xref: /linux/fs/btrfs/volumes.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 
32 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
33 	[BTRFS_RAID_RAID10] = {
34 		.sub_stripes	= 2,
35 		.dev_stripes	= 1,
36 		.devs_max	= 0,	/* 0 == as many as possible */
37 		.devs_min	= 4,
38 		.tolerated_failures = 1,
39 		.devs_increment	= 2,
40 		.ncopies	= 2,
41 		.nparity        = 0,
42 		.raid_name	= "raid10",
43 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
44 		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
45 	},
46 	[BTRFS_RAID_RAID1] = {
47 		.sub_stripes	= 1,
48 		.dev_stripes	= 1,
49 		.devs_max	= 2,
50 		.devs_min	= 2,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 		.nparity        = 0,
55 		.raid_name	= "raid1",
56 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
57 		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
58 	},
59 	[BTRFS_RAID_DUP] = {
60 		.sub_stripes	= 1,
61 		.dev_stripes	= 2,
62 		.devs_max	= 1,
63 		.devs_min	= 1,
64 		.tolerated_failures = 0,
65 		.devs_increment	= 1,
66 		.ncopies	= 2,
67 		.nparity        = 0,
68 		.raid_name	= "dup",
69 		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
70 		.mindev_error	= 0,
71 	},
72 	[BTRFS_RAID_RAID0] = {
73 		.sub_stripes	= 1,
74 		.dev_stripes	= 1,
75 		.devs_max	= 0,
76 		.devs_min	= 2,
77 		.tolerated_failures = 0,
78 		.devs_increment	= 1,
79 		.ncopies	= 1,
80 		.nparity        = 0,
81 		.raid_name	= "raid0",
82 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
83 		.mindev_error	= 0,
84 	},
85 	[BTRFS_RAID_SINGLE] = {
86 		.sub_stripes	= 1,
87 		.dev_stripes	= 1,
88 		.devs_max	= 1,
89 		.devs_min	= 1,
90 		.tolerated_failures = 0,
91 		.devs_increment	= 1,
92 		.ncopies	= 1,
93 		.nparity        = 0,
94 		.raid_name	= "single",
95 		.bg_flag	= 0,
96 		.mindev_error	= 0,
97 	},
98 	[BTRFS_RAID_RAID5] = {
99 		.sub_stripes	= 1,
100 		.dev_stripes	= 1,
101 		.devs_max	= 0,
102 		.devs_min	= 2,
103 		.tolerated_failures = 1,
104 		.devs_increment	= 1,
105 		.ncopies	= 1,
106 		.nparity        = 1,
107 		.raid_name	= "raid5",
108 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
109 		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
110 	},
111 	[BTRFS_RAID_RAID6] = {
112 		.sub_stripes	= 1,
113 		.dev_stripes	= 1,
114 		.devs_max	= 0,
115 		.devs_min	= 3,
116 		.tolerated_failures = 2,
117 		.devs_increment	= 1,
118 		.ncopies	= 1,
119 		.nparity        = 2,
120 		.raid_name	= "raid6",
121 		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
122 		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
123 	},
124 };
125 
126 const char *get_raid_name(enum btrfs_raid_types type)
127 {
128 	if (type >= BTRFS_NR_RAID_TYPES)
129 		return NULL;
130 
131 	return btrfs_raid_array[type].raid_name;
132 }
133 
134 /*
135  * Fill @buf with textual description of @bg_flags, no more than @size_buf
136  * bytes including terminating null byte.
137  */
138 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
139 {
140 	int i;
141 	int ret;
142 	char *bp = buf;
143 	u64 flags = bg_flags;
144 	u32 size_bp = size_buf;
145 
146 	if (!flags) {
147 		strcpy(bp, "NONE");
148 		return;
149 	}
150 
151 #define DESCRIBE_FLAG(flag, desc)						\
152 	do {								\
153 		if (flags & (flag)) {					\
154 			ret = snprintf(bp, size_bp, "%s|", (desc));	\
155 			if (ret < 0 || ret >= size_bp)			\
156 				goto out_overflow;			\
157 			size_bp -= ret;					\
158 			bp += ret;					\
159 			flags &= ~(flag);				\
160 		}							\
161 	} while (0)
162 
163 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
164 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
165 	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
166 
167 	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
168 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
169 		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
170 			      btrfs_raid_array[i].raid_name);
171 #undef DESCRIBE_FLAG
172 
173 	if (flags) {
174 		ret = snprintf(bp, size_bp, "0x%llx|", flags);
175 		size_bp -= ret;
176 	}
177 
178 	if (size_bp < size_buf)
179 		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
180 
181 	/*
182 	 * The text is trimmed, it's up to the caller to provide sufficiently
183 	 * large buffer
184 	 */
185 out_overflow:;
186 }
187 
188 static int init_first_rw_device(struct btrfs_trans_handle *trans);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194 			     enum btrfs_map_op op,
195 			     u64 logical, u64 *length,
196 			     struct btrfs_bio **bbio_ret,
197 			     int mirror_num, int need_raid_map);
198 
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, opening/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292 
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297 	return &fs_uuids;
298 }
299 
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:		if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:	if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310 						 const u8 *metadata_fsid)
311 {
312 	struct btrfs_fs_devices *fs_devs;
313 
314 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315 	if (!fs_devs)
316 		return ERR_PTR(-ENOMEM);
317 
318 	mutex_init(&fs_devs->device_list_mutex);
319 
320 	INIT_LIST_HEAD(&fs_devs->devices);
321 	INIT_LIST_HEAD(&fs_devs->alloc_list);
322 	INIT_LIST_HEAD(&fs_devs->fs_list);
323 	if (fsid)
324 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
325 
326 	if (metadata_fsid)
327 		memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
328 	else if (fsid)
329 		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
330 
331 	return fs_devs;
332 }
333 
334 void btrfs_free_device(struct btrfs_device *device)
335 {
336 	WARN_ON(!list_empty(&device->post_commit_list));
337 	rcu_string_free(device->name);
338 	extent_io_tree_release(&device->alloc_state);
339 	bio_put(device->flush_bio);
340 	kfree(device);
341 }
342 
343 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
344 {
345 	struct btrfs_device *device;
346 	WARN_ON(fs_devices->opened);
347 	while (!list_empty(&fs_devices->devices)) {
348 		device = list_entry(fs_devices->devices.next,
349 				    struct btrfs_device, dev_list);
350 		list_del(&device->dev_list);
351 		btrfs_free_device(device);
352 	}
353 	kfree(fs_devices);
354 }
355 
356 static void btrfs_kobject_uevent(struct block_device *bdev,
357 				 enum kobject_action action)
358 {
359 	int ret;
360 
361 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
362 	if (ret)
363 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
364 			action,
365 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
366 			&disk_to_dev(bdev->bd_disk)->kobj);
367 }
368 
369 void __exit btrfs_cleanup_fs_uuids(void)
370 {
371 	struct btrfs_fs_devices *fs_devices;
372 
373 	while (!list_empty(&fs_uuids)) {
374 		fs_devices = list_entry(fs_uuids.next,
375 					struct btrfs_fs_devices, fs_list);
376 		list_del(&fs_devices->fs_list);
377 		free_fs_devices(fs_devices);
378 	}
379 }
380 
381 /*
382  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
383  * Returned struct is not linked onto any lists and must be destroyed using
384  * btrfs_free_device.
385  */
386 static struct btrfs_device *__alloc_device(void)
387 {
388 	struct btrfs_device *dev;
389 
390 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
391 	if (!dev)
392 		return ERR_PTR(-ENOMEM);
393 
394 	/*
395 	 * Preallocate a bio that's always going to be used for flushing device
396 	 * barriers and matches the device lifespan
397 	 */
398 	dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
399 	if (!dev->flush_bio) {
400 		kfree(dev);
401 		return ERR_PTR(-ENOMEM);
402 	}
403 
404 	INIT_LIST_HEAD(&dev->dev_list);
405 	INIT_LIST_HEAD(&dev->dev_alloc_list);
406 	INIT_LIST_HEAD(&dev->post_commit_list);
407 
408 	spin_lock_init(&dev->io_lock);
409 
410 	atomic_set(&dev->reada_in_flight, 0);
411 	atomic_set(&dev->dev_stats_ccnt, 0);
412 	btrfs_device_data_ordered_init(dev);
413 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
415 	extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
416 
417 	return dev;
418 }
419 
420 static noinline struct btrfs_fs_devices *find_fsid(
421 		const u8 *fsid, const u8 *metadata_fsid)
422 {
423 	struct btrfs_fs_devices *fs_devices;
424 
425 	ASSERT(fsid);
426 
427 	if (metadata_fsid) {
428 		/*
429 		 * Handle scanned device having completed its fsid change but
430 		 * belonging to a fs_devices that was created by first scanning
431 		 * a device which didn't have its fsid/metadata_uuid changed
432 		 * at all and the CHANGING_FSID_V2 flag set.
433 		 */
434 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
435 			if (fs_devices->fsid_change &&
436 			    memcmp(metadata_fsid, fs_devices->fsid,
437 				   BTRFS_FSID_SIZE) == 0 &&
438 			    memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
439 				   BTRFS_FSID_SIZE) == 0) {
440 				return fs_devices;
441 			}
442 		}
443 		/*
444 		 * Handle scanned device having completed its fsid change but
445 		 * belonging to a fs_devices that was created by a device that
446 		 * has an outdated pair of fsid/metadata_uuid and
447 		 * CHANGING_FSID_V2 flag set.
448 		 */
449 		list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
450 			if (fs_devices->fsid_change &&
451 			    memcmp(fs_devices->metadata_uuid,
452 				   fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
453 			    memcmp(metadata_fsid, fs_devices->metadata_uuid,
454 				   BTRFS_FSID_SIZE) == 0) {
455 				return fs_devices;
456 			}
457 		}
458 	}
459 
460 	/* Handle non-split brain cases */
461 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
462 		if (metadata_fsid) {
463 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
464 			    && memcmp(metadata_fsid, fs_devices->metadata_uuid,
465 				      BTRFS_FSID_SIZE) == 0)
466 				return fs_devices;
467 		} else {
468 			if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
469 				return fs_devices;
470 		}
471 	}
472 	return NULL;
473 }
474 
475 static int
476 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
477 		      int flush, struct block_device **bdev,
478 		      struct buffer_head **bh)
479 {
480 	int ret;
481 
482 	*bdev = blkdev_get_by_path(device_path, flags, holder);
483 
484 	if (IS_ERR(*bdev)) {
485 		ret = PTR_ERR(*bdev);
486 		goto error;
487 	}
488 
489 	if (flush)
490 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
491 	ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
492 	if (ret) {
493 		blkdev_put(*bdev, flags);
494 		goto error;
495 	}
496 	invalidate_bdev(*bdev);
497 	*bh = btrfs_read_dev_super(*bdev);
498 	if (IS_ERR(*bh)) {
499 		ret = PTR_ERR(*bh);
500 		blkdev_put(*bdev, flags);
501 		goto error;
502 	}
503 
504 	return 0;
505 
506 error:
507 	*bdev = NULL;
508 	*bh = NULL;
509 	return ret;
510 }
511 
512 static void requeue_list(struct btrfs_pending_bios *pending_bios,
513 			struct bio *head, struct bio *tail)
514 {
515 
516 	struct bio *old_head;
517 
518 	old_head = pending_bios->head;
519 	pending_bios->head = head;
520 	if (pending_bios->tail)
521 		tail->bi_next = old_head;
522 	else
523 		pending_bios->tail = tail;
524 }
525 
526 /*
527  * we try to collect pending bios for a device so we don't get a large
528  * number of procs sending bios down to the same device.  This greatly
529  * improves the schedulers ability to collect and merge the bios.
530  *
531  * But, it also turns into a long list of bios to process and that is sure
532  * to eventually make the worker thread block.  The solution here is to
533  * make some progress and then put this work struct back at the end of
534  * the list if the block device is congested.  This way, multiple devices
535  * can make progress from a single worker thread.
536  */
537 static noinline void run_scheduled_bios(struct btrfs_device *device)
538 {
539 	struct btrfs_fs_info *fs_info = device->fs_info;
540 	struct bio *pending;
541 	struct backing_dev_info *bdi;
542 	struct btrfs_pending_bios *pending_bios;
543 	struct bio *tail;
544 	struct bio *cur;
545 	int again = 0;
546 	unsigned long num_run;
547 	unsigned long batch_run = 0;
548 	unsigned long last_waited = 0;
549 	int force_reg = 0;
550 	int sync_pending = 0;
551 	struct blk_plug plug;
552 
553 	/*
554 	 * this function runs all the bios we've collected for
555 	 * a particular device.  We don't want to wander off to
556 	 * another device without first sending all of these down.
557 	 * So, setup a plug here and finish it off before we return
558 	 */
559 	blk_start_plug(&plug);
560 
561 	bdi = device->bdev->bd_bdi;
562 
563 loop:
564 	spin_lock(&device->io_lock);
565 
566 loop_lock:
567 	num_run = 0;
568 
569 	/* take all the bios off the list at once and process them
570 	 * later on (without the lock held).  But, remember the
571 	 * tail and other pointers so the bios can be properly reinserted
572 	 * into the list if we hit congestion
573 	 */
574 	if (!force_reg && device->pending_sync_bios.head) {
575 		pending_bios = &device->pending_sync_bios;
576 		force_reg = 1;
577 	} else {
578 		pending_bios = &device->pending_bios;
579 		force_reg = 0;
580 	}
581 
582 	pending = pending_bios->head;
583 	tail = pending_bios->tail;
584 	WARN_ON(pending && !tail);
585 
586 	/*
587 	 * if pending was null this time around, no bios need processing
588 	 * at all and we can stop.  Otherwise it'll loop back up again
589 	 * and do an additional check so no bios are missed.
590 	 *
591 	 * device->running_pending is used to synchronize with the
592 	 * schedule_bio code.
593 	 */
594 	if (device->pending_sync_bios.head == NULL &&
595 	    device->pending_bios.head == NULL) {
596 		again = 0;
597 		device->running_pending = 0;
598 	} else {
599 		again = 1;
600 		device->running_pending = 1;
601 	}
602 
603 	pending_bios->head = NULL;
604 	pending_bios->tail = NULL;
605 
606 	spin_unlock(&device->io_lock);
607 
608 	while (pending) {
609 
610 		rmb();
611 		/* we want to work on both lists, but do more bios on the
612 		 * sync list than the regular list
613 		 */
614 		if ((num_run > 32 &&
615 		    pending_bios != &device->pending_sync_bios &&
616 		    device->pending_sync_bios.head) ||
617 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
618 		    device->pending_bios.head)) {
619 			spin_lock(&device->io_lock);
620 			requeue_list(pending_bios, pending, tail);
621 			goto loop_lock;
622 		}
623 
624 		cur = pending;
625 		pending = pending->bi_next;
626 		cur->bi_next = NULL;
627 
628 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
629 
630 		/*
631 		 * if we're doing the sync list, record that our
632 		 * plug has some sync requests on it
633 		 *
634 		 * If we're doing the regular list and there are
635 		 * sync requests sitting around, unplug before
636 		 * we add more
637 		 */
638 		if (pending_bios == &device->pending_sync_bios) {
639 			sync_pending = 1;
640 		} else if (sync_pending) {
641 			blk_finish_plug(&plug);
642 			blk_start_plug(&plug);
643 			sync_pending = 0;
644 		}
645 
646 		btrfsic_submit_bio(cur);
647 		num_run++;
648 		batch_run++;
649 
650 		cond_resched();
651 
652 		/*
653 		 * we made progress, there is more work to do and the bdi
654 		 * is now congested.  Back off and let other work structs
655 		 * run instead
656 		 */
657 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
658 		    fs_info->fs_devices->open_devices > 1) {
659 			struct io_context *ioc;
660 
661 			ioc = current->io_context;
662 
663 			/*
664 			 * the main goal here is that we don't want to
665 			 * block if we're going to be able to submit
666 			 * more requests without blocking.
667 			 *
668 			 * This code does two great things, it pokes into
669 			 * the elevator code from a filesystem _and_
670 			 * it makes assumptions about how batching works.
671 			 */
672 			if (ioc && ioc->nr_batch_requests > 0 &&
673 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
674 			    (last_waited == 0 ||
675 			     ioc->last_waited == last_waited)) {
676 				/*
677 				 * we want to go through our batch of
678 				 * requests and stop.  So, we copy out
679 				 * the ioc->last_waited time and test
680 				 * against it before looping
681 				 */
682 				last_waited = ioc->last_waited;
683 				cond_resched();
684 				continue;
685 			}
686 			spin_lock(&device->io_lock);
687 			requeue_list(pending_bios, pending, tail);
688 			device->running_pending = 1;
689 
690 			spin_unlock(&device->io_lock);
691 			btrfs_queue_work(fs_info->submit_workers,
692 					 &device->work);
693 			goto done;
694 		}
695 	}
696 
697 	cond_resched();
698 	if (again)
699 		goto loop;
700 
701 	spin_lock(&device->io_lock);
702 	if (device->pending_bios.head || device->pending_sync_bios.head)
703 		goto loop_lock;
704 	spin_unlock(&device->io_lock);
705 
706 done:
707 	blk_finish_plug(&plug);
708 }
709 
710 static void pending_bios_fn(struct btrfs_work *work)
711 {
712 	struct btrfs_device *device;
713 
714 	device = container_of(work, struct btrfs_device, work);
715 	run_scheduled_bios(device);
716 }
717 
718 static bool device_path_matched(const char *path, struct btrfs_device *device)
719 {
720 	int found;
721 
722 	rcu_read_lock();
723 	found = strcmp(rcu_str_deref(device->name), path);
724 	rcu_read_unlock();
725 
726 	return found == 0;
727 }
728 
729 /*
730  *  Search and remove all stale (devices which are not mounted) devices.
731  *  When both inputs are NULL, it will search and release all stale devices.
732  *  path:	Optional. When provided will it release all unmounted devices
733  *		matching this path only.
734  *  skip_dev:	Optional. Will skip this device when searching for the stale
735  *		devices.
736  *  Return:	0 for success or if @path is NULL.
737  * 		-EBUSY if @path is a mounted device.
738  * 		-ENOENT if @path does not match any device in the list.
739  */
740 static int btrfs_free_stale_devices(const char *path,
741 				     struct btrfs_device *skip_device)
742 {
743 	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
744 	struct btrfs_device *device, *tmp_device;
745 	int ret = 0;
746 
747 	if (path)
748 		ret = -ENOENT;
749 
750 	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
751 
752 		mutex_lock(&fs_devices->device_list_mutex);
753 		list_for_each_entry_safe(device, tmp_device,
754 					 &fs_devices->devices, dev_list) {
755 			if (skip_device && skip_device == device)
756 				continue;
757 			if (path && !device->name)
758 				continue;
759 			if (path && !device_path_matched(path, device))
760 				continue;
761 			if (fs_devices->opened) {
762 				/* for an already deleted device return 0 */
763 				if (path && ret != 0)
764 					ret = -EBUSY;
765 				break;
766 			}
767 
768 			/* delete the stale device */
769 			fs_devices->num_devices--;
770 			list_del(&device->dev_list);
771 			btrfs_free_device(device);
772 
773 			ret = 0;
774 			if (fs_devices->num_devices == 0)
775 				break;
776 		}
777 		mutex_unlock(&fs_devices->device_list_mutex);
778 
779 		if (fs_devices->num_devices == 0) {
780 			btrfs_sysfs_remove_fsid(fs_devices);
781 			list_del(&fs_devices->fs_list);
782 			free_fs_devices(fs_devices);
783 		}
784 	}
785 
786 	return ret;
787 }
788 
789 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
790 			struct btrfs_device *device, fmode_t flags,
791 			void *holder)
792 {
793 	struct request_queue *q;
794 	struct block_device *bdev;
795 	struct buffer_head *bh;
796 	struct btrfs_super_block *disk_super;
797 	u64 devid;
798 	int ret;
799 
800 	if (device->bdev)
801 		return -EINVAL;
802 	if (!device->name)
803 		return -EINVAL;
804 
805 	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
806 				    &bdev, &bh);
807 	if (ret)
808 		return ret;
809 
810 	disk_super = (struct btrfs_super_block *)bh->b_data;
811 	devid = btrfs_stack_device_id(&disk_super->dev_item);
812 	if (devid != device->devid)
813 		goto error_brelse;
814 
815 	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
816 		goto error_brelse;
817 
818 	device->generation = btrfs_super_generation(disk_super);
819 
820 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
821 		if (btrfs_super_incompat_flags(disk_super) &
822 		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
823 			pr_err(
824 		"BTRFS: Invalid seeding and uuid-changed device detected\n");
825 			goto error_brelse;
826 		}
827 
828 		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
829 		fs_devices->seeding = 1;
830 	} else {
831 		if (bdev_read_only(bdev))
832 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
833 		else
834 			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
835 	}
836 
837 	q = bdev_get_queue(bdev);
838 	if (!blk_queue_nonrot(q))
839 		fs_devices->rotating = 1;
840 
841 	device->bdev = bdev;
842 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
843 	device->mode = flags;
844 
845 	fs_devices->open_devices++;
846 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
847 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
848 		fs_devices->rw_devices++;
849 		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
850 	}
851 	brelse(bh);
852 
853 	return 0;
854 
855 error_brelse:
856 	brelse(bh);
857 	blkdev_put(bdev, flags);
858 
859 	return -EINVAL;
860 }
861 
862 /*
863  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
864  * being created with a disk that has already completed its fsid change.
865  */
866 static struct btrfs_fs_devices *find_fsid_inprogress(
867 					struct btrfs_super_block *disk_super)
868 {
869 	struct btrfs_fs_devices *fs_devices;
870 
871 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
872 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
873 			   BTRFS_FSID_SIZE) != 0 &&
874 		    memcmp(fs_devices->metadata_uuid, disk_super->fsid,
875 			   BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
876 			return fs_devices;
877 		}
878 	}
879 
880 	return NULL;
881 }
882 
883 
884 static struct btrfs_fs_devices *find_fsid_changed(
885 					struct btrfs_super_block *disk_super)
886 {
887 	struct btrfs_fs_devices *fs_devices;
888 
889 	/*
890 	 * Handles the case where scanned device is part of an fs that had
891 	 * multiple successful changes of FSID but curently device didn't
892 	 * observe it. Meaning our fsid will be different than theirs.
893 	 */
894 	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
895 		if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
896 			   BTRFS_FSID_SIZE) != 0 &&
897 		    memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
898 			   BTRFS_FSID_SIZE) == 0 &&
899 		    memcmp(fs_devices->fsid, disk_super->fsid,
900 			   BTRFS_FSID_SIZE) != 0) {
901 			return fs_devices;
902 		}
903 	}
904 
905 	return NULL;
906 }
907 /*
908  * Add new device to list of registered devices
909  *
910  * Returns:
911  * device pointer which was just added or updated when successful
912  * error pointer when failed
913  */
914 static noinline struct btrfs_device *device_list_add(const char *path,
915 			   struct btrfs_super_block *disk_super,
916 			   bool *new_device_added)
917 {
918 	struct btrfs_device *device;
919 	struct btrfs_fs_devices *fs_devices = NULL;
920 	struct rcu_string *name;
921 	u64 found_transid = btrfs_super_generation(disk_super);
922 	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
923 	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
924 		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
925 	bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
926 					BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
927 
928 	if (fsid_change_in_progress) {
929 		if (!has_metadata_uuid) {
930 			/*
931 			 * When we have an image which has CHANGING_FSID_V2 set
932 			 * it might belong to either a filesystem which has
933 			 * disks with completed fsid change or it might belong
934 			 * to fs with no UUID changes in effect, handle both.
935 			 */
936 			fs_devices = find_fsid_inprogress(disk_super);
937 			if (!fs_devices)
938 				fs_devices = find_fsid(disk_super->fsid, NULL);
939 		} else {
940 			fs_devices = find_fsid_changed(disk_super);
941 		}
942 	} else if (has_metadata_uuid) {
943 		fs_devices = find_fsid(disk_super->fsid,
944 				       disk_super->metadata_uuid);
945 	} else {
946 		fs_devices = find_fsid(disk_super->fsid, NULL);
947 	}
948 
949 
950 	if (!fs_devices) {
951 		if (has_metadata_uuid)
952 			fs_devices = alloc_fs_devices(disk_super->fsid,
953 						      disk_super->metadata_uuid);
954 		else
955 			fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
956 
957 		if (IS_ERR(fs_devices))
958 			return ERR_CAST(fs_devices);
959 
960 		fs_devices->fsid_change = fsid_change_in_progress;
961 
962 		mutex_lock(&fs_devices->device_list_mutex);
963 		list_add(&fs_devices->fs_list, &fs_uuids);
964 
965 		device = NULL;
966 	} else {
967 		mutex_lock(&fs_devices->device_list_mutex);
968 		device = btrfs_find_device(fs_devices, devid,
969 				disk_super->dev_item.uuid, NULL, false);
970 
971 		/*
972 		 * If this disk has been pulled into an fs devices created by
973 		 * a device which had the CHANGING_FSID_V2 flag then replace the
974 		 * metadata_uuid/fsid values of the fs_devices.
975 		 */
976 		if (has_metadata_uuid && fs_devices->fsid_change &&
977 		    found_transid > fs_devices->latest_generation) {
978 			memcpy(fs_devices->fsid, disk_super->fsid,
979 					BTRFS_FSID_SIZE);
980 			memcpy(fs_devices->metadata_uuid,
981 					disk_super->metadata_uuid, BTRFS_FSID_SIZE);
982 
983 			fs_devices->fsid_change = false;
984 		}
985 	}
986 
987 	if (!device) {
988 		if (fs_devices->opened) {
989 			mutex_unlock(&fs_devices->device_list_mutex);
990 			return ERR_PTR(-EBUSY);
991 		}
992 
993 		device = btrfs_alloc_device(NULL, &devid,
994 					    disk_super->dev_item.uuid);
995 		if (IS_ERR(device)) {
996 			mutex_unlock(&fs_devices->device_list_mutex);
997 			/* we can safely leave the fs_devices entry around */
998 			return device;
999 		}
1000 
1001 		name = rcu_string_strdup(path, GFP_NOFS);
1002 		if (!name) {
1003 			btrfs_free_device(device);
1004 			mutex_unlock(&fs_devices->device_list_mutex);
1005 			return ERR_PTR(-ENOMEM);
1006 		}
1007 		rcu_assign_pointer(device->name, name);
1008 
1009 		list_add_rcu(&device->dev_list, &fs_devices->devices);
1010 		fs_devices->num_devices++;
1011 
1012 		device->fs_devices = fs_devices;
1013 		*new_device_added = true;
1014 
1015 		if (disk_super->label[0])
1016 			pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1017 				disk_super->label, devid, found_transid, path);
1018 		else
1019 			pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1020 				disk_super->fsid, devid, found_transid, path);
1021 
1022 	} else if (!device->name || strcmp(device->name->str, path)) {
1023 		/*
1024 		 * When FS is already mounted.
1025 		 * 1. If you are here and if the device->name is NULL that
1026 		 *    means this device was missing at time of FS mount.
1027 		 * 2. If you are here and if the device->name is different
1028 		 *    from 'path' that means either
1029 		 *      a. The same device disappeared and reappeared with
1030 		 *         different name. or
1031 		 *      b. The missing-disk-which-was-replaced, has
1032 		 *         reappeared now.
1033 		 *
1034 		 * We must allow 1 and 2a above. But 2b would be a spurious
1035 		 * and unintentional.
1036 		 *
1037 		 * Further in case of 1 and 2a above, the disk at 'path'
1038 		 * would have missed some transaction when it was away and
1039 		 * in case of 2a the stale bdev has to be updated as well.
1040 		 * 2b must not be allowed at all time.
1041 		 */
1042 
1043 		/*
1044 		 * For now, we do allow update to btrfs_fs_device through the
1045 		 * btrfs dev scan cli after FS has been mounted.  We're still
1046 		 * tracking a problem where systems fail mount by subvolume id
1047 		 * when we reject replacement on a mounted FS.
1048 		 */
1049 		if (!fs_devices->opened && found_transid < device->generation) {
1050 			/*
1051 			 * That is if the FS is _not_ mounted and if you
1052 			 * are here, that means there is more than one
1053 			 * disk with same uuid and devid.We keep the one
1054 			 * with larger generation number or the last-in if
1055 			 * generation are equal.
1056 			 */
1057 			mutex_unlock(&fs_devices->device_list_mutex);
1058 			return ERR_PTR(-EEXIST);
1059 		}
1060 
1061 		/*
1062 		 * We are going to replace the device path for a given devid,
1063 		 * make sure it's the same device if the device is mounted
1064 		 */
1065 		if (device->bdev) {
1066 			struct block_device *path_bdev;
1067 
1068 			path_bdev = lookup_bdev(path);
1069 			if (IS_ERR(path_bdev)) {
1070 				mutex_unlock(&fs_devices->device_list_mutex);
1071 				return ERR_CAST(path_bdev);
1072 			}
1073 
1074 			if (device->bdev != path_bdev) {
1075 				bdput(path_bdev);
1076 				mutex_unlock(&fs_devices->device_list_mutex);
1077 				btrfs_warn_in_rcu(device->fs_info,
1078 			"duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1079 					disk_super->fsid, devid,
1080 					rcu_str_deref(device->name), path);
1081 				return ERR_PTR(-EEXIST);
1082 			}
1083 			bdput(path_bdev);
1084 			btrfs_info_in_rcu(device->fs_info,
1085 				"device fsid %pU devid %llu moved old:%s new:%s",
1086 				disk_super->fsid, devid,
1087 				rcu_str_deref(device->name), path);
1088 		}
1089 
1090 		name = rcu_string_strdup(path, GFP_NOFS);
1091 		if (!name) {
1092 			mutex_unlock(&fs_devices->device_list_mutex);
1093 			return ERR_PTR(-ENOMEM);
1094 		}
1095 		rcu_string_free(device->name);
1096 		rcu_assign_pointer(device->name, name);
1097 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1098 			fs_devices->missing_devices--;
1099 			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Unmount does not free the btrfs_device struct but would zero
1105 	 * generation along with most of the other members. So just update
1106 	 * it back. We need it to pick the disk with largest generation
1107 	 * (as above).
1108 	 */
1109 	if (!fs_devices->opened) {
1110 		device->generation = found_transid;
1111 		fs_devices->latest_generation = max_t(u64, found_transid,
1112 						fs_devices->latest_generation);
1113 	}
1114 
1115 	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1116 
1117 	mutex_unlock(&fs_devices->device_list_mutex);
1118 	return device;
1119 }
1120 
1121 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1122 {
1123 	struct btrfs_fs_devices *fs_devices;
1124 	struct btrfs_device *device;
1125 	struct btrfs_device *orig_dev;
1126 
1127 	fs_devices = alloc_fs_devices(orig->fsid, NULL);
1128 	if (IS_ERR(fs_devices))
1129 		return fs_devices;
1130 
1131 	mutex_lock(&orig->device_list_mutex);
1132 	fs_devices->total_devices = orig->total_devices;
1133 
1134 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1135 		struct rcu_string *name;
1136 
1137 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1138 					    orig_dev->uuid);
1139 		if (IS_ERR(device))
1140 			goto error;
1141 
1142 		/*
1143 		 * This is ok to do without rcu read locked because we hold the
1144 		 * uuid mutex so nothing we touch in here is going to disappear.
1145 		 */
1146 		if (orig_dev->name) {
1147 			name = rcu_string_strdup(orig_dev->name->str,
1148 					GFP_KERNEL);
1149 			if (!name) {
1150 				btrfs_free_device(device);
1151 				goto error;
1152 			}
1153 			rcu_assign_pointer(device->name, name);
1154 		}
1155 
1156 		list_add(&device->dev_list, &fs_devices->devices);
1157 		device->fs_devices = fs_devices;
1158 		fs_devices->num_devices++;
1159 	}
1160 	mutex_unlock(&orig->device_list_mutex);
1161 	return fs_devices;
1162 error:
1163 	mutex_unlock(&orig->device_list_mutex);
1164 	free_fs_devices(fs_devices);
1165 	return ERR_PTR(-ENOMEM);
1166 }
1167 
1168 /*
1169  * After we have read the system tree and know devids belonging to
1170  * this filesystem, remove the device which does not belong there.
1171  */
1172 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1173 {
1174 	struct btrfs_device *device, *next;
1175 	struct btrfs_device *latest_dev = NULL;
1176 
1177 	mutex_lock(&uuid_mutex);
1178 again:
1179 	/* This is the initialized path, it is safe to release the devices. */
1180 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1181 		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1182 							&device->dev_state)) {
1183 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1184 			     &device->dev_state) &&
1185 			     (!latest_dev ||
1186 			      device->generation > latest_dev->generation)) {
1187 				latest_dev = device;
1188 			}
1189 			continue;
1190 		}
1191 
1192 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1193 			/*
1194 			 * In the first step, keep the device which has
1195 			 * the correct fsid and the devid that is used
1196 			 * for the dev_replace procedure.
1197 			 * In the second step, the dev_replace state is
1198 			 * read from the device tree and it is known
1199 			 * whether the procedure is really active or
1200 			 * not, which means whether this device is
1201 			 * used or whether it should be removed.
1202 			 */
1203 			if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1204 						  &device->dev_state)) {
1205 				continue;
1206 			}
1207 		}
1208 		if (device->bdev) {
1209 			blkdev_put(device->bdev, device->mode);
1210 			device->bdev = NULL;
1211 			fs_devices->open_devices--;
1212 		}
1213 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1214 			list_del_init(&device->dev_alloc_list);
1215 			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1216 			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1217 				      &device->dev_state))
1218 				fs_devices->rw_devices--;
1219 		}
1220 		list_del_init(&device->dev_list);
1221 		fs_devices->num_devices--;
1222 		btrfs_free_device(device);
1223 	}
1224 
1225 	if (fs_devices->seed) {
1226 		fs_devices = fs_devices->seed;
1227 		goto again;
1228 	}
1229 
1230 	fs_devices->latest_bdev = latest_dev->bdev;
1231 
1232 	mutex_unlock(&uuid_mutex);
1233 }
1234 
1235 static void btrfs_close_bdev(struct btrfs_device *device)
1236 {
1237 	if (!device->bdev)
1238 		return;
1239 
1240 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1241 		sync_blockdev(device->bdev);
1242 		invalidate_bdev(device->bdev);
1243 	}
1244 
1245 	blkdev_put(device->bdev, device->mode);
1246 }
1247 
1248 static void btrfs_close_one_device(struct btrfs_device *device)
1249 {
1250 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1251 	struct btrfs_device *new_device;
1252 	struct rcu_string *name;
1253 
1254 	if (device->bdev)
1255 		fs_devices->open_devices--;
1256 
1257 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1258 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1259 		list_del_init(&device->dev_alloc_list);
1260 		fs_devices->rw_devices--;
1261 	}
1262 
1263 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1264 		fs_devices->missing_devices--;
1265 
1266 	btrfs_close_bdev(device);
1267 
1268 	new_device = btrfs_alloc_device(NULL, &device->devid,
1269 					device->uuid);
1270 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1271 
1272 	/* Safe because we are under uuid_mutex */
1273 	if (device->name) {
1274 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
1275 		BUG_ON(!name); /* -ENOMEM */
1276 		rcu_assign_pointer(new_device->name, name);
1277 	}
1278 
1279 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
1280 	new_device->fs_devices = device->fs_devices;
1281 
1282 	synchronize_rcu();
1283 	btrfs_free_device(device);
1284 }
1285 
1286 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1287 {
1288 	struct btrfs_device *device, *tmp;
1289 
1290 	if (--fs_devices->opened > 0)
1291 		return 0;
1292 
1293 	mutex_lock(&fs_devices->device_list_mutex);
1294 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1295 		btrfs_close_one_device(device);
1296 	}
1297 	mutex_unlock(&fs_devices->device_list_mutex);
1298 
1299 	WARN_ON(fs_devices->open_devices);
1300 	WARN_ON(fs_devices->rw_devices);
1301 	fs_devices->opened = 0;
1302 	fs_devices->seeding = 0;
1303 
1304 	return 0;
1305 }
1306 
1307 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1308 {
1309 	struct btrfs_fs_devices *seed_devices = NULL;
1310 	int ret;
1311 
1312 	mutex_lock(&uuid_mutex);
1313 	ret = close_fs_devices(fs_devices);
1314 	if (!fs_devices->opened) {
1315 		seed_devices = fs_devices->seed;
1316 		fs_devices->seed = NULL;
1317 	}
1318 	mutex_unlock(&uuid_mutex);
1319 
1320 	while (seed_devices) {
1321 		fs_devices = seed_devices;
1322 		seed_devices = fs_devices->seed;
1323 		close_fs_devices(fs_devices);
1324 		free_fs_devices(fs_devices);
1325 	}
1326 	return ret;
1327 }
1328 
1329 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1330 				fmode_t flags, void *holder)
1331 {
1332 	struct btrfs_device *device;
1333 	struct btrfs_device *latest_dev = NULL;
1334 	int ret = 0;
1335 
1336 	flags |= FMODE_EXCL;
1337 
1338 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339 		/* Just open everything we can; ignore failures here */
1340 		if (btrfs_open_one_device(fs_devices, device, flags, holder))
1341 			continue;
1342 
1343 		if (!latest_dev ||
1344 		    device->generation > latest_dev->generation)
1345 			latest_dev = device;
1346 	}
1347 	if (fs_devices->open_devices == 0) {
1348 		ret = -EINVAL;
1349 		goto out;
1350 	}
1351 	fs_devices->opened = 1;
1352 	fs_devices->latest_bdev = latest_dev->bdev;
1353 	fs_devices->total_rw_bytes = 0;
1354 out:
1355 	return ret;
1356 }
1357 
1358 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1359 {
1360 	struct btrfs_device *dev1, *dev2;
1361 
1362 	dev1 = list_entry(a, struct btrfs_device, dev_list);
1363 	dev2 = list_entry(b, struct btrfs_device, dev_list);
1364 
1365 	if (dev1->devid < dev2->devid)
1366 		return -1;
1367 	else if (dev1->devid > dev2->devid)
1368 		return 1;
1369 	return 0;
1370 }
1371 
1372 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1373 		       fmode_t flags, void *holder)
1374 {
1375 	int ret;
1376 
1377 	lockdep_assert_held(&uuid_mutex);
1378 
1379 	mutex_lock(&fs_devices->device_list_mutex);
1380 	if (fs_devices->opened) {
1381 		fs_devices->opened++;
1382 		ret = 0;
1383 	} else {
1384 		list_sort(NULL, &fs_devices->devices, devid_cmp);
1385 		ret = open_fs_devices(fs_devices, flags, holder);
1386 	}
1387 	mutex_unlock(&fs_devices->device_list_mutex);
1388 
1389 	return ret;
1390 }
1391 
1392 static void btrfs_release_disk_super(struct page *page)
1393 {
1394 	kunmap(page);
1395 	put_page(page);
1396 }
1397 
1398 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1399 				 struct page **page,
1400 				 struct btrfs_super_block **disk_super)
1401 {
1402 	void *p;
1403 	pgoff_t index;
1404 
1405 	/* make sure our super fits in the device */
1406 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1407 		return 1;
1408 
1409 	/* make sure our super fits in the page */
1410 	if (sizeof(**disk_super) > PAGE_SIZE)
1411 		return 1;
1412 
1413 	/* make sure our super doesn't straddle pages on disk */
1414 	index = bytenr >> PAGE_SHIFT;
1415 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1416 		return 1;
1417 
1418 	/* pull in the page with our super */
1419 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1420 				   index, GFP_KERNEL);
1421 
1422 	if (IS_ERR_OR_NULL(*page))
1423 		return 1;
1424 
1425 	p = kmap(*page);
1426 
1427 	/* align our pointer to the offset of the super block */
1428 	*disk_super = p + offset_in_page(bytenr);
1429 
1430 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1431 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1432 		btrfs_release_disk_super(*page);
1433 		return 1;
1434 	}
1435 
1436 	if ((*disk_super)->label[0] &&
1437 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1438 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1439 
1440 	return 0;
1441 }
1442 
1443 int btrfs_forget_devices(const char *path)
1444 {
1445 	int ret;
1446 
1447 	mutex_lock(&uuid_mutex);
1448 	ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1449 	mutex_unlock(&uuid_mutex);
1450 
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Look for a btrfs signature on a device. This may be called out of the mount path
1456  * and we are not allowed to call set_blocksize during the scan. The superblock
1457  * is read via pagecache
1458  */
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1460 					   void *holder)
1461 {
1462 	struct btrfs_super_block *disk_super;
1463 	bool new_device_added = false;
1464 	struct btrfs_device *device = NULL;
1465 	struct block_device *bdev;
1466 	struct page *page;
1467 	u64 bytenr;
1468 
1469 	lockdep_assert_held(&uuid_mutex);
1470 
1471 	/*
1472 	 * we would like to check all the supers, but that would make
1473 	 * a btrfs mount succeed after a mkfs from a different FS.
1474 	 * So, we need to add a special mount option to scan for
1475 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1476 	 */
1477 	bytenr = btrfs_sb_offset(0);
1478 	flags |= FMODE_EXCL;
1479 
1480 	bdev = blkdev_get_by_path(path, flags, holder);
1481 	if (IS_ERR(bdev))
1482 		return ERR_CAST(bdev);
1483 
1484 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485 		device = ERR_PTR(-EINVAL);
1486 		goto error_bdev_put;
1487 	}
1488 
1489 	device = device_list_add(path, disk_super, &new_device_added);
1490 	if (!IS_ERR(device)) {
1491 		if (new_device_added)
1492 			btrfs_free_stale_devices(path, device);
1493 	}
1494 
1495 	btrfs_release_disk_super(page);
1496 
1497 error_bdev_put:
1498 	blkdev_put(bdev, flags);
1499 
1500 	return device;
1501 }
1502 
1503 /*
1504  * Try to find a chunk that intersects [start, start + len] range and when one
1505  * such is found, record the end of it in *start
1506  */
1507 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1508 				    u64 len)
1509 {
1510 	u64 physical_start, physical_end;
1511 
1512 	lockdep_assert_held(&device->fs_info->chunk_mutex);
1513 
1514 	if (!find_first_extent_bit(&device->alloc_state, *start,
1515 				   &physical_start, &physical_end,
1516 				   CHUNK_ALLOCATED, NULL)) {
1517 
1518 		if (in_range(physical_start, *start, len) ||
1519 		    in_range(*start, physical_start,
1520 			     physical_end - physical_start)) {
1521 			*start = physical_end + 1;
1522 			return true;
1523 		}
1524 	}
1525 	return false;
1526 }
1527 
1528 
1529 /*
1530  * find_free_dev_extent_start - find free space in the specified device
1531  * @device:	  the device which we search the free space in
1532  * @num_bytes:	  the size of the free space that we need
1533  * @search_start: the position from which to begin the search
1534  * @start:	  store the start of the free space.
1535  * @len:	  the size of the free space. that we find, or the size
1536  *		  of the max free space if we don't find suitable free space
1537  *
1538  * this uses a pretty simple search, the expectation is that it is
1539  * called very infrequently and that a given device has a small number
1540  * of extents
1541  *
1542  * @start is used to store the start of the free space if we find. But if we
1543  * don't find suitable free space, it will be used to store the start position
1544  * of the max free space.
1545  *
1546  * @len is used to store the size of the free space that we find.
1547  * But if we don't find suitable free space, it is used to store the size of
1548  * the max free space.
1549  */
1550 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1551 			       u64 search_start, u64 *start, u64 *len)
1552 {
1553 	struct btrfs_fs_info *fs_info = device->fs_info;
1554 	struct btrfs_root *root = fs_info->dev_root;
1555 	struct btrfs_key key;
1556 	struct btrfs_dev_extent *dev_extent;
1557 	struct btrfs_path *path;
1558 	u64 hole_size;
1559 	u64 max_hole_start;
1560 	u64 max_hole_size;
1561 	u64 extent_end;
1562 	u64 search_end = device->total_bytes;
1563 	int ret;
1564 	int slot;
1565 	struct extent_buffer *l;
1566 
1567 	/*
1568 	 * We don't want to overwrite the superblock on the drive nor any area
1569 	 * used by the boot loader (grub for example), so we make sure to start
1570 	 * at an offset of at least 1MB.
1571 	 */
1572 	search_start = max_t(u64, search_start, SZ_1M);
1573 
1574 	path = btrfs_alloc_path();
1575 	if (!path)
1576 		return -ENOMEM;
1577 
1578 	max_hole_start = search_start;
1579 	max_hole_size = 0;
1580 
1581 again:
1582 	if (search_start >= search_end ||
1583 		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1584 		ret = -ENOSPC;
1585 		goto out;
1586 	}
1587 
1588 	path->reada = READA_FORWARD;
1589 	path->search_commit_root = 1;
1590 	path->skip_locking = 1;
1591 
1592 	key.objectid = device->devid;
1593 	key.offset = search_start;
1594 	key.type = BTRFS_DEV_EXTENT_KEY;
1595 
1596 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1597 	if (ret < 0)
1598 		goto out;
1599 	if (ret > 0) {
1600 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1601 		if (ret < 0)
1602 			goto out;
1603 	}
1604 
1605 	while (1) {
1606 		l = path->nodes[0];
1607 		slot = path->slots[0];
1608 		if (slot >= btrfs_header_nritems(l)) {
1609 			ret = btrfs_next_leaf(root, path);
1610 			if (ret == 0)
1611 				continue;
1612 			if (ret < 0)
1613 				goto out;
1614 
1615 			break;
1616 		}
1617 		btrfs_item_key_to_cpu(l, &key, slot);
1618 
1619 		if (key.objectid < device->devid)
1620 			goto next;
1621 
1622 		if (key.objectid > device->devid)
1623 			break;
1624 
1625 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 			goto next;
1627 
1628 		if (key.offset > search_start) {
1629 			hole_size = key.offset - search_start;
1630 
1631 			/*
1632 			 * Have to check before we set max_hole_start, otherwise
1633 			 * we could end up sending back this offset anyway.
1634 			 */
1635 			if (contains_pending_extent(device, &search_start,
1636 						    hole_size)) {
1637 				if (key.offset >= search_start)
1638 					hole_size = key.offset - search_start;
1639 				else
1640 					hole_size = 0;
1641 			}
1642 
1643 			if (hole_size > max_hole_size) {
1644 				max_hole_start = search_start;
1645 				max_hole_size = hole_size;
1646 			}
1647 
1648 			/*
1649 			 * If this free space is greater than which we need,
1650 			 * it must be the max free space that we have found
1651 			 * until now, so max_hole_start must point to the start
1652 			 * of this free space and the length of this free space
1653 			 * is stored in max_hole_size. Thus, we return
1654 			 * max_hole_start and max_hole_size and go back to the
1655 			 * caller.
1656 			 */
1657 			if (hole_size >= num_bytes) {
1658 				ret = 0;
1659 				goto out;
1660 			}
1661 		}
1662 
1663 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1664 		extent_end = key.offset + btrfs_dev_extent_length(l,
1665 								  dev_extent);
1666 		if (extent_end > search_start)
1667 			search_start = extent_end;
1668 next:
1669 		path->slots[0]++;
1670 		cond_resched();
1671 	}
1672 
1673 	/*
1674 	 * At this point, search_start should be the end of
1675 	 * allocated dev extents, and when shrinking the device,
1676 	 * search_end may be smaller than search_start.
1677 	 */
1678 	if (search_end > search_start) {
1679 		hole_size = search_end - search_start;
1680 
1681 		if (contains_pending_extent(device, &search_start, hole_size)) {
1682 			btrfs_release_path(path);
1683 			goto again;
1684 		}
1685 
1686 		if (hole_size > max_hole_size) {
1687 			max_hole_start = search_start;
1688 			max_hole_size = hole_size;
1689 		}
1690 	}
1691 
1692 	/* See above. */
1693 	if (max_hole_size < num_bytes)
1694 		ret = -ENOSPC;
1695 	else
1696 		ret = 0;
1697 
1698 out:
1699 	btrfs_free_path(path);
1700 	*start = max_hole_start;
1701 	if (len)
1702 		*len = max_hole_size;
1703 	return ret;
1704 }
1705 
1706 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1707 			 u64 *start, u64 *len)
1708 {
1709 	/* FIXME use last free of some kind */
1710 	return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1711 }
1712 
1713 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1714 			  struct btrfs_device *device,
1715 			  u64 start, u64 *dev_extent_len)
1716 {
1717 	struct btrfs_fs_info *fs_info = device->fs_info;
1718 	struct btrfs_root *root = fs_info->dev_root;
1719 	int ret;
1720 	struct btrfs_path *path;
1721 	struct btrfs_key key;
1722 	struct btrfs_key found_key;
1723 	struct extent_buffer *leaf = NULL;
1724 	struct btrfs_dev_extent *extent = NULL;
1725 
1726 	path = btrfs_alloc_path();
1727 	if (!path)
1728 		return -ENOMEM;
1729 
1730 	key.objectid = device->devid;
1731 	key.offset = start;
1732 	key.type = BTRFS_DEV_EXTENT_KEY;
1733 again:
1734 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1735 	if (ret > 0) {
1736 		ret = btrfs_previous_item(root, path, key.objectid,
1737 					  BTRFS_DEV_EXTENT_KEY);
1738 		if (ret)
1739 			goto out;
1740 		leaf = path->nodes[0];
1741 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1742 		extent = btrfs_item_ptr(leaf, path->slots[0],
1743 					struct btrfs_dev_extent);
1744 		BUG_ON(found_key.offset > start || found_key.offset +
1745 		       btrfs_dev_extent_length(leaf, extent) < start);
1746 		key = found_key;
1747 		btrfs_release_path(path);
1748 		goto again;
1749 	} else if (ret == 0) {
1750 		leaf = path->nodes[0];
1751 		extent = btrfs_item_ptr(leaf, path->slots[0],
1752 					struct btrfs_dev_extent);
1753 	} else {
1754 		btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1755 		goto out;
1756 	}
1757 
1758 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1759 
1760 	ret = btrfs_del_item(trans, root, path);
1761 	if (ret) {
1762 		btrfs_handle_fs_error(fs_info, ret,
1763 				      "Failed to remove dev extent item");
1764 	} else {
1765 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1766 	}
1767 out:
1768 	btrfs_free_path(path);
1769 	return ret;
1770 }
1771 
1772 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1773 				  struct btrfs_device *device,
1774 				  u64 chunk_offset, u64 start, u64 num_bytes)
1775 {
1776 	int ret;
1777 	struct btrfs_path *path;
1778 	struct btrfs_fs_info *fs_info = device->fs_info;
1779 	struct btrfs_root *root = fs_info->dev_root;
1780 	struct btrfs_dev_extent *extent;
1781 	struct extent_buffer *leaf;
1782 	struct btrfs_key key;
1783 
1784 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1785 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1786 	path = btrfs_alloc_path();
1787 	if (!path)
1788 		return -ENOMEM;
1789 
1790 	key.objectid = device->devid;
1791 	key.offset = start;
1792 	key.type = BTRFS_DEV_EXTENT_KEY;
1793 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1794 				      sizeof(*extent));
1795 	if (ret)
1796 		goto out;
1797 
1798 	leaf = path->nodes[0];
1799 	extent = btrfs_item_ptr(leaf, path->slots[0],
1800 				struct btrfs_dev_extent);
1801 	btrfs_set_dev_extent_chunk_tree(leaf, extent,
1802 					BTRFS_CHUNK_TREE_OBJECTID);
1803 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1804 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1805 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1806 
1807 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1808 	btrfs_mark_buffer_dirty(leaf);
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
1814 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1815 {
1816 	struct extent_map_tree *em_tree;
1817 	struct extent_map *em;
1818 	struct rb_node *n;
1819 	u64 ret = 0;
1820 
1821 	em_tree = &fs_info->mapping_tree.map_tree;
1822 	read_lock(&em_tree->lock);
1823 	n = rb_last(&em_tree->map.rb_root);
1824 	if (n) {
1825 		em = rb_entry(n, struct extent_map, rb_node);
1826 		ret = em->start + em->len;
1827 	}
1828 	read_unlock(&em_tree->lock);
1829 
1830 	return ret;
1831 }
1832 
1833 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1834 				    u64 *devid_ret)
1835 {
1836 	int ret;
1837 	struct btrfs_key key;
1838 	struct btrfs_key found_key;
1839 	struct btrfs_path *path;
1840 
1841 	path = btrfs_alloc_path();
1842 	if (!path)
1843 		return -ENOMEM;
1844 
1845 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 	key.type = BTRFS_DEV_ITEM_KEY;
1847 	key.offset = (u64)-1;
1848 
1849 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1850 	if (ret < 0)
1851 		goto error;
1852 
1853 	BUG_ON(ret == 0); /* Corruption */
1854 
1855 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 				  BTRFS_DEV_ITEMS_OBJECTID,
1857 				  BTRFS_DEV_ITEM_KEY);
1858 	if (ret) {
1859 		*devid_ret = 1;
1860 	} else {
1861 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 				      path->slots[0]);
1863 		*devid_ret = found_key.offset + 1;
1864 	}
1865 	ret = 0;
1866 error:
1867 	btrfs_free_path(path);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * the device information is stored in the chunk root
1873  * the btrfs_device struct should be fully filled in
1874  */
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 			    struct btrfs_device *device)
1877 {
1878 	int ret;
1879 	struct btrfs_path *path;
1880 	struct btrfs_dev_item *dev_item;
1881 	struct extent_buffer *leaf;
1882 	struct btrfs_key key;
1883 	unsigned long ptr;
1884 
1885 	path = btrfs_alloc_path();
1886 	if (!path)
1887 		return -ENOMEM;
1888 
1889 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 	key.type = BTRFS_DEV_ITEM_KEY;
1891 	key.offset = device->devid;
1892 
1893 	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1894 				      &key, sizeof(*dev_item));
1895 	if (ret)
1896 		goto out;
1897 
1898 	leaf = path->nodes[0];
1899 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1900 
1901 	btrfs_set_device_id(leaf, dev_item, device->devid);
1902 	btrfs_set_device_generation(leaf, dev_item, 0);
1903 	btrfs_set_device_type(leaf, dev_item, device->type);
1904 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1905 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1906 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1907 	btrfs_set_device_total_bytes(leaf, dev_item,
1908 				     btrfs_device_get_disk_total_bytes(device));
1909 	btrfs_set_device_bytes_used(leaf, dev_item,
1910 				    btrfs_device_get_bytes_used(device));
1911 	btrfs_set_device_group(leaf, dev_item, 0);
1912 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1913 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1914 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1915 
1916 	ptr = btrfs_device_uuid(dev_item);
1917 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1918 	ptr = btrfs_device_fsid(dev_item);
1919 	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1920 			    ptr, BTRFS_FSID_SIZE);
1921 	btrfs_mark_buffer_dirty(leaf);
1922 
1923 	ret = 0;
1924 out:
1925 	btrfs_free_path(path);
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Function to update ctime/mtime for a given device path.
1931  * Mainly used for ctime/mtime based probe like libblkid.
1932  */
1933 static void update_dev_time(const char *path_name)
1934 {
1935 	struct file *filp;
1936 
1937 	filp = filp_open(path_name, O_RDWR, 0);
1938 	if (IS_ERR(filp))
1939 		return;
1940 	file_update_time(filp);
1941 	filp_close(filp, NULL);
1942 }
1943 
1944 static int btrfs_rm_dev_item(struct btrfs_device *device)
1945 {
1946 	struct btrfs_root *root = device->fs_info->chunk_root;
1947 	int ret;
1948 	struct btrfs_path *path;
1949 	struct btrfs_key key;
1950 	struct btrfs_trans_handle *trans;
1951 
1952 	path = btrfs_alloc_path();
1953 	if (!path)
1954 		return -ENOMEM;
1955 
1956 	trans = btrfs_start_transaction(root, 0);
1957 	if (IS_ERR(trans)) {
1958 		btrfs_free_path(path);
1959 		return PTR_ERR(trans);
1960 	}
1961 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1962 	key.type = BTRFS_DEV_ITEM_KEY;
1963 	key.offset = device->devid;
1964 
1965 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1966 	if (ret) {
1967 		if (ret > 0)
1968 			ret = -ENOENT;
1969 		btrfs_abort_transaction(trans, ret);
1970 		btrfs_end_transaction(trans);
1971 		goto out;
1972 	}
1973 
1974 	ret = btrfs_del_item(trans, root, path);
1975 	if (ret) {
1976 		btrfs_abort_transaction(trans, ret);
1977 		btrfs_end_transaction(trans);
1978 	}
1979 
1980 out:
1981 	btrfs_free_path(path);
1982 	if (!ret)
1983 		ret = btrfs_commit_transaction(trans);
1984 	return ret;
1985 }
1986 
1987 /*
1988  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1989  * filesystem. It's up to the caller to adjust that number regarding eg. device
1990  * replace.
1991  */
1992 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1993 		u64 num_devices)
1994 {
1995 	u64 all_avail;
1996 	unsigned seq;
1997 	int i;
1998 
1999 	do {
2000 		seq = read_seqbegin(&fs_info->profiles_lock);
2001 
2002 		all_avail = fs_info->avail_data_alloc_bits |
2003 			    fs_info->avail_system_alloc_bits |
2004 			    fs_info->avail_metadata_alloc_bits;
2005 	} while (read_seqretry(&fs_info->profiles_lock, seq));
2006 
2007 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2008 		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2009 			continue;
2010 
2011 		if (num_devices < btrfs_raid_array[i].devs_min) {
2012 			int ret = btrfs_raid_array[i].mindev_error;
2013 
2014 			if (ret)
2015 				return ret;
2016 		}
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static struct btrfs_device * btrfs_find_next_active_device(
2023 		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2024 {
2025 	struct btrfs_device *next_device;
2026 
2027 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2028 		if (next_device != device &&
2029 		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2030 		    && next_device->bdev)
2031 			return next_device;
2032 	}
2033 
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * Helper function to check if the given device is part of s_bdev / latest_bdev
2039  * and replace it with the provided or the next active device, in the context
2040  * where this function called, there should be always be another device (or
2041  * this_dev) which is active.
2042  */
2043 void btrfs_assign_next_active_device(struct btrfs_device *device,
2044 				     struct btrfs_device *this_dev)
2045 {
2046 	struct btrfs_fs_info *fs_info = device->fs_info;
2047 	struct btrfs_device *next_device;
2048 
2049 	if (this_dev)
2050 		next_device = this_dev;
2051 	else
2052 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2053 								device);
2054 	ASSERT(next_device);
2055 
2056 	if (fs_info->sb->s_bdev &&
2057 			(fs_info->sb->s_bdev == device->bdev))
2058 		fs_info->sb->s_bdev = next_device->bdev;
2059 
2060 	if (fs_info->fs_devices->latest_bdev == device->bdev)
2061 		fs_info->fs_devices->latest_bdev = next_device->bdev;
2062 }
2063 
2064 /*
2065  * Return btrfs_fs_devices::num_devices excluding the device that's being
2066  * currently replaced.
2067  */
2068 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2069 {
2070 	u64 num_devices = fs_info->fs_devices->num_devices;
2071 
2072 	down_read(&fs_info->dev_replace.rwsem);
2073 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2074 		ASSERT(num_devices > 1);
2075 		num_devices--;
2076 	}
2077 	up_read(&fs_info->dev_replace.rwsem);
2078 
2079 	return num_devices;
2080 }
2081 
2082 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2083 		u64 devid)
2084 {
2085 	struct btrfs_device *device;
2086 	struct btrfs_fs_devices *cur_devices;
2087 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2088 	u64 num_devices;
2089 	int ret = 0;
2090 
2091 	mutex_lock(&uuid_mutex);
2092 
2093 	num_devices = btrfs_num_devices(fs_info);
2094 
2095 	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2096 	if (ret)
2097 		goto out;
2098 
2099 	device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2100 
2101 	if (IS_ERR(device)) {
2102 		if (PTR_ERR(device) == -ENOENT &&
2103 		    strcmp(device_path, "missing") == 0)
2104 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2105 		else
2106 			ret = PTR_ERR(device);
2107 		goto out;
2108 	}
2109 
2110 	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2111 		btrfs_warn_in_rcu(fs_info,
2112 		  "cannot remove device %s (devid %llu) due to active swapfile",
2113 				  rcu_str_deref(device->name), device->devid);
2114 		ret = -ETXTBSY;
2115 		goto out;
2116 	}
2117 
2118 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2119 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2120 		goto out;
2121 	}
2122 
2123 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2124 	    fs_info->fs_devices->rw_devices == 1) {
2125 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2126 		goto out;
2127 	}
2128 
2129 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2130 		mutex_lock(&fs_info->chunk_mutex);
2131 		list_del_init(&device->dev_alloc_list);
2132 		device->fs_devices->rw_devices--;
2133 		mutex_unlock(&fs_info->chunk_mutex);
2134 	}
2135 
2136 	mutex_unlock(&uuid_mutex);
2137 	ret = btrfs_shrink_device(device, 0);
2138 	mutex_lock(&uuid_mutex);
2139 	if (ret)
2140 		goto error_undo;
2141 
2142 	/*
2143 	 * TODO: the superblock still includes this device in its num_devices
2144 	 * counter although write_all_supers() is not locked out. This
2145 	 * could give a filesystem state which requires a degraded mount.
2146 	 */
2147 	ret = btrfs_rm_dev_item(device);
2148 	if (ret)
2149 		goto error_undo;
2150 
2151 	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2152 	btrfs_scrub_cancel_dev(device);
2153 
2154 	/*
2155 	 * the device list mutex makes sure that we don't change
2156 	 * the device list while someone else is writing out all
2157 	 * the device supers. Whoever is writing all supers, should
2158 	 * lock the device list mutex before getting the number of
2159 	 * devices in the super block (super_copy). Conversely,
2160 	 * whoever updates the number of devices in the super block
2161 	 * (super_copy) should hold the device list mutex.
2162 	 */
2163 
2164 	/*
2165 	 * In normal cases the cur_devices == fs_devices. But in case
2166 	 * of deleting a seed device, the cur_devices should point to
2167 	 * its own fs_devices listed under the fs_devices->seed.
2168 	 */
2169 	cur_devices = device->fs_devices;
2170 	mutex_lock(&fs_devices->device_list_mutex);
2171 	list_del_rcu(&device->dev_list);
2172 
2173 	cur_devices->num_devices--;
2174 	cur_devices->total_devices--;
2175 	/* Update total_devices of the parent fs_devices if it's seed */
2176 	if (cur_devices != fs_devices)
2177 		fs_devices->total_devices--;
2178 
2179 	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2180 		cur_devices->missing_devices--;
2181 
2182 	btrfs_assign_next_active_device(device, NULL);
2183 
2184 	if (device->bdev) {
2185 		cur_devices->open_devices--;
2186 		/* remove sysfs entry */
2187 		btrfs_sysfs_rm_device_link(fs_devices, device);
2188 	}
2189 
2190 	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2191 	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2192 	mutex_unlock(&fs_devices->device_list_mutex);
2193 
2194 	/*
2195 	 * at this point, the device is zero sized and detached from
2196 	 * the devices list.  All that's left is to zero out the old
2197 	 * supers and free the device.
2198 	 */
2199 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2200 		btrfs_scratch_superblocks(device->bdev, device->name->str);
2201 
2202 	btrfs_close_bdev(device);
2203 	synchronize_rcu();
2204 	btrfs_free_device(device);
2205 
2206 	if (cur_devices->open_devices == 0) {
2207 		while (fs_devices) {
2208 			if (fs_devices->seed == cur_devices) {
2209 				fs_devices->seed = cur_devices->seed;
2210 				break;
2211 			}
2212 			fs_devices = fs_devices->seed;
2213 		}
2214 		cur_devices->seed = NULL;
2215 		close_fs_devices(cur_devices);
2216 		free_fs_devices(cur_devices);
2217 	}
2218 
2219 out:
2220 	mutex_unlock(&uuid_mutex);
2221 	return ret;
2222 
2223 error_undo:
2224 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2225 		mutex_lock(&fs_info->chunk_mutex);
2226 		list_add(&device->dev_alloc_list,
2227 			 &fs_devices->alloc_list);
2228 		device->fs_devices->rw_devices++;
2229 		mutex_unlock(&fs_info->chunk_mutex);
2230 	}
2231 	goto out;
2232 }
2233 
2234 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2235 {
2236 	struct btrfs_fs_devices *fs_devices;
2237 
2238 	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2239 
2240 	/*
2241 	 * in case of fs with no seed, srcdev->fs_devices will point
2242 	 * to fs_devices of fs_info. However when the dev being replaced is
2243 	 * a seed dev it will point to the seed's local fs_devices. In short
2244 	 * srcdev will have its correct fs_devices in both the cases.
2245 	 */
2246 	fs_devices = srcdev->fs_devices;
2247 
2248 	list_del_rcu(&srcdev->dev_list);
2249 	list_del(&srcdev->dev_alloc_list);
2250 	fs_devices->num_devices--;
2251 	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2252 		fs_devices->missing_devices--;
2253 
2254 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2255 		fs_devices->rw_devices--;
2256 
2257 	if (srcdev->bdev)
2258 		fs_devices->open_devices--;
2259 }
2260 
2261 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2262 {
2263 	struct btrfs_fs_info *fs_info = srcdev->fs_info;
2264 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2265 
2266 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2267 		/* zero out the old super if it is writable */
2268 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2269 	}
2270 
2271 	btrfs_close_bdev(srcdev);
2272 	synchronize_rcu();
2273 	btrfs_free_device(srcdev);
2274 
2275 	/* if this is no devs we rather delete the fs_devices */
2276 	if (!fs_devices->num_devices) {
2277 		struct btrfs_fs_devices *tmp_fs_devices;
2278 
2279 		/*
2280 		 * On a mounted FS, num_devices can't be zero unless it's a
2281 		 * seed. In case of a seed device being replaced, the replace
2282 		 * target added to the sprout FS, so there will be no more
2283 		 * device left under the seed FS.
2284 		 */
2285 		ASSERT(fs_devices->seeding);
2286 
2287 		tmp_fs_devices = fs_info->fs_devices;
2288 		while (tmp_fs_devices) {
2289 			if (tmp_fs_devices->seed == fs_devices) {
2290 				tmp_fs_devices->seed = fs_devices->seed;
2291 				break;
2292 			}
2293 			tmp_fs_devices = tmp_fs_devices->seed;
2294 		}
2295 		fs_devices->seed = NULL;
2296 		close_fs_devices(fs_devices);
2297 		free_fs_devices(fs_devices);
2298 	}
2299 }
2300 
2301 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2302 {
2303 	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2304 
2305 	WARN_ON(!tgtdev);
2306 	mutex_lock(&fs_devices->device_list_mutex);
2307 
2308 	btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2309 
2310 	if (tgtdev->bdev)
2311 		fs_devices->open_devices--;
2312 
2313 	fs_devices->num_devices--;
2314 
2315 	btrfs_assign_next_active_device(tgtdev, NULL);
2316 
2317 	list_del_rcu(&tgtdev->dev_list);
2318 
2319 	mutex_unlock(&fs_devices->device_list_mutex);
2320 
2321 	/*
2322 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2323 	 * may lead to a call to btrfs_show_devname() which will try
2324 	 * to hold device_list_mutex. And here this device
2325 	 * is already out of device list, so we don't have to hold
2326 	 * the device_list_mutex lock.
2327 	 */
2328 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2329 
2330 	btrfs_close_bdev(tgtdev);
2331 	synchronize_rcu();
2332 	btrfs_free_device(tgtdev);
2333 }
2334 
2335 static struct btrfs_device *btrfs_find_device_by_path(
2336 		struct btrfs_fs_info *fs_info, const char *device_path)
2337 {
2338 	int ret = 0;
2339 	struct btrfs_super_block *disk_super;
2340 	u64 devid;
2341 	u8 *dev_uuid;
2342 	struct block_device *bdev;
2343 	struct buffer_head *bh;
2344 	struct btrfs_device *device;
2345 
2346 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2347 				    fs_info->bdev_holder, 0, &bdev, &bh);
2348 	if (ret)
2349 		return ERR_PTR(ret);
2350 	disk_super = (struct btrfs_super_block *)bh->b_data;
2351 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2352 	dev_uuid = disk_super->dev_item.uuid;
2353 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2354 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2355 					   disk_super->metadata_uuid, true);
2356 	else
2357 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2358 					   disk_super->fsid, true);
2359 
2360 	brelse(bh);
2361 	if (!device)
2362 		device = ERR_PTR(-ENOENT);
2363 	blkdev_put(bdev, FMODE_READ);
2364 	return device;
2365 }
2366 
2367 /*
2368  * Lookup a device given by device id, or the path if the id is 0.
2369  */
2370 struct btrfs_device *btrfs_find_device_by_devspec(
2371 		struct btrfs_fs_info *fs_info, u64 devid,
2372 		const char *device_path)
2373 {
2374 	struct btrfs_device *device;
2375 
2376 	if (devid) {
2377 		device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2378 					   NULL, true);
2379 		if (!device)
2380 			return ERR_PTR(-ENOENT);
2381 		return device;
2382 	}
2383 
2384 	if (!device_path || !device_path[0])
2385 		return ERR_PTR(-EINVAL);
2386 
2387 	if (strcmp(device_path, "missing") == 0) {
2388 		/* Find first missing device */
2389 		list_for_each_entry(device, &fs_info->fs_devices->devices,
2390 				    dev_list) {
2391 			if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2392 				     &device->dev_state) && !device->bdev)
2393 				return device;
2394 		}
2395 		return ERR_PTR(-ENOENT);
2396 	}
2397 
2398 	return btrfs_find_device_by_path(fs_info, device_path);
2399 }
2400 
2401 /*
2402  * does all the dirty work required for changing file system's UUID.
2403  */
2404 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2405 {
2406 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2407 	struct btrfs_fs_devices *old_devices;
2408 	struct btrfs_fs_devices *seed_devices;
2409 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2410 	struct btrfs_device *device;
2411 	u64 super_flags;
2412 
2413 	lockdep_assert_held(&uuid_mutex);
2414 	if (!fs_devices->seeding)
2415 		return -EINVAL;
2416 
2417 	seed_devices = alloc_fs_devices(NULL, NULL);
2418 	if (IS_ERR(seed_devices))
2419 		return PTR_ERR(seed_devices);
2420 
2421 	old_devices = clone_fs_devices(fs_devices);
2422 	if (IS_ERR(old_devices)) {
2423 		kfree(seed_devices);
2424 		return PTR_ERR(old_devices);
2425 	}
2426 
2427 	list_add(&old_devices->fs_list, &fs_uuids);
2428 
2429 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2430 	seed_devices->opened = 1;
2431 	INIT_LIST_HEAD(&seed_devices->devices);
2432 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2433 	mutex_init(&seed_devices->device_list_mutex);
2434 
2435 	mutex_lock(&fs_devices->device_list_mutex);
2436 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2437 			      synchronize_rcu);
2438 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2439 		device->fs_devices = seed_devices;
2440 
2441 	mutex_lock(&fs_info->chunk_mutex);
2442 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2443 	mutex_unlock(&fs_info->chunk_mutex);
2444 
2445 	fs_devices->seeding = 0;
2446 	fs_devices->num_devices = 0;
2447 	fs_devices->open_devices = 0;
2448 	fs_devices->missing_devices = 0;
2449 	fs_devices->rotating = 0;
2450 	fs_devices->seed = seed_devices;
2451 
2452 	generate_random_uuid(fs_devices->fsid);
2453 	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2454 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2455 	mutex_unlock(&fs_devices->device_list_mutex);
2456 
2457 	super_flags = btrfs_super_flags(disk_super) &
2458 		      ~BTRFS_SUPER_FLAG_SEEDING;
2459 	btrfs_set_super_flags(disk_super, super_flags);
2460 
2461 	return 0;
2462 }
2463 
2464 /*
2465  * Store the expected generation for seed devices in device items.
2466  */
2467 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2468 {
2469 	struct btrfs_fs_info *fs_info = trans->fs_info;
2470 	struct btrfs_root *root = fs_info->chunk_root;
2471 	struct btrfs_path *path;
2472 	struct extent_buffer *leaf;
2473 	struct btrfs_dev_item *dev_item;
2474 	struct btrfs_device *device;
2475 	struct btrfs_key key;
2476 	u8 fs_uuid[BTRFS_FSID_SIZE];
2477 	u8 dev_uuid[BTRFS_UUID_SIZE];
2478 	u64 devid;
2479 	int ret;
2480 
2481 	path = btrfs_alloc_path();
2482 	if (!path)
2483 		return -ENOMEM;
2484 
2485 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2486 	key.offset = 0;
2487 	key.type = BTRFS_DEV_ITEM_KEY;
2488 
2489 	while (1) {
2490 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2491 		if (ret < 0)
2492 			goto error;
2493 
2494 		leaf = path->nodes[0];
2495 next_slot:
2496 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2497 			ret = btrfs_next_leaf(root, path);
2498 			if (ret > 0)
2499 				break;
2500 			if (ret < 0)
2501 				goto error;
2502 			leaf = path->nodes[0];
2503 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2504 			btrfs_release_path(path);
2505 			continue;
2506 		}
2507 
2508 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2510 		    key.type != BTRFS_DEV_ITEM_KEY)
2511 			break;
2512 
2513 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2514 					  struct btrfs_dev_item);
2515 		devid = btrfs_device_id(leaf, dev_item);
2516 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2517 				   BTRFS_UUID_SIZE);
2518 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2519 				   BTRFS_FSID_SIZE);
2520 		device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2521 					   fs_uuid, true);
2522 		BUG_ON(!device); /* Logic error */
2523 
2524 		if (device->fs_devices->seeding) {
2525 			btrfs_set_device_generation(leaf, dev_item,
2526 						    device->generation);
2527 			btrfs_mark_buffer_dirty(leaf);
2528 		}
2529 
2530 		path->slots[0]++;
2531 		goto next_slot;
2532 	}
2533 	ret = 0;
2534 error:
2535 	btrfs_free_path(path);
2536 	return ret;
2537 }
2538 
2539 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2540 {
2541 	struct btrfs_root *root = fs_info->dev_root;
2542 	struct request_queue *q;
2543 	struct btrfs_trans_handle *trans;
2544 	struct btrfs_device *device;
2545 	struct block_device *bdev;
2546 	struct super_block *sb = fs_info->sb;
2547 	struct rcu_string *name;
2548 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2549 	u64 orig_super_total_bytes;
2550 	u64 orig_super_num_devices;
2551 	int seeding_dev = 0;
2552 	int ret = 0;
2553 	bool unlocked = false;
2554 
2555 	if (sb_rdonly(sb) && !fs_devices->seeding)
2556 		return -EROFS;
2557 
2558 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2559 				  fs_info->bdev_holder);
2560 	if (IS_ERR(bdev))
2561 		return PTR_ERR(bdev);
2562 
2563 	if (fs_devices->seeding) {
2564 		seeding_dev = 1;
2565 		down_write(&sb->s_umount);
2566 		mutex_lock(&uuid_mutex);
2567 	}
2568 
2569 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2570 
2571 	mutex_lock(&fs_devices->device_list_mutex);
2572 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2573 		if (device->bdev == bdev) {
2574 			ret = -EEXIST;
2575 			mutex_unlock(
2576 				&fs_devices->device_list_mutex);
2577 			goto error;
2578 		}
2579 	}
2580 	mutex_unlock(&fs_devices->device_list_mutex);
2581 
2582 	device = btrfs_alloc_device(fs_info, NULL, NULL);
2583 	if (IS_ERR(device)) {
2584 		/* we can safely leave the fs_devices entry around */
2585 		ret = PTR_ERR(device);
2586 		goto error;
2587 	}
2588 
2589 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2590 	if (!name) {
2591 		ret = -ENOMEM;
2592 		goto error_free_device;
2593 	}
2594 	rcu_assign_pointer(device->name, name);
2595 
2596 	trans = btrfs_start_transaction(root, 0);
2597 	if (IS_ERR(trans)) {
2598 		ret = PTR_ERR(trans);
2599 		goto error_free_device;
2600 	}
2601 
2602 	q = bdev_get_queue(bdev);
2603 	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2604 	device->generation = trans->transid;
2605 	device->io_width = fs_info->sectorsize;
2606 	device->io_align = fs_info->sectorsize;
2607 	device->sector_size = fs_info->sectorsize;
2608 	device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2609 					 fs_info->sectorsize);
2610 	device->disk_total_bytes = device->total_bytes;
2611 	device->commit_total_bytes = device->total_bytes;
2612 	device->fs_info = fs_info;
2613 	device->bdev = bdev;
2614 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2615 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2616 	device->mode = FMODE_EXCL;
2617 	device->dev_stats_valid = 1;
2618 	set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2619 
2620 	if (seeding_dev) {
2621 		sb->s_flags &= ~SB_RDONLY;
2622 		ret = btrfs_prepare_sprout(fs_info);
2623 		if (ret) {
2624 			btrfs_abort_transaction(trans, ret);
2625 			goto error_trans;
2626 		}
2627 	}
2628 
2629 	device->fs_devices = fs_devices;
2630 
2631 	mutex_lock(&fs_devices->device_list_mutex);
2632 	mutex_lock(&fs_info->chunk_mutex);
2633 	list_add_rcu(&device->dev_list, &fs_devices->devices);
2634 	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2635 	fs_devices->num_devices++;
2636 	fs_devices->open_devices++;
2637 	fs_devices->rw_devices++;
2638 	fs_devices->total_devices++;
2639 	fs_devices->total_rw_bytes += device->total_bytes;
2640 
2641 	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2642 
2643 	if (!blk_queue_nonrot(q))
2644 		fs_devices->rotating = 1;
2645 
2646 	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2647 	btrfs_set_super_total_bytes(fs_info->super_copy,
2648 		round_down(orig_super_total_bytes + device->total_bytes,
2649 			   fs_info->sectorsize));
2650 
2651 	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2652 	btrfs_set_super_num_devices(fs_info->super_copy,
2653 				    orig_super_num_devices + 1);
2654 
2655 	/* add sysfs device entry */
2656 	btrfs_sysfs_add_device_link(fs_devices, device);
2657 
2658 	/*
2659 	 * we've got more storage, clear any full flags on the space
2660 	 * infos
2661 	 */
2662 	btrfs_clear_space_info_full(fs_info);
2663 
2664 	mutex_unlock(&fs_info->chunk_mutex);
2665 	mutex_unlock(&fs_devices->device_list_mutex);
2666 
2667 	if (seeding_dev) {
2668 		mutex_lock(&fs_info->chunk_mutex);
2669 		ret = init_first_rw_device(trans);
2670 		mutex_unlock(&fs_info->chunk_mutex);
2671 		if (ret) {
2672 			btrfs_abort_transaction(trans, ret);
2673 			goto error_sysfs;
2674 		}
2675 	}
2676 
2677 	ret = btrfs_add_dev_item(trans, device);
2678 	if (ret) {
2679 		btrfs_abort_transaction(trans, ret);
2680 		goto error_sysfs;
2681 	}
2682 
2683 	if (seeding_dev) {
2684 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2685 
2686 		ret = btrfs_finish_sprout(trans);
2687 		if (ret) {
2688 			btrfs_abort_transaction(trans, ret);
2689 			goto error_sysfs;
2690 		}
2691 
2692 		/* Sprouting would change fsid of the mounted root,
2693 		 * so rename the fsid on the sysfs
2694 		 */
2695 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2696 						fs_info->fs_devices->fsid);
2697 		if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2698 			btrfs_warn(fs_info,
2699 				   "sysfs: failed to create fsid for sprout");
2700 	}
2701 
2702 	ret = btrfs_commit_transaction(trans);
2703 
2704 	if (seeding_dev) {
2705 		mutex_unlock(&uuid_mutex);
2706 		up_write(&sb->s_umount);
2707 		unlocked = true;
2708 
2709 		if (ret) /* transaction commit */
2710 			return ret;
2711 
2712 		ret = btrfs_relocate_sys_chunks(fs_info);
2713 		if (ret < 0)
2714 			btrfs_handle_fs_error(fs_info, ret,
2715 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 		trans = btrfs_attach_transaction(root);
2717 		if (IS_ERR(trans)) {
2718 			if (PTR_ERR(trans) == -ENOENT)
2719 				return 0;
2720 			ret = PTR_ERR(trans);
2721 			trans = NULL;
2722 			goto error_sysfs;
2723 		}
2724 		ret = btrfs_commit_transaction(trans);
2725 	}
2726 
2727 	/* Update ctime/mtime for libblkid */
2728 	update_dev_time(device_path);
2729 	return ret;
2730 
2731 error_sysfs:
2732 	btrfs_sysfs_rm_device_link(fs_devices, device);
2733 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 	mutex_lock(&fs_info->chunk_mutex);
2735 	list_del_rcu(&device->dev_list);
2736 	list_del(&device->dev_alloc_list);
2737 	fs_info->fs_devices->num_devices--;
2738 	fs_info->fs_devices->open_devices--;
2739 	fs_info->fs_devices->rw_devices--;
2740 	fs_info->fs_devices->total_devices--;
2741 	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 	btrfs_set_super_total_bytes(fs_info->super_copy,
2744 				    orig_super_total_bytes);
2745 	btrfs_set_super_num_devices(fs_info->super_copy,
2746 				    orig_super_num_devices);
2747 	mutex_unlock(&fs_info->chunk_mutex);
2748 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2749 error_trans:
2750 	if (seeding_dev)
2751 		sb->s_flags |= SB_RDONLY;
2752 	if (trans)
2753 		btrfs_end_transaction(trans);
2754 error_free_device:
2755 	btrfs_free_device(device);
2756 error:
2757 	blkdev_put(bdev, FMODE_EXCL);
2758 	if (seeding_dev && !unlocked) {
2759 		mutex_unlock(&uuid_mutex);
2760 		up_write(&sb->s_umount);
2761 	}
2762 	return ret;
2763 }
2764 
2765 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 					struct btrfs_device *device)
2767 {
2768 	int ret;
2769 	struct btrfs_path *path;
2770 	struct btrfs_root *root = device->fs_info->chunk_root;
2771 	struct btrfs_dev_item *dev_item;
2772 	struct extent_buffer *leaf;
2773 	struct btrfs_key key;
2774 
2775 	path = btrfs_alloc_path();
2776 	if (!path)
2777 		return -ENOMEM;
2778 
2779 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 	key.type = BTRFS_DEV_ITEM_KEY;
2781 	key.offset = device->devid;
2782 
2783 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 	if (ret < 0)
2785 		goto out;
2786 
2787 	if (ret > 0) {
2788 		ret = -ENOENT;
2789 		goto out;
2790 	}
2791 
2792 	leaf = path->nodes[0];
2793 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794 
2795 	btrfs_set_device_id(leaf, dev_item, device->devid);
2796 	btrfs_set_device_type(leaf, dev_item, device->type);
2797 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2800 	btrfs_set_device_total_bytes(leaf, dev_item,
2801 				     btrfs_device_get_disk_total_bytes(device));
2802 	btrfs_set_device_bytes_used(leaf, dev_item,
2803 				    btrfs_device_get_bytes_used(device));
2804 	btrfs_mark_buffer_dirty(leaf);
2805 
2806 out:
2807 	btrfs_free_path(path);
2808 	return ret;
2809 }
2810 
2811 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2812 		      struct btrfs_device *device, u64 new_size)
2813 {
2814 	struct btrfs_fs_info *fs_info = device->fs_info;
2815 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2816 	u64 old_total;
2817 	u64 diff;
2818 
2819 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2820 		return -EACCES;
2821 
2822 	new_size = round_down(new_size, fs_info->sectorsize);
2823 
2824 	mutex_lock(&fs_info->chunk_mutex);
2825 	old_total = btrfs_super_total_bytes(super_copy);
2826 	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2827 
2828 	if (new_size <= device->total_bytes ||
2829 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2830 		mutex_unlock(&fs_info->chunk_mutex);
2831 		return -EINVAL;
2832 	}
2833 
2834 	btrfs_set_super_total_bytes(super_copy,
2835 			round_down(old_total + diff, fs_info->sectorsize));
2836 	device->fs_devices->total_rw_bytes += diff;
2837 
2838 	btrfs_device_set_total_bytes(device, new_size);
2839 	btrfs_device_set_disk_total_bytes(device, new_size);
2840 	btrfs_clear_space_info_full(device->fs_info);
2841 	if (list_empty(&device->post_commit_list))
2842 		list_add_tail(&device->post_commit_list,
2843 			      &trans->transaction->dev_update_list);
2844 	mutex_unlock(&fs_info->chunk_mutex);
2845 
2846 	return btrfs_update_device(trans, device);
2847 }
2848 
2849 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2850 {
2851 	struct btrfs_fs_info *fs_info = trans->fs_info;
2852 	struct btrfs_root *root = fs_info->chunk_root;
2853 	int ret;
2854 	struct btrfs_path *path;
2855 	struct btrfs_key key;
2856 
2857 	path = btrfs_alloc_path();
2858 	if (!path)
2859 		return -ENOMEM;
2860 
2861 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2862 	key.offset = chunk_offset;
2863 	key.type = BTRFS_CHUNK_ITEM_KEY;
2864 
2865 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2866 	if (ret < 0)
2867 		goto out;
2868 	else if (ret > 0) { /* Logic error or corruption */
2869 		btrfs_handle_fs_error(fs_info, -ENOENT,
2870 				      "Failed lookup while freeing chunk.");
2871 		ret = -ENOENT;
2872 		goto out;
2873 	}
2874 
2875 	ret = btrfs_del_item(trans, root, path);
2876 	if (ret < 0)
2877 		btrfs_handle_fs_error(fs_info, ret,
2878 				      "Failed to delete chunk item.");
2879 out:
2880 	btrfs_free_path(path);
2881 	return ret;
2882 }
2883 
2884 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2885 {
2886 	struct btrfs_super_block *super_copy = fs_info->super_copy;
2887 	struct btrfs_disk_key *disk_key;
2888 	struct btrfs_chunk *chunk;
2889 	u8 *ptr;
2890 	int ret = 0;
2891 	u32 num_stripes;
2892 	u32 array_size;
2893 	u32 len = 0;
2894 	u32 cur;
2895 	struct btrfs_key key;
2896 
2897 	mutex_lock(&fs_info->chunk_mutex);
2898 	array_size = btrfs_super_sys_array_size(super_copy);
2899 
2900 	ptr = super_copy->sys_chunk_array;
2901 	cur = 0;
2902 
2903 	while (cur < array_size) {
2904 		disk_key = (struct btrfs_disk_key *)ptr;
2905 		btrfs_disk_key_to_cpu(&key, disk_key);
2906 
2907 		len = sizeof(*disk_key);
2908 
2909 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 			chunk = (struct btrfs_chunk *)(ptr + len);
2911 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 			len += btrfs_chunk_item_size(num_stripes);
2913 		} else {
2914 			ret = -EIO;
2915 			break;
2916 		}
2917 		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2918 		    key.offset == chunk_offset) {
2919 			memmove(ptr, ptr + len, array_size - (cur + len));
2920 			array_size -= len;
2921 			btrfs_set_super_sys_array_size(super_copy, array_size);
2922 		} else {
2923 			ptr += len;
2924 			cur += len;
2925 		}
2926 	}
2927 	mutex_unlock(&fs_info->chunk_mutex);
2928 	return ret;
2929 }
2930 
2931 /*
2932  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933  * @logical: Logical block offset in bytes.
2934  * @length: Length of extent in bytes.
2935  *
2936  * Return: Chunk mapping or ERR_PTR.
2937  */
2938 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 				       u64 logical, u64 length)
2940 {
2941 	struct extent_map_tree *em_tree;
2942 	struct extent_map *em;
2943 
2944 	em_tree = &fs_info->mapping_tree.map_tree;
2945 	read_lock(&em_tree->lock);
2946 	em = lookup_extent_mapping(em_tree, logical, length);
2947 	read_unlock(&em_tree->lock);
2948 
2949 	if (!em) {
2950 		btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 			   logical, length);
2952 		return ERR_PTR(-EINVAL);
2953 	}
2954 
2955 	if (em->start > logical || em->start + em->len < logical) {
2956 		btrfs_crit(fs_info,
2957 			   "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 			   logical, length, em->start, em->start + em->len);
2959 		free_extent_map(em);
2960 		return ERR_PTR(-EINVAL);
2961 	}
2962 
2963 	/* callers are responsible for dropping em's ref. */
2964 	return em;
2965 }
2966 
2967 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2968 {
2969 	struct btrfs_fs_info *fs_info = trans->fs_info;
2970 	struct extent_map *em;
2971 	struct map_lookup *map;
2972 	u64 dev_extent_len = 0;
2973 	int i, ret = 0;
2974 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2975 
2976 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2977 	if (IS_ERR(em)) {
2978 		/*
2979 		 * This is a logic error, but we don't want to just rely on the
2980 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2981 		 * do anything we still error out.
2982 		 */
2983 		ASSERT(0);
2984 		return PTR_ERR(em);
2985 	}
2986 	map = em->map_lookup;
2987 	mutex_lock(&fs_info->chunk_mutex);
2988 	check_system_chunk(trans, map->type);
2989 	mutex_unlock(&fs_info->chunk_mutex);
2990 
2991 	/*
2992 	 * Take the device list mutex to prevent races with the final phase of
2993 	 * a device replace operation that replaces the device object associated
2994 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 	 */
2996 	mutex_lock(&fs_devices->device_list_mutex);
2997 	for (i = 0; i < map->num_stripes; i++) {
2998 		struct btrfs_device *device = map->stripes[i].dev;
2999 		ret = btrfs_free_dev_extent(trans, device,
3000 					    map->stripes[i].physical,
3001 					    &dev_extent_len);
3002 		if (ret) {
3003 			mutex_unlock(&fs_devices->device_list_mutex);
3004 			btrfs_abort_transaction(trans, ret);
3005 			goto out;
3006 		}
3007 
3008 		if (device->bytes_used > 0) {
3009 			mutex_lock(&fs_info->chunk_mutex);
3010 			btrfs_device_set_bytes_used(device,
3011 					device->bytes_used - dev_extent_len);
3012 			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3013 			btrfs_clear_space_info_full(fs_info);
3014 			mutex_unlock(&fs_info->chunk_mutex);
3015 		}
3016 
3017 		ret = btrfs_update_device(trans, device);
3018 		if (ret) {
3019 			mutex_unlock(&fs_devices->device_list_mutex);
3020 			btrfs_abort_transaction(trans, ret);
3021 			goto out;
3022 		}
3023 	}
3024 	mutex_unlock(&fs_devices->device_list_mutex);
3025 
3026 	ret = btrfs_free_chunk(trans, chunk_offset);
3027 	if (ret) {
3028 		btrfs_abort_transaction(trans, ret);
3029 		goto out;
3030 	}
3031 
3032 	trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3033 
3034 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3035 		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3036 		if (ret) {
3037 			btrfs_abort_transaction(trans, ret);
3038 			goto out;
3039 		}
3040 	}
3041 
3042 	ret = btrfs_remove_block_group(trans, chunk_offset, em);
3043 	if (ret) {
3044 		btrfs_abort_transaction(trans, ret);
3045 		goto out;
3046 	}
3047 
3048 out:
3049 	/* once for us */
3050 	free_extent_map(em);
3051 	return ret;
3052 }
3053 
3054 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3055 {
3056 	struct btrfs_root *root = fs_info->chunk_root;
3057 	struct btrfs_trans_handle *trans;
3058 	int ret;
3059 
3060 	/*
3061 	 * Prevent races with automatic removal of unused block groups.
3062 	 * After we relocate and before we remove the chunk with offset
3063 	 * chunk_offset, automatic removal of the block group can kick in,
3064 	 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 	 *
3066 	 * Make sure to acquire this mutex before doing a tree search (dev
3067 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 	 * we release the path used to search the chunk/dev tree and before
3070 	 * the current task acquires this mutex and calls us.
3071 	 */
3072 	lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3073 
3074 	ret = btrfs_can_relocate(fs_info, chunk_offset);
3075 	if (ret)
3076 		return -ENOSPC;
3077 
3078 	/* step one, relocate all the extents inside this chunk */
3079 	btrfs_scrub_pause(fs_info);
3080 	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3081 	btrfs_scrub_continue(fs_info);
3082 	if (ret)
3083 		return ret;
3084 
3085 	/*
3086 	 * We add the kobjects here (and after forcing data chunk creation)
3087 	 * since relocation is the only place we'll create chunks of a new
3088 	 * type at runtime.  The only place where we'll remove the last
3089 	 * chunk of a type is the call immediately below this one.  Even
3090 	 * so, we're protected against races with the cleaner thread since
3091 	 * we're covered by the delete_unused_bgs_mutex.
3092 	 */
3093 	btrfs_add_raid_kobjects(fs_info);
3094 
3095 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3096 						     chunk_offset);
3097 	if (IS_ERR(trans)) {
3098 		ret = PTR_ERR(trans);
3099 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3100 		return ret;
3101 	}
3102 
3103 	/*
3104 	 * step two, delete the device extents and the
3105 	 * chunk tree entries
3106 	 */
3107 	ret = btrfs_remove_chunk(trans, chunk_offset);
3108 	btrfs_end_transaction(trans);
3109 	return ret;
3110 }
3111 
3112 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3113 {
3114 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3115 	struct btrfs_path *path;
3116 	struct extent_buffer *leaf;
3117 	struct btrfs_chunk *chunk;
3118 	struct btrfs_key key;
3119 	struct btrfs_key found_key;
3120 	u64 chunk_type;
3121 	bool retried = false;
3122 	int failed = 0;
3123 	int ret;
3124 
3125 	path = btrfs_alloc_path();
3126 	if (!path)
3127 		return -ENOMEM;
3128 
3129 again:
3130 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3131 	key.offset = (u64)-1;
3132 	key.type = BTRFS_CHUNK_ITEM_KEY;
3133 
3134 	while (1) {
3135 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3136 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3137 		if (ret < 0) {
3138 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3139 			goto error;
3140 		}
3141 		BUG_ON(ret == 0); /* Corruption */
3142 
3143 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3144 					  key.type);
3145 		if (ret)
3146 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3147 		if (ret < 0)
3148 			goto error;
3149 		if (ret > 0)
3150 			break;
3151 
3152 		leaf = path->nodes[0];
3153 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3154 
3155 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3156 				       struct btrfs_chunk);
3157 		chunk_type = btrfs_chunk_type(leaf, chunk);
3158 		btrfs_release_path(path);
3159 
3160 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3161 			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3162 			if (ret == -ENOSPC)
3163 				failed++;
3164 			else
3165 				BUG_ON(ret);
3166 		}
3167 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3168 
3169 		if (found_key.offset == 0)
3170 			break;
3171 		key.offset = found_key.offset - 1;
3172 	}
3173 	ret = 0;
3174 	if (failed && !retried) {
3175 		failed = 0;
3176 		retried = true;
3177 		goto again;
3178 	} else if (WARN_ON(failed && retried)) {
3179 		ret = -ENOSPC;
3180 	}
3181 error:
3182 	btrfs_free_path(path);
3183 	return ret;
3184 }
3185 
3186 /*
3187  * return 1 : allocate a data chunk successfully,
3188  * return <0: errors during allocating a data chunk,
3189  * return 0 : no need to allocate a data chunk.
3190  */
3191 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3192 				      u64 chunk_offset)
3193 {
3194 	struct btrfs_block_group_cache *cache;
3195 	u64 bytes_used;
3196 	u64 chunk_type;
3197 
3198 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3199 	ASSERT(cache);
3200 	chunk_type = cache->flags;
3201 	btrfs_put_block_group(cache);
3202 
3203 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3204 		spin_lock(&fs_info->data_sinfo->lock);
3205 		bytes_used = fs_info->data_sinfo->bytes_used;
3206 		spin_unlock(&fs_info->data_sinfo->lock);
3207 
3208 		if (!bytes_used) {
3209 			struct btrfs_trans_handle *trans;
3210 			int ret;
3211 
3212 			trans =	btrfs_join_transaction(fs_info->tree_root);
3213 			if (IS_ERR(trans))
3214 				return PTR_ERR(trans);
3215 
3216 			ret = btrfs_force_chunk_alloc(trans,
3217 						      BTRFS_BLOCK_GROUP_DATA);
3218 			btrfs_end_transaction(trans);
3219 			if (ret < 0)
3220 				return ret;
3221 
3222 			btrfs_add_raid_kobjects(fs_info);
3223 
3224 			return 1;
3225 		}
3226 	}
3227 	return 0;
3228 }
3229 
3230 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3231 			       struct btrfs_balance_control *bctl)
3232 {
3233 	struct btrfs_root *root = fs_info->tree_root;
3234 	struct btrfs_trans_handle *trans;
3235 	struct btrfs_balance_item *item;
3236 	struct btrfs_disk_balance_args disk_bargs;
3237 	struct btrfs_path *path;
3238 	struct extent_buffer *leaf;
3239 	struct btrfs_key key;
3240 	int ret, err;
3241 
3242 	path = btrfs_alloc_path();
3243 	if (!path)
3244 		return -ENOMEM;
3245 
3246 	trans = btrfs_start_transaction(root, 0);
3247 	if (IS_ERR(trans)) {
3248 		btrfs_free_path(path);
3249 		return PTR_ERR(trans);
3250 	}
3251 
3252 	key.objectid = BTRFS_BALANCE_OBJECTID;
3253 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3254 	key.offset = 0;
3255 
3256 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3257 				      sizeof(*item));
3258 	if (ret)
3259 		goto out;
3260 
3261 	leaf = path->nodes[0];
3262 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3263 
3264 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3265 
3266 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3267 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3268 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3269 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3270 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3271 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3272 
3273 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3274 
3275 	btrfs_mark_buffer_dirty(leaf);
3276 out:
3277 	btrfs_free_path(path);
3278 	err = btrfs_commit_transaction(trans);
3279 	if (err && !ret)
3280 		ret = err;
3281 	return ret;
3282 }
3283 
3284 static int del_balance_item(struct btrfs_fs_info *fs_info)
3285 {
3286 	struct btrfs_root *root = fs_info->tree_root;
3287 	struct btrfs_trans_handle *trans;
3288 	struct btrfs_path *path;
3289 	struct btrfs_key key;
3290 	int ret, err;
3291 
3292 	path = btrfs_alloc_path();
3293 	if (!path)
3294 		return -ENOMEM;
3295 
3296 	trans = btrfs_start_transaction(root, 0);
3297 	if (IS_ERR(trans)) {
3298 		btrfs_free_path(path);
3299 		return PTR_ERR(trans);
3300 	}
3301 
3302 	key.objectid = BTRFS_BALANCE_OBJECTID;
3303 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3304 	key.offset = 0;
3305 
3306 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3307 	if (ret < 0)
3308 		goto out;
3309 	if (ret > 0) {
3310 		ret = -ENOENT;
3311 		goto out;
3312 	}
3313 
3314 	ret = btrfs_del_item(trans, root, path);
3315 out:
3316 	btrfs_free_path(path);
3317 	err = btrfs_commit_transaction(trans);
3318 	if (err && !ret)
3319 		ret = err;
3320 	return ret;
3321 }
3322 
3323 /*
3324  * This is a heuristic used to reduce the number of chunks balanced on
3325  * resume after balance was interrupted.
3326  */
3327 static void update_balance_args(struct btrfs_balance_control *bctl)
3328 {
3329 	/*
3330 	 * Turn on soft mode for chunk types that were being converted.
3331 	 */
3332 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3333 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3334 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3335 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3336 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3337 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3338 
3339 	/*
3340 	 * Turn on usage filter if is not already used.  The idea is
3341 	 * that chunks that we have already balanced should be
3342 	 * reasonably full.  Don't do it for chunks that are being
3343 	 * converted - that will keep us from relocating unconverted
3344 	 * (albeit full) chunks.
3345 	 */
3346 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3347 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3348 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3349 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3350 		bctl->data.usage = 90;
3351 	}
3352 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3353 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3354 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3355 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3356 		bctl->sys.usage = 90;
3357 	}
3358 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3359 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3360 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3361 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3362 		bctl->meta.usage = 90;
3363 	}
3364 }
3365 
3366 /*
3367  * Clear the balance status in fs_info and delete the balance item from disk.
3368  */
3369 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3370 {
3371 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3372 	int ret;
3373 
3374 	BUG_ON(!fs_info->balance_ctl);
3375 
3376 	spin_lock(&fs_info->balance_lock);
3377 	fs_info->balance_ctl = NULL;
3378 	spin_unlock(&fs_info->balance_lock);
3379 
3380 	kfree(bctl);
3381 	ret = del_balance_item(fs_info);
3382 	if (ret)
3383 		btrfs_handle_fs_error(fs_info, ret, NULL);
3384 }
3385 
3386 /*
3387  * Balance filters.  Return 1 if chunk should be filtered out
3388  * (should not be balanced).
3389  */
3390 static int chunk_profiles_filter(u64 chunk_type,
3391 				 struct btrfs_balance_args *bargs)
3392 {
3393 	chunk_type = chunk_to_extended(chunk_type) &
3394 				BTRFS_EXTENDED_PROFILE_MASK;
3395 
3396 	if (bargs->profiles & chunk_type)
3397 		return 0;
3398 
3399 	return 1;
3400 }
3401 
3402 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3403 			      struct btrfs_balance_args *bargs)
3404 {
3405 	struct btrfs_block_group_cache *cache;
3406 	u64 chunk_used;
3407 	u64 user_thresh_min;
3408 	u64 user_thresh_max;
3409 	int ret = 1;
3410 
3411 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3412 	chunk_used = btrfs_block_group_used(&cache->item);
3413 
3414 	if (bargs->usage_min == 0)
3415 		user_thresh_min = 0;
3416 	else
3417 		user_thresh_min = div_factor_fine(cache->key.offset,
3418 					bargs->usage_min);
3419 
3420 	if (bargs->usage_max == 0)
3421 		user_thresh_max = 1;
3422 	else if (bargs->usage_max > 100)
3423 		user_thresh_max = cache->key.offset;
3424 	else
3425 		user_thresh_max = div_factor_fine(cache->key.offset,
3426 					bargs->usage_max);
3427 
3428 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3429 		ret = 0;
3430 
3431 	btrfs_put_block_group(cache);
3432 	return ret;
3433 }
3434 
3435 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3436 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3437 {
3438 	struct btrfs_block_group_cache *cache;
3439 	u64 chunk_used, user_thresh;
3440 	int ret = 1;
3441 
3442 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3443 	chunk_used = btrfs_block_group_used(&cache->item);
3444 
3445 	if (bargs->usage_min == 0)
3446 		user_thresh = 1;
3447 	else if (bargs->usage > 100)
3448 		user_thresh = cache->key.offset;
3449 	else
3450 		user_thresh = div_factor_fine(cache->key.offset,
3451 					      bargs->usage);
3452 
3453 	if (chunk_used < user_thresh)
3454 		ret = 0;
3455 
3456 	btrfs_put_block_group(cache);
3457 	return ret;
3458 }
3459 
3460 static int chunk_devid_filter(struct extent_buffer *leaf,
3461 			      struct btrfs_chunk *chunk,
3462 			      struct btrfs_balance_args *bargs)
3463 {
3464 	struct btrfs_stripe *stripe;
3465 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3466 	int i;
3467 
3468 	for (i = 0; i < num_stripes; i++) {
3469 		stripe = btrfs_stripe_nr(chunk, i);
3470 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3471 			return 0;
3472 	}
3473 
3474 	return 1;
3475 }
3476 
3477 /* [pstart, pend) */
3478 static int chunk_drange_filter(struct extent_buffer *leaf,
3479 			       struct btrfs_chunk *chunk,
3480 			       struct btrfs_balance_args *bargs)
3481 {
3482 	struct btrfs_stripe *stripe;
3483 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3484 	u64 stripe_offset;
3485 	u64 stripe_length;
3486 	int factor;
3487 	int i;
3488 
3489 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3490 		return 0;
3491 
3492 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3493 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3494 		factor = num_stripes / 2;
3495 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3496 		factor = num_stripes - 1;
3497 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3498 		factor = num_stripes - 2;
3499 	} else {
3500 		factor = num_stripes;
3501 	}
3502 
3503 	for (i = 0; i < num_stripes; i++) {
3504 		stripe = btrfs_stripe_nr(chunk, i);
3505 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3506 			continue;
3507 
3508 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3509 		stripe_length = btrfs_chunk_length(leaf, chunk);
3510 		stripe_length = div_u64(stripe_length, factor);
3511 
3512 		if (stripe_offset < bargs->pend &&
3513 		    stripe_offset + stripe_length > bargs->pstart)
3514 			return 0;
3515 	}
3516 
3517 	return 1;
3518 }
3519 
3520 /* [vstart, vend) */
3521 static int chunk_vrange_filter(struct extent_buffer *leaf,
3522 			       struct btrfs_chunk *chunk,
3523 			       u64 chunk_offset,
3524 			       struct btrfs_balance_args *bargs)
3525 {
3526 	if (chunk_offset < bargs->vend &&
3527 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3528 		/* at least part of the chunk is inside this vrange */
3529 		return 0;
3530 
3531 	return 1;
3532 }
3533 
3534 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3535 			       struct btrfs_chunk *chunk,
3536 			       struct btrfs_balance_args *bargs)
3537 {
3538 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3539 
3540 	if (bargs->stripes_min <= num_stripes
3541 			&& num_stripes <= bargs->stripes_max)
3542 		return 0;
3543 
3544 	return 1;
3545 }
3546 
3547 static int chunk_soft_convert_filter(u64 chunk_type,
3548 				     struct btrfs_balance_args *bargs)
3549 {
3550 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3551 		return 0;
3552 
3553 	chunk_type = chunk_to_extended(chunk_type) &
3554 				BTRFS_EXTENDED_PROFILE_MASK;
3555 
3556 	if (bargs->target == chunk_type)
3557 		return 1;
3558 
3559 	return 0;
3560 }
3561 
3562 static int should_balance_chunk(struct extent_buffer *leaf,
3563 				struct btrfs_chunk *chunk, u64 chunk_offset)
3564 {
3565 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3566 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3567 	struct btrfs_balance_args *bargs = NULL;
3568 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3569 
3570 	/* type filter */
3571 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3572 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3573 		return 0;
3574 	}
3575 
3576 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3577 		bargs = &bctl->data;
3578 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3579 		bargs = &bctl->sys;
3580 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3581 		bargs = &bctl->meta;
3582 
3583 	/* profiles filter */
3584 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3585 	    chunk_profiles_filter(chunk_type, bargs)) {
3586 		return 0;
3587 	}
3588 
3589 	/* usage filter */
3590 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3591 	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3592 		return 0;
3593 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3594 	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3595 		return 0;
3596 	}
3597 
3598 	/* devid filter */
3599 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3600 	    chunk_devid_filter(leaf, chunk, bargs)) {
3601 		return 0;
3602 	}
3603 
3604 	/* drange filter, makes sense only with devid filter */
3605 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3606 	    chunk_drange_filter(leaf, chunk, bargs)) {
3607 		return 0;
3608 	}
3609 
3610 	/* vrange filter */
3611 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3612 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3613 		return 0;
3614 	}
3615 
3616 	/* stripes filter */
3617 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3618 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3619 		return 0;
3620 	}
3621 
3622 	/* soft profile changing mode */
3623 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3624 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3625 		return 0;
3626 	}
3627 
3628 	/*
3629 	 * limited by count, must be the last filter
3630 	 */
3631 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3632 		if (bargs->limit == 0)
3633 			return 0;
3634 		else
3635 			bargs->limit--;
3636 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3637 		/*
3638 		 * Same logic as the 'limit' filter; the minimum cannot be
3639 		 * determined here because we do not have the global information
3640 		 * about the count of all chunks that satisfy the filters.
3641 		 */
3642 		if (bargs->limit_max == 0)
3643 			return 0;
3644 		else
3645 			bargs->limit_max--;
3646 	}
3647 
3648 	return 1;
3649 }
3650 
3651 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3652 {
3653 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3654 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3655 	u64 chunk_type;
3656 	struct btrfs_chunk *chunk;
3657 	struct btrfs_path *path = NULL;
3658 	struct btrfs_key key;
3659 	struct btrfs_key found_key;
3660 	struct extent_buffer *leaf;
3661 	int slot;
3662 	int ret;
3663 	int enospc_errors = 0;
3664 	bool counting = true;
3665 	/* The single value limit and min/max limits use the same bytes in the */
3666 	u64 limit_data = bctl->data.limit;
3667 	u64 limit_meta = bctl->meta.limit;
3668 	u64 limit_sys = bctl->sys.limit;
3669 	u32 count_data = 0;
3670 	u32 count_meta = 0;
3671 	u32 count_sys = 0;
3672 	int chunk_reserved = 0;
3673 
3674 	path = btrfs_alloc_path();
3675 	if (!path) {
3676 		ret = -ENOMEM;
3677 		goto error;
3678 	}
3679 
3680 	/* zero out stat counters */
3681 	spin_lock(&fs_info->balance_lock);
3682 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3683 	spin_unlock(&fs_info->balance_lock);
3684 again:
3685 	if (!counting) {
3686 		/*
3687 		 * The single value limit and min/max limits use the same bytes
3688 		 * in the
3689 		 */
3690 		bctl->data.limit = limit_data;
3691 		bctl->meta.limit = limit_meta;
3692 		bctl->sys.limit = limit_sys;
3693 	}
3694 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3695 	key.offset = (u64)-1;
3696 	key.type = BTRFS_CHUNK_ITEM_KEY;
3697 
3698 	while (1) {
3699 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3700 		    atomic_read(&fs_info->balance_cancel_req)) {
3701 			ret = -ECANCELED;
3702 			goto error;
3703 		}
3704 
3705 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3706 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3707 		if (ret < 0) {
3708 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3709 			goto error;
3710 		}
3711 
3712 		/*
3713 		 * this shouldn't happen, it means the last relocate
3714 		 * failed
3715 		 */
3716 		if (ret == 0)
3717 			BUG(); /* FIXME break ? */
3718 
3719 		ret = btrfs_previous_item(chunk_root, path, 0,
3720 					  BTRFS_CHUNK_ITEM_KEY);
3721 		if (ret) {
3722 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3723 			ret = 0;
3724 			break;
3725 		}
3726 
3727 		leaf = path->nodes[0];
3728 		slot = path->slots[0];
3729 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3730 
3731 		if (found_key.objectid != key.objectid) {
3732 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733 			break;
3734 		}
3735 
3736 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3737 		chunk_type = btrfs_chunk_type(leaf, chunk);
3738 
3739 		if (!counting) {
3740 			spin_lock(&fs_info->balance_lock);
3741 			bctl->stat.considered++;
3742 			spin_unlock(&fs_info->balance_lock);
3743 		}
3744 
3745 		ret = should_balance_chunk(leaf, chunk, found_key.offset);
3746 
3747 		btrfs_release_path(path);
3748 		if (!ret) {
3749 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3750 			goto loop;
3751 		}
3752 
3753 		if (counting) {
3754 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3755 			spin_lock(&fs_info->balance_lock);
3756 			bctl->stat.expected++;
3757 			spin_unlock(&fs_info->balance_lock);
3758 
3759 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3760 				count_data++;
3761 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3762 				count_sys++;
3763 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3764 				count_meta++;
3765 
3766 			goto loop;
3767 		}
3768 
3769 		/*
3770 		 * Apply limit_min filter, no need to check if the LIMITS
3771 		 * filter is used, limit_min is 0 by default
3772 		 */
3773 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3774 					count_data < bctl->data.limit_min)
3775 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3776 					count_meta < bctl->meta.limit_min)
3777 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3778 					count_sys < bctl->sys.limit_min)) {
3779 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3780 			goto loop;
3781 		}
3782 
3783 		if (!chunk_reserved) {
3784 			/*
3785 			 * We may be relocating the only data chunk we have,
3786 			 * which could potentially end up with losing data's
3787 			 * raid profile, so lets allocate an empty one in
3788 			 * advance.
3789 			 */
3790 			ret = btrfs_may_alloc_data_chunk(fs_info,
3791 							 found_key.offset);
3792 			if (ret < 0) {
3793 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3794 				goto error;
3795 			} else if (ret == 1) {
3796 				chunk_reserved = 1;
3797 			}
3798 		}
3799 
3800 		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3801 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3802 		if (ret == -ENOSPC) {
3803 			enospc_errors++;
3804 		} else if (ret == -ETXTBSY) {
3805 			btrfs_info(fs_info,
3806 	   "skipping relocation of block group %llu due to active swapfile",
3807 				   found_key.offset);
3808 			ret = 0;
3809 		} else if (ret) {
3810 			goto error;
3811 		} else {
3812 			spin_lock(&fs_info->balance_lock);
3813 			bctl->stat.completed++;
3814 			spin_unlock(&fs_info->balance_lock);
3815 		}
3816 loop:
3817 		if (found_key.offset == 0)
3818 			break;
3819 		key.offset = found_key.offset - 1;
3820 	}
3821 
3822 	if (counting) {
3823 		btrfs_release_path(path);
3824 		counting = false;
3825 		goto again;
3826 	}
3827 error:
3828 	btrfs_free_path(path);
3829 	if (enospc_errors) {
3830 		btrfs_info(fs_info, "%d enospc errors during balance",
3831 			   enospc_errors);
3832 		if (!ret)
3833 			ret = -ENOSPC;
3834 	}
3835 
3836 	return ret;
3837 }
3838 
3839 /**
3840  * alloc_profile_is_valid - see if a given profile is valid and reduced
3841  * @flags: profile to validate
3842  * @extended: if true @flags is treated as an extended profile
3843  */
3844 static int alloc_profile_is_valid(u64 flags, int extended)
3845 {
3846 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3847 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3848 
3849 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3850 
3851 	/* 1) check that all other bits are zeroed */
3852 	if (flags & ~mask)
3853 		return 0;
3854 
3855 	/* 2) see if profile is reduced */
3856 	if (flags == 0)
3857 		return !extended; /* "0" is valid for usual profiles */
3858 
3859 	/* true if exactly one bit set */
3860 	return is_power_of_2(flags);
3861 }
3862 
3863 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3864 {
3865 	/* cancel requested || normal exit path */
3866 	return atomic_read(&fs_info->balance_cancel_req) ||
3867 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3868 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3869 }
3870 
3871 /* Non-zero return value signifies invalidity */
3872 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3873 		u64 allowed)
3874 {
3875 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3876 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3877 		 (bctl_arg->target & ~allowed)));
3878 }
3879 
3880 /*
3881  * Fill @buf with textual description of balance filter flags @bargs, up to
3882  * @size_buf including the terminating null. The output may be trimmed if it
3883  * does not fit into the provided buffer.
3884  */
3885 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3886 				 u32 size_buf)
3887 {
3888 	int ret;
3889 	u32 size_bp = size_buf;
3890 	char *bp = buf;
3891 	u64 flags = bargs->flags;
3892 	char tmp_buf[128] = {'\0'};
3893 
3894 	if (!flags)
3895 		return;
3896 
3897 #define CHECK_APPEND_NOARG(a)						\
3898 	do {								\
3899 		ret = snprintf(bp, size_bp, (a));			\
3900 		if (ret < 0 || ret >= size_bp)				\
3901 			goto out_overflow;				\
3902 		size_bp -= ret;						\
3903 		bp += ret;						\
3904 	} while (0)
3905 
3906 #define CHECK_APPEND_1ARG(a, v1)					\
3907 	do {								\
3908 		ret = snprintf(bp, size_bp, (a), (v1));			\
3909 		if (ret < 0 || ret >= size_bp)				\
3910 			goto out_overflow;				\
3911 		size_bp -= ret;						\
3912 		bp += ret;						\
3913 	} while (0)
3914 
3915 #define CHECK_APPEND_2ARG(a, v1, v2)					\
3916 	do {								\
3917 		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
3918 		if (ret < 0 || ret >= size_bp)				\
3919 			goto out_overflow;				\
3920 		size_bp -= ret;						\
3921 		bp += ret;						\
3922 	} while (0)
3923 
3924 	if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
3925 		int index = btrfs_bg_flags_to_raid_index(bargs->target);
3926 
3927 		CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
3928 	}
3929 
3930 	if (flags & BTRFS_BALANCE_ARGS_SOFT)
3931 		CHECK_APPEND_NOARG("soft,");
3932 
3933 	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3934 		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3935 					    sizeof(tmp_buf));
3936 		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3937 	}
3938 
3939 	if (flags & BTRFS_BALANCE_ARGS_USAGE)
3940 		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3941 
3942 	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3943 		CHECK_APPEND_2ARG("usage=%u..%u,",
3944 				  bargs->usage_min, bargs->usage_max);
3945 
3946 	if (flags & BTRFS_BALANCE_ARGS_DEVID)
3947 		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3948 
3949 	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3950 		CHECK_APPEND_2ARG("drange=%llu..%llu,",
3951 				  bargs->pstart, bargs->pend);
3952 
3953 	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3954 		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3955 				  bargs->vstart, bargs->vend);
3956 
3957 	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3958 		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3959 
3960 	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3961 		CHECK_APPEND_2ARG("limit=%u..%u,",
3962 				bargs->limit_min, bargs->limit_max);
3963 
3964 	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3965 		CHECK_APPEND_2ARG("stripes=%u..%u,",
3966 				  bargs->stripes_min, bargs->stripes_max);
3967 
3968 #undef CHECK_APPEND_2ARG
3969 #undef CHECK_APPEND_1ARG
3970 #undef CHECK_APPEND_NOARG
3971 
3972 out_overflow:
3973 
3974 	if (size_bp < size_buf)
3975 		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3976 	else
3977 		buf[0] = '\0';
3978 }
3979 
3980 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3981 {
3982 	u32 size_buf = 1024;
3983 	char tmp_buf[192] = {'\0'};
3984 	char *buf;
3985 	char *bp;
3986 	u32 size_bp = size_buf;
3987 	int ret;
3988 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3989 
3990 	buf = kzalloc(size_buf, GFP_KERNEL);
3991 	if (!buf)
3992 		return;
3993 
3994 	bp = buf;
3995 
3996 #define CHECK_APPEND_1ARG(a, v1)					\
3997 	do {								\
3998 		ret = snprintf(bp, size_bp, (a), (v1));			\
3999 		if (ret < 0 || ret >= size_bp)				\
4000 			goto out_overflow;				\
4001 		size_bp -= ret;						\
4002 		bp += ret;						\
4003 	} while (0)
4004 
4005 	if (bctl->flags & BTRFS_BALANCE_FORCE)
4006 		CHECK_APPEND_1ARG("%s", "-f ");
4007 
4008 	if (bctl->flags & BTRFS_BALANCE_DATA) {
4009 		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4010 		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4011 	}
4012 
4013 	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4014 		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4015 		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4016 	}
4017 
4018 	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4019 		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4020 		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4021 	}
4022 
4023 #undef CHECK_APPEND_1ARG
4024 
4025 out_overflow:
4026 
4027 	if (size_bp < size_buf)
4028 		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4029 	btrfs_info(fs_info, "balance: %s %s",
4030 		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4031 		   "resume" : "start", buf);
4032 
4033 	kfree(buf);
4034 }
4035 
4036 /*
4037  * Should be called with balance mutexe held
4038  */
4039 int btrfs_balance(struct btrfs_fs_info *fs_info,
4040 		  struct btrfs_balance_control *bctl,
4041 		  struct btrfs_ioctl_balance_args *bargs)
4042 {
4043 	u64 meta_target, data_target;
4044 	u64 allowed;
4045 	int mixed = 0;
4046 	int ret;
4047 	u64 num_devices;
4048 	unsigned seq;
4049 	bool reducing_integrity;
4050 
4051 	if (btrfs_fs_closing(fs_info) ||
4052 	    atomic_read(&fs_info->balance_pause_req) ||
4053 	    atomic_read(&fs_info->balance_cancel_req)) {
4054 		ret = -EINVAL;
4055 		goto out;
4056 	}
4057 
4058 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4059 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4060 		mixed = 1;
4061 
4062 	/*
4063 	 * In case of mixed groups both data and meta should be picked,
4064 	 * and identical options should be given for both of them.
4065 	 */
4066 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4067 	if (mixed && (bctl->flags & allowed)) {
4068 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4069 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4070 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4071 			btrfs_err(fs_info,
4072 	  "balance: mixed groups data and metadata options must be the same");
4073 			ret = -EINVAL;
4074 			goto out;
4075 		}
4076 	}
4077 
4078 	num_devices = btrfs_num_devices(fs_info);
4079 
4080 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4081 	if (num_devices > 1)
4082 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4083 	if (num_devices > 2)
4084 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
4085 	if (num_devices > 3)
4086 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4087 			    BTRFS_BLOCK_GROUP_RAID6);
4088 	if (validate_convert_profile(&bctl->data, allowed)) {
4089 		int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4090 
4091 		btrfs_err(fs_info,
4092 			  "balance: invalid convert data profile %s",
4093 			  get_raid_name(index));
4094 		ret = -EINVAL;
4095 		goto out;
4096 	}
4097 	if (validate_convert_profile(&bctl->meta, allowed)) {
4098 		int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4099 
4100 		btrfs_err(fs_info,
4101 			  "balance: invalid convert metadata profile %s",
4102 			  get_raid_name(index));
4103 		ret = -EINVAL;
4104 		goto out;
4105 	}
4106 	if (validate_convert_profile(&bctl->sys, allowed)) {
4107 		int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4108 
4109 		btrfs_err(fs_info,
4110 			  "balance: invalid convert system profile %s",
4111 			  get_raid_name(index));
4112 		ret = -EINVAL;
4113 		goto out;
4114 	}
4115 
4116 	/* allow to reduce meta or sys integrity only if force set */
4117 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4118 			BTRFS_BLOCK_GROUP_RAID10 |
4119 			BTRFS_BLOCK_GROUP_RAID5 |
4120 			BTRFS_BLOCK_GROUP_RAID6;
4121 	do {
4122 		seq = read_seqbegin(&fs_info->profiles_lock);
4123 
4124 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4125 		     (fs_info->avail_system_alloc_bits & allowed) &&
4126 		     !(bctl->sys.target & allowed)) ||
4127 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4128 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4129 		     !(bctl->meta.target & allowed)))
4130 			reducing_integrity = true;
4131 		else
4132 			reducing_integrity = false;
4133 
4134 		/* if we're not converting, the target field is uninitialized */
4135 		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4136 			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4137 		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4138 			bctl->data.target : fs_info->avail_data_alloc_bits;
4139 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4140 
4141 	if (reducing_integrity) {
4142 		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4143 			btrfs_info(fs_info,
4144 				   "balance: force reducing metadata integrity");
4145 		} else {
4146 			btrfs_err(fs_info,
4147 	  "balance: reduces metadata integrity, use --force if you want this");
4148 			ret = -EINVAL;
4149 			goto out;
4150 		}
4151 	}
4152 
4153 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4154 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4155 		int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4156 		int data_index = btrfs_bg_flags_to_raid_index(data_target);
4157 
4158 		btrfs_warn(fs_info,
4159 	"balance: metadata profile %s has lower redundancy than data profile %s",
4160 			   get_raid_name(meta_index), get_raid_name(data_index));
4161 	}
4162 
4163 	ret = insert_balance_item(fs_info, bctl);
4164 	if (ret && ret != -EEXIST)
4165 		goto out;
4166 
4167 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4168 		BUG_ON(ret == -EEXIST);
4169 		BUG_ON(fs_info->balance_ctl);
4170 		spin_lock(&fs_info->balance_lock);
4171 		fs_info->balance_ctl = bctl;
4172 		spin_unlock(&fs_info->balance_lock);
4173 	} else {
4174 		BUG_ON(ret != -EEXIST);
4175 		spin_lock(&fs_info->balance_lock);
4176 		update_balance_args(bctl);
4177 		spin_unlock(&fs_info->balance_lock);
4178 	}
4179 
4180 	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4181 	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4182 	describe_balance_start_or_resume(fs_info);
4183 	mutex_unlock(&fs_info->balance_mutex);
4184 
4185 	ret = __btrfs_balance(fs_info);
4186 
4187 	mutex_lock(&fs_info->balance_mutex);
4188 	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4189 		btrfs_info(fs_info, "balance: paused");
4190 	else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4191 		btrfs_info(fs_info, "balance: canceled");
4192 	else
4193 		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4194 
4195 	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4196 
4197 	if (bargs) {
4198 		memset(bargs, 0, sizeof(*bargs));
4199 		btrfs_update_ioctl_balance_args(fs_info, bargs);
4200 	}
4201 
4202 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4203 	    balance_need_close(fs_info)) {
4204 		reset_balance_state(fs_info);
4205 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4206 	}
4207 
4208 	wake_up(&fs_info->balance_wait_q);
4209 
4210 	return ret;
4211 out:
4212 	if (bctl->flags & BTRFS_BALANCE_RESUME)
4213 		reset_balance_state(fs_info);
4214 	else
4215 		kfree(bctl);
4216 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4217 
4218 	return ret;
4219 }
4220 
4221 static int balance_kthread(void *data)
4222 {
4223 	struct btrfs_fs_info *fs_info = data;
4224 	int ret = 0;
4225 
4226 	mutex_lock(&fs_info->balance_mutex);
4227 	if (fs_info->balance_ctl)
4228 		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4229 	mutex_unlock(&fs_info->balance_mutex);
4230 
4231 	return ret;
4232 }
4233 
4234 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4235 {
4236 	struct task_struct *tsk;
4237 
4238 	mutex_lock(&fs_info->balance_mutex);
4239 	if (!fs_info->balance_ctl) {
4240 		mutex_unlock(&fs_info->balance_mutex);
4241 		return 0;
4242 	}
4243 	mutex_unlock(&fs_info->balance_mutex);
4244 
4245 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4246 		btrfs_info(fs_info, "balance: resume skipped");
4247 		return 0;
4248 	}
4249 
4250 	/*
4251 	 * A ro->rw remount sequence should continue with the paused balance
4252 	 * regardless of who pauses it, system or the user as of now, so set
4253 	 * the resume flag.
4254 	 */
4255 	spin_lock(&fs_info->balance_lock);
4256 	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4257 	spin_unlock(&fs_info->balance_lock);
4258 
4259 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4260 	return PTR_ERR_OR_ZERO(tsk);
4261 }
4262 
4263 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4264 {
4265 	struct btrfs_balance_control *bctl;
4266 	struct btrfs_balance_item *item;
4267 	struct btrfs_disk_balance_args disk_bargs;
4268 	struct btrfs_path *path;
4269 	struct extent_buffer *leaf;
4270 	struct btrfs_key key;
4271 	int ret;
4272 
4273 	path = btrfs_alloc_path();
4274 	if (!path)
4275 		return -ENOMEM;
4276 
4277 	key.objectid = BTRFS_BALANCE_OBJECTID;
4278 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4279 	key.offset = 0;
4280 
4281 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4282 	if (ret < 0)
4283 		goto out;
4284 	if (ret > 0) { /* ret = -ENOENT; */
4285 		ret = 0;
4286 		goto out;
4287 	}
4288 
4289 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4290 	if (!bctl) {
4291 		ret = -ENOMEM;
4292 		goto out;
4293 	}
4294 
4295 	leaf = path->nodes[0];
4296 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4297 
4298 	bctl->flags = btrfs_balance_flags(leaf, item);
4299 	bctl->flags |= BTRFS_BALANCE_RESUME;
4300 
4301 	btrfs_balance_data(leaf, item, &disk_bargs);
4302 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4303 	btrfs_balance_meta(leaf, item, &disk_bargs);
4304 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4305 	btrfs_balance_sys(leaf, item, &disk_bargs);
4306 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4307 
4308 	/*
4309 	 * This should never happen, as the paused balance state is recovered
4310 	 * during mount without any chance of other exclusive ops to collide.
4311 	 *
4312 	 * This gives the exclusive op status to balance and keeps in paused
4313 	 * state until user intervention (cancel or umount). If the ownership
4314 	 * cannot be assigned, show a message but do not fail. The balance
4315 	 * is in a paused state and must have fs_info::balance_ctl properly
4316 	 * set up.
4317 	 */
4318 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4319 		btrfs_warn(fs_info,
4320 	"balance: cannot set exclusive op status, resume manually");
4321 
4322 	mutex_lock(&fs_info->balance_mutex);
4323 	BUG_ON(fs_info->balance_ctl);
4324 	spin_lock(&fs_info->balance_lock);
4325 	fs_info->balance_ctl = bctl;
4326 	spin_unlock(&fs_info->balance_lock);
4327 	mutex_unlock(&fs_info->balance_mutex);
4328 out:
4329 	btrfs_free_path(path);
4330 	return ret;
4331 }
4332 
4333 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4334 {
4335 	int ret = 0;
4336 
4337 	mutex_lock(&fs_info->balance_mutex);
4338 	if (!fs_info->balance_ctl) {
4339 		mutex_unlock(&fs_info->balance_mutex);
4340 		return -ENOTCONN;
4341 	}
4342 
4343 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4344 		atomic_inc(&fs_info->balance_pause_req);
4345 		mutex_unlock(&fs_info->balance_mutex);
4346 
4347 		wait_event(fs_info->balance_wait_q,
4348 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4349 
4350 		mutex_lock(&fs_info->balance_mutex);
4351 		/* we are good with balance_ctl ripped off from under us */
4352 		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4353 		atomic_dec(&fs_info->balance_pause_req);
4354 	} else {
4355 		ret = -ENOTCONN;
4356 	}
4357 
4358 	mutex_unlock(&fs_info->balance_mutex);
4359 	return ret;
4360 }
4361 
4362 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4363 {
4364 	mutex_lock(&fs_info->balance_mutex);
4365 	if (!fs_info->balance_ctl) {
4366 		mutex_unlock(&fs_info->balance_mutex);
4367 		return -ENOTCONN;
4368 	}
4369 
4370 	/*
4371 	 * A paused balance with the item stored on disk can be resumed at
4372 	 * mount time if the mount is read-write. Otherwise it's still paused
4373 	 * and we must not allow cancelling as it deletes the item.
4374 	 */
4375 	if (sb_rdonly(fs_info->sb)) {
4376 		mutex_unlock(&fs_info->balance_mutex);
4377 		return -EROFS;
4378 	}
4379 
4380 	atomic_inc(&fs_info->balance_cancel_req);
4381 	/*
4382 	 * if we are running just wait and return, balance item is
4383 	 * deleted in btrfs_balance in this case
4384 	 */
4385 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4386 		mutex_unlock(&fs_info->balance_mutex);
4387 		wait_event(fs_info->balance_wait_q,
4388 			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4389 		mutex_lock(&fs_info->balance_mutex);
4390 	} else {
4391 		mutex_unlock(&fs_info->balance_mutex);
4392 		/*
4393 		 * Lock released to allow other waiters to continue, we'll
4394 		 * reexamine the status again.
4395 		 */
4396 		mutex_lock(&fs_info->balance_mutex);
4397 
4398 		if (fs_info->balance_ctl) {
4399 			reset_balance_state(fs_info);
4400 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4401 			btrfs_info(fs_info, "balance: canceled");
4402 		}
4403 	}
4404 
4405 	BUG_ON(fs_info->balance_ctl ||
4406 		test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4407 	atomic_dec(&fs_info->balance_cancel_req);
4408 	mutex_unlock(&fs_info->balance_mutex);
4409 	return 0;
4410 }
4411 
4412 static int btrfs_uuid_scan_kthread(void *data)
4413 {
4414 	struct btrfs_fs_info *fs_info = data;
4415 	struct btrfs_root *root = fs_info->tree_root;
4416 	struct btrfs_key key;
4417 	struct btrfs_path *path = NULL;
4418 	int ret = 0;
4419 	struct extent_buffer *eb;
4420 	int slot;
4421 	struct btrfs_root_item root_item;
4422 	u32 item_size;
4423 	struct btrfs_trans_handle *trans = NULL;
4424 
4425 	path = btrfs_alloc_path();
4426 	if (!path) {
4427 		ret = -ENOMEM;
4428 		goto out;
4429 	}
4430 
4431 	key.objectid = 0;
4432 	key.type = BTRFS_ROOT_ITEM_KEY;
4433 	key.offset = 0;
4434 
4435 	while (1) {
4436 		ret = btrfs_search_forward(root, &key, path,
4437 				BTRFS_OLDEST_GENERATION);
4438 		if (ret) {
4439 			if (ret > 0)
4440 				ret = 0;
4441 			break;
4442 		}
4443 
4444 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4445 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4446 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4447 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4448 			goto skip;
4449 
4450 		eb = path->nodes[0];
4451 		slot = path->slots[0];
4452 		item_size = btrfs_item_size_nr(eb, slot);
4453 		if (item_size < sizeof(root_item))
4454 			goto skip;
4455 
4456 		read_extent_buffer(eb, &root_item,
4457 				   btrfs_item_ptr_offset(eb, slot),
4458 				   (int)sizeof(root_item));
4459 		if (btrfs_root_refs(&root_item) == 0)
4460 			goto skip;
4461 
4462 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4463 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4464 			if (trans)
4465 				goto update_tree;
4466 
4467 			btrfs_release_path(path);
4468 			/*
4469 			 * 1 - subvol uuid item
4470 			 * 1 - received_subvol uuid item
4471 			 */
4472 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4473 			if (IS_ERR(trans)) {
4474 				ret = PTR_ERR(trans);
4475 				break;
4476 			}
4477 			continue;
4478 		} else {
4479 			goto skip;
4480 		}
4481 update_tree:
4482 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4483 			ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4484 						  BTRFS_UUID_KEY_SUBVOL,
4485 						  key.objectid);
4486 			if (ret < 0) {
4487 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4488 					ret);
4489 				break;
4490 			}
4491 		}
4492 
4493 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4494 			ret = btrfs_uuid_tree_add(trans,
4495 						  root_item.received_uuid,
4496 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497 						  key.objectid);
4498 			if (ret < 0) {
4499 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4500 					ret);
4501 				break;
4502 			}
4503 		}
4504 
4505 skip:
4506 		if (trans) {
4507 			ret = btrfs_end_transaction(trans);
4508 			trans = NULL;
4509 			if (ret)
4510 				break;
4511 		}
4512 
4513 		btrfs_release_path(path);
4514 		if (key.offset < (u64)-1) {
4515 			key.offset++;
4516 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4517 			key.offset = 0;
4518 			key.type = BTRFS_ROOT_ITEM_KEY;
4519 		} else if (key.objectid < (u64)-1) {
4520 			key.offset = 0;
4521 			key.type = BTRFS_ROOT_ITEM_KEY;
4522 			key.objectid++;
4523 		} else {
4524 			break;
4525 		}
4526 		cond_resched();
4527 	}
4528 
4529 out:
4530 	btrfs_free_path(path);
4531 	if (trans && !IS_ERR(trans))
4532 		btrfs_end_transaction(trans);
4533 	if (ret)
4534 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4535 	else
4536 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4537 	up(&fs_info->uuid_tree_rescan_sem);
4538 	return 0;
4539 }
4540 
4541 /*
4542  * Callback for btrfs_uuid_tree_iterate().
4543  * returns:
4544  * 0	check succeeded, the entry is not outdated.
4545  * < 0	if an error occurred.
4546  * > 0	if the check failed, which means the caller shall remove the entry.
4547  */
4548 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4549 				       u8 *uuid, u8 type, u64 subid)
4550 {
4551 	struct btrfs_key key;
4552 	int ret = 0;
4553 	struct btrfs_root *subvol_root;
4554 
4555 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4556 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4557 		goto out;
4558 
4559 	key.objectid = subid;
4560 	key.type = BTRFS_ROOT_ITEM_KEY;
4561 	key.offset = (u64)-1;
4562 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4563 	if (IS_ERR(subvol_root)) {
4564 		ret = PTR_ERR(subvol_root);
4565 		if (ret == -ENOENT)
4566 			ret = 1;
4567 		goto out;
4568 	}
4569 
4570 	switch (type) {
4571 	case BTRFS_UUID_KEY_SUBVOL:
4572 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4573 			ret = 1;
4574 		break;
4575 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4576 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4577 			   BTRFS_UUID_SIZE))
4578 			ret = 1;
4579 		break;
4580 	}
4581 
4582 out:
4583 	return ret;
4584 }
4585 
4586 static int btrfs_uuid_rescan_kthread(void *data)
4587 {
4588 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4589 	int ret;
4590 
4591 	/*
4592 	 * 1st step is to iterate through the existing UUID tree and
4593 	 * to delete all entries that contain outdated data.
4594 	 * 2nd step is to add all missing entries to the UUID tree.
4595 	 */
4596 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4597 	if (ret < 0) {
4598 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4599 		up(&fs_info->uuid_tree_rescan_sem);
4600 		return ret;
4601 	}
4602 	return btrfs_uuid_scan_kthread(data);
4603 }
4604 
4605 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4606 {
4607 	struct btrfs_trans_handle *trans;
4608 	struct btrfs_root *tree_root = fs_info->tree_root;
4609 	struct btrfs_root *uuid_root;
4610 	struct task_struct *task;
4611 	int ret;
4612 
4613 	/*
4614 	 * 1 - root node
4615 	 * 1 - root item
4616 	 */
4617 	trans = btrfs_start_transaction(tree_root, 2);
4618 	if (IS_ERR(trans))
4619 		return PTR_ERR(trans);
4620 
4621 	uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4622 	if (IS_ERR(uuid_root)) {
4623 		ret = PTR_ERR(uuid_root);
4624 		btrfs_abort_transaction(trans, ret);
4625 		btrfs_end_transaction(trans);
4626 		return ret;
4627 	}
4628 
4629 	fs_info->uuid_root = uuid_root;
4630 
4631 	ret = btrfs_commit_transaction(trans);
4632 	if (ret)
4633 		return ret;
4634 
4635 	down(&fs_info->uuid_tree_rescan_sem);
4636 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4637 	if (IS_ERR(task)) {
4638 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4639 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4640 		up(&fs_info->uuid_tree_rescan_sem);
4641 		return PTR_ERR(task);
4642 	}
4643 
4644 	return 0;
4645 }
4646 
4647 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4648 {
4649 	struct task_struct *task;
4650 
4651 	down(&fs_info->uuid_tree_rescan_sem);
4652 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4653 	if (IS_ERR(task)) {
4654 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4655 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4656 		up(&fs_info->uuid_tree_rescan_sem);
4657 		return PTR_ERR(task);
4658 	}
4659 
4660 	return 0;
4661 }
4662 
4663 /*
4664  * shrinking a device means finding all of the device extents past
4665  * the new size, and then following the back refs to the chunks.
4666  * The chunk relocation code actually frees the device extent
4667  */
4668 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4669 {
4670 	struct btrfs_fs_info *fs_info = device->fs_info;
4671 	struct btrfs_root *root = fs_info->dev_root;
4672 	struct btrfs_trans_handle *trans;
4673 	struct btrfs_dev_extent *dev_extent = NULL;
4674 	struct btrfs_path *path;
4675 	u64 length;
4676 	u64 chunk_offset;
4677 	int ret;
4678 	int slot;
4679 	int failed = 0;
4680 	bool retried = false;
4681 	struct extent_buffer *l;
4682 	struct btrfs_key key;
4683 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4684 	u64 old_total = btrfs_super_total_bytes(super_copy);
4685 	u64 old_size = btrfs_device_get_total_bytes(device);
4686 	u64 diff;
4687 	u64 start;
4688 
4689 	new_size = round_down(new_size, fs_info->sectorsize);
4690 	start = new_size;
4691 	diff = round_down(old_size - new_size, fs_info->sectorsize);
4692 
4693 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4694 		return -EINVAL;
4695 
4696 	path = btrfs_alloc_path();
4697 	if (!path)
4698 		return -ENOMEM;
4699 
4700 	path->reada = READA_BACK;
4701 
4702 	trans = btrfs_start_transaction(root, 0);
4703 	if (IS_ERR(trans)) {
4704 		btrfs_free_path(path);
4705 		return PTR_ERR(trans);
4706 	}
4707 
4708 	mutex_lock(&fs_info->chunk_mutex);
4709 
4710 	btrfs_device_set_total_bytes(device, new_size);
4711 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4712 		device->fs_devices->total_rw_bytes -= diff;
4713 		atomic64_sub(diff, &fs_info->free_chunk_space);
4714 	}
4715 
4716 	/*
4717 	 * Once the device's size has been set to the new size, ensure all
4718 	 * in-memory chunks are synced to disk so that the loop below sees them
4719 	 * and relocates them accordingly.
4720 	 */
4721 	if (contains_pending_extent(device, &start, diff)) {
4722 		mutex_unlock(&fs_info->chunk_mutex);
4723 		ret = btrfs_commit_transaction(trans);
4724 		if (ret)
4725 			goto done;
4726 	} else {
4727 		mutex_unlock(&fs_info->chunk_mutex);
4728 		btrfs_end_transaction(trans);
4729 	}
4730 
4731 again:
4732 	key.objectid = device->devid;
4733 	key.offset = (u64)-1;
4734 	key.type = BTRFS_DEV_EXTENT_KEY;
4735 
4736 	do {
4737 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
4738 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4739 		if (ret < 0) {
4740 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4741 			goto done;
4742 		}
4743 
4744 		ret = btrfs_previous_item(root, path, 0, key.type);
4745 		if (ret)
4746 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4747 		if (ret < 0)
4748 			goto done;
4749 		if (ret) {
4750 			ret = 0;
4751 			btrfs_release_path(path);
4752 			break;
4753 		}
4754 
4755 		l = path->nodes[0];
4756 		slot = path->slots[0];
4757 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4758 
4759 		if (key.objectid != device->devid) {
4760 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4761 			btrfs_release_path(path);
4762 			break;
4763 		}
4764 
4765 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4766 		length = btrfs_dev_extent_length(l, dev_extent);
4767 
4768 		if (key.offset + length <= new_size) {
4769 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4770 			btrfs_release_path(path);
4771 			break;
4772 		}
4773 
4774 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4775 		btrfs_release_path(path);
4776 
4777 		/*
4778 		 * We may be relocating the only data chunk we have,
4779 		 * which could potentially end up with losing data's
4780 		 * raid profile, so lets allocate an empty one in
4781 		 * advance.
4782 		 */
4783 		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4784 		if (ret < 0) {
4785 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4786 			goto done;
4787 		}
4788 
4789 		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4790 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4791 		if (ret == -ENOSPC) {
4792 			failed++;
4793 		} else if (ret) {
4794 			if (ret == -ETXTBSY) {
4795 				btrfs_warn(fs_info,
4796 		   "could not shrink block group %llu due to active swapfile",
4797 					   chunk_offset);
4798 			}
4799 			goto done;
4800 		}
4801 	} while (key.offset-- > 0);
4802 
4803 	if (failed && !retried) {
4804 		failed = 0;
4805 		retried = true;
4806 		goto again;
4807 	} else if (failed && retried) {
4808 		ret = -ENOSPC;
4809 		goto done;
4810 	}
4811 
4812 	/* Shrinking succeeded, else we would be at "done". */
4813 	trans = btrfs_start_transaction(root, 0);
4814 	if (IS_ERR(trans)) {
4815 		ret = PTR_ERR(trans);
4816 		goto done;
4817 	}
4818 
4819 	mutex_lock(&fs_info->chunk_mutex);
4820 	btrfs_device_set_disk_total_bytes(device, new_size);
4821 	if (list_empty(&device->post_commit_list))
4822 		list_add_tail(&device->post_commit_list,
4823 			      &trans->transaction->dev_update_list);
4824 
4825 	WARN_ON(diff > old_total);
4826 	btrfs_set_super_total_bytes(super_copy,
4827 			round_down(old_total - diff, fs_info->sectorsize));
4828 	mutex_unlock(&fs_info->chunk_mutex);
4829 
4830 	/* Now btrfs_update_device() will change the on-disk size. */
4831 	ret = btrfs_update_device(trans, device);
4832 	if (ret < 0) {
4833 		btrfs_abort_transaction(trans, ret);
4834 		btrfs_end_transaction(trans);
4835 	} else {
4836 		ret = btrfs_commit_transaction(trans);
4837 	}
4838 done:
4839 	btrfs_free_path(path);
4840 	if (ret) {
4841 		mutex_lock(&fs_info->chunk_mutex);
4842 		btrfs_device_set_total_bytes(device, old_size);
4843 		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4844 			device->fs_devices->total_rw_bytes += diff;
4845 		atomic64_add(diff, &fs_info->free_chunk_space);
4846 		mutex_unlock(&fs_info->chunk_mutex);
4847 	}
4848 	return ret;
4849 }
4850 
4851 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4852 			   struct btrfs_key *key,
4853 			   struct btrfs_chunk *chunk, int item_size)
4854 {
4855 	struct btrfs_super_block *super_copy = fs_info->super_copy;
4856 	struct btrfs_disk_key disk_key;
4857 	u32 array_size;
4858 	u8 *ptr;
4859 
4860 	mutex_lock(&fs_info->chunk_mutex);
4861 	array_size = btrfs_super_sys_array_size(super_copy);
4862 	if (array_size + item_size + sizeof(disk_key)
4863 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4864 		mutex_unlock(&fs_info->chunk_mutex);
4865 		return -EFBIG;
4866 	}
4867 
4868 	ptr = super_copy->sys_chunk_array + array_size;
4869 	btrfs_cpu_key_to_disk(&disk_key, key);
4870 	memcpy(ptr, &disk_key, sizeof(disk_key));
4871 	ptr += sizeof(disk_key);
4872 	memcpy(ptr, chunk, item_size);
4873 	item_size += sizeof(disk_key);
4874 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4875 	mutex_unlock(&fs_info->chunk_mutex);
4876 
4877 	return 0;
4878 }
4879 
4880 /*
4881  * sort the devices in descending order by max_avail, total_avail
4882  */
4883 static int btrfs_cmp_device_info(const void *a, const void *b)
4884 {
4885 	const struct btrfs_device_info *di_a = a;
4886 	const struct btrfs_device_info *di_b = b;
4887 
4888 	if (di_a->max_avail > di_b->max_avail)
4889 		return -1;
4890 	if (di_a->max_avail < di_b->max_avail)
4891 		return 1;
4892 	if (di_a->total_avail > di_b->total_avail)
4893 		return -1;
4894 	if (di_a->total_avail < di_b->total_avail)
4895 		return 1;
4896 	return 0;
4897 }
4898 
4899 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4900 {
4901 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4902 		return;
4903 
4904 	btrfs_set_fs_incompat(info, RAID56);
4905 }
4906 
4907 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4908 			       u64 start, u64 type)
4909 {
4910 	struct btrfs_fs_info *info = trans->fs_info;
4911 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4912 	struct btrfs_device *device;
4913 	struct map_lookup *map = NULL;
4914 	struct extent_map_tree *em_tree;
4915 	struct extent_map *em;
4916 	struct btrfs_device_info *devices_info = NULL;
4917 	u64 total_avail;
4918 	int num_stripes;	/* total number of stripes to allocate */
4919 	int data_stripes;	/* number of stripes that count for
4920 				   block group size */
4921 	int sub_stripes;	/* sub_stripes info for map */
4922 	int dev_stripes;	/* stripes per dev */
4923 	int devs_max;		/* max devs to use */
4924 	int devs_min;		/* min devs needed */
4925 	int devs_increment;	/* ndevs has to be a multiple of this */
4926 	int ncopies;		/* how many copies to data has */
4927 	int nparity;		/* number of stripes worth of bytes to
4928 				   store parity information */
4929 	int ret;
4930 	u64 max_stripe_size;
4931 	u64 max_chunk_size;
4932 	u64 stripe_size;
4933 	u64 chunk_size;
4934 	int ndevs;
4935 	int i;
4936 	int j;
4937 	int index;
4938 
4939 	BUG_ON(!alloc_profile_is_valid(type, 0));
4940 
4941 	if (list_empty(&fs_devices->alloc_list)) {
4942 		if (btrfs_test_opt(info, ENOSPC_DEBUG))
4943 			btrfs_debug(info, "%s: no writable device", __func__);
4944 		return -ENOSPC;
4945 	}
4946 
4947 	index = btrfs_bg_flags_to_raid_index(type);
4948 
4949 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4950 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4951 	devs_max = btrfs_raid_array[index].devs_max;
4952 	devs_min = btrfs_raid_array[index].devs_min;
4953 	devs_increment = btrfs_raid_array[index].devs_increment;
4954 	ncopies = btrfs_raid_array[index].ncopies;
4955 	nparity = btrfs_raid_array[index].nparity;
4956 
4957 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4958 		max_stripe_size = SZ_1G;
4959 		max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4960 		if (!devs_max)
4961 			devs_max = BTRFS_MAX_DEVS(info);
4962 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4963 		/* for larger filesystems, use larger metadata chunks */
4964 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4965 			max_stripe_size = SZ_1G;
4966 		else
4967 			max_stripe_size = SZ_256M;
4968 		max_chunk_size = max_stripe_size;
4969 		if (!devs_max)
4970 			devs_max = BTRFS_MAX_DEVS(info);
4971 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4972 		max_stripe_size = SZ_32M;
4973 		max_chunk_size = 2 * max_stripe_size;
4974 		if (!devs_max)
4975 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4976 	} else {
4977 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4978 		       type);
4979 		BUG();
4980 	}
4981 
4982 	/* We don't want a chunk larger than 10% of writable space */
4983 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4984 			     max_chunk_size);
4985 
4986 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4987 			       GFP_NOFS);
4988 	if (!devices_info)
4989 		return -ENOMEM;
4990 
4991 	/*
4992 	 * in the first pass through the devices list, we gather information
4993 	 * about the available holes on each device.
4994 	 */
4995 	ndevs = 0;
4996 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4997 		u64 max_avail;
4998 		u64 dev_offset;
4999 
5000 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5001 			WARN(1, KERN_ERR
5002 			       "BTRFS: read-only device in alloc_list\n");
5003 			continue;
5004 		}
5005 
5006 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5007 					&device->dev_state) ||
5008 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5009 			continue;
5010 
5011 		if (device->total_bytes > device->bytes_used)
5012 			total_avail = device->total_bytes - device->bytes_used;
5013 		else
5014 			total_avail = 0;
5015 
5016 		/* If there is no space on this device, skip it. */
5017 		if (total_avail == 0)
5018 			continue;
5019 
5020 		ret = find_free_dev_extent(device,
5021 					   max_stripe_size * dev_stripes,
5022 					   &dev_offset, &max_avail);
5023 		if (ret && ret != -ENOSPC)
5024 			goto error;
5025 
5026 		if (ret == 0)
5027 			max_avail = max_stripe_size * dev_stripes;
5028 
5029 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5030 			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5031 				btrfs_debug(info,
5032 			"%s: devid %llu has no free space, have=%llu want=%u",
5033 					    __func__, device->devid, max_avail,
5034 					    BTRFS_STRIPE_LEN * dev_stripes);
5035 			continue;
5036 		}
5037 
5038 		if (ndevs == fs_devices->rw_devices) {
5039 			WARN(1, "%s: found more than %llu devices\n",
5040 			     __func__, fs_devices->rw_devices);
5041 			break;
5042 		}
5043 		devices_info[ndevs].dev_offset = dev_offset;
5044 		devices_info[ndevs].max_avail = max_avail;
5045 		devices_info[ndevs].total_avail = total_avail;
5046 		devices_info[ndevs].dev = device;
5047 		++ndevs;
5048 	}
5049 
5050 	/*
5051 	 * now sort the devices by hole size / available space
5052 	 */
5053 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5054 	     btrfs_cmp_device_info, NULL);
5055 
5056 	/* round down to number of usable stripes */
5057 	ndevs = round_down(ndevs, devs_increment);
5058 
5059 	if (ndevs < devs_min) {
5060 		ret = -ENOSPC;
5061 		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5062 			btrfs_debug(info,
5063 	"%s: not enough devices with free space: have=%d minimum required=%d",
5064 				    __func__, ndevs, devs_min);
5065 		}
5066 		goto error;
5067 	}
5068 
5069 	ndevs = min(ndevs, devs_max);
5070 
5071 	/*
5072 	 * The primary goal is to maximize the number of stripes, so use as
5073 	 * many devices as possible, even if the stripes are not maximum sized.
5074 	 *
5075 	 * The DUP profile stores more than one stripe per device, the
5076 	 * max_avail is the total size so we have to adjust.
5077 	 */
5078 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5079 	num_stripes = ndevs * dev_stripes;
5080 
5081 	/*
5082 	 * this will have to be fixed for RAID1 and RAID10 over
5083 	 * more drives
5084 	 */
5085 	data_stripes = (num_stripes - nparity) / ncopies;
5086 
5087 	/*
5088 	 * Use the number of data stripes to figure out how big this chunk
5089 	 * is really going to be in terms of logical address space,
5090 	 * and compare that answer with the max chunk size. If it's higher,
5091 	 * we try to reduce stripe_size.
5092 	 */
5093 	if (stripe_size * data_stripes > max_chunk_size) {
5094 		/*
5095 		 * Reduce stripe_size, round it up to a 16MB boundary again and
5096 		 * then use it, unless it ends up being even bigger than the
5097 		 * previous value we had already.
5098 		 */
5099 		stripe_size = min(round_up(div_u64(max_chunk_size,
5100 						   data_stripes), SZ_16M),
5101 				  stripe_size);
5102 	}
5103 
5104 	/* align to BTRFS_STRIPE_LEN */
5105 	stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5106 
5107 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5108 	if (!map) {
5109 		ret = -ENOMEM;
5110 		goto error;
5111 	}
5112 	map->num_stripes = num_stripes;
5113 
5114 	for (i = 0; i < ndevs; ++i) {
5115 		for (j = 0; j < dev_stripes; ++j) {
5116 			int s = i * dev_stripes + j;
5117 			map->stripes[s].dev = devices_info[i].dev;
5118 			map->stripes[s].physical = devices_info[i].dev_offset +
5119 						   j * stripe_size;
5120 		}
5121 	}
5122 	map->stripe_len = BTRFS_STRIPE_LEN;
5123 	map->io_align = BTRFS_STRIPE_LEN;
5124 	map->io_width = BTRFS_STRIPE_LEN;
5125 	map->type = type;
5126 	map->sub_stripes = sub_stripes;
5127 
5128 	chunk_size = stripe_size * data_stripes;
5129 
5130 	trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5131 
5132 	em = alloc_extent_map();
5133 	if (!em) {
5134 		kfree(map);
5135 		ret = -ENOMEM;
5136 		goto error;
5137 	}
5138 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5139 	em->map_lookup = map;
5140 	em->start = start;
5141 	em->len = chunk_size;
5142 	em->block_start = 0;
5143 	em->block_len = em->len;
5144 	em->orig_block_len = stripe_size;
5145 
5146 	em_tree = &info->mapping_tree.map_tree;
5147 	write_lock(&em_tree->lock);
5148 	ret = add_extent_mapping(em_tree, em, 0);
5149 	if (ret) {
5150 		write_unlock(&em_tree->lock);
5151 		free_extent_map(em);
5152 		goto error;
5153 	}
5154 	write_unlock(&em_tree->lock);
5155 
5156 	ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5157 	if (ret)
5158 		goto error_del_extent;
5159 
5160 	for (i = 0; i < map->num_stripes; i++) {
5161 		struct btrfs_device *dev = map->stripes[i].dev;
5162 
5163 		btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5164 		if (list_empty(&dev->post_commit_list))
5165 			list_add_tail(&dev->post_commit_list,
5166 				      &trans->transaction->dev_update_list);
5167 	}
5168 
5169 	atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5170 
5171 	free_extent_map(em);
5172 	check_raid56_incompat_flag(info, type);
5173 
5174 	kfree(devices_info);
5175 	return 0;
5176 
5177 error_del_extent:
5178 	write_lock(&em_tree->lock);
5179 	remove_extent_mapping(em_tree, em);
5180 	write_unlock(&em_tree->lock);
5181 
5182 	/* One for our allocation */
5183 	free_extent_map(em);
5184 	/* One for the tree reference */
5185 	free_extent_map(em);
5186 error:
5187 	kfree(devices_info);
5188 	return ret;
5189 }
5190 
5191 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5192 			     u64 chunk_offset, u64 chunk_size)
5193 {
5194 	struct btrfs_fs_info *fs_info = trans->fs_info;
5195 	struct btrfs_root *extent_root = fs_info->extent_root;
5196 	struct btrfs_root *chunk_root = fs_info->chunk_root;
5197 	struct btrfs_key key;
5198 	struct btrfs_device *device;
5199 	struct btrfs_chunk *chunk;
5200 	struct btrfs_stripe *stripe;
5201 	struct extent_map *em;
5202 	struct map_lookup *map;
5203 	size_t item_size;
5204 	u64 dev_offset;
5205 	u64 stripe_size;
5206 	int i = 0;
5207 	int ret = 0;
5208 
5209 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5210 	if (IS_ERR(em))
5211 		return PTR_ERR(em);
5212 
5213 	map = em->map_lookup;
5214 	item_size = btrfs_chunk_item_size(map->num_stripes);
5215 	stripe_size = em->orig_block_len;
5216 
5217 	chunk = kzalloc(item_size, GFP_NOFS);
5218 	if (!chunk) {
5219 		ret = -ENOMEM;
5220 		goto out;
5221 	}
5222 
5223 	/*
5224 	 * Take the device list mutex to prevent races with the final phase of
5225 	 * a device replace operation that replaces the device object associated
5226 	 * with the map's stripes, because the device object's id can change
5227 	 * at any time during that final phase of the device replace operation
5228 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
5229 	 */
5230 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5231 	for (i = 0; i < map->num_stripes; i++) {
5232 		device = map->stripes[i].dev;
5233 		dev_offset = map->stripes[i].physical;
5234 
5235 		ret = btrfs_update_device(trans, device);
5236 		if (ret)
5237 			break;
5238 		ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5239 					     dev_offset, stripe_size);
5240 		if (ret)
5241 			break;
5242 	}
5243 	if (ret) {
5244 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5245 		goto out;
5246 	}
5247 
5248 	stripe = &chunk->stripe;
5249 	for (i = 0; i < map->num_stripes; i++) {
5250 		device = map->stripes[i].dev;
5251 		dev_offset = map->stripes[i].physical;
5252 
5253 		btrfs_set_stack_stripe_devid(stripe, device->devid);
5254 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5255 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5256 		stripe++;
5257 	}
5258 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5259 
5260 	btrfs_set_stack_chunk_length(chunk, chunk_size);
5261 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5262 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5263 	btrfs_set_stack_chunk_type(chunk, map->type);
5264 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5265 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5266 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5267 	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5268 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5269 
5270 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5271 	key.type = BTRFS_CHUNK_ITEM_KEY;
5272 	key.offset = chunk_offset;
5273 
5274 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5275 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5276 		/*
5277 		 * TODO: Cleanup of inserted chunk root in case of
5278 		 * failure.
5279 		 */
5280 		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5281 	}
5282 
5283 out:
5284 	kfree(chunk);
5285 	free_extent_map(em);
5286 	return ret;
5287 }
5288 
5289 /*
5290  * Chunk allocation falls into two parts. The first part does work
5291  * that makes the new allocated chunk usable, but does not do any operation
5292  * that modifies the chunk tree. The second part does the work that
5293  * requires modifying the chunk tree. This division is important for the
5294  * bootstrap process of adding storage to a seed btrfs.
5295  */
5296 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5297 {
5298 	u64 chunk_offset;
5299 
5300 	lockdep_assert_held(&trans->fs_info->chunk_mutex);
5301 	chunk_offset = find_next_chunk(trans->fs_info);
5302 	return __btrfs_alloc_chunk(trans, chunk_offset, type);
5303 }
5304 
5305 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5306 {
5307 	struct btrfs_fs_info *fs_info = trans->fs_info;
5308 	u64 chunk_offset;
5309 	u64 sys_chunk_offset;
5310 	u64 alloc_profile;
5311 	int ret;
5312 
5313 	chunk_offset = find_next_chunk(fs_info);
5314 	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5315 	ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5316 	if (ret)
5317 		return ret;
5318 
5319 	sys_chunk_offset = find_next_chunk(fs_info);
5320 	alloc_profile = btrfs_system_alloc_profile(fs_info);
5321 	ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5322 	return ret;
5323 }
5324 
5325 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5326 {
5327 	int max_errors;
5328 
5329 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5330 			 BTRFS_BLOCK_GROUP_RAID10 |
5331 			 BTRFS_BLOCK_GROUP_RAID5 |
5332 			 BTRFS_BLOCK_GROUP_DUP)) {
5333 		max_errors = 1;
5334 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5335 		max_errors = 2;
5336 	} else {
5337 		max_errors = 0;
5338 	}
5339 
5340 	return max_errors;
5341 }
5342 
5343 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5344 {
5345 	struct extent_map *em;
5346 	struct map_lookup *map;
5347 	int readonly = 0;
5348 	int miss_ndevs = 0;
5349 	int i;
5350 
5351 	em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5352 	if (IS_ERR(em))
5353 		return 1;
5354 
5355 	map = em->map_lookup;
5356 	for (i = 0; i < map->num_stripes; i++) {
5357 		if (test_bit(BTRFS_DEV_STATE_MISSING,
5358 					&map->stripes[i].dev->dev_state)) {
5359 			miss_ndevs++;
5360 			continue;
5361 		}
5362 		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5363 					&map->stripes[i].dev->dev_state)) {
5364 			readonly = 1;
5365 			goto end;
5366 		}
5367 	}
5368 
5369 	/*
5370 	 * If the number of missing devices is larger than max errors,
5371 	 * we can not write the data into that chunk successfully, so
5372 	 * set it readonly.
5373 	 */
5374 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5375 		readonly = 1;
5376 end:
5377 	free_extent_map(em);
5378 	return readonly;
5379 }
5380 
5381 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5382 {
5383 	extent_map_tree_init(&tree->map_tree);
5384 }
5385 
5386 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5387 {
5388 	struct extent_map *em;
5389 
5390 	while (1) {
5391 		write_lock(&tree->map_tree.lock);
5392 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5393 		if (em)
5394 			remove_extent_mapping(&tree->map_tree, em);
5395 		write_unlock(&tree->map_tree.lock);
5396 		if (!em)
5397 			break;
5398 		/* once for us */
5399 		free_extent_map(em);
5400 		/* once for the tree */
5401 		free_extent_map(em);
5402 	}
5403 }
5404 
5405 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5406 {
5407 	struct extent_map *em;
5408 	struct map_lookup *map;
5409 	int ret;
5410 
5411 	em = btrfs_get_chunk_map(fs_info, logical, len);
5412 	if (IS_ERR(em))
5413 		/*
5414 		 * We could return errors for these cases, but that could get
5415 		 * ugly and we'd probably do the same thing which is just not do
5416 		 * anything else and exit, so return 1 so the callers don't try
5417 		 * to use other copies.
5418 		 */
5419 		return 1;
5420 
5421 	map = em->map_lookup;
5422 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5423 		ret = map->num_stripes;
5424 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5425 		ret = map->sub_stripes;
5426 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5427 		ret = 2;
5428 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5429 		/*
5430 		 * There could be two corrupted data stripes, we need
5431 		 * to loop retry in order to rebuild the correct data.
5432 		 *
5433 		 * Fail a stripe at a time on every retry except the
5434 		 * stripe under reconstruction.
5435 		 */
5436 		ret = map->num_stripes;
5437 	else
5438 		ret = 1;
5439 	free_extent_map(em);
5440 
5441 	down_read(&fs_info->dev_replace.rwsem);
5442 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5443 	    fs_info->dev_replace.tgtdev)
5444 		ret++;
5445 	up_read(&fs_info->dev_replace.rwsem);
5446 
5447 	return ret;
5448 }
5449 
5450 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5451 				    u64 logical)
5452 {
5453 	struct extent_map *em;
5454 	struct map_lookup *map;
5455 	unsigned long len = fs_info->sectorsize;
5456 
5457 	em = btrfs_get_chunk_map(fs_info, logical, len);
5458 
5459 	if (!WARN_ON(IS_ERR(em))) {
5460 		map = em->map_lookup;
5461 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5462 			len = map->stripe_len * nr_data_stripes(map);
5463 		free_extent_map(em);
5464 	}
5465 	return len;
5466 }
5467 
5468 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5469 {
5470 	struct extent_map *em;
5471 	struct map_lookup *map;
5472 	int ret = 0;
5473 
5474 	em = btrfs_get_chunk_map(fs_info, logical, len);
5475 
5476 	if(!WARN_ON(IS_ERR(em))) {
5477 		map = em->map_lookup;
5478 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5479 			ret = 1;
5480 		free_extent_map(em);
5481 	}
5482 	return ret;
5483 }
5484 
5485 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5486 			    struct map_lookup *map, int first,
5487 			    int dev_replace_is_ongoing)
5488 {
5489 	int i;
5490 	int num_stripes;
5491 	int preferred_mirror;
5492 	int tolerance;
5493 	struct btrfs_device *srcdev;
5494 
5495 	ASSERT((map->type &
5496 		 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5497 
5498 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5499 		num_stripes = map->sub_stripes;
5500 	else
5501 		num_stripes = map->num_stripes;
5502 
5503 	preferred_mirror = first + current->pid % num_stripes;
5504 
5505 	if (dev_replace_is_ongoing &&
5506 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5507 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5508 		srcdev = fs_info->dev_replace.srcdev;
5509 	else
5510 		srcdev = NULL;
5511 
5512 	/*
5513 	 * try to avoid the drive that is the source drive for a
5514 	 * dev-replace procedure, only choose it if no other non-missing
5515 	 * mirror is available
5516 	 */
5517 	for (tolerance = 0; tolerance < 2; tolerance++) {
5518 		if (map->stripes[preferred_mirror].dev->bdev &&
5519 		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5520 			return preferred_mirror;
5521 		for (i = first; i < first + num_stripes; i++) {
5522 			if (map->stripes[i].dev->bdev &&
5523 			    (tolerance || map->stripes[i].dev != srcdev))
5524 				return i;
5525 		}
5526 	}
5527 
5528 	/* we couldn't find one that doesn't fail.  Just return something
5529 	 * and the io error handling code will clean up eventually
5530 	 */
5531 	return preferred_mirror;
5532 }
5533 
5534 static inline int parity_smaller(u64 a, u64 b)
5535 {
5536 	return a > b;
5537 }
5538 
5539 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5540 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5541 {
5542 	struct btrfs_bio_stripe s;
5543 	int i;
5544 	u64 l;
5545 	int again = 1;
5546 
5547 	while (again) {
5548 		again = 0;
5549 		for (i = 0; i < num_stripes - 1; i++) {
5550 			if (parity_smaller(bbio->raid_map[i],
5551 					   bbio->raid_map[i+1])) {
5552 				s = bbio->stripes[i];
5553 				l = bbio->raid_map[i];
5554 				bbio->stripes[i] = bbio->stripes[i+1];
5555 				bbio->raid_map[i] = bbio->raid_map[i+1];
5556 				bbio->stripes[i+1] = s;
5557 				bbio->raid_map[i+1] = l;
5558 
5559 				again = 1;
5560 			}
5561 		}
5562 	}
5563 }
5564 
5565 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5566 {
5567 	struct btrfs_bio *bbio = kzalloc(
5568 		 /* the size of the btrfs_bio */
5569 		sizeof(struct btrfs_bio) +
5570 		/* plus the variable array for the stripes */
5571 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5572 		/* plus the variable array for the tgt dev */
5573 		sizeof(int) * (real_stripes) +
5574 		/*
5575 		 * plus the raid_map, which includes both the tgt dev
5576 		 * and the stripes
5577 		 */
5578 		sizeof(u64) * (total_stripes),
5579 		GFP_NOFS|__GFP_NOFAIL);
5580 
5581 	atomic_set(&bbio->error, 0);
5582 	refcount_set(&bbio->refs, 1);
5583 
5584 	return bbio;
5585 }
5586 
5587 void btrfs_get_bbio(struct btrfs_bio *bbio)
5588 {
5589 	WARN_ON(!refcount_read(&bbio->refs));
5590 	refcount_inc(&bbio->refs);
5591 }
5592 
5593 void btrfs_put_bbio(struct btrfs_bio *bbio)
5594 {
5595 	if (!bbio)
5596 		return;
5597 	if (refcount_dec_and_test(&bbio->refs))
5598 		kfree(bbio);
5599 }
5600 
5601 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5602 /*
5603  * Please note that, discard won't be sent to target device of device
5604  * replace.
5605  */
5606 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5607 					 u64 logical, u64 length,
5608 					 struct btrfs_bio **bbio_ret)
5609 {
5610 	struct extent_map *em;
5611 	struct map_lookup *map;
5612 	struct btrfs_bio *bbio;
5613 	u64 offset;
5614 	u64 stripe_nr;
5615 	u64 stripe_nr_end;
5616 	u64 stripe_end_offset;
5617 	u64 stripe_cnt;
5618 	u64 stripe_len;
5619 	u64 stripe_offset;
5620 	u64 num_stripes;
5621 	u32 stripe_index;
5622 	u32 factor = 0;
5623 	u32 sub_stripes = 0;
5624 	u64 stripes_per_dev = 0;
5625 	u32 remaining_stripes = 0;
5626 	u32 last_stripe = 0;
5627 	int ret = 0;
5628 	int i;
5629 
5630 	/* discard always return a bbio */
5631 	ASSERT(bbio_ret);
5632 
5633 	em = btrfs_get_chunk_map(fs_info, logical, length);
5634 	if (IS_ERR(em))
5635 		return PTR_ERR(em);
5636 
5637 	map = em->map_lookup;
5638 	/* we don't discard raid56 yet */
5639 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5640 		ret = -EOPNOTSUPP;
5641 		goto out;
5642 	}
5643 
5644 	offset = logical - em->start;
5645 	length = min_t(u64, em->len - offset, length);
5646 
5647 	stripe_len = map->stripe_len;
5648 	/*
5649 	 * stripe_nr counts the total number of stripes we have to stride
5650 	 * to get to this block
5651 	 */
5652 	stripe_nr = div64_u64(offset, stripe_len);
5653 
5654 	/* stripe_offset is the offset of this block in its stripe */
5655 	stripe_offset = offset - stripe_nr * stripe_len;
5656 
5657 	stripe_nr_end = round_up(offset + length, map->stripe_len);
5658 	stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5659 	stripe_cnt = stripe_nr_end - stripe_nr;
5660 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5661 			    (offset + length);
5662 	/*
5663 	 * after this, stripe_nr is the number of stripes on this
5664 	 * device we have to walk to find the data, and stripe_index is
5665 	 * the number of our device in the stripe array
5666 	 */
5667 	num_stripes = 1;
5668 	stripe_index = 0;
5669 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5670 			 BTRFS_BLOCK_GROUP_RAID10)) {
5671 		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5672 			sub_stripes = 1;
5673 		else
5674 			sub_stripes = map->sub_stripes;
5675 
5676 		factor = map->num_stripes / sub_stripes;
5677 		num_stripes = min_t(u64, map->num_stripes,
5678 				    sub_stripes * stripe_cnt);
5679 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5680 		stripe_index *= sub_stripes;
5681 		stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5682 					      &remaining_stripes);
5683 		div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5684 		last_stripe *= sub_stripes;
5685 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5686 				BTRFS_BLOCK_GROUP_DUP)) {
5687 		num_stripes = map->num_stripes;
5688 	} else {
5689 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5690 					&stripe_index);
5691 	}
5692 
5693 	bbio = alloc_btrfs_bio(num_stripes, 0);
5694 	if (!bbio) {
5695 		ret = -ENOMEM;
5696 		goto out;
5697 	}
5698 
5699 	for (i = 0; i < num_stripes; i++) {
5700 		bbio->stripes[i].physical =
5701 			map->stripes[stripe_index].physical +
5702 			stripe_offset + stripe_nr * map->stripe_len;
5703 		bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5704 
5705 		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5706 				 BTRFS_BLOCK_GROUP_RAID10)) {
5707 			bbio->stripes[i].length = stripes_per_dev *
5708 				map->stripe_len;
5709 
5710 			if (i / sub_stripes < remaining_stripes)
5711 				bbio->stripes[i].length +=
5712 					map->stripe_len;
5713 
5714 			/*
5715 			 * Special for the first stripe and
5716 			 * the last stripe:
5717 			 *
5718 			 * |-------|...|-------|
5719 			 *     |----------|
5720 			 *    off     end_off
5721 			 */
5722 			if (i < sub_stripes)
5723 				bbio->stripes[i].length -=
5724 					stripe_offset;
5725 
5726 			if (stripe_index >= last_stripe &&
5727 			    stripe_index <= (last_stripe +
5728 					     sub_stripes - 1))
5729 				bbio->stripes[i].length -=
5730 					stripe_end_offset;
5731 
5732 			if (i == sub_stripes - 1)
5733 				stripe_offset = 0;
5734 		} else {
5735 			bbio->stripes[i].length = length;
5736 		}
5737 
5738 		stripe_index++;
5739 		if (stripe_index == map->num_stripes) {
5740 			stripe_index = 0;
5741 			stripe_nr++;
5742 		}
5743 	}
5744 
5745 	*bbio_ret = bbio;
5746 	bbio->map_type = map->type;
5747 	bbio->num_stripes = num_stripes;
5748 out:
5749 	free_extent_map(em);
5750 	return ret;
5751 }
5752 
5753 /*
5754  * In dev-replace case, for repair case (that's the only case where the mirror
5755  * is selected explicitly when calling btrfs_map_block), blocks left of the
5756  * left cursor can also be read from the target drive.
5757  *
5758  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5759  * array of stripes.
5760  * For READ, it also needs to be supported using the same mirror number.
5761  *
5762  * If the requested block is not left of the left cursor, EIO is returned. This
5763  * can happen because btrfs_num_copies() returns one more in the dev-replace
5764  * case.
5765  */
5766 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5767 					 u64 logical, u64 length,
5768 					 u64 srcdev_devid, int *mirror_num,
5769 					 u64 *physical)
5770 {
5771 	struct btrfs_bio *bbio = NULL;
5772 	int num_stripes;
5773 	int index_srcdev = 0;
5774 	int found = 0;
5775 	u64 physical_of_found = 0;
5776 	int i;
5777 	int ret = 0;
5778 
5779 	ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5780 				logical, &length, &bbio, 0, 0);
5781 	if (ret) {
5782 		ASSERT(bbio == NULL);
5783 		return ret;
5784 	}
5785 
5786 	num_stripes = bbio->num_stripes;
5787 	if (*mirror_num > num_stripes) {
5788 		/*
5789 		 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5790 		 * that means that the requested area is not left of the left
5791 		 * cursor
5792 		 */
5793 		btrfs_put_bbio(bbio);
5794 		return -EIO;
5795 	}
5796 
5797 	/*
5798 	 * process the rest of the function using the mirror_num of the source
5799 	 * drive. Therefore look it up first.  At the end, patch the device
5800 	 * pointer to the one of the target drive.
5801 	 */
5802 	for (i = 0; i < num_stripes; i++) {
5803 		if (bbio->stripes[i].dev->devid != srcdev_devid)
5804 			continue;
5805 
5806 		/*
5807 		 * In case of DUP, in order to keep it simple, only add the
5808 		 * mirror with the lowest physical address
5809 		 */
5810 		if (found &&
5811 		    physical_of_found <= bbio->stripes[i].physical)
5812 			continue;
5813 
5814 		index_srcdev = i;
5815 		found = 1;
5816 		physical_of_found = bbio->stripes[i].physical;
5817 	}
5818 
5819 	btrfs_put_bbio(bbio);
5820 
5821 	ASSERT(found);
5822 	if (!found)
5823 		return -EIO;
5824 
5825 	*mirror_num = index_srcdev + 1;
5826 	*physical = physical_of_found;
5827 	return ret;
5828 }
5829 
5830 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5831 				      struct btrfs_bio **bbio_ret,
5832 				      struct btrfs_dev_replace *dev_replace,
5833 				      int *num_stripes_ret, int *max_errors_ret)
5834 {
5835 	struct btrfs_bio *bbio = *bbio_ret;
5836 	u64 srcdev_devid = dev_replace->srcdev->devid;
5837 	int tgtdev_indexes = 0;
5838 	int num_stripes = *num_stripes_ret;
5839 	int max_errors = *max_errors_ret;
5840 	int i;
5841 
5842 	if (op == BTRFS_MAP_WRITE) {
5843 		int index_where_to_add;
5844 
5845 		/*
5846 		 * duplicate the write operations while the dev replace
5847 		 * procedure is running. Since the copying of the old disk to
5848 		 * the new disk takes place at run time while the filesystem is
5849 		 * mounted writable, the regular write operations to the old
5850 		 * disk have to be duplicated to go to the new disk as well.
5851 		 *
5852 		 * Note that device->missing is handled by the caller, and that
5853 		 * the write to the old disk is already set up in the stripes
5854 		 * array.
5855 		 */
5856 		index_where_to_add = num_stripes;
5857 		for (i = 0; i < num_stripes; i++) {
5858 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5859 				/* write to new disk, too */
5860 				struct btrfs_bio_stripe *new =
5861 					bbio->stripes + index_where_to_add;
5862 				struct btrfs_bio_stripe *old =
5863 					bbio->stripes + i;
5864 
5865 				new->physical = old->physical;
5866 				new->length = old->length;
5867 				new->dev = dev_replace->tgtdev;
5868 				bbio->tgtdev_map[i] = index_where_to_add;
5869 				index_where_to_add++;
5870 				max_errors++;
5871 				tgtdev_indexes++;
5872 			}
5873 		}
5874 		num_stripes = index_where_to_add;
5875 	} else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5876 		int index_srcdev = 0;
5877 		int found = 0;
5878 		u64 physical_of_found = 0;
5879 
5880 		/*
5881 		 * During the dev-replace procedure, the target drive can also
5882 		 * be used to read data in case it is needed to repair a corrupt
5883 		 * block elsewhere. This is possible if the requested area is
5884 		 * left of the left cursor. In this area, the target drive is a
5885 		 * full copy of the source drive.
5886 		 */
5887 		for (i = 0; i < num_stripes; i++) {
5888 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5889 				/*
5890 				 * In case of DUP, in order to keep it simple,
5891 				 * only add the mirror with the lowest physical
5892 				 * address
5893 				 */
5894 				if (found &&
5895 				    physical_of_found <=
5896 				     bbio->stripes[i].physical)
5897 					continue;
5898 				index_srcdev = i;
5899 				found = 1;
5900 				physical_of_found = bbio->stripes[i].physical;
5901 			}
5902 		}
5903 		if (found) {
5904 			struct btrfs_bio_stripe *tgtdev_stripe =
5905 				bbio->stripes + num_stripes;
5906 
5907 			tgtdev_stripe->physical = physical_of_found;
5908 			tgtdev_stripe->length =
5909 				bbio->stripes[index_srcdev].length;
5910 			tgtdev_stripe->dev = dev_replace->tgtdev;
5911 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5912 
5913 			tgtdev_indexes++;
5914 			num_stripes++;
5915 		}
5916 	}
5917 
5918 	*num_stripes_ret = num_stripes;
5919 	*max_errors_ret = max_errors;
5920 	bbio->num_tgtdevs = tgtdev_indexes;
5921 	*bbio_ret = bbio;
5922 }
5923 
5924 static bool need_full_stripe(enum btrfs_map_op op)
5925 {
5926 	return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5927 }
5928 
5929 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5930 			     enum btrfs_map_op op,
5931 			     u64 logical, u64 *length,
5932 			     struct btrfs_bio **bbio_ret,
5933 			     int mirror_num, int need_raid_map)
5934 {
5935 	struct extent_map *em;
5936 	struct map_lookup *map;
5937 	u64 offset;
5938 	u64 stripe_offset;
5939 	u64 stripe_nr;
5940 	u64 stripe_len;
5941 	u32 stripe_index;
5942 	int i;
5943 	int ret = 0;
5944 	int num_stripes;
5945 	int max_errors = 0;
5946 	int tgtdev_indexes = 0;
5947 	struct btrfs_bio *bbio = NULL;
5948 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5949 	int dev_replace_is_ongoing = 0;
5950 	int num_alloc_stripes;
5951 	int patch_the_first_stripe_for_dev_replace = 0;
5952 	u64 physical_to_patch_in_first_stripe = 0;
5953 	u64 raid56_full_stripe_start = (u64)-1;
5954 
5955 	if (op == BTRFS_MAP_DISCARD)
5956 		return __btrfs_map_block_for_discard(fs_info, logical,
5957 						     *length, bbio_ret);
5958 
5959 	em = btrfs_get_chunk_map(fs_info, logical, *length);
5960 	if (IS_ERR(em))
5961 		return PTR_ERR(em);
5962 
5963 	map = em->map_lookup;
5964 	offset = logical - em->start;
5965 
5966 	stripe_len = map->stripe_len;
5967 	stripe_nr = offset;
5968 	/*
5969 	 * stripe_nr counts the total number of stripes we have to stride
5970 	 * to get to this block
5971 	 */
5972 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5973 
5974 	stripe_offset = stripe_nr * stripe_len;
5975 	if (offset < stripe_offset) {
5976 		btrfs_crit(fs_info,
5977 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5978 			   stripe_offset, offset, em->start, logical,
5979 			   stripe_len);
5980 		free_extent_map(em);
5981 		return -EINVAL;
5982 	}
5983 
5984 	/* stripe_offset is the offset of this block in its stripe*/
5985 	stripe_offset = offset - stripe_offset;
5986 
5987 	/* if we're here for raid56, we need to know the stripe aligned start */
5988 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5989 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5990 		raid56_full_stripe_start = offset;
5991 
5992 		/* allow a write of a full stripe, but make sure we don't
5993 		 * allow straddling of stripes
5994 		 */
5995 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5996 				full_stripe_len);
5997 		raid56_full_stripe_start *= full_stripe_len;
5998 	}
5999 
6000 	if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6001 		u64 max_len;
6002 		/* For writes to RAID[56], allow a full stripeset across all disks.
6003 		   For other RAID types and for RAID[56] reads, just allow a single
6004 		   stripe (on a single disk). */
6005 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6006 		    (op == BTRFS_MAP_WRITE)) {
6007 			max_len = stripe_len * nr_data_stripes(map) -
6008 				(offset - raid56_full_stripe_start);
6009 		} else {
6010 			/* we limit the length of each bio to what fits in a stripe */
6011 			max_len = stripe_len - stripe_offset;
6012 		}
6013 		*length = min_t(u64, em->len - offset, max_len);
6014 	} else {
6015 		*length = em->len - offset;
6016 	}
6017 
6018 	/*
6019 	 * This is for when we're called from btrfs_bio_fits_in_stripe and all
6020 	 * it cares about is the length
6021 	 */
6022 	if (!bbio_ret)
6023 		goto out;
6024 
6025 	down_read(&dev_replace->rwsem);
6026 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6027 	/*
6028 	 * Hold the semaphore for read during the whole operation, write is
6029 	 * requested at commit time but must wait.
6030 	 */
6031 	if (!dev_replace_is_ongoing)
6032 		up_read(&dev_replace->rwsem);
6033 
6034 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6035 	    !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6036 		ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6037 						    dev_replace->srcdev->devid,
6038 						    &mirror_num,
6039 					    &physical_to_patch_in_first_stripe);
6040 		if (ret)
6041 			goto out;
6042 		else
6043 			patch_the_first_stripe_for_dev_replace = 1;
6044 	} else if (mirror_num > map->num_stripes) {
6045 		mirror_num = 0;
6046 	}
6047 
6048 	num_stripes = 1;
6049 	stripe_index = 0;
6050 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6051 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6052 				&stripe_index);
6053 		if (!need_full_stripe(op))
6054 			mirror_num = 1;
6055 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6056 		if (need_full_stripe(op))
6057 			num_stripes = map->num_stripes;
6058 		else if (mirror_num)
6059 			stripe_index = mirror_num - 1;
6060 		else {
6061 			stripe_index = find_live_mirror(fs_info, map, 0,
6062 					    dev_replace_is_ongoing);
6063 			mirror_num = stripe_index + 1;
6064 		}
6065 
6066 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6067 		if (need_full_stripe(op)) {
6068 			num_stripes = map->num_stripes;
6069 		} else if (mirror_num) {
6070 			stripe_index = mirror_num - 1;
6071 		} else {
6072 			mirror_num = 1;
6073 		}
6074 
6075 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6076 		u32 factor = map->num_stripes / map->sub_stripes;
6077 
6078 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6079 		stripe_index *= map->sub_stripes;
6080 
6081 		if (need_full_stripe(op))
6082 			num_stripes = map->sub_stripes;
6083 		else if (mirror_num)
6084 			stripe_index += mirror_num - 1;
6085 		else {
6086 			int old_stripe_index = stripe_index;
6087 			stripe_index = find_live_mirror(fs_info, map,
6088 					      stripe_index,
6089 					      dev_replace_is_ongoing);
6090 			mirror_num = stripe_index - old_stripe_index + 1;
6091 		}
6092 
6093 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6094 		if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6095 			/* push stripe_nr back to the start of the full stripe */
6096 			stripe_nr = div64_u64(raid56_full_stripe_start,
6097 					stripe_len * nr_data_stripes(map));
6098 
6099 			/* RAID[56] write or recovery. Return all stripes */
6100 			num_stripes = map->num_stripes;
6101 			max_errors = nr_parity_stripes(map);
6102 
6103 			*length = map->stripe_len;
6104 			stripe_index = 0;
6105 			stripe_offset = 0;
6106 		} else {
6107 			/*
6108 			 * Mirror #0 or #1 means the original data block.
6109 			 * Mirror #2 is RAID5 parity block.
6110 			 * Mirror #3 is RAID6 Q block.
6111 			 */
6112 			stripe_nr = div_u64_rem(stripe_nr,
6113 					nr_data_stripes(map), &stripe_index);
6114 			if (mirror_num > 1)
6115 				stripe_index = nr_data_stripes(map) +
6116 						mirror_num - 2;
6117 
6118 			/* We distribute the parity blocks across stripes */
6119 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6120 					&stripe_index);
6121 			if (!need_full_stripe(op) && mirror_num <= 1)
6122 				mirror_num = 1;
6123 		}
6124 	} else {
6125 		/*
6126 		 * after this, stripe_nr is the number of stripes on this
6127 		 * device we have to walk to find the data, and stripe_index is
6128 		 * the number of our device in the stripe array
6129 		 */
6130 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6131 				&stripe_index);
6132 		mirror_num = stripe_index + 1;
6133 	}
6134 	if (stripe_index >= map->num_stripes) {
6135 		btrfs_crit(fs_info,
6136 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6137 			   stripe_index, map->num_stripes);
6138 		ret = -EINVAL;
6139 		goto out;
6140 	}
6141 
6142 	num_alloc_stripes = num_stripes;
6143 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6144 		if (op == BTRFS_MAP_WRITE)
6145 			num_alloc_stripes <<= 1;
6146 		if (op == BTRFS_MAP_GET_READ_MIRRORS)
6147 			num_alloc_stripes++;
6148 		tgtdev_indexes = num_stripes;
6149 	}
6150 
6151 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6152 	if (!bbio) {
6153 		ret = -ENOMEM;
6154 		goto out;
6155 	}
6156 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6157 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6158 
6159 	/* build raid_map */
6160 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6161 	    (need_full_stripe(op) || mirror_num > 1)) {
6162 		u64 tmp;
6163 		unsigned rot;
6164 
6165 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
6166 				 sizeof(struct btrfs_bio_stripe) *
6167 				 num_alloc_stripes +
6168 				 sizeof(int) * tgtdev_indexes);
6169 
6170 		/* Work out the disk rotation on this stripe-set */
6171 		div_u64_rem(stripe_nr, num_stripes, &rot);
6172 
6173 		/* Fill in the logical address of each stripe */
6174 		tmp = stripe_nr * nr_data_stripes(map);
6175 		for (i = 0; i < nr_data_stripes(map); i++)
6176 			bbio->raid_map[(i+rot) % num_stripes] =
6177 				em->start + (tmp + i) * map->stripe_len;
6178 
6179 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6180 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6181 			bbio->raid_map[(i+rot+1) % num_stripes] =
6182 				RAID6_Q_STRIPE;
6183 	}
6184 
6185 
6186 	for (i = 0; i < num_stripes; i++) {
6187 		bbio->stripes[i].physical =
6188 			map->stripes[stripe_index].physical +
6189 			stripe_offset +
6190 			stripe_nr * map->stripe_len;
6191 		bbio->stripes[i].dev =
6192 			map->stripes[stripe_index].dev;
6193 		stripe_index++;
6194 	}
6195 
6196 	if (need_full_stripe(op))
6197 		max_errors = btrfs_chunk_max_errors(map);
6198 
6199 	if (bbio->raid_map)
6200 		sort_parity_stripes(bbio, num_stripes);
6201 
6202 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6203 	    need_full_stripe(op)) {
6204 		handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6205 					  &max_errors);
6206 	}
6207 
6208 	*bbio_ret = bbio;
6209 	bbio->map_type = map->type;
6210 	bbio->num_stripes = num_stripes;
6211 	bbio->max_errors = max_errors;
6212 	bbio->mirror_num = mirror_num;
6213 
6214 	/*
6215 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6216 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
6217 	 * available as a mirror
6218 	 */
6219 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6220 		WARN_ON(num_stripes > 1);
6221 		bbio->stripes[0].dev = dev_replace->tgtdev;
6222 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6223 		bbio->mirror_num = map->num_stripes + 1;
6224 	}
6225 out:
6226 	if (dev_replace_is_ongoing) {
6227 		lockdep_assert_held(&dev_replace->rwsem);
6228 		/* Unlock and let waiting writers proceed */
6229 		up_read(&dev_replace->rwsem);
6230 	}
6231 	free_extent_map(em);
6232 	return ret;
6233 }
6234 
6235 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6236 		      u64 logical, u64 *length,
6237 		      struct btrfs_bio **bbio_ret, int mirror_num)
6238 {
6239 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6240 				 mirror_num, 0);
6241 }
6242 
6243 /* For Scrub/replace */
6244 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6245 		     u64 logical, u64 *length,
6246 		     struct btrfs_bio **bbio_ret)
6247 {
6248 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6249 }
6250 
6251 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6252 		     u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6253 {
6254 	struct extent_map *em;
6255 	struct map_lookup *map;
6256 	u64 *buf;
6257 	u64 bytenr;
6258 	u64 length;
6259 	u64 stripe_nr;
6260 	u64 rmap_len;
6261 	int i, j, nr = 0;
6262 
6263 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6264 	if (IS_ERR(em))
6265 		return -EIO;
6266 
6267 	map = em->map_lookup;
6268 	length = em->len;
6269 	rmap_len = map->stripe_len;
6270 
6271 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6272 		length = div_u64(length, map->num_stripes / map->sub_stripes);
6273 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6274 		length = div_u64(length, map->num_stripes);
6275 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6276 		length = div_u64(length, nr_data_stripes(map));
6277 		rmap_len = map->stripe_len * nr_data_stripes(map);
6278 	}
6279 
6280 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6281 	BUG_ON(!buf); /* -ENOMEM */
6282 
6283 	for (i = 0; i < map->num_stripes; i++) {
6284 		if (map->stripes[i].physical > physical ||
6285 		    map->stripes[i].physical + length <= physical)
6286 			continue;
6287 
6288 		stripe_nr = physical - map->stripes[i].physical;
6289 		stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6290 
6291 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6292 			stripe_nr = stripe_nr * map->num_stripes + i;
6293 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6294 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6295 			stripe_nr = stripe_nr * map->num_stripes + i;
6296 		} /* else if RAID[56], multiply by nr_data_stripes().
6297 		   * Alternatively, just use rmap_len below instead of
6298 		   * map->stripe_len */
6299 
6300 		bytenr = chunk_start + stripe_nr * rmap_len;
6301 		WARN_ON(nr >= map->num_stripes);
6302 		for (j = 0; j < nr; j++) {
6303 			if (buf[j] == bytenr)
6304 				break;
6305 		}
6306 		if (j == nr) {
6307 			WARN_ON(nr >= map->num_stripes);
6308 			buf[nr++] = bytenr;
6309 		}
6310 	}
6311 
6312 	*logical = buf;
6313 	*naddrs = nr;
6314 	*stripe_len = rmap_len;
6315 
6316 	free_extent_map(em);
6317 	return 0;
6318 }
6319 
6320 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6321 {
6322 	bio->bi_private = bbio->private;
6323 	bio->bi_end_io = bbio->end_io;
6324 	bio_endio(bio);
6325 
6326 	btrfs_put_bbio(bbio);
6327 }
6328 
6329 static void btrfs_end_bio(struct bio *bio)
6330 {
6331 	struct btrfs_bio *bbio = bio->bi_private;
6332 	int is_orig_bio = 0;
6333 
6334 	if (bio->bi_status) {
6335 		atomic_inc(&bbio->error);
6336 		if (bio->bi_status == BLK_STS_IOERR ||
6337 		    bio->bi_status == BLK_STS_TARGET) {
6338 			unsigned int stripe_index =
6339 				btrfs_io_bio(bio)->stripe_index;
6340 			struct btrfs_device *dev;
6341 
6342 			BUG_ON(stripe_index >= bbio->num_stripes);
6343 			dev = bbio->stripes[stripe_index].dev;
6344 			if (dev->bdev) {
6345 				if (bio_op(bio) == REQ_OP_WRITE)
6346 					btrfs_dev_stat_inc_and_print(dev,
6347 						BTRFS_DEV_STAT_WRITE_ERRS);
6348 				else if (!(bio->bi_opf & REQ_RAHEAD))
6349 					btrfs_dev_stat_inc_and_print(dev,
6350 						BTRFS_DEV_STAT_READ_ERRS);
6351 				if (bio->bi_opf & REQ_PREFLUSH)
6352 					btrfs_dev_stat_inc_and_print(dev,
6353 						BTRFS_DEV_STAT_FLUSH_ERRS);
6354 			}
6355 		}
6356 	}
6357 
6358 	if (bio == bbio->orig_bio)
6359 		is_orig_bio = 1;
6360 
6361 	btrfs_bio_counter_dec(bbio->fs_info);
6362 
6363 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6364 		if (!is_orig_bio) {
6365 			bio_put(bio);
6366 			bio = bbio->orig_bio;
6367 		}
6368 
6369 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6370 		/* only send an error to the higher layers if it is
6371 		 * beyond the tolerance of the btrfs bio
6372 		 */
6373 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6374 			bio->bi_status = BLK_STS_IOERR;
6375 		} else {
6376 			/*
6377 			 * this bio is actually up to date, we didn't
6378 			 * go over the max number of errors
6379 			 */
6380 			bio->bi_status = BLK_STS_OK;
6381 		}
6382 
6383 		btrfs_end_bbio(bbio, bio);
6384 	} else if (!is_orig_bio) {
6385 		bio_put(bio);
6386 	}
6387 }
6388 
6389 /*
6390  * see run_scheduled_bios for a description of why bios are collected for
6391  * async submit.
6392  *
6393  * This will add one bio to the pending list for a device and make sure
6394  * the work struct is scheduled.
6395  */
6396 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6397 					struct bio *bio)
6398 {
6399 	struct btrfs_fs_info *fs_info = device->fs_info;
6400 	int should_queue = 1;
6401 	struct btrfs_pending_bios *pending_bios;
6402 
6403 	/* don't bother with additional async steps for reads, right now */
6404 	if (bio_op(bio) == REQ_OP_READ) {
6405 		btrfsic_submit_bio(bio);
6406 		return;
6407 	}
6408 
6409 	WARN_ON(bio->bi_next);
6410 	bio->bi_next = NULL;
6411 
6412 	spin_lock(&device->io_lock);
6413 	if (op_is_sync(bio->bi_opf))
6414 		pending_bios = &device->pending_sync_bios;
6415 	else
6416 		pending_bios = &device->pending_bios;
6417 
6418 	if (pending_bios->tail)
6419 		pending_bios->tail->bi_next = bio;
6420 
6421 	pending_bios->tail = bio;
6422 	if (!pending_bios->head)
6423 		pending_bios->head = bio;
6424 	if (device->running_pending)
6425 		should_queue = 0;
6426 
6427 	spin_unlock(&device->io_lock);
6428 
6429 	if (should_queue)
6430 		btrfs_queue_work(fs_info->submit_workers, &device->work);
6431 }
6432 
6433 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6434 			      u64 physical, int dev_nr, int async)
6435 {
6436 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6437 	struct btrfs_fs_info *fs_info = bbio->fs_info;
6438 
6439 	bio->bi_private = bbio;
6440 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6441 	bio->bi_end_io = btrfs_end_bio;
6442 	bio->bi_iter.bi_sector = physical >> 9;
6443 	btrfs_debug_in_rcu(fs_info,
6444 	"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6445 		bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6446 		(u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6447 		bio->bi_iter.bi_size);
6448 	bio_set_dev(bio, dev->bdev);
6449 
6450 	btrfs_bio_counter_inc_noblocked(fs_info);
6451 
6452 	if (async)
6453 		btrfs_schedule_bio(dev, bio);
6454 	else
6455 		btrfsic_submit_bio(bio);
6456 }
6457 
6458 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6459 {
6460 	atomic_inc(&bbio->error);
6461 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6462 		/* Should be the original bio. */
6463 		WARN_ON(bio != bbio->orig_bio);
6464 
6465 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6466 		bio->bi_iter.bi_sector = logical >> 9;
6467 		if (atomic_read(&bbio->error) > bbio->max_errors)
6468 			bio->bi_status = BLK_STS_IOERR;
6469 		else
6470 			bio->bi_status = BLK_STS_OK;
6471 		btrfs_end_bbio(bbio, bio);
6472 	}
6473 }
6474 
6475 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6476 			   int mirror_num, int async_submit)
6477 {
6478 	struct btrfs_device *dev;
6479 	struct bio *first_bio = bio;
6480 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6481 	u64 length = 0;
6482 	u64 map_length;
6483 	int ret;
6484 	int dev_nr;
6485 	int total_devs;
6486 	struct btrfs_bio *bbio = NULL;
6487 
6488 	length = bio->bi_iter.bi_size;
6489 	map_length = length;
6490 
6491 	btrfs_bio_counter_inc_blocked(fs_info);
6492 	ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6493 				&map_length, &bbio, mirror_num, 1);
6494 	if (ret) {
6495 		btrfs_bio_counter_dec(fs_info);
6496 		return errno_to_blk_status(ret);
6497 	}
6498 
6499 	total_devs = bbio->num_stripes;
6500 	bbio->orig_bio = first_bio;
6501 	bbio->private = first_bio->bi_private;
6502 	bbio->end_io = first_bio->bi_end_io;
6503 	bbio->fs_info = fs_info;
6504 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6505 
6506 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6507 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6508 		/* In this case, map_length has been set to the length of
6509 		   a single stripe; not the whole write */
6510 		if (bio_op(bio) == REQ_OP_WRITE) {
6511 			ret = raid56_parity_write(fs_info, bio, bbio,
6512 						  map_length);
6513 		} else {
6514 			ret = raid56_parity_recover(fs_info, bio, bbio,
6515 						    map_length, mirror_num, 1);
6516 		}
6517 
6518 		btrfs_bio_counter_dec(fs_info);
6519 		return errno_to_blk_status(ret);
6520 	}
6521 
6522 	if (map_length < length) {
6523 		btrfs_crit(fs_info,
6524 			   "mapping failed logical %llu bio len %llu len %llu",
6525 			   logical, length, map_length);
6526 		BUG();
6527 	}
6528 
6529 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6530 		dev = bbio->stripes[dev_nr].dev;
6531 		if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6532 						   &dev->dev_state) ||
6533 		    (bio_op(first_bio) == REQ_OP_WRITE &&
6534 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6535 			bbio_error(bbio, first_bio, logical);
6536 			continue;
6537 		}
6538 
6539 		if (dev_nr < total_devs - 1)
6540 			bio = btrfs_bio_clone(first_bio);
6541 		else
6542 			bio = first_bio;
6543 
6544 		submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6545 				  dev_nr, async_submit);
6546 	}
6547 	btrfs_bio_counter_dec(fs_info);
6548 	return BLK_STS_OK;
6549 }
6550 
6551 /*
6552  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6553  * return NULL.
6554  *
6555  * If devid and uuid are both specified, the match must be exact, otherwise
6556  * only devid is used.
6557  *
6558  * If @seed is true, traverse through the seed devices.
6559  */
6560 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6561 				       u64 devid, u8 *uuid, u8 *fsid,
6562 				       bool seed)
6563 {
6564 	struct btrfs_device *device;
6565 
6566 	while (fs_devices) {
6567 		if (!fsid ||
6568 		    !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6569 			list_for_each_entry(device, &fs_devices->devices,
6570 					    dev_list) {
6571 				if (device->devid == devid &&
6572 				    (!uuid || memcmp(device->uuid, uuid,
6573 						     BTRFS_UUID_SIZE) == 0))
6574 					return device;
6575 			}
6576 		}
6577 		if (seed)
6578 			fs_devices = fs_devices->seed;
6579 		else
6580 			return NULL;
6581 	}
6582 	return NULL;
6583 }
6584 
6585 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6586 					    u64 devid, u8 *dev_uuid)
6587 {
6588 	struct btrfs_device *device;
6589 
6590 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6591 	if (IS_ERR(device))
6592 		return device;
6593 
6594 	list_add(&device->dev_list, &fs_devices->devices);
6595 	device->fs_devices = fs_devices;
6596 	fs_devices->num_devices++;
6597 
6598 	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6599 	fs_devices->missing_devices++;
6600 
6601 	return device;
6602 }
6603 
6604 /**
6605  * btrfs_alloc_device - allocate struct btrfs_device
6606  * @fs_info:	used only for generating a new devid, can be NULL if
6607  *		devid is provided (i.e. @devid != NULL).
6608  * @devid:	a pointer to devid for this device.  If NULL a new devid
6609  *		is generated.
6610  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6611  *		is generated.
6612  *
6613  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6614  * on error.  Returned struct is not linked onto any lists and must be
6615  * destroyed with btrfs_free_device.
6616  */
6617 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6618 					const u64 *devid,
6619 					const u8 *uuid)
6620 {
6621 	struct btrfs_device *dev;
6622 	u64 tmp;
6623 
6624 	if (WARN_ON(!devid && !fs_info))
6625 		return ERR_PTR(-EINVAL);
6626 
6627 	dev = __alloc_device();
6628 	if (IS_ERR(dev))
6629 		return dev;
6630 
6631 	if (devid)
6632 		tmp = *devid;
6633 	else {
6634 		int ret;
6635 
6636 		ret = find_next_devid(fs_info, &tmp);
6637 		if (ret) {
6638 			btrfs_free_device(dev);
6639 			return ERR_PTR(ret);
6640 		}
6641 	}
6642 	dev->devid = tmp;
6643 
6644 	if (uuid)
6645 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6646 	else
6647 		generate_random_uuid(dev->uuid);
6648 
6649 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6650 			pending_bios_fn, NULL, NULL);
6651 
6652 	return dev;
6653 }
6654 
6655 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6656 					u64 devid, u8 *uuid, bool error)
6657 {
6658 	if (error)
6659 		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6660 			      devid, uuid);
6661 	else
6662 		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6663 			      devid, uuid);
6664 }
6665 
6666 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6667 {
6668 	int index = btrfs_bg_flags_to_raid_index(type);
6669 	int ncopies = btrfs_raid_array[index].ncopies;
6670 	int data_stripes;
6671 
6672 	switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6673 	case BTRFS_BLOCK_GROUP_RAID5:
6674 		data_stripes = num_stripes - 1;
6675 		break;
6676 	case BTRFS_BLOCK_GROUP_RAID6:
6677 		data_stripes = num_stripes - 2;
6678 		break;
6679 	default:
6680 		data_stripes = num_stripes / ncopies;
6681 		break;
6682 	}
6683 	return div_u64(chunk_len, data_stripes);
6684 }
6685 
6686 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6687 			  struct btrfs_chunk *chunk)
6688 {
6689 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6690 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6691 	struct map_lookup *map;
6692 	struct extent_map *em;
6693 	u64 logical;
6694 	u64 length;
6695 	u64 devid;
6696 	u8 uuid[BTRFS_UUID_SIZE];
6697 	int num_stripes;
6698 	int ret;
6699 	int i;
6700 
6701 	logical = key->offset;
6702 	length = btrfs_chunk_length(leaf, chunk);
6703 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6704 
6705 	/*
6706 	 * Only need to verify chunk item if we're reading from sys chunk array,
6707 	 * as chunk item in tree block is already verified by tree-checker.
6708 	 */
6709 	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6710 		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6711 		if (ret)
6712 			return ret;
6713 	}
6714 
6715 	read_lock(&map_tree->map_tree.lock);
6716 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6717 	read_unlock(&map_tree->map_tree.lock);
6718 
6719 	/* already mapped? */
6720 	if (em && em->start <= logical && em->start + em->len > logical) {
6721 		free_extent_map(em);
6722 		return 0;
6723 	} else if (em) {
6724 		free_extent_map(em);
6725 	}
6726 
6727 	em = alloc_extent_map();
6728 	if (!em)
6729 		return -ENOMEM;
6730 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6731 	if (!map) {
6732 		free_extent_map(em);
6733 		return -ENOMEM;
6734 	}
6735 
6736 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6737 	em->map_lookup = map;
6738 	em->start = logical;
6739 	em->len = length;
6740 	em->orig_start = 0;
6741 	em->block_start = 0;
6742 	em->block_len = em->len;
6743 
6744 	map->num_stripes = num_stripes;
6745 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6746 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6747 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6748 	map->type = btrfs_chunk_type(leaf, chunk);
6749 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6750 	map->verified_stripes = 0;
6751 	em->orig_block_len = calc_stripe_length(map->type, em->len,
6752 						map->num_stripes);
6753 	for (i = 0; i < num_stripes; i++) {
6754 		map->stripes[i].physical =
6755 			btrfs_stripe_offset_nr(leaf, chunk, i);
6756 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6757 		read_extent_buffer(leaf, uuid, (unsigned long)
6758 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6759 				   BTRFS_UUID_SIZE);
6760 		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6761 							devid, uuid, NULL, true);
6762 		if (!map->stripes[i].dev &&
6763 		    !btrfs_test_opt(fs_info, DEGRADED)) {
6764 			free_extent_map(em);
6765 			btrfs_report_missing_device(fs_info, devid, uuid, true);
6766 			return -ENOENT;
6767 		}
6768 		if (!map->stripes[i].dev) {
6769 			map->stripes[i].dev =
6770 				add_missing_dev(fs_info->fs_devices, devid,
6771 						uuid);
6772 			if (IS_ERR(map->stripes[i].dev)) {
6773 				free_extent_map(em);
6774 				btrfs_err(fs_info,
6775 					"failed to init missing dev %llu: %ld",
6776 					devid, PTR_ERR(map->stripes[i].dev));
6777 				return PTR_ERR(map->stripes[i].dev);
6778 			}
6779 			btrfs_report_missing_device(fs_info, devid, uuid, false);
6780 		}
6781 		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6782 				&(map->stripes[i].dev->dev_state));
6783 
6784 	}
6785 
6786 	write_lock(&map_tree->map_tree.lock);
6787 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6788 	write_unlock(&map_tree->map_tree.lock);
6789 	if (ret < 0) {
6790 		btrfs_err(fs_info,
6791 			  "failed to add chunk map, start=%llu len=%llu: %d",
6792 			  em->start, em->len, ret);
6793 	}
6794 	free_extent_map(em);
6795 
6796 	return ret;
6797 }
6798 
6799 static void fill_device_from_item(struct extent_buffer *leaf,
6800 				 struct btrfs_dev_item *dev_item,
6801 				 struct btrfs_device *device)
6802 {
6803 	unsigned long ptr;
6804 
6805 	device->devid = btrfs_device_id(leaf, dev_item);
6806 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6807 	device->total_bytes = device->disk_total_bytes;
6808 	device->commit_total_bytes = device->disk_total_bytes;
6809 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6810 	device->commit_bytes_used = device->bytes_used;
6811 	device->type = btrfs_device_type(leaf, dev_item);
6812 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6813 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6814 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6815 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6816 	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6817 
6818 	ptr = btrfs_device_uuid(dev_item);
6819 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6820 }
6821 
6822 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6823 						  u8 *fsid)
6824 {
6825 	struct btrfs_fs_devices *fs_devices;
6826 	int ret;
6827 
6828 	lockdep_assert_held(&uuid_mutex);
6829 	ASSERT(fsid);
6830 
6831 	fs_devices = fs_info->fs_devices->seed;
6832 	while (fs_devices) {
6833 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6834 			return fs_devices;
6835 
6836 		fs_devices = fs_devices->seed;
6837 	}
6838 
6839 	fs_devices = find_fsid(fsid, NULL);
6840 	if (!fs_devices) {
6841 		if (!btrfs_test_opt(fs_info, DEGRADED))
6842 			return ERR_PTR(-ENOENT);
6843 
6844 		fs_devices = alloc_fs_devices(fsid, NULL);
6845 		if (IS_ERR(fs_devices))
6846 			return fs_devices;
6847 
6848 		fs_devices->seeding = 1;
6849 		fs_devices->opened = 1;
6850 		return fs_devices;
6851 	}
6852 
6853 	fs_devices = clone_fs_devices(fs_devices);
6854 	if (IS_ERR(fs_devices))
6855 		return fs_devices;
6856 
6857 	ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6858 	if (ret) {
6859 		free_fs_devices(fs_devices);
6860 		fs_devices = ERR_PTR(ret);
6861 		goto out;
6862 	}
6863 
6864 	if (!fs_devices->seeding) {
6865 		close_fs_devices(fs_devices);
6866 		free_fs_devices(fs_devices);
6867 		fs_devices = ERR_PTR(-EINVAL);
6868 		goto out;
6869 	}
6870 
6871 	fs_devices->seed = fs_info->fs_devices->seed;
6872 	fs_info->fs_devices->seed = fs_devices;
6873 out:
6874 	return fs_devices;
6875 }
6876 
6877 static int read_one_dev(struct extent_buffer *leaf,
6878 			struct btrfs_dev_item *dev_item)
6879 {
6880 	struct btrfs_fs_info *fs_info = leaf->fs_info;
6881 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6882 	struct btrfs_device *device;
6883 	u64 devid;
6884 	int ret;
6885 	u8 fs_uuid[BTRFS_FSID_SIZE];
6886 	u8 dev_uuid[BTRFS_UUID_SIZE];
6887 
6888 	devid = btrfs_device_id(leaf, dev_item);
6889 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6890 			   BTRFS_UUID_SIZE);
6891 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6892 			   BTRFS_FSID_SIZE);
6893 
6894 	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6895 		fs_devices = open_seed_devices(fs_info, fs_uuid);
6896 		if (IS_ERR(fs_devices))
6897 			return PTR_ERR(fs_devices);
6898 	}
6899 
6900 	device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6901 				   fs_uuid, true);
6902 	if (!device) {
6903 		if (!btrfs_test_opt(fs_info, DEGRADED)) {
6904 			btrfs_report_missing_device(fs_info, devid,
6905 							dev_uuid, true);
6906 			return -ENOENT;
6907 		}
6908 
6909 		device = add_missing_dev(fs_devices, devid, dev_uuid);
6910 		if (IS_ERR(device)) {
6911 			btrfs_err(fs_info,
6912 				"failed to add missing dev %llu: %ld",
6913 				devid, PTR_ERR(device));
6914 			return PTR_ERR(device);
6915 		}
6916 		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6917 	} else {
6918 		if (!device->bdev) {
6919 			if (!btrfs_test_opt(fs_info, DEGRADED)) {
6920 				btrfs_report_missing_device(fs_info,
6921 						devid, dev_uuid, true);
6922 				return -ENOENT;
6923 			}
6924 			btrfs_report_missing_device(fs_info, devid,
6925 							dev_uuid, false);
6926 		}
6927 
6928 		if (!device->bdev &&
6929 		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6930 			/*
6931 			 * this happens when a device that was properly setup
6932 			 * in the device info lists suddenly goes bad.
6933 			 * device->bdev is NULL, and so we have to set
6934 			 * device->missing to one here
6935 			 */
6936 			device->fs_devices->missing_devices++;
6937 			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6938 		}
6939 
6940 		/* Move the device to its own fs_devices */
6941 		if (device->fs_devices != fs_devices) {
6942 			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6943 							&device->dev_state));
6944 
6945 			list_move(&device->dev_list, &fs_devices->devices);
6946 			device->fs_devices->num_devices--;
6947 			fs_devices->num_devices++;
6948 
6949 			device->fs_devices->missing_devices--;
6950 			fs_devices->missing_devices++;
6951 
6952 			device->fs_devices = fs_devices;
6953 		}
6954 	}
6955 
6956 	if (device->fs_devices != fs_info->fs_devices) {
6957 		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6958 		if (device->generation !=
6959 		    btrfs_device_generation(leaf, dev_item))
6960 			return -EINVAL;
6961 	}
6962 
6963 	fill_device_from_item(leaf, dev_item, device);
6964 	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6965 	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6966 	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6967 		device->fs_devices->total_rw_bytes += device->total_bytes;
6968 		atomic64_add(device->total_bytes - device->bytes_used,
6969 				&fs_info->free_chunk_space);
6970 	}
6971 	ret = 0;
6972 	return ret;
6973 }
6974 
6975 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6976 {
6977 	struct btrfs_root *root = fs_info->tree_root;
6978 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6979 	struct extent_buffer *sb;
6980 	struct btrfs_disk_key *disk_key;
6981 	struct btrfs_chunk *chunk;
6982 	u8 *array_ptr;
6983 	unsigned long sb_array_offset;
6984 	int ret = 0;
6985 	u32 num_stripes;
6986 	u32 array_size;
6987 	u32 len = 0;
6988 	u32 cur_offset;
6989 	u64 type;
6990 	struct btrfs_key key;
6991 
6992 	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6993 	/*
6994 	 * This will create extent buffer of nodesize, superblock size is
6995 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6996 	 * overallocate but we can keep it as-is, only the first page is used.
6997 	 */
6998 	sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6999 	if (IS_ERR(sb))
7000 		return PTR_ERR(sb);
7001 	set_extent_buffer_uptodate(sb);
7002 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7003 	/*
7004 	 * The sb extent buffer is artificial and just used to read the system array.
7005 	 * set_extent_buffer_uptodate() call does not properly mark all it's
7006 	 * pages up-to-date when the page is larger: extent does not cover the
7007 	 * whole page and consequently check_page_uptodate does not find all
7008 	 * the page's extents up-to-date (the hole beyond sb),
7009 	 * write_extent_buffer then triggers a WARN_ON.
7010 	 *
7011 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7012 	 * but sb spans only this function. Add an explicit SetPageUptodate call
7013 	 * to silence the warning eg. on PowerPC 64.
7014 	 */
7015 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7016 		SetPageUptodate(sb->pages[0]);
7017 
7018 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7019 	array_size = btrfs_super_sys_array_size(super_copy);
7020 
7021 	array_ptr = super_copy->sys_chunk_array;
7022 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7023 	cur_offset = 0;
7024 
7025 	while (cur_offset < array_size) {
7026 		disk_key = (struct btrfs_disk_key *)array_ptr;
7027 		len = sizeof(*disk_key);
7028 		if (cur_offset + len > array_size)
7029 			goto out_short_read;
7030 
7031 		btrfs_disk_key_to_cpu(&key, disk_key);
7032 
7033 		array_ptr += len;
7034 		sb_array_offset += len;
7035 		cur_offset += len;
7036 
7037 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7038 			chunk = (struct btrfs_chunk *)sb_array_offset;
7039 			/*
7040 			 * At least one btrfs_chunk with one stripe must be
7041 			 * present, exact stripe count check comes afterwards
7042 			 */
7043 			len = btrfs_chunk_item_size(1);
7044 			if (cur_offset + len > array_size)
7045 				goto out_short_read;
7046 
7047 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7048 			if (!num_stripes) {
7049 				btrfs_err(fs_info,
7050 					"invalid number of stripes %u in sys_array at offset %u",
7051 					num_stripes, cur_offset);
7052 				ret = -EIO;
7053 				break;
7054 			}
7055 
7056 			type = btrfs_chunk_type(sb, chunk);
7057 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7058 				btrfs_err(fs_info,
7059 			    "invalid chunk type %llu in sys_array at offset %u",
7060 					type, cur_offset);
7061 				ret = -EIO;
7062 				break;
7063 			}
7064 
7065 			len = btrfs_chunk_item_size(num_stripes);
7066 			if (cur_offset + len > array_size)
7067 				goto out_short_read;
7068 
7069 			ret = read_one_chunk(&key, sb, chunk);
7070 			if (ret)
7071 				break;
7072 		} else {
7073 			btrfs_err(fs_info,
7074 			    "unexpected item type %u in sys_array at offset %u",
7075 				  (u32)key.type, cur_offset);
7076 			ret = -EIO;
7077 			break;
7078 		}
7079 		array_ptr += len;
7080 		sb_array_offset += len;
7081 		cur_offset += len;
7082 	}
7083 	clear_extent_buffer_uptodate(sb);
7084 	free_extent_buffer_stale(sb);
7085 	return ret;
7086 
7087 out_short_read:
7088 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7089 			len, cur_offset);
7090 	clear_extent_buffer_uptodate(sb);
7091 	free_extent_buffer_stale(sb);
7092 	return -EIO;
7093 }
7094 
7095 /*
7096  * Check if all chunks in the fs are OK for read-write degraded mount
7097  *
7098  * If the @failing_dev is specified, it's accounted as missing.
7099  *
7100  * Return true if all chunks meet the minimal RW mount requirements.
7101  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7102  */
7103 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7104 					struct btrfs_device *failing_dev)
7105 {
7106 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7107 	struct extent_map *em;
7108 	u64 next_start = 0;
7109 	bool ret = true;
7110 
7111 	read_lock(&map_tree->map_tree.lock);
7112 	em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7113 	read_unlock(&map_tree->map_tree.lock);
7114 	/* No chunk at all? Return false anyway */
7115 	if (!em) {
7116 		ret = false;
7117 		goto out;
7118 	}
7119 	while (em) {
7120 		struct map_lookup *map;
7121 		int missing = 0;
7122 		int max_tolerated;
7123 		int i;
7124 
7125 		map = em->map_lookup;
7126 		max_tolerated =
7127 			btrfs_get_num_tolerated_disk_barrier_failures(
7128 					map->type);
7129 		for (i = 0; i < map->num_stripes; i++) {
7130 			struct btrfs_device *dev = map->stripes[i].dev;
7131 
7132 			if (!dev || !dev->bdev ||
7133 			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7134 			    dev->last_flush_error)
7135 				missing++;
7136 			else if (failing_dev && failing_dev == dev)
7137 				missing++;
7138 		}
7139 		if (missing > max_tolerated) {
7140 			if (!failing_dev)
7141 				btrfs_warn(fs_info,
7142 	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7143 				   em->start, missing, max_tolerated);
7144 			free_extent_map(em);
7145 			ret = false;
7146 			goto out;
7147 		}
7148 		next_start = extent_map_end(em);
7149 		free_extent_map(em);
7150 
7151 		read_lock(&map_tree->map_tree.lock);
7152 		em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7153 					   (u64)(-1) - next_start);
7154 		read_unlock(&map_tree->map_tree.lock);
7155 	}
7156 out:
7157 	return ret;
7158 }
7159 
7160 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7161 {
7162 	struct btrfs_root *root = fs_info->chunk_root;
7163 	struct btrfs_path *path;
7164 	struct extent_buffer *leaf;
7165 	struct btrfs_key key;
7166 	struct btrfs_key found_key;
7167 	int ret;
7168 	int slot;
7169 	u64 total_dev = 0;
7170 
7171 	path = btrfs_alloc_path();
7172 	if (!path)
7173 		return -ENOMEM;
7174 
7175 	/*
7176 	 * uuid_mutex is needed only if we are mounting a sprout FS
7177 	 * otherwise we don't need it.
7178 	 */
7179 	mutex_lock(&uuid_mutex);
7180 	mutex_lock(&fs_info->chunk_mutex);
7181 
7182 	/*
7183 	 * Read all device items, and then all the chunk items. All
7184 	 * device items are found before any chunk item (their object id
7185 	 * is smaller than the lowest possible object id for a chunk
7186 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7187 	 */
7188 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7189 	key.offset = 0;
7190 	key.type = 0;
7191 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7192 	if (ret < 0)
7193 		goto error;
7194 	while (1) {
7195 		leaf = path->nodes[0];
7196 		slot = path->slots[0];
7197 		if (slot >= btrfs_header_nritems(leaf)) {
7198 			ret = btrfs_next_leaf(root, path);
7199 			if (ret == 0)
7200 				continue;
7201 			if (ret < 0)
7202 				goto error;
7203 			break;
7204 		}
7205 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7206 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7207 			struct btrfs_dev_item *dev_item;
7208 			dev_item = btrfs_item_ptr(leaf, slot,
7209 						  struct btrfs_dev_item);
7210 			ret = read_one_dev(leaf, dev_item);
7211 			if (ret)
7212 				goto error;
7213 			total_dev++;
7214 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7215 			struct btrfs_chunk *chunk;
7216 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7217 			ret = read_one_chunk(&found_key, leaf, chunk);
7218 			if (ret)
7219 				goto error;
7220 		}
7221 		path->slots[0]++;
7222 	}
7223 
7224 	/*
7225 	 * After loading chunk tree, we've got all device information,
7226 	 * do another round of validation checks.
7227 	 */
7228 	if (total_dev != fs_info->fs_devices->total_devices) {
7229 		btrfs_err(fs_info,
7230 	   "super_num_devices %llu mismatch with num_devices %llu found here",
7231 			  btrfs_super_num_devices(fs_info->super_copy),
7232 			  total_dev);
7233 		ret = -EINVAL;
7234 		goto error;
7235 	}
7236 	if (btrfs_super_total_bytes(fs_info->super_copy) <
7237 	    fs_info->fs_devices->total_rw_bytes) {
7238 		btrfs_err(fs_info,
7239 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7240 			  btrfs_super_total_bytes(fs_info->super_copy),
7241 			  fs_info->fs_devices->total_rw_bytes);
7242 		ret = -EINVAL;
7243 		goto error;
7244 	}
7245 	ret = 0;
7246 error:
7247 	mutex_unlock(&fs_info->chunk_mutex);
7248 	mutex_unlock(&uuid_mutex);
7249 
7250 	btrfs_free_path(path);
7251 	return ret;
7252 }
7253 
7254 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7255 {
7256 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7257 	struct btrfs_device *device;
7258 
7259 	while (fs_devices) {
7260 		mutex_lock(&fs_devices->device_list_mutex);
7261 		list_for_each_entry(device, &fs_devices->devices, dev_list)
7262 			device->fs_info = fs_info;
7263 		mutex_unlock(&fs_devices->device_list_mutex);
7264 
7265 		fs_devices = fs_devices->seed;
7266 	}
7267 }
7268 
7269 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7270 {
7271 	int i;
7272 
7273 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7274 		btrfs_dev_stat_reset(dev, i);
7275 }
7276 
7277 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7278 {
7279 	struct btrfs_key key;
7280 	struct btrfs_key found_key;
7281 	struct btrfs_root *dev_root = fs_info->dev_root;
7282 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7283 	struct extent_buffer *eb;
7284 	int slot;
7285 	int ret = 0;
7286 	struct btrfs_device *device;
7287 	struct btrfs_path *path = NULL;
7288 	int i;
7289 
7290 	path = btrfs_alloc_path();
7291 	if (!path) {
7292 		ret = -ENOMEM;
7293 		goto out;
7294 	}
7295 
7296 	mutex_lock(&fs_devices->device_list_mutex);
7297 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7298 		int item_size;
7299 		struct btrfs_dev_stats_item *ptr;
7300 
7301 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
7302 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
7303 		key.offset = device->devid;
7304 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7305 		if (ret) {
7306 			__btrfs_reset_dev_stats(device);
7307 			device->dev_stats_valid = 1;
7308 			btrfs_release_path(path);
7309 			continue;
7310 		}
7311 		slot = path->slots[0];
7312 		eb = path->nodes[0];
7313 		btrfs_item_key_to_cpu(eb, &found_key, slot);
7314 		item_size = btrfs_item_size_nr(eb, slot);
7315 
7316 		ptr = btrfs_item_ptr(eb, slot,
7317 				     struct btrfs_dev_stats_item);
7318 
7319 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7320 			if (item_size >= (1 + i) * sizeof(__le64))
7321 				btrfs_dev_stat_set(device, i,
7322 					btrfs_dev_stats_value(eb, ptr, i));
7323 			else
7324 				btrfs_dev_stat_reset(device, i);
7325 		}
7326 
7327 		device->dev_stats_valid = 1;
7328 		btrfs_dev_stat_print_on_load(device);
7329 		btrfs_release_path(path);
7330 	}
7331 	mutex_unlock(&fs_devices->device_list_mutex);
7332 
7333 out:
7334 	btrfs_free_path(path);
7335 	return ret < 0 ? ret : 0;
7336 }
7337 
7338 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7339 				struct btrfs_device *device)
7340 {
7341 	struct btrfs_fs_info *fs_info = trans->fs_info;
7342 	struct btrfs_root *dev_root = fs_info->dev_root;
7343 	struct btrfs_path *path;
7344 	struct btrfs_key key;
7345 	struct extent_buffer *eb;
7346 	struct btrfs_dev_stats_item *ptr;
7347 	int ret;
7348 	int i;
7349 
7350 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7351 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7352 	key.offset = device->devid;
7353 
7354 	path = btrfs_alloc_path();
7355 	if (!path)
7356 		return -ENOMEM;
7357 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7358 	if (ret < 0) {
7359 		btrfs_warn_in_rcu(fs_info,
7360 			"error %d while searching for dev_stats item for device %s",
7361 			      ret, rcu_str_deref(device->name));
7362 		goto out;
7363 	}
7364 
7365 	if (ret == 0 &&
7366 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7367 		/* need to delete old one and insert a new one */
7368 		ret = btrfs_del_item(trans, dev_root, path);
7369 		if (ret != 0) {
7370 			btrfs_warn_in_rcu(fs_info,
7371 				"delete too small dev_stats item for device %s failed %d",
7372 				      rcu_str_deref(device->name), ret);
7373 			goto out;
7374 		}
7375 		ret = 1;
7376 	}
7377 
7378 	if (ret == 1) {
7379 		/* need to insert a new item */
7380 		btrfs_release_path(path);
7381 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7382 					      &key, sizeof(*ptr));
7383 		if (ret < 0) {
7384 			btrfs_warn_in_rcu(fs_info,
7385 				"insert dev_stats item for device %s failed %d",
7386 				rcu_str_deref(device->name), ret);
7387 			goto out;
7388 		}
7389 	}
7390 
7391 	eb = path->nodes[0];
7392 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7393 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7394 		btrfs_set_dev_stats_value(eb, ptr, i,
7395 					  btrfs_dev_stat_read(device, i));
7396 	btrfs_mark_buffer_dirty(eb);
7397 
7398 out:
7399 	btrfs_free_path(path);
7400 	return ret;
7401 }
7402 
7403 /*
7404  * called from commit_transaction. Writes all changed device stats to disk.
7405  */
7406 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7407 {
7408 	struct btrfs_fs_info *fs_info = trans->fs_info;
7409 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7410 	struct btrfs_device *device;
7411 	int stats_cnt;
7412 	int ret = 0;
7413 
7414 	mutex_lock(&fs_devices->device_list_mutex);
7415 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7416 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7417 		if (!device->dev_stats_valid || stats_cnt == 0)
7418 			continue;
7419 
7420 
7421 		/*
7422 		 * There is a LOAD-LOAD control dependency between the value of
7423 		 * dev_stats_ccnt and updating the on-disk values which requires
7424 		 * reading the in-memory counters. Such control dependencies
7425 		 * require explicit read memory barriers.
7426 		 *
7427 		 * This memory barriers pairs with smp_mb__before_atomic in
7428 		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7429 		 * barrier implied by atomic_xchg in
7430 		 * btrfs_dev_stats_read_and_reset
7431 		 */
7432 		smp_rmb();
7433 
7434 		ret = update_dev_stat_item(trans, device);
7435 		if (!ret)
7436 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7437 	}
7438 	mutex_unlock(&fs_devices->device_list_mutex);
7439 
7440 	return ret;
7441 }
7442 
7443 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7444 {
7445 	btrfs_dev_stat_inc(dev, index);
7446 	btrfs_dev_stat_print_on_error(dev);
7447 }
7448 
7449 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7450 {
7451 	if (!dev->dev_stats_valid)
7452 		return;
7453 	btrfs_err_rl_in_rcu(dev->fs_info,
7454 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7455 			   rcu_str_deref(dev->name),
7456 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7457 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7458 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7459 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7460 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7461 }
7462 
7463 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7464 {
7465 	int i;
7466 
7467 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7468 		if (btrfs_dev_stat_read(dev, i) != 0)
7469 			break;
7470 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7471 		return; /* all values == 0, suppress message */
7472 
7473 	btrfs_info_in_rcu(dev->fs_info,
7474 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7475 	       rcu_str_deref(dev->name),
7476 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7477 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7478 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7479 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7480 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7481 }
7482 
7483 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7484 			struct btrfs_ioctl_get_dev_stats *stats)
7485 {
7486 	struct btrfs_device *dev;
7487 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7488 	int i;
7489 
7490 	mutex_lock(&fs_devices->device_list_mutex);
7491 	dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7492 				true);
7493 	mutex_unlock(&fs_devices->device_list_mutex);
7494 
7495 	if (!dev) {
7496 		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7497 		return -ENODEV;
7498 	} else if (!dev->dev_stats_valid) {
7499 		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7500 		return -ENODEV;
7501 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7502 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7503 			if (stats->nr_items > i)
7504 				stats->values[i] =
7505 					btrfs_dev_stat_read_and_reset(dev, i);
7506 			else
7507 				btrfs_dev_stat_reset(dev, i);
7508 		}
7509 	} else {
7510 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7511 			if (stats->nr_items > i)
7512 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7513 	}
7514 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7515 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7516 	return 0;
7517 }
7518 
7519 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7520 {
7521 	struct buffer_head *bh;
7522 	struct btrfs_super_block *disk_super;
7523 	int copy_num;
7524 
7525 	if (!bdev)
7526 		return;
7527 
7528 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7529 		copy_num++) {
7530 
7531 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7532 			continue;
7533 
7534 		disk_super = (struct btrfs_super_block *)bh->b_data;
7535 
7536 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7537 		set_buffer_dirty(bh);
7538 		sync_dirty_buffer(bh);
7539 		brelse(bh);
7540 	}
7541 
7542 	/* Notify udev that device has changed */
7543 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7544 
7545 	/* Update ctime/mtime for device path for libblkid */
7546 	update_dev_time(device_path);
7547 }
7548 
7549 /*
7550  * Update the size and bytes used for each device where it changed.  This is
7551  * delayed since we would otherwise get errors while writing out the
7552  * superblocks.
7553  *
7554  * Must be invoked during transaction commit.
7555  */
7556 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7557 {
7558 	struct btrfs_device *curr, *next;
7559 
7560 	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7561 
7562 	if (list_empty(&trans->dev_update_list))
7563 		return;
7564 
7565 	/*
7566 	 * We don't need the device_list_mutex here.  This list is owned by the
7567 	 * transaction and the transaction must complete before the device is
7568 	 * released.
7569 	 */
7570 	mutex_lock(&trans->fs_info->chunk_mutex);
7571 	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7572 				 post_commit_list) {
7573 		list_del_init(&curr->post_commit_list);
7574 		curr->commit_total_bytes = curr->disk_total_bytes;
7575 		curr->commit_bytes_used = curr->bytes_used;
7576 	}
7577 	mutex_unlock(&trans->fs_info->chunk_mutex);
7578 }
7579 
7580 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7581 {
7582 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7583 	while (fs_devices) {
7584 		fs_devices->fs_info = fs_info;
7585 		fs_devices = fs_devices->seed;
7586 	}
7587 }
7588 
7589 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7590 {
7591 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7592 	while (fs_devices) {
7593 		fs_devices->fs_info = NULL;
7594 		fs_devices = fs_devices->seed;
7595 	}
7596 }
7597 
7598 /*
7599  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7600  */
7601 int btrfs_bg_type_to_factor(u64 flags)
7602 {
7603 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7604 		     BTRFS_BLOCK_GROUP_RAID10))
7605 		return 2;
7606 	return 1;
7607 }
7608 
7609 
7610 
7611 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7612 				 u64 chunk_offset, u64 devid,
7613 				 u64 physical_offset, u64 physical_len)
7614 {
7615 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7616 	struct extent_map *em;
7617 	struct map_lookup *map;
7618 	struct btrfs_device *dev;
7619 	u64 stripe_len;
7620 	bool found = false;
7621 	int ret = 0;
7622 	int i;
7623 
7624 	read_lock(&em_tree->lock);
7625 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7626 	read_unlock(&em_tree->lock);
7627 
7628 	if (!em) {
7629 		btrfs_err(fs_info,
7630 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7631 			  physical_offset, devid);
7632 		ret = -EUCLEAN;
7633 		goto out;
7634 	}
7635 
7636 	map = em->map_lookup;
7637 	stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7638 	if (physical_len != stripe_len) {
7639 		btrfs_err(fs_info,
7640 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7641 			  physical_offset, devid, em->start, physical_len,
7642 			  stripe_len);
7643 		ret = -EUCLEAN;
7644 		goto out;
7645 	}
7646 
7647 	for (i = 0; i < map->num_stripes; i++) {
7648 		if (map->stripes[i].dev->devid == devid &&
7649 		    map->stripes[i].physical == physical_offset) {
7650 			found = true;
7651 			if (map->verified_stripes >= map->num_stripes) {
7652 				btrfs_err(fs_info,
7653 				"too many dev extents for chunk %llu found",
7654 					  em->start);
7655 				ret = -EUCLEAN;
7656 				goto out;
7657 			}
7658 			map->verified_stripes++;
7659 			break;
7660 		}
7661 	}
7662 	if (!found) {
7663 		btrfs_err(fs_info,
7664 	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7665 			physical_offset, devid);
7666 		ret = -EUCLEAN;
7667 	}
7668 
7669 	/* Make sure no dev extent is beyond device bondary */
7670 	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7671 	if (!dev) {
7672 		btrfs_err(fs_info, "failed to find devid %llu", devid);
7673 		ret = -EUCLEAN;
7674 		goto out;
7675 	}
7676 
7677 	/* It's possible this device is a dummy for seed device */
7678 	if (dev->disk_total_bytes == 0) {
7679 		dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7680 					NULL, false);
7681 		if (!dev) {
7682 			btrfs_err(fs_info, "failed to find seed devid %llu",
7683 				  devid);
7684 			ret = -EUCLEAN;
7685 			goto out;
7686 		}
7687 	}
7688 
7689 	if (physical_offset + physical_len > dev->disk_total_bytes) {
7690 		btrfs_err(fs_info,
7691 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7692 			  devid, physical_offset, physical_len,
7693 			  dev->disk_total_bytes);
7694 		ret = -EUCLEAN;
7695 		goto out;
7696 	}
7697 out:
7698 	free_extent_map(em);
7699 	return ret;
7700 }
7701 
7702 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7703 {
7704 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7705 	struct extent_map *em;
7706 	struct rb_node *node;
7707 	int ret = 0;
7708 
7709 	read_lock(&em_tree->lock);
7710 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7711 		em = rb_entry(node, struct extent_map, rb_node);
7712 		if (em->map_lookup->num_stripes !=
7713 		    em->map_lookup->verified_stripes) {
7714 			btrfs_err(fs_info,
7715 			"chunk %llu has missing dev extent, have %d expect %d",
7716 				  em->start, em->map_lookup->verified_stripes,
7717 				  em->map_lookup->num_stripes);
7718 			ret = -EUCLEAN;
7719 			goto out;
7720 		}
7721 	}
7722 out:
7723 	read_unlock(&em_tree->lock);
7724 	return ret;
7725 }
7726 
7727 /*
7728  * Ensure that all dev extents are mapped to correct chunk, otherwise
7729  * later chunk allocation/free would cause unexpected behavior.
7730  *
7731  * NOTE: This will iterate through the whole device tree, which should be of
7732  * the same size level as the chunk tree.  This slightly increases mount time.
7733  */
7734 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7735 {
7736 	struct btrfs_path *path;
7737 	struct btrfs_root *root = fs_info->dev_root;
7738 	struct btrfs_key key;
7739 	u64 prev_devid = 0;
7740 	u64 prev_dev_ext_end = 0;
7741 	int ret = 0;
7742 
7743 	key.objectid = 1;
7744 	key.type = BTRFS_DEV_EXTENT_KEY;
7745 	key.offset = 0;
7746 
7747 	path = btrfs_alloc_path();
7748 	if (!path)
7749 		return -ENOMEM;
7750 
7751 	path->reada = READA_FORWARD;
7752 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7753 	if (ret < 0)
7754 		goto out;
7755 
7756 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7757 		ret = btrfs_next_item(root, path);
7758 		if (ret < 0)
7759 			goto out;
7760 		/* No dev extents at all? Not good */
7761 		if (ret > 0) {
7762 			ret = -EUCLEAN;
7763 			goto out;
7764 		}
7765 	}
7766 	while (1) {
7767 		struct extent_buffer *leaf = path->nodes[0];
7768 		struct btrfs_dev_extent *dext;
7769 		int slot = path->slots[0];
7770 		u64 chunk_offset;
7771 		u64 physical_offset;
7772 		u64 physical_len;
7773 		u64 devid;
7774 
7775 		btrfs_item_key_to_cpu(leaf, &key, slot);
7776 		if (key.type != BTRFS_DEV_EXTENT_KEY)
7777 			break;
7778 		devid = key.objectid;
7779 		physical_offset = key.offset;
7780 
7781 		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7782 		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7783 		physical_len = btrfs_dev_extent_length(leaf, dext);
7784 
7785 		/* Check if this dev extent overlaps with the previous one */
7786 		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7787 			btrfs_err(fs_info,
7788 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7789 				  devid, physical_offset, prev_dev_ext_end);
7790 			ret = -EUCLEAN;
7791 			goto out;
7792 		}
7793 
7794 		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7795 					    physical_offset, physical_len);
7796 		if (ret < 0)
7797 			goto out;
7798 		prev_devid = devid;
7799 		prev_dev_ext_end = physical_offset + physical_len;
7800 
7801 		ret = btrfs_next_item(root, path);
7802 		if (ret < 0)
7803 			goto out;
7804 		if (ret > 0) {
7805 			ret = 0;
7806 			break;
7807 		}
7808 	}
7809 
7810 	/* Ensure all chunks have corresponding dev extents */
7811 	ret = verify_chunk_dev_extent_mapping(fs_info);
7812 out:
7813 	btrfs_free_path(path);
7814 	return ret;
7815 }
7816 
7817 /*
7818  * Check whether the given block group or device is pinned by any inode being
7819  * used as a swapfile.
7820  */
7821 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7822 {
7823 	struct btrfs_swapfile_pin *sp;
7824 	struct rb_node *node;
7825 
7826 	spin_lock(&fs_info->swapfile_pins_lock);
7827 	node = fs_info->swapfile_pins.rb_node;
7828 	while (node) {
7829 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7830 		if (ptr < sp->ptr)
7831 			node = node->rb_left;
7832 		else if (ptr > sp->ptr)
7833 			node = node->rb_right;
7834 		else
7835 			break;
7836 	}
7837 	spin_unlock(&fs_info->swapfile_pins_lock);
7838 	return node != NULL;
7839 }
7840