xref: /linux/fs/btrfs/tree-log.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 #define MAX_CONFLICT_INODES 10
26 
27 /* magic values for the inode_only field in btrfs_log_inode:
28  *
29  * LOG_INODE_ALL means to log everything
30  * LOG_INODE_EXISTS means to log just enough to recreate the inode
31  * during log replay
32  */
33 enum {
34 	LOG_INODE_ALL,
35 	LOG_INODE_EXISTS,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = BTRFS_LOG_FORCE_COMMIT;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = BTRFS_LOG_FORCE_COMMIT;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 	filemap_fdatawait_range(buf->pages[0]->mapping,
276 			        buf->start, buf->start + buf->len - 1);
277 }
278 
279 /*
280  * the walk control struct is used to pass state down the chain when
281  * processing the log tree.  The stage field tells us which part
282  * of the log tree processing we are currently doing.  The others
283  * are state fields used for that specific part
284  */
285 struct walk_control {
286 	/* should we free the extent on disk when done?  This is used
287 	 * at transaction commit time while freeing a log tree
288 	 */
289 	int free;
290 
291 	/* pin only walk, we record which extents on disk belong to the
292 	 * log trees
293 	 */
294 	int pin;
295 
296 	/* what stage of the replay code we're currently in */
297 	int stage;
298 
299 	/*
300 	 * Ignore any items from the inode currently being processed. Needs
301 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 	 * the LOG_WALK_REPLAY_INODES stage.
303 	 */
304 	bool ignore_cur_inode;
305 
306 	/* the root we are currently replaying */
307 	struct btrfs_root *replay_dest;
308 
309 	/* the trans handle for the current replay */
310 	struct btrfs_trans_handle *trans;
311 
312 	/* the function that gets used to process blocks we find in the
313 	 * tree.  Note the extent_buffer might not be up to date when it is
314 	 * passed in, and it must be checked or read if you need the data
315 	 * inside it
316 	 */
317 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 			    struct walk_control *wc, u64 gen, int level);
319 };
320 
321 /*
322  * process_func used to pin down extents, write them or wait on them
323  */
324 static int process_one_buffer(struct btrfs_root *log,
325 			      struct extent_buffer *eb,
326 			      struct walk_control *wc, u64 gen, int level)
327 {
328 	struct btrfs_fs_info *fs_info = log->fs_info;
329 	int ret = 0;
330 
331 	/*
332 	 * If this fs is mixed then we need to be able to process the leaves to
333 	 * pin down any logged extents, so we have to read the block.
334 	 */
335 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 		ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	if (wc->pin) {
342 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 						      eb->len);
344 		if (ret)
345 			return ret;
346 
347 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 		    btrfs_header_level(eb) == 0)
349 			ret = btrfs_exclude_logged_extents(eb);
350 	}
351 	return ret;
352 }
353 
354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 			     struct btrfs_root *root,
356 			     struct btrfs_path *path,
357 			     struct extent_buffer *eb, int slot,
358 			     struct btrfs_key *key)
359 {
360 	int ret;
361 	u32 item_size;
362 	u64 saved_i_size = 0;
363 	int save_old_i_size = 0;
364 	unsigned long src_ptr;
365 	unsigned long dst_ptr;
366 	int overwrite_root = 0;
367 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368 
369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 		overwrite_root = 1;
371 
372 	item_size = btrfs_item_size(eb, slot);
373 	src_ptr = btrfs_item_ptr_offset(eb, slot);
374 
375 	/* Our caller must have done a search for the key for us. */
376 	ASSERT(path->nodes[0] != NULL);
377 
378 	/*
379 	 * And the slot must point to the exact key or the slot where the key
380 	 * should be at (the first item with a key greater than 'key')
381 	 */
382 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 		struct btrfs_key found_key;
384 
385 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 		ret = btrfs_comp_cpu_keys(&found_key, key);
387 		ASSERT(ret >= 0);
388 	} else {
389 		ret = 1;
390 	}
391 
392 	if (ret == 0) {
393 		char *src_copy;
394 		char *dst_copy;
395 		u32 dst_size = btrfs_item_size(path->nodes[0],
396 						  path->slots[0]);
397 		if (dst_size != item_size)
398 			goto insert;
399 
400 		if (item_size == 0) {
401 			btrfs_release_path(path);
402 			return 0;
403 		}
404 		dst_copy = kmalloc(item_size, GFP_NOFS);
405 		src_copy = kmalloc(item_size, GFP_NOFS);
406 		if (!dst_copy || !src_copy) {
407 			btrfs_release_path(path);
408 			kfree(dst_copy);
409 			kfree(src_copy);
410 			return -ENOMEM;
411 		}
412 
413 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
414 
415 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 				   item_size);
418 		ret = memcmp(dst_copy, src_copy, item_size);
419 
420 		kfree(dst_copy);
421 		kfree(src_copy);
422 		/*
423 		 * they have the same contents, just return, this saves
424 		 * us from cowing blocks in the destination tree and doing
425 		 * extra writes that may not have been done by a previous
426 		 * sync
427 		 */
428 		if (ret == 0) {
429 			btrfs_release_path(path);
430 			return 0;
431 		}
432 
433 		/*
434 		 * We need to load the old nbytes into the inode so when we
435 		 * replay the extents we've logged we get the right nbytes.
436 		 */
437 		if (inode_item) {
438 			struct btrfs_inode_item *item;
439 			u64 nbytes;
440 			u32 mode;
441 
442 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 					      struct btrfs_inode_item);
444 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 			item = btrfs_item_ptr(eb, slot,
446 					      struct btrfs_inode_item);
447 			btrfs_set_inode_nbytes(eb, item, nbytes);
448 
449 			/*
450 			 * If this is a directory we need to reset the i_size to
451 			 * 0 so that we can set it up properly when replaying
452 			 * the rest of the items in this log.
453 			 */
454 			mode = btrfs_inode_mode(eb, item);
455 			if (S_ISDIR(mode))
456 				btrfs_set_inode_size(eb, item, 0);
457 		}
458 	} else if (inode_item) {
459 		struct btrfs_inode_item *item;
460 		u32 mode;
461 
462 		/*
463 		 * New inode, set nbytes to 0 so that the nbytes comes out
464 		 * properly when we replay the extents.
465 		 */
466 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 		btrfs_set_inode_nbytes(eb, item, 0);
468 
469 		/*
470 		 * If this is a directory we need to reset the i_size to 0 so
471 		 * that we can set it up properly when replaying the rest of
472 		 * the items in this log.
473 		 */
474 		mode = btrfs_inode_mode(eb, item);
475 		if (S_ISDIR(mode))
476 			btrfs_set_inode_size(eb, item, 0);
477 	}
478 insert:
479 	btrfs_release_path(path);
480 	/* try to insert the key into the destination tree */
481 	path->skip_release_on_error = 1;
482 	ret = btrfs_insert_empty_item(trans, root, path,
483 				      key, item_size);
484 	path->skip_release_on_error = 0;
485 
486 	/* make sure any existing item is the correct size */
487 	if (ret == -EEXIST || ret == -EOVERFLOW) {
488 		u32 found_size;
489 		found_size = btrfs_item_size(path->nodes[0],
490 						path->slots[0]);
491 		if (found_size > item_size)
492 			btrfs_truncate_item(path, item_size, 1);
493 		else if (found_size < item_size)
494 			btrfs_extend_item(path, item_size - found_size);
495 	} else if (ret) {
496 		return ret;
497 	}
498 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 					path->slots[0]);
500 
501 	/* don't overwrite an existing inode if the generation number
502 	 * was logged as zero.  This is done when the tree logging code
503 	 * is just logging an inode to make sure it exists after recovery.
504 	 *
505 	 * Also, don't overwrite i_size on directories during replay.
506 	 * log replay inserts and removes directory items based on the
507 	 * state of the tree found in the subvolume, and i_size is modified
508 	 * as it goes
509 	 */
510 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 		struct btrfs_inode_item *src_item;
512 		struct btrfs_inode_item *dst_item;
513 
514 		src_item = (struct btrfs_inode_item *)src_ptr;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 
517 		if (btrfs_inode_generation(eb, src_item) == 0) {
518 			struct extent_buffer *dst_eb = path->nodes[0];
519 			const u64 ino_size = btrfs_inode_size(eb, src_item);
520 
521 			/*
522 			 * For regular files an ino_size == 0 is used only when
523 			 * logging that an inode exists, as part of a directory
524 			 * fsync, and the inode wasn't fsynced before. In this
525 			 * case don't set the size of the inode in the fs/subvol
526 			 * tree, otherwise we would be throwing valid data away.
527 			 */
528 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 			    ino_size != 0)
531 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 			goto no_copy;
533 		}
534 
535 		if (overwrite_root &&
536 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 			save_old_i_size = 1;
539 			saved_i_size = btrfs_inode_size(path->nodes[0],
540 							dst_item);
541 		}
542 	}
543 
544 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 			   src_ptr, item_size);
546 
547 	if (save_old_i_size) {
548 		struct btrfs_inode_item *dst_item;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 	}
552 
553 	/* make sure the generation is filled in */
554 	if (key->type == BTRFS_INODE_ITEM_KEY) {
555 		struct btrfs_inode_item *dst_item;
556 		dst_item = (struct btrfs_inode_item *)dst_ptr;
557 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 			btrfs_set_inode_generation(path->nodes[0], dst_item,
559 						   trans->transid);
560 		}
561 	}
562 no_copy:
563 	btrfs_mark_buffer_dirty(path->nodes[0]);
564 	btrfs_release_path(path);
565 	return 0;
566 }
567 
568 /*
569  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
570  * to the src data we are copying out.
571  *
572  * root is the tree we are copying into, and path is a scratch
573  * path for use in this function (it should be released on entry and
574  * will be released on exit).
575  *
576  * If the key is already in the destination tree the existing item is
577  * overwritten.  If the existing item isn't big enough, it is extended.
578  * If it is too large, it is truncated.
579  *
580  * If the key isn't in the destination yet, a new item is inserted.
581  */
582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 			  struct btrfs_root *root,
584 			  struct btrfs_path *path,
585 			  struct extent_buffer *eb, int slot,
586 			  struct btrfs_key *key)
587 {
588 	int ret;
589 
590 	/* Look for the key in the destination tree. */
591 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 	if (ret < 0)
593 		return ret;
594 
595 	return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597 
598 /*
599  * simple helper to read an inode off the disk from a given root
600  * This can only be called for subvolume roots and not for the log
601  */
602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 					     u64 objectid)
604 {
605 	struct inode *inode;
606 
607 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
608 	if (IS_ERR(inode))
609 		inode = NULL;
610 	return inode;
611 }
612 
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614  * subvolume 'root'.  path is released on entry and should be released
615  * on exit.
616  *
617  * extents in the log tree have not been allocated out of the extent
618  * tree yet.  So, this completes the allocation, taking a reference
619  * as required if the extent already exists or creating a new extent
620  * if it isn't in the extent allocation tree yet.
621  *
622  * The extent is inserted into the file, dropping any existing extents
623  * from the file that overlap the new one.
624  */
625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 				      struct btrfs_root *root,
627 				      struct btrfs_path *path,
628 				      struct extent_buffer *eb, int slot,
629 				      struct btrfs_key *key)
630 {
631 	struct btrfs_drop_extents_args drop_args = { 0 };
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	int found_type;
634 	u64 extent_end;
635 	u64 start = key->offset;
636 	u64 nbytes = 0;
637 	struct btrfs_file_extent_item *item;
638 	struct inode *inode = NULL;
639 	unsigned long size;
640 	int ret = 0;
641 
642 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 	found_type = btrfs_file_extent_type(eb, item);
644 
645 	if (found_type == BTRFS_FILE_EXTENT_REG ||
646 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 		nbytes = btrfs_file_extent_num_bytes(eb, item);
648 		extent_end = start + nbytes;
649 
650 		/*
651 		 * We don't add to the inodes nbytes if we are prealloc or a
652 		 * hole.
653 		 */
654 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 			nbytes = 0;
656 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 		size = btrfs_file_extent_ram_bytes(eb, item);
658 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 		extent_end = ALIGN(start + size,
660 				   fs_info->sectorsize);
661 	} else {
662 		ret = 0;
663 		goto out;
664 	}
665 
666 	inode = read_one_inode(root, key->objectid);
667 	if (!inode) {
668 		ret = -EIO;
669 		goto out;
670 	}
671 
672 	/*
673 	 * first check to see if we already have this extent in the
674 	 * file.  This must be done before the btrfs_drop_extents run
675 	 * so we don't try to drop this extent.
676 	 */
677 	ret = btrfs_lookup_file_extent(trans, root, path,
678 			btrfs_ino(BTRFS_I(inode)), start, 0);
679 
680 	if (ret == 0 &&
681 	    (found_type == BTRFS_FILE_EXTENT_REG ||
682 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 		struct btrfs_file_extent_item cmp1;
684 		struct btrfs_file_extent_item cmp2;
685 		struct btrfs_file_extent_item *existing;
686 		struct extent_buffer *leaf;
687 
688 		leaf = path->nodes[0];
689 		existing = btrfs_item_ptr(leaf, path->slots[0],
690 					  struct btrfs_file_extent_item);
691 
692 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 				   sizeof(cmp1));
694 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 				   sizeof(cmp2));
696 
697 		/*
698 		 * we already have a pointer to this exact extent,
699 		 * we don't have to do anything
700 		 */
701 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 			btrfs_release_path(path);
703 			goto out;
704 		}
705 	}
706 	btrfs_release_path(path);
707 
708 	/* drop any overlapping extents */
709 	drop_args.start = start;
710 	drop_args.end = extent_end;
711 	drop_args.drop_cache = true;
712 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
713 	if (ret)
714 		goto out;
715 
716 	if (found_type == BTRFS_FILE_EXTENT_REG ||
717 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 		u64 offset;
719 		unsigned long dest_offset;
720 		struct btrfs_key ins;
721 
722 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 		    btrfs_fs_incompat(fs_info, NO_HOLES))
724 			goto update_inode;
725 
726 		ret = btrfs_insert_empty_item(trans, root, path, key,
727 					      sizeof(*item));
728 		if (ret)
729 			goto out;
730 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 						    path->slots[0]);
732 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 				(unsigned long)item,  sizeof(*item));
734 
735 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 		ins.type = BTRFS_EXTENT_ITEM_KEY;
738 		offset = key->offset - btrfs_file_extent_offset(eb, item);
739 
740 		/*
741 		 * Manually record dirty extent, as here we did a shallow
742 		 * file extent item copy and skip normal backref update,
743 		 * but modifying extent tree all by ourselves.
744 		 * So need to manually record dirty extent for qgroup,
745 		 * as the owner of the file extent changed from log tree
746 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 		 */
748 		ret = btrfs_qgroup_trace_extent(trans,
749 				btrfs_file_extent_disk_bytenr(eb, item),
750 				btrfs_file_extent_disk_num_bytes(eb, item),
751 				GFP_NOFS);
752 		if (ret < 0)
753 			goto out;
754 
755 		if (ins.objectid > 0) {
756 			struct btrfs_ref ref = { 0 };
757 			u64 csum_start;
758 			u64 csum_end;
759 			LIST_HEAD(ordered_sums);
760 
761 			/*
762 			 * is this extent already allocated in the extent
763 			 * allocation tree?  If so, just add a reference
764 			 */
765 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
766 						ins.offset);
767 			if (ret < 0) {
768 				goto out;
769 			} else if (ret == 0) {
770 				btrfs_init_generic_ref(&ref,
771 						BTRFS_ADD_DELAYED_REF,
772 						ins.objectid, ins.offset, 0);
773 				btrfs_init_data_ref(&ref,
774 						root->root_key.objectid,
775 						key->objectid, offset, 0, false);
776 				ret = btrfs_inc_extent_ref(trans, &ref);
777 				if (ret)
778 					goto out;
779 			} else {
780 				/*
781 				 * insert the extent pointer in the extent
782 				 * allocation tree
783 				 */
784 				ret = btrfs_alloc_logged_file_extent(trans,
785 						root->root_key.objectid,
786 						key->objectid, offset, &ins);
787 				if (ret)
788 					goto out;
789 			}
790 			btrfs_release_path(path);
791 
792 			if (btrfs_file_extent_compression(eb, item)) {
793 				csum_start = ins.objectid;
794 				csum_end = csum_start + ins.offset;
795 			} else {
796 				csum_start = ins.objectid +
797 					btrfs_file_extent_offset(eb, item);
798 				csum_end = csum_start +
799 					btrfs_file_extent_num_bytes(eb, item);
800 			}
801 
802 			ret = btrfs_lookup_csums_range(root->log_root,
803 						csum_start, csum_end - 1,
804 						&ordered_sums, 0, false);
805 			if (ret)
806 				goto out;
807 			/*
808 			 * Now delete all existing cums in the csum root that
809 			 * cover our range. We do this because we can have an
810 			 * extent that is completely referenced by one file
811 			 * extent item and partially referenced by another
812 			 * file extent item (like after using the clone or
813 			 * extent_same ioctls). In this case if we end up doing
814 			 * the replay of the one that partially references the
815 			 * extent first, and we do not do the csum deletion
816 			 * below, we can get 2 csum items in the csum tree that
817 			 * overlap each other. For example, imagine our log has
818 			 * the two following file extent items:
819 			 *
820 			 * key (257 EXTENT_DATA 409600)
821 			 *     extent data disk byte 12845056 nr 102400
822 			 *     extent data offset 20480 nr 20480 ram 102400
823 			 *
824 			 * key (257 EXTENT_DATA 819200)
825 			 *     extent data disk byte 12845056 nr 102400
826 			 *     extent data offset 0 nr 102400 ram 102400
827 			 *
828 			 * Where the second one fully references the 100K extent
829 			 * that starts at disk byte 12845056, and the log tree
830 			 * has a single csum item that covers the entire range
831 			 * of the extent:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 *
835 			 * After the first file extent item is replayed, the
836 			 * csum tree gets the following csum item:
837 			 *
838 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 			 *
840 			 * Which covers the 20K sub-range starting at offset 20K
841 			 * of our extent. Now when we replay the second file
842 			 * extent item, if we do not delete existing csum items
843 			 * that cover any of its blocks, we end up getting two
844 			 * csum items in our csum tree that overlap each other:
845 			 *
846 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 			 *
849 			 * Which is a problem, because after this anyone trying
850 			 * to lookup up for the checksum of any block of our
851 			 * extent starting at an offset of 40K or higher, will
852 			 * end up looking at the second csum item only, which
853 			 * does not contain the checksum for any block starting
854 			 * at offset 40K or higher of our extent.
855 			 */
856 			while (!list_empty(&ordered_sums)) {
857 				struct btrfs_ordered_sum *sums;
858 				struct btrfs_root *csum_root;
859 
860 				sums = list_entry(ordered_sums.next,
861 						struct btrfs_ordered_sum,
862 						list);
863 				csum_root = btrfs_csum_root(fs_info,
864 							    sums->bytenr);
865 				if (!ret)
866 					ret = btrfs_del_csums(trans, csum_root,
867 							      sums->bytenr,
868 							      sums->len);
869 				if (!ret)
870 					ret = btrfs_csum_file_blocks(trans,
871 								     csum_root,
872 								     sums);
873 				list_del(&sums->list);
874 				kfree(sums);
875 			}
876 			if (ret)
877 				goto out;
878 		} else {
879 			btrfs_release_path(path);
880 		}
881 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 		/* inline extents are easy, we just overwrite them */
883 		ret = overwrite_item(trans, root, path, eb, slot, key);
884 		if (ret)
885 			goto out;
886 	}
887 
888 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 						extent_end - start);
890 	if (ret)
891 		goto out;
892 
893 update_inode:
894 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
896 out:
897 	iput(inode);
898 	return ret;
899 }
900 
901 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
902 				       struct btrfs_inode *dir,
903 				       struct btrfs_inode *inode,
904 				       const char *name,
905 				       int name_len)
906 {
907 	int ret;
908 
909 	ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
910 	if (ret)
911 		return ret;
912 	/*
913 	 * Whenever we need to check if a name exists or not, we check the
914 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
915 	 * that future checks for a name during log replay see that the name
916 	 * does not exists anymore.
917 	 */
918 	return btrfs_run_delayed_items(trans);
919 }
920 
921 /*
922  * when cleaning up conflicts between the directory names in the
923  * subvolume, directory names in the log and directory names in the
924  * inode back references, we may have to unlink inodes from directories.
925  *
926  * This is a helper function to do the unlink of a specific directory
927  * item
928  */
929 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
930 				      struct btrfs_path *path,
931 				      struct btrfs_inode *dir,
932 				      struct btrfs_dir_item *di)
933 {
934 	struct btrfs_root *root = dir->root;
935 	struct inode *inode;
936 	char *name;
937 	int name_len;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key location;
940 	int ret;
941 
942 	leaf = path->nodes[0];
943 
944 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 	name_len = btrfs_dir_name_len(leaf, di);
946 	name = kmalloc(name_len, GFP_NOFS);
947 	if (!name)
948 		return -ENOMEM;
949 
950 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
951 	btrfs_release_path(path);
952 
953 	inode = read_one_inode(root, location.objectid);
954 	if (!inode) {
955 		ret = -EIO;
956 		goto out;
957 	}
958 
959 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 	if (ret)
961 		goto out;
962 
963 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
964 			name_len);
965 out:
966 	kfree(name);
967 	iput(inode);
968 	return ret;
969 }
970 
971 /*
972  * See if a given name and sequence number found in an inode back reference are
973  * already in a directory and correctly point to this inode.
974  *
975  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
976  * exists.
977  */
978 static noinline int inode_in_dir(struct btrfs_root *root,
979 				 struct btrfs_path *path,
980 				 u64 dirid, u64 objectid, u64 index,
981 				 const char *name, int name_len)
982 {
983 	struct btrfs_dir_item *di;
984 	struct btrfs_key location;
985 	int ret = 0;
986 
987 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
988 					 index, name, name_len, 0);
989 	if (IS_ERR(di)) {
990 		ret = PTR_ERR(di);
991 		goto out;
992 	} else if (di) {
993 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 		if (location.objectid != objectid)
995 			goto out;
996 	} else {
997 		goto out;
998 	}
999 
1000 	btrfs_release_path(path);
1001 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1002 	if (IS_ERR(di)) {
1003 		ret = PTR_ERR(di);
1004 		goto out;
1005 	} else if (di) {
1006 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 		if (location.objectid == objectid)
1008 			ret = 1;
1009 	}
1010 out:
1011 	btrfs_release_path(path);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * helper function to check a log tree for a named back reference in
1017  * an inode.  This is used to decide if a back reference that is
1018  * found in the subvolume conflicts with what we find in the log.
1019  *
1020  * inode backreferences may have multiple refs in a single item,
1021  * during replay we process one reference at a time, and we don't
1022  * want to delete valid links to a file from the subvolume if that
1023  * link is also in the log.
1024  */
1025 static noinline int backref_in_log(struct btrfs_root *log,
1026 				   struct btrfs_key *key,
1027 				   u64 ref_objectid,
1028 				   const char *name, int namelen)
1029 {
1030 	struct btrfs_path *path;
1031 	int ret;
1032 
1033 	path = btrfs_alloc_path();
1034 	if (!path)
1035 		return -ENOMEM;
1036 
1037 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038 	if (ret < 0) {
1039 		goto out;
1040 	} else if (ret == 1) {
1041 		ret = 0;
1042 		goto out;
1043 	}
1044 
1045 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1046 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047 						       path->slots[0],
1048 						       ref_objectid,
1049 						       name, namelen);
1050 	else
1051 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1052 						   path->slots[0],
1053 						   name, namelen);
1054 out:
1055 	btrfs_free_path(path);
1056 	return ret;
1057 }
1058 
1059 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_root *root,
1061 				  struct btrfs_path *path,
1062 				  struct btrfs_root *log_root,
1063 				  struct btrfs_inode *dir,
1064 				  struct btrfs_inode *inode,
1065 				  u64 inode_objectid, u64 parent_objectid,
1066 				  u64 ref_index, char *name, int namelen)
1067 {
1068 	int ret;
1069 	char *victim_name;
1070 	int victim_name_len;
1071 	struct extent_buffer *leaf;
1072 	struct btrfs_dir_item *di;
1073 	struct btrfs_key search_key;
1074 	struct btrfs_inode_extref *extref;
1075 
1076 again:
1077 	/* Search old style refs */
1078 	search_key.objectid = inode_objectid;
1079 	search_key.type = BTRFS_INODE_REF_KEY;
1080 	search_key.offset = parent_objectid;
1081 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1082 	if (ret == 0) {
1083 		struct btrfs_inode_ref *victim_ref;
1084 		unsigned long ptr;
1085 		unsigned long ptr_end;
1086 
1087 		leaf = path->nodes[0];
1088 
1089 		/* are we trying to overwrite a back ref for the root directory
1090 		 * if so, just jump out, we're done
1091 		 */
1092 		if (search_key.objectid == search_key.offset)
1093 			return 1;
1094 
1095 		/* check all the names in this back reference to see
1096 		 * if they are in the log.  if so, we allow them to stay
1097 		 * otherwise they must be unlinked as a conflict
1098 		 */
1099 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1100 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1101 		while (ptr < ptr_end) {
1102 			victim_ref = (struct btrfs_inode_ref *)ptr;
1103 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1104 								   victim_ref);
1105 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1106 			if (!victim_name)
1107 				return -ENOMEM;
1108 
1109 			read_extent_buffer(leaf, victim_name,
1110 					   (unsigned long)(victim_ref + 1),
1111 					   victim_name_len);
1112 
1113 			ret = backref_in_log(log_root, &search_key,
1114 					     parent_objectid, victim_name,
1115 					     victim_name_len);
1116 			if (ret < 0) {
1117 				kfree(victim_name);
1118 				return ret;
1119 			} else if (!ret) {
1120 				inc_nlink(&inode->vfs_inode);
1121 				btrfs_release_path(path);
1122 
1123 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1124 						victim_name, victim_name_len);
1125 				kfree(victim_name);
1126 				if (ret)
1127 					return ret;
1128 				goto again;
1129 			}
1130 			kfree(victim_name);
1131 
1132 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1133 		}
1134 	}
1135 	btrfs_release_path(path);
1136 
1137 	/* Same search but for extended refs */
1138 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1139 					   inode_objectid, parent_objectid, 0,
1140 					   0);
1141 	if (IS_ERR(extref)) {
1142 		return PTR_ERR(extref);
1143 	} else if (extref) {
1144 		u32 item_size;
1145 		u32 cur_offset = 0;
1146 		unsigned long base;
1147 		struct inode *victim_parent;
1148 
1149 		leaf = path->nodes[0];
1150 
1151 		item_size = btrfs_item_size(leaf, path->slots[0]);
1152 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1153 
1154 		while (cur_offset < item_size) {
1155 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1156 
1157 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1158 
1159 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1160 				goto next;
1161 
1162 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1163 			if (!victim_name)
1164 				return -ENOMEM;
1165 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1166 					   victim_name_len);
1167 
1168 			search_key.objectid = inode_objectid;
1169 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1170 			search_key.offset = btrfs_extref_hash(parent_objectid,
1171 							      victim_name,
1172 							      victim_name_len);
1173 			ret = backref_in_log(log_root, &search_key,
1174 					     parent_objectid, victim_name,
1175 					     victim_name_len);
1176 			if (ret < 0) {
1177 				kfree(victim_name);
1178 				return ret;
1179 			} else if (!ret) {
1180 				ret = -ENOENT;
1181 				victim_parent = read_one_inode(root,
1182 						parent_objectid);
1183 				if (victim_parent) {
1184 					inc_nlink(&inode->vfs_inode);
1185 					btrfs_release_path(path);
1186 
1187 					ret = unlink_inode_for_log_replay(trans,
1188 							BTRFS_I(victim_parent),
1189 							inode,
1190 							victim_name,
1191 							victim_name_len);
1192 				}
1193 				iput(victim_parent);
1194 				kfree(victim_name);
1195 				if (ret)
1196 					return ret;
1197 				goto again;
1198 			}
1199 			kfree(victim_name);
1200 next:
1201 			cur_offset += victim_name_len + sizeof(*extref);
1202 		}
1203 	}
1204 	btrfs_release_path(path);
1205 
1206 	/* look for a conflicting sequence number */
1207 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1208 					 ref_index, name, namelen, 0);
1209 	if (IS_ERR(di)) {
1210 		return PTR_ERR(di);
1211 	} else if (di) {
1212 		ret = drop_one_dir_item(trans, path, dir, di);
1213 		if (ret)
1214 			return ret;
1215 	}
1216 	btrfs_release_path(path);
1217 
1218 	/* look for a conflicting name */
1219 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1220 				   name, namelen, 0);
1221 	if (IS_ERR(di)) {
1222 		return PTR_ERR(di);
1223 	} else if (di) {
1224 		ret = drop_one_dir_item(trans, path, dir, di);
1225 		if (ret)
1226 			return ret;
1227 	}
1228 	btrfs_release_path(path);
1229 
1230 	return 0;
1231 }
1232 
1233 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1234 			     u32 *namelen, char **name, u64 *index,
1235 			     u64 *parent_objectid)
1236 {
1237 	struct btrfs_inode_extref *extref;
1238 
1239 	extref = (struct btrfs_inode_extref *)ref_ptr;
1240 
1241 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1242 	*name = kmalloc(*namelen, GFP_NOFS);
1243 	if (*name == NULL)
1244 		return -ENOMEM;
1245 
1246 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1247 			   *namelen);
1248 
1249 	if (index)
1250 		*index = btrfs_inode_extref_index(eb, extref);
1251 	if (parent_objectid)
1252 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1253 
1254 	return 0;
1255 }
1256 
1257 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1258 			  u32 *namelen, char **name, u64 *index)
1259 {
1260 	struct btrfs_inode_ref *ref;
1261 
1262 	ref = (struct btrfs_inode_ref *)ref_ptr;
1263 
1264 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1265 	*name = kmalloc(*namelen, GFP_NOFS);
1266 	if (*name == NULL)
1267 		return -ENOMEM;
1268 
1269 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1270 
1271 	if (index)
1272 		*index = btrfs_inode_ref_index(eb, ref);
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Take an inode reference item from the log tree and iterate all names from the
1279  * inode reference item in the subvolume tree with the same key (if it exists).
1280  * For any name that is not in the inode reference item from the log tree, do a
1281  * proper unlink of that name (that is, remove its entry from the inode
1282  * reference item and both dir index keys).
1283  */
1284 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1285 				 struct btrfs_root *root,
1286 				 struct btrfs_path *path,
1287 				 struct btrfs_inode *inode,
1288 				 struct extent_buffer *log_eb,
1289 				 int log_slot,
1290 				 struct btrfs_key *key)
1291 {
1292 	int ret;
1293 	unsigned long ref_ptr;
1294 	unsigned long ref_end;
1295 	struct extent_buffer *eb;
1296 
1297 again:
1298 	btrfs_release_path(path);
1299 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1300 	if (ret > 0) {
1301 		ret = 0;
1302 		goto out;
1303 	}
1304 	if (ret < 0)
1305 		goto out;
1306 
1307 	eb = path->nodes[0];
1308 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1309 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1310 	while (ref_ptr < ref_end) {
1311 		char *name = NULL;
1312 		int namelen;
1313 		u64 parent_id;
1314 
1315 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1316 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1317 						NULL, &parent_id);
1318 		} else {
1319 			parent_id = key->offset;
1320 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1321 					     NULL);
1322 		}
1323 		if (ret)
1324 			goto out;
1325 
1326 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1327 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1328 							       parent_id, name,
1329 							       namelen);
1330 		else
1331 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1332 							   name, namelen);
1333 
1334 		if (!ret) {
1335 			struct inode *dir;
1336 
1337 			btrfs_release_path(path);
1338 			dir = read_one_inode(root, parent_id);
1339 			if (!dir) {
1340 				ret = -ENOENT;
1341 				kfree(name);
1342 				goto out;
1343 			}
1344 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1345 						 inode, name, namelen);
1346 			kfree(name);
1347 			iput(dir);
1348 			if (ret)
1349 				goto out;
1350 			goto again;
1351 		}
1352 
1353 		kfree(name);
1354 		ref_ptr += namelen;
1355 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1356 			ref_ptr += sizeof(struct btrfs_inode_extref);
1357 		else
1358 			ref_ptr += sizeof(struct btrfs_inode_ref);
1359 	}
1360 	ret = 0;
1361  out:
1362 	btrfs_release_path(path);
1363 	return ret;
1364 }
1365 
1366 /*
1367  * replay one inode back reference item found in the log tree.
1368  * eb, slot and key refer to the buffer and key found in the log tree.
1369  * root is the destination we are replaying into, and path is for temp
1370  * use by this function.  (it should be released on return).
1371  */
1372 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1373 				  struct btrfs_root *root,
1374 				  struct btrfs_root *log,
1375 				  struct btrfs_path *path,
1376 				  struct extent_buffer *eb, int slot,
1377 				  struct btrfs_key *key)
1378 {
1379 	struct inode *dir = NULL;
1380 	struct inode *inode = NULL;
1381 	unsigned long ref_ptr;
1382 	unsigned long ref_end;
1383 	char *name = NULL;
1384 	int namelen;
1385 	int ret;
1386 	int log_ref_ver = 0;
1387 	u64 parent_objectid;
1388 	u64 inode_objectid;
1389 	u64 ref_index = 0;
1390 	int ref_struct_size;
1391 
1392 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1393 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1394 
1395 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1396 		struct btrfs_inode_extref *r;
1397 
1398 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1399 		log_ref_ver = 1;
1400 		r = (struct btrfs_inode_extref *)ref_ptr;
1401 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1402 	} else {
1403 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1404 		parent_objectid = key->offset;
1405 	}
1406 	inode_objectid = key->objectid;
1407 
1408 	/*
1409 	 * it is possible that we didn't log all the parent directories
1410 	 * for a given inode.  If we don't find the dir, just don't
1411 	 * copy the back ref in.  The link count fixup code will take
1412 	 * care of the rest
1413 	 */
1414 	dir = read_one_inode(root, parent_objectid);
1415 	if (!dir) {
1416 		ret = -ENOENT;
1417 		goto out;
1418 	}
1419 
1420 	inode = read_one_inode(root, inode_objectid);
1421 	if (!inode) {
1422 		ret = -EIO;
1423 		goto out;
1424 	}
1425 
1426 	while (ref_ptr < ref_end) {
1427 		if (log_ref_ver) {
1428 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1429 						&ref_index, &parent_objectid);
1430 			/*
1431 			 * parent object can change from one array
1432 			 * item to another.
1433 			 */
1434 			if (!dir)
1435 				dir = read_one_inode(root, parent_objectid);
1436 			if (!dir) {
1437 				ret = -ENOENT;
1438 				goto out;
1439 			}
1440 		} else {
1441 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1442 					     &ref_index);
1443 		}
1444 		if (ret)
1445 			goto out;
1446 
1447 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1448 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1449 				   name, namelen);
1450 		if (ret < 0) {
1451 			goto out;
1452 		} else if (ret == 0) {
1453 			/*
1454 			 * look for a conflicting back reference in the
1455 			 * metadata. if we find one we have to unlink that name
1456 			 * of the file before we add our new link.  Later on, we
1457 			 * overwrite any existing back reference, and we don't
1458 			 * want to create dangling pointers in the directory.
1459 			 */
1460 			ret = __add_inode_ref(trans, root, path, log,
1461 					      BTRFS_I(dir), BTRFS_I(inode),
1462 					      inode_objectid, parent_objectid,
1463 					      ref_index, name, namelen);
1464 			if (ret) {
1465 				if (ret == 1)
1466 					ret = 0;
1467 				goto out;
1468 			}
1469 
1470 			/* insert our name */
1471 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1472 					     name, namelen, 0, ref_index);
1473 			if (ret)
1474 				goto out;
1475 
1476 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1477 			if (ret)
1478 				goto out;
1479 		}
1480 		/* Else, ret == 1, we already have a perfect match, we're done. */
1481 
1482 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1483 		kfree(name);
1484 		name = NULL;
1485 		if (log_ref_ver) {
1486 			iput(dir);
1487 			dir = NULL;
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * Before we overwrite the inode reference item in the subvolume tree
1493 	 * with the item from the log tree, we must unlink all names from the
1494 	 * parent directory that are in the subvolume's tree inode reference
1495 	 * item, otherwise we end up with an inconsistent subvolume tree where
1496 	 * dir index entries exist for a name but there is no inode reference
1497 	 * item with the same name.
1498 	 */
1499 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1500 				    key);
1501 	if (ret)
1502 		goto out;
1503 
1504 	/* finally write the back reference in the inode */
1505 	ret = overwrite_item(trans, root, path, eb, slot, key);
1506 out:
1507 	btrfs_release_path(path);
1508 	kfree(name);
1509 	iput(dir);
1510 	iput(inode);
1511 	return ret;
1512 }
1513 
1514 static int count_inode_extrefs(struct btrfs_root *root,
1515 		struct btrfs_inode *inode, struct btrfs_path *path)
1516 {
1517 	int ret = 0;
1518 	int name_len;
1519 	unsigned int nlink = 0;
1520 	u32 item_size;
1521 	u32 cur_offset = 0;
1522 	u64 inode_objectid = btrfs_ino(inode);
1523 	u64 offset = 0;
1524 	unsigned long ptr;
1525 	struct btrfs_inode_extref *extref;
1526 	struct extent_buffer *leaf;
1527 
1528 	while (1) {
1529 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1530 					    &extref, &offset);
1531 		if (ret)
1532 			break;
1533 
1534 		leaf = path->nodes[0];
1535 		item_size = btrfs_item_size(leaf, path->slots[0]);
1536 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1537 		cur_offset = 0;
1538 
1539 		while (cur_offset < item_size) {
1540 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1541 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1542 
1543 			nlink++;
1544 
1545 			cur_offset += name_len + sizeof(*extref);
1546 		}
1547 
1548 		offset++;
1549 		btrfs_release_path(path);
1550 	}
1551 	btrfs_release_path(path);
1552 
1553 	if (ret < 0 && ret != -ENOENT)
1554 		return ret;
1555 	return nlink;
1556 }
1557 
1558 static int count_inode_refs(struct btrfs_root *root,
1559 			struct btrfs_inode *inode, struct btrfs_path *path)
1560 {
1561 	int ret;
1562 	struct btrfs_key key;
1563 	unsigned int nlink = 0;
1564 	unsigned long ptr;
1565 	unsigned long ptr_end;
1566 	int name_len;
1567 	u64 ino = btrfs_ino(inode);
1568 
1569 	key.objectid = ino;
1570 	key.type = BTRFS_INODE_REF_KEY;
1571 	key.offset = (u64)-1;
1572 
1573 	while (1) {
1574 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1575 		if (ret < 0)
1576 			break;
1577 		if (ret > 0) {
1578 			if (path->slots[0] == 0)
1579 				break;
1580 			path->slots[0]--;
1581 		}
1582 process_slot:
1583 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1584 				      path->slots[0]);
1585 		if (key.objectid != ino ||
1586 		    key.type != BTRFS_INODE_REF_KEY)
1587 			break;
1588 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1589 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1590 						   path->slots[0]);
1591 		while (ptr < ptr_end) {
1592 			struct btrfs_inode_ref *ref;
1593 
1594 			ref = (struct btrfs_inode_ref *)ptr;
1595 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1596 							    ref);
1597 			ptr = (unsigned long)(ref + 1) + name_len;
1598 			nlink++;
1599 		}
1600 
1601 		if (key.offset == 0)
1602 			break;
1603 		if (path->slots[0] > 0) {
1604 			path->slots[0]--;
1605 			goto process_slot;
1606 		}
1607 		key.offset--;
1608 		btrfs_release_path(path);
1609 	}
1610 	btrfs_release_path(path);
1611 
1612 	return nlink;
1613 }
1614 
1615 /*
1616  * There are a few corners where the link count of the file can't
1617  * be properly maintained during replay.  So, instead of adding
1618  * lots of complexity to the log code, we just scan the backrefs
1619  * for any file that has been through replay.
1620  *
1621  * The scan will update the link count on the inode to reflect the
1622  * number of back refs found.  If it goes down to zero, the iput
1623  * will free the inode.
1624  */
1625 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1626 					   struct btrfs_root *root,
1627 					   struct inode *inode)
1628 {
1629 	struct btrfs_path *path;
1630 	int ret;
1631 	u64 nlink = 0;
1632 	u64 ino = btrfs_ino(BTRFS_I(inode));
1633 
1634 	path = btrfs_alloc_path();
1635 	if (!path)
1636 		return -ENOMEM;
1637 
1638 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1639 	if (ret < 0)
1640 		goto out;
1641 
1642 	nlink = ret;
1643 
1644 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1645 	if (ret < 0)
1646 		goto out;
1647 
1648 	nlink += ret;
1649 
1650 	ret = 0;
1651 
1652 	if (nlink != inode->i_nlink) {
1653 		set_nlink(inode, nlink);
1654 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1655 		if (ret)
1656 			goto out;
1657 	}
1658 	BTRFS_I(inode)->index_cnt = (u64)-1;
1659 
1660 	if (inode->i_nlink == 0) {
1661 		if (S_ISDIR(inode->i_mode)) {
1662 			ret = replay_dir_deletes(trans, root, NULL, path,
1663 						 ino, 1);
1664 			if (ret)
1665 				goto out;
1666 		}
1667 		ret = btrfs_insert_orphan_item(trans, root, ino);
1668 		if (ret == -EEXIST)
1669 			ret = 0;
1670 	}
1671 
1672 out:
1673 	btrfs_free_path(path);
1674 	return ret;
1675 }
1676 
1677 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1678 					    struct btrfs_root *root,
1679 					    struct btrfs_path *path)
1680 {
1681 	int ret;
1682 	struct btrfs_key key;
1683 	struct inode *inode;
1684 
1685 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1686 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1687 	key.offset = (u64)-1;
1688 	while (1) {
1689 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1690 		if (ret < 0)
1691 			break;
1692 
1693 		if (ret == 1) {
1694 			ret = 0;
1695 			if (path->slots[0] == 0)
1696 				break;
1697 			path->slots[0]--;
1698 		}
1699 
1700 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1701 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1702 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1703 			break;
1704 
1705 		ret = btrfs_del_item(trans, root, path);
1706 		if (ret)
1707 			break;
1708 
1709 		btrfs_release_path(path);
1710 		inode = read_one_inode(root, key.offset);
1711 		if (!inode) {
1712 			ret = -EIO;
1713 			break;
1714 		}
1715 
1716 		ret = fixup_inode_link_count(trans, root, inode);
1717 		iput(inode);
1718 		if (ret)
1719 			break;
1720 
1721 		/*
1722 		 * fixup on a directory may create new entries,
1723 		 * make sure we always look for the highset possible
1724 		 * offset
1725 		 */
1726 		key.offset = (u64)-1;
1727 	}
1728 	btrfs_release_path(path);
1729 	return ret;
1730 }
1731 
1732 
1733 /*
1734  * record a given inode in the fixup dir so we can check its link
1735  * count when replay is done.  The link count is incremented here
1736  * so the inode won't go away until we check it
1737  */
1738 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1739 				      struct btrfs_root *root,
1740 				      struct btrfs_path *path,
1741 				      u64 objectid)
1742 {
1743 	struct btrfs_key key;
1744 	int ret = 0;
1745 	struct inode *inode;
1746 
1747 	inode = read_one_inode(root, objectid);
1748 	if (!inode)
1749 		return -EIO;
1750 
1751 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1752 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1753 	key.offset = objectid;
1754 
1755 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1756 
1757 	btrfs_release_path(path);
1758 	if (ret == 0) {
1759 		if (!inode->i_nlink)
1760 			set_nlink(inode, 1);
1761 		else
1762 			inc_nlink(inode);
1763 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1764 	} else if (ret == -EEXIST) {
1765 		ret = 0;
1766 	}
1767 	iput(inode);
1768 
1769 	return ret;
1770 }
1771 
1772 /*
1773  * when replaying the log for a directory, we only insert names
1774  * for inodes that actually exist.  This means an fsync on a directory
1775  * does not implicitly fsync all the new files in it
1776  */
1777 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1778 				    struct btrfs_root *root,
1779 				    u64 dirid, u64 index,
1780 				    char *name, int name_len,
1781 				    struct btrfs_key *location)
1782 {
1783 	struct inode *inode;
1784 	struct inode *dir;
1785 	int ret;
1786 
1787 	inode = read_one_inode(root, location->objectid);
1788 	if (!inode)
1789 		return -ENOENT;
1790 
1791 	dir = read_one_inode(root, dirid);
1792 	if (!dir) {
1793 		iput(inode);
1794 		return -EIO;
1795 	}
1796 
1797 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1798 			name_len, 1, index);
1799 
1800 	/* FIXME, put inode into FIXUP list */
1801 
1802 	iput(inode);
1803 	iput(dir);
1804 	return ret;
1805 }
1806 
1807 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1808 					struct btrfs_inode *dir,
1809 					struct btrfs_path *path,
1810 					struct btrfs_dir_item *dst_di,
1811 					const struct btrfs_key *log_key,
1812 					u8 log_type,
1813 					bool exists)
1814 {
1815 	struct btrfs_key found_key;
1816 
1817 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1818 	/* The existing dentry points to the same inode, don't delete it. */
1819 	if (found_key.objectid == log_key->objectid &&
1820 	    found_key.type == log_key->type &&
1821 	    found_key.offset == log_key->offset &&
1822 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1823 		return 1;
1824 
1825 	/*
1826 	 * Don't drop the conflicting directory entry if the inode for the new
1827 	 * entry doesn't exist.
1828 	 */
1829 	if (!exists)
1830 		return 0;
1831 
1832 	return drop_one_dir_item(trans, path, dir, dst_di);
1833 }
1834 
1835 /*
1836  * take a single entry in a log directory item and replay it into
1837  * the subvolume.
1838  *
1839  * if a conflicting item exists in the subdirectory already,
1840  * the inode it points to is unlinked and put into the link count
1841  * fix up tree.
1842  *
1843  * If a name from the log points to a file or directory that does
1844  * not exist in the FS, it is skipped.  fsyncs on directories
1845  * do not force down inodes inside that directory, just changes to the
1846  * names or unlinks in a directory.
1847  *
1848  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1849  * non-existing inode) and 1 if the name was replayed.
1850  */
1851 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1852 				    struct btrfs_root *root,
1853 				    struct btrfs_path *path,
1854 				    struct extent_buffer *eb,
1855 				    struct btrfs_dir_item *di,
1856 				    struct btrfs_key *key)
1857 {
1858 	char *name;
1859 	int name_len;
1860 	struct btrfs_dir_item *dir_dst_di;
1861 	struct btrfs_dir_item *index_dst_di;
1862 	bool dir_dst_matches = false;
1863 	bool index_dst_matches = false;
1864 	struct btrfs_key log_key;
1865 	struct btrfs_key search_key;
1866 	struct inode *dir;
1867 	u8 log_type;
1868 	bool exists;
1869 	int ret;
1870 	bool update_size = true;
1871 	bool name_added = false;
1872 
1873 	dir = read_one_inode(root, key->objectid);
1874 	if (!dir)
1875 		return -EIO;
1876 
1877 	name_len = btrfs_dir_name_len(eb, di);
1878 	name = kmalloc(name_len, GFP_NOFS);
1879 	if (!name) {
1880 		ret = -ENOMEM;
1881 		goto out;
1882 	}
1883 
1884 	log_type = btrfs_dir_type(eb, di);
1885 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1886 		   name_len);
1887 
1888 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1889 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1890 	btrfs_release_path(path);
1891 	if (ret < 0)
1892 		goto out;
1893 	exists = (ret == 0);
1894 	ret = 0;
1895 
1896 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1897 					   name, name_len, 1);
1898 	if (IS_ERR(dir_dst_di)) {
1899 		ret = PTR_ERR(dir_dst_di);
1900 		goto out;
1901 	} else if (dir_dst_di) {
1902 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1903 						   dir_dst_di, &log_key, log_type,
1904 						   exists);
1905 		if (ret < 0)
1906 			goto out;
1907 		dir_dst_matches = (ret == 1);
1908 	}
1909 
1910 	btrfs_release_path(path);
1911 
1912 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1913 						   key->objectid, key->offset,
1914 						   name, name_len, 1);
1915 	if (IS_ERR(index_dst_di)) {
1916 		ret = PTR_ERR(index_dst_di);
1917 		goto out;
1918 	} else if (index_dst_di) {
1919 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1920 						   index_dst_di, &log_key,
1921 						   log_type, exists);
1922 		if (ret < 0)
1923 			goto out;
1924 		index_dst_matches = (ret == 1);
1925 	}
1926 
1927 	btrfs_release_path(path);
1928 
1929 	if (dir_dst_matches && index_dst_matches) {
1930 		ret = 0;
1931 		update_size = false;
1932 		goto out;
1933 	}
1934 
1935 	/*
1936 	 * Check if the inode reference exists in the log for the given name,
1937 	 * inode and parent inode
1938 	 */
1939 	search_key.objectid = log_key.objectid;
1940 	search_key.type = BTRFS_INODE_REF_KEY;
1941 	search_key.offset = key->objectid;
1942 	ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
1943 	if (ret < 0) {
1944 	        goto out;
1945 	} else if (ret) {
1946 	        /* The dentry will be added later. */
1947 	        ret = 0;
1948 	        update_size = false;
1949 	        goto out;
1950 	}
1951 
1952 	search_key.objectid = log_key.objectid;
1953 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1954 	search_key.offset = key->objectid;
1955 	ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
1956 			     name_len);
1957 	if (ret < 0) {
1958 		goto out;
1959 	} else if (ret) {
1960 		/* The dentry will be added later. */
1961 		ret = 0;
1962 		update_size = false;
1963 		goto out;
1964 	}
1965 	btrfs_release_path(path);
1966 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1967 			      name, name_len, &log_key);
1968 	if (ret && ret != -ENOENT && ret != -EEXIST)
1969 		goto out;
1970 	if (!ret)
1971 		name_added = true;
1972 	update_size = false;
1973 	ret = 0;
1974 
1975 out:
1976 	if (!ret && update_size) {
1977 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1979 	}
1980 	kfree(name);
1981 	iput(dir);
1982 	if (!ret && name_added)
1983 		ret = 1;
1984 	return ret;
1985 }
1986 
1987 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1988 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1989 					struct btrfs_root *root,
1990 					struct btrfs_path *path,
1991 					struct extent_buffer *eb, int slot,
1992 					struct btrfs_key *key)
1993 {
1994 	int ret;
1995 	struct btrfs_dir_item *di;
1996 
1997 	/* We only log dir index keys, which only contain a single dir item. */
1998 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1999 
2000 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2001 	ret = replay_one_name(trans, root, path, eb, di, key);
2002 	if (ret < 0)
2003 		return ret;
2004 
2005 	/*
2006 	 * If this entry refers to a non-directory (directories can not have a
2007 	 * link count > 1) and it was added in the transaction that was not
2008 	 * committed, make sure we fixup the link count of the inode the entry
2009 	 * points to. Otherwise something like the following would result in a
2010 	 * directory pointing to an inode with a wrong link that does not account
2011 	 * for this dir entry:
2012 	 *
2013 	 * mkdir testdir
2014 	 * touch testdir/foo
2015 	 * touch testdir/bar
2016 	 * sync
2017 	 *
2018 	 * ln testdir/bar testdir/bar_link
2019 	 * ln testdir/foo testdir/foo_link
2020 	 * xfs_io -c "fsync" testdir/bar
2021 	 *
2022 	 * <power failure>
2023 	 *
2024 	 * mount fs, log replay happens
2025 	 *
2026 	 * File foo would remain with a link count of 1 when it has two entries
2027 	 * pointing to it in the directory testdir. This would make it impossible
2028 	 * to ever delete the parent directory has it would result in stale
2029 	 * dentries that can never be deleted.
2030 	 */
2031 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2032 		struct btrfs_path *fixup_path;
2033 		struct btrfs_key di_key;
2034 
2035 		fixup_path = btrfs_alloc_path();
2036 		if (!fixup_path)
2037 			return -ENOMEM;
2038 
2039 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2040 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2041 		btrfs_free_path(fixup_path);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 /*
2048  * directory replay has two parts.  There are the standard directory
2049  * items in the log copied from the subvolume, and range items
2050  * created in the log while the subvolume was logged.
2051  *
2052  * The range items tell us which parts of the key space the log
2053  * is authoritative for.  During replay, if a key in the subvolume
2054  * directory is in a logged range item, but not actually in the log
2055  * that means it was deleted from the directory before the fsync
2056  * and should be removed.
2057  */
2058 static noinline int find_dir_range(struct btrfs_root *root,
2059 				   struct btrfs_path *path,
2060 				   u64 dirid,
2061 				   u64 *start_ret, u64 *end_ret)
2062 {
2063 	struct btrfs_key key;
2064 	u64 found_end;
2065 	struct btrfs_dir_log_item *item;
2066 	int ret;
2067 	int nritems;
2068 
2069 	if (*start_ret == (u64)-1)
2070 		return 1;
2071 
2072 	key.objectid = dirid;
2073 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2074 	key.offset = *start_ret;
2075 
2076 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077 	if (ret < 0)
2078 		goto out;
2079 	if (ret > 0) {
2080 		if (path->slots[0] == 0)
2081 			goto out;
2082 		path->slots[0]--;
2083 	}
2084 	if (ret != 0)
2085 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2086 
2087 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2088 		ret = 1;
2089 		goto next;
2090 	}
2091 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2092 			      struct btrfs_dir_log_item);
2093 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2094 
2095 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2096 		ret = 0;
2097 		*start_ret = key.offset;
2098 		*end_ret = found_end;
2099 		goto out;
2100 	}
2101 	ret = 1;
2102 next:
2103 	/* check the next slot in the tree to see if it is a valid item */
2104 	nritems = btrfs_header_nritems(path->nodes[0]);
2105 	path->slots[0]++;
2106 	if (path->slots[0] >= nritems) {
2107 		ret = btrfs_next_leaf(root, path);
2108 		if (ret)
2109 			goto out;
2110 	}
2111 
2112 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2113 
2114 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2115 		ret = 1;
2116 		goto out;
2117 	}
2118 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2119 			      struct btrfs_dir_log_item);
2120 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2121 	*start_ret = key.offset;
2122 	*end_ret = found_end;
2123 	ret = 0;
2124 out:
2125 	btrfs_release_path(path);
2126 	return ret;
2127 }
2128 
2129 /*
2130  * this looks for a given directory item in the log.  If the directory
2131  * item is not in the log, the item is removed and the inode it points
2132  * to is unlinked
2133  */
2134 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2135 				      struct btrfs_root *log,
2136 				      struct btrfs_path *path,
2137 				      struct btrfs_path *log_path,
2138 				      struct inode *dir,
2139 				      struct btrfs_key *dir_key)
2140 {
2141 	struct btrfs_root *root = BTRFS_I(dir)->root;
2142 	int ret;
2143 	struct extent_buffer *eb;
2144 	int slot;
2145 	struct btrfs_dir_item *di;
2146 	int name_len;
2147 	char *name;
2148 	struct inode *inode = NULL;
2149 	struct btrfs_key location;
2150 
2151 	/*
2152 	 * Currently we only log dir index keys. Even if we replay a log created
2153 	 * by an older kernel that logged both dir index and dir item keys, all
2154 	 * we need to do is process the dir index keys, we (and our caller) can
2155 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2156 	 */
2157 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2158 
2159 	eb = path->nodes[0];
2160 	slot = path->slots[0];
2161 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2162 	name_len = btrfs_dir_name_len(eb, di);
2163 	name = kmalloc(name_len, GFP_NOFS);
2164 	if (!name) {
2165 		ret = -ENOMEM;
2166 		goto out;
2167 	}
2168 
2169 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2170 
2171 	if (log) {
2172 		struct btrfs_dir_item *log_di;
2173 
2174 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2175 						     dir_key->objectid,
2176 						     dir_key->offset,
2177 						     name, name_len, 0);
2178 		if (IS_ERR(log_di)) {
2179 			ret = PTR_ERR(log_di);
2180 			goto out;
2181 		} else if (log_di) {
2182 			/* The dentry exists in the log, we have nothing to do. */
2183 			ret = 0;
2184 			goto out;
2185 		}
2186 	}
2187 
2188 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2189 	btrfs_release_path(path);
2190 	btrfs_release_path(log_path);
2191 	inode = read_one_inode(root, location.objectid);
2192 	if (!inode) {
2193 		ret = -EIO;
2194 		goto out;
2195 	}
2196 
2197 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2198 	if (ret)
2199 		goto out;
2200 
2201 	inc_nlink(inode);
2202 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2203 					  name, name_len);
2204 	/*
2205 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2206 	 * them, as there are no key collisions since each key has a unique offset
2207 	 * (an index number), so we're done.
2208 	 */
2209 out:
2210 	btrfs_release_path(path);
2211 	btrfs_release_path(log_path);
2212 	kfree(name);
2213 	iput(inode);
2214 	return ret;
2215 }
2216 
2217 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2218 			      struct btrfs_root *root,
2219 			      struct btrfs_root *log,
2220 			      struct btrfs_path *path,
2221 			      const u64 ino)
2222 {
2223 	struct btrfs_key search_key;
2224 	struct btrfs_path *log_path;
2225 	int i;
2226 	int nritems;
2227 	int ret;
2228 
2229 	log_path = btrfs_alloc_path();
2230 	if (!log_path)
2231 		return -ENOMEM;
2232 
2233 	search_key.objectid = ino;
2234 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2235 	search_key.offset = 0;
2236 again:
2237 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2238 	if (ret < 0)
2239 		goto out;
2240 process_leaf:
2241 	nritems = btrfs_header_nritems(path->nodes[0]);
2242 	for (i = path->slots[0]; i < nritems; i++) {
2243 		struct btrfs_key key;
2244 		struct btrfs_dir_item *di;
2245 		struct btrfs_dir_item *log_di;
2246 		u32 total_size;
2247 		u32 cur;
2248 
2249 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2250 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2251 			ret = 0;
2252 			goto out;
2253 		}
2254 
2255 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2256 		total_size = btrfs_item_size(path->nodes[0], i);
2257 		cur = 0;
2258 		while (cur < total_size) {
2259 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2260 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2261 			u32 this_len = sizeof(*di) + name_len + data_len;
2262 			char *name;
2263 
2264 			name = kmalloc(name_len, GFP_NOFS);
2265 			if (!name) {
2266 				ret = -ENOMEM;
2267 				goto out;
2268 			}
2269 			read_extent_buffer(path->nodes[0], name,
2270 					   (unsigned long)(di + 1), name_len);
2271 
2272 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2273 						    name, name_len, 0);
2274 			btrfs_release_path(log_path);
2275 			if (!log_di) {
2276 				/* Doesn't exist in log tree, so delete it. */
2277 				btrfs_release_path(path);
2278 				di = btrfs_lookup_xattr(trans, root, path, ino,
2279 							name, name_len, -1);
2280 				kfree(name);
2281 				if (IS_ERR(di)) {
2282 					ret = PTR_ERR(di);
2283 					goto out;
2284 				}
2285 				ASSERT(di);
2286 				ret = btrfs_delete_one_dir_name(trans, root,
2287 								path, di);
2288 				if (ret)
2289 					goto out;
2290 				btrfs_release_path(path);
2291 				search_key = key;
2292 				goto again;
2293 			}
2294 			kfree(name);
2295 			if (IS_ERR(log_di)) {
2296 				ret = PTR_ERR(log_di);
2297 				goto out;
2298 			}
2299 			cur += this_len;
2300 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2301 		}
2302 	}
2303 	ret = btrfs_next_leaf(root, path);
2304 	if (ret > 0)
2305 		ret = 0;
2306 	else if (ret == 0)
2307 		goto process_leaf;
2308 out:
2309 	btrfs_free_path(log_path);
2310 	btrfs_release_path(path);
2311 	return ret;
2312 }
2313 
2314 
2315 /*
2316  * deletion replay happens before we copy any new directory items
2317  * out of the log or out of backreferences from inodes.  It
2318  * scans the log to find ranges of keys that log is authoritative for,
2319  * and then scans the directory to find items in those ranges that are
2320  * not present in the log.
2321  *
2322  * Anything we don't find in the log is unlinked and removed from the
2323  * directory.
2324  */
2325 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2326 				       struct btrfs_root *root,
2327 				       struct btrfs_root *log,
2328 				       struct btrfs_path *path,
2329 				       u64 dirid, int del_all)
2330 {
2331 	u64 range_start;
2332 	u64 range_end;
2333 	int ret = 0;
2334 	struct btrfs_key dir_key;
2335 	struct btrfs_key found_key;
2336 	struct btrfs_path *log_path;
2337 	struct inode *dir;
2338 
2339 	dir_key.objectid = dirid;
2340 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2341 	log_path = btrfs_alloc_path();
2342 	if (!log_path)
2343 		return -ENOMEM;
2344 
2345 	dir = read_one_inode(root, dirid);
2346 	/* it isn't an error if the inode isn't there, that can happen
2347 	 * because we replay the deletes before we copy in the inode item
2348 	 * from the log
2349 	 */
2350 	if (!dir) {
2351 		btrfs_free_path(log_path);
2352 		return 0;
2353 	}
2354 
2355 	range_start = 0;
2356 	range_end = 0;
2357 	while (1) {
2358 		if (del_all)
2359 			range_end = (u64)-1;
2360 		else {
2361 			ret = find_dir_range(log, path, dirid,
2362 					     &range_start, &range_end);
2363 			if (ret < 0)
2364 				goto out;
2365 			else if (ret > 0)
2366 				break;
2367 		}
2368 
2369 		dir_key.offset = range_start;
2370 		while (1) {
2371 			int nritems;
2372 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2373 						0, 0);
2374 			if (ret < 0)
2375 				goto out;
2376 
2377 			nritems = btrfs_header_nritems(path->nodes[0]);
2378 			if (path->slots[0] >= nritems) {
2379 				ret = btrfs_next_leaf(root, path);
2380 				if (ret == 1)
2381 					break;
2382 				else if (ret < 0)
2383 					goto out;
2384 			}
2385 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2386 					      path->slots[0]);
2387 			if (found_key.objectid != dirid ||
2388 			    found_key.type != dir_key.type) {
2389 				ret = 0;
2390 				goto out;
2391 			}
2392 
2393 			if (found_key.offset > range_end)
2394 				break;
2395 
2396 			ret = check_item_in_log(trans, log, path,
2397 						log_path, dir,
2398 						&found_key);
2399 			if (ret)
2400 				goto out;
2401 			if (found_key.offset == (u64)-1)
2402 				break;
2403 			dir_key.offset = found_key.offset + 1;
2404 		}
2405 		btrfs_release_path(path);
2406 		if (range_end == (u64)-1)
2407 			break;
2408 		range_start = range_end + 1;
2409 	}
2410 	ret = 0;
2411 out:
2412 	btrfs_release_path(path);
2413 	btrfs_free_path(log_path);
2414 	iput(dir);
2415 	return ret;
2416 }
2417 
2418 /*
2419  * the process_func used to replay items from the log tree.  This
2420  * gets called in two different stages.  The first stage just looks
2421  * for inodes and makes sure they are all copied into the subvolume.
2422  *
2423  * The second stage copies all the other item types from the log into
2424  * the subvolume.  The two stage approach is slower, but gets rid of
2425  * lots of complexity around inodes referencing other inodes that exist
2426  * only in the log (references come from either directory items or inode
2427  * back refs).
2428  */
2429 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2430 			     struct walk_control *wc, u64 gen, int level)
2431 {
2432 	int nritems;
2433 	struct btrfs_path *path;
2434 	struct btrfs_root *root = wc->replay_dest;
2435 	struct btrfs_key key;
2436 	int i;
2437 	int ret;
2438 
2439 	ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2440 	if (ret)
2441 		return ret;
2442 
2443 	level = btrfs_header_level(eb);
2444 
2445 	if (level != 0)
2446 		return 0;
2447 
2448 	path = btrfs_alloc_path();
2449 	if (!path)
2450 		return -ENOMEM;
2451 
2452 	nritems = btrfs_header_nritems(eb);
2453 	for (i = 0; i < nritems; i++) {
2454 		btrfs_item_key_to_cpu(eb, &key, i);
2455 
2456 		/* inode keys are done during the first stage */
2457 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2458 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2459 			struct btrfs_inode_item *inode_item;
2460 			u32 mode;
2461 
2462 			inode_item = btrfs_item_ptr(eb, i,
2463 					    struct btrfs_inode_item);
2464 			/*
2465 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2466 			 * and never got linked before the fsync, skip it, as
2467 			 * replaying it is pointless since it would be deleted
2468 			 * later. We skip logging tmpfiles, but it's always
2469 			 * possible we are replaying a log created with a kernel
2470 			 * that used to log tmpfiles.
2471 			 */
2472 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2473 				wc->ignore_cur_inode = true;
2474 				continue;
2475 			} else {
2476 				wc->ignore_cur_inode = false;
2477 			}
2478 			ret = replay_xattr_deletes(wc->trans, root, log,
2479 						   path, key.objectid);
2480 			if (ret)
2481 				break;
2482 			mode = btrfs_inode_mode(eb, inode_item);
2483 			if (S_ISDIR(mode)) {
2484 				ret = replay_dir_deletes(wc->trans,
2485 					 root, log, path, key.objectid, 0);
2486 				if (ret)
2487 					break;
2488 			}
2489 			ret = overwrite_item(wc->trans, root, path,
2490 					     eb, i, &key);
2491 			if (ret)
2492 				break;
2493 
2494 			/*
2495 			 * Before replaying extents, truncate the inode to its
2496 			 * size. We need to do it now and not after log replay
2497 			 * because before an fsync we can have prealloc extents
2498 			 * added beyond the inode's i_size. If we did it after,
2499 			 * through orphan cleanup for example, we would drop
2500 			 * those prealloc extents just after replaying them.
2501 			 */
2502 			if (S_ISREG(mode)) {
2503 				struct btrfs_drop_extents_args drop_args = { 0 };
2504 				struct inode *inode;
2505 				u64 from;
2506 
2507 				inode = read_one_inode(root, key.objectid);
2508 				if (!inode) {
2509 					ret = -EIO;
2510 					break;
2511 				}
2512 				from = ALIGN(i_size_read(inode),
2513 					     root->fs_info->sectorsize);
2514 				drop_args.start = from;
2515 				drop_args.end = (u64)-1;
2516 				drop_args.drop_cache = true;
2517 				ret = btrfs_drop_extents(wc->trans, root,
2518 							 BTRFS_I(inode),
2519 							 &drop_args);
2520 				if (!ret) {
2521 					inode_sub_bytes(inode,
2522 							drop_args.bytes_found);
2523 					/* Update the inode's nbytes. */
2524 					ret = btrfs_update_inode(wc->trans,
2525 							root, BTRFS_I(inode));
2526 				}
2527 				iput(inode);
2528 				if (ret)
2529 					break;
2530 			}
2531 
2532 			ret = link_to_fixup_dir(wc->trans, root,
2533 						path, key.objectid);
2534 			if (ret)
2535 				break;
2536 		}
2537 
2538 		if (wc->ignore_cur_inode)
2539 			continue;
2540 
2541 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2542 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2543 			ret = replay_one_dir_item(wc->trans, root, path,
2544 						  eb, i, &key);
2545 			if (ret)
2546 				break;
2547 		}
2548 
2549 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2550 			continue;
2551 
2552 		/* these keys are simply copied */
2553 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2554 			ret = overwrite_item(wc->trans, root, path,
2555 					     eb, i, &key);
2556 			if (ret)
2557 				break;
2558 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2559 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2560 			ret = add_inode_ref(wc->trans, root, log, path,
2561 					    eb, i, &key);
2562 			if (ret && ret != -ENOENT)
2563 				break;
2564 			ret = 0;
2565 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2566 			ret = replay_one_extent(wc->trans, root, path,
2567 						eb, i, &key);
2568 			if (ret)
2569 				break;
2570 		}
2571 		/*
2572 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2573 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2574 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2575 		 * older kernel with such keys, ignore them.
2576 		 */
2577 	}
2578 	btrfs_free_path(path);
2579 	return ret;
2580 }
2581 
2582 /*
2583  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2584  */
2585 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2586 {
2587 	struct btrfs_block_group *cache;
2588 
2589 	cache = btrfs_lookup_block_group(fs_info, start);
2590 	if (!cache) {
2591 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2592 		return;
2593 	}
2594 
2595 	spin_lock(&cache->space_info->lock);
2596 	spin_lock(&cache->lock);
2597 	cache->reserved -= fs_info->nodesize;
2598 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2599 	spin_unlock(&cache->lock);
2600 	spin_unlock(&cache->space_info->lock);
2601 
2602 	btrfs_put_block_group(cache);
2603 }
2604 
2605 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2606 				   struct btrfs_root *root,
2607 				   struct btrfs_path *path, int *level,
2608 				   struct walk_control *wc)
2609 {
2610 	struct btrfs_fs_info *fs_info = root->fs_info;
2611 	u64 bytenr;
2612 	u64 ptr_gen;
2613 	struct extent_buffer *next;
2614 	struct extent_buffer *cur;
2615 	u32 blocksize;
2616 	int ret = 0;
2617 
2618 	while (*level > 0) {
2619 		struct btrfs_key first_key;
2620 
2621 		cur = path->nodes[*level];
2622 
2623 		WARN_ON(btrfs_header_level(cur) != *level);
2624 
2625 		if (path->slots[*level] >=
2626 		    btrfs_header_nritems(cur))
2627 			break;
2628 
2629 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2630 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2631 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2632 		blocksize = fs_info->nodesize;
2633 
2634 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2635 						    btrfs_header_owner(cur),
2636 						    *level - 1);
2637 		if (IS_ERR(next))
2638 			return PTR_ERR(next);
2639 
2640 		if (*level == 1) {
2641 			ret = wc->process_func(root, next, wc, ptr_gen,
2642 					       *level - 1);
2643 			if (ret) {
2644 				free_extent_buffer(next);
2645 				return ret;
2646 			}
2647 
2648 			path->slots[*level]++;
2649 			if (wc->free) {
2650 				ret = btrfs_read_extent_buffer(next, ptr_gen,
2651 							*level - 1, &first_key);
2652 				if (ret) {
2653 					free_extent_buffer(next);
2654 					return ret;
2655 				}
2656 
2657 				if (trans) {
2658 					btrfs_tree_lock(next);
2659 					btrfs_clean_tree_block(next);
2660 					btrfs_wait_tree_block_writeback(next);
2661 					btrfs_tree_unlock(next);
2662 					ret = btrfs_pin_reserved_extent(trans,
2663 							bytenr, blocksize);
2664 					if (ret) {
2665 						free_extent_buffer(next);
2666 						return ret;
2667 					}
2668 					btrfs_redirty_list_add(
2669 						trans->transaction, next);
2670 				} else {
2671 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 						clear_extent_buffer_dirty(next);
2673 					unaccount_log_buffer(fs_info, bytenr);
2674 				}
2675 			}
2676 			free_extent_buffer(next);
2677 			continue;
2678 		}
2679 		ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2680 		if (ret) {
2681 			free_extent_buffer(next);
2682 			return ret;
2683 		}
2684 
2685 		if (path->nodes[*level-1])
2686 			free_extent_buffer(path->nodes[*level-1]);
2687 		path->nodes[*level-1] = next;
2688 		*level = btrfs_header_level(next);
2689 		path->slots[*level] = 0;
2690 		cond_resched();
2691 	}
2692 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2693 
2694 	cond_resched();
2695 	return 0;
2696 }
2697 
2698 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2699 				 struct btrfs_root *root,
2700 				 struct btrfs_path *path, int *level,
2701 				 struct walk_control *wc)
2702 {
2703 	struct btrfs_fs_info *fs_info = root->fs_info;
2704 	int i;
2705 	int slot;
2706 	int ret;
2707 
2708 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2709 		slot = path->slots[i];
2710 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2711 			path->slots[i]++;
2712 			*level = i;
2713 			WARN_ON(*level == 0);
2714 			return 0;
2715 		} else {
2716 			ret = wc->process_func(root, path->nodes[*level], wc,
2717 				 btrfs_header_generation(path->nodes[*level]),
2718 				 *level);
2719 			if (ret)
2720 				return ret;
2721 
2722 			if (wc->free) {
2723 				struct extent_buffer *next;
2724 
2725 				next = path->nodes[*level];
2726 
2727 				if (trans) {
2728 					btrfs_tree_lock(next);
2729 					btrfs_clean_tree_block(next);
2730 					btrfs_wait_tree_block_writeback(next);
2731 					btrfs_tree_unlock(next);
2732 					ret = btrfs_pin_reserved_extent(trans,
2733 						     path->nodes[*level]->start,
2734 						     path->nodes[*level]->len);
2735 					if (ret)
2736 						return ret;
2737 					btrfs_redirty_list_add(trans->transaction,
2738 							       next);
2739 				} else {
2740 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2741 						clear_extent_buffer_dirty(next);
2742 
2743 					unaccount_log_buffer(fs_info,
2744 						path->nodes[*level]->start);
2745 				}
2746 			}
2747 			free_extent_buffer(path->nodes[*level]);
2748 			path->nodes[*level] = NULL;
2749 			*level = i + 1;
2750 		}
2751 	}
2752 	return 1;
2753 }
2754 
2755 /*
2756  * drop the reference count on the tree rooted at 'snap'.  This traverses
2757  * the tree freeing any blocks that have a ref count of zero after being
2758  * decremented.
2759  */
2760 static int walk_log_tree(struct btrfs_trans_handle *trans,
2761 			 struct btrfs_root *log, struct walk_control *wc)
2762 {
2763 	struct btrfs_fs_info *fs_info = log->fs_info;
2764 	int ret = 0;
2765 	int wret;
2766 	int level;
2767 	struct btrfs_path *path;
2768 	int orig_level;
2769 
2770 	path = btrfs_alloc_path();
2771 	if (!path)
2772 		return -ENOMEM;
2773 
2774 	level = btrfs_header_level(log->node);
2775 	orig_level = level;
2776 	path->nodes[level] = log->node;
2777 	atomic_inc(&log->node->refs);
2778 	path->slots[level] = 0;
2779 
2780 	while (1) {
2781 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2782 		if (wret > 0)
2783 			break;
2784 		if (wret < 0) {
2785 			ret = wret;
2786 			goto out;
2787 		}
2788 
2789 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2790 		if (wret > 0)
2791 			break;
2792 		if (wret < 0) {
2793 			ret = wret;
2794 			goto out;
2795 		}
2796 	}
2797 
2798 	/* was the root node processed? if not, catch it here */
2799 	if (path->nodes[orig_level]) {
2800 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2801 			 btrfs_header_generation(path->nodes[orig_level]),
2802 			 orig_level);
2803 		if (ret)
2804 			goto out;
2805 		if (wc->free) {
2806 			struct extent_buffer *next;
2807 
2808 			next = path->nodes[orig_level];
2809 
2810 			if (trans) {
2811 				btrfs_tree_lock(next);
2812 				btrfs_clean_tree_block(next);
2813 				btrfs_wait_tree_block_writeback(next);
2814 				btrfs_tree_unlock(next);
2815 				ret = btrfs_pin_reserved_extent(trans,
2816 						next->start, next->len);
2817 				if (ret)
2818 					goto out;
2819 				btrfs_redirty_list_add(trans->transaction, next);
2820 			} else {
2821 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2822 					clear_extent_buffer_dirty(next);
2823 				unaccount_log_buffer(fs_info, next->start);
2824 			}
2825 		}
2826 	}
2827 
2828 out:
2829 	btrfs_free_path(path);
2830 	return ret;
2831 }
2832 
2833 /*
2834  * helper function to update the item for a given subvolumes log root
2835  * in the tree of log roots
2836  */
2837 static int update_log_root(struct btrfs_trans_handle *trans,
2838 			   struct btrfs_root *log,
2839 			   struct btrfs_root_item *root_item)
2840 {
2841 	struct btrfs_fs_info *fs_info = log->fs_info;
2842 	int ret;
2843 
2844 	if (log->log_transid == 1) {
2845 		/* insert root item on the first sync */
2846 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2847 				&log->root_key, root_item);
2848 	} else {
2849 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2850 				&log->root_key, root_item);
2851 	}
2852 	return ret;
2853 }
2854 
2855 static void wait_log_commit(struct btrfs_root *root, int transid)
2856 {
2857 	DEFINE_WAIT(wait);
2858 	int index = transid % 2;
2859 
2860 	/*
2861 	 * we only allow two pending log transactions at a time,
2862 	 * so we know that if ours is more than 2 older than the
2863 	 * current transaction, we're done
2864 	 */
2865 	for (;;) {
2866 		prepare_to_wait(&root->log_commit_wait[index],
2867 				&wait, TASK_UNINTERRUPTIBLE);
2868 
2869 		if (!(root->log_transid_committed < transid &&
2870 		      atomic_read(&root->log_commit[index])))
2871 			break;
2872 
2873 		mutex_unlock(&root->log_mutex);
2874 		schedule();
2875 		mutex_lock(&root->log_mutex);
2876 	}
2877 	finish_wait(&root->log_commit_wait[index], &wait);
2878 }
2879 
2880 static void wait_for_writer(struct btrfs_root *root)
2881 {
2882 	DEFINE_WAIT(wait);
2883 
2884 	for (;;) {
2885 		prepare_to_wait(&root->log_writer_wait, &wait,
2886 				TASK_UNINTERRUPTIBLE);
2887 		if (!atomic_read(&root->log_writers))
2888 			break;
2889 
2890 		mutex_unlock(&root->log_mutex);
2891 		schedule();
2892 		mutex_lock(&root->log_mutex);
2893 	}
2894 	finish_wait(&root->log_writer_wait, &wait);
2895 }
2896 
2897 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2898 					struct btrfs_log_ctx *ctx)
2899 {
2900 	mutex_lock(&root->log_mutex);
2901 	list_del_init(&ctx->list);
2902 	mutex_unlock(&root->log_mutex);
2903 }
2904 
2905 /*
2906  * Invoked in log mutex context, or be sure there is no other task which
2907  * can access the list.
2908  */
2909 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2910 					     int index, int error)
2911 {
2912 	struct btrfs_log_ctx *ctx;
2913 	struct btrfs_log_ctx *safe;
2914 
2915 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2916 		list_del_init(&ctx->list);
2917 		ctx->log_ret = error;
2918 	}
2919 }
2920 
2921 /*
2922  * btrfs_sync_log does sends a given tree log down to the disk and
2923  * updates the super blocks to record it.  When this call is done,
2924  * you know that any inodes previously logged are safely on disk only
2925  * if it returns 0.
2926  *
2927  * Any other return value means you need to call btrfs_commit_transaction.
2928  * Some of the edge cases for fsyncing directories that have had unlinks
2929  * or renames done in the past mean that sometimes the only safe
2930  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2931  * that has happened.
2932  */
2933 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2934 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2935 {
2936 	int index1;
2937 	int index2;
2938 	int mark;
2939 	int ret;
2940 	struct btrfs_fs_info *fs_info = root->fs_info;
2941 	struct btrfs_root *log = root->log_root;
2942 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2943 	struct btrfs_root_item new_root_item;
2944 	int log_transid = 0;
2945 	struct btrfs_log_ctx root_log_ctx;
2946 	struct blk_plug plug;
2947 	u64 log_root_start;
2948 	u64 log_root_level;
2949 
2950 	mutex_lock(&root->log_mutex);
2951 	log_transid = ctx->log_transid;
2952 	if (root->log_transid_committed >= log_transid) {
2953 		mutex_unlock(&root->log_mutex);
2954 		return ctx->log_ret;
2955 	}
2956 
2957 	index1 = log_transid % 2;
2958 	if (atomic_read(&root->log_commit[index1])) {
2959 		wait_log_commit(root, log_transid);
2960 		mutex_unlock(&root->log_mutex);
2961 		return ctx->log_ret;
2962 	}
2963 	ASSERT(log_transid == root->log_transid);
2964 	atomic_set(&root->log_commit[index1], 1);
2965 
2966 	/* wait for previous tree log sync to complete */
2967 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2968 		wait_log_commit(root, log_transid - 1);
2969 
2970 	while (1) {
2971 		int batch = atomic_read(&root->log_batch);
2972 		/* when we're on an ssd, just kick the log commit out */
2973 		if (!btrfs_test_opt(fs_info, SSD) &&
2974 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2975 			mutex_unlock(&root->log_mutex);
2976 			schedule_timeout_uninterruptible(1);
2977 			mutex_lock(&root->log_mutex);
2978 		}
2979 		wait_for_writer(root);
2980 		if (batch == atomic_read(&root->log_batch))
2981 			break;
2982 	}
2983 
2984 	/* bail out if we need to do a full commit */
2985 	if (btrfs_need_log_full_commit(trans)) {
2986 		ret = BTRFS_LOG_FORCE_COMMIT;
2987 		mutex_unlock(&root->log_mutex);
2988 		goto out;
2989 	}
2990 
2991 	if (log_transid % 2 == 0)
2992 		mark = EXTENT_DIRTY;
2993 	else
2994 		mark = EXTENT_NEW;
2995 
2996 	/* we start IO on  all the marked extents here, but we don't actually
2997 	 * wait for them until later.
2998 	 */
2999 	blk_start_plug(&plug);
3000 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3001 	/*
3002 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3003 	 *  commit, writes a dirty extent in this tree-log commit. This
3004 	 *  concurrent write will create a hole writing out the extents,
3005 	 *  and we cannot proceed on a zoned filesystem, requiring
3006 	 *  sequential writing. While we can bail out to a full commit
3007 	 *  here, but we can continue hoping the concurrent writing fills
3008 	 *  the hole.
3009 	 */
3010 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3011 		ret = 0;
3012 	if (ret) {
3013 		blk_finish_plug(&plug);
3014 		btrfs_abort_transaction(trans, ret);
3015 		btrfs_set_log_full_commit(trans);
3016 		mutex_unlock(&root->log_mutex);
3017 		goto out;
3018 	}
3019 
3020 	/*
3021 	 * We _must_ update under the root->log_mutex in order to make sure we
3022 	 * have a consistent view of the log root we are trying to commit at
3023 	 * this moment.
3024 	 *
3025 	 * We _must_ copy this into a local copy, because we are not holding the
3026 	 * log_root_tree->log_mutex yet.  This is important because when we
3027 	 * commit the log_root_tree we must have a consistent view of the
3028 	 * log_root_tree when we update the super block to point at the
3029 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3030 	 * with the commit and possibly point at the new block which we may not
3031 	 * have written out.
3032 	 */
3033 	btrfs_set_root_node(&log->root_item, log->node);
3034 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3035 
3036 	root->log_transid++;
3037 	log->log_transid = root->log_transid;
3038 	root->log_start_pid = 0;
3039 	/*
3040 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3041 	 * in their headers. new modifications of the log will be written to
3042 	 * new positions. so it's safe to allow log writers to go in.
3043 	 */
3044 	mutex_unlock(&root->log_mutex);
3045 
3046 	if (btrfs_is_zoned(fs_info)) {
3047 		mutex_lock(&fs_info->tree_root->log_mutex);
3048 		if (!log_root_tree->node) {
3049 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3050 			if (ret) {
3051 				mutex_unlock(&fs_info->tree_root->log_mutex);
3052 				blk_finish_plug(&plug);
3053 				goto out;
3054 			}
3055 		}
3056 		mutex_unlock(&fs_info->tree_root->log_mutex);
3057 	}
3058 
3059 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3060 
3061 	mutex_lock(&log_root_tree->log_mutex);
3062 
3063 	index2 = log_root_tree->log_transid % 2;
3064 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3065 	root_log_ctx.log_transid = log_root_tree->log_transid;
3066 
3067 	/*
3068 	 * Now we are safe to update the log_root_tree because we're under the
3069 	 * log_mutex, and we're a current writer so we're holding the commit
3070 	 * open until we drop the log_mutex.
3071 	 */
3072 	ret = update_log_root(trans, log, &new_root_item);
3073 	if (ret) {
3074 		if (!list_empty(&root_log_ctx.list))
3075 			list_del_init(&root_log_ctx.list);
3076 
3077 		blk_finish_plug(&plug);
3078 		btrfs_set_log_full_commit(trans);
3079 
3080 		if (ret != -ENOSPC) {
3081 			btrfs_abort_transaction(trans, ret);
3082 			mutex_unlock(&log_root_tree->log_mutex);
3083 			goto out;
3084 		}
3085 		btrfs_wait_tree_log_extents(log, mark);
3086 		mutex_unlock(&log_root_tree->log_mutex);
3087 		ret = BTRFS_LOG_FORCE_COMMIT;
3088 		goto out;
3089 	}
3090 
3091 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3092 		blk_finish_plug(&plug);
3093 		list_del_init(&root_log_ctx.list);
3094 		mutex_unlock(&log_root_tree->log_mutex);
3095 		ret = root_log_ctx.log_ret;
3096 		goto out;
3097 	}
3098 
3099 	index2 = root_log_ctx.log_transid % 2;
3100 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3101 		blk_finish_plug(&plug);
3102 		ret = btrfs_wait_tree_log_extents(log, mark);
3103 		wait_log_commit(log_root_tree,
3104 				root_log_ctx.log_transid);
3105 		mutex_unlock(&log_root_tree->log_mutex);
3106 		if (!ret)
3107 			ret = root_log_ctx.log_ret;
3108 		goto out;
3109 	}
3110 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3111 	atomic_set(&log_root_tree->log_commit[index2], 1);
3112 
3113 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3114 		wait_log_commit(log_root_tree,
3115 				root_log_ctx.log_transid - 1);
3116 	}
3117 
3118 	/*
3119 	 * now that we've moved on to the tree of log tree roots,
3120 	 * check the full commit flag again
3121 	 */
3122 	if (btrfs_need_log_full_commit(trans)) {
3123 		blk_finish_plug(&plug);
3124 		btrfs_wait_tree_log_extents(log, mark);
3125 		mutex_unlock(&log_root_tree->log_mutex);
3126 		ret = BTRFS_LOG_FORCE_COMMIT;
3127 		goto out_wake_log_root;
3128 	}
3129 
3130 	ret = btrfs_write_marked_extents(fs_info,
3131 					 &log_root_tree->dirty_log_pages,
3132 					 EXTENT_DIRTY | EXTENT_NEW);
3133 	blk_finish_plug(&plug);
3134 	/*
3135 	 * As described above, -EAGAIN indicates a hole in the extents. We
3136 	 * cannot wait for these write outs since the waiting cause a
3137 	 * deadlock. Bail out to the full commit instead.
3138 	 */
3139 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3140 		btrfs_set_log_full_commit(trans);
3141 		btrfs_wait_tree_log_extents(log, mark);
3142 		mutex_unlock(&log_root_tree->log_mutex);
3143 		goto out_wake_log_root;
3144 	} else if (ret) {
3145 		btrfs_set_log_full_commit(trans);
3146 		btrfs_abort_transaction(trans, ret);
3147 		mutex_unlock(&log_root_tree->log_mutex);
3148 		goto out_wake_log_root;
3149 	}
3150 	ret = btrfs_wait_tree_log_extents(log, mark);
3151 	if (!ret)
3152 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3153 						  EXTENT_NEW | EXTENT_DIRTY);
3154 	if (ret) {
3155 		btrfs_set_log_full_commit(trans);
3156 		mutex_unlock(&log_root_tree->log_mutex);
3157 		goto out_wake_log_root;
3158 	}
3159 
3160 	log_root_start = log_root_tree->node->start;
3161 	log_root_level = btrfs_header_level(log_root_tree->node);
3162 	log_root_tree->log_transid++;
3163 	mutex_unlock(&log_root_tree->log_mutex);
3164 
3165 	/*
3166 	 * Here we are guaranteed that nobody is going to write the superblock
3167 	 * for the current transaction before us and that neither we do write
3168 	 * our superblock before the previous transaction finishes its commit
3169 	 * and writes its superblock, because:
3170 	 *
3171 	 * 1) We are holding a handle on the current transaction, so no body
3172 	 *    can commit it until we release the handle;
3173 	 *
3174 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3175 	 *    if the previous transaction is still committing, and hasn't yet
3176 	 *    written its superblock, we wait for it to do it, because a
3177 	 *    transaction commit acquires the tree_log_mutex when the commit
3178 	 *    begins and releases it only after writing its superblock.
3179 	 */
3180 	mutex_lock(&fs_info->tree_log_mutex);
3181 
3182 	/*
3183 	 * The previous transaction writeout phase could have failed, and thus
3184 	 * marked the fs in an error state.  We must not commit here, as we
3185 	 * could have updated our generation in the super_for_commit and
3186 	 * writing the super here would result in transid mismatches.  If there
3187 	 * is an error here just bail.
3188 	 */
3189 	if (BTRFS_FS_ERROR(fs_info)) {
3190 		ret = -EIO;
3191 		btrfs_set_log_full_commit(trans);
3192 		btrfs_abort_transaction(trans, ret);
3193 		mutex_unlock(&fs_info->tree_log_mutex);
3194 		goto out_wake_log_root;
3195 	}
3196 
3197 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3198 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3199 	ret = write_all_supers(fs_info, 1);
3200 	mutex_unlock(&fs_info->tree_log_mutex);
3201 	if (ret) {
3202 		btrfs_set_log_full_commit(trans);
3203 		btrfs_abort_transaction(trans, ret);
3204 		goto out_wake_log_root;
3205 	}
3206 
3207 	/*
3208 	 * We know there can only be one task here, since we have not yet set
3209 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3210 	 * log must wait for the previous log transaction to commit if it's
3211 	 * still in progress or wait for the current log transaction commit if
3212 	 * someone else already started it. We use <= and not < because the
3213 	 * first log transaction has an ID of 0.
3214 	 */
3215 	ASSERT(root->last_log_commit <= log_transid);
3216 	root->last_log_commit = log_transid;
3217 
3218 out_wake_log_root:
3219 	mutex_lock(&log_root_tree->log_mutex);
3220 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3221 
3222 	log_root_tree->log_transid_committed++;
3223 	atomic_set(&log_root_tree->log_commit[index2], 0);
3224 	mutex_unlock(&log_root_tree->log_mutex);
3225 
3226 	/*
3227 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3228 	 * all the updates above are seen by the woken threads. It might not be
3229 	 * necessary, but proving that seems to be hard.
3230 	 */
3231 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3232 out:
3233 	mutex_lock(&root->log_mutex);
3234 	btrfs_remove_all_log_ctxs(root, index1, ret);
3235 	root->log_transid_committed++;
3236 	atomic_set(&root->log_commit[index1], 0);
3237 	mutex_unlock(&root->log_mutex);
3238 
3239 	/*
3240 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 	 * all the updates above are seen by the woken threads. It might not be
3242 	 * necessary, but proving that seems to be hard.
3243 	 */
3244 	cond_wake_up(&root->log_commit_wait[index1]);
3245 	return ret;
3246 }
3247 
3248 static void free_log_tree(struct btrfs_trans_handle *trans,
3249 			  struct btrfs_root *log)
3250 {
3251 	int ret;
3252 	struct walk_control wc = {
3253 		.free = 1,
3254 		.process_func = process_one_buffer
3255 	};
3256 
3257 	if (log->node) {
3258 		ret = walk_log_tree(trans, log, &wc);
3259 		if (ret) {
3260 			/*
3261 			 * We weren't able to traverse the entire log tree, the
3262 			 * typical scenario is getting an -EIO when reading an
3263 			 * extent buffer of the tree, due to a previous writeback
3264 			 * failure of it.
3265 			 */
3266 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3267 				&log->fs_info->fs_state);
3268 
3269 			/*
3270 			 * Some extent buffers of the log tree may still be dirty
3271 			 * and not yet written back to storage, because we may
3272 			 * have updates to a log tree without syncing a log tree,
3273 			 * such as during rename and link operations. So flush
3274 			 * them out and wait for their writeback to complete, so
3275 			 * that we properly cleanup their state and pages.
3276 			 */
3277 			btrfs_write_marked_extents(log->fs_info,
3278 						   &log->dirty_log_pages,
3279 						   EXTENT_DIRTY | EXTENT_NEW);
3280 			btrfs_wait_tree_log_extents(log,
3281 						    EXTENT_DIRTY | EXTENT_NEW);
3282 
3283 			if (trans)
3284 				btrfs_abort_transaction(trans, ret);
3285 			else
3286 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3287 		}
3288 	}
3289 
3290 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3291 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3292 	extent_io_tree_release(&log->log_csum_range);
3293 
3294 	btrfs_put_root(log);
3295 }
3296 
3297 /*
3298  * free all the extents used by the tree log.  This should be called
3299  * at commit time of the full transaction
3300  */
3301 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3302 {
3303 	if (root->log_root) {
3304 		free_log_tree(trans, root->log_root);
3305 		root->log_root = NULL;
3306 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3307 	}
3308 	return 0;
3309 }
3310 
3311 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3312 			     struct btrfs_fs_info *fs_info)
3313 {
3314 	if (fs_info->log_root_tree) {
3315 		free_log_tree(trans, fs_info->log_root_tree);
3316 		fs_info->log_root_tree = NULL;
3317 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3318 	}
3319 	return 0;
3320 }
3321 
3322 /*
3323  * Check if an inode was logged in the current transaction. This correctly deals
3324  * with the case where the inode was logged but has a logged_trans of 0, which
3325  * happens if the inode is evicted and loaded again, as logged_trans is an in
3326  * memory only field (not persisted).
3327  *
3328  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3329  * and < 0 on error.
3330  */
3331 static int inode_logged(struct btrfs_trans_handle *trans,
3332 			struct btrfs_inode *inode,
3333 			struct btrfs_path *path_in)
3334 {
3335 	struct btrfs_path *path = path_in;
3336 	struct btrfs_key key;
3337 	int ret;
3338 
3339 	if (inode->logged_trans == trans->transid)
3340 		return 1;
3341 
3342 	/*
3343 	 * If logged_trans is not 0, then we know the inode logged was not logged
3344 	 * in this transaction, so we can return false right away.
3345 	 */
3346 	if (inode->logged_trans > 0)
3347 		return 0;
3348 
3349 	/*
3350 	 * If no log tree was created for this root in this transaction, then
3351 	 * the inode can not have been logged in this transaction. In that case
3352 	 * set logged_trans to anything greater than 0 and less than the current
3353 	 * transaction's ID, to avoid the search below in a future call in case
3354 	 * a log tree gets created after this.
3355 	 */
3356 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3357 		inode->logged_trans = trans->transid - 1;
3358 		return 0;
3359 	}
3360 
3361 	/*
3362 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3363 	 * for sure if the inode was logged before in this transaction by looking
3364 	 * only at logged_trans. We could be pessimistic and assume it was, but
3365 	 * that can lead to unnecessarily logging an inode during rename and link
3366 	 * operations, and then further updating the log in followup rename and
3367 	 * link operations, specially if it's a directory, which adds latency
3368 	 * visible to applications doing a series of rename or link operations.
3369 	 *
3370 	 * A logged_trans of 0 here can mean several things:
3371 	 *
3372 	 * 1) The inode was never logged since the filesystem was mounted, and may
3373 	 *    or may have not been evicted and loaded again;
3374 	 *
3375 	 * 2) The inode was logged in a previous transaction, then evicted and
3376 	 *    then loaded again;
3377 	 *
3378 	 * 3) The inode was logged in the current transaction, then evicted and
3379 	 *    then loaded again.
3380 	 *
3381 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3382 	 * case 3) and return true. So we do a search in the log root for the inode
3383 	 * item.
3384 	 */
3385 	key.objectid = btrfs_ino(inode);
3386 	key.type = BTRFS_INODE_ITEM_KEY;
3387 	key.offset = 0;
3388 
3389 	if (!path) {
3390 		path = btrfs_alloc_path();
3391 		if (!path)
3392 			return -ENOMEM;
3393 	}
3394 
3395 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3396 
3397 	if (path_in)
3398 		btrfs_release_path(path);
3399 	else
3400 		btrfs_free_path(path);
3401 
3402 	/*
3403 	 * Logging an inode always results in logging its inode item. So if we
3404 	 * did not find the item we know the inode was not logged for sure.
3405 	 */
3406 	if (ret < 0) {
3407 		return ret;
3408 	} else if (ret > 0) {
3409 		/*
3410 		 * Set logged_trans to a value greater than 0 and less then the
3411 		 * current transaction to avoid doing the search in future calls.
3412 		 */
3413 		inode->logged_trans = trans->transid - 1;
3414 		return 0;
3415 	}
3416 
3417 	/*
3418 	 * The inode was previously logged and then evicted, set logged_trans to
3419 	 * the current transacion's ID, to avoid future tree searches as long as
3420 	 * the inode is not evicted again.
3421 	 */
3422 	inode->logged_trans = trans->transid;
3423 
3424 	/*
3425 	 * If it's a directory, then we must set last_dir_index_offset to the
3426 	 * maximum possible value, so that the next attempt to log the inode does
3427 	 * not skip checking if dir index keys found in modified subvolume tree
3428 	 * leaves have been logged before, otherwise it would result in attempts
3429 	 * to insert duplicate dir index keys in the log tree. This must be done
3430 	 * because last_dir_index_offset is an in-memory only field, not persisted
3431 	 * in the inode item or any other on-disk structure, so its value is lost
3432 	 * once the inode is evicted.
3433 	 */
3434 	if (S_ISDIR(inode->vfs_inode.i_mode))
3435 		inode->last_dir_index_offset = (u64)-1;
3436 
3437 	return 1;
3438 }
3439 
3440 /*
3441  * Delete a directory entry from the log if it exists.
3442  *
3443  * Returns < 0 on error
3444  *           1 if the entry does not exists
3445  *           0 if the entry existed and was successfully deleted
3446  */
3447 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3448 			     struct btrfs_root *log,
3449 			     struct btrfs_path *path,
3450 			     u64 dir_ino,
3451 			     const char *name, int name_len,
3452 			     u64 index)
3453 {
3454 	struct btrfs_dir_item *di;
3455 
3456 	/*
3457 	 * We only log dir index items of a directory, so we don't need to look
3458 	 * for dir item keys.
3459 	 */
3460 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3461 					 index, name, name_len, -1);
3462 	if (IS_ERR(di))
3463 		return PTR_ERR(di);
3464 	else if (!di)
3465 		return 1;
3466 
3467 	/*
3468 	 * We do not need to update the size field of the directory's
3469 	 * inode item because on log replay we update the field to reflect
3470 	 * all existing entries in the directory (see overwrite_item()).
3471 	 */
3472 	return btrfs_delete_one_dir_name(trans, log, path, di);
3473 }
3474 
3475 /*
3476  * If both a file and directory are logged, and unlinks or renames are
3477  * mixed in, we have a few interesting corners:
3478  *
3479  * create file X in dir Y
3480  * link file X to X.link in dir Y
3481  * fsync file X
3482  * unlink file X but leave X.link
3483  * fsync dir Y
3484  *
3485  * After a crash we would expect only X.link to exist.  But file X
3486  * didn't get fsync'd again so the log has back refs for X and X.link.
3487  *
3488  * We solve this by removing directory entries and inode backrefs from the
3489  * log when a file that was logged in the current transaction is
3490  * unlinked.  Any later fsync will include the updated log entries, and
3491  * we'll be able to reconstruct the proper directory items from backrefs.
3492  *
3493  * This optimizations allows us to avoid relogging the entire inode
3494  * or the entire directory.
3495  */
3496 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3497 				  struct btrfs_root *root,
3498 				  const char *name, int name_len,
3499 				  struct btrfs_inode *dir, u64 index)
3500 {
3501 	struct btrfs_path *path;
3502 	int ret;
3503 
3504 	ret = inode_logged(trans, dir, NULL);
3505 	if (ret == 0)
3506 		return;
3507 	else if (ret < 0) {
3508 		btrfs_set_log_full_commit(trans);
3509 		return;
3510 	}
3511 
3512 	ret = join_running_log_trans(root);
3513 	if (ret)
3514 		return;
3515 
3516 	mutex_lock(&dir->log_mutex);
3517 
3518 	path = btrfs_alloc_path();
3519 	if (!path) {
3520 		ret = -ENOMEM;
3521 		goto out_unlock;
3522 	}
3523 
3524 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3525 				name, name_len, index);
3526 	btrfs_free_path(path);
3527 out_unlock:
3528 	mutex_unlock(&dir->log_mutex);
3529 	if (ret < 0)
3530 		btrfs_set_log_full_commit(trans);
3531 	btrfs_end_log_trans(root);
3532 }
3533 
3534 /* see comments for btrfs_del_dir_entries_in_log */
3535 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3536 				struct btrfs_root *root,
3537 				const char *name, int name_len,
3538 				struct btrfs_inode *inode, u64 dirid)
3539 {
3540 	struct btrfs_root *log;
3541 	u64 index;
3542 	int ret;
3543 
3544 	ret = inode_logged(trans, inode, NULL);
3545 	if (ret == 0)
3546 		return;
3547 	else if (ret < 0) {
3548 		btrfs_set_log_full_commit(trans);
3549 		return;
3550 	}
3551 
3552 	ret = join_running_log_trans(root);
3553 	if (ret)
3554 		return;
3555 	log = root->log_root;
3556 	mutex_lock(&inode->log_mutex);
3557 
3558 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3559 				  dirid, &index);
3560 	mutex_unlock(&inode->log_mutex);
3561 	if (ret < 0 && ret != -ENOENT)
3562 		btrfs_set_log_full_commit(trans);
3563 	btrfs_end_log_trans(root);
3564 }
3565 
3566 /*
3567  * creates a range item in the log for 'dirid'.  first_offset and
3568  * last_offset tell us which parts of the key space the log should
3569  * be considered authoritative for.
3570  */
3571 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3572 				       struct btrfs_root *log,
3573 				       struct btrfs_path *path,
3574 				       u64 dirid,
3575 				       u64 first_offset, u64 last_offset)
3576 {
3577 	int ret;
3578 	struct btrfs_key key;
3579 	struct btrfs_dir_log_item *item;
3580 
3581 	key.objectid = dirid;
3582 	key.offset = first_offset;
3583 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3584 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3585 	/*
3586 	 * -EEXIST is fine and can happen sporadically when we are logging a
3587 	 * directory and have concurrent insertions in the subvolume's tree for
3588 	 * items from other inodes and that result in pushing off some dir items
3589 	 * from one leaf to another in order to accommodate for the new items.
3590 	 * This results in logging the same dir index range key.
3591 	 */
3592 	if (ret && ret != -EEXIST)
3593 		return ret;
3594 
3595 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3596 			      struct btrfs_dir_log_item);
3597 	if (ret == -EEXIST) {
3598 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3599 
3600 		/*
3601 		 * btrfs_del_dir_entries_in_log() might have been called during
3602 		 * an unlink between the initial insertion of this key and the
3603 		 * current update, or we might be logging a single entry deletion
3604 		 * during a rename, so set the new last_offset to the max value.
3605 		 */
3606 		last_offset = max(last_offset, curr_end);
3607 	}
3608 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3609 	btrfs_mark_buffer_dirty(path->nodes[0]);
3610 	btrfs_release_path(path);
3611 	return 0;
3612 }
3613 
3614 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3615 				 struct btrfs_root *log,
3616 				 struct extent_buffer *src,
3617 				 struct btrfs_path *dst_path,
3618 				 int start_slot,
3619 				 int count)
3620 {
3621 	char *ins_data = NULL;
3622 	struct btrfs_item_batch batch;
3623 	struct extent_buffer *dst;
3624 	unsigned long src_offset;
3625 	unsigned long dst_offset;
3626 	struct btrfs_key key;
3627 	u32 item_size;
3628 	int ret;
3629 	int i;
3630 
3631 	ASSERT(count > 0);
3632 	batch.nr = count;
3633 
3634 	if (count == 1) {
3635 		btrfs_item_key_to_cpu(src, &key, start_slot);
3636 		item_size = btrfs_item_size(src, start_slot);
3637 		batch.keys = &key;
3638 		batch.data_sizes = &item_size;
3639 		batch.total_data_size = item_size;
3640 	} else {
3641 		struct btrfs_key *ins_keys;
3642 		u32 *ins_sizes;
3643 
3644 		ins_data = kmalloc(count * sizeof(u32) +
3645 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3646 		if (!ins_data)
3647 			return -ENOMEM;
3648 
3649 		ins_sizes = (u32 *)ins_data;
3650 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3651 		batch.keys = ins_keys;
3652 		batch.data_sizes = ins_sizes;
3653 		batch.total_data_size = 0;
3654 
3655 		for (i = 0; i < count; i++) {
3656 			const int slot = start_slot + i;
3657 
3658 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3659 			ins_sizes[i] = btrfs_item_size(src, slot);
3660 			batch.total_data_size += ins_sizes[i];
3661 		}
3662 	}
3663 
3664 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3665 	if (ret)
3666 		goto out;
3667 
3668 	dst = dst_path->nodes[0];
3669 	/*
3670 	 * Copy all the items in bulk, in a single copy operation. Item data is
3671 	 * organized such that it's placed at the end of a leaf and from right
3672 	 * to left. For example, the data for the second item ends at an offset
3673 	 * that matches the offset where the data for the first item starts, the
3674 	 * data for the third item ends at an offset that matches the offset
3675 	 * where the data of the second items starts, and so on.
3676 	 * Therefore our source and destination start offsets for copy match the
3677 	 * offsets of the last items (highest slots).
3678 	 */
3679 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3680 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3681 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3682 	btrfs_release_path(dst_path);
3683 out:
3684 	kfree(ins_data);
3685 
3686 	return ret;
3687 }
3688 
3689 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3690 				  struct btrfs_inode *inode,
3691 				  struct btrfs_path *path,
3692 				  struct btrfs_path *dst_path,
3693 				  struct btrfs_log_ctx *ctx,
3694 				  u64 *last_old_dentry_offset)
3695 {
3696 	struct btrfs_root *log = inode->root->log_root;
3697 	struct extent_buffer *src = path->nodes[0];
3698 	const int nritems = btrfs_header_nritems(src);
3699 	const u64 ino = btrfs_ino(inode);
3700 	bool last_found = false;
3701 	int batch_start = 0;
3702 	int batch_size = 0;
3703 	int i;
3704 
3705 	for (i = path->slots[0]; i < nritems; i++) {
3706 		struct btrfs_dir_item *di;
3707 		struct btrfs_key key;
3708 		int ret;
3709 
3710 		btrfs_item_key_to_cpu(src, &key, i);
3711 
3712 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3713 			last_found = true;
3714 			break;
3715 		}
3716 
3717 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3718 		ctx->last_dir_item_offset = key.offset;
3719 
3720 		/*
3721 		 * Skip ranges of items that consist only of dir item keys created
3722 		 * in past transactions. However if we find a gap, we must log a
3723 		 * dir index range item for that gap, so that index keys in that
3724 		 * gap are deleted during log replay.
3725 		 */
3726 		if (btrfs_dir_transid(src, di) < trans->transid) {
3727 			if (key.offset > *last_old_dentry_offset + 1) {
3728 				ret = insert_dir_log_key(trans, log, dst_path,
3729 						 ino, *last_old_dentry_offset + 1,
3730 						 key.offset - 1);
3731 				if (ret < 0)
3732 					return ret;
3733 			}
3734 
3735 			*last_old_dentry_offset = key.offset;
3736 			continue;
3737 		}
3738 
3739 		/* If we logged this dir index item before, we can skip it. */
3740 		if (key.offset <= inode->last_dir_index_offset)
3741 			continue;
3742 
3743 		/*
3744 		 * We must make sure that when we log a directory entry, the
3745 		 * corresponding inode, after log replay, has a matching link
3746 		 * count. For example:
3747 		 *
3748 		 * touch foo
3749 		 * mkdir mydir
3750 		 * sync
3751 		 * ln foo mydir/bar
3752 		 * xfs_io -c "fsync" mydir
3753 		 * <crash>
3754 		 * <mount fs and log replay>
3755 		 *
3756 		 * Would result in a fsync log that when replayed, our file inode
3757 		 * would have a link count of 1, but we get two directory entries
3758 		 * pointing to the same inode. After removing one of the names,
3759 		 * it would not be possible to remove the other name, which
3760 		 * resulted always in stale file handle errors, and would not be
3761 		 * possible to rmdir the parent directory, since its i_size could
3762 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3763 		 * resulting in -ENOTEMPTY errors.
3764 		 */
3765 		if (!ctx->log_new_dentries) {
3766 			struct btrfs_key di_key;
3767 
3768 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3769 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3770 				ctx->log_new_dentries = true;
3771 		}
3772 
3773 		if (batch_size == 0)
3774 			batch_start = i;
3775 		batch_size++;
3776 	}
3777 
3778 	if (batch_size > 0) {
3779 		int ret;
3780 
3781 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3782 					    batch_start, batch_size);
3783 		if (ret < 0)
3784 			return ret;
3785 	}
3786 
3787 	return last_found ? 1 : 0;
3788 }
3789 
3790 /*
3791  * log all the items included in the current transaction for a given
3792  * directory.  This also creates the range items in the log tree required
3793  * to replay anything deleted before the fsync
3794  */
3795 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3796 			  struct btrfs_inode *inode,
3797 			  struct btrfs_path *path,
3798 			  struct btrfs_path *dst_path,
3799 			  struct btrfs_log_ctx *ctx,
3800 			  u64 min_offset, u64 *last_offset_ret)
3801 {
3802 	struct btrfs_key min_key;
3803 	struct btrfs_root *root = inode->root;
3804 	struct btrfs_root *log = root->log_root;
3805 	int err = 0;
3806 	int ret;
3807 	u64 last_old_dentry_offset = min_offset - 1;
3808 	u64 last_offset = (u64)-1;
3809 	u64 ino = btrfs_ino(inode);
3810 
3811 	min_key.objectid = ino;
3812 	min_key.type = BTRFS_DIR_INDEX_KEY;
3813 	min_key.offset = min_offset;
3814 
3815 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3816 
3817 	/*
3818 	 * we didn't find anything from this transaction, see if there
3819 	 * is anything at all
3820 	 */
3821 	if (ret != 0 || min_key.objectid != ino ||
3822 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3823 		min_key.objectid = ino;
3824 		min_key.type = BTRFS_DIR_INDEX_KEY;
3825 		min_key.offset = (u64)-1;
3826 		btrfs_release_path(path);
3827 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3828 		if (ret < 0) {
3829 			btrfs_release_path(path);
3830 			return ret;
3831 		}
3832 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3833 
3834 		/* if ret == 0 there are items for this type,
3835 		 * create a range to tell us the last key of this type.
3836 		 * otherwise, there are no items in this directory after
3837 		 * *min_offset, and we create a range to indicate that.
3838 		 */
3839 		if (ret == 0) {
3840 			struct btrfs_key tmp;
3841 
3842 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3843 					      path->slots[0]);
3844 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3845 				last_old_dentry_offset = tmp.offset;
3846 		}
3847 		goto done;
3848 	}
3849 
3850 	/* go backward to find any previous key */
3851 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3852 	if (ret == 0) {
3853 		struct btrfs_key tmp;
3854 
3855 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3856 		/*
3857 		 * The dir index key before the first one we found that needs to
3858 		 * be logged might be in a previous leaf, and there might be a
3859 		 * gap between these keys, meaning that we had deletions that
3860 		 * happened. So the key range item we log (key type
3861 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3862 		 * previous key's offset plus 1, so that those deletes are replayed.
3863 		 */
3864 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3865 			last_old_dentry_offset = tmp.offset;
3866 	}
3867 	btrfs_release_path(path);
3868 
3869 	/*
3870 	 * Find the first key from this transaction again.  See the note for
3871 	 * log_new_dir_dentries, if we're logging a directory recursively we
3872 	 * won't be holding its i_mutex, which means we can modify the directory
3873 	 * while we're logging it.  If we remove an entry between our first
3874 	 * search and this search we'll not find the key again and can just
3875 	 * bail.
3876 	 */
3877 search:
3878 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3879 	if (ret != 0)
3880 		goto done;
3881 
3882 	/*
3883 	 * we have a block from this transaction, log every item in it
3884 	 * from our directory
3885 	 */
3886 	while (1) {
3887 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3888 					     &last_old_dentry_offset);
3889 		if (ret != 0) {
3890 			if (ret < 0)
3891 				err = ret;
3892 			goto done;
3893 		}
3894 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3895 
3896 		/*
3897 		 * look ahead to the next item and see if it is also
3898 		 * from this directory and from this transaction
3899 		 */
3900 		ret = btrfs_next_leaf(root, path);
3901 		if (ret) {
3902 			if (ret == 1)
3903 				last_offset = (u64)-1;
3904 			else
3905 				err = ret;
3906 			goto done;
3907 		}
3908 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3909 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3910 			last_offset = (u64)-1;
3911 			goto done;
3912 		}
3913 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3914 			/*
3915 			 * The next leaf was not changed in the current transaction
3916 			 * and has at least one dir index key.
3917 			 * We check for the next key because there might have been
3918 			 * one or more deletions between the last key we logged and
3919 			 * that next key. So the key range item we log (key type
3920 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3921 			 * offset minus 1, so that those deletes are replayed.
3922 			 */
3923 			last_offset = min_key.offset - 1;
3924 			goto done;
3925 		}
3926 		if (need_resched()) {
3927 			btrfs_release_path(path);
3928 			cond_resched();
3929 			goto search;
3930 		}
3931 	}
3932 done:
3933 	btrfs_release_path(path);
3934 	btrfs_release_path(dst_path);
3935 
3936 	if (err == 0) {
3937 		*last_offset_ret = last_offset;
3938 		/*
3939 		 * In case the leaf was changed in the current transaction but
3940 		 * all its dir items are from a past transaction, the last item
3941 		 * in the leaf is a dir item and there's no gap between that last
3942 		 * dir item and the first one on the next leaf (which did not
3943 		 * change in the current transaction), then we don't need to log
3944 		 * a range, last_old_dentry_offset is == to last_offset.
3945 		 */
3946 		ASSERT(last_old_dentry_offset <= last_offset);
3947 		if (last_old_dentry_offset < last_offset) {
3948 			ret = insert_dir_log_key(trans, log, path, ino,
3949 						 last_old_dentry_offset + 1,
3950 						 last_offset);
3951 			if (ret)
3952 				err = ret;
3953 		}
3954 	}
3955 	return err;
3956 }
3957 
3958 /*
3959  * If the inode was logged before and it was evicted, then its
3960  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3961  * key offset. If that's the case, search for it and update the inode. This
3962  * is to avoid lookups in the log tree every time we try to insert a dir index
3963  * key from a leaf changed in the current transaction, and to allow us to always
3964  * do batch insertions of dir index keys.
3965  */
3966 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3967 					struct btrfs_path *path,
3968 					const struct btrfs_log_ctx *ctx)
3969 {
3970 	const u64 ino = btrfs_ino(inode);
3971 	struct btrfs_key key;
3972 	int ret;
3973 
3974 	lockdep_assert_held(&inode->log_mutex);
3975 
3976 	if (inode->last_dir_index_offset != (u64)-1)
3977 		return 0;
3978 
3979 	if (!ctx->logged_before) {
3980 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3981 		return 0;
3982 	}
3983 
3984 	key.objectid = ino;
3985 	key.type = BTRFS_DIR_INDEX_KEY;
3986 	key.offset = (u64)-1;
3987 
3988 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3989 	/*
3990 	 * An error happened or we actually have an index key with an offset
3991 	 * value of (u64)-1. Bail out, we're done.
3992 	 */
3993 	if (ret <= 0)
3994 		goto out;
3995 
3996 	ret = 0;
3997 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3998 
3999 	/*
4000 	 * No dir index items, bail out and leave last_dir_index_offset with
4001 	 * the value right before the first valid index value.
4002 	 */
4003 	if (path->slots[0] == 0)
4004 		goto out;
4005 
4006 	/*
4007 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4008 	 * index key, or beyond the last key of the directory that is not an
4009 	 * index key. If we have an index key before, set last_dir_index_offset
4010 	 * to its offset value, otherwise leave it with a value right before the
4011 	 * first valid index value, as it means we have an empty directory.
4012 	 */
4013 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4014 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4015 		inode->last_dir_index_offset = key.offset;
4016 
4017 out:
4018 	btrfs_release_path(path);
4019 
4020 	return ret;
4021 }
4022 
4023 /*
4024  * logging directories is very similar to logging inodes, We find all the items
4025  * from the current transaction and write them to the log.
4026  *
4027  * The recovery code scans the directory in the subvolume, and if it finds a
4028  * key in the range logged that is not present in the log tree, then it means
4029  * that dir entry was unlinked during the transaction.
4030  *
4031  * In order for that scan to work, we must include one key smaller than
4032  * the smallest logged by this transaction and one key larger than the largest
4033  * key logged by this transaction.
4034  */
4035 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4036 			  struct btrfs_inode *inode,
4037 			  struct btrfs_path *path,
4038 			  struct btrfs_path *dst_path,
4039 			  struct btrfs_log_ctx *ctx)
4040 {
4041 	u64 min_key;
4042 	u64 max_key;
4043 	int ret;
4044 
4045 	ret = update_last_dir_index_offset(inode, path, ctx);
4046 	if (ret)
4047 		return ret;
4048 
4049 	min_key = BTRFS_DIR_START_INDEX;
4050 	max_key = 0;
4051 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4052 
4053 	while (1) {
4054 		ret = log_dir_items(trans, inode, path, dst_path,
4055 				ctx, min_key, &max_key);
4056 		if (ret)
4057 			return ret;
4058 		if (max_key == (u64)-1)
4059 			break;
4060 		min_key = max_key + 1;
4061 	}
4062 
4063 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4064 
4065 	return 0;
4066 }
4067 
4068 /*
4069  * a helper function to drop items from the log before we relog an
4070  * inode.  max_key_type indicates the highest item type to remove.
4071  * This cannot be run for file data extents because it does not
4072  * free the extents they point to.
4073  */
4074 static int drop_inode_items(struct btrfs_trans_handle *trans,
4075 				  struct btrfs_root *log,
4076 				  struct btrfs_path *path,
4077 				  struct btrfs_inode *inode,
4078 				  int max_key_type)
4079 {
4080 	int ret;
4081 	struct btrfs_key key;
4082 	struct btrfs_key found_key;
4083 	int start_slot;
4084 
4085 	key.objectid = btrfs_ino(inode);
4086 	key.type = max_key_type;
4087 	key.offset = (u64)-1;
4088 
4089 	while (1) {
4090 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4091 		BUG_ON(ret == 0); /* Logic error */
4092 		if (ret < 0)
4093 			break;
4094 
4095 		if (path->slots[0] == 0)
4096 			break;
4097 
4098 		path->slots[0]--;
4099 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4100 				      path->slots[0]);
4101 
4102 		if (found_key.objectid != key.objectid)
4103 			break;
4104 
4105 		found_key.offset = 0;
4106 		found_key.type = 0;
4107 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4108 		if (ret < 0)
4109 			break;
4110 
4111 		ret = btrfs_del_items(trans, log, path, start_slot,
4112 				      path->slots[0] - start_slot + 1);
4113 		/*
4114 		 * If start slot isn't 0 then we don't need to re-search, we've
4115 		 * found the last guy with the objectid in this tree.
4116 		 */
4117 		if (ret || start_slot != 0)
4118 			break;
4119 		btrfs_release_path(path);
4120 	}
4121 	btrfs_release_path(path);
4122 	if (ret > 0)
4123 		ret = 0;
4124 	return ret;
4125 }
4126 
4127 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4128 				struct btrfs_root *log_root,
4129 				struct btrfs_inode *inode,
4130 				u64 new_size, u32 min_type)
4131 {
4132 	struct btrfs_truncate_control control = {
4133 		.new_size = new_size,
4134 		.ino = btrfs_ino(inode),
4135 		.min_type = min_type,
4136 		.skip_ref_updates = true,
4137 	};
4138 
4139 	return btrfs_truncate_inode_items(trans, log_root, &control);
4140 }
4141 
4142 static void fill_inode_item(struct btrfs_trans_handle *trans,
4143 			    struct extent_buffer *leaf,
4144 			    struct btrfs_inode_item *item,
4145 			    struct inode *inode, int log_inode_only,
4146 			    u64 logged_isize)
4147 {
4148 	struct btrfs_map_token token;
4149 	u64 flags;
4150 
4151 	btrfs_init_map_token(&token, leaf);
4152 
4153 	if (log_inode_only) {
4154 		/* set the generation to zero so the recover code
4155 		 * can tell the difference between an logging
4156 		 * just to say 'this inode exists' and a logging
4157 		 * to say 'update this inode with these values'
4158 		 */
4159 		btrfs_set_token_inode_generation(&token, item, 0);
4160 		btrfs_set_token_inode_size(&token, item, logged_isize);
4161 	} else {
4162 		btrfs_set_token_inode_generation(&token, item,
4163 						 BTRFS_I(inode)->generation);
4164 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4165 	}
4166 
4167 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4168 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4169 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4170 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4171 
4172 	btrfs_set_token_timespec_sec(&token, &item->atime,
4173 				     inode->i_atime.tv_sec);
4174 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4175 				      inode->i_atime.tv_nsec);
4176 
4177 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4178 				     inode->i_mtime.tv_sec);
4179 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4180 				      inode->i_mtime.tv_nsec);
4181 
4182 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4183 				     inode->i_ctime.tv_sec);
4184 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4185 				      inode->i_ctime.tv_nsec);
4186 
4187 	/*
4188 	 * We do not need to set the nbytes field, in fact during a fast fsync
4189 	 * its value may not even be correct, since a fast fsync does not wait
4190 	 * for ordered extent completion, which is where we update nbytes, it
4191 	 * only waits for writeback to complete. During log replay as we find
4192 	 * file extent items and replay them, we adjust the nbytes field of the
4193 	 * inode item in subvolume tree as needed (see overwrite_item()).
4194 	 */
4195 
4196 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4197 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4198 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4199 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4200 					  BTRFS_I(inode)->ro_flags);
4201 	btrfs_set_token_inode_flags(&token, item, flags);
4202 	btrfs_set_token_inode_block_group(&token, item, 0);
4203 }
4204 
4205 static int log_inode_item(struct btrfs_trans_handle *trans,
4206 			  struct btrfs_root *log, struct btrfs_path *path,
4207 			  struct btrfs_inode *inode, bool inode_item_dropped)
4208 {
4209 	struct btrfs_inode_item *inode_item;
4210 	int ret;
4211 
4212 	/*
4213 	 * If we are doing a fast fsync and the inode was logged before in the
4214 	 * current transaction, then we know the inode was previously logged and
4215 	 * it exists in the log tree. For performance reasons, in this case use
4216 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4217 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4218 	 * contention in case there are concurrent fsyncs for other inodes of the
4219 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4220 	 * already exists can also result in unnecessarily splitting a leaf.
4221 	 */
4222 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4223 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4224 		ASSERT(ret <= 0);
4225 		if (ret > 0)
4226 			ret = -ENOENT;
4227 	} else {
4228 		/*
4229 		 * This means it is the first fsync in the current transaction,
4230 		 * so the inode item is not in the log and we need to insert it.
4231 		 * We can never get -EEXIST because we are only called for a fast
4232 		 * fsync and in case an inode eviction happens after the inode was
4233 		 * logged before in the current transaction, when we load again
4234 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4235 		 * flags and set ->logged_trans to 0.
4236 		 */
4237 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4238 					      sizeof(*inode_item));
4239 		ASSERT(ret != -EEXIST);
4240 	}
4241 	if (ret)
4242 		return ret;
4243 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4244 				    struct btrfs_inode_item);
4245 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4246 			0, 0);
4247 	btrfs_release_path(path);
4248 	return 0;
4249 }
4250 
4251 static int log_csums(struct btrfs_trans_handle *trans,
4252 		     struct btrfs_inode *inode,
4253 		     struct btrfs_root *log_root,
4254 		     struct btrfs_ordered_sum *sums)
4255 {
4256 	const u64 lock_end = sums->bytenr + sums->len - 1;
4257 	struct extent_state *cached_state = NULL;
4258 	int ret;
4259 
4260 	/*
4261 	 * If this inode was not used for reflink operations in the current
4262 	 * transaction with new extents, then do the fast path, no need to
4263 	 * worry about logging checksum items with overlapping ranges.
4264 	 */
4265 	if (inode->last_reflink_trans < trans->transid)
4266 		return btrfs_csum_file_blocks(trans, log_root, sums);
4267 
4268 	/*
4269 	 * Serialize logging for checksums. This is to avoid racing with the
4270 	 * same checksum being logged by another task that is logging another
4271 	 * file which happens to refer to the same extent as well. Such races
4272 	 * can leave checksum items in the log with overlapping ranges.
4273 	 */
4274 	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4275 			  &cached_state);
4276 	if (ret)
4277 		return ret;
4278 	/*
4279 	 * Due to extent cloning, we might have logged a csum item that covers a
4280 	 * subrange of a cloned extent, and later we can end up logging a csum
4281 	 * item for a larger subrange of the same extent or the entire range.
4282 	 * This would leave csum items in the log tree that cover the same range
4283 	 * and break the searches for checksums in the log tree, resulting in
4284 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4285 	 * trim and adjust) any existing csum items in the log for this range.
4286 	 */
4287 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4288 	if (!ret)
4289 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4290 
4291 	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4292 		      &cached_state);
4293 
4294 	return ret;
4295 }
4296 
4297 static noinline int copy_items(struct btrfs_trans_handle *trans,
4298 			       struct btrfs_inode *inode,
4299 			       struct btrfs_path *dst_path,
4300 			       struct btrfs_path *src_path,
4301 			       int start_slot, int nr, int inode_only,
4302 			       u64 logged_isize)
4303 {
4304 	struct btrfs_root *log = inode->root->log_root;
4305 	struct btrfs_file_extent_item *extent;
4306 	struct extent_buffer *src = src_path->nodes[0];
4307 	int ret = 0;
4308 	struct btrfs_key *ins_keys;
4309 	u32 *ins_sizes;
4310 	struct btrfs_item_batch batch;
4311 	char *ins_data;
4312 	int i;
4313 	int dst_index;
4314 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4315 	const u64 i_size = i_size_read(&inode->vfs_inode);
4316 
4317 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4318 			   nr * sizeof(u32), GFP_NOFS);
4319 	if (!ins_data)
4320 		return -ENOMEM;
4321 
4322 	ins_sizes = (u32 *)ins_data;
4323 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4324 	batch.keys = ins_keys;
4325 	batch.data_sizes = ins_sizes;
4326 	batch.total_data_size = 0;
4327 	batch.nr = 0;
4328 
4329 	dst_index = 0;
4330 	for (i = 0; i < nr; i++) {
4331 		const int src_slot = start_slot + i;
4332 		struct btrfs_root *csum_root;
4333 		struct btrfs_ordered_sum *sums;
4334 		struct btrfs_ordered_sum *sums_next;
4335 		LIST_HEAD(ordered_sums);
4336 		u64 disk_bytenr;
4337 		u64 disk_num_bytes;
4338 		u64 extent_offset;
4339 		u64 extent_num_bytes;
4340 		bool is_old_extent;
4341 
4342 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4343 
4344 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4345 			goto add_to_batch;
4346 
4347 		extent = btrfs_item_ptr(src, src_slot,
4348 					struct btrfs_file_extent_item);
4349 
4350 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4351 				 trans->transid);
4352 
4353 		/*
4354 		 * Don't copy extents from past generations. That would make us
4355 		 * log a lot more metadata for common cases like doing only a
4356 		 * few random writes into a file and then fsync it for the first
4357 		 * time or after the full sync flag is set on the inode. We can
4358 		 * get leaves full of extent items, most of which are from past
4359 		 * generations, so we can skip them - as long as the inode has
4360 		 * not been the target of a reflink operation in this transaction,
4361 		 * as in that case it might have had file extent items with old
4362 		 * generations copied into it. We also must always log prealloc
4363 		 * extents that start at or beyond eof, otherwise we would lose
4364 		 * them on log replay.
4365 		 */
4366 		if (is_old_extent &&
4367 		    ins_keys[dst_index].offset < i_size &&
4368 		    inode->last_reflink_trans < trans->transid)
4369 			continue;
4370 
4371 		if (skip_csum)
4372 			goto add_to_batch;
4373 
4374 		/* Only regular extents have checksums. */
4375 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4376 			goto add_to_batch;
4377 
4378 		/*
4379 		 * If it's an extent created in a past transaction, then its
4380 		 * checksums are already accessible from the committed csum tree,
4381 		 * no need to log them.
4382 		 */
4383 		if (is_old_extent)
4384 			goto add_to_batch;
4385 
4386 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4387 		/* If it's an explicit hole, there are no checksums. */
4388 		if (disk_bytenr == 0)
4389 			goto add_to_batch;
4390 
4391 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4392 
4393 		if (btrfs_file_extent_compression(src, extent)) {
4394 			extent_offset = 0;
4395 			extent_num_bytes = disk_num_bytes;
4396 		} else {
4397 			extent_offset = btrfs_file_extent_offset(src, extent);
4398 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4399 		}
4400 
4401 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4402 		disk_bytenr += extent_offset;
4403 		ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4404 					       disk_bytenr + extent_num_bytes - 1,
4405 					       &ordered_sums, 0, false);
4406 		if (ret)
4407 			goto out;
4408 
4409 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4410 			if (!ret)
4411 				ret = log_csums(trans, inode, log, sums);
4412 			list_del(&sums->list);
4413 			kfree(sums);
4414 		}
4415 		if (ret)
4416 			goto out;
4417 
4418 add_to_batch:
4419 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4420 		batch.total_data_size += ins_sizes[dst_index];
4421 		batch.nr++;
4422 		dst_index++;
4423 	}
4424 
4425 	/*
4426 	 * We have a leaf full of old extent items that don't need to be logged,
4427 	 * so we don't need to do anything.
4428 	 */
4429 	if (batch.nr == 0)
4430 		goto out;
4431 
4432 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4433 	if (ret)
4434 		goto out;
4435 
4436 	dst_index = 0;
4437 	for (i = 0; i < nr; i++) {
4438 		const int src_slot = start_slot + i;
4439 		const int dst_slot = dst_path->slots[0] + dst_index;
4440 		struct btrfs_key key;
4441 		unsigned long src_offset;
4442 		unsigned long dst_offset;
4443 
4444 		/*
4445 		 * We're done, all the remaining items in the source leaf
4446 		 * correspond to old file extent items.
4447 		 */
4448 		if (dst_index >= batch.nr)
4449 			break;
4450 
4451 		btrfs_item_key_to_cpu(src, &key, src_slot);
4452 
4453 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4454 			goto copy_item;
4455 
4456 		extent = btrfs_item_ptr(src, src_slot,
4457 					struct btrfs_file_extent_item);
4458 
4459 		/* See the comment in the previous loop, same logic. */
4460 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4461 		    key.offset < i_size &&
4462 		    inode->last_reflink_trans < trans->transid)
4463 			continue;
4464 
4465 copy_item:
4466 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4467 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4468 
4469 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4470 			struct btrfs_inode_item *inode_item;
4471 
4472 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4473 						    struct btrfs_inode_item);
4474 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4475 					&inode->vfs_inode,
4476 					inode_only == LOG_INODE_EXISTS,
4477 					logged_isize);
4478 		} else {
4479 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4480 					   src_offset, ins_sizes[dst_index]);
4481 		}
4482 
4483 		dst_index++;
4484 	}
4485 
4486 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4487 	btrfs_release_path(dst_path);
4488 out:
4489 	kfree(ins_data);
4490 
4491 	return ret;
4492 }
4493 
4494 static int extent_cmp(void *priv, const struct list_head *a,
4495 		      const struct list_head *b)
4496 {
4497 	const struct extent_map *em1, *em2;
4498 
4499 	em1 = list_entry(a, struct extent_map, list);
4500 	em2 = list_entry(b, struct extent_map, list);
4501 
4502 	if (em1->start < em2->start)
4503 		return -1;
4504 	else if (em1->start > em2->start)
4505 		return 1;
4506 	return 0;
4507 }
4508 
4509 static int log_extent_csums(struct btrfs_trans_handle *trans,
4510 			    struct btrfs_inode *inode,
4511 			    struct btrfs_root *log_root,
4512 			    const struct extent_map *em,
4513 			    struct btrfs_log_ctx *ctx)
4514 {
4515 	struct btrfs_ordered_extent *ordered;
4516 	struct btrfs_root *csum_root;
4517 	u64 csum_offset;
4518 	u64 csum_len;
4519 	u64 mod_start = em->mod_start;
4520 	u64 mod_len = em->mod_len;
4521 	LIST_HEAD(ordered_sums);
4522 	int ret = 0;
4523 
4524 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4525 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4526 	    em->block_start == EXTENT_MAP_HOLE)
4527 		return 0;
4528 
4529 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4530 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4531 		const u64 mod_end = mod_start + mod_len;
4532 		struct btrfs_ordered_sum *sums;
4533 
4534 		if (mod_len == 0)
4535 			break;
4536 
4537 		if (ordered_end <= mod_start)
4538 			continue;
4539 		if (mod_end <= ordered->file_offset)
4540 			break;
4541 
4542 		/*
4543 		 * We are going to copy all the csums on this ordered extent, so
4544 		 * go ahead and adjust mod_start and mod_len in case this ordered
4545 		 * extent has already been logged.
4546 		 */
4547 		if (ordered->file_offset > mod_start) {
4548 			if (ordered_end >= mod_end)
4549 				mod_len = ordered->file_offset - mod_start;
4550 			/*
4551 			 * If we have this case
4552 			 *
4553 			 * |--------- logged extent ---------|
4554 			 *       |----- ordered extent ----|
4555 			 *
4556 			 * Just don't mess with mod_start and mod_len, we'll
4557 			 * just end up logging more csums than we need and it
4558 			 * will be ok.
4559 			 */
4560 		} else {
4561 			if (ordered_end < mod_end) {
4562 				mod_len = mod_end - ordered_end;
4563 				mod_start = ordered_end;
4564 			} else {
4565 				mod_len = 0;
4566 			}
4567 		}
4568 
4569 		/*
4570 		 * To keep us from looping for the above case of an ordered
4571 		 * extent that falls inside of the logged extent.
4572 		 */
4573 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4574 			continue;
4575 
4576 		list_for_each_entry(sums, &ordered->list, list) {
4577 			ret = log_csums(trans, inode, log_root, sums);
4578 			if (ret)
4579 				return ret;
4580 		}
4581 	}
4582 
4583 	/* We're done, found all csums in the ordered extents. */
4584 	if (mod_len == 0)
4585 		return 0;
4586 
4587 	/* If we're compressed we have to save the entire range of csums. */
4588 	if (em->compress_type) {
4589 		csum_offset = 0;
4590 		csum_len = max(em->block_len, em->orig_block_len);
4591 	} else {
4592 		csum_offset = mod_start - em->start;
4593 		csum_len = mod_len;
4594 	}
4595 
4596 	/* block start is already adjusted for the file extent offset. */
4597 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4598 	ret = btrfs_lookup_csums_range(csum_root,
4599 				       em->block_start + csum_offset,
4600 				       em->block_start + csum_offset +
4601 				       csum_len - 1, &ordered_sums, 0, false);
4602 	if (ret)
4603 		return ret;
4604 
4605 	while (!list_empty(&ordered_sums)) {
4606 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4607 						   struct btrfs_ordered_sum,
4608 						   list);
4609 		if (!ret)
4610 			ret = log_csums(trans, inode, log_root, sums);
4611 		list_del(&sums->list);
4612 		kfree(sums);
4613 	}
4614 
4615 	return ret;
4616 }
4617 
4618 static int log_one_extent(struct btrfs_trans_handle *trans,
4619 			  struct btrfs_inode *inode,
4620 			  const struct extent_map *em,
4621 			  struct btrfs_path *path,
4622 			  struct btrfs_log_ctx *ctx)
4623 {
4624 	struct btrfs_drop_extents_args drop_args = { 0 };
4625 	struct btrfs_root *log = inode->root->log_root;
4626 	struct btrfs_file_extent_item fi = { 0 };
4627 	struct extent_buffer *leaf;
4628 	struct btrfs_key key;
4629 	u64 extent_offset = em->start - em->orig_start;
4630 	u64 block_len;
4631 	int ret;
4632 
4633 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4634 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4635 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4636 	else
4637 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4638 
4639 	block_len = max(em->block_len, em->orig_block_len);
4640 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4641 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4642 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4643 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4644 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4645 							extent_offset);
4646 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4647 	}
4648 
4649 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4650 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4651 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4652 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4653 
4654 	ret = log_extent_csums(trans, inode, log, em, ctx);
4655 	if (ret)
4656 		return ret;
4657 
4658 	/*
4659 	 * If this is the first time we are logging the inode in the current
4660 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4661 	 * because it does a deletion search, which always acquires write locks
4662 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4663 	 * but also adds significant contention in a log tree, since log trees
4664 	 * are small, with a root at level 2 or 3 at most, due to their short
4665 	 * life span.
4666 	 */
4667 	if (ctx->logged_before) {
4668 		drop_args.path = path;
4669 		drop_args.start = em->start;
4670 		drop_args.end = em->start + em->len;
4671 		drop_args.replace_extent = true;
4672 		drop_args.extent_item_size = sizeof(fi);
4673 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4674 		if (ret)
4675 			return ret;
4676 	}
4677 
4678 	if (!drop_args.extent_inserted) {
4679 		key.objectid = btrfs_ino(inode);
4680 		key.type = BTRFS_EXTENT_DATA_KEY;
4681 		key.offset = em->start;
4682 
4683 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4684 					      sizeof(fi));
4685 		if (ret)
4686 			return ret;
4687 	}
4688 	leaf = path->nodes[0];
4689 	write_extent_buffer(leaf, &fi,
4690 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4691 			    sizeof(fi));
4692 	btrfs_mark_buffer_dirty(leaf);
4693 
4694 	btrfs_release_path(path);
4695 
4696 	return ret;
4697 }
4698 
4699 /*
4700  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4701  * lose them after doing a full/fast fsync and replaying the log. We scan the
4702  * subvolume's root instead of iterating the inode's extent map tree because
4703  * otherwise we can log incorrect extent items based on extent map conversion.
4704  * That can happen due to the fact that extent maps are merged when they
4705  * are not in the extent map tree's list of modified extents.
4706  */
4707 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4708 				      struct btrfs_inode *inode,
4709 				      struct btrfs_path *path)
4710 {
4711 	struct btrfs_root *root = inode->root;
4712 	struct btrfs_key key;
4713 	const u64 i_size = i_size_read(&inode->vfs_inode);
4714 	const u64 ino = btrfs_ino(inode);
4715 	struct btrfs_path *dst_path = NULL;
4716 	bool dropped_extents = false;
4717 	u64 truncate_offset = i_size;
4718 	struct extent_buffer *leaf;
4719 	int slot;
4720 	int ins_nr = 0;
4721 	int start_slot;
4722 	int ret;
4723 
4724 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4725 		return 0;
4726 
4727 	key.objectid = ino;
4728 	key.type = BTRFS_EXTENT_DATA_KEY;
4729 	key.offset = i_size;
4730 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 	if (ret < 0)
4732 		goto out;
4733 
4734 	/*
4735 	 * We must check if there is a prealloc extent that starts before the
4736 	 * i_size and crosses the i_size boundary. This is to ensure later we
4737 	 * truncate down to the end of that extent and not to the i_size, as
4738 	 * otherwise we end up losing part of the prealloc extent after a log
4739 	 * replay and with an implicit hole if there is another prealloc extent
4740 	 * that starts at an offset beyond i_size.
4741 	 */
4742 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4743 	if (ret < 0)
4744 		goto out;
4745 
4746 	if (ret == 0) {
4747 		struct btrfs_file_extent_item *ei;
4748 
4749 		leaf = path->nodes[0];
4750 		slot = path->slots[0];
4751 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4752 
4753 		if (btrfs_file_extent_type(leaf, ei) ==
4754 		    BTRFS_FILE_EXTENT_PREALLOC) {
4755 			u64 extent_end;
4756 
4757 			btrfs_item_key_to_cpu(leaf, &key, slot);
4758 			extent_end = key.offset +
4759 				btrfs_file_extent_num_bytes(leaf, ei);
4760 
4761 			if (extent_end > i_size)
4762 				truncate_offset = extent_end;
4763 		}
4764 	} else {
4765 		ret = 0;
4766 	}
4767 
4768 	while (true) {
4769 		leaf = path->nodes[0];
4770 		slot = path->slots[0];
4771 
4772 		if (slot >= btrfs_header_nritems(leaf)) {
4773 			if (ins_nr > 0) {
4774 				ret = copy_items(trans, inode, dst_path, path,
4775 						 start_slot, ins_nr, 1, 0);
4776 				if (ret < 0)
4777 					goto out;
4778 				ins_nr = 0;
4779 			}
4780 			ret = btrfs_next_leaf(root, path);
4781 			if (ret < 0)
4782 				goto out;
4783 			if (ret > 0) {
4784 				ret = 0;
4785 				break;
4786 			}
4787 			continue;
4788 		}
4789 
4790 		btrfs_item_key_to_cpu(leaf, &key, slot);
4791 		if (key.objectid > ino)
4792 			break;
4793 		if (WARN_ON_ONCE(key.objectid < ino) ||
4794 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4795 		    key.offset < i_size) {
4796 			path->slots[0]++;
4797 			continue;
4798 		}
4799 		if (!dropped_extents) {
4800 			/*
4801 			 * Avoid logging extent items logged in past fsync calls
4802 			 * and leading to duplicate keys in the log tree.
4803 			 */
4804 			ret = truncate_inode_items(trans, root->log_root, inode,
4805 						   truncate_offset,
4806 						   BTRFS_EXTENT_DATA_KEY);
4807 			if (ret)
4808 				goto out;
4809 			dropped_extents = true;
4810 		}
4811 		if (ins_nr == 0)
4812 			start_slot = slot;
4813 		ins_nr++;
4814 		path->slots[0]++;
4815 		if (!dst_path) {
4816 			dst_path = btrfs_alloc_path();
4817 			if (!dst_path) {
4818 				ret = -ENOMEM;
4819 				goto out;
4820 			}
4821 		}
4822 	}
4823 	if (ins_nr > 0)
4824 		ret = copy_items(trans, inode, dst_path, path,
4825 				 start_slot, ins_nr, 1, 0);
4826 out:
4827 	btrfs_release_path(path);
4828 	btrfs_free_path(dst_path);
4829 	return ret;
4830 }
4831 
4832 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4833 				     struct btrfs_inode *inode,
4834 				     struct btrfs_path *path,
4835 				     struct btrfs_log_ctx *ctx)
4836 {
4837 	struct btrfs_ordered_extent *ordered;
4838 	struct btrfs_ordered_extent *tmp;
4839 	struct extent_map *em, *n;
4840 	struct list_head extents;
4841 	struct extent_map_tree *tree = &inode->extent_tree;
4842 	int ret = 0;
4843 	int num = 0;
4844 
4845 	INIT_LIST_HEAD(&extents);
4846 
4847 	write_lock(&tree->lock);
4848 
4849 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4850 		list_del_init(&em->list);
4851 		/*
4852 		 * Just an arbitrary number, this can be really CPU intensive
4853 		 * once we start getting a lot of extents, and really once we
4854 		 * have a bunch of extents we just want to commit since it will
4855 		 * be faster.
4856 		 */
4857 		if (++num > 32768) {
4858 			list_del_init(&tree->modified_extents);
4859 			ret = -EFBIG;
4860 			goto process;
4861 		}
4862 
4863 		if (em->generation < trans->transid)
4864 			continue;
4865 
4866 		/* We log prealloc extents beyond eof later. */
4867 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4868 		    em->start >= i_size_read(&inode->vfs_inode))
4869 			continue;
4870 
4871 		/* Need a ref to keep it from getting evicted from cache */
4872 		refcount_inc(&em->refs);
4873 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4874 		list_add_tail(&em->list, &extents);
4875 		num++;
4876 	}
4877 
4878 	list_sort(NULL, &extents, extent_cmp);
4879 process:
4880 	while (!list_empty(&extents)) {
4881 		em = list_entry(extents.next, struct extent_map, list);
4882 
4883 		list_del_init(&em->list);
4884 
4885 		/*
4886 		 * If we had an error we just need to delete everybody from our
4887 		 * private list.
4888 		 */
4889 		if (ret) {
4890 			clear_em_logging(tree, em);
4891 			free_extent_map(em);
4892 			continue;
4893 		}
4894 
4895 		write_unlock(&tree->lock);
4896 
4897 		ret = log_one_extent(trans, inode, em, path, ctx);
4898 		write_lock(&tree->lock);
4899 		clear_em_logging(tree, em);
4900 		free_extent_map(em);
4901 	}
4902 	WARN_ON(!list_empty(&extents));
4903 	write_unlock(&tree->lock);
4904 
4905 	if (!ret)
4906 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4907 	if (ret)
4908 		return ret;
4909 
4910 	/*
4911 	 * We have logged all extents successfully, now make sure the commit of
4912 	 * the current transaction waits for the ordered extents to complete
4913 	 * before it commits and wipes out the log trees, otherwise we would
4914 	 * lose data if an ordered extents completes after the transaction
4915 	 * commits and a power failure happens after the transaction commit.
4916 	 */
4917 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4918 		list_del_init(&ordered->log_list);
4919 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4920 
4921 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4922 			spin_lock_irq(&inode->ordered_tree.lock);
4923 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4924 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4925 				atomic_inc(&trans->transaction->pending_ordered);
4926 			}
4927 			spin_unlock_irq(&inode->ordered_tree.lock);
4928 		}
4929 		btrfs_put_ordered_extent(ordered);
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4936 			     struct btrfs_path *path, u64 *size_ret)
4937 {
4938 	struct btrfs_key key;
4939 	int ret;
4940 
4941 	key.objectid = btrfs_ino(inode);
4942 	key.type = BTRFS_INODE_ITEM_KEY;
4943 	key.offset = 0;
4944 
4945 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4946 	if (ret < 0) {
4947 		return ret;
4948 	} else if (ret > 0) {
4949 		*size_ret = 0;
4950 	} else {
4951 		struct btrfs_inode_item *item;
4952 
4953 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4954 				      struct btrfs_inode_item);
4955 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4956 		/*
4957 		 * If the in-memory inode's i_size is smaller then the inode
4958 		 * size stored in the btree, return the inode's i_size, so
4959 		 * that we get a correct inode size after replaying the log
4960 		 * when before a power failure we had a shrinking truncate
4961 		 * followed by addition of a new name (rename / new hard link).
4962 		 * Otherwise return the inode size from the btree, to avoid
4963 		 * data loss when replaying a log due to previously doing a
4964 		 * write that expands the inode's size and logging a new name
4965 		 * immediately after.
4966 		 */
4967 		if (*size_ret > inode->vfs_inode.i_size)
4968 			*size_ret = inode->vfs_inode.i_size;
4969 	}
4970 
4971 	btrfs_release_path(path);
4972 	return 0;
4973 }
4974 
4975 /*
4976  * At the moment we always log all xattrs. This is to figure out at log replay
4977  * time which xattrs must have their deletion replayed. If a xattr is missing
4978  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4979  * because if a xattr is deleted, the inode is fsynced and a power failure
4980  * happens, causing the log to be replayed the next time the fs is mounted,
4981  * we want the xattr to not exist anymore (same behaviour as other filesystems
4982  * with a journal, ext3/4, xfs, f2fs, etc).
4983  */
4984 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4985 				struct btrfs_inode *inode,
4986 				struct btrfs_path *path,
4987 				struct btrfs_path *dst_path)
4988 {
4989 	struct btrfs_root *root = inode->root;
4990 	int ret;
4991 	struct btrfs_key key;
4992 	const u64 ino = btrfs_ino(inode);
4993 	int ins_nr = 0;
4994 	int start_slot = 0;
4995 	bool found_xattrs = false;
4996 
4997 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4998 		return 0;
4999 
5000 	key.objectid = ino;
5001 	key.type = BTRFS_XATTR_ITEM_KEY;
5002 	key.offset = 0;
5003 
5004 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5005 	if (ret < 0)
5006 		return ret;
5007 
5008 	while (true) {
5009 		int slot = path->slots[0];
5010 		struct extent_buffer *leaf = path->nodes[0];
5011 		int nritems = btrfs_header_nritems(leaf);
5012 
5013 		if (slot >= nritems) {
5014 			if (ins_nr > 0) {
5015 				ret = copy_items(trans, inode, dst_path, path,
5016 						 start_slot, ins_nr, 1, 0);
5017 				if (ret < 0)
5018 					return ret;
5019 				ins_nr = 0;
5020 			}
5021 			ret = btrfs_next_leaf(root, path);
5022 			if (ret < 0)
5023 				return ret;
5024 			else if (ret > 0)
5025 				break;
5026 			continue;
5027 		}
5028 
5029 		btrfs_item_key_to_cpu(leaf, &key, slot);
5030 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5031 			break;
5032 
5033 		if (ins_nr == 0)
5034 			start_slot = slot;
5035 		ins_nr++;
5036 		path->slots[0]++;
5037 		found_xattrs = true;
5038 		cond_resched();
5039 	}
5040 	if (ins_nr > 0) {
5041 		ret = copy_items(trans, inode, dst_path, path,
5042 				 start_slot, ins_nr, 1, 0);
5043 		if (ret < 0)
5044 			return ret;
5045 	}
5046 
5047 	if (!found_xattrs)
5048 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5049 
5050 	return 0;
5051 }
5052 
5053 /*
5054  * When using the NO_HOLES feature if we punched a hole that causes the
5055  * deletion of entire leafs or all the extent items of the first leaf (the one
5056  * that contains the inode item and references) we may end up not processing
5057  * any extents, because there are no leafs with a generation matching the
5058  * current transaction that have extent items for our inode. So we need to find
5059  * if any holes exist and then log them. We also need to log holes after any
5060  * truncate operation that changes the inode's size.
5061  */
5062 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5063 			   struct btrfs_inode *inode,
5064 			   struct btrfs_path *path)
5065 {
5066 	struct btrfs_root *root = inode->root;
5067 	struct btrfs_fs_info *fs_info = root->fs_info;
5068 	struct btrfs_key key;
5069 	const u64 ino = btrfs_ino(inode);
5070 	const u64 i_size = i_size_read(&inode->vfs_inode);
5071 	u64 prev_extent_end = 0;
5072 	int ret;
5073 
5074 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5075 		return 0;
5076 
5077 	key.objectid = ino;
5078 	key.type = BTRFS_EXTENT_DATA_KEY;
5079 	key.offset = 0;
5080 
5081 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5082 	if (ret < 0)
5083 		return ret;
5084 
5085 	while (true) {
5086 		struct extent_buffer *leaf = path->nodes[0];
5087 
5088 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5089 			ret = btrfs_next_leaf(root, path);
5090 			if (ret < 0)
5091 				return ret;
5092 			if (ret > 0) {
5093 				ret = 0;
5094 				break;
5095 			}
5096 			leaf = path->nodes[0];
5097 		}
5098 
5099 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5100 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5101 			break;
5102 
5103 		/* We have a hole, log it. */
5104 		if (prev_extent_end < key.offset) {
5105 			const u64 hole_len = key.offset - prev_extent_end;
5106 
5107 			/*
5108 			 * Release the path to avoid deadlocks with other code
5109 			 * paths that search the root while holding locks on
5110 			 * leafs from the log root.
5111 			 */
5112 			btrfs_release_path(path);
5113 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5114 						       ino, prev_extent_end,
5115 						       hole_len);
5116 			if (ret < 0)
5117 				return ret;
5118 
5119 			/*
5120 			 * Search for the same key again in the root. Since it's
5121 			 * an extent item and we are holding the inode lock, the
5122 			 * key must still exist. If it doesn't just emit warning
5123 			 * and return an error to fall back to a transaction
5124 			 * commit.
5125 			 */
5126 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5127 			if (ret < 0)
5128 				return ret;
5129 			if (WARN_ON(ret > 0))
5130 				return -ENOENT;
5131 			leaf = path->nodes[0];
5132 		}
5133 
5134 		prev_extent_end = btrfs_file_extent_end(path);
5135 		path->slots[0]++;
5136 		cond_resched();
5137 	}
5138 
5139 	if (prev_extent_end < i_size) {
5140 		u64 hole_len;
5141 
5142 		btrfs_release_path(path);
5143 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5144 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5145 					       prev_extent_end, hole_len);
5146 		if (ret < 0)
5147 			return ret;
5148 	}
5149 
5150 	return 0;
5151 }
5152 
5153 /*
5154  * When we are logging a new inode X, check if it doesn't have a reference that
5155  * matches the reference from some other inode Y created in a past transaction
5156  * and that was renamed in the current transaction. If we don't do this, then at
5157  * log replay time we can lose inode Y (and all its files if it's a directory):
5158  *
5159  * mkdir /mnt/x
5160  * echo "hello world" > /mnt/x/foobar
5161  * sync
5162  * mv /mnt/x /mnt/y
5163  * mkdir /mnt/x                 # or touch /mnt/x
5164  * xfs_io -c fsync /mnt/x
5165  * <power fail>
5166  * mount fs, trigger log replay
5167  *
5168  * After the log replay procedure, we would lose the first directory and all its
5169  * files (file foobar).
5170  * For the case where inode Y is not a directory we simply end up losing it:
5171  *
5172  * echo "123" > /mnt/foo
5173  * sync
5174  * mv /mnt/foo /mnt/bar
5175  * echo "abc" > /mnt/foo
5176  * xfs_io -c fsync /mnt/foo
5177  * <power fail>
5178  *
5179  * We also need this for cases where a snapshot entry is replaced by some other
5180  * entry (file or directory) otherwise we end up with an unreplayable log due to
5181  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5182  * if it were a regular entry:
5183  *
5184  * mkdir /mnt/x
5185  * btrfs subvolume snapshot /mnt /mnt/x/snap
5186  * btrfs subvolume delete /mnt/x/snap
5187  * rmdir /mnt/x
5188  * mkdir /mnt/x
5189  * fsync /mnt/x or fsync some new file inside it
5190  * <power fail>
5191  *
5192  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5193  * the same transaction.
5194  */
5195 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5196 					 const int slot,
5197 					 const struct btrfs_key *key,
5198 					 struct btrfs_inode *inode,
5199 					 u64 *other_ino, u64 *other_parent)
5200 {
5201 	int ret;
5202 	struct btrfs_path *search_path;
5203 	char *name = NULL;
5204 	u32 name_len = 0;
5205 	u32 item_size = btrfs_item_size(eb, slot);
5206 	u32 cur_offset = 0;
5207 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5208 
5209 	search_path = btrfs_alloc_path();
5210 	if (!search_path)
5211 		return -ENOMEM;
5212 	search_path->search_commit_root = 1;
5213 	search_path->skip_locking = 1;
5214 
5215 	while (cur_offset < item_size) {
5216 		u64 parent;
5217 		u32 this_name_len;
5218 		u32 this_len;
5219 		unsigned long name_ptr;
5220 		struct btrfs_dir_item *di;
5221 
5222 		if (key->type == BTRFS_INODE_REF_KEY) {
5223 			struct btrfs_inode_ref *iref;
5224 
5225 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5226 			parent = key->offset;
5227 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5228 			name_ptr = (unsigned long)(iref + 1);
5229 			this_len = sizeof(*iref) + this_name_len;
5230 		} else {
5231 			struct btrfs_inode_extref *extref;
5232 
5233 			extref = (struct btrfs_inode_extref *)(ptr +
5234 							       cur_offset);
5235 			parent = btrfs_inode_extref_parent(eb, extref);
5236 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5237 			name_ptr = (unsigned long)&extref->name;
5238 			this_len = sizeof(*extref) + this_name_len;
5239 		}
5240 
5241 		if (this_name_len > name_len) {
5242 			char *new_name;
5243 
5244 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5245 			if (!new_name) {
5246 				ret = -ENOMEM;
5247 				goto out;
5248 			}
5249 			name_len = this_name_len;
5250 			name = new_name;
5251 		}
5252 
5253 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5254 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5255 				parent, name, this_name_len, 0);
5256 		if (di && !IS_ERR(di)) {
5257 			struct btrfs_key di_key;
5258 
5259 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5260 						  di, &di_key);
5261 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5262 				if (di_key.objectid != key->objectid) {
5263 					ret = 1;
5264 					*other_ino = di_key.objectid;
5265 					*other_parent = parent;
5266 				} else {
5267 					ret = 0;
5268 				}
5269 			} else {
5270 				ret = -EAGAIN;
5271 			}
5272 			goto out;
5273 		} else if (IS_ERR(di)) {
5274 			ret = PTR_ERR(di);
5275 			goto out;
5276 		}
5277 		btrfs_release_path(search_path);
5278 
5279 		cur_offset += this_len;
5280 	}
5281 	ret = 0;
5282 out:
5283 	btrfs_free_path(search_path);
5284 	kfree(name);
5285 	return ret;
5286 }
5287 
5288 /*
5289  * Check if we need to log an inode. This is used in contexts where while
5290  * logging an inode we need to log another inode (either that it exists or in
5291  * full mode). This is used instead of btrfs_inode_in_log() because the later
5292  * requires the inode to be in the log and have the log transaction committed,
5293  * while here we do not care if the log transaction was already committed - our
5294  * caller will commit the log later - and we want to avoid logging an inode
5295  * multiple times when multiple tasks have joined the same log transaction.
5296  */
5297 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5298 			   const struct btrfs_inode *inode)
5299 {
5300 	/*
5301 	 * If a directory was not modified, no dentries added or removed, we can
5302 	 * and should avoid logging it.
5303 	 */
5304 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5305 		return false;
5306 
5307 	/*
5308 	 * If this inode does not have new/updated/deleted xattrs since the last
5309 	 * time it was logged and is flagged as logged in the current transaction,
5310 	 * we can skip logging it. As for new/deleted names, those are updated in
5311 	 * the log by link/unlink/rename operations.
5312 	 * In case the inode was logged and then evicted and reloaded, its
5313 	 * logged_trans will be 0, in which case we have to fully log it since
5314 	 * logged_trans is a transient field, not persisted.
5315 	 */
5316 	if (inode->logged_trans == trans->transid &&
5317 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5318 		return false;
5319 
5320 	return true;
5321 }
5322 
5323 struct btrfs_dir_list {
5324 	u64 ino;
5325 	struct list_head list;
5326 };
5327 
5328 /*
5329  * Log the inodes of the new dentries of a directory.
5330  * See process_dir_items_leaf() for details about why it is needed.
5331  * This is a recursive operation - if an existing dentry corresponds to a
5332  * directory, that directory's new entries are logged too (same behaviour as
5333  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5334  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5335  * complains about the following circular lock dependency / possible deadlock:
5336  *
5337  *        CPU0                                        CPU1
5338  *        ----                                        ----
5339  * lock(&type->i_mutex_dir_key#3/2);
5340  *                                            lock(sb_internal#2);
5341  *                                            lock(&type->i_mutex_dir_key#3/2);
5342  * lock(&sb->s_type->i_mutex_key#14);
5343  *
5344  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5345  * sb_start_intwrite() in btrfs_start_transaction().
5346  * Not acquiring the VFS lock of the inodes is still safe because:
5347  *
5348  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5349  *    that while logging the inode new references (names) are added or removed
5350  *    from the inode, leaving the logged inode item with a link count that does
5351  *    not match the number of logged inode reference items. This is fine because
5352  *    at log replay time we compute the real number of links and correct the
5353  *    link count in the inode item (see replay_one_buffer() and
5354  *    link_to_fixup_dir());
5355  *
5356  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5357  *    while logging the inode's items new index items (key type
5358  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5359  *    has a size that doesn't match the sum of the lengths of all the logged
5360  *    names - this is ok, not a problem, because at log replay time we set the
5361  *    directory's i_size to the correct value (see replay_one_name() and
5362  *    do_overwrite_item()).
5363  */
5364 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5365 				struct btrfs_inode *start_inode,
5366 				struct btrfs_log_ctx *ctx)
5367 {
5368 	struct btrfs_root *root = start_inode->root;
5369 	struct btrfs_fs_info *fs_info = root->fs_info;
5370 	struct btrfs_path *path;
5371 	LIST_HEAD(dir_list);
5372 	struct btrfs_dir_list *dir_elem;
5373 	u64 ino = btrfs_ino(start_inode);
5374 	int ret = 0;
5375 
5376 	/*
5377 	 * If we are logging a new name, as part of a link or rename operation,
5378 	 * don't bother logging new dentries, as we just want to log the names
5379 	 * of an inode and that any new parents exist.
5380 	 */
5381 	if (ctx->logging_new_name)
5382 		return 0;
5383 
5384 	path = btrfs_alloc_path();
5385 	if (!path)
5386 		return -ENOMEM;
5387 
5388 	while (true) {
5389 		struct extent_buffer *leaf;
5390 		struct btrfs_key min_key;
5391 		bool continue_curr_inode = true;
5392 		int nritems;
5393 		int i;
5394 
5395 		min_key.objectid = ino;
5396 		min_key.type = BTRFS_DIR_INDEX_KEY;
5397 		min_key.offset = 0;
5398 again:
5399 		btrfs_release_path(path);
5400 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
5401 		if (ret < 0) {
5402 			break;
5403 		} else if (ret > 0) {
5404 			ret = 0;
5405 			goto next;
5406 		}
5407 
5408 		leaf = path->nodes[0];
5409 		nritems = btrfs_header_nritems(leaf);
5410 		for (i = path->slots[0]; i < nritems; i++) {
5411 			struct btrfs_dir_item *di;
5412 			struct btrfs_key di_key;
5413 			struct inode *di_inode;
5414 			int log_mode = LOG_INODE_EXISTS;
5415 			int type;
5416 
5417 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5418 			if (min_key.objectid != ino ||
5419 			    min_key.type != BTRFS_DIR_INDEX_KEY) {
5420 				continue_curr_inode = false;
5421 				break;
5422 			}
5423 
5424 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5425 			type = btrfs_dir_type(leaf, di);
5426 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5427 				continue;
5428 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5429 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5430 				continue;
5431 
5432 			btrfs_release_path(path);
5433 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5434 			if (IS_ERR(di_inode)) {
5435 				ret = PTR_ERR(di_inode);
5436 				goto out;
5437 			}
5438 
5439 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5440 				btrfs_add_delayed_iput(di_inode);
5441 				break;
5442 			}
5443 
5444 			ctx->log_new_dentries = false;
5445 			if (type == BTRFS_FT_DIR)
5446 				log_mode = LOG_INODE_ALL;
5447 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5448 					      log_mode, ctx);
5449 			btrfs_add_delayed_iput(di_inode);
5450 			if (ret)
5451 				goto out;
5452 			if (ctx->log_new_dentries) {
5453 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5454 				if (!dir_elem) {
5455 					ret = -ENOMEM;
5456 					goto out;
5457 				}
5458 				dir_elem->ino = di_key.objectid;
5459 				list_add_tail(&dir_elem->list, &dir_list);
5460 			}
5461 			break;
5462 		}
5463 
5464 		if (continue_curr_inode && min_key.offset < (u64)-1) {
5465 			min_key.offset++;
5466 			goto again;
5467 		}
5468 
5469 next:
5470 		if (list_empty(&dir_list))
5471 			break;
5472 
5473 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5474 		ino = dir_elem->ino;
5475 		list_del(&dir_elem->list);
5476 		kfree(dir_elem);
5477 	}
5478 out:
5479 	btrfs_free_path(path);
5480 	if (ret) {
5481 		struct btrfs_dir_list *next;
5482 
5483 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5484 			kfree(dir_elem);
5485 	}
5486 
5487 	return ret;
5488 }
5489 
5490 struct btrfs_ino_list {
5491 	u64 ino;
5492 	u64 parent;
5493 	struct list_head list;
5494 };
5495 
5496 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5497 {
5498 	struct btrfs_ino_list *curr;
5499 	struct btrfs_ino_list *next;
5500 
5501 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5502 		list_del(&curr->list);
5503 		kfree(curr);
5504 	}
5505 }
5506 
5507 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5508 				    struct btrfs_path *path)
5509 {
5510 	struct btrfs_key key;
5511 	int ret;
5512 
5513 	key.objectid = ino;
5514 	key.type = BTRFS_INODE_ITEM_KEY;
5515 	key.offset = 0;
5516 
5517 	path->search_commit_root = 1;
5518 	path->skip_locking = 1;
5519 
5520 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5521 	if (WARN_ON_ONCE(ret > 0)) {
5522 		/*
5523 		 * We have previously found the inode through the commit root
5524 		 * so this should not happen. If it does, just error out and
5525 		 * fallback to a transaction commit.
5526 		 */
5527 		ret = -ENOENT;
5528 	} else if (ret == 0) {
5529 		struct btrfs_inode_item *item;
5530 
5531 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5532 				      struct btrfs_inode_item);
5533 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5534 			ret = 1;
5535 	}
5536 
5537 	btrfs_release_path(path);
5538 	path->search_commit_root = 0;
5539 	path->skip_locking = 0;
5540 
5541 	return ret;
5542 }
5543 
5544 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5545 				 struct btrfs_root *root,
5546 				 struct btrfs_path *path,
5547 				 u64 ino, u64 parent,
5548 				 struct btrfs_log_ctx *ctx)
5549 {
5550 	struct btrfs_ino_list *ino_elem;
5551 	struct inode *inode;
5552 
5553 	/*
5554 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5555 	 * common to have more than 1 or 2. We don't want to collect too many,
5556 	 * as we could end up logging too many inodes (even if only in
5557 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5558 	 * commits.
5559 	 */
5560 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5561 		return BTRFS_LOG_FORCE_COMMIT;
5562 
5563 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5564 	/*
5565 	 * If the other inode that had a conflicting dir entry was deleted in
5566 	 * the current transaction then we either:
5567 	 *
5568 	 * 1) Log the parent directory (later after adding it to the list) if
5569 	 *    the inode is a directory. This is because it may be a deleted
5570 	 *    subvolume/snapshot or it may be a regular directory that had
5571 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5572 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5573 	 *    during log replay. So we just log the parent, which will result in
5574 	 *    a fallback to a transaction commit if we are dealing with those
5575 	 *    cases (last_unlink_trans will match the current transaction);
5576 	 *
5577 	 * 2) Do nothing if it's not a directory. During log replay we simply
5578 	 *    unlink the conflicting dentry from the parent directory and then
5579 	 *    add the dentry for our inode. Like this we can avoid logging the
5580 	 *    parent directory (and maybe fallback to a transaction commit in
5581 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5582 	 *    some inode from it to some other directory).
5583 	 */
5584 	if (IS_ERR(inode)) {
5585 		int ret = PTR_ERR(inode);
5586 
5587 		if (ret != -ENOENT)
5588 			return ret;
5589 
5590 		ret = conflicting_inode_is_dir(root, ino, path);
5591 		/* Not a directory or we got an error. */
5592 		if (ret <= 0)
5593 			return ret;
5594 
5595 		/* Conflicting inode is a directory, so we'll log its parent. */
5596 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5597 		if (!ino_elem)
5598 			return -ENOMEM;
5599 		ino_elem->ino = ino;
5600 		ino_elem->parent = parent;
5601 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5602 		ctx->num_conflict_inodes++;
5603 
5604 		return 0;
5605 	}
5606 
5607 	/*
5608 	 * If the inode was already logged skip it - otherwise we can hit an
5609 	 * infinite loop. Example:
5610 	 *
5611 	 * From the commit root (previous transaction) we have the following
5612 	 * inodes:
5613 	 *
5614 	 * inode 257 a directory
5615 	 * inode 258 with references "zz" and "zz_link" on inode 257
5616 	 * inode 259 with reference "a" on inode 257
5617 	 *
5618 	 * And in the current (uncommitted) transaction we have:
5619 	 *
5620 	 * inode 257 a directory, unchanged
5621 	 * inode 258 with references "a" and "a2" on inode 257
5622 	 * inode 259 with reference "zz_link" on inode 257
5623 	 * inode 261 with reference "zz" on inode 257
5624 	 *
5625 	 * When logging inode 261 the following infinite loop could
5626 	 * happen if we don't skip already logged inodes:
5627 	 *
5628 	 * - we detect inode 258 as a conflicting inode, with inode 261
5629 	 *   on reference "zz", and log it;
5630 	 *
5631 	 * - we detect inode 259 as a conflicting inode, with inode 258
5632 	 *   on reference "a", and log it;
5633 	 *
5634 	 * - we detect inode 258 as a conflicting inode, with inode 259
5635 	 *   on reference "zz_link", and log it - again! After this we
5636 	 *   repeat the above steps forever.
5637 	 *
5638 	 * Here we can use need_log_inode() because we only need to log the
5639 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5640 	 * so that the log ends up with the new name and without the old name.
5641 	 */
5642 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5643 		btrfs_add_delayed_iput(inode);
5644 		return 0;
5645 	}
5646 
5647 	btrfs_add_delayed_iput(inode);
5648 
5649 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5650 	if (!ino_elem)
5651 		return -ENOMEM;
5652 	ino_elem->ino = ino;
5653 	ino_elem->parent = parent;
5654 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5655 	ctx->num_conflict_inodes++;
5656 
5657 	return 0;
5658 }
5659 
5660 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5661 				  struct btrfs_root *root,
5662 				  struct btrfs_log_ctx *ctx)
5663 {
5664 	struct btrfs_fs_info *fs_info = root->fs_info;
5665 	int ret = 0;
5666 
5667 	/*
5668 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5669 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5670 	 * calls. This check guarantees we can have only 1 level of recursion.
5671 	 */
5672 	if (ctx->logging_conflict_inodes)
5673 		return 0;
5674 
5675 	ctx->logging_conflict_inodes = true;
5676 
5677 	/*
5678 	 * New conflicting inodes may be found and added to the list while we
5679 	 * are logging a conflicting inode, so keep iterating while the list is
5680 	 * not empty.
5681 	 */
5682 	while (!list_empty(&ctx->conflict_inodes)) {
5683 		struct btrfs_ino_list *curr;
5684 		struct inode *inode;
5685 		u64 ino;
5686 		u64 parent;
5687 
5688 		curr = list_first_entry(&ctx->conflict_inodes,
5689 					struct btrfs_ino_list, list);
5690 		ino = curr->ino;
5691 		parent = curr->parent;
5692 		list_del(&curr->list);
5693 		kfree(curr);
5694 
5695 		inode = btrfs_iget(fs_info->sb, ino, root);
5696 		/*
5697 		 * If the other inode that had a conflicting dir entry was
5698 		 * deleted in the current transaction, we need to log its parent
5699 		 * directory. See the comment at add_conflicting_inode().
5700 		 */
5701 		if (IS_ERR(inode)) {
5702 			ret = PTR_ERR(inode);
5703 			if (ret != -ENOENT)
5704 				break;
5705 
5706 			inode = btrfs_iget(fs_info->sb, parent, root);
5707 			if (IS_ERR(inode)) {
5708 				ret = PTR_ERR(inode);
5709 				break;
5710 			}
5711 
5712 			/*
5713 			 * Always log the directory, we cannot make this
5714 			 * conditional on need_log_inode() because the directory
5715 			 * might have been logged in LOG_INODE_EXISTS mode or
5716 			 * the dir index of the conflicting inode is not in a
5717 			 * dir index key range logged for the directory. So we
5718 			 * must make sure the deletion is recorded.
5719 			 */
5720 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5721 					      LOG_INODE_ALL, ctx);
5722 			btrfs_add_delayed_iput(inode);
5723 			if (ret)
5724 				break;
5725 			continue;
5726 		}
5727 
5728 		/*
5729 		 * Here we can use need_log_inode() because we only need to log
5730 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5731 		 * update the log, so that the log ends up with the new name and
5732 		 * without the old name.
5733 		 *
5734 		 * We did this check at add_conflicting_inode(), but here we do
5735 		 * it again because if some other task logged the inode after
5736 		 * that, we can avoid doing it again.
5737 		 */
5738 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5739 			btrfs_add_delayed_iput(inode);
5740 			continue;
5741 		}
5742 
5743 		/*
5744 		 * We are safe logging the other inode without acquiring its
5745 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5746 		 * are safe against concurrent renames of the other inode as
5747 		 * well because during a rename we pin the log and update the
5748 		 * log with the new name before we unpin it.
5749 		 */
5750 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5751 		btrfs_add_delayed_iput(inode);
5752 		if (ret)
5753 			break;
5754 	}
5755 
5756 	ctx->logging_conflict_inodes = false;
5757 	if (ret)
5758 		free_conflicting_inodes(ctx);
5759 
5760 	return ret;
5761 }
5762 
5763 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5764 				   struct btrfs_inode *inode,
5765 				   struct btrfs_key *min_key,
5766 				   const struct btrfs_key *max_key,
5767 				   struct btrfs_path *path,
5768 				   struct btrfs_path *dst_path,
5769 				   const u64 logged_isize,
5770 				   const int inode_only,
5771 				   struct btrfs_log_ctx *ctx,
5772 				   bool *need_log_inode_item)
5773 {
5774 	const u64 i_size = i_size_read(&inode->vfs_inode);
5775 	struct btrfs_root *root = inode->root;
5776 	int ins_start_slot = 0;
5777 	int ins_nr = 0;
5778 	int ret;
5779 
5780 	while (1) {
5781 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5782 		if (ret < 0)
5783 			return ret;
5784 		if (ret > 0) {
5785 			ret = 0;
5786 			break;
5787 		}
5788 again:
5789 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5790 		if (min_key->objectid != max_key->objectid)
5791 			break;
5792 		if (min_key->type > max_key->type)
5793 			break;
5794 
5795 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5796 			*need_log_inode_item = false;
5797 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5798 			   min_key->offset >= i_size) {
5799 			/*
5800 			 * Extents at and beyond eof are logged with
5801 			 * btrfs_log_prealloc_extents().
5802 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5803 			 * and no keys greater than that, so bail out.
5804 			 */
5805 			break;
5806 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5807 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5808 			   (inode->generation == trans->transid ||
5809 			    ctx->logging_conflict_inodes)) {
5810 			u64 other_ino = 0;
5811 			u64 other_parent = 0;
5812 
5813 			ret = btrfs_check_ref_name_override(path->nodes[0],
5814 					path->slots[0], min_key, inode,
5815 					&other_ino, &other_parent);
5816 			if (ret < 0) {
5817 				return ret;
5818 			} else if (ret > 0 &&
5819 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5820 				if (ins_nr > 0) {
5821 					ins_nr++;
5822 				} else {
5823 					ins_nr = 1;
5824 					ins_start_slot = path->slots[0];
5825 				}
5826 				ret = copy_items(trans, inode, dst_path, path,
5827 						 ins_start_slot, ins_nr,
5828 						 inode_only, logged_isize);
5829 				if (ret < 0)
5830 					return ret;
5831 				ins_nr = 0;
5832 
5833 				btrfs_release_path(path);
5834 				ret = add_conflicting_inode(trans, root, path,
5835 							    other_ino,
5836 							    other_parent, ctx);
5837 				if (ret)
5838 					return ret;
5839 				goto next_key;
5840 			}
5841 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5842 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5843 			if (ins_nr == 0)
5844 				goto next_slot;
5845 			ret = copy_items(trans, inode, dst_path, path,
5846 					 ins_start_slot,
5847 					 ins_nr, inode_only, logged_isize);
5848 			if (ret < 0)
5849 				return ret;
5850 			ins_nr = 0;
5851 			goto next_slot;
5852 		}
5853 
5854 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5855 			ins_nr++;
5856 			goto next_slot;
5857 		} else if (!ins_nr) {
5858 			ins_start_slot = path->slots[0];
5859 			ins_nr = 1;
5860 			goto next_slot;
5861 		}
5862 
5863 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5864 				 ins_nr, inode_only, logged_isize);
5865 		if (ret < 0)
5866 			return ret;
5867 		ins_nr = 1;
5868 		ins_start_slot = path->slots[0];
5869 next_slot:
5870 		path->slots[0]++;
5871 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5872 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5873 					      path->slots[0]);
5874 			goto again;
5875 		}
5876 		if (ins_nr) {
5877 			ret = copy_items(trans, inode, dst_path, path,
5878 					 ins_start_slot, ins_nr, inode_only,
5879 					 logged_isize);
5880 			if (ret < 0)
5881 				return ret;
5882 			ins_nr = 0;
5883 		}
5884 		btrfs_release_path(path);
5885 next_key:
5886 		if (min_key->offset < (u64)-1) {
5887 			min_key->offset++;
5888 		} else if (min_key->type < max_key->type) {
5889 			min_key->type++;
5890 			min_key->offset = 0;
5891 		} else {
5892 			break;
5893 		}
5894 
5895 		/*
5896 		 * We may process many leaves full of items for our inode, so
5897 		 * avoid monopolizing a cpu for too long by rescheduling while
5898 		 * not holding locks on any tree.
5899 		 */
5900 		cond_resched();
5901 	}
5902 	if (ins_nr) {
5903 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5904 				 ins_nr, inode_only, logged_isize);
5905 		if (ret)
5906 			return ret;
5907 	}
5908 
5909 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5910 		/*
5911 		 * Release the path because otherwise we might attempt to double
5912 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5913 		 */
5914 		btrfs_release_path(path);
5915 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5916 	}
5917 
5918 	return ret;
5919 }
5920 
5921 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5922 				      struct btrfs_root *log,
5923 				      struct btrfs_path *path,
5924 				      const struct btrfs_item_batch *batch,
5925 				      const struct btrfs_delayed_item *first_item)
5926 {
5927 	const struct btrfs_delayed_item *curr = first_item;
5928 	int ret;
5929 
5930 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5931 	if (ret)
5932 		return ret;
5933 
5934 	for (int i = 0; i < batch->nr; i++) {
5935 		char *data_ptr;
5936 
5937 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5938 		write_extent_buffer(path->nodes[0], &curr->data,
5939 				    (unsigned long)data_ptr, curr->data_len);
5940 		curr = list_next_entry(curr, log_list);
5941 		path->slots[0]++;
5942 	}
5943 
5944 	btrfs_release_path(path);
5945 
5946 	return 0;
5947 }
5948 
5949 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5950 				       struct btrfs_inode *inode,
5951 				       struct btrfs_path *path,
5952 				       const struct list_head *delayed_ins_list,
5953 				       struct btrfs_log_ctx *ctx)
5954 {
5955 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5956 	const int max_batch_size = 195;
5957 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5958 	const u64 ino = btrfs_ino(inode);
5959 	struct btrfs_root *log = inode->root->log_root;
5960 	struct btrfs_item_batch batch = {
5961 		.nr = 0,
5962 		.total_data_size = 0,
5963 	};
5964 	const struct btrfs_delayed_item *first = NULL;
5965 	const struct btrfs_delayed_item *curr;
5966 	char *ins_data;
5967 	struct btrfs_key *ins_keys;
5968 	u32 *ins_sizes;
5969 	u64 curr_batch_size = 0;
5970 	int batch_idx = 0;
5971 	int ret;
5972 
5973 	/* We are adding dir index items to the log tree. */
5974 	lockdep_assert_held(&inode->log_mutex);
5975 
5976 	/*
5977 	 * We collect delayed items before copying index keys from the subvolume
5978 	 * to the log tree. However just after we collected them, they may have
5979 	 * been flushed (all of them or just some of them), and therefore we
5980 	 * could have copied them from the subvolume tree to the log tree.
5981 	 * So find the first delayed item that was not yet logged (they are
5982 	 * sorted by index number).
5983 	 */
5984 	list_for_each_entry(curr, delayed_ins_list, log_list) {
5985 		if (curr->index > inode->last_dir_index_offset) {
5986 			first = curr;
5987 			break;
5988 		}
5989 	}
5990 
5991 	/* Empty list or all delayed items were already logged. */
5992 	if (!first)
5993 		return 0;
5994 
5995 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
5996 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
5997 	if (!ins_data)
5998 		return -ENOMEM;
5999 	ins_sizes = (u32 *)ins_data;
6000 	batch.data_sizes = ins_sizes;
6001 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6002 	batch.keys = ins_keys;
6003 
6004 	curr = first;
6005 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6006 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6007 
6008 		if (curr_batch_size + curr_size > leaf_data_size ||
6009 		    batch.nr == max_batch_size) {
6010 			ret = insert_delayed_items_batch(trans, log, path,
6011 							 &batch, first);
6012 			if (ret)
6013 				goto out;
6014 			batch_idx = 0;
6015 			batch.nr = 0;
6016 			batch.total_data_size = 0;
6017 			curr_batch_size = 0;
6018 			first = curr;
6019 		}
6020 
6021 		ins_sizes[batch_idx] = curr->data_len;
6022 		ins_keys[batch_idx].objectid = ino;
6023 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6024 		ins_keys[batch_idx].offset = curr->index;
6025 		curr_batch_size += curr_size;
6026 		batch.total_data_size += curr->data_len;
6027 		batch.nr++;
6028 		batch_idx++;
6029 		curr = list_next_entry(curr, log_list);
6030 	}
6031 
6032 	ASSERT(batch.nr >= 1);
6033 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6034 
6035 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6036 			       log_list);
6037 	inode->last_dir_index_offset = curr->index;
6038 out:
6039 	kfree(ins_data);
6040 
6041 	return ret;
6042 }
6043 
6044 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6045 				      struct btrfs_inode *inode,
6046 				      struct btrfs_path *path,
6047 				      const struct list_head *delayed_del_list,
6048 				      struct btrfs_log_ctx *ctx)
6049 {
6050 	const u64 ino = btrfs_ino(inode);
6051 	const struct btrfs_delayed_item *curr;
6052 
6053 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6054 				log_list);
6055 
6056 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6057 		u64 first_dir_index = curr->index;
6058 		u64 last_dir_index;
6059 		const struct btrfs_delayed_item *next;
6060 		int ret;
6061 
6062 		/*
6063 		 * Find a range of consecutive dir index items to delete. Like
6064 		 * this we log a single dir range item spanning several contiguous
6065 		 * dir items instead of logging one range item per dir index item.
6066 		 */
6067 		next = list_next_entry(curr, log_list);
6068 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6069 			if (next->index != curr->index + 1)
6070 				break;
6071 			curr = next;
6072 			next = list_next_entry(next, log_list);
6073 		}
6074 
6075 		last_dir_index = curr->index;
6076 		ASSERT(last_dir_index >= first_dir_index);
6077 
6078 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6079 					 ino, first_dir_index, last_dir_index);
6080 		if (ret)
6081 			return ret;
6082 		curr = list_next_entry(curr, log_list);
6083 	}
6084 
6085 	return 0;
6086 }
6087 
6088 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6089 					struct btrfs_inode *inode,
6090 					struct btrfs_path *path,
6091 					struct btrfs_log_ctx *ctx,
6092 					const struct list_head *delayed_del_list,
6093 					const struct btrfs_delayed_item *first,
6094 					const struct btrfs_delayed_item **last_ret)
6095 {
6096 	const struct btrfs_delayed_item *next;
6097 	struct extent_buffer *leaf = path->nodes[0];
6098 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6099 	int slot = path->slots[0] + 1;
6100 	const u64 ino = btrfs_ino(inode);
6101 
6102 	next = list_next_entry(first, log_list);
6103 
6104 	while (slot < last_slot &&
6105 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6106 		struct btrfs_key key;
6107 
6108 		btrfs_item_key_to_cpu(leaf, &key, slot);
6109 		if (key.objectid != ino ||
6110 		    key.type != BTRFS_DIR_INDEX_KEY ||
6111 		    key.offset != next->index)
6112 			break;
6113 
6114 		slot++;
6115 		*last_ret = next;
6116 		next = list_next_entry(next, log_list);
6117 	}
6118 
6119 	return btrfs_del_items(trans, inode->root->log_root, path,
6120 			       path->slots[0], slot - path->slots[0]);
6121 }
6122 
6123 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6124 					     struct btrfs_inode *inode,
6125 					     struct btrfs_path *path,
6126 					     const struct list_head *delayed_del_list,
6127 					     struct btrfs_log_ctx *ctx)
6128 {
6129 	struct btrfs_root *log = inode->root->log_root;
6130 	const struct btrfs_delayed_item *curr;
6131 	u64 last_range_start;
6132 	u64 last_range_end = 0;
6133 	struct btrfs_key key;
6134 
6135 	key.objectid = btrfs_ino(inode);
6136 	key.type = BTRFS_DIR_INDEX_KEY;
6137 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6138 				log_list);
6139 
6140 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6141 		const struct btrfs_delayed_item *last = curr;
6142 		u64 first_dir_index = curr->index;
6143 		u64 last_dir_index;
6144 		bool deleted_items = false;
6145 		int ret;
6146 
6147 		key.offset = curr->index;
6148 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6149 		if (ret < 0) {
6150 			return ret;
6151 		} else if (ret == 0) {
6152 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6153 							   delayed_del_list, curr,
6154 							   &last);
6155 			if (ret)
6156 				return ret;
6157 			deleted_items = true;
6158 		}
6159 
6160 		btrfs_release_path(path);
6161 
6162 		/*
6163 		 * If we deleted items from the leaf, it means we have a range
6164 		 * item logging their range, so no need to add one or update an
6165 		 * existing one. Otherwise we have to log a dir range item.
6166 		 */
6167 		if (deleted_items)
6168 			goto next_batch;
6169 
6170 		last_dir_index = last->index;
6171 		ASSERT(last_dir_index >= first_dir_index);
6172 		/*
6173 		 * If this range starts right after where the previous one ends,
6174 		 * then we want to reuse the previous range item and change its
6175 		 * end offset to the end of this range. This is just to minimize
6176 		 * leaf space usage, by avoiding adding a new range item.
6177 		 */
6178 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6179 			first_dir_index = last_range_start;
6180 
6181 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6182 					 first_dir_index, last_dir_index);
6183 		if (ret)
6184 			return ret;
6185 
6186 		last_range_start = first_dir_index;
6187 		last_range_end = last_dir_index;
6188 next_batch:
6189 		curr = list_next_entry(last, log_list);
6190 	}
6191 
6192 	return 0;
6193 }
6194 
6195 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6196 				      struct btrfs_inode *inode,
6197 				      struct btrfs_path *path,
6198 				      const struct list_head *delayed_del_list,
6199 				      struct btrfs_log_ctx *ctx)
6200 {
6201 	/*
6202 	 * We are deleting dir index items from the log tree or adding range
6203 	 * items to it.
6204 	 */
6205 	lockdep_assert_held(&inode->log_mutex);
6206 
6207 	if (list_empty(delayed_del_list))
6208 		return 0;
6209 
6210 	if (ctx->logged_before)
6211 		return log_delayed_deletions_incremental(trans, inode, path,
6212 							 delayed_del_list, ctx);
6213 
6214 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6215 					  ctx);
6216 }
6217 
6218 /*
6219  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6220  * items instead of the subvolume tree.
6221  */
6222 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6223 				    struct btrfs_inode *inode,
6224 				    const struct list_head *delayed_ins_list,
6225 				    struct btrfs_log_ctx *ctx)
6226 {
6227 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6228 	struct btrfs_fs_info *fs_info = trans->fs_info;
6229 	struct btrfs_delayed_item *item;
6230 	int ret = 0;
6231 
6232 	/*
6233 	 * No need for the log mutex, plus to avoid potential deadlocks or
6234 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6235 	 * mutexes.
6236 	 */
6237 	lockdep_assert_not_held(&inode->log_mutex);
6238 
6239 	ASSERT(!ctx->logging_new_delayed_dentries);
6240 	ctx->logging_new_delayed_dentries = true;
6241 
6242 	list_for_each_entry(item, delayed_ins_list, log_list) {
6243 		struct btrfs_dir_item *dir_item;
6244 		struct inode *di_inode;
6245 		struct btrfs_key key;
6246 		int log_mode = LOG_INODE_EXISTS;
6247 
6248 		dir_item = (struct btrfs_dir_item *)item->data;
6249 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6250 
6251 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6252 			continue;
6253 
6254 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6255 		if (IS_ERR(di_inode)) {
6256 			ret = PTR_ERR(di_inode);
6257 			break;
6258 		}
6259 
6260 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6261 			btrfs_add_delayed_iput(di_inode);
6262 			continue;
6263 		}
6264 
6265 		if (btrfs_stack_dir_type(dir_item) == BTRFS_FT_DIR)
6266 			log_mode = LOG_INODE_ALL;
6267 
6268 		ctx->log_new_dentries = false;
6269 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6270 
6271 		if (!ret && ctx->log_new_dentries)
6272 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6273 
6274 		btrfs_add_delayed_iput(di_inode);
6275 
6276 		if (ret)
6277 			break;
6278 	}
6279 
6280 	ctx->log_new_dentries = orig_log_new_dentries;
6281 	ctx->logging_new_delayed_dentries = false;
6282 
6283 	return ret;
6284 }
6285 
6286 /* log a single inode in the tree log.
6287  * At least one parent directory for this inode must exist in the tree
6288  * or be logged already.
6289  *
6290  * Any items from this inode changed by the current transaction are copied
6291  * to the log tree.  An extra reference is taken on any extents in this
6292  * file, allowing us to avoid a whole pile of corner cases around logging
6293  * blocks that have been removed from the tree.
6294  *
6295  * See LOG_INODE_ALL and related defines for a description of what inode_only
6296  * does.
6297  *
6298  * This handles both files and directories.
6299  */
6300 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6301 			   struct btrfs_inode *inode,
6302 			   int inode_only,
6303 			   struct btrfs_log_ctx *ctx)
6304 {
6305 	struct btrfs_path *path;
6306 	struct btrfs_path *dst_path;
6307 	struct btrfs_key min_key;
6308 	struct btrfs_key max_key;
6309 	struct btrfs_root *log = inode->root->log_root;
6310 	int ret;
6311 	bool fast_search = false;
6312 	u64 ino = btrfs_ino(inode);
6313 	struct extent_map_tree *em_tree = &inode->extent_tree;
6314 	u64 logged_isize = 0;
6315 	bool need_log_inode_item = true;
6316 	bool xattrs_logged = false;
6317 	bool inode_item_dropped = true;
6318 	bool full_dir_logging = false;
6319 	LIST_HEAD(delayed_ins_list);
6320 	LIST_HEAD(delayed_del_list);
6321 
6322 	path = btrfs_alloc_path();
6323 	if (!path)
6324 		return -ENOMEM;
6325 	dst_path = btrfs_alloc_path();
6326 	if (!dst_path) {
6327 		btrfs_free_path(path);
6328 		return -ENOMEM;
6329 	}
6330 
6331 	min_key.objectid = ino;
6332 	min_key.type = BTRFS_INODE_ITEM_KEY;
6333 	min_key.offset = 0;
6334 
6335 	max_key.objectid = ino;
6336 
6337 
6338 	/* today the code can only do partial logging of directories */
6339 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6340 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6341 		       &inode->runtime_flags) &&
6342 	     inode_only >= LOG_INODE_EXISTS))
6343 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6344 	else
6345 		max_key.type = (u8)-1;
6346 	max_key.offset = (u64)-1;
6347 
6348 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6349 		full_dir_logging = true;
6350 
6351 	/*
6352 	 * If we are logging a directory while we are logging dentries of the
6353 	 * delayed items of some other inode, then we need to flush the delayed
6354 	 * items of this directory and not log the delayed items directly. This
6355 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6356 	 * by having something like this:
6357 	 *
6358 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6359 	 *     $ xfs_io -c "fsync" a
6360 	 *
6361 	 * Where all directories in the path did not exist before and are
6362 	 * created in the current transaction.
6363 	 * So in such a case we directly log the delayed items of the main
6364 	 * directory ("a") without flushing them first, while for each of its
6365 	 * subdirectories we flush their delayed items before logging them.
6366 	 * This prevents a potential unbounded recursion like this:
6367 	 *
6368 	 * btrfs_log_inode()
6369 	 *   log_new_delayed_dentries()
6370 	 *      btrfs_log_inode()
6371 	 *        log_new_delayed_dentries()
6372 	 *          btrfs_log_inode()
6373 	 *            log_new_delayed_dentries()
6374 	 *              (...)
6375 	 *
6376 	 * We have thresholds for the maximum number of delayed items to have in
6377 	 * memory, and once they are hit, the items are flushed asynchronously.
6378 	 * However the limit is quite high, so lets prevent deep levels of
6379 	 * recursion to happen by limiting the maximum depth to be 1.
6380 	 */
6381 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6382 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6383 		if (ret)
6384 			goto out;
6385 	}
6386 
6387 	mutex_lock(&inode->log_mutex);
6388 
6389 	/*
6390 	 * For symlinks, we must always log their content, which is stored in an
6391 	 * inline extent, otherwise we could end up with an empty symlink after
6392 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6393 	 * one attempts to create an empty symlink).
6394 	 * We don't need to worry about flushing delalloc, because when we create
6395 	 * the inline extent when the symlink is created (we never have delalloc
6396 	 * for symlinks).
6397 	 */
6398 	if (S_ISLNK(inode->vfs_inode.i_mode))
6399 		inode_only = LOG_INODE_ALL;
6400 
6401 	/*
6402 	 * Before logging the inode item, cache the value returned by
6403 	 * inode_logged(), because after that we have the need to figure out if
6404 	 * the inode was previously logged in this transaction.
6405 	 */
6406 	ret = inode_logged(trans, inode, path);
6407 	if (ret < 0)
6408 		goto out_unlock;
6409 	ctx->logged_before = (ret == 1);
6410 	ret = 0;
6411 
6412 	/*
6413 	 * This is for cases where logging a directory could result in losing a
6414 	 * a file after replaying the log. For example, if we move a file from a
6415 	 * directory A to a directory B, then fsync directory A, we have no way
6416 	 * to known the file was moved from A to B, so logging just A would
6417 	 * result in losing the file after a log replay.
6418 	 */
6419 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6420 		btrfs_set_log_full_commit(trans);
6421 		ret = BTRFS_LOG_FORCE_COMMIT;
6422 		goto out_unlock;
6423 	}
6424 
6425 	/*
6426 	 * a brute force approach to making sure we get the most uptodate
6427 	 * copies of everything.
6428 	 */
6429 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6430 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6431 		if (ctx->logged_before)
6432 			ret = drop_inode_items(trans, log, path, inode,
6433 					       BTRFS_XATTR_ITEM_KEY);
6434 	} else {
6435 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6436 			/*
6437 			 * Make sure the new inode item we write to the log has
6438 			 * the same isize as the current one (if it exists).
6439 			 * This is necessary to prevent data loss after log
6440 			 * replay, and also to prevent doing a wrong expanding
6441 			 * truncate - for e.g. create file, write 4K into offset
6442 			 * 0, fsync, write 4K into offset 4096, add hard link,
6443 			 * fsync some other file (to sync log), power fail - if
6444 			 * we use the inode's current i_size, after log replay
6445 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6446 			 * (zeroes), as if an expanding truncate happened,
6447 			 * instead of getting a file of 4Kb only.
6448 			 */
6449 			ret = logged_inode_size(log, inode, path, &logged_isize);
6450 			if (ret)
6451 				goto out_unlock;
6452 		}
6453 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6454 			     &inode->runtime_flags)) {
6455 			if (inode_only == LOG_INODE_EXISTS) {
6456 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6457 				if (ctx->logged_before)
6458 					ret = drop_inode_items(trans, log, path,
6459 							       inode, max_key.type);
6460 			} else {
6461 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6462 					  &inode->runtime_flags);
6463 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6464 					  &inode->runtime_flags);
6465 				if (ctx->logged_before)
6466 					ret = truncate_inode_items(trans, log,
6467 								   inode, 0, 0);
6468 			}
6469 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6470 					      &inode->runtime_flags) ||
6471 			   inode_only == LOG_INODE_EXISTS) {
6472 			if (inode_only == LOG_INODE_ALL)
6473 				fast_search = true;
6474 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6475 			if (ctx->logged_before)
6476 				ret = drop_inode_items(trans, log, path, inode,
6477 						       max_key.type);
6478 		} else {
6479 			if (inode_only == LOG_INODE_ALL)
6480 				fast_search = true;
6481 			inode_item_dropped = false;
6482 			goto log_extents;
6483 		}
6484 
6485 	}
6486 	if (ret)
6487 		goto out_unlock;
6488 
6489 	/*
6490 	 * If we are logging a directory in full mode, collect the delayed items
6491 	 * before iterating the subvolume tree, so that we don't miss any new
6492 	 * dir index items in case they get flushed while or right after we are
6493 	 * iterating the subvolume tree.
6494 	 */
6495 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6496 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6497 					    &delayed_del_list);
6498 
6499 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6500 				      path, dst_path, logged_isize,
6501 				      inode_only, ctx,
6502 				      &need_log_inode_item);
6503 	if (ret)
6504 		goto out_unlock;
6505 
6506 	btrfs_release_path(path);
6507 	btrfs_release_path(dst_path);
6508 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6509 	if (ret)
6510 		goto out_unlock;
6511 	xattrs_logged = true;
6512 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6513 		btrfs_release_path(path);
6514 		btrfs_release_path(dst_path);
6515 		ret = btrfs_log_holes(trans, inode, path);
6516 		if (ret)
6517 			goto out_unlock;
6518 	}
6519 log_extents:
6520 	btrfs_release_path(path);
6521 	btrfs_release_path(dst_path);
6522 	if (need_log_inode_item) {
6523 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6524 		if (ret)
6525 			goto out_unlock;
6526 		/*
6527 		 * If we are doing a fast fsync and the inode was logged before
6528 		 * in this transaction, we don't need to log the xattrs because
6529 		 * they were logged before. If xattrs were added, changed or
6530 		 * deleted since the last time we logged the inode, then we have
6531 		 * already logged them because the inode had the runtime flag
6532 		 * BTRFS_INODE_COPY_EVERYTHING set.
6533 		 */
6534 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6535 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6536 			if (ret)
6537 				goto out_unlock;
6538 			btrfs_release_path(path);
6539 		}
6540 	}
6541 	if (fast_search) {
6542 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6543 		if (ret)
6544 			goto out_unlock;
6545 	} else if (inode_only == LOG_INODE_ALL) {
6546 		struct extent_map *em, *n;
6547 
6548 		write_lock(&em_tree->lock);
6549 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6550 			list_del_init(&em->list);
6551 		write_unlock(&em_tree->lock);
6552 	}
6553 
6554 	if (full_dir_logging) {
6555 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6556 		if (ret)
6557 			goto out_unlock;
6558 		ret = log_delayed_insertion_items(trans, inode, path,
6559 						  &delayed_ins_list, ctx);
6560 		if (ret)
6561 			goto out_unlock;
6562 		ret = log_delayed_deletion_items(trans, inode, path,
6563 						 &delayed_del_list, ctx);
6564 		if (ret)
6565 			goto out_unlock;
6566 	}
6567 
6568 	spin_lock(&inode->lock);
6569 	inode->logged_trans = trans->transid;
6570 	/*
6571 	 * Don't update last_log_commit if we logged that an inode exists.
6572 	 * We do this for three reasons:
6573 	 *
6574 	 * 1) We might have had buffered writes to this inode that were
6575 	 *    flushed and had their ordered extents completed in this
6576 	 *    transaction, but we did not previously log the inode with
6577 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6578 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6579 	 *    happened. We must make sure that if an explicit fsync against
6580 	 *    the inode is performed later, it logs the new extents, an
6581 	 *    updated inode item, etc, and syncs the log. The same logic
6582 	 *    applies to direct IO writes instead of buffered writes.
6583 	 *
6584 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6585 	 *    is logged with an i_size of 0 or whatever value was logged
6586 	 *    before. If later the i_size of the inode is increased by a
6587 	 *    truncate operation, the log is synced through an fsync of
6588 	 *    some other inode and then finally an explicit fsync against
6589 	 *    this inode is made, we must make sure this fsync logs the
6590 	 *    inode with the new i_size, the hole between old i_size and
6591 	 *    the new i_size, and syncs the log.
6592 	 *
6593 	 * 3) If we are logging that an ancestor inode exists as part of
6594 	 *    logging a new name from a link or rename operation, don't update
6595 	 *    its last_log_commit - otherwise if an explicit fsync is made
6596 	 *    against an ancestor, the fsync considers the inode in the log
6597 	 *    and doesn't sync the log, resulting in the ancestor missing after
6598 	 *    a power failure unless the log was synced as part of an fsync
6599 	 *    against any other unrelated inode.
6600 	 */
6601 	if (inode_only != LOG_INODE_EXISTS)
6602 		inode->last_log_commit = inode->last_sub_trans;
6603 	spin_unlock(&inode->lock);
6604 
6605 	/*
6606 	 * Reset the last_reflink_trans so that the next fsync does not need to
6607 	 * go through the slower path when logging extents and their checksums.
6608 	 */
6609 	if (inode_only == LOG_INODE_ALL)
6610 		inode->last_reflink_trans = 0;
6611 
6612 out_unlock:
6613 	mutex_unlock(&inode->log_mutex);
6614 out:
6615 	btrfs_free_path(path);
6616 	btrfs_free_path(dst_path);
6617 
6618 	if (ret)
6619 		free_conflicting_inodes(ctx);
6620 	else
6621 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6622 
6623 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6624 		if (!ret)
6625 			ret = log_new_delayed_dentries(trans, inode,
6626 						       &delayed_ins_list, ctx);
6627 
6628 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6629 					    &delayed_del_list);
6630 	}
6631 
6632 	return ret;
6633 }
6634 
6635 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6636 				 struct btrfs_inode *inode,
6637 				 struct btrfs_log_ctx *ctx)
6638 {
6639 	struct btrfs_fs_info *fs_info = trans->fs_info;
6640 	int ret;
6641 	struct btrfs_path *path;
6642 	struct btrfs_key key;
6643 	struct btrfs_root *root = inode->root;
6644 	const u64 ino = btrfs_ino(inode);
6645 
6646 	path = btrfs_alloc_path();
6647 	if (!path)
6648 		return -ENOMEM;
6649 	path->skip_locking = 1;
6650 	path->search_commit_root = 1;
6651 
6652 	key.objectid = ino;
6653 	key.type = BTRFS_INODE_REF_KEY;
6654 	key.offset = 0;
6655 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6656 	if (ret < 0)
6657 		goto out;
6658 
6659 	while (true) {
6660 		struct extent_buffer *leaf = path->nodes[0];
6661 		int slot = path->slots[0];
6662 		u32 cur_offset = 0;
6663 		u32 item_size;
6664 		unsigned long ptr;
6665 
6666 		if (slot >= btrfs_header_nritems(leaf)) {
6667 			ret = btrfs_next_leaf(root, path);
6668 			if (ret < 0)
6669 				goto out;
6670 			else if (ret > 0)
6671 				break;
6672 			continue;
6673 		}
6674 
6675 		btrfs_item_key_to_cpu(leaf, &key, slot);
6676 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6677 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6678 			break;
6679 
6680 		item_size = btrfs_item_size(leaf, slot);
6681 		ptr = btrfs_item_ptr_offset(leaf, slot);
6682 		while (cur_offset < item_size) {
6683 			struct btrfs_key inode_key;
6684 			struct inode *dir_inode;
6685 
6686 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6687 			inode_key.offset = 0;
6688 
6689 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6690 				struct btrfs_inode_extref *extref;
6691 
6692 				extref = (struct btrfs_inode_extref *)
6693 					(ptr + cur_offset);
6694 				inode_key.objectid = btrfs_inode_extref_parent(
6695 					leaf, extref);
6696 				cur_offset += sizeof(*extref);
6697 				cur_offset += btrfs_inode_extref_name_len(leaf,
6698 					extref);
6699 			} else {
6700 				inode_key.objectid = key.offset;
6701 				cur_offset = item_size;
6702 			}
6703 
6704 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6705 					       root);
6706 			/*
6707 			 * If the parent inode was deleted, return an error to
6708 			 * fallback to a transaction commit. This is to prevent
6709 			 * getting an inode that was moved from one parent A to
6710 			 * a parent B, got its former parent A deleted and then
6711 			 * it got fsync'ed, from existing at both parents after
6712 			 * a log replay (and the old parent still existing).
6713 			 * Example:
6714 			 *
6715 			 * mkdir /mnt/A
6716 			 * mkdir /mnt/B
6717 			 * touch /mnt/B/bar
6718 			 * sync
6719 			 * mv /mnt/B/bar /mnt/A/bar
6720 			 * mv -T /mnt/A /mnt/B
6721 			 * fsync /mnt/B/bar
6722 			 * <power fail>
6723 			 *
6724 			 * If we ignore the old parent B which got deleted,
6725 			 * after a log replay we would have file bar linked
6726 			 * at both parents and the old parent B would still
6727 			 * exist.
6728 			 */
6729 			if (IS_ERR(dir_inode)) {
6730 				ret = PTR_ERR(dir_inode);
6731 				goto out;
6732 			}
6733 
6734 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6735 				btrfs_add_delayed_iput(dir_inode);
6736 				continue;
6737 			}
6738 
6739 			ctx->log_new_dentries = false;
6740 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6741 					      LOG_INODE_ALL, ctx);
6742 			if (!ret && ctx->log_new_dentries)
6743 				ret = log_new_dir_dentries(trans,
6744 						   BTRFS_I(dir_inode), ctx);
6745 			btrfs_add_delayed_iput(dir_inode);
6746 			if (ret)
6747 				goto out;
6748 		}
6749 		path->slots[0]++;
6750 	}
6751 	ret = 0;
6752 out:
6753 	btrfs_free_path(path);
6754 	return ret;
6755 }
6756 
6757 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6758 			     struct btrfs_root *root,
6759 			     struct btrfs_path *path,
6760 			     struct btrfs_log_ctx *ctx)
6761 {
6762 	struct btrfs_key found_key;
6763 
6764 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6765 
6766 	while (true) {
6767 		struct btrfs_fs_info *fs_info = root->fs_info;
6768 		struct extent_buffer *leaf = path->nodes[0];
6769 		int slot = path->slots[0];
6770 		struct btrfs_key search_key;
6771 		struct inode *inode;
6772 		u64 ino;
6773 		int ret = 0;
6774 
6775 		btrfs_release_path(path);
6776 
6777 		ino = found_key.offset;
6778 
6779 		search_key.objectid = found_key.offset;
6780 		search_key.type = BTRFS_INODE_ITEM_KEY;
6781 		search_key.offset = 0;
6782 		inode = btrfs_iget(fs_info->sb, ino, root);
6783 		if (IS_ERR(inode))
6784 			return PTR_ERR(inode);
6785 
6786 		if (BTRFS_I(inode)->generation >= trans->transid &&
6787 		    need_log_inode(trans, BTRFS_I(inode)))
6788 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6789 					      LOG_INODE_EXISTS, ctx);
6790 		btrfs_add_delayed_iput(inode);
6791 		if (ret)
6792 			return ret;
6793 
6794 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6795 			break;
6796 
6797 		search_key.type = BTRFS_INODE_REF_KEY;
6798 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6799 		if (ret < 0)
6800 			return ret;
6801 
6802 		leaf = path->nodes[0];
6803 		slot = path->slots[0];
6804 		if (slot >= btrfs_header_nritems(leaf)) {
6805 			ret = btrfs_next_leaf(root, path);
6806 			if (ret < 0)
6807 				return ret;
6808 			else if (ret > 0)
6809 				return -ENOENT;
6810 			leaf = path->nodes[0];
6811 			slot = path->slots[0];
6812 		}
6813 
6814 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6815 		if (found_key.objectid != search_key.objectid ||
6816 		    found_key.type != BTRFS_INODE_REF_KEY)
6817 			return -ENOENT;
6818 	}
6819 	return 0;
6820 }
6821 
6822 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6823 				  struct btrfs_inode *inode,
6824 				  struct dentry *parent,
6825 				  struct btrfs_log_ctx *ctx)
6826 {
6827 	struct btrfs_root *root = inode->root;
6828 	struct dentry *old_parent = NULL;
6829 	struct super_block *sb = inode->vfs_inode.i_sb;
6830 	int ret = 0;
6831 
6832 	while (true) {
6833 		if (!parent || d_really_is_negative(parent) ||
6834 		    sb != parent->d_sb)
6835 			break;
6836 
6837 		inode = BTRFS_I(d_inode(parent));
6838 		if (root != inode->root)
6839 			break;
6840 
6841 		if (inode->generation >= trans->transid &&
6842 		    need_log_inode(trans, inode)) {
6843 			ret = btrfs_log_inode(trans, inode,
6844 					      LOG_INODE_EXISTS, ctx);
6845 			if (ret)
6846 				break;
6847 		}
6848 		if (IS_ROOT(parent))
6849 			break;
6850 
6851 		parent = dget_parent(parent);
6852 		dput(old_parent);
6853 		old_parent = parent;
6854 	}
6855 	dput(old_parent);
6856 
6857 	return ret;
6858 }
6859 
6860 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6861 				 struct btrfs_inode *inode,
6862 				 struct dentry *parent,
6863 				 struct btrfs_log_ctx *ctx)
6864 {
6865 	struct btrfs_root *root = inode->root;
6866 	const u64 ino = btrfs_ino(inode);
6867 	struct btrfs_path *path;
6868 	struct btrfs_key search_key;
6869 	int ret;
6870 
6871 	/*
6872 	 * For a single hard link case, go through a fast path that does not
6873 	 * need to iterate the fs/subvolume tree.
6874 	 */
6875 	if (inode->vfs_inode.i_nlink < 2)
6876 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6877 
6878 	path = btrfs_alloc_path();
6879 	if (!path)
6880 		return -ENOMEM;
6881 
6882 	search_key.objectid = ino;
6883 	search_key.type = BTRFS_INODE_REF_KEY;
6884 	search_key.offset = 0;
6885 again:
6886 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6887 	if (ret < 0)
6888 		goto out;
6889 	if (ret == 0)
6890 		path->slots[0]++;
6891 
6892 	while (true) {
6893 		struct extent_buffer *leaf = path->nodes[0];
6894 		int slot = path->slots[0];
6895 		struct btrfs_key found_key;
6896 
6897 		if (slot >= btrfs_header_nritems(leaf)) {
6898 			ret = btrfs_next_leaf(root, path);
6899 			if (ret < 0)
6900 				goto out;
6901 			else if (ret > 0)
6902 				break;
6903 			continue;
6904 		}
6905 
6906 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6907 		if (found_key.objectid != ino ||
6908 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6909 			break;
6910 
6911 		/*
6912 		 * Don't deal with extended references because they are rare
6913 		 * cases and too complex to deal with (we would need to keep
6914 		 * track of which subitem we are processing for each item in
6915 		 * this loop, etc). So just return some error to fallback to
6916 		 * a transaction commit.
6917 		 */
6918 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6919 			ret = -EMLINK;
6920 			goto out;
6921 		}
6922 
6923 		/*
6924 		 * Logging ancestors needs to do more searches on the fs/subvol
6925 		 * tree, so it releases the path as needed to avoid deadlocks.
6926 		 * Keep track of the last inode ref key and resume from that key
6927 		 * after logging all new ancestors for the current hard link.
6928 		 */
6929 		memcpy(&search_key, &found_key, sizeof(search_key));
6930 
6931 		ret = log_new_ancestors(trans, root, path, ctx);
6932 		if (ret)
6933 			goto out;
6934 		btrfs_release_path(path);
6935 		goto again;
6936 	}
6937 	ret = 0;
6938 out:
6939 	btrfs_free_path(path);
6940 	return ret;
6941 }
6942 
6943 /*
6944  * helper function around btrfs_log_inode to make sure newly created
6945  * parent directories also end up in the log.  A minimal inode and backref
6946  * only logging is done of any parent directories that are older than
6947  * the last committed transaction
6948  */
6949 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6950 				  struct btrfs_inode *inode,
6951 				  struct dentry *parent,
6952 				  int inode_only,
6953 				  struct btrfs_log_ctx *ctx)
6954 {
6955 	struct btrfs_root *root = inode->root;
6956 	struct btrfs_fs_info *fs_info = root->fs_info;
6957 	int ret = 0;
6958 	bool log_dentries = false;
6959 
6960 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6961 		ret = BTRFS_LOG_FORCE_COMMIT;
6962 		goto end_no_trans;
6963 	}
6964 
6965 	if (btrfs_root_refs(&root->root_item) == 0) {
6966 		ret = BTRFS_LOG_FORCE_COMMIT;
6967 		goto end_no_trans;
6968 	}
6969 
6970 	/*
6971 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6972 	 * (since logging them is pointless, a link count of 0 means they
6973 	 * will never be accessible).
6974 	 */
6975 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6976 	     list_empty(&ctx->ordered_extents)) ||
6977 	    inode->vfs_inode.i_nlink == 0) {
6978 		ret = BTRFS_NO_LOG_SYNC;
6979 		goto end_no_trans;
6980 	}
6981 
6982 	ret = start_log_trans(trans, root, ctx);
6983 	if (ret)
6984 		goto end_no_trans;
6985 
6986 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6987 	if (ret)
6988 		goto end_trans;
6989 
6990 	/*
6991 	 * for regular files, if its inode is already on disk, we don't
6992 	 * have to worry about the parents at all.  This is because
6993 	 * we can use the last_unlink_trans field to record renames
6994 	 * and other fun in this file.
6995 	 */
6996 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6997 	    inode->generation < trans->transid &&
6998 	    inode->last_unlink_trans < trans->transid) {
6999 		ret = 0;
7000 		goto end_trans;
7001 	}
7002 
7003 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7004 		log_dentries = true;
7005 
7006 	/*
7007 	 * On unlink we must make sure all our current and old parent directory
7008 	 * inodes are fully logged. This is to prevent leaving dangling
7009 	 * directory index entries in directories that were our parents but are
7010 	 * not anymore. Not doing this results in old parent directory being
7011 	 * impossible to delete after log replay (rmdir will always fail with
7012 	 * error -ENOTEMPTY).
7013 	 *
7014 	 * Example 1:
7015 	 *
7016 	 * mkdir testdir
7017 	 * touch testdir/foo
7018 	 * ln testdir/foo testdir/bar
7019 	 * sync
7020 	 * unlink testdir/bar
7021 	 * xfs_io -c fsync testdir/foo
7022 	 * <power failure>
7023 	 * mount fs, triggers log replay
7024 	 *
7025 	 * If we don't log the parent directory (testdir), after log replay the
7026 	 * directory still has an entry pointing to the file inode using the bar
7027 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7028 	 * the file inode has a link count of 1.
7029 	 *
7030 	 * Example 2:
7031 	 *
7032 	 * mkdir testdir
7033 	 * touch foo
7034 	 * ln foo testdir/foo2
7035 	 * ln foo testdir/foo3
7036 	 * sync
7037 	 * unlink testdir/foo3
7038 	 * xfs_io -c fsync foo
7039 	 * <power failure>
7040 	 * mount fs, triggers log replay
7041 	 *
7042 	 * Similar as the first example, after log replay the parent directory
7043 	 * testdir still has an entry pointing to the inode file with name foo3
7044 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7045 	 * and has a link count of 2.
7046 	 */
7047 	if (inode->last_unlink_trans >= trans->transid) {
7048 		ret = btrfs_log_all_parents(trans, inode, ctx);
7049 		if (ret)
7050 			goto end_trans;
7051 	}
7052 
7053 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7054 	if (ret)
7055 		goto end_trans;
7056 
7057 	if (log_dentries)
7058 		ret = log_new_dir_dentries(trans, inode, ctx);
7059 	else
7060 		ret = 0;
7061 end_trans:
7062 	if (ret < 0) {
7063 		btrfs_set_log_full_commit(trans);
7064 		ret = BTRFS_LOG_FORCE_COMMIT;
7065 	}
7066 
7067 	if (ret)
7068 		btrfs_remove_log_ctx(root, ctx);
7069 	btrfs_end_log_trans(root);
7070 end_no_trans:
7071 	return ret;
7072 }
7073 
7074 /*
7075  * it is not safe to log dentry if the chunk root has added new
7076  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7077  * If this returns 1, you must commit the transaction to safely get your
7078  * data on disk.
7079  */
7080 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7081 			  struct dentry *dentry,
7082 			  struct btrfs_log_ctx *ctx)
7083 {
7084 	struct dentry *parent = dget_parent(dentry);
7085 	int ret;
7086 
7087 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7088 				     LOG_INODE_ALL, ctx);
7089 	dput(parent);
7090 
7091 	return ret;
7092 }
7093 
7094 /*
7095  * should be called during mount to recover any replay any log trees
7096  * from the FS
7097  */
7098 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7099 {
7100 	int ret;
7101 	struct btrfs_path *path;
7102 	struct btrfs_trans_handle *trans;
7103 	struct btrfs_key key;
7104 	struct btrfs_key found_key;
7105 	struct btrfs_root *log;
7106 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7107 	struct walk_control wc = {
7108 		.process_func = process_one_buffer,
7109 		.stage = LOG_WALK_PIN_ONLY,
7110 	};
7111 
7112 	path = btrfs_alloc_path();
7113 	if (!path)
7114 		return -ENOMEM;
7115 
7116 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7117 
7118 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7119 	if (IS_ERR(trans)) {
7120 		ret = PTR_ERR(trans);
7121 		goto error;
7122 	}
7123 
7124 	wc.trans = trans;
7125 	wc.pin = 1;
7126 
7127 	ret = walk_log_tree(trans, log_root_tree, &wc);
7128 	if (ret) {
7129 		btrfs_abort_transaction(trans, ret);
7130 		goto error;
7131 	}
7132 
7133 again:
7134 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7135 	key.offset = (u64)-1;
7136 	key.type = BTRFS_ROOT_ITEM_KEY;
7137 
7138 	while (1) {
7139 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7140 
7141 		if (ret < 0) {
7142 			btrfs_abort_transaction(trans, ret);
7143 			goto error;
7144 		}
7145 		if (ret > 0) {
7146 			if (path->slots[0] == 0)
7147 				break;
7148 			path->slots[0]--;
7149 		}
7150 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7151 				      path->slots[0]);
7152 		btrfs_release_path(path);
7153 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7154 			break;
7155 
7156 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7157 		if (IS_ERR(log)) {
7158 			ret = PTR_ERR(log);
7159 			btrfs_abort_transaction(trans, ret);
7160 			goto error;
7161 		}
7162 
7163 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7164 						   true);
7165 		if (IS_ERR(wc.replay_dest)) {
7166 			ret = PTR_ERR(wc.replay_dest);
7167 
7168 			/*
7169 			 * We didn't find the subvol, likely because it was
7170 			 * deleted.  This is ok, simply skip this log and go to
7171 			 * the next one.
7172 			 *
7173 			 * We need to exclude the root because we can't have
7174 			 * other log replays overwriting this log as we'll read
7175 			 * it back in a few more times.  This will keep our
7176 			 * block from being modified, and we'll just bail for
7177 			 * each subsequent pass.
7178 			 */
7179 			if (ret == -ENOENT)
7180 				ret = btrfs_pin_extent_for_log_replay(trans,
7181 							log->node->start,
7182 							log->node->len);
7183 			btrfs_put_root(log);
7184 
7185 			if (!ret)
7186 				goto next;
7187 			btrfs_abort_transaction(trans, ret);
7188 			goto error;
7189 		}
7190 
7191 		wc.replay_dest->log_root = log;
7192 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7193 		if (ret)
7194 			/* The loop needs to continue due to the root refs */
7195 			btrfs_abort_transaction(trans, ret);
7196 		else
7197 			ret = walk_log_tree(trans, log, &wc);
7198 
7199 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7200 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7201 						      path);
7202 			if (ret)
7203 				btrfs_abort_transaction(trans, ret);
7204 		}
7205 
7206 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7207 			struct btrfs_root *root = wc.replay_dest;
7208 
7209 			btrfs_release_path(path);
7210 
7211 			/*
7212 			 * We have just replayed everything, and the highest
7213 			 * objectid of fs roots probably has changed in case
7214 			 * some inode_item's got replayed.
7215 			 *
7216 			 * root->objectid_mutex is not acquired as log replay
7217 			 * could only happen during mount.
7218 			 */
7219 			ret = btrfs_init_root_free_objectid(root);
7220 			if (ret)
7221 				btrfs_abort_transaction(trans, ret);
7222 		}
7223 
7224 		wc.replay_dest->log_root = NULL;
7225 		btrfs_put_root(wc.replay_dest);
7226 		btrfs_put_root(log);
7227 
7228 		if (ret)
7229 			goto error;
7230 next:
7231 		if (found_key.offset == 0)
7232 			break;
7233 		key.offset = found_key.offset - 1;
7234 	}
7235 	btrfs_release_path(path);
7236 
7237 	/* step one is to pin it all, step two is to replay just inodes */
7238 	if (wc.pin) {
7239 		wc.pin = 0;
7240 		wc.process_func = replay_one_buffer;
7241 		wc.stage = LOG_WALK_REPLAY_INODES;
7242 		goto again;
7243 	}
7244 	/* step three is to replay everything */
7245 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7246 		wc.stage++;
7247 		goto again;
7248 	}
7249 
7250 	btrfs_free_path(path);
7251 
7252 	/* step 4: commit the transaction, which also unpins the blocks */
7253 	ret = btrfs_commit_transaction(trans);
7254 	if (ret)
7255 		return ret;
7256 
7257 	log_root_tree->log_root = NULL;
7258 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7259 	btrfs_put_root(log_root_tree);
7260 
7261 	return 0;
7262 error:
7263 	if (wc.trans)
7264 		btrfs_end_transaction(wc.trans);
7265 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7266 	btrfs_free_path(path);
7267 	return ret;
7268 }
7269 
7270 /*
7271  * there are some corner cases where we want to force a full
7272  * commit instead of allowing a directory to be logged.
7273  *
7274  * They revolve around files there were unlinked from the directory, and
7275  * this function updates the parent directory so that a full commit is
7276  * properly done if it is fsync'd later after the unlinks are done.
7277  *
7278  * Must be called before the unlink operations (updates to the subvolume tree,
7279  * inodes, etc) are done.
7280  */
7281 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7282 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7283 			     int for_rename)
7284 {
7285 	/*
7286 	 * when we're logging a file, if it hasn't been renamed
7287 	 * or unlinked, and its inode is fully committed on disk,
7288 	 * we don't have to worry about walking up the directory chain
7289 	 * to log its parents.
7290 	 *
7291 	 * So, we use the last_unlink_trans field to put this transid
7292 	 * into the file.  When the file is logged we check it and
7293 	 * don't log the parents if the file is fully on disk.
7294 	 */
7295 	mutex_lock(&inode->log_mutex);
7296 	inode->last_unlink_trans = trans->transid;
7297 	mutex_unlock(&inode->log_mutex);
7298 
7299 	/*
7300 	 * if this directory was already logged any new
7301 	 * names for this file/dir will get recorded
7302 	 */
7303 	if (dir->logged_trans == trans->transid)
7304 		return;
7305 
7306 	/*
7307 	 * if the inode we're about to unlink was logged,
7308 	 * the log will be properly updated for any new names
7309 	 */
7310 	if (inode->logged_trans == trans->transid)
7311 		return;
7312 
7313 	/*
7314 	 * when renaming files across directories, if the directory
7315 	 * there we're unlinking from gets fsync'd later on, there's
7316 	 * no way to find the destination directory later and fsync it
7317 	 * properly.  So, we have to be conservative and force commits
7318 	 * so the new name gets discovered.
7319 	 */
7320 	if (for_rename)
7321 		goto record;
7322 
7323 	/* we can safely do the unlink without any special recording */
7324 	return;
7325 
7326 record:
7327 	mutex_lock(&dir->log_mutex);
7328 	dir->last_unlink_trans = trans->transid;
7329 	mutex_unlock(&dir->log_mutex);
7330 }
7331 
7332 /*
7333  * Make sure that if someone attempts to fsync the parent directory of a deleted
7334  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7335  * that after replaying the log tree of the parent directory's root we will not
7336  * see the snapshot anymore and at log replay time we will not see any log tree
7337  * corresponding to the deleted snapshot's root, which could lead to replaying
7338  * it after replaying the log tree of the parent directory (which would replay
7339  * the snapshot delete operation).
7340  *
7341  * Must be called before the actual snapshot destroy operation (updates to the
7342  * parent root and tree of tree roots trees, etc) are done.
7343  */
7344 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7345 				   struct btrfs_inode *dir)
7346 {
7347 	mutex_lock(&dir->log_mutex);
7348 	dir->last_unlink_trans = trans->transid;
7349 	mutex_unlock(&dir->log_mutex);
7350 }
7351 
7352 /**
7353  * Update the log after adding a new name for an inode.
7354  *
7355  * @trans:              Transaction handle.
7356  * @old_dentry:         The dentry associated with the old name and the old
7357  *                      parent directory.
7358  * @old_dir:            The inode of the previous parent directory for the case
7359  *                      of a rename. For a link operation, it must be NULL.
7360  * @old_dir_index:      The index number associated with the old name, meaningful
7361  *                      only for rename operations (when @old_dir is not NULL).
7362  *                      Ignored for link operations.
7363  * @parent:             The dentry associated with the directory under which the
7364  *                      new name is located.
7365  *
7366  * Call this after adding a new name for an inode, as a result of a link or
7367  * rename operation, and it will properly update the log to reflect the new name.
7368  */
7369 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7370 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7371 			u64 old_dir_index, struct dentry *parent)
7372 {
7373 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7374 	struct btrfs_root *root = inode->root;
7375 	struct btrfs_log_ctx ctx;
7376 	bool log_pinned = false;
7377 	int ret;
7378 
7379 	/*
7380 	 * this will force the logging code to walk the dentry chain
7381 	 * up for the file
7382 	 */
7383 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7384 		inode->last_unlink_trans = trans->transid;
7385 
7386 	/*
7387 	 * if this inode hasn't been logged and directory we're renaming it
7388 	 * from hasn't been logged, we don't need to log it
7389 	 */
7390 	ret = inode_logged(trans, inode, NULL);
7391 	if (ret < 0) {
7392 		goto out;
7393 	} else if (ret == 0) {
7394 		if (!old_dir)
7395 			return;
7396 		/*
7397 		 * If the inode was not logged and we are doing a rename (old_dir is not
7398 		 * NULL), check if old_dir was logged - if it was not we can return and
7399 		 * do nothing.
7400 		 */
7401 		ret = inode_logged(trans, old_dir, NULL);
7402 		if (ret < 0)
7403 			goto out;
7404 		else if (ret == 0)
7405 			return;
7406 	}
7407 	ret = 0;
7408 
7409 	/*
7410 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7411 	 * was previously logged, make sure that on log replay we get the old
7412 	 * dir entry deleted. This is needed because we will also log the new
7413 	 * name of the renamed inode, so we need to make sure that after log
7414 	 * replay we don't end up with both the new and old dir entries existing.
7415 	 */
7416 	if (old_dir && old_dir->logged_trans == trans->transid) {
7417 		struct btrfs_root *log = old_dir->root->log_root;
7418 		struct btrfs_path *path;
7419 
7420 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7421 
7422 		/*
7423 		 * We have two inodes to update in the log, the old directory and
7424 		 * the inode that got renamed, so we must pin the log to prevent
7425 		 * anyone from syncing the log until we have updated both inodes
7426 		 * in the log.
7427 		 */
7428 		ret = join_running_log_trans(root);
7429 		/*
7430 		 * At least one of the inodes was logged before, so this should
7431 		 * not fail, but if it does, it's not serious, just bail out and
7432 		 * mark the log for a full commit.
7433 		 */
7434 		if (WARN_ON_ONCE(ret < 0))
7435 			goto out;
7436 		log_pinned = true;
7437 
7438 		path = btrfs_alloc_path();
7439 		if (!path) {
7440 			ret = -ENOMEM;
7441 			goto out;
7442 		}
7443 
7444 		/*
7445 		 * Other concurrent task might be logging the old directory,
7446 		 * as it can be triggered when logging other inode that had or
7447 		 * still has a dentry in the old directory. We lock the old
7448 		 * directory's log_mutex to ensure the deletion of the old
7449 		 * name is persisted, because during directory logging we
7450 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7451 		 * the old name's dir index item is in the delayed items, so
7452 		 * it could be missed by an in progress directory logging.
7453 		 */
7454 		mutex_lock(&old_dir->log_mutex);
7455 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7456 					old_dentry->d_name.name,
7457 					old_dentry->d_name.len, old_dir_index);
7458 		if (ret > 0) {
7459 			/*
7460 			 * The dentry does not exist in the log, so record its
7461 			 * deletion.
7462 			 */
7463 			btrfs_release_path(path);
7464 			ret = insert_dir_log_key(trans, log, path,
7465 						 btrfs_ino(old_dir),
7466 						 old_dir_index, old_dir_index);
7467 		}
7468 		mutex_unlock(&old_dir->log_mutex);
7469 
7470 		btrfs_free_path(path);
7471 		if (ret < 0)
7472 			goto out;
7473 	}
7474 
7475 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7476 	ctx.logging_new_name = true;
7477 	/*
7478 	 * We don't care about the return value. If we fail to log the new name
7479 	 * then we know the next attempt to sync the log will fallback to a full
7480 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7481 	 * we don't need to worry about getting a log committed that has an
7482 	 * inconsistent state after a rename operation.
7483 	 */
7484 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7485 	ASSERT(list_empty(&ctx.conflict_inodes));
7486 out:
7487 	/*
7488 	 * If an error happened mark the log for a full commit because it's not
7489 	 * consistent and up to date or we couldn't find out if one of the
7490 	 * inodes was logged before in this transaction. Do it before unpinning
7491 	 * the log, to avoid any races with someone else trying to commit it.
7492 	 */
7493 	if (ret < 0)
7494 		btrfs_set_log_full_commit(trans);
7495 	if (log_pinned)
7496 		btrfs_end_log_trans(root);
7497 }
7498 
7499