xref: /linux/fs/btrfs/locking.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/spinlock.h>
9 #include <linux/page-flags.h>
10 #include <asm/bug.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "extent_io.h"
14 #include "locking.h"
15 
16 /*
17  * Extent buffer locking
18  * =====================
19  *
20  * The locks use a custom scheme that allows to do more operations than are
21  * available fromt current locking primitives. The building blocks are still
22  * rwlock and wait queues.
23  *
24  * Required semantics:
25  *
26  * - reader/writer exclusion
27  * - writer/writer exclusion
28  * - reader/reader sharing
29  * - spinning lock semantics
30  * - blocking lock semantics
31  * - try-lock semantics for readers and writers
32  * - one level nesting, allowing read lock to be taken by the same thread that
33  *   already has write lock
34  *
35  * The extent buffer locks (also called tree locks) manage access to eb data
36  * related to the storage in the b-tree (keys, items, but not the individual
37  * members of eb).
38  * We want concurrency of many readers and safe updates. The underlying locking
39  * is done by read-write spinlock and the blocking part is implemented using
40  * counters and wait queues.
41  *
42  * spinning semantics - the low-level rwlock is held so all other threads that
43  *                      want to take it are spinning on it.
44  *
45  * blocking semantics - the low-level rwlock is not held but the counter
46  *                      denotes how many times the blocking lock was held;
47  *                      sleeping is possible
48  *
49  * Write lock always allows only one thread to access the data.
50  *
51  *
52  * Debugging
53  * ---------
54  *
55  * There are additional state counters that are asserted in various contexts,
56  * removed from non-debug build to reduce extent_buffer size and for
57  * performance reasons.
58  *
59  *
60  * Lock nesting
61  * ------------
62  *
63  * A write operation on a tree might indirectly start a look up on the same
64  * tree.  This can happen when btrfs_cow_block locks the tree and needs to
65  * lookup free extents.
66  *
67  * btrfs_cow_block
68  *   ..
69  *   alloc_tree_block_no_bg_flush
70  *     btrfs_alloc_tree_block
71  *       btrfs_reserve_extent
72  *         ..
73  *         load_free_space_cache
74  *           ..
75  *           btrfs_lookup_file_extent
76  *             btrfs_search_slot
77  *
78  *
79  * Locking pattern - spinning
80  * --------------------------
81  *
82  * The simple locking scenario, the +--+ denotes the spinning section.
83  *
84  * +- btrfs_tree_lock
85  * | - extent_buffer::rwlock is held
86  * | - no heavy operations should happen, eg. IO, memory allocations, large
87  * |   structure traversals
88  * +- btrfs_tree_unock
89 *
90 *
91  * Locking pattern - blocking
92  * --------------------------
93  *
94  * The blocking write uses the following scheme.  The +--+ denotes the spinning
95  * section.
96  *
97  * +- btrfs_tree_lock
98  * |
99  * +- btrfs_set_lock_blocking_write
100  *
101  *   - allowed: IO, memory allocations, etc.
102  *
103  * -- btrfs_tree_unlock - note, no explicit unblocking necessary
104  *
105  *
106  * Blocking read is similar.
107  *
108  * +- btrfs_tree_read_lock
109  * |
110  * +- btrfs_set_lock_blocking_read
111  *
112  *  - heavy operations allowed
113  *
114  * +- btrfs_tree_read_unlock_blocking
115  * |
116  * +- btrfs_tree_read_unlock
117  *
118  */
119 
120 #ifdef CONFIG_BTRFS_DEBUG
121 static inline void btrfs_assert_spinning_writers_get(struct extent_buffer *eb)
122 {
123 	WARN_ON(eb->spinning_writers);
124 	eb->spinning_writers++;
125 }
126 
127 static inline void btrfs_assert_spinning_writers_put(struct extent_buffer *eb)
128 {
129 	WARN_ON(eb->spinning_writers != 1);
130 	eb->spinning_writers--;
131 }
132 
133 static inline void btrfs_assert_no_spinning_writers(struct extent_buffer *eb)
134 {
135 	WARN_ON(eb->spinning_writers);
136 }
137 
138 static inline void btrfs_assert_spinning_readers_get(struct extent_buffer *eb)
139 {
140 	atomic_inc(&eb->spinning_readers);
141 }
142 
143 static inline void btrfs_assert_spinning_readers_put(struct extent_buffer *eb)
144 {
145 	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
146 	atomic_dec(&eb->spinning_readers);
147 }
148 
149 static inline void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb)
150 {
151 	atomic_inc(&eb->read_locks);
152 }
153 
154 static inline void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb)
155 {
156 	atomic_dec(&eb->read_locks);
157 }
158 
159 static inline void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
160 {
161 	BUG_ON(!atomic_read(&eb->read_locks));
162 }
163 
164 static inline void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb)
165 {
166 	eb->write_locks++;
167 }
168 
169 static inline void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb)
170 {
171 	eb->write_locks--;
172 }
173 
174 #else
175 static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { }
176 static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { }
177 static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { }
178 static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { }
179 static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { }
180 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { }
181 static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { }
182 static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { }
183 static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { }
184 static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { }
185 #endif
186 
187 /*
188  * Mark already held read lock as blocking. Can be nested in write lock by the
189  * same thread.
190  *
191  * Use when there are potentially long operations ahead so other thread waiting
192  * on the lock will not actively spin but sleep instead.
193  *
194  * The rwlock is released and blocking reader counter is increased.
195  */
196 void btrfs_set_lock_blocking_read(struct extent_buffer *eb)
197 {
198 	trace_btrfs_set_lock_blocking_read(eb);
199 	/*
200 	 * No lock is required.  The lock owner may change if we have a read
201 	 * lock, but it won't change to or away from us.  If we have the write
202 	 * lock, we are the owner and it'll never change.
203 	 */
204 	if (eb->lock_nested && current->pid == eb->lock_owner)
205 		return;
206 	btrfs_assert_tree_read_locked(eb);
207 	atomic_inc(&eb->blocking_readers);
208 	btrfs_assert_spinning_readers_put(eb);
209 	read_unlock(&eb->lock);
210 }
211 
212 /*
213  * Mark already held write lock as blocking.
214  *
215  * Use when there are potentially long operations ahead so other threads
216  * waiting on the lock will not actively spin but sleep instead.
217  *
218  * The rwlock is released and blocking writers is set.
219  */
220 void btrfs_set_lock_blocking_write(struct extent_buffer *eb)
221 {
222 	trace_btrfs_set_lock_blocking_write(eb);
223 	/*
224 	 * No lock is required.  The lock owner may change if we have a read
225 	 * lock, but it won't change to or away from us.  If we have the write
226 	 * lock, we are the owner and it'll never change.
227 	 */
228 	if (eb->lock_nested && current->pid == eb->lock_owner)
229 		return;
230 	if (eb->blocking_writers == 0) {
231 		btrfs_assert_spinning_writers_put(eb);
232 		btrfs_assert_tree_locked(eb);
233 		WRITE_ONCE(eb->blocking_writers, 1);
234 		write_unlock(&eb->lock);
235 	}
236 }
237 
238 /*
239  * Lock the extent buffer for read. Wait for any writers (spinning or blocking).
240  * Can be nested in write lock by the same thread.
241  *
242  * Use when the locked section does only lightweight actions and busy waiting
243  * would be cheaper than making other threads do the wait/wake loop.
244  *
245  * The rwlock is held upon exit.
246  */
247 void btrfs_tree_read_lock(struct extent_buffer *eb)
248 {
249 	u64 start_ns = 0;
250 
251 	if (trace_btrfs_tree_read_lock_enabled())
252 		start_ns = ktime_get_ns();
253 again:
254 	read_lock(&eb->lock);
255 	BUG_ON(eb->blocking_writers == 0 &&
256 	       current->pid == eb->lock_owner);
257 	if (eb->blocking_writers) {
258 		if (current->pid == eb->lock_owner) {
259 			/*
260 			 * This extent is already write-locked by our thread.
261 			 * We allow an additional read lock to be added because
262 			 * it's for the same thread. btrfs_find_all_roots()
263 			 * depends on this as it may be called on a partly
264 			 * (write-)locked tree.
265 			 */
266 			BUG_ON(eb->lock_nested);
267 			eb->lock_nested = true;
268 			read_unlock(&eb->lock);
269 			trace_btrfs_tree_read_lock(eb, start_ns);
270 			return;
271 		}
272 		read_unlock(&eb->lock);
273 		wait_event(eb->write_lock_wq,
274 			   READ_ONCE(eb->blocking_writers) == 0);
275 		goto again;
276 	}
277 	btrfs_assert_tree_read_locks_get(eb);
278 	btrfs_assert_spinning_readers_get(eb);
279 	trace_btrfs_tree_read_lock(eb, start_ns);
280 }
281 
282 /*
283  * Lock extent buffer for read, optimistically expecting that there are no
284  * contending blocking writers. If there are, don't wait.
285  *
286  * Return 1 if the rwlock has been taken, 0 otherwise
287  */
288 int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
289 {
290 	if (READ_ONCE(eb->blocking_writers))
291 		return 0;
292 
293 	read_lock(&eb->lock);
294 	/* Refetch value after lock */
295 	if (READ_ONCE(eb->blocking_writers)) {
296 		read_unlock(&eb->lock);
297 		return 0;
298 	}
299 	btrfs_assert_tree_read_locks_get(eb);
300 	btrfs_assert_spinning_readers_get(eb);
301 	trace_btrfs_tree_read_lock_atomic(eb);
302 	return 1;
303 }
304 
305 /*
306  * Try-lock for read. Don't block or wait for contending writers.
307  *
308  * Retrun 1 if the rwlock has been taken, 0 otherwise
309  */
310 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
311 {
312 	if (READ_ONCE(eb->blocking_writers))
313 		return 0;
314 
315 	if (!read_trylock(&eb->lock))
316 		return 0;
317 
318 	/* Refetch value after lock */
319 	if (READ_ONCE(eb->blocking_writers)) {
320 		read_unlock(&eb->lock);
321 		return 0;
322 	}
323 	btrfs_assert_tree_read_locks_get(eb);
324 	btrfs_assert_spinning_readers_get(eb);
325 	trace_btrfs_try_tree_read_lock(eb);
326 	return 1;
327 }
328 
329 /*
330  * Try-lock for write. May block until the lock is uncontended, but does not
331  * wait until it is free.
332  *
333  * Retrun 1 if the rwlock has been taken, 0 otherwise
334  */
335 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
336 {
337 	if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers))
338 		return 0;
339 
340 	write_lock(&eb->lock);
341 	/* Refetch value after lock */
342 	if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers)) {
343 		write_unlock(&eb->lock);
344 		return 0;
345 	}
346 	btrfs_assert_tree_write_locks_get(eb);
347 	btrfs_assert_spinning_writers_get(eb);
348 	eb->lock_owner = current->pid;
349 	trace_btrfs_try_tree_write_lock(eb);
350 	return 1;
351 }
352 
353 /*
354  * Release read lock. Must be used only if the lock is in spinning mode.  If
355  * the read lock is nested, must pair with read lock before the write unlock.
356  *
357  * The rwlock is not held upon exit.
358  */
359 void btrfs_tree_read_unlock(struct extent_buffer *eb)
360 {
361 	trace_btrfs_tree_read_unlock(eb);
362 	/*
363 	 * if we're nested, we have the write lock.  No new locking
364 	 * is needed as long as we are the lock owner.
365 	 * The write unlock will do a barrier for us, and the lock_nested
366 	 * field only matters to the lock owner.
367 	 */
368 	if (eb->lock_nested && current->pid == eb->lock_owner) {
369 		eb->lock_nested = false;
370 		return;
371 	}
372 	btrfs_assert_tree_read_locked(eb);
373 	btrfs_assert_spinning_readers_put(eb);
374 	btrfs_assert_tree_read_locks_put(eb);
375 	read_unlock(&eb->lock);
376 }
377 
378 /*
379  * Release read lock, previously set to blocking by a pairing call to
380  * btrfs_set_lock_blocking_read(). Can be nested in write lock by the same
381  * thread.
382  *
383  * State of rwlock is unchanged, last reader wakes waiting threads.
384  */
385 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
386 {
387 	trace_btrfs_tree_read_unlock_blocking(eb);
388 	/*
389 	 * if we're nested, we have the write lock.  No new locking
390 	 * is needed as long as we are the lock owner.
391 	 * The write unlock will do a barrier for us, and the lock_nested
392 	 * field only matters to the lock owner.
393 	 */
394 	if (eb->lock_nested && current->pid == eb->lock_owner) {
395 		eb->lock_nested = false;
396 		return;
397 	}
398 	btrfs_assert_tree_read_locked(eb);
399 	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
400 	/* atomic_dec_and_test implies a barrier */
401 	if (atomic_dec_and_test(&eb->blocking_readers))
402 		cond_wake_up_nomb(&eb->read_lock_wq);
403 	btrfs_assert_tree_read_locks_put(eb);
404 }
405 
406 /*
407  * Lock for write. Wait for all blocking and spinning readers and writers. This
408  * starts context where reader lock could be nested by the same thread.
409  *
410  * The rwlock is held for write upon exit.
411  */
412 void btrfs_tree_lock(struct extent_buffer *eb)
413 {
414 	u64 start_ns = 0;
415 
416 	if (trace_btrfs_tree_lock_enabled())
417 		start_ns = ktime_get_ns();
418 
419 	WARN_ON(eb->lock_owner == current->pid);
420 again:
421 	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
422 	wait_event(eb->write_lock_wq, READ_ONCE(eb->blocking_writers) == 0);
423 	write_lock(&eb->lock);
424 	/* Refetch value after lock */
425 	if (atomic_read(&eb->blocking_readers) ||
426 	    READ_ONCE(eb->blocking_writers)) {
427 		write_unlock(&eb->lock);
428 		goto again;
429 	}
430 	btrfs_assert_spinning_writers_get(eb);
431 	btrfs_assert_tree_write_locks_get(eb);
432 	eb->lock_owner = current->pid;
433 	trace_btrfs_tree_lock(eb, start_ns);
434 }
435 
436 /*
437  * Release the write lock, either blocking or spinning (ie. there's no need
438  * for an explicit blocking unlock, like btrfs_tree_read_unlock_blocking).
439  * This also ends the context for nesting, the read lock must have been
440  * released already.
441  *
442  * Tasks blocked and waiting are woken, rwlock is not held upon exit.
443  */
444 void btrfs_tree_unlock(struct extent_buffer *eb)
445 {
446 	/*
447 	 * This is read both locked and unlocked but always by the same thread
448 	 * that already owns the lock so we don't need to use READ_ONCE
449 	 */
450 	int blockers = eb->blocking_writers;
451 
452 	BUG_ON(blockers > 1);
453 
454 	btrfs_assert_tree_locked(eb);
455 	trace_btrfs_tree_unlock(eb);
456 	eb->lock_owner = 0;
457 	btrfs_assert_tree_write_locks_put(eb);
458 
459 	if (blockers) {
460 		btrfs_assert_no_spinning_writers(eb);
461 		/* Unlocked write */
462 		WRITE_ONCE(eb->blocking_writers, 0);
463 		/*
464 		 * We need to order modifying blocking_writers above with
465 		 * actually waking up the sleepers to ensure they see the
466 		 * updated value of blocking_writers
467 		 */
468 		cond_wake_up(&eb->write_lock_wq);
469 	} else {
470 		btrfs_assert_spinning_writers_put(eb);
471 		write_unlock(&eb->lock);
472 	}
473 }
474 
475 /*
476  * Set all locked nodes in the path to blocking locks.  This should be done
477  * before scheduling
478  */
479 void btrfs_set_path_blocking(struct btrfs_path *p)
480 {
481 	int i;
482 
483 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
484 		if (!p->nodes[i] || !p->locks[i])
485 			continue;
486 		/*
487 		 * If we currently have a spinning reader or writer lock this
488 		 * will bump the count of blocking holders and drop the
489 		 * spinlock.
490 		 */
491 		if (p->locks[i] == BTRFS_READ_LOCK) {
492 			btrfs_set_lock_blocking_read(p->nodes[i]);
493 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
494 		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
495 			btrfs_set_lock_blocking_write(p->nodes[i]);
496 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
497 		}
498 	}
499 }
500 
501 /*
502  * This releases any locks held in the path starting at level and going all the
503  * way up to the root.
504  *
505  * btrfs_search_slot will keep the lock held on higher nodes in a few corner
506  * cases, such as COW of the block at slot zero in the node.  This ignores
507  * those rules, and it should only be called when there are no more updates to
508  * be done higher up in the tree.
509  */
510 void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
511 {
512 	int i;
513 
514 	if (path->keep_locks)
515 		return;
516 
517 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
518 		if (!path->nodes[i])
519 			continue;
520 		if (!path->locks[i])
521 			continue;
522 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
523 		path->locks[i] = 0;
524 	}
525 }
526