock the pages.
869 		 */
870 		extent_clear_unlock_delalloc(inode, async_extent->start,
871 				async_extent->start +
872 				async_extent->ram_size - 1,
873 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
874 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
875 				PAGE_SET_WRITEBACK);
876 		if (btrfs_submit_compressed_write(inode,
877 				    async_extent->start,
878 				    async_extent->ram_size,
879 				    ins.objectid,
880 				    ins.offset, async_extent->pages,
881 				    async_extent->nr_pages,
882 				    async_chunk->write_flags,
883 				    async_chunk->blkcg_css)) {
884 			struct page *p = async_extent->pages[0];
885 			const u64 start = async_extent->start;
886 			const u64 end = start + async_extent->ram_size - 1;
887 
888 			p->mapping = inode->i_mapping;
889 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
890 
891 			p->mapping = NULL;
892 			extent_clear_unlock_delalloc(inode, start, end,
893 						     NULL, 0,
894 						     PAGE_END_WRITEBACK |
895 						     PAGE_SET_ERROR);
896 			free_async_extent_pages(async_extent);
897 		}
898 		alloc_hint = ins.objectid + ins.offset;
899 		kfree(async_extent);
900 		cond_resched();
901 	}
902 	return;
903 out_free_reserve:
904 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
905 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
906 out_free:
907 	extent_clear_unlock_delalloc(inode, async_extent->start,
908 				     async_extent->start +
909 				     async_extent->ram_size - 1,
910 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
911 				     EXTENT_DELALLOC_NEW |
912 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
913 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
914 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
915 				     PAGE_SET_ERROR);
916 	free_async_extent_pages(async_extent);
917 	kfree(async_extent);
918 	goto again;
919 }
920 
921 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
922 				      u64 num_bytes)
923 {
924 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
925 	struct extent_map *em;
926 	u64 alloc_hint = 0;
927 
928 	read_lock(&em_tree->lock);
929 	em = search_extent_mapping(em_tree, start, num_bytes);
930 	if (em) {
931 		/*
932 		 * if block start isn't an actual block number then find the
933 		 * first block in this inode and use that as a hint.  If that
934 		 * block is also bogus then just don't worry about it.
935 		 */
936 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
937 			free_extent_map(em);
938 			em = search_extent_mapping(em_tree, 0, 0);
939 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
940 				alloc_hint = em->block_start;
941 			if (em)
942 				free_extent_map(em);
943 		} else {
944 			alloc_hint = em->block_start;
945 			free_extent_map(em);
946 		}
947 	}
948 	read_unlock(&em_tree->lock);
949 
950 	return alloc_hint;
951 }
952 
953 /*
954  * when extent_io.c finds a delayed allocation range in the file,
955  * the call backs end up in this code.  The basic idea is to
956  * allocate extents on disk for the range, and create ordered data structs
957  * in ram to track those extents.
958  *
959  * locked_page is the page that writepage had locked already.  We use
960  * it to make sure we don't do extra locks or unlocks.
961  *
962  * *page_started is set to one if we unlock locked_page and do everything
963  * required to start IO on it.  It may be clean and already done with
964  * IO when we return.
965  */
966 static noinline int cow_file_range(struct inode *inode,
967 				   struct page *locked_page,
968 				   u64 start, u64 end, int *page_started,
969 				   unsigned long *nr_written, int unlock)
970 {
971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
972 	struct btrfs_root *root = BTRFS_I(inode)->root;
973 	u64 alloc_hint = 0;
974 	u64 num_bytes;
975 	unsigned long ram_size;
976 	u64 cur_alloc_size = 0;
977 	u64 blocksize = fs_info->sectorsize;
978 	struct btrfs_key ins;
979 	struct extent_map *em;
980 	unsigned clear_bits;
981 	unsigned long page_ops;
982 	bool extent_reserved = false;
983 	int ret = 0;
984 
985 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
986 		WARN_ON_ONCE(1);
987 		ret = -EINVAL;
988 		goto out_unlock;
989 	}
990 
991 	num_bytes = ALIGN(end - start + 1, blocksize);
992 	num_bytes = max(blocksize,  num_bytes);
993 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
994 
995 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
996 
997 	if (start == 0) {
998 		/* lets try to make an inline extent */
999 		ret = cow_file_range_inline(inode, start, end, 0,
1000 					    BTRFS_COMPRESS_NONE, NULL);
1001 		if (ret == 0) {
1002 			/*
1003 			 * We use DO_ACCOUNTING here because we need the
1004 			 * delalloc_release_metadata to be run _after_ we drop
1005 			 * our outstanding extent for clearing delalloc for this
1006 			 * range.
1007 			 */
1008 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1009 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1010 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1011 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1012 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1013 				     PAGE_END_WRITEBACK);
1014 			*nr_written = *nr_written +
1015 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1016 			*page_started = 1;
1017 			goto out;
1018 		} else if (ret < 0) {
1019 			goto out_unlock;
1020 		}
1021 	}
1022 
1023 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1024 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1025 			start + num_bytes - 1, 0);
1026 
1027 	while (num_bytes > 0) {
1028 		cur_alloc_size = num_bytes;
1029 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1030 					   fs_info->sectorsize, 0, alloc_hint,
1031 					   &ins, 1, 1);
1032 		if (ret < 0)
1033 			goto out_unlock;
1034 		cur_alloc_size = ins.offset;
1035 		extent_reserved = true;
1036 
1037 		ram_size = ins.offset;
1038 		em = create_io_em(inode, start, ins.offset, /* len */
1039 				  start, /* orig_start */
1040 				  ins.objectid, /* block_start */
1041 				  ins.offset, /* block_len */
1042 				  ins.offset, /* orig_block_len */
1043 				  ram_size, /* ram_bytes */
1044 				  BTRFS_COMPRESS_NONE, /* compress_type */
1045 				  BTRFS_ORDERED_REGULAR /* type */);
1046 		if (IS_ERR(em)) {
1047 			ret = PTR_ERR(em);
1048 			goto out_reserve;
1049 		}
1050 		free_extent_map(em);
1051 
1052 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1053 					       ram_size, cur_alloc_size, 0);
1054 		if (ret)
1055 			goto out_drop_extent_cache;
1056 
1057 		if (root->root_key.objectid ==
1058 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1059 			ret = btrfs_reloc_clone_csums(inode, start,
1060 						      cur_alloc_size);
1061 			/*
1062 			 * Only drop cache here, and process as normal.
1063 			 *
1064 			 * We must not allow extent_clear_unlock_delalloc()
1065 			 * at out_unlock label to free meta of this ordered
1066 			 * extent, as its meta should be freed by
1067 			 * btrfs_finish_ordered_io().
1068 			 *
1069 			 * So we must continue until @start is increased to
1070 			 * skip current ordered extent.
1071 			 */
1072 			if (ret)
1073 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1074 						start + ram_size - 1, 0);
1075 		}
1076 
1077 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1078 
1079 		/* we're not doing compressed IO, don't unlock the first
1080 		 * page (which the caller expects to stay locked), don't
1081 		 * clear any dirty bits and don't set any writeback bits
1082 		 *
1083 		 * Do set the Private2 bit so we know this page was properly
1084 		 * setup for writepage
1085 		 */
1086 		page_ops = unlock ? PAGE_UNLOCK : 0;
1087 		page_ops |= PAGE_SET_PRIVATE2;
1088 
1089 		extent_clear_unlock_delalloc(inode, start,
1090 					     start + ram_size - 1,
1091 					     locked_page,
1092 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1093 					     page_ops);
1094 		if (num_bytes < cur_alloc_size)
1095 			num_bytes = 0;
1096 		else
1097 			num_bytes -= cur_alloc_size;
1098 		alloc_hint = ins.objectid + ins.offset;
1099 		start += cur_alloc_size;
1100 		extent_reserved = false;
1101 
1102 		/*
1103 		 * btrfs_reloc_clone_csums() error, since start is increased
1104 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1105 		 * free metadata of current ordered extent, we're OK to exit.
1106 		 */
1107 		if (ret)
1108 			goto out_unlock;
1109 	}
1110 out:
1111 	return ret;
1112 
1113 out_drop_extent_cache:
1114 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1115 out_reserve:
1116 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1117 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1118 out_unlock:
1119 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1120 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1121 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1122 		PAGE_END_WRITEBACK;
1123 	/*
1124 	 * If we reserved an extent for our delalloc range (or a subrange) and
1125 	 * failed to create the respective ordered extent, then it means that
1126 	 * when we reserved the extent we decremented the extent's size from
1127 	 * the data space_info's bytes_may_use counter and incremented the
1128 	 * space_info's bytes_reserved counter by the same amount. We must make
1129 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1130 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1131 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1132 	 */
1133 	if (extent_reserved) {
1134 		extent_clear_unlock_delalloc(inode, start,
1135 					     start + cur_alloc_size,
1136 					     locked_page,
1137 					     clear_bits,
1138 					     page_ops);
1139 		start += cur_alloc_size;
1140 		if (start >= end)
1141 			goto out;
1142 	}
1143 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1144 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1145 				     page_ops);
1146 	goto out;
1147 }
1148 
1149 /*
1150  * work queue call back to started compression on a file and pages
1151  */
1152 static noinline void async_cow_start(struct btrfs_work *work)
1153 {
1154 	struct async_chunk *async_chunk;
1155 	int compressed_extents;
1156 
1157 	async_chunk = container_of(work, struct async_chunk, work);
1158 
1159 	compressed_extents = compress_file_range(async_chunk);
1160 	if (compressed_extents == 0) {
1161 		btrfs_add_delayed_iput(async_chunk->inode);
1162 		async_chunk->inode = NULL;
1163 	}
1164 }
1165 
1166 /*
1167  * work queue call back to submit previously compressed pages
1168  */
1169 static noinline void async_cow_submit(struct btrfs_work *work)
1170 {
1171 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1172 						     work);
1173 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1174 	unsigned long nr_pages;
1175 
1176 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1177 		PAGE_SHIFT;
1178 
1179 	/* atomic_sub_return implies a barrier */
1180 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1181 	    5 * SZ_1M)
1182 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1183 
1184 	/*
1185 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1186 	 * in which case we don't have anything to submit, yet we need to
1187 	 * always adjust ->async_delalloc_pages as its paired with the init
1188 	 * happening in cow_file_range_async
1189 	 */
1190 	if (async_chunk->inode)
1191 		submit_compressed_extents(async_chunk);
1192 }
1193 
1194 static noinline void async_cow_free(struct btrfs_work *work)
1195 {
1196 	struct async_chunk *async_chunk;
1197 
1198 	async_chunk = container_of(work, struct async_chunk, work);
1199 	if (async_chunk->inode)
1200 		btrfs_add_delayed_iput(async_chunk->inode);
1201 	if (async_chunk->blkcg_css)
1202 		css_put(async_chunk->blkcg_css);
1203 	/*
1204 	 * Since the pointer to 'pending' is at the beginning of the array of
1205 	 * async_chunk's, freeing it ensures the whole array has been freed.
1206 	 */
1207 	if (atomic_dec_and_test(async_chunk->pending))
1208 		kvfree(async_chunk->pending);
1209 }
1210 
1211 static int cow_file_range_async(struct inode *inode,
1212 				struct writeback_control *wbc,
1213 				struct page *locked_page,
1214 				u64 start, u64 end, int *page_started,
1215 				unsigned long *nr_written)
1216 {
1217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1218 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1219 	struct async_cow *ctx;
1220 	struct async_chunk *async_chunk;
1221 	unsigned long nr_pages;
1222 	u64 cur_end;
1223 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1224 	int i;
1225 	bool should_compress;
1226 	unsigned nofs_flag;
1227 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1228 
1229 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1230 
1231 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1232 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1233 		num_chunks = 1;
1234 		should_compress = false;
1235 	} else {
1236 		should_compress = true;
1237 	}
1238 
1239 	nofs_flag = memalloc_nofs_save();
1240 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1241 	memalloc_nofs_restore(nofs_flag);
1242 
1243 	if (!ctx) {
1244 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1245 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1246 			EXTENT_DO_ACCOUNTING;
1247 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1248 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1249 			PAGE_SET_ERROR;
1250 
1251 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1252 					     clear_bits, page_ops);
1253 		return -ENOMEM;
1254 	}
1255 
1256 	async_chunk = ctx->chunks;
1257 	atomic_set(&ctx->num_chunks, num_chunks);
1258 
1259 	for (i = 0; i < num_chunks; i++) {
1260 		if (should_compress)
1261 			cur_end = min(end, start + SZ_512K - 1);
1262 		else
1263 			cur_end = end;
1264 
1265 		/*
1266 		 * igrab is called higher up in the call chain, take only the
1267 		 * lightweight reference for the callback lifetime
1268 		 */
1269 		ihold(inode);
1270 		async_chunk[i].pending = &ctx->num_chunks;
1271 		async_chunk[i].inode = inode;
1272 		async_chunk[i].start = start;
1273 		async_chunk[i].end = cur_end;
1274 		async_chunk[i].write_flags = write_flags;
1275 		INIT_LIST_HEAD(&async_chunk[i].extents);
1276 
1277 		/*
1278 		 * The locked_page comes all the way from writepage and its
1279 		 * the original page we were actually given.  As we spread
1280 		 * this large delalloc region across multiple async_chunk
1281 		 * structs, only the first struct needs a pointer to locked_page
1282 		 *
1283 		 * This way we don't need racey decisions about who is supposed
1284 		 * to unlock it.
1285 		 */
1286 		if (locked_page) {
1287 			/*
1288 			 * Depending on the compressibility, the pages might or
1289 			 * might not go through async.  We want all of them to
1290 			 * be accounted against wbc once.  Let's do it here
1291 			 * before the paths diverge.  wbc accounting is used
1292 			 * only for foreign writeback detection and doesn't
1293 			 * need full accuracy.  Just account the whole thing
1294 			 * against the first page.
1295 			 */
1296 			wbc_account_cgroup_owner(wbc, locked_page,
1297 						 cur_end - start);
1298 			async_chunk[i].locked_page = locked_page;
1299 			locked_page = NULL;
1300 		} else {
1301 			async_chunk[i].locked_page = NULL;
1302 		}
1303 
1304 		if (blkcg_css != blkcg_root_css) {
1305 			css_get(blkcg_css);
1306 			async_chunk[i].blkcg_css = blkcg_css;
1307 		} else {
1308 			async_chunk[i].blkcg_css = NULL;
1309 		}
1310 
1311 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1312 				async_cow_submit, async_cow_free);
1313 
1314 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1315 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1316 
1317 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1318 
1319 		*nr_written += nr_pages;
1320 		start = cur_end + 1;
1321 	}
1322 	*page_started = 1;
1323 	return 0;
1324 }
1325 
1326 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1327 					u64 bytenr, u64 num_bytes)
1328 {
1329 	int ret;
1330 	struct btrfs_ordered_sum *sums;
1331 	LIST_HEAD(list);
1332 
1333 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1334 				       bytenr + num_bytes - 1, &list, 0);
1335 	if (ret == 0 && list_empty(&list))
1336 		return 0;
1337 
1338 	while (!list_empty(&list)) {
1339 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1340 		list_del(&sums->list);
1341 		kfree(sums);
1342 	}
1343 	if (ret < 0)
1344 		return ret;
1345 	return 1;
1346 }
1347 
1348 /*
1349  * when nowcow writeback call back.  This checks for snapshots or COW copies
1350  * of the extents that exist in the file, and COWs the file as required.
1351  *
1352  * If no cow copies or snapshots exist, we write directly to the existing
1353  * blocks on disk
1354  */
1355 static noinline int run_delalloc_nocow(struct inode *inode,
1356 				       struct page *locked_page,
1357 				       const u64 start, const u64 end,
1358 				       int *page_started, int force,
1359 				       unsigned long *nr_written)
1360 {
1361 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1362 	struct btrfs_root *root = BTRFS_I(inode)->root;
1363 	struct btrfs_path *path;
1364 	u64 cow_start = (u64)-1;
1365 	u64 cur_offset = start;
1366 	int ret;
1367 	bool check_prev = true;
1368 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1369 	u64 ino = btrfs_ino(BTRFS_I(inode));
1370 	bool nocow = false;
1371 	u64 disk_bytenr = 0;
1372 
1373 	path = btrfs_alloc_path();
1374 	if (!path) {
1375 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1376 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1377 					     EXTENT_DO_ACCOUNTING |
1378 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1379 					     PAGE_CLEAR_DIRTY |
1380 					     PAGE_SET_WRITEBACK |
1381 					     PAGE_END_WRITEBACK);
1382 		return -ENOMEM;
1383 	}
1384 
1385 	while (1) {
1386 		struct btrfs_key found_key;
1387 		struct btrfs_file_extent_item *fi;
1388 		struct extent_buffer *leaf;
1389 		u64 extent_end;
1390 		u64 extent_offset;
1391 		u64 num_bytes = 0;
1392 		u64 disk_num_bytes;
1393 		u64 ram_bytes;
1394 		int extent_type;
1395 
1396 		nocow = false;
1397 
1398 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1399 					       cur_offset, 0);
1400 		if (ret < 0)
1401 			goto error;
1402 
1403 		/*
1404 		 * If there is no extent for our range when doing the initial
1405 		 * search, then go back to the previous slot as it will be the
1406 		 * one containing the search offset
1407 		 */
1408 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1409 			leaf = path->nodes[0];
1410 			btrfs_item_key_to_cpu(leaf, &found_key,
1411 					      path->slots[0] - 1);
1412 			if (found_key.objectid == ino &&
1413 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1414 				path->slots[0]--;
1415 		}
1416 		check_prev = false;
1417 next_slot:
1418 		/* Go to next leaf if we have exhausted the current one */
1419 		leaf = path->nodes[0];
1420 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1421 			ret = btrfs_next_leaf(root, path);
1422 			if (ret < 0) {
1423 				if (cow_start != (u64)-1)
1424 					cur_offset = cow_start;
1425 				goto error;
1426 			}
1427 			if (ret > 0)
1428 				break;
1429 			leaf = path->nodes[0];
1430 		}
1431 
1432 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1433 
1434 		/* Didn't find anything for our INO */
1435 		if (found_key.objectid > ino)
1436 			break;
1437 		/*
1438 		 * Keep searching until we find an EXTENT_ITEM or there are no
1439 		 * more extents for this inode
1440 		 */
1441 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1442 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1443 			path->slots[0]++;
1444 			goto next_slot;
1445 		}
1446 
1447 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1448 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1449 		    found_key.offset > end)
1450 			break;
1451 
1452 		/*
1453 		 * If the found extent starts after requested offset, then
1454 		 * adjust extent_end to be right before this extent begins
1455 		 */
1456 		if (found_key.offset > cur_offset) {
1457 			extent_end = found_key.offset;
1458 			extent_type = 0;
1459 			goto out_check;
1460 		}
1461 
1462 		/*
1463 		 * Found extent which begins before our range and potentially
1464 		 * intersect it
1465 		 */
1466 		fi = btrfs_item_ptr(leaf, path->slots[0],
1467 				    struct btrfs_file_extent_item);
1468 		extent_type = btrfs_file_extent_type(leaf, fi);
1469 
1470 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1471 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1472 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1473 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1474 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1475 			extent_end = found_key.offset +
1476 				btrfs_file_extent_num_bytes(leaf, fi);
1477 			disk_num_bytes =
1478 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1479 			/*
1480 			 * If the extent we got ends before our current offset,
1481 			 * skip to the next extent.
1482 			 */
1483 			if (extent_end <= cur_offset) {
1484 				path->slots[0]++;
1485 				goto next_slot;
1486 			}
1487 			/* Skip holes */
1488 			if (disk_bytenr == 0)
1489 				goto out_check;
1490 			/* Skip compressed/encrypted/encoded extents */
1491 			if (btrfs_file_extent_compression(leaf, fi) ||
1492 			    btrfs_file_extent_encryption(leaf, fi) ||
1493 			    btrfs_file_extent_other_encoding(leaf, fi))
1494 				goto out_check;
1495 			/*
1496 			 * If extent is created before the last volume's snapshot
1497 			 * this implies the extent is shared, hence we can't do
1498 			 * nocow. This is the same check as in
1499 			 * btrfs_cross_ref_exist but without calling
1500 			 * btrfs_search_slot.
1501 			 */
1502 			if (!freespace_inode &&
1503 			    btrfs_file_extent_generation(leaf, fi) <=
1504 			    btrfs_root_last_snapshot(&root->root_item))
1505 				goto out_check;
1506 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1507 				goto out_check;
1508 			/* If extent is RO, we must COW it */
1509 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1510 				goto out_check;
1511 			ret = btrfs_cross_ref_exist(root, ino,
1512 						    found_key.offset -
1513 						    extent_offset, disk_bytenr);
1514 			if (ret) {
1515 				/*
1516 				 * ret could be -EIO if the above fails to read
1517 				 * metadata.
1518 				 */
1519 				if (ret < 0) {
1520 					if (cow_start != (u64)-1)
1521 						cur_offset = cow_start;
1522 					goto error;
1523 				}
1524 
1525 				WARN_ON_ONCE(freespace_inode);
1526 				goto out_check;
1527 			}
1528 			disk_bytenr += extent_offset;
1529 			disk_bytenr += cur_offset - found_key.offset;
1530 			num_bytes = min(end + 1, extent_end) - cur_offset;
1531 			/*
1532 			 * If there are pending snapshots for this root, we
1533 			 * fall into common COW way
1534 			 */
1535 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1536 				goto out_check;
1537 			/*
1538 			 * force cow if csum exists in the range.
1539 			 * this ensure that csum for a given extent are
1540 			 * either valid or do not exist.
1541 			 */
1542 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1543 						  num_bytes);
1544 			if (ret) {
1545 				/*
1546 				 * ret could be -EIO if the above fails to read
1547 				 * metadata.
1548 				 */
1549 				if (ret < 0) {
1550 					if (cow_start != (u64)-1)
1551 						cur_offset = cow_start;
1552 					goto error;
1553 				}
1554 				WARN_ON_ONCE(freespace_inode);
1555 				goto out_check;
1556 			}
1557 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1558 				goto out_check;
1559 			nocow = true;
1560 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1561 			extent_end = found_key.offset + ram_bytes;
1562 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1563 			/* Skip extents outside of our requested range */
1564 			if (extent_end <= start) {
1565 				path->slots[0]++;
1566 				goto next_slot;
1567 			}
1568 		} else {
1569 			/* If this triggers then we have a memory corruption */
1570 			BUG();
1571 		}
1572 out_check:
1573 		/*
1574 		 * If nocow is false then record the beginning of the range
1575 		 * that needs to be COWed
1576 		 */
1577 		if (!nocow) {
1578 			if (cow_start == (u64)-1)
1579 				cow_start = cur_offset;
1580 			cur_offset = extent_end;
1581 			if (cur_offset > end)
1582 				break;
1583 			path->slots[0]++;
1584 			goto next_slot;
1585 		}
1586 
1587 		btrfs_release_path(path);
1588 
1589 		/*
1590 		 * COW range from cow_start to found_key.offset - 1. As the key
1591 		 * will contain the beginning of the first extent that can be
1592 		 * NOCOW, following one which needs to be COW'ed
1593 		 */
1594 		if (cow_start != (u64)-1) {
1595 			ret = cow_file_range(inode, locked_page,
1596 					     cow_start, found_key.offset - 1,
1597 					     page_started, nr_written, 1);
1598 			if (ret) {
1599 				if (nocow)
1600 					btrfs_dec_nocow_writers(fs_info,
1601 								disk_bytenr);
1602 				goto error;
1603 			}
1604 			cow_start = (u64)-1;
1605 		}
1606 
1607 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1608 			u64 orig_start = found_key.offset - extent_offset;
1609 			struct extent_map *em;
1610 
1611 			em = create_io_em(inode, cur_offset, num_bytes,
1612 					  orig_start,
1613 					  disk_bytenr, /* block_start */
1614 					  num_bytes, /* block_len */
1615 					  disk_num_bytes, /* orig_block_len */
1616 					  ram_bytes, BTRFS_COMPRESS_NONE,
1617 					  BTRFS_ORDERED_PREALLOC);
1618 			if (IS_ERR(em)) {
1619 				if (nocow)
1620 					btrfs_dec_nocow_writers(fs_info,
1621 								disk_bytenr);
1622 				ret = PTR_ERR(em);
1623 				goto error;
1624 			}
1625 			free_extent_map(em);
1626 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1627 						       disk_bytenr, num_bytes,
1628 						       num_bytes,
1629 						       BTRFS_ORDERED_PREALLOC);
1630 			if (ret) {
1631 				btrfs_drop_extent_cache(BTRFS_I(inode),
1632 							cur_offset,
1633 							cur_offset + num_bytes - 1,
1634 							0);
1635 				goto error;
1636 			}
1637 		} else {
1638 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1639 						       disk_bytenr, num_bytes,
1640 						       num_bytes,
1641 						       BTRFS_ORDERED_NOCOW);
1642 			if (ret)
1643 				goto error;
1644 		}
1645 
1646 		if (nocow)
1647 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1648 		nocow = false;
1649 
1650 		if (root->root_key.objectid ==
1651 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1652 			/*
1653 			 * Error handled later, as we must prevent
1654 			 * extent_clear_unlock_delalloc() in error handler
1655 			 * from freeing metadata of created ordered extent.
1656 			 */
1657 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1658 						      num_bytes);
1659 
1660 		extent_clear_unlock_delalloc(inode, cur_offset,
1661 					     cur_offset + num_bytes - 1,
1662 					     locked_page, EXTENT_LOCKED |
1663 					     EXTENT_DELALLOC |
1664 					     EXTENT_CLEAR_DATA_RESV,
1665 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1666 
1667 		cur_offset = extent_end;
1668 
1669 		/*
1670 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1671 		 * handler, as metadata for created ordered extent will only
1672 		 * be freed by btrfs_finish_ordered_io().
1673 		 */
1674 		if (ret)
1675 			goto error;
1676 		if (cur_offset > end)
1677 			break;
1678 	}
1679 	btrfs_release_path(path);
1680 
1681 	if (cur_offset <= end && cow_start == (u64)-1)
1682 		cow_start = cur_offset;
1683 
1684 	if (cow_start != (u64)-1) {
1685 		cur_offset = end;
1686 		ret = cow_file_range(inode, locked_page, cow_start, end,
1687 				     page_started, nr_written, 1);
1688 		if (ret)
1689 			goto error;
1690 	}
1691 
1692 error:
1693 	if (nocow)
1694 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1695 
1696 	if (ret && cur_offset < end)
1697 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1698 					     locked_page, EXTENT_LOCKED |
1699 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1700 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1701 					     PAGE_CLEAR_DIRTY |
1702 					     PAGE_SET_WRITEBACK |
1703 					     PAGE_END_WRITEBACK);
1704 	btrfs_free_path(path);
1705 	return ret;
1706 }
1707 
1708 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1709 {
1710 
1711 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1712 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1713 		return 0;
1714 
1715 	/*
1716 	 * @defrag_bytes is a hint value, no spinlock held here,
1717 	 * if is not zero, it means the file is defragging.
1718 	 * Force cow if given extent needs to be defragged.
1719 	 */
1720 	if (BTRFS_I(inode)->defrag_bytes &&
1721 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1722 			   EXTENT_DEFRAG, 0, NULL))
1723 		return 1;
1724 
1725 	return 0;
1726 }
1727 
1728 /*
1729  * Function to process delayed allocation (create CoW) for ranges which are
1730  * being touched for the first time.
1731  */
1732 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1733 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1734 		struct writeback_control *wbc)
1735 {
1736 	int ret;
1737 	int force_cow = need_force_cow(inode, start, end);
1738 
1739 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1740 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1741 					 page_started, 1, nr_written);
1742 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1743 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1744 					 page_started, 0, nr_written);
1745 	} else if (!inode_can_compress(inode) ||
1746 		   !inode_need_compress(inode, start, end)) {
1747 		ret = cow_file_range(inode, locked_page, start, end,
1748 				      page_started, nr_written, 1);
1749 	} else {
1750 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1751 			&BTRFS_I(inode)->runtime_flags);
1752 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1753 					   page_started, nr_written);
1754 	}
1755 	if (ret)
1756 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1757 					      end - start + 1);
1758 	return ret;
1759 }
1760 
1761 void btrfs_split_delalloc_extent(struct inode *inode,
1762 				 struct extent_state *orig, u64 split)
1763 {
1764 	u64 size;
1765 
1766 	/* not delalloc, ignore it */
1767 	if (!(orig->state & EXTENT_DELALLOC))
1768 		return;
1769 
1770 	size = orig->end - orig->start + 1;
1771 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1772 		u32 num_extents;
1773 		u64 new_size;
1774 
1775 		/*
1776 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1777 		 * applies here, just in reverse.
1778 		 */
1779 		new_size = orig->end - split + 1;
1780 		num_extents = count_max_extents(new_size);
1781 		new_size = split - orig->start;
1782 		num_extents += count_max_extents(new_size);
1783 		if (count_max_extents(size) >= num_extents)
1784 			return;
1785 	}
1786 
1787 	spin_lock(&BTRFS_I(inode)->lock);
1788 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1789 	spin_unlock(&BTRFS_I(inode)->lock);
1790 }
1791 
1792 /*
1793  * Handle merged delayed allocation extents so we can keep track of new extents
1794  * that are just merged onto old extents, such as when we are doing sequential
1795  * writes, so we can properly account for the metadata space we'll need.
1796  */
1797 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1798 				 struct extent_state *other)
1799 {
1800 	u64 new_size, old_size;
1801 	u32 num_extents;
1802 
1803 	/* not delalloc, ignore it */
1804 	if (!(other->state & EXTENT_DELALLOC))
1805 		return;
1806 
1807 	if (new->start > other->start)
1808 		new_size = new->end - other->start + 1;
1809 	else
1810 		new_size = other->end - new->start + 1;
1811 
1812 	/* we're not bigger than the max, unreserve the space and go */
1813 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1814 		spin_lock(&BTRFS_I(inode)->lock);
1815 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1816 		spin_unlock(&BTRFS_I(inode)->lock);
1817 		return;
1818 	}
1819 
1820 	/*
1821 	 * We have to add up either side to figure out how many extents were
1822 	 * accounted for before we merged into one big extent.  If the number of
1823 	 * extents we accounted for is <= the amount we need for the new range
1824 	 * then we can return, otherwise drop.  Think of it like this
1825 	 *
1826 	 * [ 4k][MAX_SIZE]
1827 	 *
1828 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1829 	 * need 2 outstanding extents, on one side we have 1 and the other side
1830 	 * we have 1 so they are == and we can return.  But in this case
1831 	 *
1832 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1833 	 *
1834 	 * Each range on their own accounts for 2 extents, but merged together
1835 	 * they are only 3 extents worth of accounting, so we need to drop in
1836 	 * this case.
1837 	 */
1838 	old_size = other->end - other->start + 1;
1839 	num_extents = count_max_extents(old_size);
1840 	old_size = new->end - new->start + 1;
1841 	num_extents += count_max_extents(old_size);
1842 	if (count_max_extents(new_size) >= num_extents)
1843 		return;
1844 
1845 	spin_lock(&BTRFS_I(inode)->lock);
1846 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1847 	spin_unlock(&BTRFS_I(inode)->lock);
1848 }
1849 
1850 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1851 				      struct inode *inode)
1852 {
1853 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1854 
1855 	spin_lock(&root->delalloc_lock);
1856 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1857 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1858 			      &root->delalloc_inodes);
1859 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1860 			&BTRFS_I(inode)->runtime_flags);
1861 		root->nr_delalloc_inodes++;
1862 		if (root->nr_delalloc_inodes == 1) {
1863 			spin_lock(&fs_info->delalloc_root_lock);
1864 			BUG_ON(!list_empty(&root->delalloc_root));
1865 			list_add_tail(&root->delalloc_root,
1866 				      &fs_info->delalloc_roots);
1867 			spin_unlock(&fs_info->delalloc_root_lock);
1868 		}
1869 	}
1870 	spin_unlock(&root->delalloc_lock);
1871 }
1872 
1873 
1874 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1875 				struct btrfs_inode *inode)
1876 {
1877 	struct btrfs_fs_info *fs_info = root->fs_info;
1878 
1879 	if (!list_empty(&inode->delalloc_inodes)) {
1880 		list_del_init(&inode->delalloc_inodes);
1881 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1882 			  &inode->runtime_flags);
1883 		root->nr_delalloc_inodes--;
1884 		if (!root->nr_delalloc_inodes) {
1885 			ASSERT(list_empty(&root->delalloc_inodes));
1886 			spin_lock(&fs_info->delalloc_root_lock);
1887 			BUG_ON(list_empty(&root->delalloc_root));
1888 			list_del_init(&root->delalloc_root);
1889 			spin_unlock(&fs_info->delalloc_root_lock);
1890 		}
1891 	}
1892 }
1893 
1894 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1895 				     struct btrfs_inode *inode)
1896 {
1897 	spin_lock(&root->delalloc_lock);
1898 	__btrfs_del_delalloc_inode(root, inode);
1899 	spin_unlock(&root->delalloc_lock);
1900 }
1901 
1902 /*
1903  * Properly track delayed allocation bytes in the inode and to maintain the
1904  * list of inodes that have pending delalloc work to be done.
1905  */
1906 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1907 			       unsigned *bits)
1908 {
1909 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1910 
1911 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1912 		WARN_ON(1);
1913 	/*
1914 	 * set_bit and clear bit hooks normally require _irqsave/restore
1915 	 * but in this case, we are only testing for the DELALLOC
1916 	 * bit, which is only set or cleared with irqs on
1917 	 */
1918 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1919 		struct btrfs_root *root = BTRFS_I(inode)->root;
1920 		u64 len = state->end + 1 - state->start;
1921 		u32 num_extents = count_max_extents(len);
1922 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1923 
1924 		spin_lock(&BTRFS_I(inode)->lock);
1925 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1926 		spin_unlock(&BTRFS_I(inode)->lock);
1927 
1928 		/* For sanity tests */
1929 		if (btrfs_is_testing(fs_info))
1930 			return;
1931 
1932 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1933 					 fs_info->delalloc_batch);
1934 		spin_lock(&BTRFS_I(inode)->lock);
1935 		BTRFS_I(inode)->delalloc_bytes += len;
1936 		if (*bits & EXTENT_DEFRAG)
1937 			BTRFS_I(inode)->defrag_bytes += len;
1938 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1939 					 &BTRFS_I(inode)->runtime_flags))
1940 			btrfs_add_delalloc_inodes(root, inode);
1941 		spin_unlock(&BTRFS_I(inode)->lock);
1942 	}
1943 
1944 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1945 	    (*bits & EXTENT_DELALLOC_NEW)) {
1946 		spin_lock(&BTRFS_I(inode)->lock);
1947 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1948 			state->start;
1949 		spin_unlock(&BTRFS_I(inode)->lock);
1950 	}
1951 }
1952 
1953 /*
1954  * Once a range is no longer delalloc this function ensures that proper
1955  * accounting happens.
1956  */
1957 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1958 				 struct extent_state *state, unsigned *bits)
1959 {
1960 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1961 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1962 	u64 len = state->end + 1 - state->start;
1963 	u32 num_extents = count_max_extents(len);
1964 
1965 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1966 		spin_lock(&inode->lock);
1967 		inode->defrag_bytes -= len;
1968 		spin_unlock(&inode->lock);
1969 	}
1970 
1971 	/*
1972 	 * set_bit and clear bit hooks normally require _irqsave/restore
1973 	 * but in this case, we are only testing for the DELALLOC
1974 	 * bit, which is only set or cleared with irqs on
1975 	 */
1976 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1977 		struct btrfs_root *root = inode->root;
1978 		bool do_list = !btrfs_is_free_space_inode(inode);
1979 
1980 		spin_lock(&inode->lock);
1981 		btrfs_mod_outstanding_extents(inode, -num_extents);
1982 		spin_unlock(&inode->lock);
1983 
1984 		/*
1985 		 * We don't reserve metadata space for space cache inodes so we
1986 		 * don't need to call delalloc_release_metadata if there is an
1987 		 * error.
1988 		 */
1989 		if (*bits & EXTENT_CLEAR_META_RESV &&
1990 		    root != fs_info->tree_root)
1991 			btrfs_delalloc_release_metadata(inode, len, false);
1992 
1993 		/* For sanity tests. */
1994 		if (btrfs_is_testing(fs_info))
1995 			return;
1996 
1997 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1998 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1999 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2000 			btrfs_free_reserved_data_space_noquota(
2001 					&inode->vfs_inode,
2002 					state->start, len);
2003 
2004 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2005 					 fs_info->delalloc_batch);
2006 		spin_lock(&inode->lock);
2007 		inode->delalloc_bytes -= len;
2008 		if (do_list && inode->delalloc_bytes == 0 &&
2009 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2010 					&inode->runtime_flags))
2011 			btrfs_del_delalloc_inode(root, inode);
2012 		spin_unlock(&inode->lock);
2013 	}
2014 
2015 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2016 	    (*bits & EXTENT_DELALLOC_NEW)) {
2017 		spin_lock(&inode->lock);
2018 		ASSERT(inode->new_delalloc_bytes >= len);
2019 		inode->new_delalloc_bytes -= len;
2020 		spin_unlock(&inode->lock);
2021 	}
2022 }
2023 
2024 /*
2025  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2026  * in a chunk's stripe. This function ensures that bios do not span a
2027  * stripe/chunk
2028  *
2029  * @page - The page we are about to add to the bio
2030  * @size - size we want to add to the bio
2031  * @bio - bio we want to ensure is smaller than a stripe
2032  * @bio_flags - flags of the bio
2033  *
2034  * return 1 if page cannot be added to the bio
2035  * return 0 if page can be added to the bio
2036  * return error otherwise
2037  */
2038 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2039 			     unsigned long bio_flags)
2040 {
2041 	struct inode *inode = page->mapping->host;
2042 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2043 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2044 	u64 length = 0;
2045 	u64 map_length;
2046 	int ret;
2047 	struct btrfs_io_geometry geom;
2048 
2049 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2050 		return 0;
2051 
2052 	length = bio->bi_iter.bi_size;
2053 	map_length = length;
2054 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2055 				    &geom);
2056 	if (ret < 0)
2057 		return ret;
2058 
2059 	if (geom.len < length + size)
2060 		return 1;
2061 	return 0;
2062 }
2063 
2064 /*
2065  * in order to insert checksums into the metadata in large chunks,
2066  * we wait until bio submission time.   All the pages in the bio are
2067  * checksummed and sums are attached onto the ordered extent record.
2068  *
2069  * At IO completion time the cums attached on the ordered extent record
2070  * are inserted into the btree
2071  */
2072 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2073 				    u64 bio_offset)
2074 {
2075 	struct inode *inode = private_data;
2076 	blk_status_t ret = 0;
2077 
2078 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2079 	BUG_ON(ret); /* -ENOMEM */
2080 	return 0;
2081 }
2082 
2083 /*
2084  * extent_io.c submission hook. This does the right thing for csum calculation
2085  * on write, or reading the csums from the tree before a read.
2086  *
2087  * Rules about async/sync submit,
2088  * a) read:				sync submit
2089  *
2090  * b) write without checksum:		sync submit
2091  *
2092  * c) write with checksum:
2093  *    c-1) if bio is issued by fsync:	sync submit
2094  *         (sync_writers != 0)
2095  *
2096  *    c-2) if root is reloc root:	sync submit
2097  *         (only in case of buffered IO)
2098  *
2099  *    c-3) otherwise:			async submit
2100  */
2101 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2102 					  int mirror_num,
2103 					  unsigned long bio_flags)
2104 
2105 {
2106 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2107 	struct btrfs_root *root = BTRFS_I(inode)->root;
2108 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2109 	blk_status_t ret = 0;
2110 	int skip_sum;
2111 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2112 
2113 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2114 
2115 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2116 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2117 
2118 	if (bio_op(bio) != REQ_OP_WRITE) {
2119 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2120 		if (ret)
2121 			goto out;
2122 
2123 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2124 			ret = btrfs_submit_compressed_read(inode, bio,
2125 							   mirror_num,
2126 							   bio_flags);
2127 			goto out;
2128 		} else if (!skip_sum) {
2129 			ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2130 			if (ret)
2131 				goto out;
2132 		}
2133 		goto mapit;
2134 	} else if (async && !skip_sum) {
2135 		/* csum items have already been cloned */
2136 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2137 			goto mapit;
2138 		/* we're doing a write, do the async checksumming */
2139 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2140 					  0, inode, btrfs_submit_bio_start);
2141 		goto out;
2142 	} else if (!skip_sum) {
2143 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2144 		if (ret)
2145 			goto out;
2146 	}
2147 
2148 mapit:
2149 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2150 
2151 out:
2152 	if (ret) {
2153 		bio->bi_status = ret;
2154 		bio_endio(bio);
2155 	}
2156 	return ret;
2157 }
2158 
2159 /*
2160  * given a list of ordered sums record them in the inode.  This happens
2161  * at IO completion time based on sums calculated at bio submission time.
2162  */
2163 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2164 			     struct inode *inode, struct list_head *list)
2165 {
2166 	struct btrfs_ordered_sum *sum;
2167 	int ret;
2168 
2169 	list_for_each_entry(sum, list, list) {
2170 		trans->adding_csums = true;
2171 		ret = btrfs_csum_file_blocks(trans,
2172 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2173 		trans->adding_csums = false;
2174 		if (ret)
2175 			return ret;
2176 	}
2177 	return 0;
2178 }
2179 
2180 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2181 			      unsigned int extra_bits,
2182 			      struct extent_state **cached_state)
2183 {
2184 	WARN_ON(PAGE_ALIGNED(end));
2185 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2186 				   extra_bits, cached_state);
2187 }
2188 
2189 /* see btrfs_writepage_start_hook for details on why this is required */
2190 struct btrfs_writepage_fixup {
2191 	struct page *page;
2192 	struct inode *inode;
2193 	struct btrfs_work work;
2194 };
2195 
2196 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2197 {
2198 	struct btrfs_writepage_fixup *fixup;
2199 	struct btrfs_ordered_extent *ordered;
2200 	struct extent_state *cached_state = NULL;
2201 	struct extent_changeset *data_reserved = NULL;
2202 	struct page *page;
2203 	struct inode *inode;
2204 	u64 page_start;
2205 	u64 page_end;
2206 	int ret = 0;
2207 	bool free_delalloc_space = true;
2208 
2209 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2210 	page = fixup->page;
2211 	inode = fixup->inode;
2212 	page_start = page_offset(page);
2213 	page_end = page_offset(page) + PAGE_SIZE - 1;
2214 
2215 	/*
2216 	 * This is similar to page_mkwrite, we need to reserve the space before
2217 	 * we take the page lock.
2218 	 */
2219 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2220 					   PAGE_SIZE);
2221 again:
2222 	lock_page(page);
2223 
2224 	/*
2225 	 * Before we queued this fixup, we took a reference on the page.
2226 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2227 	 * address space.
2228 	 */
2229 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2230 		/*
2231 		 * Unfortunately this is a little tricky, either
2232 		 *
2233 		 * 1) We got here and our page had already been dealt with and
2234 		 *    we reserved our space, thus ret == 0, so we need to just
2235 		 *    drop our space reservation and bail.  This can happen the
2236 		 *    first time we come into the fixup worker, or could happen
2237 		 *    while waiting for the ordered extent.
2238 		 * 2) Our page was already dealt with, but we happened to get an
2239 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2240 		 *    this case we obviously don't have anything to release, but
2241 		 *    because the page was already dealt with we don't want to
2242 		 *    mark the page with an error, so make sure we're resetting
2243 		 *    ret to 0.  This is why we have this check _before_ the ret
2244 		 *    check, because we do not want to have a surprise ENOSPC
2245 		 *    when the page was already properly dealt with.
2246 		 */
2247 		if (!ret) {
2248 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2249 						       PAGE_SIZE);
2250 			btrfs_delalloc_release_space(inode, data_reserved,
2251 						     page_start, PAGE_SIZE,
2252 						     true);
2253 		}
2254 		ret = 0;
2255 		goto out_page;
2256 	}
2257 
2258 	/*
2259 	 * We can't mess with the page state unless it is locked, so now that
2260 	 * it is locked bail if we failed to make our space reservation.
2261 	 */
2262 	if (ret)
2263 		goto out_page;
2264 
2265 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2266 			 &cached_state);
2267 
2268 	/* already ordered? We're done */
2269 	if (PagePrivate2(page))
2270 		goto out_reserved;
2271 
2272 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2273 					PAGE_SIZE);
2274 	if (ordered) {
2275 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2276 				     page_end, &cached_state);
2277 		unlock_page(page);
2278 		btrfs_start_ordered_extent(inode, ordered, 1);
2279 		btrfs_put_ordered_extent(ordered);
2280 		goto again;
2281 	}
2282 
2283 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2284 					&cached_state);
2285 	if (ret)
2286 		goto out_reserved;
2287 
2288 	/*
2289 	 * Everything went as planned, we're now the owner of a dirty page with
2290 	 * delayed allocation bits set and space reserved for our COW
2291 	 * destination.
2292 	 *
2293 	 * The page was dirty when we started, nothing should have cleaned it.
2294 	 */
2295 	BUG_ON(!PageDirty(page));
2296 	free_delalloc_space = false;
2297 out_reserved:
2298 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2299 	if (free_delalloc_space)
2300 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2301 					     PAGE_SIZE, true);
2302 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2303 			     &cached_state);
2304 out_page:
2305 	if (ret) {
2306 		/*
2307 		 * We hit ENOSPC or other errors.  Update the mapping and page
2308 		 * to reflect the errors and clean the page.
2309 		 */
2310 		mapping_set_error(page->mapping, ret);
2311 		end_extent_writepage(page, ret, page_start, page_end);
2312 		clear_page_dirty_for_io(page);
2313 		SetPageError(page);
2314 	}
2315 	ClearPageChecked(page);
2316 	unlock_page(page);
2317 	put_page(page);
2318 	kfree(fixup);
2319 	extent_changeset_free(data_reserved);
2320 	/*
2321 	 * As a precaution, do a delayed iput in case it would be the last iput
2322 	 * that could need flushing space. Recursing back to fixup worker would
2323 	 * deadlock.
2324 	 */
2325 	btrfs_add_delayed_iput(inode);
2326 }
2327 
2328 /*
2329  * There are a few paths in the higher layers of the kernel that directly
2330  * set the page dirty bit without asking the filesystem if it is a
2331  * good idea.  This causes problems because we want to make sure COW
2332  * properly happens and the data=ordered rules are followed.
2333  *
2334  * In our case any range that doesn't have the ORDERED bit set
2335  * hasn't been properly setup for IO.  We kick off an async process
2336  * to fix it up.  The async helper will wait for ordered extents, set
2337  * the delalloc bit and make it safe to write the page.
2338  */
2339 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2340 {
2341 	struct inode *inode = page->mapping->host;
2342 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2343 	struct btrfs_writepage_fixup *fixup;
2344 
2345 	/* this page is properly in the ordered list */
2346 	if (TestClearPagePrivate2(page))
2347 		return 0;
2348 
2349 	/*
2350 	 * PageChecked is set below when we create a fixup worker for this page,
2351 	 * don't try to create another one if we're already PageChecked()
2352 	 *
2353 	 * The extent_io writepage code will redirty the page if we send back
2354 	 * EAGAIN.
2355 	 */
2356 	if (PageChecked(page))
2357 		return -EAGAIN;
2358 
2359 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2360 	if (!fixup)
2361 		return -EAGAIN;
2362 
2363 	/*
2364 	 * We are already holding a reference to this inode from
2365 	 * write_cache_pages.  We need to hold it because the space reservation
2366 	 * takes place outside of the page lock, and we can't trust
2367 	 * page->mapping outside of the page lock.
2368 	 */
2369 	ihold(inode);
2370 	SetPageChecked(page);
2371 	get_page(page);
2372 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2373 	fixup->page = page;
2374 	fixup->inode = inode;
2375 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2376 
2377 	return -EAGAIN;
2378 }
2379 
2380 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2381 				       struct inode *inode, u64 file_pos,
2382 				       u64 disk_bytenr, u64 disk_num_bytes,
2383 				       u64 num_bytes, u64 ram_bytes,
2384 				       u8 compression, u8 encryption,
2385 				       u16 other_encoding, int extent_type)
2386 {
2387 	struct btrfs_root *root = BTRFS_I(inode)->root;
2388 	struct btrfs_file_extent_item *fi;
2389 	struct btrfs_path *path;
2390 	struct extent_buffer *leaf;
2391 	struct btrfs_key ins;
2392 	u64 qg_released;
2393 	int extent_inserted = 0;
2394 	int ret;
2395 
2396 	path = btrfs_alloc_path();
2397 	if (!path)
2398 		return -ENOMEM;
2399 
2400 	/*
2401 	 * we may be replacing one extent in the tree with another.
2402 	 * The new extent is pinned in the extent map, and we don't want
2403 	 * to drop it from the cache until it is completely in the btree.
2404 	 *
2405 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2406 	 * the caller is expected to unpin it and allow it to be merged
2407 	 * with the others.
2408 	 */
2409 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2410 				   file_pos + num_bytes, NULL, 0,
2411 				   1, sizeof(*fi), &extent_inserted);
2412 	if (ret)
2413 		goto out;
2414 
2415 	if (!extent_inserted) {
2416 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2417 		ins.offset = file_pos;
2418 		ins.type = BTRFS_EXTENT_DATA_KEY;
2419 
2420 		path->leave_spinning = 1;
2421 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2422 					      sizeof(*fi));
2423 		if (ret)
2424 			goto out;
2425 	}
2426 	leaf = path->nodes[0];
2427 	fi = btrfs_item_ptr(leaf, path->slots[0],
2428 			    struct btrfs_file_extent_item);
2429 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2430 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2431 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2432 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2433 	btrfs_set_file_extent_offset(leaf, fi, 0);
2434 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2435 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2436 	btrfs_set_file_extent_compression(leaf, fi, compression);
2437 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2438 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2439 
2440 	btrfs_mark_buffer_dirty(leaf);
2441 	btrfs_release_path(path);
2442 
2443 	inode_add_bytes(inode, num_bytes);
2444 
2445 	ins.objectid = disk_bytenr;
2446 	ins.offset = disk_num_bytes;
2447 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2448 
2449 	/*
2450 	 * Release the reserved range from inode dirty range map, as it is
2451 	 * already moved into delayed_ref_head
2452 	 */
2453 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2454 	if (ret < 0)
2455 		goto out;
2456 	qg_released = ret;
2457 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2458 					       btrfs_ino(BTRFS_I(inode)),
2459 					       file_pos, qg_released, &ins);
2460 out:
2461 	btrfs_free_path(path);
2462 
2463 	return ret;
2464 }
2465 
2466 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2467 					 u64 start, u64 len)
2468 {
2469 	struct btrfs_block_group *cache;
2470 
2471 	cache = btrfs_lookup_block_group(fs_info, start);
2472 	ASSERT(cache);
2473 
2474 	spin_lock(&cache->lock);
2475 	cache->delalloc_bytes -= len;
2476 	spin_unlock(&cache->lock);
2477 
2478 	btrfs_put_block_group(cache);
2479 }
2480 
2481 /* as ordered data IO finishes, this gets called so we can finish
2482  * an ordered extent if the range of bytes in the file it covers are
2483  * fully written.
2484  */
2485 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2486 {
2487 	struct inode *inode = ordered_extent->inode;
2488 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2489 	struct btrfs_root *root = BTRFS_I(inode)->root;
2490 	struct btrfs_trans_handle *trans = NULL;
2491 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2492 	struct extent_state *cached_state = NULL;
2493 	u64 start, end;
2494 	int compress_type = 0;
2495 	int ret = 0;
2496 	u64 logical_len = ordered_extent->num_bytes;
2497 	bool freespace_inode;
2498 	bool truncated = false;
2499 	bool range_locked = false;
2500 	bool clear_new_delalloc_bytes = false;
2501 	bool clear_reserved_extent = true;
2502 	unsigned int clear_bits;
2503 
2504 	start = ordered_extent->file_offset;
2505 	end = start + ordered_extent->num_bytes - 1;
2506 
2507 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2508 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2509 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2510 		clear_new_delalloc_bytes = true;
2511 
2512 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2513 
2514 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2515 		ret = -EIO;
2516 		goto out;
2517 	}
2518 
2519 	btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2520 
2521 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2522 		truncated = true;
2523 		logical_len = ordered_extent->truncated_len;
2524 		/* Truncated the entire extent, don't bother adding */
2525 		if (!logical_len)
2526 			goto out;
2527 	}
2528 
2529 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2530 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2531 
2532 		/*
2533 		 * For mwrite(mmap + memset to write) case, we still reserve
2534 		 * space for NOCOW range.
2535 		 * As NOCOW won't cause a new delayed ref, just free the space
2536 		 */
2537 		btrfs_qgroup_free_data(inode, NULL, start,
2538 				       ordered_extent->num_bytes);
2539 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2540 		if (freespace_inode)
2541 			trans = btrfs_join_transaction_spacecache(root);
2542 		else
2543 			trans = btrfs_join_transaction(root);
2544 		if (IS_ERR(trans)) {
2545 			ret = PTR_ERR(trans);
2546 			trans = NULL;
2547 			goto out;
2548 		}
2549 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2550 		ret = btrfs_update_inode_fallback(trans, root, inode);
2551 		if (ret) /* -ENOMEM or corruption */
2552 			btrfs_abort_transaction(trans, ret);
2553 		goto out;
2554 	}
2555 
2556 	range_locked = true;
2557 	lock_extent_bits(io_tree, start, end, &cached_state);
2558 
2559 	if (freespace_inode)
2560 		trans = btrfs_join_transaction_spacecache(root);
2561 	else
2562 		trans = btrfs_join_transaction(root);
2563 	if (IS_ERR(trans)) {
2564 		ret = PTR_ERR(trans);
2565 		trans = NULL;
2566 		goto out;
2567 	}
2568 
2569 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2570 
2571 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2572 		compress_type = ordered_extent->compress_type;
2573 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2574 		BUG_ON(compress_type);
2575 		btrfs_qgroup_free_data(inode, NULL, start,
2576 				       ordered_extent->num_bytes);
2577 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2578 						ordered_extent->file_offset,
2579 						ordered_extent->file_offset +
2580 						logical_len);
2581 	} else {
2582 		BUG_ON(root == fs_info->tree_root);
2583 		ret = insert_reserved_file_extent(trans, inode, start,
2584 						ordered_extent->disk_bytenr,
2585 						ordered_extent->disk_num_bytes,
2586 						logical_len, logical_len,
2587 						compress_type, 0, 0,
2588 						BTRFS_FILE_EXTENT_REG);
2589 		if (!ret) {
2590 			clear_reserved_extent = false;
2591 			btrfs_release_delalloc_bytes(fs_info,
2592 						ordered_extent->disk_bytenr,
2593 						ordered_extent->disk_num_bytes);
2594 		}
2595 	}
2596 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2597 			   ordered_extent->file_offset,
2598 			   ordered_extent->num_bytes, trans->transid);
2599 	if (ret < 0) {
2600 		btrfs_abort_transaction(trans, ret);
2601 		goto out;
2602 	}
2603 
2604 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
2605 	if (ret) {
2606 		btrfs_abort_transaction(trans, ret);
2607 		goto out;
2608 	}
2609 
2610 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2611 	ret = btrfs_update_inode_fallback(trans, root, inode);
2612 	if (ret) { /* -ENOMEM or corruption */
2613 		btrfs_abort_transaction(trans, ret);
2614 		goto out;
2615 	}
2616 	ret = 0;
2617 out:
2618 	clear_bits = EXTENT_DEFRAG;
2619 	if (range_locked)
2620 		clear_bits |= EXTENT_LOCKED;
2621 	if (clear_new_delalloc_bytes)
2622 		clear_bits |= EXTENT_DELALLOC_NEW;
2623 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2624 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2625 			 &cached_state);
2626 
2627 	if (trans)
2628 		btrfs_end_transaction(trans);
2629 
2630 	if (ret || truncated) {
2631 		u64 unwritten_start = start;
2632 
2633 		if (truncated)
2634 			unwritten_start += logical_len;
2635 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2636 
2637 		/* Drop the cache for the part of the extent we didn't write. */
2638 		btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2639 
2640 		/*
2641 		 * If the ordered extent had an IOERR or something else went
2642 		 * wrong we need to return the space for this ordered extent
2643 		 * back to the allocator.  We only free the extent in the
2644 		 * truncated case if we didn't write out the extent at all.
2645 		 *
2646 		 * If we made it past insert_reserved_file_extent before we
2647 		 * errored out then we don't need to do this as the accounting
2648 		 * has already been done.
2649 		 */
2650 		if ((ret || !logical_len) &&
2651 		    clear_reserved_extent &&
2652 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2653 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2654 			/*
2655 			 * Discard the range before returning it back to the
2656 			 * free space pool
2657 			 */
2658 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2659 				btrfs_discard_extent(fs_info,
2660 						ordered_extent->disk_bytenr,
2661 						ordered_extent->disk_num_bytes,
2662 						NULL);
2663 			btrfs_free_reserved_extent(fs_info,
2664 					ordered_extent->disk_bytenr,
2665 					ordered_extent->disk_num_bytes, 1);
2666 		}
2667 	}
2668 
2669 	/*
2670 	 * This needs to be done to make sure anybody waiting knows we are done
2671 	 * updating everything for this ordered extent.
2672 	 */
2673 	btrfs_remove_ordered_extent(inode, ordered_extent);
2674 
2675 	/* once for us */
2676 	btrfs_put_ordered_extent(ordered_extent);
2677 	/* once for the tree */
2678 	btrfs_put_ordered_extent(ordered_extent);
2679 
2680 	return ret;
2681 }
2682 
2683 static void finish_ordered_fn(struct btrfs_work *work)
2684 {
2685 	struct btrfs_ordered_extent *ordered_extent;
2686 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2687 	btrfs_finish_ordered_io(ordered_extent);
2688 }
2689 
2690 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2691 					  u64 end, int uptodate)
2692 {
2693 	struct inode *inode = page->mapping->host;
2694 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2695 	struct btrfs_ordered_extent *ordered_extent = NULL;
2696 	struct btrfs_workqueue *wq;
2697 
2698 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2699 
2700 	ClearPagePrivate2(page);
2701 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2702 					    end - start + 1, uptodate))
2703 		return;
2704 
2705 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2706 		wq = fs_info->endio_freespace_worker;
2707 	else
2708 		wq = fs_info->endio_write_workers;
2709 
2710 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2711 	btrfs_queue_work(wq, &ordered_extent->work);
2712 }
2713 
2714 static int __readpage_endio_check(struct inode *inode,
2715 				  struct btrfs_io_bio *io_bio,
2716 				  int icsum, struct page *page,
2717 				  int pgoff, u64 start, size_t len)
2718 {
2719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2720 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2721 	char *kaddr;
2722 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2723 	u8 *csum_expected;
2724 	u8 csum[BTRFS_CSUM_SIZE];
2725 
2726 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2727 
2728 	kaddr = kmap_atomic(page);
2729 	shash->tfm = fs_info->csum_shash;
2730 
2731 	crypto_shash_init(shash);
2732 	crypto_shash_update(shash, kaddr + pgoff, len);
2733 	crypto_shash_final(shash, csum);
2734 
2735 	if (memcmp(csum, csum_expected, csum_size))
2736 		goto zeroit;
2737 
2738 	kunmap_atomic(kaddr);
2739 	return 0;
2740 zeroit:
2741 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2742 				    io_bio->mirror_num);
2743 	memset(kaddr + pgoff, 1, len);
2744 	flush_dcache_page(page);
2745 	kunmap_atomic(kaddr);
2746 	return -EIO;
2747 }
2748 
2749 /*
2750  * when reads are done, we need to check csums to verify the data is correct
2751  * if there's a match, we allow the bio to finish.  If not, the code in
2752  * extent_io.c will try to find good copies for us.
2753  */
2754 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2755 				      u64 phy_offset, struct page *page,
2756 				      u64 start, u64 end, int mirror)
2757 {
2758 	size_t offset = start - page_offset(page);
2759 	struct inode *inode = page->mapping->host;
2760 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2761 	struct btrfs_root *root = BTRFS_I(inode)->root;
2762 
2763 	if (PageChecked(page)) {
2764 		ClearPageChecked(page);
2765 		return 0;
2766 	}
2767 
2768 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2769 		return 0;
2770 
2771 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2772 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2773 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2774 		return 0;
2775 	}
2776 
2777 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2778 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2779 				      start, (size_t)(end - start + 1));
2780 }
2781 
2782 /*
2783  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2784  *
2785  * @inode: The inode we want to perform iput on
2786  *
2787  * This function uses the generic vfs_inode::i_count to track whether we should
2788  * just decrement it (in case it's > 1) or if this is the last iput then link
2789  * the inode to the delayed iput machinery. Delayed iputs are processed at
2790  * transaction commit time/superblock commit/cleaner kthread.
2791  */
2792 void btrfs_add_delayed_iput(struct inode *inode)
2793 {
2794 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2795 	struct btrfs_inode *binode = BTRFS_I(inode);
2796 
2797 	if (atomic_add_unless(&inode->i_count, -1, 1))
2798 		return;
2799 
2800 	atomic_inc(&fs_info->nr_delayed_iputs);
2801 	spin_lock(&fs_info->delayed_iput_lock);
2802 	ASSERT(list_empty(&binode->delayed_iput));
2803 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2804 	spin_unlock(&fs_info->delayed_iput_lock);
2805 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2806 		wake_up_process(fs_info->cleaner_kthread);
2807 }
2808 
2809 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2810 				    struct btrfs_inode *inode)
2811 {
2812 	list_del_init(&inode->delayed_iput);
2813 	spin_unlock(&fs_info->delayed_iput_lock);
2814 	iput(&inode->vfs_inode);
2815 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2816 		wake_up(&fs_info->delayed_iputs_wait);
2817 	spin_lock(&fs_info->delayed_iput_lock);
2818 }
2819 
2820 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2821 				   struct btrfs_inode *inode)
2822 {
2823 	if (!list_empty(&inode->delayed_iput)) {
2824 		spin_lock(&fs_info->delayed_iput_lock);
2825 		if (!list_empty(&inode->delayed_iput))
2826 			run_delayed_iput_locked(fs_info, inode);
2827 		spin_unlock(&fs_info->delayed_iput_lock);
2828 	}
2829 }
2830 
2831 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2832 {
2833 
2834 	spin_lock(&fs_info->delayed_iput_lock);
2835 	while (!list_empty(&fs_info->delayed_iputs)) {
2836 		struct btrfs_inode *inode;
2837 
2838 		inode = list_first_entry(&fs_info->delayed_iputs,
2839 				struct btrfs_inode, delayed_iput);
2840 		run_delayed_iput_locked(fs_info, inode);
2841 	}
2842 	spin_unlock(&fs_info->delayed_iput_lock);
2843 }
2844 
2845 /**
2846  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2847  * @fs_info - the fs_info for this fs
2848  * @return - EINTR if we were killed, 0 if nothing's pending
2849  *
2850  * This will wait on any delayed iputs that are currently running with KILLABLE
2851  * set.  Once they are all done running we will return, unless we are killed in
2852  * which case we return EINTR. This helps in user operations like fallocate etc
2853  * that might get blocked on the iputs.
2854  */
2855 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2856 {
2857 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2858 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
2859 	if (ret)
2860 		return -EINTR;
2861 	return 0;
2862 }
2863 
2864 /*
2865  * This creates an orphan entry for the given inode in case something goes wrong
2866  * in the middle of an unlink.
2867  */
2868 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2869 		     struct btrfs_inode *inode)
2870 {
2871 	int ret;
2872 
2873 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2874 	if (ret && ret != -EEXIST) {
2875 		btrfs_abort_transaction(trans, ret);
2876 		return ret;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * We have done the delete so we can go ahead and remove the orphan item for
2884  * this particular inode.
2885  */
2886 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2887 			    struct btrfs_inode *inode)
2888 {
2889 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2890 }
2891 
2892 /*
2893  * this cleans up any orphans that may be left on the list from the last use
2894  * of this root.
2895  */
2896 int btrfs_orphan_cleanup(struct btrfs_root *root)
2897 {
2898 	struct btrfs_fs_info *fs_info = root->fs_info;
2899 	struct btrfs_path *path;
2900 	struct extent_buffer *leaf;
2901 	struct btrfs_key key, found_key;
2902 	struct btrfs_trans_handle *trans;
2903 	struct inode *inode;
2904 	u64 last_objectid = 0;
2905 	int ret = 0, nr_unlink = 0;
2906 
2907 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2908 		return 0;
2909 
2910 	path = btrfs_alloc_path();
2911 	if (!path) {
2912 		ret = -ENOMEM;
2913 		goto out;
2914 	}
2915 	path->reada = READA_BACK;
2916 
2917 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2918 	key.type = BTRFS_ORPHAN_ITEM_KEY;
2919 	key.offset = (u64)-1;
2920 
2921 	while (1) {
2922 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2923 		if (ret < 0)
2924 			goto out;
2925 
2926 		/*
2927 		 * if ret == 0 means we found what we were searching for, which
2928 		 * is weird, but possible, so only screw with path if we didn't
2929 		 * find the key and see if we have stuff that matches
2930 		 */
2931 		if (ret > 0) {
2932 			ret = 0;
2933 			if (path->slots[0] == 0)
2934 				break;
2935 			path->slots[0]--;
2936 		}
2937 
2938 		/* pull out the item */
2939 		leaf = path->nodes[0];
2940 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2941 
2942 		/* make sure the item matches what we want */
2943 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2944 			break;
2945 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
2946 			break;
2947 
2948 		/* release the path since we're done with it */
2949 		btrfs_release_path(path);
2950 
2951 		/*
2952 		 * this is where we are basically btrfs_lookup, without the
2953 		 * crossing root thing.  we store the inode number in the
2954 		 * offset of the orphan item.
2955 		 */
2956 
2957 		if (found_key.offset == last_objectid) {
2958 			btrfs_err(fs_info,
2959 				  "Error removing orphan entry, stopping orphan cleanup");
2960 			ret = -EINVAL;
2961 			goto out;
2962 		}
2963 
2964 		last_objectid = found_key.offset;
2965 
2966 		found_key.objectid = found_key.offset;
2967 		found_key.type = BTRFS_INODE_ITEM_KEY;
2968 		found_key.offset = 0;
2969 		inode = btrfs_iget(fs_info->sb, &found_key, root);
2970 		ret = PTR_ERR_OR_ZERO(inode);
2971 		if (ret && ret != -ENOENT)
2972 			goto out;
2973 
2974 		if (ret == -ENOENT && root == fs_info->tree_root) {
2975 			struct btrfs_root *dead_root;
2976 			struct btrfs_fs_info *fs_info = root->fs_info;
2977 			int is_dead_root = 0;
2978 
2979 			/*
2980 			 * this is an orphan in the tree root. Currently these
2981 			 * could come from 2 sources:
2982 			 *  a) a snapshot deletion in progress
2983 			 *  b) a free space cache inode
2984 			 * We need to distinguish those two, as the snapshot
2985 			 * orphan must not get deleted.
2986 			 * find_dead_roots already ran before us, so if this
2987 			 * is a snapshot deletion, we should find the root
2988 			 * in the dead_roots list
2989 			 */
2990 			spin_lock(&fs_info->trans_lock);
2991 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2992 					    root_list) {
2993 				if (dead_root->root_key.objectid ==
2994 				    found_key.objectid) {
2995 					is_dead_root = 1;
2996 					break;
2997 				}
2998 			}
2999 			spin_unlock(&fs_info->trans_lock);
3000 			if (is_dead_root) {
3001 				/* prevent this orphan from being found again */
3002 				key.offset = found_key.objectid - 1;
3003 				continue;
3004 			}
3005 
3006 		}
3007 
3008 		/*
3009 		 * If we have an inode with links, there are a couple of
3010 		 * possibilities. Old kernels (before v3.12) used to create an
3011 		 * orphan item for truncate indicating that there were possibly
3012 		 * extent items past i_size that needed to be deleted. In v3.12,
3013 		 * truncate was changed to update i_size in sync with the extent
3014 		 * items, but the (useless) orphan item was still created. Since
3015 		 * v4.18, we don't create the orphan item for truncate at all.
3016 		 *
3017 		 * So, this item could mean that we need to do a truncate, but
3018 		 * only if this filesystem was last used on a pre-v3.12 kernel
3019 		 * and was not cleanly unmounted. The odds of that are quite
3020 		 * slim, and it's a pain to do the truncate now, so just delete
3021 		 * the orphan item.
3022 		 *
3023 		 * It's also possible that this orphan item was supposed to be
3024 		 * deleted but wasn't. The inode number may have been reused,
3025 		 * but either way, we can delete the orphan item.
3026 		 */
3027 		if (ret == -ENOENT || inode->i_nlink) {
3028 			if (!ret)
3029 				iput(inode);
3030 			trans = btrfs_start_transaction(root, 1);
3031 			if (IS_ERR(trans)) {
3032 				ret = PTR_ERR(trans);
3033 				goto out;
3034 			}
3035 			btrfs_debug(fs_info, "auto deleting %Lu",
3036 				    found_key.objectid);
3037 			ret = btrfs_del_orphan_item(trans, root,
3038 						    found_key.objectid);
3039 			btrfs_end_transaction(trans);
3040 			if (ret)
3041 				goto out;
3042 			continue;
3043 		}
3044 
3045 		nr_unlink++;
3046 
3047 		/* this will do delete_inode and everything for us */
3048 		iput(inode);
3049 	}
3050 	/* release the path since we're done with it */
3051 	btrfs_release_path(path);
3052 
3053 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3054 
3055 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3056 		trans = btrfs_join_transaction(root);
3057 		if (!IS_ERR(trans))
3058 			btrfs_end_transaction(trans);
3059 	}
3060 
3061 	if (nr_unlink)
3062 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3063 
3064 out:
3065 	if (ret)
3066 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3067 	btrfs_free_path(path);
3068 	return ret;
3069 }
3070 
3071 /*
3072  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3073  * don't find any xattrs, we know there can't be any acls.
3074  *
3075  * slot is the slot the inode is in, objectid is the objectid of the inode
3076  */
3077 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3078 					  int slot, u64 objectid,
3079 					  int *first_xattr_slot)
3080 {
3081 	u32 nritems = btrfs_header_nritems(leaf);
3082 	struct btrfs_key found_key;
3083 	static u64 xattr_access = 0;
3084 	static u64 xattr_default = 0;
3085 	int scanned = 0;
3086 
3087 	if (!xattr_access) {
3088 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3089 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3090 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3091 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3092 	}
3093 
3094 	slot++;
3095 	*first_xattr_slot = -1;
3096 	while (slot < nritems) {
3097 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3098 
3099 		/* we found a different objectid, there must not be acls */
3100 		if (found_key.objectid != objectid)
3101 			return 0;
3102 
3103 		/* we found an xattr, assume we've got an acl */
3104 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3105 			if (*first_xattr_slot == -1)
3106 				*first_xattr_slot = slot;
3107 			if (found_key.offset == xattr_access ||
3108 			    found_key.offset == xattr_default)
3109 				return 1;
3110 		}
3111 
3112 		/*
3113 		 * we found a key greater than an xattr key, there can't
3114 		 * be any acls later on
3115 		 */
3116 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3117 			return 0;
3118 
3119 		slot++;
3120 		scanned++;
3121 
3122 		/*
3123 		 * it goes inode, inode backrefs, xattrs, extents,
3124 		 * so if there are a ton of hard links to an inode there can
3125 		 * be a lot of backrefs.  Don't waste time searching too hard,
3126 		 * this is just an optimization
3127 		 */
3128 		if (scanned >= 8)
3129 			break;
3130 	}
3131 	/* we hit the end of the leaf before we found an xattr or
3132 	 * something larger than an xattr.  We have to assume the inode
3133 	 * has acls
3134 	 */
3135 	if (*first_xattr_slot == -1)
3136 		*first_xattr_slot = slot;
3137 	return 1;
3138 }
3139 
3140 /*
3141  * read an inode from the btree into the in-memory inode
3142  */
3143 static int btrfs_read_locked_inode(struct inode *inode,
3144 				   struct btrfs_path *in_path)
3145 {
3146 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3147 	struct btrfs_path *path = in_path;
3148 	struct extent_buffer *leaf;
3149 	struct btrfs_inode_item *inode_item;
3150 	struct btrfs_root *root = BTRFS_I(inode)->root;
3151 	struct btrfs_key location;
3152 	unsigned long ptr;
3153 	int maybe_acls;
3154 	u32 rdev;
3155 	int ret;
3156 	bool filled = false;
3157 	int first_xattr_slot;
3158 
3159 	ret = btrfs_fill_inode(inode, &rdev);
3160 	if (!ret)
3161 		filled = true;
3162 
3163 	if (!path) {
3164 		path = btrfs_alloc_path();
3165 		if (!path)
3166 			return -ENOMEM;
3167 	}
3168 
3169 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3170 
3171 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3172 	if (ret) {
3173 		if (path != in_path)
3174 			btrfs_free_path(path);
3175 		return ret;
3176 	}
3177 
3178 	leaf = path->nodes[0];
3179 
3180 	if (filled)
3181 		goto cache_index;
3182 
3183 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3184 				    struct btrfs_inode_item);
3185 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3186 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3187 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3188 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3189 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3190 
3191 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3192 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3193 
3194 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3195 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3196 
3197 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3198 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3199 
3200 	BTRFS_I(inode)->i_otime.tv_sec =
3201 		btrfs_timespec_sec(leaf, &inode_item->otime);
3202 	BTRFS_I(inode)->i_otime.tv_nsec =
3203 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3204 
3205 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3206 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3207 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3208 
3209 	inode_set_iversion_queried(inode,
3210 				   btrfs_inode_sequence(leaf, inode_item));
3211 	inode->i_generation = BTRFS_I(inode)->generation;
3212 	inode->i_rdev = 0;
3213 	rdev = btrfs_inode_rdev(leaf, inode_item);
3214 
3215 	BTRFS_I(inode)->index_cnt = (u64)-1;
3216 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3217 
3218 cache_index:
3219 	/*
3220 	 * If we were modified in the current generation and evicted from memory
3221 	 * and then re-read we need to do a full sync since we don't have any
3222 	 * idea about which extents were modified before we were evicted from
3223 	 * cache.
3224 	 *
3225 	 * This is required for both inode re-read from disk and delayed inode
3226 	 * in delayed_nodes_tree.
3227 	 */
3228 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3229 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3230 			&BTRFS_I(inode)->runtime_flags);
3231 
3232 	/*
3233 	 * We don't persist the id of the transaction where an unlink operation
3234 	 * against the inode was last made. So here we assume the inode might
3235 	 * have been evicted, and therefore the exact value of last_unlink_trans
3236 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3237 	 * between the inode and its parent if the inode is fsync'ed and the log
3238 	 * replayed. For example, in the scenario:
3239 	 *
3240 	 * touch mydir/foo
3241 	 * ln mydir/foo mydir/bar
3242 	 * sync
3243 	 * unlink mydir/bar
3244 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3245 	 * xfs_io -c fsync mydir/foo
3246 	 * <power failure>
3247 	 * mount fs, triggers fsync log replay
3248 	 *
3249 	 * We must make sure that when we fsync our inode foo we also log its
3250 	 * parent inode, otherwise after log replay the parent still has the
3251 	 * dentry with the "bar" name but our inode foo has a link count of 1
3252 	 * and doesn't have an inode ref with the name "bar" anymore.
3253 	 *
3254 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3255 	 * but it guarantees correctness at the expense of occasional full
3256 	 * transaction commits on fsync if our inode is a directory, or if our
3257 	 * inode is not a directory, logging its parent unnecessarily.
3258 	 */
3259 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3260 
3261 	path->slots[0]++;
3262 	if (inode->i_nlink != 1 ||
3263 	    path->slots[0] >= btrfs_header_nritems(leaf))
3264 		goto cache_acl;
3265 
3266 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3267 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3268 		goto cache_acl;
3269 
3270 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3271 	if (location.type == BTRFS_INODE_REF_KEY) {
3272 		struct btrfs_inode_ref *ref;
3273 
3274 		ref = (struct btrfs_inode_ref *)ptr;
3275 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3276 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3277 		struct btrfs_inode_extref *extref;
3278 
3279 		extref = (struct btrfs_inode_extref *)ptr;
3280 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3281 								     extref);
3282 	}
3283 cache_acl:
3284 	/*
3285 	 * try to precache a NULL acl entry for files that don't have
3286 	 * any xattrs or acls
3287 	 */
3288 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3289 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3290 	if (first_xattr_slot != -1) {
3291 		path->slots[0] = first_xattr_slot;
3292 		ret = btrfs_load_inode_props(inode, path);
3293 		if (ret)
3294 			btrfs_err(fs_info,
3295 				  "error loading props for ino %llu (root %llu): %d",
3296 				  btrfs_ino(BTRFS_I(inode)),
3297 				  root->root_key.objectid, ret);
3298 	}
3299 	if (path != in_path)
3300 		btrfs_free_path(path);
3301 
3302 	if (!maybe_acls)
3303 		cache_no_acl(inode);
3304 
3305 	switch (inode->i_mode & S_IFMT) {
3306 	case S_IFREG:
3307 		inode->i_mapping->a_ops = &btrfs_aops;
3308 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3309 		inode->i_fop = &btrfs_file_operations;
3310 		inode->i_op = &btrfs_file_inode_operations;
3311 		break;
3312 	case S_IFDIR:
3313 		inode->i_fop = &btrfs_dir_file_operations;
3314 		inode->i_op = &btrfs_dir_inode_operations;
3315 		break;
3316 	case S_IFLNK:
3317 		inode->i_op = &btrfs_symlink_inode_operations;
3318 		inode_nohighmem(inode);
3319 		inode->i_mapping->a_ops = &btrfs_aops;
3320 		break;
3321 	default:
3322 		inode->i_op = &btrfs_special_inode_operations;
3323 		init_special_inode(inode, inode->i_mode, rdev);
3324 		break;
3325 	}
3326 
3327 	btrfs_sync_inode_flags_to_i_flags(inode);
3328 	return 0;
3329 }
3330 
3331 /*
3332  * given a leaf and an inode, copy the inode fields into the leaf
3333  */
3334 static void fill_inode_item(struct btrfs_trans_handle *trans,
3335 			    struct extent_buffer *leaf,
3336 			    struct btrfs_inode_item *item,
3337 			    struct inode *inode)
3338 {
3339 	struct btrfs_map_token token;
3340 
3341 	btrfs_init_map_token(&token, leaf);
3342 
3343 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3344 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3345 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3346 				   &token);
3347 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3348 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3349 
3350 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3351 				     inode->i_atime.tv_sec, &token);
3352 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3353 				      inode->i_atime.tv_nsec, &token);
3354 
3355 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3356 				     inode->i_mtime.tv_sec, &token);
3357 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3358 				      inode->i_mtime.tv_nsec, &token);
3359 
3360 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3361 				     inode->i_ctime.tv_sec, &token);
3362 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3363 				      inode->i_ctime.tv_nsec, &token);
3364 
3365 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3366 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3367 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3368 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3369 
3370 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3371 				     &token);
3372 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3373 					 &token);
3374 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3375 				       &token);
3376 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3377 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3378 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3379 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3380 }
3381 
3382 /*
3383  * copy everything in the in-memory inode into the btree.
3384  */
3385 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3386 				struct btrfs_root *root, struct inode *inode)
3387 {
3388 	struct btrfs_inode_item *inode_item;
3389 	struct btrfs_path *path;
3390 	struct extent_buffer *leaf;
3391 	int ret;
3392 
3393 	path = btrfs_alloc_path();
3394 	if (!path)
3395 		return -ENOMEM;
3396 
3397 	path->leave_spinning = 1;
3398 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3399 				 1);
3400 	if (ret) {
3401 		if (ret > 0)
3402 			ret = -ENOENT;
3403 		goto failed;
3404 	}
3405 
3406 	leaf = path->nodes[0];
3407 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3408 				    struct btrfs_inode_item);
3409 
3410 	fill_inode_item(trans, leaf, inode_item, inode);
3411 	btrfs_mark_buffer_dirty(leaf);
3412 	btrfs_set_inode_last_trans(trans, inode);
3413 	ret = 0;
3414 failed:
3415 	btrfs_free_path(path);
3416 	return ret;
3417 }
3418 
3419 /*
3420  * copy everything in the in-memory inode into the btree.
3421  */
3422 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3423 				struct btrfs_root *root, struct inode *inode)
3424 {
3425 	struct btrfs_fs_info *fs_info = root->fs_info;
3426 	int ret;
3427 
3428 	/*
3429 	 * If the inode is a free space inode, we can deadlock during commit
3430 	 * if we put it into the delayed code.
3431 	 *
3432 	 * The data relocation inode should also be directly updated
3433 	 * without delay
3434 	 */
3435 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3436 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3437 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3438 		btrfs_update_root_times(trans, root);
3439 
3440 		ret = btrfs_delayed_update_inode(trans, root, inode);
3441 		if (!ret)
3442 			btrfs_set_inode_last_trans(trans, inode);
3443 		return ret;
3444 	}
3445 
3446 	return btrfs_update_inode_item(trans, root, inode);
3447 }
3448 
3449 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3450 					 struct btrfs_root *root,
3451 					 struct inode *inode)
3452 {
3453 	int ret;
3454 
3455 	ret = btrfs_update_inode(trans, root, inode);
3456 	if (ret == -ENOSPC)
3457 		return btrfs_update_inode_item(trans, root, inode);
3458 	return ret;
3459 }
3460 
3461 /*
3462  * unlink helper that gets used here in inode.c and in the tree logging
3463  * recovery code.  It remove a link in a directory with a given name, and
3464  * also drops the back refs in the inode to the directory
3465  */
3466 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3467 				struct btrfs_root *root,
3468 				struct btrfs_inode *dir,
3469 				struct btrfs_inode *inode,
3470 				const char *name, int name_len)
3471 {
3472 	struct btrfs_fs_info *fs_info = root->fs_info;
3473 	struct btrfs_path *path;
3474 	int ret = 0;
3475 	struct btrfs_dir_item *di;
3476 	u64 index;
3477 	u64 ino = btrfs_ino(inode);
3478 	u64 dir_ino = btrfs_ino(dir);
3479 
3480 	path = btrfs_alloc_path();
3481 	if (!path) {
3482 		ret = -ENOMEM;
3483 		goto out;
3484 	}
3485 
3486 	path->leave_spinning = 1;
3487 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3488 				    name, name_len, -1);
3489 	if (IS_ERR_OR_NULL(di)) {
3490 		ret = di ? PTR_ERR(di) : -ENOENT;
3491 		goto err;
3492 	}
3493 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3494 	if (ret)
3495 		goto err;
3496 	btrfs_release_path(path);
3497 
3498 	/*
3499 	 * If we don't have dir index, we have to get it by looking up
3500 	 * the inode ref, since we get the inode ref, remove it directly,
3501 	 * it is unnecessary to do delayed deletion.
3502 	 *
3503 	 * But if we have dir index, needn't search inode ref to get it.
3504 	 * Since the inode ref is close to the inode item, it is better
3505 	 * that we delay to delete it, and just do this deletion when
3506 	 * we update the inode item.
3507 	 */
3508 	if (inode->dir_index) {
3509 		ret = btrfs_delayed_delete_inode_ref(inode);
3510 		if (!ret) {
3511 			index = inode->dir_index;
3512 			goto skip_backref;
3513 		}
3514 	}
3515 
3516 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3517 				  dir_ino, &index);
3518 	if (ret) {
3519 		btrfs_info(fs_info,
3520 			"failed to delete reference to %.*s, inode %llu parent %llu",
3521 			name_len, name, ino, dir_ino);
3522 		btrfs_abort_transaction(trans, ret);
3523 		goto err;
3524 	}
3525 skip_backref:
3526 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3527 	if (ret) {
3528 		btrfs_abort_transaction(trans, ret);
3529 		goto err;
3530 	}
3531 
3532 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3533 			dir_ino);
3534 	if (ret != 0 && ret != -ENOENT) {
3535 		btrfs_abort_transaction(trans, ret);
3536 		goto err;
3537 	}
3538 
3539 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3540 			index);
3541 	if (ret == -ENOENT)
3542 		ret = 0;
3543 	else if (ret)
3544 		btrfs_abort_transaction(trans, ret);
3545 
3546 	/*
3547 	 * If we have a pending delayed iput we could end up with the final iput
3548 	 * being run in btrfs-cleaner context.  If we have enough of these built
3549 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3550 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3551 	 * the inode we can run the delayed iput here without any issues as the
3552 	 * final iput won't be done until after we drop the ref we're currently
3553 	 * holding.
3554 	 */
3555 	btrfs_run_delayed_iput(fs_info, inode);
3556 err:
3557 	btrfs_free_path(path);
3558 	if (ret)
3559 		goto out;
3560 
3561 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3562 	inode_inc_iversion(&inode->vfs_inode);
3563 	inode_inc_iversion(&dir->vfs_inode);
3564 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3565 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3566 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3567 out:
3568 	return ret;
3569 }
3570 
3571 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3572 		       struct btrfs_root *root,
3573 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3574 		       const char *name, int name_len)
3575 {
3576 	int ret;
3577 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3578 	if (!ret) {
3579 		drop_nlink(&inode->vfs_inode);
3580 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3581 	}
3582 	return ret;
3583 }
3584 
3585 /*
3586  * helper to start transaction for unlink and rmdir.
3587  *
3588  * unlink and rmdir are special in btrfs, they do not always free space, so
3589  * if we cannot make our reservations the normal way try and see if there is
3590  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3591  * allow the unlink to occur.
3592  */
3593 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3594 {
3595 	struct btrfs_root *root = BTRFS_I(dir)->root;
3596 
3597 	/*
3598 	 * 1 for the possible orphan item
3599 	 * 1 for the dir item
3600 	 * 1 for the dir index
3601 	 * 1 for the inode ref
3602 	 * 1 for the inode
3603 	 */
3604 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
3605 }
3606 
3607 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3608 {
3609 	struct btrfs_root *root = BTRFS_I(dir)->root;
3610 	struct btrfs_trans_handle *trans;
3611 	struct inode *inode = d_inode(dentry);
3612 	int ret;
3613 
3614 	trans = __unlink_start_trans(dir);
3615 	if (IS_ERR(trans))
3616 		return PTR_ERR(trans);
3617 
3618 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3619 			0);
3620 
3621 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3622 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3623 			dentry->d_name.len);
3624 	if (ret)
3625 		goto out;
3626 
3627 	if (inode->i_nlink == 0) {
3628 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3629 		if (ret)
3630 			goto out;
3631 	}
3632 
3633 out:
3634 	btrfs_end_transaction(trans);
3635 	btrfs_btree_balance_dirty(root->fs_info);
3636 	return ret;
3637 }
3638 
3639 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3640 			       struct inode *dir, struct dentry *dentry)
3641 {
3642 	struct btrfs_root *root = BTRFS_I(dir)->root;
3643 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3644 	struct btrfs_path *path;
3645 	struct extent_buffer *leaf;
3646 	struct btrfs_dir_item *di;
3647 	struct btrfs_key key;
3648 	const char *name = dentry->d_name.name;
3649 	int name_len = dentry->d_name.len;
3650 	u64 index;
3651 	int ret;
3652 	u64 objectid;
3653 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3654 
3655 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3656 		objectid = inode->root->root_key.objectid;
3657 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3658 		objectid = inode->location.objectid;
3659 	} else {
3660 		WARN_ON(1);
3661 		return -EINVAL;
3662 	}
3663 
3664 	path = btrfs_alloc_path();
3665 	if (!path)
3666 		return -ENOMEM;
3667 
3668 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3669 				   name, name_len, -1);
3670 	if (IS_ERR_OR_NULL(di)) {
3671 		ret = di ? PTR_ERR(di) : -ENOENT;
3672 		goto out;
3673 	}
3674 
3675 	leaf = path->nodes[0];
3676 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3677 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3678 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3679 	if (ret) {
3680 		btrfs_abort_transaction(trans, ret);
3681 		goto out;
3682 	}
3683 	btrfs_release_path(path);
3684 
3685 	/*
3686 	 * This is a placeholder inode for a subvolume we didn't have a
3687 	 * reference to at the time of the snapshot creation.  In the meantime
3688 	 * we could have renamed the real subvol link into our snapshot, so
3689 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3690 	 * Instead simply lookup the dir_index_item for this entry so we can
3691 	 * remove it.  Otherwise we know we have a ref to the root and we can
3692 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3693 	 */
3694 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3695 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3696 						 name, name_len);
3697 		if (IS_ERR_OR_NULL(di)) {
3698 			if (!di)
3699 				ret = -ENOENT;
3700 			else
3701 				ret = PTR_ERR(di);
3702 			btrfs_abort_transaction(trans, ret);
3703 			goto out;
3704 		}
3705 
3706 		leaf = path->nodes[0];
3707 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3708 		index = key.offset;
3709 		btrfs_release_path(path);
3710 	} else {
3711 		ret = btrfs_del_root_ref(trans, objectid,
3712 					 root->root_key.objectid, dir_ino,
3713 					 &index, name, name_len);
3714 		if (ret) {
3715 			btrfs_abort_transaction(trans, ret);
3716 			goto out;
3717 		}
3718 	}
3719 
3720 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3721 	if (ret) {
3722 		btrfs_abort_transaction(trans, ret);
3723 		goto out;
3724 	}
3725 
3726 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3727 	inode_inc_iversion(dir);
3728 	dir->i_mtime = dir->i_ctime = current_time(dir);
3729 	ret = btrfs_update_inode_fallback(trans, root, dir);
3730 	if (ret)
3731 		btrfs_abort_transaction(trans, ret);
3732 out:
3733 	btrfs_free_path(path);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * Helper to check if the subvolume references other subvolumes or if it's
3739  * default.
3740  */
3741 static noinline int may_destroy_subvol(struct btrfs_root *root)
3742 {
3743 	struct btrfs_fs_info *fs_info = root->fs_info;
3744 	struct btrfs_path *path;
3745 	struct btrfs_dir_item *di;
3746 	struct btrfs_key key;
3747 	u64 dir_id;
3748 	int ret;
3749 
3750 	path = btrfs_alloc_path();
3751 	if (!path)
3752 		return -ENOMEM;
3753 
3754 	/* Make sure this root isn't set as the default subvol */
3755 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3756 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3757 				   dir_id, "default", 7, 0);
3758 	if (di && !IS_ERR(di)) {
3759 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3760 		if (key.objectid == root->root_key.objectid) {
3761 			ret = -EPERM;
3762 			btrfs_err(fs_info,
3763 				  "deleting default subvolume %llu is not allowed",
3764 				  key.objectid);
3765 			goto out;
3766 		}
3767 		btrfs_release_path(path);
3768 	}
3769 
3770 	key.objectid = root->root_key.objectid;
3771 	key.type = BTRFS_ROOT_REF_KEY;
3772 	key.offset = (u64)-1;
3773 
3774 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3775 	if (ret < 0)
3776 		goto out;
3777 	BUG_ON(ret == 0);
3778 
3779 	ret = 0;
3780 	if (path->slots[0] > 0) {
3781 		path->slots[0]--;
3782 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3783 		if (key.objectid == root->root_key.objectid &&
3784 		    key.type == BTRFS_ROOT_REF_KEY)
3785 			ret = -ENOTEMPTY;
3786 	}
3787 out:
3788 	btrfs_free_path(path);
3789 	return ret;
3790 }
3791 
3792 /* Delete all dentries for inodes belonging to the root */
3793 static void btrfs_prune_dentries(struct btrfs_root *root)
3794 {
3795 	struct btrfs_fs_info *fs_info = root->fs_info;
3796 	struct rb_node *node;
3797 	struct rb_node *prev;
3798 	struct btrfs_inode *entry;
3799 	struct inode *inode;
3800 	u64 objectid = 0;
3801 
3802 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3803 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3804 
3805 	spin_lock(&root->inode_lock);
3806 again:
3807 	node = root->inode_tree.rb_node;
3808 	prev = NULL;
3809 	while (node) {
3810 		prev = node;
3811 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3812 
3813 		if (objectid < btrfs_ino(entry))
3814 			node = node->rb_left;
3815 		else if (objectid > btrfs_ino(entry))
3816 			node = node->rb_right;
3817 		else
3818 			break;
3819 	}
3820 	if (!node) {
3821 		while (prev) {
3822 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3823 			if (objectid <= btrfs_ino(entry)) {
3824 				node = prev;
3825 				break;
3826 			}
3827 			prev = rb_next(prev);
3828 		}
3829 	}
3830 	while (node) {
3831 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3832 		objectid = btrfs_ino(entry) + 1;
3833 		inode = igrab(&entry->vfs_inode);
3834 		if (inode) {
3835 			spin_unlock(&root->inode_lock);
3836 			if (atomic_read(&inode->i_count) > 1)
3837 				d_prune_aliases(inode);
3838 			/*
3839 			 * btrfs_drop_inode will have it removed from the inode
3840 			 * cache when its usage count hits zero.
3841 			 */
3842 			iput(inode);
3843 			cond_resched();
3844 			spin_lock(&root->inode_lock);
3845 			goto again;
3846 		}
3847 
3848 		if (cond_resched_lock(&root->inode_lock))
3849 			goto again;
3850 
3851 		node = rb_next(node);
3852 	}
3853 	spin_unlock(&root->inode_lock);
3854 }
3855 
3856 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3857 {
3858 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3859 	struct btrfs_root *root = BTRFS_I(dir)->root;
3860 	struct inode *inode = d_inode(dentry);
3861 	struct btrfs_root *dest = BTRFS_I(inode)->root;
3862 	struct btrfs_trans_handle *trans;
3863 	struct btrfs_block_rsv block_rsv;
3864 	u64 root_flags;
3865 	int ret;
3866 	int err;
3867 
3868 	/*
3869 	 * Don't allow to delete a subvolume with send in progress. This is
3870 	 * inside the inode lock so the error handling that has to drop the bit
3871 	 * again is not run concurrently.
3872 	 */
3873 	spin_lock(&dest->root_item_lock);
3874 	if (dest->send_in_progress) {
3875 		spin_unlock(&dest->root_item_lock);
3876 		btrfs_warn(fs_info,
3877 			   "attempt to delete subvolume %llu during send",
3878 			   dest->root_key.objectid);
3879 		return -EPERM;
3880 	}
3881 	root_flags = btrfs_root_flags(&dest->root_item);
3882 	btrfs_set_root_flags(&dest->root_item,
3883 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3884 	spin_unlock(&dest->root_item_lock);
3885 
3886 	down_write(&fs_info->subvol_sem);
3887 
3888 	err = may_destroy_subvol(dest);
3889 	if (err)
3890 		goto out_up_write;
3891 
3892 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3893 	/*
3894 	 * One for dir inode,
3895 	 * two for dir entries,
3896 	 * two for root ref/backref.
3897 	 */
3898 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3899 	if (err)
3900 		goto out_up_write;
3901 
3902 	trans = btrfs_start_transaction(root, 0);
3903 	if (IS_ERR(trans)) {
3904 		err = PTR_ERR(trans);
3905 		goto out_release;
3906 	}
3907 	trans->block_rsv = &block_rsv;
3908 	trans->bytes_reserved = block_rsv.size;
3909 
3910 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3911 
3912 	ret = btrfs_unlink_subvol(trans, dir, dentry);
3913 	if (ret) {
3914 		err = ret;
3915 		btrfs_abort_transaction(trans, ret);
3916 		goto out_end_trans;
3917 	}
3918 
3919 	btrfs_record_root_in_trans(trans, dest);
3920 
3921 	memset(&dest->root_item.drop_progress, 0,
3922 		sizeof(dest->root_item.drop_progress));
3923 	dest->root_item.drop_level = 0;
3924 	btrfs_set_root_refs(&dest->root_item, 0);
3925 
3926 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
3927 		ret = btrfs_insert_orphan_item(trans,
3928 					fs_info->tree_root,
3929 					dest->root_key.objectid);
3930 		if (ret) {
3931 			btrfs_abort_transaction(trans, ret);
3932 			err = ret;
3933 			goto out_end_trans;
3934 		}
3935 	}
3936 
3937 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
3938 				  BTRFS_UUID_KEY_SUBVOL,
3939 				  dest->root_key.objectid);
3940 	if (ret && ret != -ENOENT) {
3941 		btrfs_abort_transaction(trans, ret);
3942 		err = ret;
3943 		goto out_end_trans;
3944 	}
3945 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
3946 		ret = btrfs_uuid_tree_remove(trans,
3947 					  dest->root_item.received_uuid,
3948 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3949 					  dest->root_key.objectid);
3950 		if (ret && ret != -ENOENT) {
3951 			btrfs_abort_transaction(trans, ret);
3952 			err = ret;
3953 			goto out_end_trans;
3954 		}
3955 	}
3956 
3957 out_end_trans:
3958 	trans->block_rsv = NULL;
3959 	trans->bytes_reserved = 0;
3960 	ret = btrfs_end_transaction(trans);
3961 	if (ret && !err)
3962 		err = ret;
3963 	inode->i_flags |= S_DEAD;
3964 out_release:
3965 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
3966 out_up_write:
3967 	up_write(&fs_info->subvol_sem);
3968 	if (err) {
3969 		spin_lock(&dest->root_item_lock);
3970 		root_flags = btrfs_root_flags(&dest->root_item);
3971 		btrfs_set_root_flags(&dest->root_item,
3972 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
3973 		spin_unlock(&dest->root_item_lock);
3974 	} else {
3975 		d_invalidate(dentry);
3976 		btrfs_prune_dentries(dest);
3977 		ASSERT(dest->send_in_progress == 0);
3978 
3979 		/* the last ref */
3980 		if (dest->ino_cache_inode) {
3981 			iput(dest->ino_cache_inode);
3982 			dest->ino_cache_inode = NULL;
3983 		}
3984 	}
3985 
3986 	return err;
3987 }
3988 
3989 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3990 {
3991 	struct inode *inode = d_inode(dentry);
3992 	int err = 0;
3993 	struct btrfs_root *root = BTRFS_I(dir)->root;
3994 	struct btrfs_trans_handle *trans;
3995 	u64 last_unlink_trans;
3996 
3997 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3998 		return -ENOTEMPTY;
3999 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4000 		return btrfs_delete_subvolume(dir, dentry);
4001 
4002 	trans = __unlink_start_trans(dir);
4003 	if (IS_ERR(trans))
4004 		return PTR_ERR(trans);
4005 
4006 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4007 		err = btrfs_unlink_subvol(trans, dir, dentry);
4008 		goto out;
4009 	}
4010 
4011 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4012 	if (err)
4013 		goto out;
4014 
4015 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4016 
4017 	/* now the directory is empty */
4018 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4019 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4020 			dentry->d_name.len);
4021 	if (!err) {
4022 		btrfs_i_size_write(BTRFS_I(inode), 0);
4023 		/*
4024 		 * Propagate the last_unlink_trans value of the deleted dir to
4025 		 * its parent directory. This is to prevent an unrecoverable
4026 		 * log tree in the case we do something like this:
4027 		 * 1) create dir foo
4028 		 * 2) create snapshot under dir foo
4029 		 * 3) delete the snapshot
4030 		 * 4) rmdir foo
4031 		 * 5) mkdir foo
4032 		 * 6) fsync foo or some file inside foo
4033 		 */
4034 		if (last_unlink_trans >= trans->transid)
4035 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4036 	}
4037 out:
4038 	btrfs_end_transaction(trans);
4039 	btrfs_btree_balance_dirty(root->fs_info);
4040 
4041 	return err;
4042 }
4043 
4044 /*
4045  * Return this if we need to call truncate_block for the last bit of the
4046  * truncate.
4047  */
4048 #define NEED_TRUNCATE_BLOCK 1
4049 
4050 /*
4051  * this can truncate away extent items, csum items and directory items.
4052  * It starts at a high offset and removes keys until it can't find
4053  * any higher than new_size
4054  *
4055  * csum items that cross the new i_size are truncated to the new size
4056  * as well.
4057  *
4058  * min_type is the minimum key type to truncate down to.  If set to 0, this
4059  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4060  */
4061 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4062 			       struct btrfs_root *root,
4063 			       struct inode *inode,
4064 			       u64 new_size, u32 min_type)
4065 {
4066 	struct btrfs_fs_info *fs_info = root->fs_info;
4067 	struct btrfs_path *path;
4068 	struct extent_buffer *leaf;
4069 	struct btrfs_file_extent_item *fi;
4070 	struct btrfs_key key;
4071 	struct btrfs_key found_key;
4072 	u64 extent_start = 0;
4073 	u64 extent_num_bytes = 0;
4074 	u64 extent_offset = 0;
4075 	u64 item_end = 0;
4076 	u64 last_size = new_size;
4077 	u32 found_type = (u8)-1;
4078 	int found_extent;
4079 	int del_item;
4080 	int pending_del_nr = 0;
4081 	int pending_del_slot = 0;
4082 	int extent_type = -1;
4083 	int ret;
4084 	u64 ino = btrfs_ino(BTRFS_I(inode));
4085 	u64 bytes_deleted = 0;
4086 	bool be_nice = false;
4087 	bool should_throttle = false;
4088 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4089 	struct extent_state *cached_state = NULL;
4090 
4091 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4092 
4093 	/*
4094 	 * for non-free space inodes and ref cows, we want to back off from
4095 	 * time to time
4096 	 */
4097 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4098 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4099 		be_nice = true;
4100 
4101 	path = btrfs_alloc_path();
4102 	if (!path)
4103 		return -ENOMEM;
4104 	path->reada = READA_BACK;
4105 
4106 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4107 			 &cached_state);
4108 
4109 	/*
4110 	 * We want to drop from the next block forward in case this new size is
4111 	 * not block aligned since we will be keeping the last block of the
4112 	 * extent just the way it is.
4113 	 */
4114 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4115 	    root == fs_info->tree_root)
4116 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4117 					fs_info->sectorsize),
4118 					(u64)-1, 0);
4119 
4120 	/*
4121 	 * This function is also used to drop the items in the log tree before
4122 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4123 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4124 	 * items.
4125 	 */
4126 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4127 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4128 
4129 	key.objectid = ino;
4130 	key.offset = (u64)-1;
4131 	key.type = (u8)-1;
4132 
4133 search_again:
4134 	/*
4135 	 * with a 16K leaf size and 128MB extents, you can actually queue
4136 	 * up a huge file in a single leaf.  Most of the time that
4137 	 * bytes_deleted is > 0, it will be huge by the time we get here
4138 	 */
4139 	if (be_nice && bytes_deleted > SZ_32M &&
4140 	    btrfs_should_end_transaction(trans)) {
4141 		ret = -EAGAIN;
4142 		goto out;
4143 	}
4144 
4145 	path->leave_spinning = 1;
4146 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4147 	if (ret < 0)
4148 		goto out;
4149 
4150 	if (ret > 0) {
4151 		ret = 0;
4152 		/* there are no items in the tree for us to truncate, we're
4153 		 * done
4154 		 */
4155 		if (path->slots[0] == 0)
4156 			goto out;
4157 		path->slots[0]--;
4158 	}
4159 
4160 	while (1) {
4161 		fi = NULL;
4162 		leaf = path->nodes[0];
4163 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4164 		found_type = found_key.type;
4165 
4166 		if (found_key.objectid != ino)
4167 			break;
4168 
4169 		if (found_type < min_type)
4170 			break;
4171 
4172 		item_end = found_key.offset;
4173 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4174 			fi = btrfs_item_ptr(leaf, path->slots[0],
4175 					    struct btrfs_file_extent_item);
4176 			extent_type = btrfs_file_extent_type(leaf, fi);
4177 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4178 				item_end +=
4179 				    btrfs_file_extent_num_bytes(leaf, fi);
4180 
4181 				trace_btrfs_truncate_show_fi_regular(
4182 					BTRFS_I(inode), leaf, fi,
4183 					found_key.offset);
4184 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4185 				item_end += btrfs_file_extent_ram_bytes(leaf,
4186 									fi);
4187 
4188 				trace_btrfs_truncate_show_fi_inline(
4189 					BTRFS_I(inode), leaf, fi, path->slots[0],
4190 					found_key.offset);
4191 			}
4192 			item_end--;
4193 		}
4194 		if (found_type > min_type) {
4195 			del_item = 1;
4196 		} else {
4197 			if (item_end < new_size)
4198 				break;
4199 			if (found_key.offset >= new_size)
4200 				del_item = 1;
4201 			else
4202 				del_item = 0;
4203 		}
4204 		found_extent = 0;
4205 		/* FIXME, shrink the extent if the ref count is only 1 */
4206 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4207 			goto delete;
4208 
4209 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4210 			u64 num_dec;
4211 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4212 			if (!del_item) {
4213 				u64 orig_num_bytes =
4214 					btrfs_file_extent_num_bytes(leaf, fi);
4215 				extent_num_bytes = ALIGN(new_size -
4216 						found_key.offset,
4217 						fs_info->sectorsize);
4218 				btrfs_set_file_extent_num_bytes(leaf, fi,
4219 							 extent_num_bytes);
4220 				num_dec = (orig_num_bytes -
4221 					   extent_num_bytes);
4222 				if (test_bit(BTRFS_ROOT_REF_COWS,
4223 					     &root->state) &&
4224 				    extent_start != 0)
4225 					inode_sub_bytes(inode, num_dec);
4226 				btrfs_mark_buffer_dirty(leaf);
4227 			} else {
4228 				extent_num_bytes =
4229 					btrfs_file_extent_disk_num_bytes(leaf,
4230 									 fi);
4231 				extent_offset = found_key.offset -
4232 					btrfs_file_extent_offset(leaf, fi);
4233 
4234 				/* FIXME blocksize != 4096 */
4235 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4236 				if (extent_start != 0) {
4237 					found_extent = 1;
4238 					if (test_bit(BTRFS_ROOT_REF_COWS,
4239 						     &root->state))
4240 						inode_sub_bytes(inode, num_dec);
4241 				}
4242 			}
4243 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4244 			/*
4245 			 * we can't truncate inline items that have had
4246 			 * special encodings
4247 			 */
4248 			if (!del_item &&
4249 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4250 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4251 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4252 				u32 size = (u32)(new_size - found_key.offset);
4253 
4254 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4255 				size = btrfs_file_extent_calc_inline_size(size);
4256 				btrfs_truncate_item(path, size, 1);
4257 			} else if (!del_item) {
4258 				/*
4259 				 * We have to bail so the last_size is set to
4260 				 * just before this extent.
4261 				 */
4262 				ret = NEED_TRUNCATE_BLOCK;
4263 				break;
4264 			}
4265 
4266 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4267 				inode_sub_bytes(inode, item_end + 1 - new_size);
4268 		}
4269 delete:
4270 		if (del_item)
4271 			last_size = found_key.offset;
4272 		else
4273 			last_size = new_size;
4274 		if (del_item) {
4275 			if (!pending_del_nr) {
4276 				/* no pending yet, add ourselves */
4277 				pending_del_slot = path->slots[0];
4278 				pending_del_nr = 1;
4279 			} else if (pending_del_nr &&
4280 				   path->slots[0] + 1 == pending_del_slot) {
4281 				/* hop on the pending chunk */
4282 				pending_del_nr++;
4283 				pending_del_slot = path->slots[0];
4284 			} else {
4285 				BUG();
4286 			}
4287 		} else {
4288 			break;
4289 		}
4290 		should_throttle = false;
4291 
4292 		if (found_extent &&
4293 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4294 		     root == fs_info->tree_root)) {
4295 			struct btrfs_ref ref = { 0 };
4296 
4297 			btrfs_set_path_blocking(path);
4298 			bytes_deleted += extent_num_bytes;
4299 
4300 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4301 					extent_start, extent_num_bytes, 0);
4302 			ref.real_root = root->root_key.objectid;
4303 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4304 					ino, extent_offset);
4305 			ret = btrfs_free_extent(trans, &ref);
4306 			if (ret) {
4307 				btrfs_abort_transaction(trans, ret);
4308 				break;
4309 			}
4310 			if (be_nice) {
4311 				if (btrfs_should_throttle_delayed_refs(trans))
4312 					should_throttle = true;
4313 			}
4314 		}
4315 
4316 		if (found_type == BTRFS_INODE_ITEM_KEY)
4317 			break;
4318 
4319 		if (path->slots[0] == 0 ||
4320 		    path->slots[0] != pending_del_slot ||
4321 		    should_throttle) {
4322 			if (pending_del_nr) {
4323 				ret = btrfs_del_items(trans, root, path,
4324 						pending_del_slot,
4325 						pending_del_nr);
4326 				if (ret) {
4327 					btrfs_abort_transaction(trans, ret);
4328 					break;
4329 				}
4330 				pending_del_nr = 0;
4331 			}
4332 			btrfs_release_path(path);
4333 
4334 			/*
4335 			 * We can generate a lot of delayed refs, so we need to
4336 			 * throttle every once and a while and make sure we're
4337 			 * adding enough space to keep up with the work we are
4338 			 * generating.  Since we hold a transaction here we
4339 			 * can't flush, and we don't want to FLUSH_LIMIT because
4340 			 * we could have generated too many delayed refs to
4341 			 * actually allocate, so just bail if we're short and
4342 			 * let the normal reservation dance happen higher up.
4343 			 */
4344 			if (should_throttle) {
4345 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4346 							BTRFS_RESERVE_NO_FLUSH);
4347 				if (ret) {
4348 					ret = -EAGAIN;
4349 					break;
4350 				}
4351 			}
4352 			goto search_again;
4353 		} else {
4354 			path->slots[0]--;
4355 		}
4356 	}
4357 out:
4358 	if (ret >= 0 && pending_del_nr) {
4359 		int err;
4360 
4361 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4362 				      pending_del_nr);
4363 		if (err) {
4364 			btrfs_abort_transaction(trans, err);
4365 			ret = err;
4366 		}
4367 	}
4368 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4369 		ASSERT(last_size >= new_size);
4370 		if (!ret && last_size > new_size)
4371 			last_size = new_size;
4372 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4373 	}
4374 
4375 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4376 			     &cached_state);
4377 
4378 	btrfs_free_path(path);
4379 	return ret;
4380 }
4381 
4382 /*
4383  * btrfs_truncate_block - read, zero a chunk and write a block
4384  * @inode - inode that we're zeroing
4385  * @from - the offset to start zeroing
4386  * @len - the length to zero, 0 to zero the entire range respective to the
4387  *	offset
4388  * @front - zero up to the offset instead of from the offset on
4389  *
4390  * This will find the block for the "from" offset and cow the block and zero the
4391  * part we want to zero.  This is used with truncate and hole punching.
4392  */
4393 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4394 			int front)
4395 {
4396 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4397 	struct address_space *mapping = inode->i_mapping;
4398 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4399 	struct btrfs_ordered_extent *ordered;
4400 	struct extent_state *cached_state = NULL;
4401 	struct extent_changeset *data_reserved = NULL;
4402 	char *kaddr;
4403 	u32 blocksize = fs_info->sectorsize;
4404 	pgoff_t index = from >> PAGE_SHIFT;
4405 	unsigned offset = from & (blocksize - 1);
4406 	struct page *page;
4407 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4408 	int ret = 0;
4409 	u64 block_start;
4410 	u64 block_end;
4411 
4412 	if (IS_ALIGNED(offset, blocksize) &&
4413 	    (!len || IS_ALIGNED(len, blocksize)))
4414 		goto out;
4415 
4416 	block_start = round_down(from, blocksize);
4417 	block_end = block_start + blocksize - 1;
4418 
4419 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4420 					   block_start, blocksize);
4421 	if (ret)
4422 		goto out;
4423 
4424 again:
4425 	page = find_or_create_page(mapping, index, mask);
4426 	if (!page) {
4427 		btrfs_delalloc_release_space(inode, data_reserved,
4428 					     block_start, blocksize, true);
4429 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4430 		ret = -ENOMEM;
4431 		goto out;
4432 	}
4433 
4434 	if (!PageUptodate(page)) {
4435 		ret = btrfs_readpage(NULL, page);
4436 		lock_page(page);
4437 		if (page->mapping != mapping) {
4438 			unlock_page(page);
4439 			put_page(page);
4440 			goto again;
4441 		}
4442 		if (!PageUptodate(page)) {
4443 			ret = -EIO;
4444 			goto out_unlock;
4445 		}
4446 	}
4447 	wait_on_page_writeback(page);
4448 
4449 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4450 	set_page_extent_mapped(page);
4451 
4452 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4453 	if (ordered) {
4454 		unlock_extent_cached(io_tree, block_start, block_end,
4455 				     &cached_state);
4456 		unlock_page(page);
4457 		put_page(page);
4458 		btrfs_start_ordered_extent(inode, ordered, 1);
4459 		btrfs_put_ordered_extent(ordered);
4460 		goto again;
4461 	}
4462 
4463 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4464 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4465 			 0, 0, &cached_state);
4466 
4467 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4468 					&cached_state);
4469 	if (ret) {
4470 		unlock_extent_cached(io_tree, block_start, block_end,
4471 				     &cached_state);
4472 		goto out_unlock;
4473 	}
4474 
4475 	if (offset != blocksize) {
4476 		if (!len)
4477 			len = blocksize - offset;
4478 		kaddr = kmap(page);
4479 		if (front)
4480 			memset(kaddr + (block_start - page_offset(page)),
4481 				0, offset);
4482 		else
4483 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4484 				0, len);
4485 		flush_dcache_page(page);
4486 		kunmap(page);
4487 	}
4488 	ClearPageChecked(page);
4489 	set_page_dirty(page);
4490 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4491 
4492 out_unlock:
4493 	if (ret)
4494 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4495 					     blocksize, true);
4496 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4497 	unlock_page(page);
4498 	put_page(page);
4499 out:
4500 	extent_changeset_free(data_reserved);
4501 	return ret;
4502 }
4503 
4504 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4505 			     u64 offset, u64 len)
4506 {
4507 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4508 	struct btrfs_trans_handle *trans;
4509 	int ret;
4510 
4511 	/*
4512 	 * Still need to make sure the inode looks like it's been updated so
4513 	 * that any holes get logged if we fsync.
4514 	 */
4515 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4516 		BTRFS_I(inode)->last_trans = fs_info->generation;
4517 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4518 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4519 		return 0;
4520 	}
4521 
4522 	/*
4523 	 * 1 - for the one we're dropping
4524 	 * 1 - for the one we're adding
4525 	 * 1 - for updating the inode.
4526 	 */
4527 	trans = btrfs_start_transaction(root, 3);
4528 	if (IS_ERR(trans))
4529 		return PTR_ERR(trans);
4530 
4531 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4532 	if (ret) {
4533 		btrfs_abort_transaction(trans, ret);
4534 		btrfs_end_transaction(trans);
4535 		return ret;
4536 	}
4537 
4538 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4539 			offset, 0, 0, len, 0, len, 0, 0, 0);
4540 	if (ret)
4541 		btrfs_abort_transaction(trans, ret);
4542 	else
4543 		btrfs_update_inode(trans, root, inode);
4544 	btrfs_end_transaction(trans);
4545 	return ret;
4546 }
4547 
4548 /*
4549  * This function puts in dummy file extents for the area we're creating a hole
4550  * for.  So if we are truncating this file to a larger size we need to insert
4551  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4552  * the range between oldsize and size
4553  */
4554 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4555 {
4556 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4557 	struct btrfs_root *root = BTRFS_I(inode)->root;
4558 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4559 	struct extent_map *em = NULL;
4560 	struct extent_state *cached_state = NULL;
4561 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4562 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4563 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4564 	u64 last_byte;
4565 	u64 cur_offset;
4566 	u64 hole_size;
4567 	int err = 0;
4568 
4569 	/*
4570 	 * If our size started in the middle of a block we need to zero out the
4571 	 * rest of the block before we expand the i_size, otherwise we could
4572 	 * expose stale data.
4573 	 */
4574 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4575 	if (err)
4576 		return err;
4577 
4578 	if (size <= hole_start)
4579 		return 0;
4580 
4581 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
4582 					   block_end - 1, &cached_state);
4583 	cur_offset = hole_start;
4584 	while (1) {
4585 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4586 				      block_end - cur_offset);
4587 		if (IS_ERR(em)) {
4588 			err = PTR_ERR(em);
4589 			em = NULL;
4590 			break;
4591 		}
4592 		last_byte = min(extent_map_end(em), block_end);
4593 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4594 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4595 			struct extent_map *hole_em;
4596 			hole_size = last_byte - cur_offset;
4597 
4598 			err = maybe_insert_hole(root, inode, cur_offset,
4599 						hole_size);
4600 			if (err)
4601 				break;
4602 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4603 						cur_offset + hole_size - 1, 0);
4604 			hole_em = alloc_extent_map();
4605 			if (!hole_em) {
4606 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4607 					&BTRFS_I(inode)->runtime_flags);
4608 				goto next;
4609 			}
4610 			hole_em->start = cur_offset;
4611 			hole_em->len = hole_size;
4612 			hole_em->orig_start = cur_offset;
4613 
4614 			hole_em->block_start = EXTENT_MAP_HOLE;
4615 			hole_em->block_len = 0;
4616 			hole_em->orig_block_len = 0;
4617 			hole_em->ram_bytes = hole_size;
4618 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4619 			hole_em->generation = fs_info->generation;
4620 
4621 			while (1) {
4622 				write_lock(&em_tree->lock);
4623 				err = add_extent_mapping(em_tree, hole_em, 1);
4624 				write_unlock(&em_tree->lock);
4625 				if (err != -EEXIST)
4626 					break;
4627 				btrfs_drop_extent_cache(BTRFS_I(inode),
4628 							cur_offset,
4629 							cur_offset +
4630 							hole_size - 1, 0);
4631 			}
4632 			free_extent_map(hole_em);
4633 		}
4634 next:
4635 		free_extent_map(em);
4636 		em = NULL;
4637 		cur_offset = last_byte;
4638 		if (cur_offset >= block_end)
4639 			break;
4640 	}
4641 	free_extent_map(em);
4642 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4643 	return err;
4644 }
4645 
4646 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4647 {
4648 	struct btrfs_root *root = BTRFS_I(inode)->root;
4649 	struct btrfs_trans_handle *trans;
4650 	loff_t oldsize = i_size_read(inode);
4651 	loff_t newsize = attr->ia_size;
4652 	int mask = attr->ia_valid;
4653 	int ret;
4654 
4655 	/*
4656 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4657 	 * special case where we need to update the times despite not having
4658 	 * these flags set.  For all other operations the VFS set these flags
4659 	 * explicitly if it wants a timestamp update.
4660 	 */
4661 	if (newsize != oldsize) {
4662 		inode_inc_iversion(inode);
4663 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4664 			inode->i_ctime = inode->i_mtime =
4665 				current_time(inode);
4666 	}
4667 
4668 	if (newsize > oldsize) {
4669 		/*
4670 		 * Don't do an expanding truncate while snapshotting is ongoing.
4671 		 * This is to ensure the snapshot captures a fully consistent
4672 		 * state of this file - if the snapshot captures this expanding
4673 		 * truncation, it must capture all writes that happened before
4674 		 * this truncation.
4675 		 */
4676 		btrfs_wait_for_snapshot_creation(root);
4677 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4678 		if (ret) {
4679 			btrfs_end_write_no_snapshotting(root);
4680 			return ret;
4681 		}
4682 
4683 		trans = btrfs_start_transaction(root, 1);
4684 		if (IS_ERR(trans)) {
4685 			btrfs_end_write_no_snapshotting(root);
4686 			return PTR_ERR(trans);
4687 		}
4688 
4689 		i_size_write(inode, newsize);
4690 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4691 		pagecache_isize_extended(inode, oldsize, newsize);
4692 		ret = btrfs_update_inode(trans, root, inode);
4693 		btrfs_end_write_no_snapshotting(root);
4694 		btrfs_end_transaction(trans);
4695 	} else {
4696 
4697 		/*
4698 		 * We're truncating a file that used to have good data down to
4699 		 * zero. Make sure it gets into the ordered flush list so that
4700 		 * any new writes get down to disk quickly.
4701 		 */
4702 		if (newsize == 0)
4703 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4704 				&BTRFS_I(inode)->runtime_flags);
4705 
4706 		truncate_setsize(inode, newsize);
4707 
4708 		/* Disable nonlocked read DIO to avoid the endless truncate */
4709 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4710 		inode_dio_wait(inode);
4711 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4712 
4713 		ret = btrfs_truncate(inode, newsize == oldsize);
4714 		if (ret && inode->i_nlink) {
4715 			int err;
4716 
4717 			/*
4718 			 * Truncate failed, so fix up the in-memory size. We
4719 			 * adjusted disk_i_size down as we removed extents, so
4720 			 * wait for disk_i_size to be stable and then update the
4721 			 * in-memory size to match.
4722 			 */
4723 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4724 			if (err)
4725 				return err;
4726 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4727 		}
4728 	}
4729 
4730 	return ret;
4731 }
4732 
4733 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4734 {
4735 	struct inode *inode = d_inode(dentry);
4736 	struct btrfs_root *root = BTRFS_I(inode)->root;
4737 	int err;
4738 
4739 	if (btrfs_root_readonly(root))
4740 		return -EROFS;
4741 
4742 	err = setattr_prepare(dentry, attr);
4743 	if (err)
4744 		return err;
4745 
4746 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4747 		err = btrfs_setsize(inode, attr);
4748 		if (err)
4749 			return err;
4750 	}
4751 
4752 	if (attr->ia_valid) {
4753 		setattr_copy(inode, attr);
4754 		inode_inc_iversion(inode);
4755 		err = btrfs_dirty_inode(inode);
4756 
4757 		if (!err && attr->ia_valid & ATTR_MODE)
4758 			err = posix_acl_chmod(inode, inode->i_mode);
4759 	}
4760 
4761 	return err;
4762 }
4763 
4764 /*
4765  * While truncating the inode pages during eviction, we get the VFS calling
4766  * btrfs_invalidatepage() against each page of the inode. This is slow because
4767  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4768  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4769  * extent_state structures over and over, wasting lots of time.
4770  *
4771  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4772  * those expensive operations on a per page basis and do only the ordered io
4773  * finishing, while we release here the extent_map and extent_state structures,
4774  * without the excessive merging and splitting.
4775  */
4776 static void evict_inode_truncate_pages(struct inode *inode)
4777 {
4778 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4779 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4780 	struct rb_node *node;
4781 
4782 	ASSERT(inode->i_state & I_FREEING);
4783 	truncate_inode_pages_final(&inode->i_data);
4784 
4785 	write_lock(&map_tree->lock);
4786 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4787 		struct extent_map *em;
4788 
4789 		node = rb_first_cached(&map_tree->map);
4790 		em = rb_entry(node, struct extent_map, rb_node);
4791 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4792 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4793 		remove_extent_mapping(map_tree, em);
4794 		free_extent_map(em);
4795 		if (need_resched()) {
4796 			write_unlock(&map_tree->lock);
4797 			cond_resched();
4798 			write_lock(&map_tree->lock);
4799 		}
4800 	}
4801 	write_unlock(&map_tree->lock);
4802 
4803 	/*
4804 	 * Keep looping until we have no more ranges in the io tree.
4805 	 * We can have ongoing bios started by readpages (called from readahead)
4806 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
4807 	 * still in progress (unlocked the pages in the bio but did not yet
4808 	 * unlocked the ranges in the io tree). Therefore this means some
4809 	 * ranges can still be locked and eviction started because before
4810 	 * submitting those bios, which are executed by a separate task (work
4811 	 * queue kthread), inode references (inode->i_count) were not taken
4812 	 * (which would be dropped in the end io callback of each bio).
4813 	 * Therefore here we effectively end up waiting for those bios and
4814 	 * anyone else holding locked ranges without having bumped the inode's
4815 	 * reference count - if we don't do it, when they access the inode's
4816 	 * io_tree to unlock a range it may be too late, leading to an
4817 	 * use-after-free issue.
4818 	 */
4819 	spin_lock(&io_tree->lock);
4820 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4821 		struct extent_state *state;
4822 		struct extent_state *cached_state = NULL;
4823 		u64 start;
4824 		u64 end;
4825 		unsigned state_flags;
4826 
4827 		node = rb_first(&io_tree->state);
4828 		state = rb_entry(node, struct extent_state, rb_node);
4829 		start = state->start;
4830 		end = state->end;
4831 		state_flags = state->state;
4832 		spin_unlock(&io_tree->lock);
4833 
4834 		lock_extent_bits(io_tree, start, end, &cached_state);
4835 
4836 		/*
4837 		 * If still has DELALLOC flag, the extent didn't reach disk,
4838 		 * and its reserved space won't be freed by delayed_ref.
4839 		 * So we need to free its reserved space here.
4840 		 * (Refer to comment in btrfs_invalidatepage, case 2)
4841 		 *
4842 		 * Note, end is the bytenr of last byte, so we need + 1 here.
4843 		 */
4844 		if (state_flags & EXTENT_DELALLOC)
4845 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
4846 
4847 		clear_extent_bit(io_tree, start, end,
4848 				 EXTENT_LOCKED | EXTENT_DELALLOC |
4849 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4850 				 &cached_state);
4851 
4852 		cond_resched();
4853 		spin_lock(&io_tree->lock);
4854 	}
4855 	spin_unlock(&io_tree->lock);
4856 }
4857 
4858 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
4859 							struct btrfs_block_rsv *rsv)
4860 {
4861 	struct btrfs_fs_info *fs_info = root->fs_info;
4862 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4863 	struct btrfs_trans_handle *trans;
4864 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
4865 	int ret;
4866 
4867 	/*
4868 	 * Eviction should be taking place at some place safe because of our
4869 	 * delayed iputs.  However the normal flushing code will run delayed
4870 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
4871 	 *
4872 	 * We reserve the delayed_refs_extra here again because we can't use
4873 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
4874 	 * above.  We reserve our extra bit here because we generate a ton of
4875 	 * delayed refs activity by truncating.
4876 	 *
4877 	 * If we cannot make our reservation we'll attempt to steal from the
4878 	 * global reserve, because we really want to be able to free up space.
4879 	 */
4880 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
4881 				     BTRFS_RESERVE_FLUSH_EVICT);
4882 	if (ret) {
4883 		/*
4884 		 * Try to steal from the global reserve if there is space for
4885 		 * it.
4886 		 */
4887 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
4888 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
4889 			btrfs_warn(fs_info,
4890 				   "could not allocate space for delete; will truncate on mount");
4891 			return ERR_PTR(-ENOSPC);
4892 		}
4893 		delayed_refs_extra = 0;
4894 	}
4895 
4896 	trans = btrfs_join_transaction(root);
4897 	if (IS_ERR(trans))
4898 		return trans;
4899 
4900 	if (delayed_refs_extra) {
4901 		trans->block_rsv = &fs_info->trans_block_rsv;
4902 		trans->bytes_reserved = delayed_refs_extra;
4903 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
4904 					delayed_refs_extra, 1);
4905 	}
4906 	return trans;
4907 }
4908 
4909 void btrfs_evict_inode(struct inode *inode)
4910 {
4911 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4912 	struct btrfs_trans_handle *trans;
4913 	struct btrfs_root *root = BTRFS_I(inode)->root;
4914 	struct btrfs_block_rsv *rsv;
4915 	int ret;
4916 
4917 	trace_btrfs_inode_evict(inode);
4918 
4919 	if (!root) {
4920 		clear_inode(inode);
4921 		return;
4922 	}
4923 
4924 	evict_inode_truncate_pages(inode);
4925 
4926 	if (inode->i_nlink &&
4927 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4928 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4929 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
4930 		goto no_delete;
4931 
4932 	if (is_bad_inode(inode))
4933 		goto no_delete;
4934 
4935 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
4936 
4937 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
4938 		goto no_delete;
4939 
4940 	if (inode->i_nlink > 0) {
4941 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4942 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4943 		goto no_delete;
4944 	}
4945 
4946 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
4947 	if (ret)
4948 		goto no_delete;
4949 
4950 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4951 	if (!rsv)
4952 		goto no_delete;
4953 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
4954 	rsv->failfast = 1;
4955 
4956 	btrfs_i_size_write(BTRFS_I(inode), 0);
4957 
4958 	while (1) {
4959 		trans = evict_refill_and_join(root, rsv);
4960 		if (IS_ERR(trans))
4961 			goto free_rsv;
4962 
4963 		trans->block_rsv = rsv;
4964 
4965 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4966 		trans->block_rsv = &fs_info->trans_block_rsv;
4967 		btrfs_end_transaction(trans);
4968 		btrfs_btree_balance_dirty(fs_info);
4969 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
4970 			goto free_rsv;
4971 		else if (!ret)
4972 			break;
4973 	}
4974 
4975 	/*
4976 	 * Errors here aren't a big deal, it just means we leave orphan items in
4977 	 * the tree. They will be cleaned up on the next mount. If the inode
4978 	 * number gets reused, cleanup deletes the orphan item without doing
4979 	 * anything, and unlink reuses the existing orphan item.
4980 	 *
4981 	 * If it turns out that we are dropping too many of these, we might want
4982 	 * to add a mechanism for retrying these after a commit.
4983 	 */
4984 	trans = evict_refill_and_join(root, rsv);
4985 	if (!IS_ERR(trans)) {
4986 		trans->block_rsv = rsv;
4987 		btrfs_orphan_del(trans, BTRFS_I(inode));
4988 		trans->block_rsv = &fs_info->trans_block_rsv;
4989 		btrfs_end_transaction(trans);
4990 	}
4991 
4992 	if (!(root == fs_info->tree_root ||
4993 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4994 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
4995 
4996 free_rsv:
4997 	btrfs_free_block_rsv(fs_info, rsv);
4998 no_delete:
4999 	/*
5000 	 * If we didn't successfully delete, the orphan item will still be in
5001 	 * the tree and we'll retry on the next mount. Again, we might also want
5002 	 * to retry these periodically in the future.
5003 	 */
5004 	btrfs_remove_delayed_node(BTRFS_I(inode));
5005 	clear_inode(inode);
5006 }
5007 
5008 /*
5009  * Return the key found in the dir entry in the location pointer, fill @type
5010  * with BTRFS_FT_*, and return 0.
5011  *
5012  * If no dir entries were found, returns -ENOENT.
5013  * If found a corrupted location in dir entry, returns -EUCLEAN.
5014  */
5015 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5016 			       struct btrfs_key *location, u8 *type)
5017 {
5018 	const char *name = dentry->d_name.name;
5019 	int namelen = dentry->d_name.len;
5020 	struct btrfs_dir_item *di;
5021 	struct btrfs_path *path;
5022 	struct btrfs_root *root = BTRFS_I(dir)->root;
5023 	int ret = 0;
5024 
5025 	path = btrfs_alloc_path();
5026 	if (!path)
5027 		return -ENOMEM;
5028 
5029 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5030 			name, namelen, 0);
5031 	if (IS_ERR_OR_NULL(di)) {
5032 		ret = di ? PTR_ERR(di) : -ENOENT;
5033 		goto out;
5034 	}
5035 
5036 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5037 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5038 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5039 		ret = -EUCLEAN;
5040 		btrfs_warn(root->fs_info,
5041 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5042 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5043 			   location->objectid, location->type, location->offset);
5044 	}
5045 	if (!ret)
5046 		*type = btrfs_dir_type(path->nodes[0], di);
5047 out:
5048 	btrfs_free_path(path);
5049 	return ret;
5050 }
5051 
5052 /*
5053  * when we hit a tree root in a directory, the btrfs part of the inode
5054  * needs to be changed to reflect the root directory of the tree root.  This
5055  * is kind of like crossing a mount point.
5056  */
5057 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5058 				    struct inode *dir,
5059 				    struct dentry *dentry,
5060 				    struct btrfs_key *location,
5061 				    struct btrfs_root **sub_root)
5062 {
5063 	struct btrfs_path *path;
5064 	struct btrfs_root *new_root;
5065 	struct btrfs_root_ref *ref;
5066 	struct extent_buffer *leaf;
5067 	struct btrfs_key key;
5068 	int ret;
5069 	int err = 0;
5070 
5071 	path = btrfs_alloc_path();
5072 	if (!path) {
5073 		err = -ENOMEM;
5074 		goto out;
5075 	}
5076 
5077 	err = -ENOENT;
5078 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5079 	key.type = BTRFS_ROOT_REF_KEY;
5080 	key.offset = location->objectid;
5081 
5082 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5083 	if (ret) {
5084 		if (ret < 0)
5085 			err = ret;
5086 		goto out;
5087 	}
5088 
5089 	leaf = path->nodes[0];
5090 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5091 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5092 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5093 		goto out;
5094 
5095 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5096 				   (unsigned long)(ref + 1),
5097 				   dentry->d_name.len);
5098 	if (ret)
5099 		goto out;
5100 
5101 	btrfs_release_path(path);
5102 
5103 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5104 	if (IS_ERR(new_root)) {
5105 		err = PTR_ERR(new_root);
5106 		goto out;
5107 	}
5108 
5109 	*sub_root = new_root;
5110 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5111 	location->type = BTRFS_INODE_ITEM_KEY;
5112 	location->offset = 0;
5113 	err = 0;
5114 out:
5115 	btrfs_free_path(path);
5116 	return err;
5117 }
5118 
5119 static void inode_tree_add(struct inode *inode)
5120 {
5121 	struct btrfs_root *root = BTRFS_I(inode)->root;
5122 	struct btrfs_inode *entry;
5123 	struct rb_node **p;
5124 	struct rb_node *parent;
5125 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5126 	u64 ino = btrfs_ino(BTRFS_I(inode));
5127 
5128 	if (inode_unhashed(inode))
5129 		return;
5130 	parent = NULL;
5131 	spin_lock(&root->inode_lock);
5132 	p = &root->inode_tree.rb_node;
5133 	while (*p) {
5134 		parent = *p;
5135 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5136 
5137 		if (ino < btrfs_ino(entry))
5138 			p = &parent->rb_left;
5139 		else if (ino > btrfs_ino(entry))
5140 			p = &parent->rb_right;
5141 		else {
5142 			WARN_ON(!(entry->vfs_inode.i_state &
5143 				  (I_WILL_FREE | I_FREEING)));
5144 			rb_replace_node(parent, new, &root->inode_tree);
5145 			RB_CLEAR_NODE(parent);
5146 			spin_unlock(&root->inode_lock);
5147 			return;
5148 		}
5149 	}
5150 	rb_link_node(new, parent, p);
5151 	rb_insert_color(new, &root->inode_tree);
5152 	spin_unlock(&root->inode_lock);
5153 }
5154 
5155 static void inode_tree_del(struct inode *inode)
5156 {
5157 	struct btrfs_root *root = BTRFS_I(inode)->root;
5158 	int empty = 0;
5159 
5160 	spin_lock(&root->inode_lock);
5161 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5162 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5163 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5164 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5165 	}
5166 	spin_unlock(&root->inode_lock);
5167 
5168 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5169 		spin_lock(&root->inode_lock);
5170 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5171 		spin_unlock(&root->inode_lock);
5172 		if (empty)
5173 			btrfs_add_dead_root(root);
5174 	}
5175 }
5176 
5177 
5178 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5179 {
5180 	struct btrfs_iget_args *args = p;
5181 	inode->i_ino = args->location->objectid;
5182 	memcpy(&BTRFS_I(inode)->location, args->location,
5183 	       sizeof(*args->location));
5184 	BTRFS_I(inode)->root = args->root;
5185 	return 0;
5186 }
5187 
5188 static int btrfs_find_actor(struct inode *inode, void *opaque)
5189 {
5190 	struct btrfs_iget_args *args = opaque;
5191 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5192 		args->root == BTRFS_I(inode)->root;
5193 }
5194 
5195 static struct inode *btrfs_iget_locked(struct super_block *s,
5196 				       struct btrfs_key *location,
5197 				       struct btrfs_root *root)
5198 {
5199 	struct inode *inode;
5200 	struct btrfs_iget_args args;
5201 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5202 
5203 	args.location = location;
5204 	args.root = root;
5205 
5206 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5207 			     btrfs_init_locked_inode,
5208 			     (void *)&args);
5209 	return inode;
5210 }
5211 
5212 /*
5213  * Get an inode object given its location and corresponding root.
5214  * Path can be preallocated to prevent recursing back to iget through
5215  * allocator. NULL is also valid but may require an additional allocation
5216  * later.
5217  */
5218 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5219 			      struct btrfs_root *root, struct btrfs_path *path)
5220 {
5221 	struct inode *inode;
5222 
5223 	inode = btrfs_iget_locked(s, location, root);
5224 	if (!inode)
5225 		return ERR_PTR(-ENOMEM);
5226 
5227 	if (inode->i_state & I_NEW) {
5228 		int ret;
5229 
5230 		ret = btrfs_read_locked_inode(inode, path);
5231 		if (!ret) {
5232 			inode_tree_add(inode);
5233 			unlock_new_inode(inode);
5234 		} else {
5235 			iget_failed(inode);
5236 			/*
5237 			 * ret > 0 can come from btrfs_search_slot called by
5238 			 * btrfs_read_locked_inode, this means the inode item
5239 			 * was not found.
5240 			 */
5241 			if (ret > 0)
5242 				ret = -ENOENT;
5243 			inode = ERR_PTR(ret);
5244 		}
5245 	}
5246 
5247 	return inode;
5248 }
5249 
5250 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5251 			 struct btrfs_root *root)
5252 {
5253 	return btrfs_iget_path(s, location, root, NULL);
5254 }
5255 
5256 static struct inode *new_simple_dir(struct super_block *s,
5257 				    struct btrfs_key *key,
5258 				    struct btrfs_root *root)
5259 {
5260 	struct inode *inode = new_inode(s);
5261 
5262 	if (!inode)
5263 		return ERR_PTR(-ENOMEM);
5264 
5265 	BTRFS_I(inode)->root = root;
5266 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5267 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5268 
5269 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5270 	/*
5271 	 * We only need lookup, the rest is read-only and there's no inode
5272 	 * associated with the dentry
5273 	 */
5274 	inode->i_op = &simple_dir_inode_operations;
5275 	inode->i_opflags &= ~IOP_XATTR;
5276 	inode->i_fop = &simple_dir_operations;
5277 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5278 	inode->i_mtime = current_time(inode);
5279 	inode->i_atime = inode->i_mtime;
5280 	inode->i_ctime = inode->i_mtime;
5281 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5282 
5283 	return inode;
5284 }
5285 
5286 static inline u8 btrfs_inode_type(struct inode *inode)
5287 {
5288 	/*
5289 	 * Compile-time asserts that generic FT_* types still match
5290 	 * BTRFS_FT_* types
5291 	 */
5292 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5293 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5294 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5295 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5296 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5297 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5298 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5299 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5300 
5301 	return fs_umode_to_ftype(inode->i_mode);
5302 }
5303 
5304 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5305 {
5306 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5307 	struct inode *inode;
5308 	struct btrfs_root *root = BTRFS_I(dir)->root;
5309 	struct btrfs_root *sub_root = root;
5310 	struct btrfs_key location;
5311 	u8 di_type = 0;
5312 	int index;
5313 	int ret = 0;
5314 
5315 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5316 		return ERR_PTR(-ENAMETOOLONG);
5317 
5318 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5319 	if (ret < 0)
5320 		return ERR_PTR(ret);
5321 
5322 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5323 		inode = btrfs_iget(dir->i_sb, &location, root);
5324 		if (IS_ERR(inode))
5325 			return inode;
5326 
5327 		/* Do extra check against inode mode with di_type */
5328 		if (btrfs_inode_type(inode) != di_type) {
5329 			btrfs_crit(fs_info,
5330 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5331 				  inode->i_mode, btrfs_inode_type(inode),
5332 				  di_type);
5333 			iput(inode);
5334 			return ERR_PTR(-EUCLEAN);
5335 		}
5336 		return inode;
5337 	}
5338 
5339 	index = srcu_read_lock(&fs_info->subvol_srcu);
5340 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5341 				       &location, &sub_root);
5342 	if (ret < 0) {
5343 		if (ret != -ENOENT)
5344 			inode = ERR_PTR(ret);
5345 		else
5346 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5347 	} else {
5348 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
5349 	}
5350 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5351 
5352 	if (!IS_ERR(inode) && root != sub_root) {
5353 		down_read(&fs_info->cleanup_work_sem);
5354 		if (!sb_rdonly(inode->i_sb))
5355 			ret = btrfs_orphan_cleanup(sub_root);
5356 		up_read(&fs_info->cleanup_work_sem);
5357 		if (ret) {
5358 			iput(inode);
5359 			inode = ERR_PTR(ret);
5360 		}
5361 	}
5362 
5363 	return inode;
5364 }
5365 
5366 static int btrfs_dentry_delete(const struct dentry *dentry)
5367 {
5368 	struct btrfs_root *root;
5369 	struct inode *inode = d_inode(dentry);
5370 
5371 	if (!inode && !IS_ROOT(dentry))
5372 		inode = d_inode(dentry->d_parent);
5373 
5374 	if (inode) {
5375 		root = BTRFS_I(inode)->root;
5376 		if (btrfs_root_refs(&root->root_item) == 0)
5377 			return 1;
5378 
5379 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5380 			return 1;
5381 	}
5382 	return 0;
5383 }
5384 
5385 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5386 				   unsigned int flags)
5387 {
5388 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5389 
5390 	if (inode == ERR_PTR(-ENOENT))
5391 		inode = NULL;
5392 	return d_splice_alias(inode, dentry);
5393 }
5394 
5395 /*
5396  * All this infrastructure exists because dir_emit can fault, and we are holding
5397  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5398  * our information into that, and then dir_emit from the buffer.  This is
5399  * similar to what NFS does, only we don't keep the buffer around in pagecache
5400  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5401  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5402  * tree lock.
5403  */
5404 static int btrfs_opendir(struct inode *inode, struct file *file)
5405 {
5406 	struct btrfs_file_private *private;
5407 
5408 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5409 	if (!private)
5410 		return -ENOMEM;
5411 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5412 	if (!private->filldir_buf) {
5413 		kfree(private);
5414 		return -ENOMEM;
5415 	}
5416 	file->private_data = private;
5417 	return 0;
5418 }
5419 
5420 struct dir_entry {
5421 	u64 ino;
5422 	u64 offset;
5423 	unsigned type;
5424 	int name_len;
5425 };
5426 
5427 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5428 {
5429 	while (entries--) {
5430 		struct dir_entry *entry = addr;
5431 		char *name = (char *)(entry + 1);
5432 
5433 		ctx->pos = get_unaligned(&entry->offset);
5434 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5435 					 get_unaligned(&entry->ino),
5436 					 get_unaligned(&entry->type)))
5437 			return 1;
5438 		addr += sizeof(struct dir_entry) +
5439 			get_unaligned(&entry->name_len);
5440 		ctx->pos++;
5441 	}
5442 	return 0;
5443 }
5444 
5445 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5446 {
5447 	struct inode *inode = file_inode(file);
5448 	struct btrfs_root *root = BTRFS_I(inode)->root;
5449 	struct btrfs_file_private *private = file->private_data;
5450 	struct btrfs_dir_item *di;
5451 	struct btrfs_key key;
5452 	struct btrfs_key found_key;
5453 	struct btrfs_path *path;
5454 	void *addr;
5455 	struct list_head ins_list;
5456 	struct list_head del_list;
5457 	int ret;
5458 	struct extent_buffer *leaf;
5459 	int slot;
5460 	char *name_ptr;
5461 	int name_len;
5462 	int entries = 0;
5463 	int total_len = 0;
5464 	bool put = false;
5465 	struct btrfs_key location;
5466 
5467 	if (!dir_emit_dots(file, ctx))
5468 		return 0;
5469 
5470 	path = btrfs_alloc_path();
5471 	if (!path)
5472 		return -ENOMEM;
5473 
5474 	addr = private->filldir_buf;
5475 	path->reada = READA_FORWARD;
5476 
5477 	INIT_LIST_HEAD(&ins_list);
5478 	INIT_LIST_HEAD(&del_list);
5479 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5480 
5481 again:
5482 	key.type = BTRFS_DIR_INDEX_KEY;
5483 	key.offset = ctx->pos;
5484 	key.objectid = btrfs_ino(BTRFS_I(inode));
5485 
5486 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5487 	if (ret < 0)
5488 		goto err;
5489 
5490 	while (1) {
5491 		struct dir_entry *entry;
5492 
5493 		leaf = path->nodes[0];
5494 		slot = path->slots[0];
5495 		if (slot >= btrfs_header_nritems(leaf)) {
5496 			ret = btrfs_next_leaf(root, path);
5497 			if (ret < 0)
5498 				goto err;
5499 			else if (ret > 0)
5500 				break;
5501 			continue;
5502 		}
5503 
5504 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5505 
5506 		if (found_key.objectid != key.objectid)
5507 			break;
5508 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5509 			break;
5510 		if (found_key.offset < ctx->pos)
5511 			goto next;
5512 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5513 			goto next;
5514 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5515 		name_len = btrfs_dir_name_len(leaf, di);
5516 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5517 		    PAGE_SIZE) {
5518 			btrfs_release_path(path);
5519 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5520 			if (ret)
5521 				goto nopos;
5522 			addr = private->filldir_buf;
5523 			entries = 0;
5524 			total_len = 0;
5525 			goto again;
5526 		}
5527 
5528 		entry = addr;
5529 		put_unaligned(name_len, &entry->name_len);
5530 		name_ptr = (char *)(entry + 1);
5531 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5532 				   name_len);
5533 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5534 				&entry->type);
5535 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5536 		put_unaligned(location.objectid, &entry->ino);
5537 		put_unaligned(found_key.offset, &entry->offset);
5538 		entries++;
5539 		addr += sizeof(struct dir_entry) + name_len;
5540 		total_len += sizeof(struct dir_entry) + name_len;
5541 next:
5542 		path->slots[0]++;
5543 	}
5544 	btrfs_release_path(path);
5545 
5546 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5547 	if (ret)
5548 		goto nopos;
5549 
5550 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5551 	if (ret)
5552 		goto nopos;
5553 
5554 	/*
5555 	 * Stop new entries from being returned after we return the last
5556 	 * entry.
5557 	 *
5558 	 * New directory entries are assigned a strictly increasing
5559 	 * offset.  This means that new entries created during readdir
5560 	 * are *guaranteed* to be seen in the future by that readdir.
5561 	 * This has broken buggy programs which operate on names as
5562 	 * they're returned by readdir.  Until we re-use freed offsets
5563 	 * we have this hack to stop new entries from being returned
5564 	 * under the assumption that they'll never reach this huge
5565 	 * offset.
5566 	 *
5567 	 * This is being careful not to overflow 32bit loff_t unless the
5568 	 * last entry requires it because doing so has broken 32bit apps
5569 	 * in the past.
5570 	 */
5571 	if (ctx->pos >= INT_MAX)
5572 		ctx->pos = LLONG_MAX;
5573 	else
5574 		ctx->pos = INT_MAX;
5575 nopos:
5576 	ret = 0;
5577 err:
5578 	if (put)
5579 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5580 	btrfs_free_path(path);
5581 	return ret;
5582 }
5583 
5584 /*
5585  * This is somewhat expensive, updating the tree every time the
5586  * inode changes.  But, it is most likely to find the inode in cache.
5587  * FIXME, needs more benchmarking...there are no reasons other than performance
5588  * to keep or drop this code.
5589  */
5590 static int btrfs_dirty_inode(struct inode *inode)
5591 {
5592 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5593 	struct btrfs_root *root = BTRFS_I(inode)->root;
5594 	struct btrfs_trans_handle *trans;
5595 	int ret;
5596 
5597 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5598 		return 0;
5599 
5600 	trans = btrfs_join_transaction(root);
5601 	if (IS_ERR(trans))
5602 		return PTR_ERR(trans);
5603 
5604 	ret = btrfs_update_inode(trans, root, inode);
5605 	if (ret && ret == -ENOSPC) {
5606 		/* whoops, lets try again with the full transaction */
5607 		btrfs_end_transaction(trans);
5608 		trans = btrfs_start_transaction(root, 1);
5609 		if (IS_ERR(trans))
5610 			return PTR_ERR(trans);
5611 
5612 		ret = btrfs_update_inode(trans, root, inode);
5613 	}
5614 	btrfs_end_transaction(trans);
5615 	if (BTRFS_I(inode)->delayed_node)
5616 		btrfs_balance_delayed_items(fs_info);
5617 
5618 	return ret;
5619 }
5620 
5621 /*
5622  * This is a copy of file_update_time.  We need this so we can return error on
5623  * ENOSPC for updating the inode in the case of file write and mmap writes.
5624  */
5625 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5626 			     int flags)
5627 {
5628 	struct btrfs_root *root = BTRFS_I(inode)->root;
5629 	bool dirty = flags & ~S_VERSION;
5630 
5631 	if (btrfs_root_readonly(root))
5632 		return -EROFS;
5633 
5634 	if (flags & S_VERSION)
5635 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5636 	if (flags & S_CTIME)
5637 		inode->i_ctime = *now;
5638 	if (flags & S_MTIME)
5639 		inode->i_mtime = *now;
5640 	if (flags & S_ATIME)
5641 		inode->i_atime = *now;
5642 	return dirty ? btrfs_dirty_inode(inode) : 0;
5643 }
5644 
5645 /*
5646  * find the highest existing sequence number in a directory
5647  * and then set the in-memory index_cnt variable to reflect
5648  * free sequence numbers
5649  */
5650 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5651 {
5652 	struct btrfs_root *root = inode->root;
5653 	struct btrfs_key key, found_key;
5654 	struct btrfs_path *path;
5655 	struct extent_buffer *leaf;
5656 	int ret;
5657 
5658 	key.objectid = btrfs_ino(inode);
5659 	key.type = BTRFS_DIR_INDEX_KEY;
5660 	key.offset = (u64)-1;
5661 
5662 	path = btrfs_alloc_path();
5663 	if (!path)
5664 		return -ENOMEM;
5665 
5666 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5667 	if (ret < 0)
5668 		goto out;
5669 	/* FIXME: we should be able to handle this */
5670 	if (ret == 0)
5671 		goto out;
5672 	ret = 0;
5673 
5674 	/*
5675 	 * MAGIC NUMBER EXPLANATION:
5676 	 * since we search a directory based on f_pos we have to start at 2
5677 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5678 	 * else has to start at 2
5679 	 */
5680 	if (path->slots[0] == 0) {
5681 		inode->index_cnt = 2;
5682 		goto out;
5683 	}
5684 
5685 	path->slots[0]--;
5686 
5687 	leaf = path->nodes[0];
5688 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5689 
5690 	if (found_key.objectid != btrfs_ino(inode) ||
5691 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5692 		inode->index_cnt = 2;
5693 		goto out;
5694 	}
5695 
5696 	inode->index_cnt = found_key.offset + 1;
5697 out:
5698 	btrfs_free_path(path);
5699 	return ret;
5700 }
5701 
5702 /*
5703  * helper to find a free sequence number in a given directory.  This current
5704  * code is very simple, later versions will do smarter things in the btree
5705  */
5706 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5707 {
5708 	int ret = 0;
5709 
5710 	if (dir->index_cnt == (u64)-1) {
5711 		ret = btrfs_inode_delayed_dir_index_count(dir);
5712 		if (ret) {
5713 			ret = btrfs_set_inode_index_count(dir);
5714 			if (ret)
5715 				return ret;
5716 		}
5717 	}
5718 
5719 	*index = dir->index_cnt;
5720 	dir->index_cnt++;
5721 
5722 	return ret;
5723 }
5724 
5725 static int btrfs_insert_inode_locked(struct inode *inode)
5726 {
5727 	struct btrfs_iget_args args;
5728 	args.location = &BTRFS_I(inode)->location;
5729 	args.root = BTRFS_I(inode)->root;
5730 
5731 	return insert_inode_locked4(inode,
5732 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5733 		   btrfs_find_actor, &args);
5734 }
5735 
5736 /*
5737  * Inherit flags from the parent inode.
5738  *
5739  * Currently only the compression flags and the cow flags are inherited.
5740  */
5741 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5742 {
5743 	unsigned int flags;
5744 
5745 	if (!dir)
5746 		return;
5747 
5748 	flags = BTRFS_I(dir)->flags;
5749 
5750 	if (flags & BTRFS_INODE_NOCOMPRESS) {
5751 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5752 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5753 	} else if (flags & BTRFS_INODE_COMPRESS) {
5754 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5755 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5756 	}
5757 
5758 	if (flags & BTRFS_INODE_NODATACOW) {
5759 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5760 		if (S_ISREG(inode->i_mode))
5761 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5762 	}
5763 
5764 	btrfs_sync_inode_flags_to_i_flags(inode);
5765 }
5766 
5767 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5768 				     struct btrfs_root *root,
5769 				     struct inode *dir,
5770 				     const char *name, int name_len,
5771 				     u64 ref_objectid, u64 objectid,
5772 				     umode_t mode, u64 *index)
5773 {
5774 	struct btrfs_fs_info *fs_info = root->fs_info;
5775 	struct inode *inode;
5776 	struct btrfs_inode_item *inode_item;
5777 	struct btrfs_key *location;
5778 	struct btrfs_path *path;
5779 	struct btrfs_inode_ref *ref;
5780 	struct btrfs_key key[2];
5781 	u32 sizes[2];
5782 	int nitems = name ? 2 : 1;
5783 	unsigned long ptr;
5784 	unsigned int nofs_flag;
5785 	int ret;
5786 
5787 	path = btrfs_alloc_path();
5788 	if (!path)
5789 		return ERR_PTR(-ENOMEM);
5790 
5791 	nofs_flag = memalloc_nofs_save();
5792 	inode = new_inode(fs_info->sb);
5793 	memalloc_nofs_restore(nofs_flag);
5794 	if (!inode) {
5795 		btrfs_free_path(path);
5796 		return ERR_PTR(-ENOMEM);
5797 	}
5798 
5799 	/*
5800 	 * O_TMPFILE, set link count to 0, so that after this point,
5801 	 * we fill in an inode item with the correct link count.
5802 	 */
5803 	if (!name)
5804 		set_nlink(inode, 0);
5805 
5806 	/*
5807 	 * we have to initialize this early, so we can reclaim the inode
5808 	 * number if we fail afterwards in this function.
5809 	 */
5810 	inode->i_ino = objectid;
5811 
5812 	if (dir && name) {
5813 		trace_btrfs_inode_request(dir);
5814 
5815 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5816 		if (ret) {
5817 			btrfs_free_path(path);
5818 			iput(inode);
5819 			return ERR_PTR(ret);
5820 		}
5821 	} else if (dir) {
5822 		*index = 0;
5823 	}
5824 	/*
5825 	 * index_cnt is ignored for everything but a dir,
5826 	 * btrfs_set_inode_index_count has an explanation for the magic
5827 	 * number
5828 	 */
5829 	BTRFS_I(inode)->index_cnt = 2;
5830 	BTRFS_I(inode)->dir_index = *index;
5831 	BTRFS_I(inode)->root = root;
5832 	BTRFS_I(inode)->generation = trans->transid;
5833 	inode->i_generation = BTRFS_I(inode)->generation;
5834 
5835 	/*
5836 	 * We could have gotten an inode number from somebody who was fsynced
5837 	 * and then removed in this same transaction, so let's just set full
5838 	 * sync since it will be a full sync anyway and this will blow away the
5839 	 * old info in the log.
5840 	 */
5841 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5842 
5843 	key[0].objectid = objectid;
5844 	key[0].type = BTRFS_INODE_ITEM_KEY;
5845 	key[0].offset = 0;
5846 
5847 	sizes[0] = sizeof(struct btrfs_inode_item);
5848 
5849 	if (name) {
5850 		/*
5851 		 * Start new inodes with an inode_ref. This is slightly more
5852 		 * efficient for small numbers of hard links since they will
5853 		 * be packed into one item. Extended refs will kick in if we
5854 		 * add more hard links than can fit in the ref item.
5855 		 */
5856 		key[1].objectid = objectid;
5857 		key[1].type = BTRFS_INODE_REF_KEY;
5858 		key[1].offset = ref_objectid;
5859 
5860 		sizes[1] = name_len + sizeof(*ref);
5861 	}
5862 
5863 	location = &BTRFS_I(inode)->location;
5864 	location->objectid = objectid;
5865 	location->offset = 0;
5866 	location->type = BTRFS_INODE_ITEM_KEY;
5867 
5868 	ret = btrfs_insert_inode_locked(inode);
5869 	if (ret < 0) {
5870 		iput(inode);
5871 		goto fail;
5872 	}
5873 
5874 	path->leave_spinning = 1;
5875 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5876 	if (ret != 0)
5877 		goto fail_unlock;
5878 
5879 	inode_init_owner(inode, dir, mode);
5880 	inode_set_bytes(inode, 0);
5881 
5882 	inode->i_mtime = current_time(inode);
5883 	inode->i_atime = inode->i_mtime;
5884 	inode->i_ctime = inode->i_mtime;
5885 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5886 
5887 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5888 				  struct btrfs_inode_item);
5889 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
5890 			     sizeof(*inode_item));
5891 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5892 
5893 	if (name) {
5894 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5895 				     struct btrfs_inode_ref);
5896 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5897 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5898 		ptr = (unsigned long)(ref + 1);
5899 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
5900 	}
5901 
5902 	btrfs_mark_buffer_dirty(path->nodes[0]);
5903 	btrfs_free_path(path);
5904 
5905 	btrfs_inherit_iflags(inode, dir);
5906 
5907 	if (S_ISREG(mode)) {
5908 		if (btrfs_test_opt(fs_info, NODATASUM))
5909 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5910 		if (btrfs_test_opt(fs_info, NODATACOW))
5911 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5912 				BTRFS_INODE_NODATASUM;
5913 	}
5914 
5915 	inode_tree_add(inode);
5916 
5917 	trace_btrfs_inode_new(inode);
5918 	btrfs_set_inode_last_trans(trans, inode);
5919 
5920 	btrfs_update_root_times(trans, root);
5921 
5922 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5923 	if (ret)
5924 		btrfs_err(fs_info,
5925 			  "error inheriting props for ino %llu (root %llu): %d",
5926 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
5927 
5928 	return inode;
5929 
5930 fail_unlock:
5931 	discard_new_inode(inode);
5932 fail:
5933 	if (dir && name)
5934 		BTRFS_I(dir)->index_cnt--;
5935 	btrfs_free_path(path);
5936 	return ERR_PTR(ret);
5937 }
5938 
5939 /*
5940  * utility function to add 'inode' into 'parent_inode' with
5941  * a give name and a given sequence number.
5942  * if 'add_backref' is true, also insert a backref from the
5943  * inode to the parent directory.
5944  */
5945 int btrfs_add_link(struct btrfs_trans_handle *trans,
5946 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
5947 		   const char *name, int name_len, int add_backref, u64 index)
5948 {
5949 	int ret = 0;
5950 	struct btrfs_key key;
5951 	struct btrfs_root *root = parent_inode->root;
5952 	u64 ino = btrfs_ino(inode);
5953 	u64 parent_ino = btrfs_ino(parent_inode);
5954 
5955 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5956 		memcpy(&key, &inode->root->root_key, sizeof(key));
5957 	} else {
5958 		key.objectid = ino;
5959 		key.type = BTRFS_INODE_ITEM_KEY;
5960 		key.offset = 0;
5961 	}
5962 
5963 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5964 		ret = btrfs_add_root_ref(trans, key.objectid,
5965 					 root->root_key.objectid, parent_ino,
5966 					 index, name, name_len);
5967 	} else if (add_backref) {
5968 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5969 					     parent_ino, index);
5970 	}
5971 
5972 	/* Nothing to clean up yet */
5973 	if (ret)
5974 		return ret;
5975 
5976 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
5977 				    btrfs_inode_type(&inode->vfs_inode), index);
5978 	if (ret == -EEXIST || ret == -EOVERFLOW)
5979 		goto fail_dir_item;
5980 	else if (ret) {
5981 		btrfs_abort_transaction(trans, ret);
5982 		return ret;
5983 	}
5984 
5985 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
5986 			   name_len * 2);
5987 	inode_inc_iversion(&parent_inode->vfs_inode);
5988 	/*
5989 	 * If we are replaying a log tree, we do not want to update the mtime
5990 	 * and ctime of the parent directory with the current time, since the
5991 	 * log replay procedure is responsible for setting them to their correct
5992 	 * values (the ones it had when the fsync was done).
5993 	 */
5994 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
5995 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
5996 
5997 		parent_inode->vfs_inode.i_mtime = now;
5998 		parent_inode->vfs_inode.i_ctime = now;
5999 	}
6000 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6001 	if (ret)
6002 		btrfs_abort_transaction(trans, ret);
6003 	return ret;
6004 
6005 fail_dir_item:
6006 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6007 		u64 local_index;
6008 		int err;
6009 		err = btrfs_del_root_ref(trans, key.objectid,
6010 					 root->root_key.objectid, parent_ino,
6011 					 &local_index, name, name_len);
6012 		if (err)
6013 			btrfs_abort_transaction(trans, err);
6014 	} else if (add_backref) {
6015 		u64 local_index;
6016 		int err;
6017 
6018 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6019 					  ino, parent_ino, &local_index);
6020 		if (err)
6021 			btrfs_abort_transaction(trans, err);
6022 	}
6023 
6024 	/* Return the original error code */
6025 	return ret;
6026 }
6027 
6028 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6029 			    struct btrfs_inode *dir, struct dentry *dentry,
6030 			    struct btrfs_inode *inode, int backref, u64 index)
6031 {
6032 	int err = btrfs_add_link(trans, dir, inode,
6033 				 dentry->d_name.name, dentry->d_name.len,
6034 				 backref, index);
6035 	if (err > 0)
6036 		err = -EEXIST;
6037 	return err;
6038 }
6039 
6040 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6041 			umode_t mode, dev_t rdev)
6042 {
6043 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6044 	struct btrfs_trans_handle *trans;
6045 	struct btrfs_root *root = BTRFS_I(dir)->root;
6046 	struct inode *inode = NULL;
6047 	int err;
6048 	u64 objectid;
6049 	u64 index = 0;
6050 
6051 	/*
6052 	 * 2 for inode item and ref
6053 	 * 2 for dir items
6054 	 * 1 for xattr if selinux is on
6055 	 */
6056 	trans = btrfs_start_transaction(root, 5);
6057 	if (IS_ERR(trans))
6058 		return PTR_ERR(trans);
6059 
6060 	err = btrfs_find_free_ino(root, &objectid);
6061 	if (err)
6062 		goto out_unlock;
6063 
6064 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6065 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6066 			mode, &index);
6067 	if (IS_ERR(inode)) {
6068 		err = PTR_ERR(inode);
6069 		inode = NULL;
6070 		goto out_unlock;
6071 	}
6072 
6073 	/*
6074 	* If the active LSM wants to access the inode during
6075 	* d_instantiate it needs these. Smack checks to see
6076 	* if the filesystem supports xattrs by looking at the
6077 	* ops vector.
6078 	*/
6079 	inode->i_op = &btrfs_special_inode_operations;
6080 	init_special_inode(inode, inode->i_mode, rdev);
6081 
6082 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6083 	if (err)
6084 		goto out_unlock;
6085 
6086 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6087 			0, index);
6088 	if (err)
6089 		goto out_unlock;
6090 
6091 	btrfs_update_inode(trans, root, inode);
6092 	d_instantiate_new(dentry, inode);
6093 
6094 out_unlock:
6095 	btrfs_end_transaction(trans);
6096 	btrfs_btree_balance_dirty(fs_info);
6097 	if (err && inode) {
6098 		inode_dec_link_count(inode);
6099 		discard_new_inode(inode);
6100 	}
6101 	return err;
6102 }
6103 
6104 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6105 			umode_t mode, bool excl)
6106 {
6107 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6108 	struct btrfs_trans_handle *trans;
6109 	struct btrfs_root *root = BTRFS_I(dir)->root;
6110 	struct inode *inode = NULL;
6111 	int err;
6112 	u64 objectid;
6113 	u64 index = 0;
6114 
6115 	/*
6116 	 * 2 for inode item and ref
6117 	 * 2 for dir items
6118 	 * 1 for xattr if selinux is on
6119 	 */
6120 	trans = btrfs_start_transaction(root, 5);
6121 	if (IS_ERR(trans))
6122 		return PTR_ERR(trans);
6123 
6124 	err = btrfs_find_free_ino(root, &objectid);
6125 	if (err)
6126 		goto out_unlock;
6127 
6128 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6129 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6130 			mode, &index);
6131 	if (IS_ERR(inode)) {
6132 		err = PTR_ERR(inode);
6133 		inode = NULL;
6134 		goto out_unlock;
6135 	}
6136 	/*
6137 	* If the active LSM wants to access the inode during
6138 	* d_instantiate it needs these. Smack checks to see
6139 	* if the filesystem supports xattrs by looking at the
6140 	* ops vector.
6141 	*/
6142 	inode->i_fop = &btrfs_file_operations;
6143 	inode->i_op = &btrfs_file_inode_operations;
6144 	inode->i_mapping->a_ops = &btrfs_aops;
6145 
6146 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6147 	if (err)
6148 		goto out_unlock;
6149 
6150 	err = btrfs_update_inode(trans, root, inode);
6151 	if (err)
6152 		goto out_unlock;
6153 
6154 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6155 			0, index);
6156 	if (err)
6157 		goto out_unlock;
6158 
6159 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6160 	d_instantiate_new(dentry, inode);
6161 
6162 out_unlock:
6163 	btrfs_end_transaction(trans);
6164 	if (err && inode) {
6165 		inode_dec_link_count(inode);
6166 		discard_new_inode(inode);
6167 	}
6168 	btrfs_btree_balance_dirty(fs_info);
6169 	return err;
6170 }
6171 
6172 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6173 		      struct dentry *dentry)
6174 {
6175 	struct btrfs_trans_handle *trans = NULL;
6176 	struct btrfs_root *root = BTRFS_I(dir)->root;
6177 	struct inode *inode = d_inode(old_dentry);
6178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6179 	u64 index;
6180 	int err;
6181 	int drop_inode = 0;
6182 
6183 	/* do not allow sys_link's with other subvols of the same device */
6184 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6185 		return -EXDEV;
6186 
6187 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6188 		return -EMLINK;
6189 
6190 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6191 	if (err)
6192 		goto fail;
6193 
6194 	/*
6195 	 * 2 items for inode and inode ref
6196 	 * 2 items for dir items
6197 	 * 1 item for parent inode
6198 	 * 1 item for orphan item deletion if O_TMPFILE
6199 	 */
6200 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6201 	if (IS_ERR(trans)) {
6202 		err = PTR_ERR(trans);
6203 		trans = NULL;
6204 		goto fail;
6205 	}
6206 
6207 	/* There are several dir indexes for this inode, clear the cache. */
6208 	BTRFS_I(inode)->dir_index = 0ULL;
6209 	inc_nlink(inode);
6210 	inode_inc_iversion(inode);
6211 	inode->i_ctime = current_time(inode);
6212 	ihold(inode);
6213 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6214 
6215 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6216 			1, index);
6217 
6218 	if (err) {
6219 		drop_inode = 1;
6220 	} else {
6221 		struct dentry *parent = dentry->d_parent;
6222 		int ret;
6223 
6224 		err = btrfs_update_inode(trans, root, inode);
6225 		if (err)
6226 			goto fail;
6227 		if (inode->i_nlink == 1) {
6228 			/*
6229 			 * If new hard link count is 1, it's a file created
6230 			 * with open(2) O_TMPFILE flag.
6231 			 */
6232 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6233 			if (err)
6234 				goto fail;
6235 		}
6236 		d_instantiate(dentry, inode);
6237 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6238 					 true, NULL);
6239 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6240 			err = btrfs_commit_transaction(trans);
6241 			trans = NULL;
6242 		}
6243 	}
6244 
6245 fail:
6246 	if (trans)
6247 		btrfs_end_transaction(trans);
6248 	if (drop_inode) {
6249 		inode_dec_link_count(inode);
6250 		iput(inode);
6251 	}
6252 	btrfs_btree_balance_dirty(fs_info);
6253 	return err;
6254 }
6255 
6256 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6257 {
6258 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6259 	struct inode *inode = NULL;
6260 	struct btrfs_trans_handle *trans;
6261 	struct btrfs_root *root = BTRFS_I(dir)->root;
6262 	int err = 0;
6263 	u64 objectid = 0;
6264 	u64 index = 0;
6265 
6266 	/*
6267 	 * 2 items for inode and ref
6268 	 * 2 items for dir items
6269 	 * 1 for xattr if selinux is on
6270 	 */
6271 	trans = btrfs_start_transaction(root, 5);
6272 	if (IS_ERR(trans))
6273 		return PTR_ERR(trans);
6274 
6275 	err = btrfs_find_free_ino(root, &objectid);
6276 	if (err)
6277 		goto out_fail;
6278 
6279 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6280 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6281 			S_IFDIR | mode, &index);
6282 	if (IS_ERR(inode)) {
6283 		err = PTR_ERR(inode);
6284 		inode = NULL;
6285 		goto out_fail;
6286 	}
6287 
6288 	/* these must be set before we unlock the inode */
6289 	inode->i_op = &btrfs_dir_inode_operations;
6290 	inode->i_fop = &btrfs_dir_file_operations;
6291 
6292 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6293 	if (err)
6294 		goto out_fail;
6295 
6296 	btrfs_i_size_write(BTRFS_I(inode), 0);
6297 	err = btrfs_update_inode(trans, root, inode);
6298 	if (err)
6299 		goto out_fail;
6300 
6301 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6302 			dentry->d_name.name,
6303 			dentry->d_name.len, 0, index);
6304 	if (err)
6305 		goto out_fail;
6306 
6307 	d_instantiate_new(dentry, inode);
6308 
6309 out_fail:
6310 	btrfs_end_transaction(trans);
6311 	if (err && inode) {
6312 		inode_dec_link_count(inode);
6313 		discard_new_inode(inode);
6314 	}
6315 	btrfs_btree_balance_dirty(fs_info);
6316 	return err;
6317 }
6318 
6319 static noinline int uncompress_inline(struct btrfs_path *path,
6320 				      struct page *page,
6321 				      size_t pg_offset, u64 extent_offset,
6322 				      struct btrfs_file_extent_item *item)
6323 {
6324 	int ret;
6325 	struct extent_buffer *leaf = path->nodes[0];
6326 	char *tmp;
6327 	size_t max_size;
6328 	unsigned long inline_size;
6329 	unsigned long ptr;
6330 	int compress_type;
6331 
6332 	WARN_ON(pg_offset != 0);
6333 	compress_type = btrfs_file_extent_compression(leaf, item);
6334 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6335 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6336 					btrfs_item_nr(path->slots[0]));
6337 	tmp = kmalloc(inline_size, GFP_NOFS);
6338 	if (!tmp)
6339 		return -ENOMEM;
6340 	ptr = btrfs_file_extent_inline_start(item);
6341 
6342 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6343 
6344 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6345 	ret = btrfs_decompress(compress_type, tmp, page,
6346 			       extent_offset, inline_size, max_size);
6347 
6348 	/*
6349 	 * decompression code contains a memset to fill in any space between the end
6350 	 * of the uncompressed data and the end of max_size in case the decompressed
6351 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6352 	 * the end of an inline extent and the beginning of the next block, so we
6353 	 * cover that region here.
6354 	 */
6355 
6356 	if (max_size + pg_offset < PAGE_SIZE) {
6357 		char *map = kmap(page);
6358 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6359 		kunmap(page);
6360 	}
6361 	kfree(tmp);
6362 	return ret;
6363 }
6364 
6365 /**
6366  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6367  * @inode:	file to search in
6368  * @page:	page to read extent data into if the extent is inline
6369  * @pg_offset:	offset into @page to copy to
6370  * @start:	file offset
6371  * @len:	length of range starting at @start
6372  *
6373  * This returns the first &struct extent_map which overlaps with the given
6374  * range, reading it from the B-tree and caching it if necessary. Note that
6375  * there may be more extents which overlap the given range after the returned
6376  * extent_map.
6377  *
6378  * If @page is not NULL and the extent is inline, this also reads the extent
6379  * data directly into the page and marks the extent up to date in the io_tree.
6380  *
6381  * Return: ERR_PTR on error, non-NULL extent_map on success.
6382  */
6383 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6384 				    struct page *page, size_t pg_offset,
6385 				    u64 start, u64 len)
6386 {
6387 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6388 	int ret;
6389 	int err = 0;
6390 	u64 extent_start = 0;
6391 	u64 extent_end = 0;
6392 	u64 objectid = btrfs_ino(inode);
6393 	int extent_type = -1;
6394 	struct btrfs_path *path = NULL;
6395 	struct btrfs_root *root = inode->root;
6396 	struct btrfs_file_extent_item *item;
6397 	struct extent_buffer *leaf;
6398 	struct btrfs_key found_key;
6399 	struct extent_map *em = NULL;
6400 	struct extent_map_tree *em_tree = &inode->extent_tree;
6401 	struct extent_io_tree *io_tree = &inode->io_tree;
6402 
6403 	read_lock(&em_tree->lock);
6404 	em = lookup_extent_mapping(em_tree, start, len);
6405 	read_unlock(&em_tree->lock);
6406 
6407 	if (em) {
6408 		if (em->start > start || em->start + em->len <= start)
6409 			free_extent_map(em);
6410 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6411 			free_extent_map(em);
6412 		else
6413 			goto out;
6414 	}
6415 	em = alloc_extent_map();
6416 	if (!em) {
6417 		err = -ENOMEM;
6418 		goto out;
6419 	}
6420 	em->start = EXTENT_MAP_HOLE;
6421 	em->orig_start = EXTENT_MAP_HOLE;
6422 	em->len = (u64)-1;
6423 	em->block_len = (u64)-1;
6424 
6425 	path = btrfs_alloc_path();
6426 	if (!path) {
6427 		err = -ENOMEM;
6428 		goto out;
6429 	}
6430 
6431 	/* Chances are we'll be called again, so go ahead and do readahead */
6432 	path->reada = READA_FORWARD;
6433 
6434 	/*
6435 	 * Unless we're going to uncompress the inline extent, no sleep would
6436 	 * happen.
6437 	 */
6438 	path->leave_spinning = 1;
6439 
6440 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6441 	if (ret < 0) {
6442 		err = ret;
6443 		goto out;
6444 	} else if (ret > 0) {
6445 		if (path->slots[0] == 0)
6446 			goto not_found;
6447 		path->slots[0]--;
6448 	}
6449 
6450 	leaf = path->nodes[0];
6451 	item = btrfs_item_ptr(leaf, path->slots[0],
6452 			      struct btrfs_file_extent_item);
6453 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6454 	if (found_key.objectid != objectid ||
6455 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6456 		/*
6457 		 * If we backup past the first extent we want to move forward
6458 		 * and see if there is an extent in front of us, otherwise we'll
6459 		 * say there is a hole for our whole search range which can
6460 		 * cause problems.
6461 		 */
6462 		extent_end = start;
6463 		goto next;
6464 	}
6465 
6466 	extent_type = btrfs_file_extent_type(leaf, item);
6467 	extent_start = found_key.offset;
6468 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6469 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6470 		/* Only regular file could have regular/prealloc extent */
6471 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6472 			ret = -EUCLEAN;
6473 			btrfs_crit(fs_info,
6474 		"regular/prealloc extent found for non-regular inode %llu",
6475 				   btrfs_ino(inode));
6476 			goto out;
6477 		}
6478 		extent_end = extent_start +
6479 		       btrfs_file_extent_num_bytes(leaf, item);
6480 
6481 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6482 						       extent_start);
6483 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6484 		size_t size;
6485 
6486 		size = btrfs_file_extent_ram_bytes(leaf, item);
6487 		extent_end = ALIGN(extent_start + size,
6488 				   fs_info->sectorsize);
6489 
6490 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6491 						      path->slots[0],
6492 						      extent_start);
6493 	}
6494 next:
6495 	if (start >= extent_end) {
6496 		path->slots[0]++;
6497 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6498 			ret = btrfs_next_leaf(root, path);
6499 			if (ret < 0) {
6500 				err = ret;
6501 				goto out;
6502 			} else if (ret > 0) {
6503 				goto not_found;
6504 			}
6505 			leaf = path->nodes[0];
6506 		}
6507 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6508 		if (found_key.objectid != objectid ||
6509 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6510 			goto not_found;
6511 		if (start + len <= found_key.offset)
6512 			goto not_found;
6513 		if (start > found_key.offset)
6514 			goto next;
6515 
6516 		/* New extent overlaps with existing one */
6517 		em->start = start;
6518 		em->orig_start = start;
6519 		em->len = found_key.offset - start;
6520 		em->block_start = EXTENT_MAP_HOLE;
6521 		goto insert;
6522 	}
6523 
6524 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6525 
6526 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6527 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6528 		goto insert;
6529 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6530 		unsigned long ptr;
6531 		char *map;
6532 		size_t size;
6533 		size_t extent_offset;
6534 		size_t copy_size;
6535 
6536 		if (!page)
6537 			goto out;
6538 
6539 		size = btrfs_file_extent_ram_bytes(leaf, item);
6540 		extent_offset = page_offset(page) + pg_offset - extent_start;
6541 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6542 				  size - extent_offset);
6543 		em->start = extent_start + extent_offset;
6544 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6545 		em->orig_block_len = em->len;
6546 		em->orig_start = em->start;
6547 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6548 
6549 		btrfs_set_path_blocking(path);
6550 		if (!PageUptodate(page)) {
6551 			if (btrfs_file_extent_compression(leaf, item) !=
6552 			    BTRFS_COMPRESS_NONE) {
6553 				ret = uncompress_inline(path, page, pg_offset,
6554 							extent_offset, item);
6555 				if (ret) {
6556 					err = ret;
6557 					goto out;
6558 				}
6559 			} else {
6560 				map = kmap(page);
6561 				read_extent_buffer(leaf, map + pg_offset, ptr,
6562 						   copy_size);
6563 				if (pg_offset + copy_size < PAGE_SIZE) {
6564 					memset(map + pg_offset + copy_size, 0,
6565 					       PAGE_SIZE - pg_offset -
6566 					       copy_size);
6567 				}
6568 				kunmap(page);
6569 			}
6570 			flush_dcache_page(page);
6571 		}
6572 		set_extent_uptodate(io_tree, em->start,
6573 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6574 		goto insert;
6575 	}
6576 not_found:
6577 	em->start = start;
6578 	em->orig_start = start;
6579 	em->len = len;
6580 	em->block_start = EXTENT_MAP_HOLE;
6581 insert:
6582 	btrfs_release_path(path);
6583 	if (em->start > start || extent_map_end(em) <= start) {
6584 		btrfs_err(fs_info,
6585 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6586 			  em->start, em->len, start, len);
6587 		err = -EIO;
6588 		goto out;
6589 	}
6590 
6591 	err = 0;
6592 	write_lock(&em_tree->lock);
6593 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6594 	write_unlock(&em_tree->lock);
6595 out:
6596 	btrfs_free_path(path);
6597 
6598 	trace_btrfs_get_extent(root, inode, em);
6599 
6600 	if (err) {
6601 		free_extent_map(em);
6602 		return ERR_PTR(err);
6603 	}
6604 	BUG_ON(!em); /* Error is always set */
6605 	return em;
6606 }
6607 
6608 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6609 					   u64 start, u64 len)
6610 {
6611 	struct extent_map *em;
6612 	struct extent_map *hole_em = NULL;
6613 	u64 delalloc_start = start;
6614 	u64 end;
6615 	u64 delalloc_len;
6616 	u64 delalloc_end;
6617 	int err = 0;
6618 
6619 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6620 	if (IS_ERR(em))
6621 		return em;
6622 	/*
6623 	 * If our em maps to:
6624 	 * - a hole or
6625 	 * - a pre-alloc extent,
6626 	 * there might actually be delalloc bytes behind it.
6627 	 */
6628 	if (em->block_start != EXTENT_MAP_HOLE &&
6629 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6630 		return em;
6631 	else
6632 		hole_em = em;
6633 
6634 	/* check to see if we've wrapped (len == -1 or similar) */
6635 	end = start + len;
6636 	if (end < start)
6637 		end = (u64)-1;
6638 	else
6639 		end -= 1;
6640 
6641 	em = NULL;
6642 
6643 	/* ok, we didn't find anything, lets look for delalloc */
6644 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6645 				 end, len, EXTENT_DELALLOC, 1);
6646 	delalloc_end = delalloc_start + delalloc_len;
6647 	if (delalloc_end < delalloc_start)
6648 		delalloc_end = (u64)-1;
6649 
6650 	/*
6651 	 * We didn't find anything useful, return the original results from
6652 	 * get_extent()
6653 	 */
6654 	if (delalloc_start > end || delalloc_end <= start) {
6655 		em = hole_em;
6656 		hole_em = NULL;
6657 		goto out;
6658 	}
6659 
6660 	/*
6661 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6662 	 * the start they passed in
6663 	 */
6664 	delalloc_start = max(start, delalloc_start);
6665 	delalloc_len = delalloc_end - delalloc_start;
6666 
6667 	if (delalloc_len > 0) {
6668 		u64 hole_start;
6669 		u64 hole_len;
6670 		const u64 hole_end = extent_map_end(hole_em);
6671 
6672 		em = alloc_extent_map();
6673 		if (!em) {
6674 			err = -ENOMEM;
6675 			goto out;
6676 		}
6677 
6678 		ASSERT(hole_em);
6679 		/*
6680 		 * When btrfs_get_extent can't find anything it returns one
6681 		 * huge hole
6682 		 *
6683 		 * Make sure what it found really fits our range, and adjust to
6684 		 * make sure it is based on the start from the caller
6685 		 */
6686 		if (hole_end <= start || hole_em->start > end) {
6687 		       free_extent_map(hole_em);
6688 		       hole_em = NULL;
6689 		} else {
6690 		       hole_start = max(hole_em->start, start);
6691 		       hole_len = hole_end - hole_start;
6692 		}
6693 
6694 		if (hole_em && delalloc_start > hole_start) {
6695 			/*
6696 			 * Our hole starts before our delalloc, so we have to
6697 			 * return just the parts of the hole that go until the
6698 			 * delalloc starts
6699 			 */
6700 			em->len = min(hole_len, delalloc_start - hole_start);
6701 			em->start = hole_start;
6702 			em->orig_start = hole_start;
6703 			/*
6704 			 * Don't adjust block start at all, it is fixed at
6705 			 * EXTENT_MAP_HOLE
6706 			 */
6707 			em->block_start = hole_em->block_start;
6708 			em->block_len = hole_len;
6709 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6710 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6711 		} else {
6712 			/*
6713 			 * Hole is out of passed range or it starts after
6714 			 * delalloc range
6715 			 */
6716 			em->start = delalloc_start;
6717 			em->len = delalloc_len;
6718 			em->orig_start = delalloc_start;
6719 			em->block_start = EXTENT_MAP_DELALLOC;
6720 			em->block_len = delalloc_len;
6721 		}
6722 	} else {
6723 		return hole_em;
6724 	}
6725 out:
6726 
6727 	free_extent_map(hole_em);
6728 	if (err) {
6729 		free_extent_map(em);
6730 		return ERR_PTR(err);
6731 	}
6732 	return em;
6733 }
6734 
6735 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
6736 						  const u64 start,
6737 						  const u64 len,
6738 						  const u64 orig_start,
6739 						  const u64 block_start,
6740 						  const u64 block_len,
6741 						  const u64 orig_block_len,
6742 						  const u64 ram_bytes,
6743 						  const int type)
6744 {
6745 	struct extent_map *em = NULL;
6746 	int ret;
6747 
6748 	if (type != BTRFS_ORDERED_NOCOW) {
6749 		em = create_io_em(inode, start, len, orig_start,
6750 				  block_start, block_len, orig_block_len,
6751 				  ram_bytes,
6752 				  BTRFS_COMPRESS_NONE, /* compress_type */
6753 				  type);
6754 		if (IS_ERR(em))
6755 			goto out;
6756 	}
6757 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
6758 					   len, block_len, type);
6759 	if (ret) {
6760 		if (em) {
6761 			free_extent_map(em);
6762 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
6763 						start + len - 1, 0);
6764 		}
6765 		em = ERR_PTR(ret);
6766 	}
6767  out:
6768 
6769 	return em;
6770 }
6771 
6772 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6773 						  u64 start, u64 len)
6774 {
6775 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6776 	struct btrfs_root *root = BTRFS_I(inode)->root;
6777 	struct extent_map *em;
6778 	struct btrfs_key ins;
6779 	u64 alloc_hint;
6780 	int ret;
6781 
6782 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6783 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6784 				   0, alloc_hint, &ins, 1, 1);
6785 	if (ret)
6786 		return ERR_PTR(ret);
6787 
6788 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6789 				     ins.objectid, ins.offset, ins.offset,
6790 				     ins.offset, BTRFS_ORDERED_REGULAR);
6791 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6792 	if (IS_ERR(em))
6793 		btrfs_free_reserved_extent(fs_info, ins.objectid,
6794 					   ins.offset, 1);
6795 
6796 	return em;
6797 }
6798 
6799 /*
6800  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6801  * block must be cow'd
6802  */
6803 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6804 			      u64 *orig_start, u64 *orig_block_len,
6805 			      u64 *ram_bytes)
6806 {
6807 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6808 	struct btrfs_path *path;
6809 	int ret;
6810 	struct extent_buffer *leaf;
6811 	struct btrfs_root *root = BTRFS_I(inode)->root;
6812 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6813 	struct btrfs_file_extent_item *fi;
6814 	struct btrfs_key key;
6815 	u64 disk_bytenr;
6816 	u64 backref_offset;
6817 	u64 extent_end;
6818 	u64 num_bytes;
6819 	int slot;
6820 	int found_type;
6821 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6822 
6823 	path = btrfs_alloc_path();
6824 	if (!path)
6825 		return -ENOMEM;
6826 
6827 	ret = btrfs_lookup_file_extent(NULL, root, path,
6828 			btrfs_ino(BTRFS_I(inode)), offset, 0);
6829 	if (ret < 0)
6830 		goto out;
6831 
6832 	slot = path->slots[0];
6833 	if (ret == 1) {
6834 		if (slot == 0) {
6835 			/* can't find the item, must cow */
6836 			ret = 0;
6837 			goto out;
6838 		}
6839 		slot--;
6840 	}
6841 	ret = 0;
6842 	leaf = path->nodes[0];
6843 	btrfs_item_key_to_cpu(leaf, &key, slot);
6844 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
6845 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6846 		/* not our file or wrong item type, must cow */
6847 		goto out;
6848 	}
6849 
6850 	if (key.offset > offset) {
6851 		/* Wrong offset, must cow */
6852 		goto out;
6853 	}
6854 
6855 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6856 	found_type = btrfs_file_extent_type(leaf, fi);
6857 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6858 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6859 		/* not a regular extent, must cow */
6860 		goto out;
6861 	}
6862 
6863 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6864 		goto out;
6865 
6866 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6867 	if (extent_end <= offset)
6868 		goto out;
6869 
6870 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6871 	if (disk_bytenr == 0)
6872 		goto out;
6873 
6874 	if (btrfs_file_extent_compression(leaf, fi) ||
6875 	    btrfs_file_extent_encryption(leaf, fi) ||
6876 	    btrfs_file_extent_other_encoding(leaf, fi))
6877 		goto out;
6878 
6879 	/*
6880 	 * Do the same check as in btrfs_cross_ref_exist but without the
6881 	 * unnecessary search.
6882 	 */
6883 	if (btrfs_file_extent_generation(leaf, fi) <=
6884 	    btrfs_root_last_snapshot(&root->root_item))
6885 		goto out;
6886 
6887 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6888 
6889 	if (orig_start) {
6890 		*orig_start = key.offset - backref_offset;
6891 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6892 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6893 	}
6894 
6895 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
6896 		goto out;
6897 
6898 	num_bytes = min(offset + *len, extent_end) - offset;
6899 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6900 		u64 range_end;
6901 
6902 		range_end = round_up(offset + num_bytes,
6903 				     root->fs_info->sectorsize) - 1;
6904 		ret = test_range_bit(io_tree, offset, range_end,
6905 				     EXTENT_DELALLOC, 0, NULL);
6906 		if (ret) {
6907 			ret = -EAGAIN;
6908 			goto out;
6909 		}
6910 	}
6911 
6912 	btrfs_release_path(path);
6913 
6914 	/*
6915 	 * look for other files referencing this extent, if we
6916 	 * find any we must cow
6917 	 */
6918 
6919 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
6920 				    key.offset - backref_offset, disk_bytenr);
6921 	if (ret) {
6922 		ret = 0;
6923 		goto out;
6924 	}
6925 
6926 	/*
6927 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6928 	 * in this extent we are about to write.  If there
6929 	 * are any csums in that range we have to cow in order
6930 	 * to keep the csums correct
6931 	 */
6932 	disk_bytenr += backref_offset;
6933 	disk_bytenr += offset - key.offset;
6934 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
6935 		goto out;
6936 	/*
6937 	 * all of the above have passed, it is safe to overwrite this extent
6938 	 * without cow
6939 	 */
6940 	*len = num_bytes;
6941 	ret = 1;
6942 out:
6943 	btrfs_free_path(path);
6944 	return ret;
6945 }
6946 
6947 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6948 			      struct extent_state **cached_state, int writing)
6949 {
6950 	struct btrfs_ordered_extent *ordered;
6951 	int ret = 0;
6952 
6953 	while (1) {
6954 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6955 				 cached_state);
6956 		/*
6957 		 * We're concerned with the entire range that we're going to be
6958 		 * doing DIO to, so we need to make sure there's no ordered
6959 		 * extents in this range.
6960 		 */
6961 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
6962 						     lockend - lockstart + 1);
6963 
6964 		/*
6965 		 * We need to make sure there are no buffered pages in this
6966 		 * range either, we could have raced between the invalidate in
6967 		 * generic_file_direct_write and locking the extent.  The
6968 		 * invalidate needs to happen so that reads after a write do not
6969 		 * get stale data.
6970 		 */
6971 		if (!ordered &&
6972 		    (!writing || !filemap_range_has_page(inode->i_mapping,
6973 							 lockstart, lockend)))
6974 			break;
6975 
6976 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6977 				     cached_state);
6978 
6979 		if (ordered) {
6980 			/*
6981 			 * If we are doing a DIO read and the ordered extent we
6982 			 * found is for a buffered write, we can not wait for it
6983 			 * to complete and retry, because if we do so we can
6984 			 * deadlock with concurrent buffered writes on page
6985 			 * locks. This happens only if our DIO read covers more
6986 			 * than one extent map, if at this point has already
6987 			 * created an ordered extent for a previous extent map
6988 			 * and locked its range in the inode's io tree, and a
6989 			 * concurrent write against that previous extent map's
6990 			 * range and this range started (we unlock the ranges
6991 			 * in the io tree only when the bios complete and
6992 			 * buffered writes always lock pages before attempting
6993 			 * to lock range in the io tree).
6994 			 */
6995 			if (writing ||
6996 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
6997 				btrfs_start_ordered_extent(inode, ordered, 1);
6998 			else
6999 				ret = -ENOTBLK;
7000 			btrfs_put_ordered_extent(ordered);
7001 		} else {
7002 			/*
7003 			 * We could trigger writeback for this range (and wait
7004 			 * for it to complete) and then invalidate the pages for
7005 			 * this range (through invalidate_inode_pages2_range()),
7006 			 * but that can lead us to a deadlock with a concurrent
7007 			 * call to readpages() (a buffered read or a defrag call
7008 			 * triggered a readahead) on a page lock due to an
7009 			 * ordered dio extent we created before but did not have
7010 			 * yet a corresponding bio submitted (whence it can not
7011 			 * complete), which makes readpages() wait for that
7012 			 * ordered extent to complete while holding a lock on
7013 			 * that page.
7014 			 */
7015 			ret = -ENOTBLK;
7016 		}
7017 
7018 		if (ret)
7019 			break;
7020 
7021 		cond_resched();
7022 	}
7023 
7024 	return ret;
7025 }
7026 
7027 /* The callers of this must take lock_extent() */
7028 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7029 				       u64 orig_start, u64 block_start,
7030 				       u64 block_len, u64 orig_block_len,
7031 				       u64 ram_bytes, int compress_type,
7032 				       int type)
7033 {
7034 	struct extent_map_tree *em_tree;
7035 	struct extent_map *em;
7036 	int ret;
7037 
7038 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7039 	       type == BTRFS_ORDERED_COMPRESSED ||
7040 	       type == BTRFS_ORDERED_NOCOW ||
7041 	       type == BTRFS_ORDERED_REGULAR);
7042 
7043 	em_tree = &BTRFS_I(inode)->extent_tree;
7044 	em = alloc_extent_map();
7045 	if (!em)
7046 		return ERR_PTR(-ENOMEM);
7047 
7048 	em->start = start;
7049 	em->orig_start = orig_start;
7050 	em->len = len;
7051 	em->block_len = block_len;
7052 	em->block_start = block_start;
7053 	em->orig_block_len = orig_block_len;
7054 	em->ram_bytes = ram_bytes;
7055 	em->generation = -1;
7056 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7057 	if (type == BTRFS_ORDERED_PREALLOC) {
7058 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7059 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7060 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7061 		em->compress_type = compress_type;
7062 	}
7063 
7064 	do {
7065 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7066 				em->start + em->len - 1, 0);
7067 		write_lock(&em_tree->lock);
7068 		ret = add_extent_mapping(em_tree, em, 1);
7069 		write_unlock(&em_tree->lock);
7070 		/*
7071 		 * The caller has taken lock_extent(), who could race with us
7072 		 * to add em?
7073 		 */
7074 	} while (ret == -EEXIST);
7075 
7076 	if (ret) {
7077 		free_extent_map(em);
7078 		return ERR_PTR(ret);
7079 	}
7080 
7081 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7082 	return em;
7083 }
7084 
7085 
7086 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7087 					struct buffer_head *bh_result,
7088 					struct inode *inode,
7089 					u64 start, u64 len)
7090 {
7091 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7092 
7093 	if (em->block_start == EXTENT_MAP_HOLE ||
7094 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7095 		return -ENOENT;
7096 
7097 	len = min(len, em->len - (start - em->start));
7098 
7099 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7100 		inode->i_blkbits;
7101 	bh_result->b_size = len;
7102 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7103 	set_buffer_mapped(bh_result);
7104 
7105 	return 0;
7106 }
7107 
7108 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7109 					 struct buffer_head *bh_result,
7110 					 struct inode *inode,
7111 					 struct btrfs_dio_data *dio_data,
7112 					 u64 start, u64 len)
7113 {
7114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7115 	struct extent_map *em = *map;
7116 	int ret = 0;
7117 
7118 	/*
7119 	 * We don't allocate a new extent in the following cases
7120 	 *
7121 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7122 	 * existing extent.
7123 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7124 	 * just use the extent.
7125 	 *
7126 	 */
7127 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7128 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7129 	     em->block_start != EXTENT_MAP_HOLE)) {
7130 		int type;
7131 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7132 
7133 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7134 			type = BTRFS_ORDERED_PREALLOC;
7135 		else
7136 			type = BTRFS_ORDERED_NOCOW;
7137 		len = min(len, em->len - (start - em->start));
7138 		block_start = em->block_start + (start - em->start);
7139 
7140 		if (can_nocow_extent(inode, start, &len, &orig_start,
7141 				     &orig_block_len, &ram_bytes) == 1 &&
7142 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7143 			struct extent_map *em2;
7144 
7145 			em2 = btrfs_create_dio_extent(inode, start, len,
7146 						      orig_start, block_start,
7147 						      len, orig_block_len,
7148 						      ram_bytes, type);
7149 			btrfs_dec_nocow_writers(fs_info, block_start);
7150 			if (type == BTRFS_ORDERED_PREALLOC) {
7151 				free_extent_map(em);
7152 				*map = em = em2;
7153 			}
7154 
7155 			if (em2 && IS_ERR(em2)) {
7156 				ret = PTR_ERR(em2);
7157 				goto out;
7158 			}
7159 			/*
7160 			 * For inode marked NODATACOW or extent marked PREALLOC,
7161 			 * use the existing or preallocated extent, so does not
7162 			 * need to adjust btrfs_space_info's bytes_may_use.
7163 			 */
7164 			btrfs_free_reserved_data_space_noquota(inode, start,
7165 							       len);
7166 			goto skip_cow;
7167 		}
7168 	}
7169 
7170 	/* this will cow the extent */
7171 	len = bh_result->b_size;
7172 	free_extent_map(em);
7173 	*map = em = btrfs_new_extent_direct(inode, start, len);
7174 	if (IS_ERR(em)) {
7175 		ret = PTR_ERR(em);
7176 		goto out;
7177 	}
7178 
7179 	len = min(len, em->len - (start - em->start));
7180 
7181 skip_cow:
7182 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7183 		inode->i_blkbits;
7184 	bh_result->b_size = len;
7185 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7186 	set_buffer_mapped(bh_result);
7187 
7188 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7189 		set_buffer_new(bh_result);
7190 
7191 	/*
7192 	 * Need to update the i_size under the extent lock so buffered
7193 	 * readers will get the updated i_size when we unlock.
7194 	 */
7195 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7196 		i_size_write(inode, start + len);
7197 
7198 	WARN_ON(dio_data->reserve < len);
7199 	dio_data->reserve -= len;
7200 	dio_data->unsubmitted_oe_range_end = start + len;
7201 	current->journal_info = dio_data;
7202 out:
7203 	return ret;
7204 }
7205 
7206 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7207 				   struct buffer_head *bh_result, int create)
7208 {
7209 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7210 	struct extent_map *em;
7211 	struct extent_state *cached_state = NULL;
7212 	struct btrfs_dio_data *dio_data = NULL;
7213 	u64 start = iblock << inode->i_blkbits;
7214 	u64 lockstart, lockend;
7215 	u64 len = bh_result->b_size;
7216 	int ret = 0;
7217 
7218 	if (!create)
7219 		len = min_t(u64, len, fs_info->sectorsize);
7220 
7221 	lockstart = start;
7222 	lockend = start + len - 1;
7223 
7224 	if (current->journal_info) {
7225 		/*
7226 		 * Need to pull our outstanding extents and set journal_info to NULL so
7227 		 * that anything that needs to check if there's a transaction doesn't get
7228 		 * confused.
7229 		 */
7230 		dio_data = current->journal_info;
7231 		current->journal_info = NULL;
7232 	}
7233 
7234 	/*
7235 	 * If this errors out it's because we couldn't invalidate pagecache for
7236 	 * this range and we need to fallback to buffered.
7237 	 */
7238 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7239 			       create)) {
7240 		ret = -ENOTBLK;
7241 		goto err;
7242 	}
7243 
7244 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7245 	if (IS_ERR(em)) {
7246 		ret = PTR_ERR(em);
7247 		goto unlock_err;
7248 	}
7249 
7250 	/*
7251 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7252 	 * io.  INLINE is special, and we could probably kludge it in here, but
7253 	 * it's still buffered so for safety lets just fall back to the generic
7254 	 * buffered path.
7255 	 *
7256 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7257 	 * decompress it, so there will be buffering required no matter what we
7258 	 * do, so go ahead and fallback to buffered.
7259 	 *
7260 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7261 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7262 	 * the generic code.
7263 	 */
7264 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7265 	    em->block_start == EXTENT_MAP_INLINE) {
7266 		free_extent_map(em);
7267 		ret = -ENOTBLK;
7268 		goto unlock_err;
7269 	}
7270 
7271 	if (create) {
7272 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7273 						    dio_data, start, len);
7274 		if (ret < 0)
7275 			goto unlock_err;
7276 
7277 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7278 				     lockend, &cached_state);
7279 	} else {
7280 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7281 						   start, len);
7282 		/* Can be negative only if we read from a hole */
7283 		if (ret < 0) {
7284 			ret = 0;
7285 			free_extent_map(em);
7286 			goto unlock_err;
7287 		}
7288 		/*
7289 		 * We need to unlock only the end area that we aren't using.
7290 		 * The rest is going to be unlocked by the endio routine.
7291 		 */
7292 		lockstart = start + bh_result->b_size;
7293 		if (lockstart < lockend) {
7294 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7295 					     lockstart, lockend, &cached_state);
7296 		} else {
7297 			free_extent_state(cached_state);
7298 		}
7299 	}
7300 
7301 	free_extent_map(em);
7302 
7303 	return 0;
7304 
7305 unlock_err:
7306 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7307 			     &cached_state);
7308 err:
7309 	if (dio_data)
7310 		current->journal_info = dio_data;
7311 	return ret;
7312 }
7313 
7314 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7315 						 struct bio *bio,
7316 						 int mirror_num)
7317 {
7318 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7319 	blk_status_t ret;
7320 
7321 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7322 
7323 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7324 	if (ret)
7325 		return ret;
7326 
7327 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7328 
7329 	return ret;
7330 }
7331 
7332 static int btrfs_check_dio_repairable(struct inode *inode,
7333 				      struct bio *failed_bio,
7334 				      struct io_failure_record *failrec,
7335 				      int failed_mirror)
7336 {
7337 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7338 	int num_copies;
7339 
7340 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7341 	if (num_copies == 1) {
7342 		/*
7343 		 * we only have a single copy of the data, so don't bother with
7344 		 * all the retry and error correction code that follows. no
7345 		 * matter what the error is, it is very likely to persist.
7346 		 */
7347 		btrfs_debug(fs_info,
7348 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7349 			num_copies, failrec->this_mirror, failed_mirror);
7350 		return 0;
7351 	}
7352 
7353 	failrec->failed_mirror = failed_mirror;
7354 	failrec->this_mirror++;
7355 	if (failrec->this_mirror == failed_mirror)
7356 		failrec->this_mirror++;
7357 
7358 	if (failrec->this_mirror > num_copies) {
7359 		btrfs_debug(fs_info,
7360 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7361 			num_copies, failrec->this_mirror, failed_mirror);
7362 		return 0;
7363 	}
7364 
7365 	return 1;
7366 }
7367 
7368 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7369 				   struct page *page, unsigned int pgoff,
7370 				   u64 start, u64 end, int failed_mirror,
7371 				   bio_end_io_t *repair_endio, void *repair_arg)
7372 {
7373 	struct io_failure_record *failrec;
7374 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7375 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7376 	struct bio *bio;
7377 	int isector;
7378 	unsigned int read_mode = 0;
7379 	int segs;
7380 	int ret;
7381 	blk_status_t status;
7382 	struct bio_vec bvec;
7383 
7384 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7385 
7386 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7387 	if (ret)
7388 		return errno_to_blk_status(ret);
7389 
7390 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7391 					 failed_mirror);
7392 	if (!ret) {
7393 		free_io_failure(failure_tree, io_tree, failrec);
7394 		return BLK_STS_IOERR;
7395 	}
7396 
7397 	segs = bio_segments(failed_bio);
7398 	bio_get_first_bvec(failed_bio, &bvec);
7399 	if (segs > 1 ||
7400 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7401 		read_mode |= REQ_FAILFAST_DEV;
7402 
7403 	isector = start - btrfs_io_bio(failed_bio)->logical;
7404 	isector >>= inode->i_sb->s_blocksize_bits;
7405 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7406 				pgoff, isector, repair_endio, repair_arg);
7407 	bio->bi_opf = REQ_OP_READ | read_mode;
7408 
7409 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7410 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7411 		    read_mode, failrec->this_mirror, failrec->in_validation);
7412 
7413 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7414 	if (status) {
7415 		free_io_failure(failure_tree, io_tree, failrec);
7416 		bio_put(bio);
7417 	}
7418 
7419 	return status;
7420 }
7421 
7422 struct btrfs_retry_complete {
7423 	struct completion done;
7424 	struct inode *inode;
7425 	u64 start;
7426 	int uptodate;
7427 };
7428 
7429 static void btrfs_retry_endio_nocsum(struct bio *bio)
7430 {
7431 	struct btrfs_retry_complete *done = bio->bi_private;
7432 	struct inode *inode = done->inode;
7433 	struct bio_vec *bvec;
7434 	struct extent_io_tree *io_tree, *failure_tree;
7435 	struct bvec_iter_all iter_all;
7436 
7437 	if (bio->bi_status)
7438 		goto end;
7439 
7440 	ASSERT(bio->bi_vcnt == 1);
7441 	io_tree = &BTRFS_I(inode)->io_tree;
7442 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7443 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7444 
7445 	done->uptodate = 1;
7446 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7447 	bio_for_each_segment_all(bvec, bio, iter_all)
7448 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7449 				 io_tree, done->start, bvec->bv_page,
7450 				 btrfs_ino(BTRFS_I(inode)), 0);
7451 end:
7452 	complete(&done->done);
7453 	bio_put(bio);
7454 }
7455 
7456 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7457 						struct btrfs_io_bio *io_bio)
7458 {
7459 	struct btrfs_fs_info *fs_info;
7460 	struct bio_vec bvec;
7461 	struct bvec_iter iter;
7462 	struct btrfs_retry_complete done;
7463 	u64 start;
7464 	unsigned int pgoff;
7465 	u32 sectorsize;
7466 	int nr_sectors;
7467 	blk_status_t ret;
7468 	blk_status_t err = BLK_STS_OK;
7469 
7470 	fs_info = BTRFS_I(inode)->root->fs_info;
7471 	sectorsize = fs_info->sectorsize;
7472 
7473 	start = io_bio->logical;
7474 	done.inode = inode;
7475 	io_bio->bio.bi_iter = io_bio->iter;
7476 
7477 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7478 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7479 		pgoff = bvec.bv_offset;
7480 
7481 next_block_or_try_again:
7482 		done.uptodate = 0;
7483 		done.start = start;
7484 		init_completion(&done.done);
7485 
7486 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7487 				pgoff, start, start + sectorsize - 1,
7488 				io_bio->mirror_num,
7489 				btrfs_retry_endio_nocsum, &done);
7490 		if (ret) {
7491 			err = ret;
7492 			goto next;
7493 		}
7494 
7495 		wait_for_completion_io(&done.done);
7496 
7497 		if (!done.uptodate) {
7498 			/* We might have another mirror, so try again */
7499 			goto next_block_or_try_again;
7500 		}
7501 
7502 next:
7503 		start += sectorsize;
7504 
7505 		nr_sectors--;
7506 		if (nr_sectors) {
7507 			pgoff += sectorsize;
7508 			ASSERT(pgoff < PAGE_SIZE);
7509 			goto next_block_or_try_again;
7510 		}
7511 	}
7512 
7513 	return err;
7514 }
7515 
7516 static void btrfs_retry_endio(struct bio *bio)
7517 {
7518 	struct btrfs_retry_complete *done = bio->bi_private;
7519 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7520 	struct extent_io_tree *io_tree, *failure_tree;
7521 	struct inode *inode = done->inode;
7522 	struct bio_vec *bvec;
7523 	int uptodate;
7524 	int ret;
7525 	int i = 0;
7526 	struct bvec_iter_all iter_all;
7527 
7528 	if (bio->bi_status)
7529 		goto end;
7530 
7531 	uptodate = 1;
7532 
7533 	ASSERT(bio->bi_vcnt == 1);
7534 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7535 
7536 	io_tree = &BTRFS_I(inode)->io_tree;
7537 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7538 
7539 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7540 	bio_for_each_segment_all(bvec, bio, iter_all) {
7541 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7542 					     bvec->bv_offset, done->start,
7543 					     bvec->bv_len);
7544 		if (!ret)
7545 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7546 					 failure_tree, io_tree, done->start,
7547 					 bvec->bv_page,
7548 					 btrfs_ino(BTRFS_I(inode)),
7549 					 bvec->bv_offset);
7550 		else
7551 			uptodate = 0;
7552 		i++;
7553 	}
7554 
7555 	done->uptodate = uptodate;
7556 end:
7557 	complete(&done->done);
7558 	bio_put(bio);
7559 }
7560 
7561 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7562 		struct btrfs_io_bio *io_bio, blk_status_t err)
7563 {
7564 	struct btrfs_fs_info *fs_info;
7565 	struct bio_vec bvec;
7566 	struct bvec_iter iter;
7567 	struct btrfs_retry_complete done;
7568 	u64 start;
7569 	u64 offset = 0;
7570 	u32 sectorsize;
7571 	int nr_sectors;
7572 	unsigned int pgoff;
7573 	int csum_pos;
7574 	bool uptodate = (err == 0);
7575 	int ret;
7576 	blk_status_t status;
7577 
7578 	fs_info = BTRFS_I(inode)->root->fs_info;
7579 	sectorsize = fs_info->sectorsize;
7580 
7581 	err = BLK_STS_OK;
7582 	start = io_bio->logical;
7583 	done.inode = inode;
7584 	io_bio->bio.bi_iter = io_bio->iter;
7585 
7586 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7587 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7588 
7589 		pgoff = bvec.bv_offset;
7590 next_block:
7591 		if (uptodate) {
7592 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7593 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7594 					bvec.bv_page, pgoff, start, sectorsize);
7595 			if (likely(!ret))
7596 				goto next;
7597 		}
7598 try_again:
7599 		done.uptodate = 0;
7600 		done.start = start;
7601 		init_completion(&done.done);
7602 
7603 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7604 					pgoff, start, start + sectorsize - 1,
7605 					io_bio->mirror_num, btrfs_retry_endio,
7606 					&done);
7607 		if (status) {
7608 			err = status;
7609 			goto next;
7610 		}
7611 
7612 		wait_for_completion_io(&done.done);
7613 
7614 		if (!done.uptodate) {
7615 			/* We might have another mirror, so try again */
7616 			goto try_again;
7617 		}
7618 next:
7619 		offset += sectorsize;
7620 		start += sectorsize;
7621 
7622 		ASSERT(nr_sectors);
7623 
7624 		nr_sectors--;
7625 		if (nr_sectors) {
7626 			pgoff += sectorsize;
7627 			ASSERT(pgoff < PAGE_SIZE);
7628 			goto next_block;
7629 		}
7630 	}
7631 
7632 	return err;
7633 }
7634 
7635 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
7636 		struct btrfs_io_bio *io_bio, blk_status_t err)
7637 {
7638 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7639 
7640 	if (skip_csum) {
7641 		if (unlikely(err))
7642 			return __btrfs_correct_data_nocsum(inode, io_bio);
7643 		else
7644 			return BLK_STS_OK;
7645 	} else {
7646 		return __btrfs_subio_endio_read(inode, io_bio, err);
7647 	}
7648 }
7649 
7650 static void btrfs_endio_direct_read(struct bio *bio)
7651 {
7652 	struct btrfs_dio_private *dip = bio->bi_private;
7653 	struct inode *inode = dip->inode;
7654 	struct bio *dio_bio;
7655 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7656 	blk_status_t err = bio->bi_status;
7657 
7658 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7659 		err = btrfs_subio_endio_read(inode, io_bio, err);
7660 
7661 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7662 		      dip->logical_offset + dip->bytes - 1);
7663 	dio_bio = dip->dio_bio;
7664 
7665 	kfree(dip);
7666 
7667 	dio_bio->bi_status = err;
7668 	dio_end_io(dio_bio);
7669 	btrfs_io_bio_free_csum(io_bio);
7670 	bio_put(bio);
7671 }
7672 
7673 static void __endio_write_update_ordered(struct inode *inode,
7674 					 const u64 offset, const u64 bytes,
7675 					 const bool uptodate)
7676 {
7677 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7678 	struct btrfs_ordered_extent *ordered = NULL;
7679 	struct btrfs_workqueue *wq;
7680 	u64 ordered_offset = offset;
7681 	u64 ordered_bytes = bytes;
7682 	u64 last_offset;
7683 
7684 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
7685 		wq = fs_info->endio_freespace_worker;
7686 	else
7687 		wq = fs_info->endio_write_workers;
7688 
7689 	while (ordered_offset < offset + bytes) {
7690 		last_offset = ordered_offset;
7691 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7692 							   &ordered_offset,
7693 							   ordered_bytes,
7694 							   uptodate)) {
7695 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7696 					NULL);
7697 			btrfs_queue_work(wq, &ordered->work);
7698 		}
7699 		/*
7700 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7701 		 * extent in the range, we can exit.
7702 		 */
7703 		if (ordered_offset == last_offset)
7704 			return;
7705 		/*
7706 		 * Our bio might span multiple ordered extents. In this case
7707 		 * we keep going until we have accounted the whole dio.
7708 		 */
7709 		if (ordered_offset < offset + bytes) {
7710 			ordered_bytes = offset + bytes - ordered_offset;
7711 			ordered = NULL;
7712 		}
7713 	}
7714 }
7715 
7716 static void btrfs_endio_direct_write(struct bio *bio)
7717 {
7718 	struct btrfs_dio_private *dip = bio->bi_private;
7719 	struct bio *dio_bio = dip->dio_bio;
7720 
7721 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
7722 				     dip->bytes, !bio->bi_status);
7723 
7724 	kfree(dip);
7725 
7726 	dio_bio->bi_status = bio->bi_status;
7727 	dio_end_io(dio_bio);
7728 	bio_put(bio);
7729 }
7730 
7731 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7732 				    struct bio *bio, u64 offset)
7733 {
7734 	struct inode *inode = private_data;
7735 	blk_status_t ret;
7736 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
7737 	BUG_ON(ret); /* -ENOMEM */
7738 	return 0;
7739 }
7740 
7741 static void btrfs_end_dio_bio(struct bio *bio)
7742 {
7743 	struct btrfs_dio_private *dip = bio->bi_private;
7744 	blk_status_t err = bio->bi_status;
7745 
7746 	if (err)
7747 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7748 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7749 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7750 			   bio->bi_opf,
7751 			   (unsigned long long)bio->bi_iter.bi_sector,
7752 			   bio->bi_iter.bi_size, err);
7753 
7754 	if (dip->subio_endio)
7755 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7756 
7757 	if (err) {
7758 		/*
7759 		 * We want to perceive the errors flag being set before
7760 		 * decrementing the reference count. We don't need a barrier
7761 		 * since atomic operations with a return value are fully
7762 		 * ordered as per atomic_t.txt
7763 		 */
7764 		dip->errors = 1;
7765 	}
7766 
7767 	/* if there are more bios still pending for this dio, just exit */
7768 	if (!atomic_dec_and_test(&dip->pending_bios))
7769 		goto out;
7770 
7771 	if (dip->errors) {
7772 		bio_io_error(dip->orig_bio);
7773 	} else {
7774 		dip->dio_bio->bi_status = BLK_STS_OK;
7775 		bio_endio(dip->orig_bio);
7776 	}
7777 out:
7778 	bio_put(bio);
7779 }
7780 
7781 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
7782 						 struct btrfs_dio_private *dip,
7783 						 struct bio *bio,
7784 						 u64 file_offset)
7785 {
7786 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7787 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7788 	blk_status_t ret;
7789 
7790 	/*
7791 	 * We load all the csum data we need when we submit
7792 	 * the first bio to reduce the csum tree search and
7793 	 * contention.
7794 	 */
7795 	if (dip->logical_offset == file_offset) {
7796 		ret = btrfs_lookup_bio_sums(inode, dip->orig_bio, file_offset,
7797 					    NULL);
7798 		if (ret)
7799 			return ret;
7800 	}
7801 
7802 	if (bio == dip->orig_bio)
7803 		return 0;
7804 
7805 	file_offset -= dip->logical_offset;
7806 	file_offset >>= inode->i_sb->s_blocksize_bits;
7807 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7808 
7809 	return 0;
7810 }
7811 
7812 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7813 		struct inode *inode, u64 file_offset, int async_submit)
7814 {
7815 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7816 	struct btrfs_dio_private *dip = bio->bi_private;
7817 	bool write = bio_op(bio) == REQ_OP_WRITE;
7818 	blk_status_t ret;
7819 
7820 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7821 	if (async_submit)
7822 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7823 
7824 	if (!write) {
7825 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7826 		if (ret)
7827 			goto err;
7828 	}
7829 
7830 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7831 		goto map;
7832 
7833 	if (write && async_submit) {
7834 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7835 					  file_offset, inode,
7836 					  btrfs_submit_bio_start_direct_io);
7837 		goto err;
7838 	} else if (write) {
7839 		/*
7840 		 * If we aren't doing async submit, calculate the csum of the
7841 		 * bio now.
7842 		 */
7843 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
7844 		if (ret)
7845 			goto err;
7846 	} else {
7847 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
7848 						     file_offset);
7849 		if (ret)
7850 			goto err;
7851 	}
7852 map:
7853 	ret = btrfs_map_bio(fs_info, bio, 0);
7854 err:
7855 	return ret;
7856 }
7857 
7858 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
7859 {
7860 	struct inode *inode = dip->inode;
7861 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7862 	struct bio *bio;
7863 	struct bio *orig_bio = dip->orig_bio;
7864 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7865 	u64 file_offset = dip->logical_offset;
7866 	int async_submit = 0;
7867 	u64 submit_len;
7868 	int clone_offset = 0;
7869 	int clone_len;
7870 	int ret;
7871 	blk_status_t status;
7872 	struct btrfs_io_geometry geom;
7873 
7874 	submit_len = orig_bio->bi_iter.bi_size;
7875 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
7876 				    start_sector << 9, submit_len, &geom);
7877 	if (ret)
7878 		return -EIO;
7879 
7880 	if (geom.len >= submit_len) {
7881 		bio = orig_bio;
7882 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7883 		goto submit;
7884 	}
7885 
7886 	/* async crcs make it difficult to collect full stripe writes. */
7887 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7888 		async_submit = 0;
7889 	else
7890 		async_submit = 1;
7891 
7892 	/* bio split */
7893 	ASSERT(geom.len <= INT_MAX);
7894 	atomic_inc(&dip->pending_bios);
7895 	do {
7896 		clone_len = min_t(int, submit_len, geom.len);
7897 
7898 		/*
7899 		 * This will never fail as it's passing GPF_NOFS and
7900 		 * the allocation is backed by btrfs_bioset.
7901 		 */
7902 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
7903 					      clone_len);
7904 		bio->bi_private = dip;
7905 		bio->bi_end_io = btrfs_end_dio_bio;
7906 		btrfs_io_bio(bio)->logical = file_offset;
7907 
7908 		ASSERT(submit_len >= clone_len);
7909 		submit_len -= clone_len;
7910 		if (submit_len == 0)
7911 			break;
7912 
7913 		/*
7914 		 * Increase the count before we submit the bio so we know
7915 		 * the end IO handler won't happen before we increase the
7916 		 * count. Otherwise, the dip might get freed before we're
7917 		 * done setting it up.
7918 		 */
7919 		atomic_inc(&dip->pending_bios);
7920 
7921 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
7922 						async_submit);
7923 		if (status) {
7924 			bio_put(bio);
7925 			atomic_dec(&dip->pending_bios);
7926 			goto out_err;
7927 		}
7928 
7929 		clone_offset += clone_len;
7930 		start_sector += clone_len >> 9;
7931 		file_offset += clone_len;
7932 
7933 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
7934 				      start_sector << 9, submit_len, &geom);
7935 		if (ret)
7936 			goto out_err;
7937 	} while (submit_len > 0);
7938 
7939 submit:
7940 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
7941 	if (!status)
7942 		return 0;
7943 
7944 	bio_put(bio);
7945 out_err:
7946 	dip->errors = 1;
7947 	/*
7948 	 * Before atomic variable goto zero, we must  make sure dip->errors is
7949 	 * perceived to be set. This ordering is ensured by the fact that an
7950 	 * atomic operations with a return value are fully ordered as per
7951 	 * atomic_t.txt
7952 	 */
7953 	if (atomic_dec_and_test(&dip->pending_bios))
7954 		bio_io_error(dip->orig_bio);
7955 
7956 	/* bio_end_io() will handle error, so we needn't return it */
7957 	return 0;
7958 }
7959 
7960 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7961 				loff_t file_offset)
7962 {
7963 	struct btrfs_dio_private *dip = NULL;
7964 	struct bio *bio = NULL;
7965 	struct btrfs_io_bio *io_bio;
7966 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7967 	int ret = 0;
7968 
7969 	bio = btrfs_bio_clone(dio_bio);
7970 
7971 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
7972 	if (!dip) {
7973 		ret = -ENOMEM;
7974 		goto free_ordered;
7975 	}
7976 
7977 	dip->private = dio_bio->bi_private;
7978 	dip->inode = inode;
7979 	dip->logical_offset = file_offset;
7980 	dip->bytes = dio_bio->bi_iter.bi_size;
7981 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7982 	bio->bi_private = dip;
7983 	dip->orig_bio = bio;
7984 	dip->dio_bio = dio_bio;
7985 	atomic_set(&dip->pending_bios, 0);
7986 	io_bio = btrfs_io_bio(bio);
7987 	io_bio->logical = file_offset;
7988 
7989 	if (write) {
7990 		bio->bi_end_io = btrfs_endio_direct_write;
7991 	} else {
7992 		bio->bi_end_io = btrfs_endio_direct_read;
7993 		dip->subio_endio = btrfs_subio_endio_read;
7994 	}
7995 
7996 	/*
7997 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
7998 	 * even if we fail to submit a bio, because in such case we do the
7999 	 * corresponding error handling below and it must not be done a second
8000 	 * time by btrfs_direct_IO().
8001 	 */
8002 	if (write) {
8003 		struct btrfs_dio_data *dio_data = current->journal_info;
8004 
8005 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8006 			dip->bytes;
8007 		dio_data->unsubmitted_oe_range_start =
8008 			dio_data->unsubmitted_oe_range_end;
8009 	}
8010 
8011 	ret = btrfs_submit_direct_hook(dip);
8012 	if (!ret)
8013 		return;
8014 
8015 	btrfs_io_bio_free_csum(io_bio);
8016 
8017 free_ordered:
8018 	/*
8019 	 * If we arrived here it means either we failed to submit the dip
8020 	 * or we either failed to clone the dio_bio or failed to allocate the
8021 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8022 	 * call bio_endio against our io_bio so that we get proper resource
8023 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8024 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8025 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8026 	 */
8027 	if (bio && dip) {
8028 		bio_io_error(bio);
8029 		/*
8030 		 * The end io callbacks free our dip, do the final put on bio
8031 		 * and all the cleanup and final put for dio_bio (through
8032 		 * dio_end_io()).
8033 		 */
8034 		dip = NULL;
8035 		bio = NULL;
8036 	} else {
8037 		if (write)
8038 			__endio_write_update_ordered(inode,
8039 						file_offset,
8040 						dio_bio->bi_iter.bi_size,
8041 						false);
8042 		else
8043 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8044 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8045 
8046 		dio_bio->bi_status = BLK_STS_IOERR;
8047 		/*
8048 		 * Releases and cleans up our dio_bio, no need to bio_put()
8049 		 * nor bio_endio()/bio_io_error() against dio_bio.
8050 		 */
8051 		dio_end_io(dio_bio);
8052 	}
8053 	if (bio)
8054 		bio_put(bio);
8055 	kfree(dip);
8056 }
8057 
8058 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8059 			       const struct iov_iter *iter, loff_t offset)
8060 {
8061 	int seg;
8062 	int i;
8063 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8064 	ssize_t retval = -EINVAL;
8065 
8066 	if (offset & blocksize_mask)
8067 		goto out;
8068 
8069 	if (iov_iter_alignment(iter) & blocksize_mask)
8070 		goto out;
8071 
8072 	/* If this is a write we don't need to check anymore */
8073 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8074 		return 0;
8075 	/*
8076 	 * Check to make sure we don't have duplicate iov_base's in this
8077 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8078 	 * when reading back.
8079 	 */
8080 	for (seg = 0; seg < iter->nr_segs; seg++) {
8081 		for (i = seg + 1; i < iter->nr_segs; i++) {
8082 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8083 				goto out;
8084 		}
8085 	}
8086 	retval = 0;
8087 out:
8088 	return retval;
8089 }
8090 
8091 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8092 {
8093 	struct file *file = iocb->ki_filp;
8094 	struct inode *inode = file->f_mapping->host;
8095 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8096 	struct btrfs_dio_data dio_data = { 0 };
8097 	struct extent_changeset *data_reserved = NULL;
8098 	loff_t offset = iocb->ki_pos;
8099 	size_t count = 0;
8100 	int flags = 0;
8101 	bool wakeup = true;
8102 	bool relock = false;
8103 	ssize_t ret;
8104 
8105 	if (check_direct_IO(fs_info, iter, offset))
8106 		return 0;
8107 
8108 	inode_dio_begin(inode);
8109 
8110 	/*
8111 	 * The generic stuff only does filemap_write_and_wait_range, which
8112 	 * isn't enough if we've written compressed pages to this area, so
8113 	 * we need to flush the dirty pages again to make absolutely sure
8114 	 * that any outstanding dirty pages are on disk.
8115 	 */
8116 	count = iov_iter_count(iter);
8117 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8118 		     &BTRFS_I(inode)->runtime_flags))
8119 		filemap_fdatawrite_range(inode->i_mapping, offset,
8120 					 offset + count - 1);
8121 
8122 	if (iov_iter_rw(iter) == WRITE) {
8123 		/*
8124 		 * If the write DIO is beyond the EOF, we need update
8125 		 * the isize, but it is protected by i_mutex. So we can
8126 		 * not unlock the i_mutex at this case.
8127 		 */
8128 		if (offset + count <= inode->i_size) {
8129 			dio_data.overwrite = 1;
8130 			inode_unlock(inode);
8131 			relock = true;
8132 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8133 			ret = -EAGAIN;
8134 			goto out;
8135 		}
8136 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8137 						   offset, count);
8138 		if (ret)
8139 			goto out;
8140 
8141 		/*
8142 		 * We need to know how many extents we reserved so that we can
8143 		 * do the accounting properly if we go over the number we
8144 		 * originally calculated.  Abuse current->journal_info for this.
8145 		 */
8146 		dio_data.reserve = round_up(count,
8147 					    fs_info->sectorsize);
8148 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8149 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8150 		current->journal_info = &dio_data;
8151 		down_read(&BTRFS_I(inode)->dio_sem);
8152 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8153 				     &BTRFS_I(inode)->runtime_flags)) {
8154 		inode_dio_end(inode);
8155 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8156 		wakeup = false;
8157 	}
8158 
8159 	ret = __blockdev_direct_IO(iocb, inode,
8160 				   fs_info->fs_devices->latest_bdev,
8161 				   iter, btrfs_get_blocks_direct, NULL,
8162 				   btrfs_submit_direct, flags);
8163 	if (iov_iter_rw(iter) == WRITE) {
8164 		up_read(&BTRFS_I(inode)->dio_sem);
8165 		current->journal_info = NULL;
8166 		if (ret < 0 && ret != -EIOCBQUEUED) {
8167 			if (dio_data.reserve)
8168 				btrfs_delalloc_release_space(inode, data_reserved,
8169 					offset, dio_data.reserve, true);
8170 			/*
8171 			 * On error we might have left some ordered extents
8172 			 * without submitting corresponding bios for them, so
8173 			 * cleanup them up to avoid other tasks getting them
8174 			 * and waiting for them to complete forever.
8175 			 */
8176 			if (dio_data.unsubmitted_oe_range_start <
8177 			    dio_data.unsubmitted_oe_range_end)
8178 				__endio_write_update_ordered(inode,
8179 					dio_data.unsubmitted_oe_range_start,
8180 					dio_data.unsubmitted_oe_range_end -
8181 					dio_data.unsubmitted_oe_range_start,
8182 					false);
8183 		} else if (ret >= 0 && (size_t)ret < count)
8184 			btrfs_delalloc_release_space(inode, data_reserved,
8185 					offset, count - (size_t)ret, true);
8186 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8187 	}
8188 out:
8189 	if (wakeup)
8190 		inode_dio_end(inode);
8191 	if (relock)
8192 		inode_lock(inode);
8193 
8194 	extent_changeset_free(data_reserved);
8195 	return ret;
8196 }
8197 
8198 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8199 
8200 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8201 		__u64 start, __u64 len)
8202 {
8203 	int	ret;
8204 
8205 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8206 	if (ret)
8207 		return ret;
8208 
8209 	return extent_fiemap(inode, fieinfo, start, len);
8210 }
8211 
8212 int btrfs_readpage(struct file *file, struct page *page)
8213 {
8214 	struct extent_io_tree *tree;
8215 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8216 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8217 }
8218 
8219 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8220 {
8221 	struct inode *inode = page->mapping->host;
8222 	int ret;
8223 
8224 	if (current->flags & PF_MEMALLOC) {
8225 		redirty_page_for_writepage(wbc, page);
8226 		unlock_page(page);
8227 		return 0;
8228 	}
8229 
8230 	/*
8231 	 * If we are under memory pressure we will call this directly from the
8232 	 * VM, we need to make sure we have the inode referenced for the ordered
8233 	 * extent.  If not just return like we didn't do anything.
8234 	 */
8235 	if (!igrab(inode)) {
8236 		redirty_page_for_writepage(wbc, page);
8237 		return AOP_WRITEPAGE_ACTIVATE;
8238 	}
8239 	ret = extent_write_full_page(page, wbc);
8240 	btrfs_add_delayed_iput(inode);
8241 	return ret;
8242 }
8243 
8244 static int btrfs_writepages(struct address_space *mapping,
8245 			    struct writeback_control *wbc)
8246 {
8247 	return extent_writepages(mapping, wbc);
8248 }
8249 
8250 static int
8251 btrfs_readpages(struct file *file, struct address_space *mapping,
8252 		struct list_head *pages, unsigned nr_pages)
8253 {
8254 	return extent_readpages(mapping, pages, nr_pages);
8255 }
8256 
8257 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8258 {
8259 	int ret = try_release_extent_mapping(page, gfp_flags);
8260 	if (ret == 1) {
8261 		ClearPagePrivate(page);
8262 		set_page_private(page, 0);
8263 		put_page(page);
8264 	}
8265 	return ret;
8266 }
8267 
8268 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8269 {
8270 	if (PageWriteback(page) || PageDirty(page))
8271 		return 0;
8272 	return __btrfs_releasepage(page, gfp_flags);
8273 }
8274 
8275 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8276 				 unsigned int length)
8277 {
8278 	struct inode *inode = page->mapping->host;
8279 	struct extent_io_tree *tree;
8280 	struct btrfs_ordered_extent *ordered;
8281 	struct extent_state *cached_state = NULL;
8282 	u64 page_start = page_offset(page);
8283 	u64 page_end = page_start + PAGE_SIZE - 1;
8284 	u64 start;
8285 	u64 end;
8286 	int inode_evicting = inode->i_state & I_FREEING;
8287 
8288 	/*
8289 	 * we have the page locked, so new writeback can't start,
8290 	 * and the dirty bit won't be cleared while we are here.
8291 	 *
8292 	 * Wait for IO on this page so that we can safely clear
8293 	 * the PagePrivate2 bit and do ordered accounting
8294 	 */
8295 	wait_on_page_writeback(page);
8296 
8297 	tree = &BTRFS_I(inode)->io_tree;
8298 	if (offset) {
8299 		btrfs_releasepage(page, GFP_NOFS);
8300 		return;
8301 	}
8302 
8303 	if (!inode_evicting)
8304 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8305 again:
8306 	start = page_start;
8307 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8308 					page_end - start + 1);
8309 	if (ordered) {
8310 		end = min(page_end,
8311 			  ordered->file_offset + ordered->num_bytes - 1);
8312 		/*
8313 		 * IO on this page will never be started, so we need
8314 		 * to account for any ordered extents now
8315 		 */
8316 		if (!inode_evicting)
8317 			clear_extent_bit(tree, start, end,
8318 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8319 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8320 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8321 		/*
8322 		 * whoever cleared the private bit is responsible
8323 		 * for the finish_ordered_io
8324 		 */
8325 		if (TestClearPagePrivate2(page)) {
8326 			struct btrfs_ordered_inode_tree *tree;
8327 			u64 new_len;
8328 
8329 			tree = &BTRFS_I(inode)->ordered_tree;
8330 
8331 			spin_lock_irq(&tree->lock);
8332 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8333 			new_len = start - ordered->file_offset;
8334 			if (new_len < ordered->truncated_len)
8335 				ordered->truncated_len = new_len;
8336 			spin_unlock_irq(&tree->lock);
8337 
8338 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8339 							   start,
8340 							   end - start + 1, 1))
8341 				btrfs_finish_ordered_io(ordered);
8342 		}
8343 		btrfs_put_ordered_extent(ordered);
8344 		if (!inode_evicting) {
8345 			cached_state = NULL;
8346 			lock_extent_bits(tree, start, end,
8347 					 &cached_state);
8348 		}
8349 
8350 		start = end + 1;
8351 		if (start < page_end)
8352 			goto again;
8353 	}
8354 
8355 	/*
8356 	 * Qgroup reserved space handler
8357 	 * Page here will be either
8358 	 * 1) Already written to disk
8359 	 *    In this case, its reserved space is released from data rsv map
8360 	 *    and will be freed by delayed_ref handler finally.
8361 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8362 	 *    space.
8363 	 * 2) Not written to disk
8364 	 *    This means the reserved space should be freed here. However,
8365 	 *    if a truncate invalidates the page (by clearing PageDirty)
8366 	 *    and the page is accounted for while allocating extent
8367 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8368 	 *    free the entire extent.
8369 	 */
8370 	if (PageDirty(page))
8371 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8372 	if (!inode_evicting) {
8373 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8374 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8375 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8376 				 &cached_state);
8377 
8378 		__btrfs_releasepage(page, GFP_NOFS);
8379 	}
8380 
8381 	ClearPageChecked(page);
8382 	if (PagePrivate(page)) {
8383 		ClearPagePrivate(page);
8384 		set_page_private(page, 0);
8385 		put_page(page);
8386 	}
8387 }
8388 
8389 /*
8390  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8391  * called from a page fault handler when a page is first dirtied. Hence we must
8392  * be careful to check for EOF conditions here. We set the page up correctly
8393  * for a written page which means we get ENOSPC checking when writing into
8394  * holes and correct delalloc and unwritten extent mapping on filesystems that
8395  * support these features.
8396  *
8397  * We are not allowed to take the i_mutex here so we have to play games to
8398  * protect against truncate races as the page could now be beyond EOF.  Because
8399  * truncate_setsize() writes the inode size before removing pages, once we have
8400  * the page lock we can determine safely if the page is beyond EOF. If it is not
8401  * beyond EOF, then the page is guaranteed safe against truncation until we
8402  * unlock the page.
8403  */
8404 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8405 {
8406 	struct page *page = vmf->page;
8407 	struct inode *inode = file_inode(vmf->vma->vm_file);
8408 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8409 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8410 	struct btrfs_ordered_extent *ordered;
8411 	struct extent_state *cached_state = NULL;
8412 	struct extent_changeset *data_reserved = NULL;
8413 	char *kaddr;
8414 	unsigned long zero_start;
8415 	loff_t size;
8416 	vm_fault_t ret;
8417 	int ret2;
8418 	int reserved = 0;
8419 	u64 reserved_space;
8420 	u64 page_start;
8421 	u64 page_end;
8422 	u64 end;
8423 
8424 	reserved_space = PAGE_SIZE;
8425 
8426 	sb_start_pagefault(inode->i_sb);
8427 	page_start = page_offset(page);
8428 	page_end = page_start + PAGE_SIZE - 1;
8429 	end = page_end;
8430 
8431 	/*
8432 	 * Reserving delalloc space after obtaining the page lock can lead to
8433 	 * deadlock. For example, if a dirty page is locked by this function
8434 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8435 	 * dirty page write out, then the btrfs_writepage() function could
8436 	 * end up waiting indefinitely to get a lock on the page currently
8437 	 * being processed by btrfs_page_mkwrite() function.
8438 	 */
8439 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8440 					   reserved_space);
8441 	if (!ret2) {
8442 		ret2 = file_update_time(vmf->vma->vm_file);
8443 		reserved = 1;
8444 	}
8445 	if (ret2) {
8446 		ret = vmf_error(ret2);
8447 		if (reserved)
8448 			goto out;
8449 		goto out_noreserve;
8450 	}
8451 
8452 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8453 again:
8454 	lock_page(page);
8455 	size = i_size_read(inode);
8456 
8457 	if ((page->mapping != inode->i_mapping) ||
8458 	    (page_start >= size)) {
8459 		/* page got truncated out from underneath us */
8460 		goto out_unlock;
8461 	}
8462 	wait_on_page_writeback(page);
8463 
8464 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8465 	set_page_extent_mapped(page);
8466 
8467 	/*
8468 	 * we can't set the delalloc bits if there are pending ordered
8469 	 * extents.  Drop our locks and wait for them to finish
8470 	 */
8471 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8472 			PAGE_SIZE);
8473 	if (ordered) {
8474 		unlock_extent_cached(io_tree, page_start, page_end,
8475 				     &cached_state);
8476 		unlock_page(page);
8477 		btrfs_start_ordered_extent(inode, ordered, 1);
8478 		btrfs_put_ordered_extent(ordered);
8479 		goto again;
8480 	}
8481 
8482 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8483 		reserved_space = round_up(size - page_start,
8484 					  fs_info->sectorsize);
8485 		if (reserved_space < PAGE_SIZE) {
8486 			end = page_start + reserved_space - 1;
8487 			btrfs_delalloc_release_space(inode, data_reserved,
8488 					page_start, PAGE_SIZE - reserved_space,
8489 					true);
8490 		}
8491 	}
8492 
8493 	/*
8494 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8495 	 * faulted in, but write(2) could also dirty a page and set delalloc
8496 	 * bits, thus in this case for space account reason, we still need to
8497 	 * clear any delalloc bits within this page range since we have to
8498 	 * reserve data&meta space before lock_page() (see above comments).
8499 	 */
8500 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8501 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8502 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8503 
8504 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8505 					&cached_state);
8506 	if (ret2) {
8507 		unlock_extent_cached(io_tree, page_start, page_end,
8508 				     &cached_state);
8509 		ret = VM_FAULT_SIGBUS;
8510 		goto out_unlock;
8511 	}
8512 
8513 	/* page is wholly or partially inside EOF */
8514 	if (page_start + PAGE_SIZE > size)
8515 		zero_start = offset_in_page(size);
8516 	else
8517 		zero_start = PAGE_SIZE;
8518 
8519 	if (zero_start != PAGE_SIZE) {
8520 		kaddr = kmap(page);
8521 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8522 		flush_dcache_page(page);
8523 		kunmap(page);
8524 	}
8525 	ClearPageChecked(page);
8526 	set_page_dirty(page);
8527 	SetPageUptodate(page);
8528 
8529 	BTRFS_I(inode)->last_trans = fs_info->generation;
8530 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8531 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8532 
8533 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8534 
8535 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8536 	sb_end_pagefault(inode->i_sb);
8537 	extent_changeset_free(data_reserved);
8538 	return VM_FAULT_LOCKED;
8539 
8540 out_unlock:
8541 	unlock_page(page);
8542 out:
8543 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8544 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8545 				     reserved_space, (ret != 0));
8546 out_noreserve:
8547 	sb_end_pagefault(inode->i_sb);
8548 	extent_changeset_free(data_reserved);
8549 	return ret;
8550 }
8551 
8552 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8553 {
8554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8555 	struct btrfs_root *root = BTRFS_I(inode)->root;
8556 	struct btrfs_block_rsv *rsv;
8557 	int ret;
8558 	struct btrfs_trans_handle *trans;
8559 	u64 mask = fs_info->sectorsize - 1;
8560 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8561 
8562 	if (!skip_writeback) {
8563 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8564 					       (u64)-1);
8565 		if (ret)
8566 			return ret;
8567 	}
8568 
8569 	/*
8570 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8571 	 * things going on here:
8572 	 *
8573 	 * 1) We need to reserve space to update our inode.
8574 	 *
8575 	 * 2) We need to have something to cache all the space that is going to
8576 	 * be free'd up by the truncate operation, but also have some slack
8577 	 * space reserved in case it uses space during the truncate (thank you
8578 	 * very much snapshotting).
8579 	 *
8580 	 * And we need these to be separate.  The fact is we can use a lot of
8581 	 * space doing the truncate, and we have no earthly idea how much space
8582 	 * we will use, so we need the truncate reservation to be separate so it
8583 	 * doesn't end up using space reserved for updating the inode.  We also
8584 	 * need to be able to stop the transaction and start a new one, which
8585 	 * means we need to be able to update the inode several times, and we
8586 	 * have no idea of knowing how many times that will be, so we can't just
8587 	 * reserve 1 item for the entirety of the operation, so that has to be
8588 	 * done separately as well.
8589 	 *
8590 	 * So that leaves us with
8591 	 *
8592 	 * 1) rsv - for the truncate reservation, which we will steal from the
8593 	 * transaction reservation.
8594 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8595 	 * updating the inode.
8596 	 */
8597 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8598 	if (!rsv)
8599 		return -ENOMEM;
8600 	rsv->size = min_size;
8601 	rsv->failfast = 1;
8602 
8603 	/*
8604 	 * 1 for the truncate slack space
8605 	 * 1 for updating the inode.
8606 	 */
8607 	trans = btrfs_start_transaction(root, 2);
8608 	if (IS_ERR(trans)) {
8609 		ret = PTR_ERR(trans);
8610 		goto out;
8611 	}
8612 
8613 	/* Migrate the slack space for the truncate to our reserve */
8614 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8615 				      min_size, false);
8616 	BUG_ON(ret);
8617 
8618 	/*
8619 	 * So if we truncate and then write and fsync we normally would just
8620 	 * write the extents that changed, which is a problem if we need to
8621 	 * first truncate that entire inode.  So set this flag so we write out
8622 	 * all of the extents in the inode to the sync log so we're completely
8623 	 * safe.
8624 	 */
8625 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8626 	trans->block_rsv = rsv;
8627 
8628 	while (1) {
8629 		ret = btrfs_truncate_inode_items(trans, root, inode,
8630 						 inode->i_size,
8631 						 BTRFS_EXTENT_DATA_KEY);
8632 		trans->block_rsv = &fs_info->trans_block_rsv;
8633 		if (ret != -ENOSPC && ret != -EAGAIN)
8634 			break;
8635 
8636 		ret = btrfs_update_inode(trans, root, inode);
8637 		if (ret)
8638 			break;
8639 
8640 		btrfs_end_transaction(trans);
8641 		btrfs_btree_balance_dirty(fs_info);
8642 
8643 		trans = btrfs_start_transaction(root, 2);
8644 		if (IS_ERR(trans)) {
8645 			ret = PTR_ERR(trans);
8646 			trans = NULL;
8647 			break;
8648 		}
8649 
8650 		btrfs_block_rsv_release(fs_info, rsv, -1);
8651 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8652 					      rsv, min_size, false);
8653 		BUG_ON(ret);	/* shouldn't happen */
8654 		trans->block_rsv = rsv;
8655 	}
8656 
8657 	/*
8658 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8659 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8660 	 * we've truncated everything except the last little bit, and can do
8661 	 * btrfs_truncate_block and then update the disk_i_size.
8662 	 */
8663 	if (ret == NEED_TRUNCATE_BLOCK) {
8664 		btrfs_end_transaction(trans);
8665 		btrfs_btree_balance_dirty(fs_info);
8666 
8667 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8668 		if (ret)
8669 			goto out;
8670 		trans = btrfs_start_transaction(root, 1);
8671 		if (IS_ERR(trans)) {
8672 			ret = PTR_ERR(trans);
8673 			goto out;
8674 		}
8675 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
8676 	}
8677 
8678 	if (trans) {
8679 		int ret2;
8680 
8681 		trans->block_rsv = &fs_info->trans_block_rsv;
8682 		ret2 = btrfs_update_inode(trans, root, inode);
8683 		if (ret2 && !ret)
8684 			ret = ret2;
8685 
8686 		ret2 = btrfs_end_transaction(trans);
8687 		if (ret2 && !ret)
8688 			ret = ret2;
8689 		btrfs_btree_balance_dirty(fs_info);
8690 	}
8691 out:
8692 	btrfs_free_block_rsv(fs_info, rsv);
8693 
8694 	return ret;
8695 }
8696 
8697 /*
8698  * create a new subvolume directory/inode (helper for the ioctl).
8699  */
8700 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8701 			     struct btrfs_root *new_root,
8702 			     struct btrfs_root *parent_root,
8703 			     u64 new_dirid)
8704 {
8705 	struct inode *inode;
8706 	int err;
8707 	u64 index = 0;
8708 
8709 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8710 				new_dirid, new_dirid,
8711 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8712 				&index);
8713 	if (IS_ERR(inode))
8714 		return PTR_ERR(inode);
8715 	inode->i_op = &btrfs_dir_inode_operations;
8716 	inode->i_fop = &btrfs_dir_file_operations;
8717 
8718 	set_nlink(inode, 1);
8719 	btrfs_i_size_write(BTRFS_I(inode), 0);
8720 	unlock_new_inode(inode);
8721 
8722 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8723 	if (err)
8724 		btrfs_err(new_root->fs_info,
8725 			  "error inheriting subvolume %llu properties: %d",
8726 			  new_root->root_key.objectid, err);
8727 
8728 	err = btrfs_update_inode(trans, new_root, inode);
8729 
8730 	iput(inode);
8731 	return err;
8732 }
8733 
8734 struct inode *btrfs_alloc_inode(struct super_block *sb)
8735 {
8736 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8737 	struct btrfs_inode *ei;
8738 	struct inode *inode;
8739 
8740 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8741 	if (!ei)
8742 		return NULL;
8743 
8744 	ei->root = NULL;
8745 	ei->generation = 0;
8746 	ei->last_trans = 0;
8747 	ei->last_sub_trans = 0;
8748 	ei->logged_trans = 0;
8749 	ei->delalloc_bytes = 0;
8750 	ei->new_delalloc_bytes = 0;
8751 	ei->defrag_bytes = 0;
8752 	ei->disk_i_size = 0;
8753 	ei->flags = 0;
8754 	ei->csum_bytes = 0;
8755 	ei->index_cnt = (u64)-1;
8756 	ei->dir_index = 0;
8757 	ei->last_unlink_trans = 0;
8758 	ei->last_log_commit = 0;
8759 
8760 	spin_lock_init(&ei->lock);
8761 	ei->outstanding_extents = 0;
8762 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8763 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8764 					      BTRFS_BLOCK_RSV_DELALLOC);
8765 	ei->runtime_flags = 0;
8766 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8767 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8768 
8769 	ei->delayed_node = NULL;
8770 
8771 	ei->i_otime.tv_sec = 0;
8772 	ei->i_otime.tv_nsec = 0;
8773 
8774 	inode = &ei->vfs_inode;
8775 	extent_map_tree_init(&ei->extent_tree);
8776 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8777 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8778 			    IO_TREE_INODE_IO_FAILURE, inode);
8779 	ei->io_tree.track_uptodate = true;
8780 	ei->io_failure_tree.track_uptodate = true;
8781 	atomic_set(&ei->sync_writers, 0);
8782 	mutex_init(&ei->log_mutex);
8783 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8784 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8785 	INIT_LIST_HEAD(&ei->delayed_iput);
8786 	RB_CLEAR_NODE(&ei->rb_node);
8787 	init_rwsem(&ei->dio_sem);
8788 
8789 	return inode;
8790 }
8791 
8792 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8793 void btrfs_test_destroy_inode(struct inode *inode)
8794 {
8795 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8796 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8797 }
8798 #endif
8799 
8800 void btrfs_free_inode(struct inode *inode)
8801 {
8802 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8803 }
8804 
8805 void btrfs_destroy_inode(struct inode *inode)
8806 {
8807 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8808 	struct btrfs_ordered_extent *ordered;
8809 	struct btrfs_root *root = BTRFS_I(inode)->root;
8810 
8811 	WARN_ON(!hlist_empty(&inode->i_dentry));
8812 	WARN_ON(inode->i_data.nrpages);
8813 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8814 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
8815 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8816 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8817 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8818 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8819 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8820 
8821 	/*
8822 	 * This can happen where we create an inode, but somebody else also
8823 	 * created the same inode and we need to destroy the one we already
8824 	 * created.
8825 	 */
8826 	if (!root)
8827 		return;
8828 
8829 	while (1) {
8830 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8831 		if (!ordered)
8832 			break;
8833 		else {
8834 			btrfs_err(fs_info,
8835 				  "found ordered extent %llu %llu on inode cleanup",
8836 				  ordered->file_offset, ordered->num_bytes);
8837 			btrfs_remove_ordered_extent(inode, ordered);
8838 			btrfs_put_ordered_extent(ordered);
8839 			btrfs_put_ordered_extent(ordered);
8840 		}
8841 	}
8842 	btrfs_qgroup_check_reserved_leak(inode);
8843 	inode_tree_del(inode);
8844 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8845 }
8846 
8847 int btrfs_drop_inode(struct inode *inode)
8848 {
8849 	struct btrfs_root *root = BTRFS_I(inode)->root;
8850 
8851 	if (root == NULL)
8852 		return 1;
8853 
8854 	/* the snap/subvol tree is on deleting */
8855 	if (btrfs_root_refs(&root->root_item) == 0)
8856 		return 1;
8857 	else
8858 		return generic_drop_inode(inode);
8859 }
8860 
8861 static void init_once(void *foo)
8862 {
8863 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8864 
8865 	inode_init_once(&ei->vfs_inode);
8866 }
8867 
8868 void __cold btrfs_destroy_cachep(void)
8869 {
8870 	/*
8871 	 * Make sure all delayed rcu free inodes are flushed before we
8872 	 * destroy cache.
8873 	 */
8874 	rcu_barrier();
8875 	kmem_cache_destroy(btrfs_inode_cachep);
8876 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8877 	kmem_cache_destroy(btrfs_path_cachep);
8878 	kmem_cache_destroy(btrfs_free_space_cachep);
8879 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8880 }
8881 
8882 int __init btrfs_init_cachep(void)
8883 {
8884 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8885 			sizeof(struct btrfs_inode), 0,
8886 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8887 			init_once);
8888 	if (!btrfs_inode_cachep)
8889 		goto fail;
8890 
8891 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8892 			sizeof(struct btrfs_trans_handle), 0,
8893 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8894 	if (!btrfs_trans_handle_cachep)
8895 		goto fail;
8896 
8897 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8898 			sizeof(struct btrfs_path), 0,
8899 			SLAB_MEM_SPREAD, NULL);
8900 	if (!btrfs_path_cachep)
8901 		goto fail;
8902 
8903 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8904 			sizeof(struct btrfs_free_space), 0,
8905 			SLAB_MEM_SPREAD, NULL);
8906 	if (!btrfs_free_space_cachep)
8907 		goto fail;
8908 
8909 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8910 							PAGE_SIZE, PAGE_SIZE,
8911 							SLAB_RED_ZONE, NULL);
8912 	if (!btrfs_free_space_bitmap_cachep)
8913 		goto fail;
8914 
8915 	return 0;
8916 fail:
8917 	btrfs_destroy_cachep();
8918 	return -ENOMEM;
8919 }
8920 
8921 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8922 			 u32 request_mask, unsigned int flags)
8923 {
8924 	u64 delalloc_bytes;
8925 	struct inode *inode = d_inode(path->dentry);
8926 	u32 blocksize = inode->i_sb->s_blocksize;
8927 	u32 bi_flags = BTRFS_I(inode)->flags;
8928 
8929 	stat->result_mask |= STATX_BTIME;
8930 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8931 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8932 	if (bi_flags & BTRFS_INODE_APPEND)
8933 		stat->attributes |= STATX_ATTR_APPEND;
8934 	if (bi_flags & BTRFS_INODE_COMPRESS)
8935 		stat->attributes |= STATX_ATTR_COMPRESSED;
8936 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8937 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8938 	if (bi_flags & BTRFS_INODE_NODUMP)
8939 		stat->attributes |= STATX_ATTR_NODUMP;
8940 
8941 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8942 				  STATX_ATTR_COMPRESSED |
8943 				  STATX_ATTR_IMMUTABLE |
8944 				  STATX_ATTR_NODUMP);
8945 
8946 	generic_fillattr(inode, stat);
8947 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8948 
8949 	spin_lock(&BTRFS_I(inode)->lock);
8950 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8951 	spin_unlock(&BTRFS_I(inode)->lock);
8952 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8953 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8954 	return 0;
8955 }
8956 
8957 static int btrfs_rename_exchange(struct inode *old_dir,
8958 			      struct dentry *old_dentry,
8959 			      struct inode *new_dir,
8960 			      struct dentry *new_dentry)
8961 {
8962 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8963 	struct btrfs_trans_handle *trans;
8964 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8965 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8966 	struct inode *new_inode = new_dentry->d_inode;
8967 	struct inode *old_inode = old_dentry->d_inode;
8968 	struct timespec64 ctime = current_time(old_inode);
8969 	struct dentry *parent;
8970 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8971 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8972 	u64 old_idx = 0;
8973 	u64 new_idx = 0;
8974 	int ret;
8975 	bool root_log_pinned = false;
8976 	bool dest_log_pinned = false;
8977 	struct btrfs_log_ctx ctx_root;
8978 	struct btrfs_log_ctx ctx_dest;
8979 	bool sync_log_root = false;
8980 	bool sync_log_dest = false;
8981 	bool commit_transaction = false;
8982 
8983 	/* we only allow rename subvolume link between subvolumes */
8984 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8985 		return -EXDEV;
8986 
8987 	btrfs_init_log_ctx(&ctx_root, old_inode);
8988 	btrfs_init_log_ctx(&ctx_dest, new_inode);
8989 
8990 	/* close the race window with snapshot create/destroy ioctl */
8991 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8992 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8993 		down_read(&fs_info->subvol_sem);
8994 
8995 	/*
8996 	 * We want to reserve the absolute worst case amount of items.  So if
8997 	 * both inodes are subvols and we need to unlink them then that would
8998 	 * require 4 item modifications, but if they are both normal inodes it
8999 	 * would require 5 item modifications, so we'll assume their normal
9000 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9001 	 * should cover the worst case number of items we'll modify.
9002 	 */
9003 	trans = btrfs_start_transaction(root, 12);
9004 	if (IS_ERR(trans)) {
9005 		ret = PTR_ERR(trans);
9006 		goto out_notrans;
9007 	}
9008 
9009 	if (dest != root)
9010 		btrfs_record_root_in_trans(trans, dest);
9011 
9012 	/*
9013 	 * We need to find a free sequence number both in the source and
9014 	 * in the destination directory for the exchange.
9015 	 */
9016 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9017 	if (ret)
9018 		goto out_fail;
9019 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9020 	if (ret)
9021 		goto out_fail;
9022 
9023 	BTRFS_I(old_inode)->dir_index = 0ULL;
9024 	BTRFS_I(new_inode)->dir_index = 0ULL;
9025 
9026 	/* Reference for the source. */
9027 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9028 		/* force full log commit if subvolume involved. */
9029 		btrfs_set_log_full_commit(trans);
9030 	} else {
9031 		btrfs_pin_log_trans(root);
9032 		root_log_pinned = true;
9033 		ret = btrfs_insert_inode_ref(trans, dest,
9034 					     new_dentry->d_name.name,
9035 					     new_dentry->d_name.len,
9036 					     old_ino,
9037 					     btrfs_ino(BTRFS_I(new_dir)),
9038 					     old_idx);
9039 		if (ret)
9040 			goto out_fail;
9041 	}
9042 
9043 	/* And now for the dest. */
9044 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9045 		/* force full log commit if subvolume involved. */
9046 		btrfs_set_log_full_commit(trans);
9047 	} else {
9048 		btrfs_pin_log_trans(dest);
9049 		dest_log_pinned = true;
9050 		ret = btrfs_insert_inode_ref(trans, root,
9051 					     old_dentry->d_name.name,
9052 					     old_dentry->d_name.len,
9053 					     new_ino,
9054 					     btrfs_ino(BTRFS_I(old_dir)),
9055 					     new_idx);
9056 		if (ret)
9057 			goto out_fail;
9058 	}
9059 
9060 	/* Update inode version and ctime/mtime. */
9061 	inode_inc_iversion(old_dir);
9062 	inode_inc_iversion(new_dir);
9063 	inode_inc_iversion(old_inode);
9064 	inode_inc_iversion(new_inode);
9065 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9066 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9067 	old_inode->i_ctime = ctime;
9068 	new_inode->i_ctime = ctime;
9069 
9070 	if (old_dentry->d_parent != new_dentry->d_parent) {
9071 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9072 				BTRFS_I(old_inode), 1);
9073 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9074 				BTRFS_I(new_inode), 1);
9075 	}
9076 
9077 	/* src is a subvolume */
9078 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9079 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9080 	} else { /* src is an inode */
9081 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9082 					   BTRFS_I(old_dentry->d_inode),
9083 					   old_dentry->d_name.name,
9084 					   old_dentry->d_name.len);
9085 		if (!ret)
9086 			ret = btrfs_update_inode(trans, root, old_inode);
9087 	}
9088 	if (ret) {
9089 		btrfs_abort_transaction(trans, ret);
9090 		goto out_fail;
9091 	}
9092 
9093 	/* dest is a subvolume */
9094 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9095 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9096 	} else { /* dest is an inode */
9097 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9098 					   BTRFS_I(new_dentry->d_inode),
9099 					   new_dentry->d_name.name,
9100 					   new_dentry->d_name.len);
9101 		if (!ret)
9102 			ret = btrfs_update_inode(trans, dest, new_inode);
9103 	}
9104 	if (ret) {
9105 		btrfs_abort_transaction(trans, ret);
9106 		goto out_fail;
9107 	}
9108 
9109 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9110 			     new_dentry->d_name.name,
9111 			     new_dentry->d_name.len, 0, old_idx);
9112 	if (ret) {
9113 		btrfs_abort_transaction(trans, ret);
9114 		goto out_fail;
9115 	}
9116 
9117 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9118 			     old_dentry->d_name.name,
9119 			     old_dentry->d_name.len, 0, new_idx);
9120 	if (ret) {
9121 		btrfs_abort_transaction(trans, ret);
9122 		goto out_fail;
9123 	}
9124 
9125 	if (old_inode->i_nlink == 1)
9126 		BTRFS_I(old_inode)->dir_index = old_idx;
9127 	if (new_inode->i_nlink == 1)
9128 		BTRFS_I(new_inode)->dir_index = new_idx;
9129 
9130 	if (root_log_pinned) {
9131 		parent = new_dentry->d_parent;
9132 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9133 					 BTRFS_I(old_dir), parent,
9134 					 false, &ctx_root);
9135 		if (ret == BTRFS_NEED_LOG_SYNC)
9136 			sync_log_root = true;
9137 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9138 			commit_transaction = true;
9139 		ret = 0;
9140 		btrfs_end_log_trans(root);
9141 		root_log_pinned = false;
9142 	}
9143 	if (dest_log_pinned) {
9144 		if (!commit_transaction) {
9145 			parent = old_dentry->d_parent;
9146 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9147 						 BTRFS_I(new_dir), parent,
9148 						 false, &ctx_dest);
9149 			if (ret == BTRFS_NEED_LOG_SYNC)
9150 				sync_log_dest = true;
9151 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9152 				commit_transaction = true;
9153 			ret = 0;
9154 		}
9155 		btrfs_end_log_trans(dest);
9156 		dest_log_pinned = false;
9157 	}
9158 out_fail:
9159 	/*
9160 	 * If we have pinned a log and an error happened, we unpin tasks
9161 	 * trying to sync the log and force them to fallback to a transaction
9162 	 * commit if the log currently contains any of the inodes involved in
9163 	 * this rename operation (to ensure we do not persist a log with an
9164 	 * inconsistent state for any of these inodes or leading to any
9165 	 * inconsistencies when replayed). If the transaction was aborted, the
9166 	 * abortion reason is propagated to userspace when attempting to commit
9167 	 * the transaction. If the log does not contain any of these inodes, we
9168 	 * allow the tasks to sync it.
9169 	 */
9170 	if (ret && (root_log_pinned || dest_log_pinned)) {
9171 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9172 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9173 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9174 		    (new_inode &&
9175 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9176 			btrfs_set_log_full_commit(trans);
9177 
9178 		if (root_log_pinned) {
9179 			btrfs_end_log_trans(root);
9180 			root_log_pinned = false;
9181 		}
9182 		if (dest_log_pinned) {
9183 			btrfs_end_log_trans(dest);
9184 			dest_log_pinned = false;
9185 		}
9186 	}
9187 	if (!ret && sync_log_root && !commit_transaction) {
9188 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9189 				     &ctx_root);
9190 		if (ret)
9191 			commit_transaction = true;
9192 	}
9193 	if (!ret && sync_log_dest && !commit_transaction) {
9194 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9195 				     &ctx_dest);
9196 		if (ret)
9197 			commit_transaction = true;
9198 	}
9199 	if (commit_transaction) {
9200 		/*
9201 		 * We may have set commit_transaction when logging the new name
9202 		 * in the destination root, in which case we left the source
9203 		 * root context in the list of log contextes. So make sure we
9204 		 * remove it to avoid invalid memory accesses, since the context
9205 		 * was allocated in our stack frame.
9206 		 */
9207 		if (sync_log_root) {
9208 			mutex_lock(&root->log_mutex);
9209 			list_del_init(&ctx_root.list);
9210 			mutex_unlock(&root->log_mutex);
9211 		}
9212 		ret = btrfs_commit_transaction(trans);
9213 	} else {
9214 		int ret2;
9215 
9216 		ret2 = btrfs_end_transaction(trans);
9217 		ret = ret ? ret : ret2;
9218 	}
9219 out_notrans:
9220 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9221 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9222 		up_read(&fs_info->subvol_sem);
9223 
9224 	ASSERT(list_empty(&ctx_root.list));
9225 	ASSERT(list_empty(&ctx_dest.list));
9226 
9227 	return ret;
9228 }
9229 
9230 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9231 				     struct btrfs_root *root,
9232 				     struct inode *dir,
9233 				     struct dentry *dentry)
9234 {
9235 	int ret;
9236 	struct inode *inode;
9237 	u64 objectid;
9238 	u64 index;
9239 
9240 	ret = btrfs_find_free_ino(root, &objectid);
9241 	if (ret)
9242 		return ret;
9243 
9244 	inode = btrfs_new_inode(trans, root, dir,
9245 				dentry->d_name.name,
9246 				dentry->d_name.len,
9247 				btrfs_ino(BTRFS_I(dir)),
9248 				objectid,
9249 				S_IFCHR | WHITEOUT_MODE,
9250 				&index);
9251 
9252 	if (IS_ERR(inode)) {
9253 		ret = PTR_ERR(inode);
9254 		return ret;
9255 	}
9256 
9257 	inode->i_op = &btrfs_special_inode_operations;
9258 	init_special_inode(inode, inode->i_mode,
9259 		WHITEOUT_DEV);
9260 
9261 	ret = btrfs_init_inode_security(trans, inode, dir,
9262 				&dentry->d_name);
9263 	if (ret)
9264 		goto out;
9265 
9266 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9267 				BTRFS_I(inode), 0, index);
9268 	if (ret)
9269 		goto out;
9270 
9271 	ret = btrfs_update_inode(trans, root, inode);
9272 out:
9273 	unlock_new_inode(inode);
9274 	if (ret)
9275 		inode_dec_link_count(inode);
9276 	iput(inode);
9277 
9278 	return ret;
9279 }
9280 
9281 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9282 			   struct inode *new_dir, struct dentry *new_dentry,
9283 			   unsigned int flags)
9284 {
9285 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9286 	struct btrfs_trans_handle *trans;
9287 	unsigned int trans_num_items;
9288 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9289 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9290 	struct inode *new_inode = d_inode(new_dentry);
9291 	struct inode *old_inode = d_inode(old_dentry);
9292 	u64 index = 0;
9293 	int ret;
9294 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9295 	bool log_pinned = false;
9296 	struct btrfs_log_ctx ctx;
9297 	bool sync_log = false;
9298 	bool commit_transaction = false;
9299 
9300 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9301 		return -EPERM;
9302 
9303 	/* we only allow rename subvolume link between subvolumes */
9304 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9305 		return -EXDEV;
9306 
9307 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9308 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9309 		return -ENOTEMPTY;
9310 
9311 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9312 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9313 		return -ENOTEMPTY;
9314 
9315 
9316 	/* check for collisions, even if the  name isn't there */
9317 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9318 			     new_dentry->d_name.name,
9319 			     new_dentry->d_name.len);
9320 
9321 	if (ret) {
9322 		if (ret == -EEXIST) {
9323 			/* we shouldn't get
9324 			 * eexist without a new_inode */
9325 			if (WARN_ON(!new_inode)) {
9326 				return ret;
9327 			}
9328 		} else {
9329 			/* maybe -EOVERFLOW */
9330 			return ret;
9331 		}
9332 	}
9333 	ret = 0;
9334 
9335 	/*
9336 	 * we're using rename to replace one file with another.  Start IO on it
9337 	 * now so  we don't add too much work to the end of the transaction
9338 	 */
9339 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9340 		filemap_flush(old_inode->i_mapping);
9341 
9342 	/* close the racy window with snapshot create/destroy ioctl */
9343 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9344 		down_read(&fs_info->subvol_sem);
9345 	/*
9346 	 * We want to reserve the absolute worst case amount of items.  So if
9347 	 * both inodes are subvols and we need to unlink them then that would
9348 	 * require 4 item modifications, but if they are both normal inodes it
9349 	 * would require 5 item modifications, so we'll assume they are normal
9350 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9351 	 * should cover the worst case number of items we'll modify.
9352 	 * If our rename has the whiteout flag, we need more 5 units for the
9353 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9354 	 * when selinux is enabled).
9355 	 */
9356 	trans_num_items = 11;
9357 	if (flags & RENAME_WHITEOUT)
9358 		trans_num_items += 5;
9359 	trans = btrfs_start_transaction(root, trans_num_items);
9360 	if (IS_ERR(trans)) {
9361 		ret = PTR_ERR(trans);
9362 		goto out_notrans;
9363 	}
9364 
9365 	if (dest != root)
9366 		btrfs_record_root_in_trans(trans, dest);
9367 
9368 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9369 	if (ret)
9370 		goto out_fail;
9371 
9372 	BTRFS_I(old_inode)->dir_index = 0ULL;
9373 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9374 		/* force full log commit if subvolume involved. */
9375 		btrfs_set_log_full_commit(trans);
9376 	} else {
9377 		btrfs_pin_log_trans(root);
9378 		log_pinned = true;
9379 		ret = btrfs_insert_inode_ref(trans, dest,
9380 					     new_dentry->d_name.name,
9381 					     new_dentry->d_name.len,
9382 					     old_ino,
9383 					     btrfs_ino(BTRFS_I(new_dir)), index);
9384 		if (ret)
9385 			goto out_fail;
9386 	}
9387 
9388 	inode_inc_iversion(old_dir);
9389 	inode_inc_iversion(new_dir);
9390 	inode_inc_iversion(old_inode);
9391 	old_dir->i_ctime = old_dir->i_mtime =
9392 	new_dir->i_ctime = new_dir->i_mtime =
9393 	old_inode->i_ctime = current_time(old_dir);
9394 
9395 	if (old_dentry->d_parent != new_dentry->d_parent)
9396 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9397 				BTRFS_I(old_inode), 1);
9398 
9399 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9400 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9401 	} else {
9402 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9403 					BTRFS_I(d_inode(old_dentry)),
9404 					old_dentry->d_name.name,
9405 					old_dentry->d_name.len);
9406 		if (!ret)
9407 			ret = btrfs_update_inode(trans, root, old_inode);
9408 	}
9409 	if (ret) {
9410 		btrfs_abort_transaction(trans, ret);
9411 		goto out_fail;
9412 	}
9413 
9414 	if (new_inode) {
9415 		inode_inc_iversion(new_inode);
9416 		new_inode->i_ctime = current_time(new_inode);
9417 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9418 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9419 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9420 			BUG_ON(new_inode->i_nlink == 0);
9421 		} else {
9422 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9423 						 BTRFS_I(d_inode(new_dentry)),
9424 						 new_dentry->d_name.name,
9425 						 new_dentry->d_name.len);
9426 		}
9427 		if (!ret && new_inode->i_nlink == 0)
9428 			ret = btrfs_orphan_add(trans,
9429 					BTRFS_I(d_inode(new_dentry)));
9430 		if (ret) {
9431 			btrfs_abort_transaction(trans, ret);
9432 			goto out_fail;
9433 		}
9434 	}
9435 
9436 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9437 			     new_dentry->d_name.name,
9438 			     new_dentry->d_name.len, 0, index);
9439 	if (ret) {
9440 		btrfs_abort_transaction(trans, ret);
9441 		goto out_fail;
9442 	}
9443 
9444 	if (old_inode->i_nlink == 1)
9445 		BTRFS_I(old_inode)->dir_index = index;
9446 
9447 	if (log_pinned) {
9448 		struct dentry *parent = new_dentry->d_parent;
9449 
9450 		btrfs_init_log_ctx(&ctx, old_inode);
9451 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9452 					 BTRFS_I(old_dir), parent,
9453 					 false, &ctx);
9454 		if (ret == BTRFS_NEED_LOG_SYNC)
9455 			sync_log = true;
9456 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9457 			commit_transaction = true;
9458 		ret = 0;
9459 		btrfs_end_log_trans(root);
9460 		log_pinned = false;
9461 	}
9462 
9463 	if (flags & RENAME_WHITEOUT) {
9464 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9465 						old_dentry);
9466 
9467 		if (ret) {
9468 			btrfs_abort_transaction(trans, ret);
9469 			goto out_fail;
9470 		}
9471 	}
9472 out_fail:
9473 	/*
9474 	 * If we have pinned the log and an error happened, we unpin tasks
9475 	 * trying to sync the log and force them to fallback to a transaction
9476 	 * commit if the log currently contains any of the inodes involved in
9477 	 * this rename operation (to ensure we do not persist a log with an
9478 	 * inconsistent state for any of these inodes or leading to any
9479 	 * inconsistencies when replayed). If the transaction was aborted, the
9480 	 * abortion reason is propagated to userspace when attempting to commit
9481 	 * the transaction. If the log does not contain any of these inodes, we
9482 	 * allow the tasks to sync it.
9483 	 */
9484 	if (ret && log_pinned) {
9485 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9486 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9487 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9488 		    (new_inode &&
9489 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9490 			btrfs_set_log_full_commit(trans);
9491 
9492 		btrfs_end_log_trans(root);
9493 		log_pinned = false;
9494 	}
9495 	if (!ret && sync_log) {
9496 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9497 		if (ret)
9498 			commit_transaction = true;
9499 	}
9500 	if (commit_transaction) {
9501 		ret = btrfs_commit_transaction(trans);
9502 	} else {
9503 		int ret2;
9504 
9505 		ret2 = btrfs_end_transaction(trans);
9506 		ret = ret ? ret : ret2;
9507 	}
9508 out_notrans:
9509 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9510 		up_read(&fs_info->subvol_sem);
9511 
9512 	return ret;
9513 }
9514 
9515 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9516 			 struct inode *new_dir, struct dentry *new_dentry,
9517 			 unsigned int flags)
9518 {
9519 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9520 		return -EINVAL;
9521 
9522 	if (flags & RENAME_EXCHANGE)
9523 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9524 					  new_dentry);
9525 
9526 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9527 }
9528 
9529 struct btrfs_delalloc_work {
9530 	struct inode *inode;
9531 	struct completion completion;
9532 	struct list_head list;
9533 	struct btrfs_work work;
9534 };
9535 
9536 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9537 {
9538 	struct btrfs_delalloc_work *delalloc_work;
9539 	struct inode *inode;
9540 
9541 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9542 				     work);
9543 	inode = delalloc_work->inode;
9544 	filemap_flush(inode->i_mapping);
9545 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9546 				&BTRFS_I(inode)->runtime_flags))
9547 		filemap_flush(inode->i_mapping);
9548 
9549 	iput(inode);
9550 	complete(&delalloc_work->completion);
9551 }
9552 
9553 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9554 {
9555 	struct btrfs_delalloc_work *work;
9556 
9557 	work = kmalloc(sizeof(*work), GFP_NOFS);
9558 	if (!work)
9559 		return NULL;
9560 
9561 	init_completion(&work->completion);
9562 	INIT_LIST_HEAD(&work->list);
9563 	work->inode = inode;
9564 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9565 
9566 	return work;
9567 }
9568 
9569 /*
9570  * some fairly slow code that needs optimization. This walks the list
9571  * of all the inodes with pending delalloc and forces them to disk.
9572  */
9573 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9574 {
9575 	struct btrfs_inode *binode;
9576 	struct inode *inode;
9577 	struct btrfs_delalloc_work *work, *next;
9578 	struct list_head works;
9579 	struct list_head splice;
9580 	int ret = 0;
9581 
9582 	INIT_LIST_HEAD(&works);
9583 	INIT_LIST_HEAD(&splice);
9584 
9585 	mutex_lock(&root->delalloc_mutex);
9586 	spin_lock(&root->delalloc_lock);
9587 	list_splice_init(&root->delalloc_inodes, &splice);
9588 	while (!list_empty(&splice)) {
9589 		binode = list_entry(splice.next, struct btrfs_inode,
9590 				    delalloc_inodes);
9591 
9592 		list_move_tail(&binode->delalloc_inodes,
9593 			       &root->delalloc_inodes);
9594 		inode = igrab(&binode->vfs_inode);
9595 		if (!inode) {
9596 			cond_resched_lock(&root->delalloc_lock);
9597 			continue;
9598 		}
9599 		spin_unlock(&root->delalloc_lock);
9600 
9601 		if (snapshot)
9602 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9603 				&binode->runtime_flags);
9604 		work = btrfs_alloc_delalloc_work(inode);
9605 		if (!work) {
9606 			iput(inode);
9607 			ret = -ENOMEM;
9608 			goto out;
9609 		}
9610 		list_add_tail(&work->list, &works);
9611 		btrfs_queue_work(root->fs_info->flush_workers,
9612 				 &work->work);
9613 		ret++;
9614 		if (nr != -1 && ret >= nr)
9615 			goto out;
9616 		cond_resched();
9617 		spin_lock(&root->delalloc_lock);
9618 	}
9619 	spin_unlock(&root->delalloc_lock);
9620 
9621 out:
9622 	list_for_each_entry_safe(work, next, &works, list) {
9623 		list_del_init(&work->list);
9624 		wait_for_completion(&work->completion);
9625 		kfree(work);
9626 	}
9627 
9628 	if (!list_empty(&splice)) {
9629 		spin_lock(&root->delalloc_lock);
9630 		list_splice_tail(&splice, &root->delalloc_inodes);
9631 		spin_unlock(&root->delalloc_lock);
9632 	}
9633 	mutex_unlock(&root->delalloc_mutex);
9634 	return ret;
9635 }
9636 
9637 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9638 {
9639 	struct btrfs_fs_info *fs_info = root->fs_info;
9640 	int ret;
9641 
9642 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9643 		return -EROFS;
9644 
9645 	ret = start_delalloc_inodes(root, -1, true);
9646 	if (ret > 0)
9647 		ret = 0;
9648 	return ret;
9649 }
9650 
9651 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9652 {
9653 	struct btrfs_root *root;
9654 	struct list_head splice;
9655 	int ret;
9656 
9657 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9658 		return -EROFS;
9659 
9660 	INIT_LIST_HEAD(&splice);
9661 
9662 	mutex_lock(&fs_info->delalloc_root_mutex);
9663 	spin_lock(&fs_info->delalloc_root_lock);
9664 	list_splice_init(&fs_info->delalloc_roots, &splice);
9665 	while (!list_empty(&splice) && nr) {
9666 		root = list_first_entry(&splice, struct btrfs_root,
9667 					delalloc_root);
9668 		root = btrfs_grab_fs_root(root);
9669 		BUG_ON(!root);
9670 		list_move_tail(&root->delalloc_root,
9671 			       &fs_info->delalloc_roots);
9672 		spin_unlock(&fs_info->delalloc_root_lock);
9673 
9674 		ret = start_delalloc_inodes(root, nr, false);
9675 		btrfs_put_fs_root(root);
9676 		if (ret < 0)
9677 			goto out;
9678 
9679 		if (nr != -1) {
9680 			nr -= ret;
9681 			WARN_ON(nr < 0);
9682 		}
9683 		spin_lock(&fs_info->delalloc_root_lock);
9684 	}
9685 	spin_unlock(&fs_info->delalloc_root_lock);
9686 
9687 	ret = 0;
9688 out:
9689 	if (!list_empty(&splice)) {
9690 		spin_lock(&fs_info->delalloc_root_lock);
9691 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9692 		spin_unlock(&fs_info->delalloc_root_lock);
9693 	}
9694 	mutex_unlock(&fs_info->delalloc_root_mutex);
9695 	return ret;
9696 }
9697 
9698 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9699 			 const char *symname)
9700 {
9701 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9702 	struct btrfs_trans_handle *trans;
9703 	struct btrfs_root *root = BTRFS_I(dir)->root;
9704 	struct btrfs_path *path;
9705 	struct btrfs_key key;
9706 	struct inode *inode = NULL;
9707 	int err;
9708 	u64 objectid;
9709 	u64 index = 0;
9710 	int name_len;
9711 	int datasize;
9712 	unsigned long ptr;
9713 	struct btrfs_file_extent_item *ei;
9714 	struct extent_buffer *leaf;
9715 
9716 	name_len = strlen(symname);
9717 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9718 		return -ENAMETOOLONG;
9719 
9720 	/*
9721 	 * 2 items for inode item and ref
9722 	 * 2 items for dir items
9723 	 * 1 item for updating parent inode item
9724 	 * 1 item for the inline extent item
9725 	 * 1 item for xattr if selinux is on
9726 	 */
9727 	trans = btrfs_start_transaction(root, 7);
9728 	if (IS_ERR(trans))
9729 		return PTR_ERR(trans);
9730 
9731 	err = btrfs_find_free_ino(root, &objectid);
9732 	if (err)
9733 		goto out_unlock;
9734 
9735 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9736 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9737 				objectid, S_IFLNK|S_IRWXUGO, &index);
9738 	if (IS_ERR(inode)) {
9739 		err = PTR_ERR(inode);
9740 		inode = NULL;
9741 		goto out_unlock;
9742 	}
9743 
9744 	/*
9745 	* If the active LSM wants to access the inode during
9746 	* d_instantiate it needs these. Smack checks to see
9747 	* if the filesystem supports xattrs by looking at the
9748 	* ops vector.
9749 	*/
9750 	inode->i_fop = &btrfs_file_operations;
9751 	inode->i_op = &btrfs_file_inode_operations;
9752 	inode->i_mapping->a_ops = &btrfs_aops;
9753 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9754 
9755 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9756 	if (err)
9757 		goto out_unlock;
9758 
9759 	path = btrfs_alloc_path();
9760 	if (!path) {
9761 		err = -ENOMEM;
9762 		goto out_unlock;
9763 	}
9764 	key.objectid = btrfs_ino(BTRFS_I(inode));
9765 	key.offset = 0;
9766 	key.type = BTRFS_EXTENT_DATA_KEY;
9767 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9768 	err = btrfs_insert_empty_item(trans, root, path, &key,
9769 				      datasize);
9770 	if (err) {
9771 		btrfs_free_path(path);
9772 		goto out_unlock;
9773 	}
9774 	leaf = path->nodes[0];
9775 	ei = btrfs_item_ptr(leaf, path->slots[0],
9776 			    struct btrfs_file_extent_item);
9777 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9778 	btrfs_set_file_extent_type(leaf, ei,
9779 				   BTRFS_FILE_EXTENT_INLINE);
9780 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9781 	btrfs_set_file_extent_compression(leaf, ei, 0);
9782 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9783 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9784 
9785 	ptr = btrfs_file_extent_inline_start(ei);
9786 	write_extent_buffer(leaf, symname, ptr, name_len);
9787 	btrfs_mark_buffer_dirty(leaf);
9788 	btrfs_free_path(path);
9789 
9790 	inode->i_op = &btrfs_symlink_inode_operations;
9791 	inode_nohighmem(inode);
9792 	inode_set_bytes(inode, name_len);
9793 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9794 	err = btrfs_update_inode(trans, root, inode);
9795 	/*
9796 	 * Last step, add directory indexes for our symlink inode. This is the
9797 	 * last step to avoid extra cleanup of these indexes if an error happens
9798 	 * elsewhere above.
9799 	 */
9800 	if (!err)
9801 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9802 				BTRFS_I(inode), 0, index);
9803 	if (err)
9804 		goto out_unlock;
9805 
9806 	d_instantiate_new(dentry, inode);
9807 
9808 out_unlock:
9809 	btrfs_end_transaction(trans);
9810 	if (err && inode) {
9811 		inode_dec_link_count(inode);
9812 		discard_new_inode(inode);
9813 	}
9814 	btrfs_btree_balance_dirty(fs_info);
9815 	return err;
9816 }
9817 
9818 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9819 				       u64 start, u64 num_bytes, u64 min_size,
9820 				       loff_t actual_len, u64 *alloc_hint,
9821 				       struct btrfs_trans_handle *trans)
9822 {
9823 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9824 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9825 	struct extent_map *em;
9826 	struct btrfs_root *root = BTRFS_I(inode)->root;
9827 	struct btrfs_key ins;
9828 	u64 cur_offset = start;
9829 	u64 i_size;
9830 	u64 cur_bytes;
9831 	u64 last_alloc = (u64)-1;
9832 	int ret = 0;
9833 	bool own_trans = true;
9834 	u64 end = start + num_bytes - 1;
9835 
9836 	if (trans)
9837 		own_trans = false;
9838 	while (num_bytes > 0) {
9839 		if (own_trans) {
9840 			trans = btrfs_start_transaction(root, 3);
9841 			if (IS_ERR(trans)) {
9842 				ret = PTR_ERR(trans);
9843 				break;
9844 			}
9845 		}
9846 
9847 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9848 		cur_bytes = max(cur_bytes, min_size);
9849 		/*
9850 		 * If we are severely fragmented we could end up with really
9851 		 * small allocations, so if the allocator is returning small
9852 		 * chunks lets make its job easier by only searching for those
9853 		 * sized chunks.
9854 		 */
9855 		cur_bytes = min(cur_bytes, last_alloc);
9856 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9857 				min_size, 0, *alloc_hint, &ins, 1, 0);
9858 		if (ret) {
9859 			if (own_trans)
9860 				btrfs_end_transaction(trans);
9861 			break;
9862 		}
9863 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9864 
9865 		last_alloc = ins.offset;
9866 		ret = insert_reserved_file_extent(trans, inode,
9867 						  cur_offset, ins.objectid,
9868 						  ins.offset, ins.offset,
9869 						  ins.offset, 0, 0, 0,
9870 						  BTRFS_FILE_EXTENT_PREALLOC);
9871 		if (ret) {
9872 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9873 						   ins.offset, 0);
9874 			btrfs_abort_transaction(trans, ret);
9875 			if (own_trans)
9876 				btrfs_end_transaction(trans);
9877 			break;
9878 		}
9879 
9880 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9881 					cur_offset + ins.offset -1, 0);
9882 
9883 		em = alloc_extent_map();
9884 		if (!em) {
9885 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9886 				&BTRFS_I(inode)->runtime_flags);
9887 			goto next;
9888 		}
9889 
9890 		em->start = cur_offset;
9891 		em->orig_start = cur_offset;
9892 		em->len = ins.offset;
9893 		em->block_start = ins.objectid;
9894 		em->block_len = ins.offset;
9895 		em->orig_block_len = ins.offset;
9896 		em->ram_bytes = ins.offset;
9897 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9898 		em->generation = trans->transid;
9899 
9900 		while (1) {
9901 			write_lock(&em_tree->lock);
9902 			ret = add_extent_mapping(em_tree, em, 1);
9903 			write_unlock(&em_tree->lock);
9904 			if (ret != -EEXIST)
9905 				break;
9906 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9907 						cur_offset + ins.offset - 1,
9908 						0);
9909 		}
9910 		free_extent_map(em);
9911 next:
9912 		num_bytes -= ins.offset;
9913 		cur_offset += ins.offset;
9914 		*alloc_hint = ins.objectid + ins.offset;
9915 
9916 		inode_inc_iversion(inode);
9917 		inode->i_ctime = current_time(inode);
9918 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9919 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9920 		    (actual_len > inode->i_size) &&
9921 		    (cur_offset > inode->i_size)) {
9922 			if (cur_offset > actual_len)
9923 				i_size = actual_len;
9924 			else
9925 				i_size = cur_offset;
9926 			i_size_write(inode, i_size);
9927 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9928 		}
9929 
9930 		ret = btrfs_update_inode(trans, root, inode);
9931 
9932 		if (ret) {
9933 			btrfs_abort_transaction(trans, ret);
9934 			if (own_trans)
9935 				btrfs_end_transaction(trans);
9936 			break;
9937 		}
9938 
9939 		if (own_trans)
9940 			btrfs_end_transaction(trans);
9941 	}
9942 	if (cur_offset < end)
9943 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
9944 			end - cur_offset + 1);
9945 	return ret;
9946 }
9947 
9948 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9949 			      u64 start, u64 num_bytes, u64 min_size,
9950 			      loff_t actual_len, u64 *alloc_hint)
9951 {
9952 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9953 					   min_size, actual_len, alloc_hint,
9954 					   NULL);
9955 }
9956 
9957 int btrfs_prealloc_file_range_trans(struct inode *inode,
9958 				    struct btrfs_trans_handle *trans, int mode,
9959 				    u64 start, u64 num_bytes, u64 min_size,
9960 				    loff_t actual_len, u64 *alloc_hint)
9961 {
9962 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9963 					   min_size, actual_len, alloc_hint, trans);
9964 }
9965 
9966 static int btrfs_set_page_dirty(struct page *page)
9967 {
9968 	return __set_page_dirty_nobuffers(page);
9969 }
9970 
9971 static int btrfs_permission(struct inode *inode, int mask)
9972 {
9973 	struct btrfs_root *root = BTRFS_I(inode)->root;
9974 	umode_t mode = inode->i_mode;
9975 
9976 	if (mask & MAY_WRITE &&
9977 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9978 		if (btrfs_root_readonly(root))
9979 			return -EROFS;
9980 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9981 			return -EACCES;
9982 	}
9983 	return generic_permission(inode, mask);
9984 }
9985 
9986 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9987 {
9988 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9989 	struct btrfs_trans_handle *trans;
9990 	struct btrfs_root *root = BTRFS_I(dir)->root;
9991 	struct inode *inode = NULL;
9992 	u64 objectid;
9993 	u64 index;
9994 	int ret = 0;
9995 
9996 	/*
9997 	 * 5 units required for adding orphan entry
9998 	 */
9999 	trans = btrfs_start_transaction(root, 5);
10000 	if (IS_ERR(trans))
10001 		return PTR_ERR(trans);
10002 
10003 	ret = btrfs_find_free_ino(root, &objectid);
10004 	if (ret)
10005 		goto out;
10006 
10007 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10008 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10009 	if (IS_ERR(inode)) {
10010 		ret = PTR_ERR(inode);
10011 		inode = NULL;
10012 		goto out;
10013 	}
10014 
10015 	inode->i_fop = &btrfs_file_operations;
10016 	inode->i_op = &btrfs_file_inode_operations;
10017 
10018 	inode->i_mapping->a_ops = &btrfs_aops;
10019 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10020 
10021 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10022 	if (ret)
10023 		goto out;
10024 
10025 	ret = btrfs_update_inode(trans, root, inode);
10026 	if (ret)
10027 		goto out;
10028 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10029 	if (ret)
10030 		goto out;
10031 
10032 	/*
10033 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10034 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10035 	 * through:
10036 	 *
10037 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10038 	 */
10039 	set_nlink(inode, 1);
10040 	d_tmpfile(dentry, inode);
10041 	unlock_new_inode(inode);
10042 	mark_inode_dirty(inode);
10043 out:
10044 	btrfs_end_transaction(trans);
10045 	if (ret && inode)
10046 		discard_new_inode(inode);
10047 	btrfs_btree_balance_dirty(fs_info);
10048 	return ret;
10049 }
10050 
10051 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10052 {
10053 	struct inode *inode = tree->private_data;
10054 	unsigned long index = start >> PAGE_SHIFT;
10055 	unsigned long end_index = end >> PAGE_SHIFT;
10056 	struct page *page;
10057 
10058 	while (index <= end_index) {
10059 		page = find_get_page(inode->i_mapping, index);
10060 		ASSERT(page); /* Pages should be in the extent_io_tree */
10061 		set_page_writeback(page);
10062 		put_page(page);
10063 		index++;
10064 	}
10065 }
10066 
10067 #ifdef CONFIG_SWAP
10068 /*
10069  * Add an entry indicating a block group or device which is pinned by a
10070  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10071  * negative errno on failure.
10072  */
10073 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10074 				  bool is_block_group)
10075 {
10076 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10077 	struct btrfs_swapfile_pin *sp, *entry;
10078 	struct rb_node **p;
10079 	struct rb_node *parent = NULL;
10080 
10081 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10082 	if (!sp)
10083 		return -ENOMEM;
10084 	sp->ptr = ptr;
10085 	sp->inode = inode;
10086 	sp->is_block_group = is_block_group;
10087 
10088 	spin_lock(&fs_info->swapfile_pins_lock);
10089 	p = &fs_info->swapfile_pins.rb_node;
10090 	while (*p) {
10091 		parent = *p;
10092 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10093 		if (sp->ptr < entry->ptr ||
10094 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10095 			p = &(*p)->rb_left;
10096 		} else if (sp->ptr > entry->ptr ||
10097 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10098 			p = &(*p)->rb_right;
10099 		} else {
10100 			spin_unlock(&fs_info->swapfile_pins_lock);
10101 			kfree(sp);
10102 			return 1;
10103 		}
10104 	}
10105 	rb_link_node(&sp->node, parent, p);
10106 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10107 	spin_unlock(&fs_info->swapfile_pins_lock);
10108 	return 0;
10109 }
10110 
10111 /* Free all of the entries pinned by this swapfile. */
10112 static void btrfs_free_swapfile_pins(struct inode *inode)
10113 {
10114 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10115 	struct btrfs_swapfile_pin *sp;
10116 	struct rb_node *node, *next;
10117 
10118 	spin_lock(&fs_info->swapfile_pins_lock);
10119 	node = rb_first(&fs_info->swapfile_pins);
10120 	while (node) {
10121 		next = rb_next(node);
10122 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10123 		if (sp->inode == inode) {
10124 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10125 			if (sp->is_block_group)
10126 				btrfs_put_block_group(sp->ptr);
10127 			kfree(sp);
10128 		}
10129 		node = next;
10130 	}
10131 	spin_unlock(&fs_info->swapfile_pins_lock);
10132 }
10133 
10134 struct btrfs_swap_info {
10135 	u64 start;
10136 	u64 block_start;
10137 	u64 block_len;
10138 	u64 lowest_ppage;
10139 	u64 highest_ppage;
10140 	unsigned long nr_pages;
10141 	int nr_extents;
10142 };
10143 
10144 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10145 				 struct btrfs_swap_info *bsi)
10146 {
10147 	unsigned long nr_pages;
10148 	u64 first_ppage, first_ppage_reported, next_ppage;
10149 	int ret;
10150 
10151 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10152 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10153 				PAGE_SIZE) >> PAGE_SHIFT;
10154 
10155 	if (first_ppage >= next_ppage)
10156 		return 0;
10157 	nr_pages = next_ppage - first_ppage;
10158 
10159 	first_ppage_reported = first_ppage;
10160 	if (bsi->start == 0)
10161 		first_ppage_reported++;
10162 	if (bsi->lowest_ppage > first_ppage_reported)
10163 		bsi->lowest_ppage = first_ppage_reported;
10164 	if (bsi->highest_ppage < (next_ppage - 1))
10165 		bsi->highest_ppage = next_ppage - 1;
10166 
10167 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10168 	if (ret < 0)
10169 		return ret;
10170 	bsi->nr_extents += ret;
10171 	bsi->nr_pages += nr_pages;
10172 	return 0;
10173 }
10174 
10175 static void btrfs_swap_deactivate(struct file *file)
10176 {
10177 	struct inode *inode = file_inode(file);
10178 
10179 	btrfs_free_swapfile_pins(inode);
10180 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10181 }
10182 
10183 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10184 			       sector_t *span)
10185 {
10186 	struct inode *inode = file_inode(file);
10187 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10188 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10189 	struct extent_state *cached_state = NULL;
10190 	struct extent_map *em = NULL;
10191 	struct btrfs_device *device = NULL;
10192 	struct btrfs_swap_info bsi = {
10193 		.lowest_ppage = (sector_t)-1ULL,
10194 	};
10195 	int ret = 0;
10196 	u64 isize;
10197 	u64 start;
10198 
10199 	/*
10200 	 * If the swap file was just created, make sure delalloc is done. If the
10201 	 * file changes again after this, the user is doing something stupid and
10202 	 * we don't really care.
10203 	 */
10204 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10205 	if (ret)
10206 		return ret;
10207 
10208 	/*
10209 	 * The inode is locked, so these flags won't change after we check them.
10210 	 */
10211 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10212 		btrfs_warn(fs_info, "swapfile must not be compressed");
10213 		return -EINVAL;
10214 	}
10215 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10216 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10217 		return -EINVAL;
10218 	}
10219 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10220 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10221 		return -EINVAL;
10222 	}
10223 
10224 	/*
10225 	 * Balance or device remove/replace/resize can move stuff around from
10226 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10227 	 * concurrently while we are mapping the swap extents, and
10228 	 * fs_info->swapfile_pins prevents them from running while the swap file
10229 	 * is active and moving the extents. Note that this also prevents a
10230 	 * concurrent device add which isn't actually necessary, but it's not
10231 	 * really worth the trouble to allow it.
10232 	 */
10233 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10234 		btrfs_warn(fs_info,
10235 	   "cannot activate swapfile while exclusive operation is running");
10236 		return -EBUSY;
10237 	}
10238 	/*
10239 	 * Snapshots can create extents which require COW even if NODATACOW is
10240 	 * set. We use this counter to prevent snapshots. We must increment it
10241 	 * before walking the extents because we don't want a concurrent
10242 	 * snapshot to run after we've already checked the extents.
10243 	 */
10244 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10245 
10246 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10247 
10248 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10249 	start = 0;
10250 	while (start < isize) {
10251 		u64 logical_block_start, physical_block_start;
10252 		struct btrfs_block_group *bg;
10253 		u64 len = isize - start;
10254 
10255 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10256 		if (IS_ERR(em)) {
10257 			ret = PTR_ERR(em);
10258 			goto out;
10259 		}
10260 
10261 		if (em->block_start == EXTENT_MAP_HOLE) {
10262 			btrfs_warn(fs_info, "swapfile must not have holes");
10263 			ret = -EINVAL;
10264 			goto out;
10265 		}
10266 		if (em->block_start == EXTENT_MAP_INLINE) {
10267 			/*
10268 			 * It's unlikely we'll ever actually find ourselves
10269 			 * here, as a file small enough to fit inline won't be
10270 			 * big enough to store more than the swap header, but in
10271 			 * case something changes in the future, let's catch it
10272 			 * here rather than later.
10273 			 */
10274 			btrfs_warn(fs_info, "swapfile must not be inline");
10275 			ret = -EINVAL;
10276 			goto out;
10277 		}
10278 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10279 			btrfs_warn(fs_info, "swapfile must not be compressed");
10280 			ret = -EINVAL;
10281 			goto out;
10282 		}
10283 
10284 		logical_block_start = em->block_start + (start - em->start);
10285 		len = min(len, em->len - (start - em->start));
10286 		free_extent_map(em);
10287 		em = NULL;
10288 
10289 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10290 		if (ret < 0) {
10291 			goto out;
10292 		} else if (ret) {
10293 			ret = 0;
10294 		} else {
10295 			btrfs_warn(fs_info,
10296 				   "swapfile must not be copy-on-write");
10297 			ret = -EINVAL;
10298 			goto out;
10299 		}
10300 
10301 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10302 		if (IS_ERR(em)) {
10303 			ret = PTR_ERR(em);
10304 			goto out;
10305 		}
10306 
10307 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10308 			btrfs_warn(fs_info,
10309 				   "swapfile must have single data profile");
10310 			ret = -EINVAL;
10311 			goto out;
10312 		}
10313 
10314 		if (device == NULL) {
10315 			device = em->map_lookup->stripes[0].dev;
10316 			ret = btrfs_add_swapfile_pin(inode, device, false);
10317 			if (ret == 1)
10318 				ret = 0;
10319 			else if (ret)
10320 				goto out;
10321 		} else if (device != em->map_lookup->stripes[0].dev) {
10322 			btrfs_warn(fs_info, "swapfile must be on one device");
10323 			ret = -EINVAL;
10324 			goto out;
10325 		}
10326 
10327 		physical_block_start = (em->map_lookup->stripes[0].physical +
10328 					(logical_block_start - em->start));
10329 		len = min(len, em->len - (logical_block_start - em->start));
10330 		free_extent_map(em);
10331 		em = NULL;
10332 
10333 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10334 		if (!bg) {
10335 			btrfs_warn(fs_info,
10336 			   "could not find block group containing swapfile");
10337 			ret = -EINVAL;
10338 			goto out;
10339 		}
10340 
10341 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10342 		if (ret) {
10343 			btrfs_put_block_group(bg);
10344 			if (ret == 1)
10345 				ret = 0;
10346 			else
10347 				goto out;
10348 		}
10349 
10350 		if (bsi.block_len &&
10351 		    bsi.block_start + bsi.block_len == physical_block_start) {
10352 			bsi.block_len += len;
10353 		} else {
10354 			if (bsi.block_len) {
10355 				ret = btrfs_add_swap_extent(sis, &bsi);
10356 				if (ret)
10357 					goto out;
10358 			}
10359 			bsi.start = start;
10360 			bsi.block_start = physical_block_start;
10361 			bsi.block_len = len;
10362 		}
10363 
10364 		start += len;
10365 	}
10366 
10367 	if (bsi.block_len)
10368 		ret = btrfs_add_swap_extent(sis, &bsi);
10369 
10370 out:
10371 	if (!IS_ERR_OR_NULL(em))
10372 		free_extent_map(em);
10373 
10374 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10375 
10376 	if (ret)
10377 		btrfs_swap_deactivate(file);
10378 
10379 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10380 
10381 	if (ret)
10382 		return ret;
10383 
10384 	if (device)
10385 		sis->bdev = device->bdev;
10386 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10387 	sis->max = bsi.nr_pages;
10388 	sis->pages = bsi.nr_pages - 1;
10389 	sis->highest_bit = bsi.nr_pages - 1;
10390 	return bsi.nr_extents;
10391 }
10392 #else
10393 static void btrfs_swap_deactivate(struct file *file)
10394 {
10395 }
10396 
10397 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10398 			       sector_t *span)
10399 {
10400 	return -EOPNOTSUPP;
10401 }
10402 #endif
10403 
10404 static const struct inode_operations btrfs_dir_inode_operations = {
10405 	.getattr	= btrfs_getattr,
10406 	.lookup		= btrfs_lookup,
10407 	.create		= btrfs_create,
10408 	.unlink		= btrfs_unlink,
10409 	.link		= btrfs_link,
10410 	.mkdir		= btrfs_mkdir,
10411 	.rmdir		= btrfs_rmdir,
10412 	.rename		= btrfs_rename2,
10413 	.symlink	= btrfs_symlink,
10414 	.setattr	= btrfs_setattr,
10415 	.mknod		= btrfs_mknod,
10416 	.listxattr	= btrfs_listxattr,
10417 	.permission	= btrfs_permission,
10418 	.get_acl	= btrfs_get_acl,
10419 	.set_acl	= btrfs_set_acl,
10420 	.update_time	= btrfs_update_time,
10421 	.tmpfile        = btrfs_tmpfile,
10422 };
10423 
10424 static const struct file_operations btrfs_dir_file_operations = {
10425 	.llseek		= generic_file_llseek,
10426 	.read		= generic_read_dir,
10427 	.iterate_shared	= btrfs_real_readdir,
10428 	.open		= btrfs_opendir,
10429 	.unlocked_ioctl	= btrfs_ioctl,
10430 #ifdef CONFIG_COMPAT
10431 	.compat_ioctl	= btrfs_compat_ioctl,
10432 #endif
10433 	.release        = btrfs_release_file,
10434 	.fsync		= btrfs_sync_file,
10435 };
10436 
10437 static const struct extent_io_ops btrfs_extent_io_ops = {
10438 	/* mandatory callbacks */
10439 	.submit_bio_hook = btrfs_submit_bio_hook,
10440 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10441 };
10442 
10443 /*
10444  * btrfs doesn't support the bmap operation because swapfiles
10445  * use bmap to make a mapping of extents in the file.  They assume
10446  * these extents won't change over the life of the file and they
10447  * use the bmap result to do IO directly to the drive.
10448  *
10449  * the btrfs bmap call would return logical addresses that aren't
10450  * suitable for IO and they also will change frequently as COW
10451  * operations happen.  So, swapfile + btrfs == corruption.
10452  *
10453  * For now we're avoiding this by dropping bmap.
10454  */
10455 static const struct address_space_operations btrfs_aops = {
10456 	.readpage	= btrfs_readpage,
10457 	.writepage	= btrfs_writepage,
10458 	.writepages	= btrfs_writepages,
10459 	.readpages	= btrfs_readpages,
10460 	.direct_IO	= btrfs_direct_IO,
10461 	.invalidatepage = btrfs_invalidatepage,
10462 	.releasepage	= btrfs_releasepage,
10463 	.set_page_dirty	= btrfs_set_page_dirty,
10464 	.error_remove_page = generic_error_remove_page,
10465 	.swap_activate	= btrfs_swap_activate,
10466 	.swap_deactivate = btrfs_swap_deactivate,
10467 };
10468 
10469 static const struct inode_operations btrfs_file_inode_operations = {
10470 	.getattr	= btrfs_getattr,
10471 	.setattr	= btrfs_setattr,
10472 	.listxattr      = btrfs_listxattr,
10473 	.permission	= btrfs_permission,
10474 	.fiemap		= btrfs_fiemap,
10475 	.get_acl	= btrfs_get_acl,
10476 	.set_acl	= btrfs_set_acl,
10477 	.update_time	= btrfs_update_time,
10478 };
10479 static const struct inode_operations btrfs_special_inode_operations = {
10480 	.getattr	= btrfs_getattr,
10481 	.setattr	= btrfs_setattr,
10482 	.permission	= btrfs_permission,
10483 	.listxattr	= btrfs_listxattr,
10484 	.get_acl	= btrfs_get_acl,
10485 	.set_acl	= btrfs_set_acl,
10486 	.update_time	= btrfs_update_time,
10487 };
10488 static const struct inode_operations btrfs_symlink_inode_operations = {
10489 	.get_link	= page_get_link,
10490 	.getattr	= btrfs_getattr,
10491 	.setattr	= btrfs_setattr,
10492 	.permission	= btrfs_permission,
10493 	.listxattr	= btrfs_listxattr,
10494 	.update_time	= btrfs_update_time,
10495 };
10496 
10497 const struct dentry_operations btrfs_dentry_operations = {
10498 	.d_delete	= btrfs_dentry_delete,
10499 };
10500