xref: /linux/fs/buffer.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct page *page;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204 	if (!page)
205 		goto out;
206 
207 	spin_lock(&bd_mapping->private_lock);
208 	if (!page_has_buffers(page))
209 		goto out_unlock;
210 	head = page_buffers(page);
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->private_lock);
240 	put_page(page);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct page *page;
251 	int page_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	page = bh->b_page;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		SetPageError(page);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = page_buffers(page);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			page_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	/*
286 	 * If all of the buffers are uptodate then we can set the page
287 	 * uptodate.
288 	 */
289 	if (page_uptodate)
290 		SetPageUptodate(page);
291 	unlock_page(page);
292 	return;
293 
294 still_busy:
295 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296 	return;
297 }
298 
299 struct postprocess_bh_ctx {
300 	struct work_struct work;
301 	struct buffer_head *bh;
302 };
303 
304 static void verify_bh(struct work_struct *work)
305 {
306 	struct postprocess_bh_ctx *ctx =
307 		container_of(work, struct postprocess_bh_ctx, work);
308 	struct buffer_head *bh = ctx->bh;
309 	bool valid;
310 
311 	valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size,
312 				       bh_offset(bh));
313 	end_buffer_async_read(bh, valid);
314 	kfree(ctx);
315 }
316 
317 static bool need_fsverity(struct buffer_head *bh)
318 {
319 	struct page *page = bh->b_page;
320 	struct inode *inode = page->mapping->host;
321 
322 	return fsverity_active(inode) &&
323 		/* needed by ext4 */
324 		page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
325 }
326 
327 static void decrypt_bh(struct work_struct *work)
328 {
329 	struct postprocess_bh_ctx *ctx =
330 		container_of(work, struct postprocess_bh_ctx, work);
331 	struct buffer_head *bh = ctx->bh;
332 	int err;
333 
334 	err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page),
335 					       bh->b_size, bh_offset(bh));
336 	if (err == 0 && need_fsverity(bh)) {
337 		/*
338 		 * We use different work queues for decryption and for verity
339 		 * because verity may require reading metadata pages that need
340 		 * decryption, and we shouldn't recurse to the same workqueue.
341 		 */
342 		INIT_WORK(&ctx->work, verify_bh);
343 		fsverity_enqueue_verify_work(&ctx->work);
344 		return;
345 	}
346 	end_buffer_async_read(bh, err == 0);
347 	kfree(ctx);
348 }
349 
350 /*
351  * I/O completion handler for block_read_full_folio() - pages
352  * which come unlocked at the end of I/O.
353  */
354 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
355 {
356 	struct inode *inode = bh->b_page->mapping->host;
357 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
358 	bool verify = need_fsverity(bh);
359 
360 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
361 	if (uptodate && (decrypt || verify)) {
362 		struct postprocess_bh_ctx *ctx =
363 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
364 
365 		if (ctx) {
366 			ctx->bh = bh;
367 			if (decrypt) {
368 				INIT_WORK(&ctx->work, decrypt_bh);
369 				fscrypt_enqueue_decrypt_work(&ctx->work);
370 			} else {
371 				INIT_WORK(&ctx->work, verify_bh);
372 				fsverity_enqueue_verify_work(&ctx->work);
373 			}
374 			return;
375 		}
376 		uptodate = 0;
377 	}
378 	end_buffer_async_read(bh, uptodate);
379 }
380 
381 /*
382  * Completion handler for block_write_full_page() - pages which are unlocked
383  * during I/O, and which have PageWriteback cleared upon I/O completion.
384  */
385 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
386 {
387 	unsigned long flags;
388 	struct buffer_head *first;
389 	struct buffer_head *tmp;
390 	struct page *page;
391 
392 	BUG_ON(!buffer_async_write(bh));
393 
394 	page = bh->b_page;
395 	if (uptodate) {
396 		set_buffer_uptodate(bh);
397 	} else {
398 		buffer_io_error(bh, ", lost async page write");
399 		mark_buffer_write_io_error(bh);
400 		clear_buffer_uptodate(bh);
401 		SetPageError(page);
402 	}
403 
404 	first = page_buffers(page);
405 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
406 
407 	clear_buffer_async_write(bh);
408 	unlock_buffer(bh);
409 	tmp = bh->b_this_page;
410 	while (tmp != bh) {
411 		if (buffer_async_write(tmp)) {
412 			BUG_ON(!buffer_locked(tmp));
413 			goto still_busy;
414 		}
415 		tmp = tmp->b_this_page;
416 	}
417 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
418 	end_page_writeback(page);
419 	return;
420 
421 still_busy:
422 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
423 	return;
424 }
425 EXPORT_SYMBOL(end_buffer_async_write);
426 
427 /*
428  * If a page's buffers are under async readin (end_buffer_async_read
429  * completion) then there is a possibility that another thread of
430  * control could lock one of the buffers after it has completed
431  * but while some of the other buffers have not completed.  This
432  * locked buffer would confuse end_buffer_async_read() into not unlocking
433  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
434  * that this buffer is not under async I/O.
435  *
436  * The page comes unlocked when it has no locked buffer_async buffers
437  * left.
438  *
439  * PageLocked prevents anyone starting new async I/O reads any of
440  * the buffers.
441  *
442  * PageWriteback is used to prevent simultaneous writeout of the same
443  * page.
444  *
445  * PageLocked prevents anyone from starting writeback of a page which is
446  * under read I/O (PageWriteback is only ever set against a locked page).
447  */
448 static void mark_buffer_async_read(struct buffer_head *bh)
449 {
450 	bh->b_end_io = end_buffer_async_read_io;
451 	set_buffer_async_read(bh);
452 }
453 
454 static void mark_buffer_async_write_endio(struct buffer_head *bh,
455 					  bh_end_io_t *handler)
456 {
457 	bh->b_end_io = handler;
458 	set_buffer_async_write(bh);
459 }
460 
461 void mark_buffer_async_write(struct buffer_head *bh)
462 {
463 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
464 }
465 EXPORT_SYMBOL(mark_buffer_async_write);
466 
467 
468 /*
469  * fs/buffer.c contains helper functions for buffer-backed address space's
470  * fsync functions.  A common requirement for buffer-based filesystems is
471  * that certain data from the backing blockdev needs to be written out for
472  * a successful fsync().  For example, ext2 indirect blocks need to be
473  * written back and waited upon before fsync() returns.
474  *
475  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
476  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
477  * management of a list of dependent buffers at ->i_mapping->private_list.
478  *
479  * Locking is a little subtle: try_to_free_buffers() will remove buffers
480  * from their controlling inode's queue when they are being freed.  But
481  * try_to_free_buffers() will be operating against the *blockdev* mapping
482  * at the time, not against the S_ISREG file which depends on those buffers.
483  * So the locking for private_list is via the private_lock in the address_space
484  * which backs the buffers.  Which is different from the address_space
485  * against which the buffers are listed.  So for a particular address_space,
486  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
487  * mapping->private_list will always be protected by the backing blockdev's
488  * ->private_lock.
489  *
490  * Which introduces a requirement: all buffers on an address_space's
491  * ->private_list must be from the same address_space: the blockdev's.
492  *
493  * address_spaces which do not place buffers at ->private_list via these
494  * utility functions are free to use private_lock and private_list for
495  * whatever they want.  The only requirement is that list_empty(private_list)
496  * be true at clear_inode() time.
497  *
498  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
499  * filesystems should do that.  invalidate_inode_buffers() should just go
500  * BUG_ON(!list_empty).
501  *
502  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
503  * take an address_space, not an inode.  And it should be called
504  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
505  * queued up.
506  *
507  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
508  * list if it is already on a list.  Because if the buffer is on a list,
509  * it *must* already be on the right one.  If not, the filesystem is being
510  * silly.  This will save a ton of locking.  But first we have to ensure
511  * that buffers are taken *off* the old inode's list when they are freed
512  * (presumably in truncate).  That requires careful auditing of all
513  * filesystems (do it inside bforget()).  It could also be done by bringing
514  * b_inode back.
515  */
516 
517 /*
518  * The buffer's backing address_space's private_lock must be held
519  */
520 static void __remove_assoc_queue(struct buffer_head *bh)
521 {
522 	list_del_init(&bh->b_assoc_buffers);
523 	WARN_ON(!bh->b_assoc_map);
524 	bh->b_assoc_map = NULL;
525 }
526 
527 int inode_has_buffers(struct inode *inode)
528 {
529 	return !list_empty(&inode->i_data.private_list);
530 }
531 
532 /*
533  * osync is designed to support O_SYNC io.  It waits synchronously for
534  * all already-submitted IO to complete, but does not queue any new
535  * writes to the disk.
536  *
537  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
538  * as you dirty the buffers, and then use osync_inode_buffers to wait for
539  * completion.  Any other dirty buffers which are not yet queued for
540  * write will not be flushed to disk by the osync.
541  */
542 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
543 {
544 	struct buffer_head *bh;
545 	struct list_head *p;
546 	int err = 0;
547 
548 	spin_lock(lock);
549 repeat:
550 	list_for_each_prev(p, list) {
551 		bh = BH_ENTRY(p);
552 		if (buffer_locked(bh)) {
553 			get_bh(bh);
554 			spin_unlock(lock);
555 			wait_on_buffer(bh);
556 			if (!buffer_uptodate(bh))
557 				err = -EIO;
558 			brelse(bh);
559 			spin_lock(lock);
560 			goto repeat;
561 		}
562 	}
563 	spin_unlock(lock);
564 	return err;
565 }
566 
567 void emergency_thaw_bdev(struct super_block *sb)
568 {
569 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
570 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
571 }
572 
573 /**
574  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
575  * @mapping: the mapping which wants those buffers written
576  *
577  * Starts I/O against the buffers at mapping->private_list, and waits upon
578  * that I/O.
579  *
580  * Basically, this is a convenience function for fsync().
581  * @mapping is a file or directory which needs those buffers to be written for
582  * a successful fsync().
583  */
584 int sync_mapping_buffers(struct address_space *mapping)
585 {
586 	struct address_space *buffer_mapping = mapping->private_data;
587 
588 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
589 		return 0;
590 
591 	return fsync_buffers_list(&buffer_mapping->private_lock,
592 					&mapping->private_list);
593 }
594 EXPORT_SYMBOL(sync_mapping_buffers);
595 
596 /*
597  * Called when we've recently written block `bblock', and it is known that
598  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
599  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
600  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
601  */
602 void write_boundary_block(struct block_device *bdev,
603 			sector_t bblock, unsigned blocksize)
604 {
605 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
606 	if (bh) {
607 		if (buffer_dirty(bh))
608 			write_dirty_buffer(bh, 0);
609 		put_bh(bh);
610 	}
611 }
612 
613 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
614 {
615 	struct address_space *mapping = inode->i_mapping;
616 	struct address_space *buffer_mapping = bh->b_page->mapping;
617 
618 	mark_buffer_dirty(bh);
619 	if (!mapping->private_data) {
620 		mapping->private_data = buffer_mapping;
621 	} else {
622 		BUG_ON(mapping->private_data != buffer_mapping);
623 	}
624 	if (!bh->b_assoc_map) {
625 		spin_lock(&buffer_mapping->private_lock);
626 		list_move_tail(&bh->b_assoc_buffers,
627 				&mapping->private_list);
628 		bh->b_assoc_map = mapping;
629 		spin_unlock(&buffer_mapping->private_lock);
630 	}
631 }
632 EXPORT_SYMBOL(mark_buffer_dirty_inode);
633 
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
660 {
661 	struct buffer_head *head;
662 	bool newly_dirty;
663 
664 	spin_lock(&mapping->private_lock);
665 	head = folio_buffers(folio);
666 	if (head) {
667 		struct buffer_head *bh = head;
668 
669 		do {
670 			set_buffer_dirty(bh);
671 			bh = bh->b_this_page;
672 		} while (bh != head);
673 	}
674 	/*
675 	 * Lock out page's memcg migration to keep PageDirty
676 	 * synchronized with per-memcg dirty page counters.
677 	 */
678 	folio_memcg_lock(folio);
679 	newly_dirty = !folio_test_set_dirty(folio);
680 	spin_unlock(&mapping->private_lock);
681 
682 	if (newly_dirty)
683 		__folio_mark_dirty(folio, mapping, 1);
684 
685 	folio_memcg_unlock(folio);
686 
687 	if (newly_dirty)
688 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689 
690 	return newly_dirty;
691 }
692 EXPORT_SYMBOL(block_dirty_folio);
693 
694 /*
695  * Write out and wait upon a list of buffers.
696  *
697  * We have conflicting pressures: we want to make sure that all
698  * initially dirty buffers get waited on, but that any subsequently
699  * dirtied buffers don't.  After all, we don't want fsync to last
700  * forever if somebody is actively writing to the file.
701  *
702  * Do this in two main stages: first we copy dirty buffers to a
703  * temporary inode list, queueing the writes as we go.  Then we clean
704  * up, waiting for those writes to complete.
705  *
706  * During this second stage, any subsequent updates to the file may end
707  * up refiling the buffer on the original inode's dirty list again, so
708  * there is a chance we will end up with a buffer queued for write but
709  * not yet completed on that list.  So, as a final cleanup we go through
710  * the osync code to catch these locked, dirty buffers without requeuing
711  * any newly dirty buffers for write.
712  */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715 	struct buffer_head *bh;
716 	struct list_head tmp;
717 	struct address_space *mapping;
718 	int err = 0, err2;
719 	struct blk_plug plug;
720 
721 	INIT_LIST_HEAD(&tmp);
722 	blk_start_plug(&plug);
723 
724 	spin_lock(lock);
725 	while (!list_empty(list)) {
726 		bh = BH_ENTRY(list->next);
727 		mapping = bh->b_assoc_map;
728 		__remove_assoc_queue(bh);
729 		/* Avoid race with mark_buffer_dirty_inode() which does
730 		 * a lockless check and we rely on seeing the dirty bit */
731 		smp_mb();
732 		if (buffer_dirty(bh) || buffer_locked(bh)) {
733 			list_add(&bh->b_assoc_buffers, &tmp);
734 			bh->b_assoc_map = mapping;
735 			if (buffer_dirty(bh)) {
736 				get_bh(bh);
737 				spin_unlock(lock);
738 				/*
739 				 * Ensure any pending I/O completes so that
740 				 * write_dirty_buffer() actually writes the
741 				 * current contents - it is a noop if I/O is
742 				 * still in flight on potentially older
743 				 * contents.
744 				 */
745 				write_dirty_buffer(bh, REQ_SYNC);
746 
747 				/*
748 				 * Kick off IO for the previous mapping. Note
749 				 * that we will not run the very last mapping,
750 				 * wait_on_buffer() will do that for us
751 				 * through sync_buffer().
752 				 */
753 				brelse(bh);
754 				spin_lock(lock);
755 			}
756 		}
757 	}
758 
759 	spin_unlock(lock);
760 	blk_finish_plug(&plug);
761 	spin_lock(lock);
762 
763 	while (!list_empty(&tmp)) {
764 		bh = BH_ENTRY(tmp.prev);
765 		get_bh(bh);
766 		mapping = bh->b_assoc_map;
767 		__remove_assoc_queue(bh);
768 		/* Avoid race with mark_buffer_dirty_inode() which does
769 		 * a lockless check and we rely on seeing the dirty bit */
770 		smp_mb();
771 		if (buffer_dirty(bh)) {
772 			list_add(&bh->b_assoc_buffers,
773 				 &mapping->private_list);
774 			bh->b_assoc_map = mapping;
775 		}
776 		spin_unlock(lock);
777 		wait_on_buffer(bh);
778 		if (!buffer_uptodate(bh))
779 			err = -EIO;
780 		brelse(bh);
781 		spin_lock(lock);
782 	}
783 
784 	spin_unlock(lock);
785 	err2 = osync_buffers_list(lock, list);
786 	if (err)
787 		return err;
788 	else
789 		return err2;
790 }
791 
792 /*
793  * Invalidate any and all dirty buffers on a given inode.  We are
794  * probably unmounting the fs, but that doesn't mean we have already
795  * done a sync().  Just drop the buffers from the inode list.
796  *
797  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
798  * assumes that all the buffers are against the blockdev.  Not true
799  * for reiserfs.
800  */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803 	if (inode_has_buffers(inode)) {
804 		struct address_space *mapping = &inode->i_data;
805 		struct list_head *list = &mapping->private_list;
806 		struct address_space *buffer_mapping = mapping->private_data;
807 
808 		spin_lock(&buffer_mapping->private_lock);
809 		while (!list_empty(list))
810 			__remove_assoc_queue(BH_ENTRY(list->next));
811 		spin_unlock(&buffer_mapping->private_lock);
812 	}
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815 
816 /*
817  * Remove any clean buffers from the inode's buffer list.  This is called
818  * when we're trying to free the inode itself.  Those buffers can pin it.
819  *
820  * Returns true if all buffers were removed.
821  */
822 int remove_inode_buffers(struct inode *inode)
823 {
824 	int ret = 1;
825 
826 	if (inode_has_buffers(inode)) {
827 		struct address_space *mapping = &inode->i_data;
828 		struct list_head *list = &mapping->private_list;
829 		struct address_space *buffer_mapping = mapping->private_data;
830 
831 		spin_lock(&buffer_mapping->private_lock);
832 		while (!list_empty(list)) {
833 			struct buffer_head *bh = BH_ENTRY(list->next);
834 			if (buffer_dirty(bh)) {
835 				ret = 0;
836 				break;
837 			}
838 			__remove_assoc_queue(bh);
839 		}
840 		spin_unlock(&buffer_mapping->private_lock);
841 	}
842 	return ret;
843 }
844 
845 /*
846  * Create the appropriate buffers when given a page for data area and
847  * the size of each buffer.. Use the bh->b_this_page linked list to
848  * follow the buffers created.  Return NULL if unable to create more
849  * buffers.
850  *
851  * The retry flag is used to differentiate async IO (paging, swapping)
852  * which may not fail from ordinary buffer allocations.
853  */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855 		bool retry)
856 {
857 	struct buffer_head *bh, *head;
858 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859 	long offset;
860 	struct mem_cgroup *memcg, *old_memcg;
861 
862 	if (retry)
863 		gfp |= __GFP_NOFAIL;
864 
865 	/* The page lock pins the memcg */
866 	memcg = page_memcg(page);
867 	old_memcg = set_active_memcg(memcg);
868 
869 	head = NULL;
870 	offset = PAGE_SIZE;
871 	while ((offset -= size) >= 0) {
872 		bh = alloc_buffer_head(gfp);
873 		if (!bh)
874 			goto no_grow;
875 
876 		bh->b_this_page = head;
877 		bh->b_blocknr = -1;
878 		head = bh;
879 
880 		bh->b_size = size;
881 
882 		/* Link the buffer to its page */
883 		set_bh_page(bh, page, offset);
884 	}
885 out:
886 	set_active_memcg(old_memcg);
887 	return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892 	if (head) {
893 		do {
894 			bh = head;
895 			head = head->b_this_page;
896 			free_buffer_head(bh);
897 		} while (head);
898 	}
899 
900 	goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903 
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907 	struct buffer_head *bh, *tail;
908 
909 	bh = head;
910 	do {
911 		tail = bh;
912 		bh = bh->b_this_page;
913 	} while (bh);
914 	tail->b_this_page = head;
915 	attach_page_private(page, head);
916 }
917 
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920 	sector_t retval = ~((sector_t)0);
921 	loff_t sz = bdev_nr_bytes(bdev);
922 
923 	if (sz) {
924 		unsigned int sizebits = blksize_bits(size);
925 		retval = (sz >> sizebits);
926 	}
927 	return retval;
928 }
929 
930 /*
931  * Initialise the state of a blockdev page's buffers.
932  */
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935 			sector_t block, int size)
936 {
937 	struct buffer_head *head = page_buffers(page);
938 	struct buffer_head *bh = head;
939 	int uptodate = PageUptodate(page);
940 	sector_t end_block = blkdev_max_block(bdev, size);
941 
942 	do {
943 		if (!buffer_mapped(bh)) {
944 			bh->b_end_io = NULL;
945 			bh->b_private = NULL;
946 			bh->b_bdev = bdev;
947 			bh->b_blocknr = block;
948 			if (uptodate)
949 				set_buffer_uptodate(bh);
950 			if (block < end_block)
951 				set_buffer_mapped(bh);
952 		}
953 		block++;
954 		bh = bh->b_this_page;
955 	} while (bh != head);
956 
957 	/*
958 	 * Caller needs to validate requested block against end of device.
959 	 */
960 	return end_block;
961 }
962 
963 /*
964  * Create the page-cache page that contains the requested block.
965  *
966  * This is used purely for blockdev mappings.
967  */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972 	struct inode *inode = bdev->bd_inode;
973 	struct page *page;
974 	struct buffer_head *bh;
975 	sector_t end_block;
976 	int ret = 0;
977 	gfp_t gfp_mask;
978 
979 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980 
981 	/*
982 	 * XXX: __getblk_slow() can not really deal with failure and
983 	 * will endlessly loop on improvised global reclaim.  Prefer
984 	 * looping in the allocator rather than here, at least that
985 	 * code knows what it's doing.
986 	 */
987 	gfp_mask |= __GFP_NOFAIL;
988 
989 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990 
991 	BUG_ON(!PageLocked(page));
992 
993 	if (page_has_buffers(page)) {
994 		bh = page_buffers(page);
995 		if (bh->b_size == size) {
996 			end_block = init_page_buffers(page, bdev,
997 						(sector_t)index << sizebits,
998 						size);
999 			goto done;
1000 		}
1001 		if (!try_to_free_buffers(page_folio(page)))
1002 			goto failed;
1003 	}
1004 
1005 	/*
1006 	 * Allocate some buffers for this page
1007 	 */
1008 	bh = alloc_page_buffers(page, size, true);
1009 
1010 	/*
1011 	 * Link the page to the buffers and initialise them.  Take the
1012 	 * lock to be atomic wrt __find_get_block(), which does not
1013 	 * run under the page lock.
1014 	 */
1015 	spin_lock(&inode->i_mapping->private_lock);
1016 	link_dev_buffers(page, bh);
1017 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018 			size);
1019 	spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021 	ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023 	unlock_page(page);
1024 	put_page(page);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035 	pgoff_t index;
1036 	int sizebits;
1037 
1038 	sizebits = PAGE_SHIFT - __ffs(size);
1039 	index = block >> sizebits;
1040 
1041 	/*
1042 	 * Check for a block which wants to lie outside our maximum possible
1043 	 * pagecache index.  (this comparison is done using sector_t types).
1044 	 */
1045 	if (unlikely(index != block >> sizebits)) {
1046 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1047 			"device %pg\n",
1048 			__func__, (unsigned long long)block,
1049 			bdev);
1050 		return -EIO;
1051 	}
1052 
1053 	/* Create a page with the proper size buffers.. */
1054 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1055 }
1056 
1057 static struct buffer_head *
1058 __getblk_slow(struct block_device *bdev, sector_t block,
1059 	     unsigned size, gfp_t gfp)
1060 {
1061 	/* Size must be multiple of hard sectorsize */
1062 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1063 			(size < 512 || size > PAGE_SIZE))) {
1064 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1065 					size);
1066 		printk(KERN_ERR "logical block size: %d\n",
1067 					bdev_logical_block_size(bdev));
1068 
1069 		dump_stack();
1070 		return NULL;
1071 	}
1072 
1073 	for (;;) {
1074 		struct buffer_head *bh;
1075 		int ret;
1076 
1077 		bh = __find_get_block(bdev, block, size);
1078 		if (bh)
1079 			return bh;
1080 
1081 		ret = grow_buffers(bdev, block, size, gfp);
1082 		if (ret < 0)
1083 			return NULL;
1084 	}
1085 }
1086 
1087 /*
1088  * The relationship between dirty buffers and dirty pages:
1089  *
1090  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091  * the page is tagged dirty in the page cache.
1092  *
1093  * At all times, the dirtiness of the buffers represents the dirtiness of
1094  * subsections of the page.  If the page has buffers, the page dirty bit is
1095  * merely a hint about the true dirty state.
1096  *
1097  * When a page is set dirty in its entirety, all its buffers are marked dirty
1098  * (if the page has buffers).
1099  *
1100  * When a buffer is marked dirty, its page is dirtied, but the page's other
1101  * buffers are not.
1102  *
1103  * Also.  When blockdev buffers are explicitly read with bread(), they
1104  * individually become uptodate.  But their backing page remains not
1105  * uptodate - even if all of its buffers are uptodate.  A subsequent
1106  * block_read_full_folio() against that folio will discover all the uptodate
1107  * buffers, will set the folio uptodate and will perform no I/O.
1108  */
1109 
1110 /**
1111  * mark_buffer_dirty - mark a buffer_head as needing writeout
1112  * @bh: the buffer_head to mark dirty
1113  *
1114  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1115  * its backing page dirty, then tag the page as dirty in the page cache
1116  * and then attach the address_space's inode to its superblock's dirty
1117  * inode list.
1118  *
1119  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1120  * i_pages lock and mapping->host->i_lock.
1121  */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124 	WARN_ON_ONCE(!buffer_uptodate(bh));
1125 
1126 	trace_block_dirty_buffer(bh);
1127 
1128 	/*
1129 	 * Very *carefully* optimize the it-is-already-dirty case.
1130 	 *
1131 	 * Don't let the final "is it dirty" escape to before we
1132 	 * perhaps modified the buffer.
1133 	 */
1134 	if (buffer_dirty(bh)) {
1135 		smp_mb();
1136 		if (buffer_dirty(bh))
1137 			return;
1138 	}
1139 
1140 	if (!test_set_buffer_dirty(bh)) {
1141 		struct page *page = bh->b_page;
1142 		struct address_space *mapping = NULL;
1143 
1144 		lock_page_memcg(page);
1145 		if (!TestSetPageDirty(page)) {
1146 			mapping = page_mapping(page);
1147 			if (mapping)
1148 				__set_page_dirty(page, mapping, 0);
1149 		}
1150 		unlock_page_memcg(page);
1151 		if (mapping)
1152 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1153 	}
1154 }
1155 EXPORT_SYMBOL(mark_buffer_dirty);
1156 
1157 void mark_buffer_write_io_error(struct buffer_head *bh)
1158 {
1159 	struct super_block *sb;
1160 
1161 	set_buffer_write_io_error(bh);
1162 	/* FIXME: do we need to set this in both places? */
1163 	if (bh->b_page && bh->b_page->mapping)
1164 		mapping_set_error(bh->b_page->mapping, -EIO);
1165 	if (bh->b_assoc_map)
1166 		mapping_set_error(bh->b_assoc_map, -EIO);
1167 	rcu_read_lock();
1168 	sb = READ_ONCE(bh->b_bdev->bd_super);
1169 	if (sb)
1170 		errseq_set(&sb->s_wb_err, -EIO);
1171 	rcu_read_unlock();
1172 }
1173 EXPORT_SYMBOL(mark_buffer_write_io_error);
1174 
1175 /*
1176  * Decrement a buffer_head's reference count.  If all buffers against a page
1177  * have zero reference count, are clean and unlocked, and if the page is clean
1178  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180  * a page but it ends up not being freed, and buffers may later be reattached).
1181  */
1182 void __brelse(struct buffer_head * buf)
1183 {
1184 	if (atomic_read(&buf->b_count)) {
1185 		put_bh(buf);
1186 		return;
1187 	}
1188 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189 }
1190 EXPORT_SYMBOL(__brelse);
1191 
1192 /*
1193  * bforget() is like brelse(), except it discards any
1194  * potentially dirty data.
1195  */
1196 void __bforget(struct buffer_head *bh)
1197 {
1198 	clear_buffer_dirty(bh);
1199 	if (bh->b_assoc_map) {
1200 		struct address_space *buffer_mapping = bh->b_page->mapping;
1201 
1202 		spin_lock(&buffer_mapping->private_lock);
1203 		list_del_init(&bh->b_assoc_buffers);
1204 		bh->b_assoc_map = NULL;
1205 		spin_unlock(&buffer_mapping->private_lock);
1206 	}
1207 	__brelse(bh);
1208 }
1209 EXPORT_SYMBOL(__bforget);
1210 
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 {
1213 	lock_buffer(bh);
1214 	if (buffer_uptodate(bh)) {
1215 		unlock_buffer(bh);
1216 		return bh;
1217 	} else {
1218 		get_bh(bh);
1219 		bh->b_end_io = end_buffer_read_sync;
1220 		submit_bh(REQ_OP_READ, bh);
1221 		wait_on_buffer(bh);
1222 		if (buffer_uptodate(bh))
1223 			return bh;
1224 	}
1225 	brelse(bh);
1226 	return NULL;
1227 }
1228 
1229 /*
1230  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1231  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1232  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1233  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1234  * CPU's LRUs at the same time.
1235  *
1236  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237  * sb_find_get_block().
1238  *
1239  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1240  * a local interrupt disable for that.
1241  */
1242 
1243 #define BH_LRU_SIZE	16
1244 
1245 struct bh_lru {
1246 	struct buffer_head *bhs[BH_LRU_SIZE];
1247 };
1248 
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250 
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock()	local_irq_disable()
1253 #define bh_lru_unlock()	local_irq_enable()
1254 #else
1255 #define bh_lru_lock()	preempt_disable()
1256 #define bh_lru_unlock()	preempt_enable()
1257 #endif
1258 
1259 static inline void check_irqs_on(void)
1260 {
1261 #ifdef irqs_disabled
1262 	BUG_ON(irqs_disabled());
1263 #endif
1264 }
1265 
1266 /*
1267  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1268  * inserted at the front, and the buffer_head at the back if any is evicted.
1269  * Or, if already in the LRU it is moved to the front.
1270  */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273 	struct buffer_head *evictee = bh;
1274 	struct bh_lru *b;
1275 	int i;
1276 
1277 	check_irqs_on();
1278 	bh_lru_lock();
1279 
1280 	/*
1281 	 * the refcount of buffer_head in bh_lru prevents dropping the
1282 	 * attached page(i.e., try_to_free_buffers) so it could cause
1283 	 * failing page migration.
1284 	 * Skip putting upcoming bh into bh_lru until migration is done.
1285 	 */
1286 	if (lru_cache_disabled()) {
1287 		bh_lru_unlock();
1288 		return;
1289 	}
1290 
1291 	b = this_cpu_ptr(&bh_lrus);
1292 	for (i = 0; i < BH_LRU_SIZE; i++) {
1293 		swap(evictee, b->bhs[i]);
1294 		if (evictee == bh) {
1295 			bh_lru_unlock();
1296 			return;
1297 		}
1298 	}
1299 
1300 	get_bh(bh);
1301 	bh_lru_unlock();
1302 	brelse(evictee);
1303 }
1304 
1305 /*
1306  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1307  */
1308 static struct buffer_head *
1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1310 {
1311 	struct buffer_head *ret = NULL;
1312 	unsigned int i;
1313 
1314 	check_irqs_on();
1315 	bh_lru_lock();
1316 	for (i = 0; i < BH_LRU_SIZE; i++) {
1317 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1318 
1319 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1320 		    bh->b_size == size) {
1321 			if (i) {
1322 				while (i) {
1323 					__this_cpu_write(bh_lrus.bhs[i],
1324 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1325 					i--;
1326 				}
1327 				__this_cpu_write(bh_lrus.bhs[0], bh);
1328 			}
1329 			get_bh(bh);
1330 			ret = bh;
1331 			break;
1332 		}
1333 	}
1334 	bh_lru_unlock();
1335 	return ret;
1336 }
1337 
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347 
1348 	if (bh == NULL) {
1349 		/* __find_get_block_slow will mark the page accessed */
1350 		bh = __find_get_block_slow(bdev, block);
1351 		if (bh)
1352 			bh_lru_install(bh);
1353 	} else
1354 		touch_buffer(bh);
1355 
1356 	return bh;
1357 }
1358 EXPORT_SYMBOL(__find_get_block);
1359 
1360 /*
1361  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1362  * which corresponds to the passed block_device, block and size. The
1363  * returned buffer has its reference count incremented.
1364  *
1365  * __getblk_gfp() will lock up the machine if grow_dev_page's
1366  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1367  */
1368 struct buffer_head *
1369 __getblk_gfp(struct block_device *bdev, sector_t block,
1370 	     unsigned size, gfp_t gfp)
1371 {
1372 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1373 
1374 	might_sleep();
1375 	if (bh == NULL)
1376 		bh = __getblk_slow(bdev, block, size, gfp);
1377 	return bh;
1378 }
1379 EXPORT_SYMBOL(__getblk_gfp);
1380 
1381 /*
1382  * Do async read-ahead on a buffer..
1383  */
1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386 	struct buffer_head *bh = __getblk(bdev, block, size);
1387 	if (likely(bh)) {
1388 		bh_readahead(bh, REQ_RAHEAD);
1389 		brelse(bh);
1390 	}
1391 }
1392 EXPORT_SYMBOL(__breadahead);
1393 
1394 /**
1395  *  __bread_gfp() - reads a specified block and returns the bh
1396  *  @bdev: the block_device to read from
1397  *  @block: number of block
1398  *  @size: size (in bytes) to read
1399  *  @gfp: page allocation flag
1400  *
1401  *  Reads a specified block, and returns buffer head that contains it.
1402  *  The page cache can be allocated from non-movable area
1403  *  not to prevent page migration if you set gfp to zero.
1404  *  It returns NULL if the block was unreadable.
1405  */
1406 struct buffer_head *
1407 __bread_gfp(struct block_device *bdev, sector_t block,
1408 		   unsigned size, gfp_t gfp)
1409 {
1410 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1411 
1412 	if (likely(bh) && !buffer_uptodate(bh))
1413 		bh = __bread_slow(bh);
1414 	return bh;
1415 }
1416 EXPORT_SYMBOL(__bread_gfp);
1417 
1418 static void __invalidate_bh_lrus(struct bh_lru *b)
1419 {
1420 	int i;
1421 
1422 	for (i = 0; i < BH_LRU_SIZE; i++) {
1423 		brelse(b->bhs[i]);
1424 		b->bhs[i] = NULL;
1425 	}
1426 }
1427 /*
1428  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1429  * This doesn't race because it runs in each cpu either in irq
1430  * or with preempt disabled.
1431  */
1432 static void invalidate_bh_lru(void *arg)
1433 {
1434 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1435 
1436 	__invalidate_bh_lrus(b);
1437 	put_cpu_var(bh_lrus);
1438 }
1439 
1440 bool has_bh_in_lru(int cpu, void *dummy)
1441 {
1442 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1443 	int i;
1444 
1445 	for (i = 0; i < BH_LRU_SIZE; i++) {
1446 		if (b->bhs[i])
1447 			return true;
1448 	}
1449 
1450 	return false;
1451 }
1452 
1453 void invalidate_bh_lrus(void)
1454 {
1455 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1456 }
1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1458 
1459 /*
1460  * It's called from workqueue context so we need a bh_lru_lock to close
1461  * the race with preemption/irq.
1462  */
1463 void invalidate_bh_lrus_cpu(void)
1464 {
1465 	struct bh_lru *b;
1466 
1467 	bh_lru_lock();
1468 	b = this_cpu_ptr(&bh_lrus);
1469 	__invalidate_bh_lrus(b);
1470 	bh_lru_unlock();
1471 }
1472 
1473 void set_bh_page(struct buffer_head *bh,
1474 		struct page *page, unsigned long offset)
1475 {
1476 	bh->b_page = page;
1477 	BUG_ON(offset >= PAGE_SIZE);
1478 	if (PageHighMem(page))
1479 		/*
1480 		 * This catches illegal uses and preserves the offset:
1481 		 */
1482 		bh->b_data = (char *)(0 + offset);
1483 	else
1484 		bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487 
1488 /*
1489  * Called when truncating a buffer on a page completely.
1490  */
1491 
1492 /* Bits that are cleared during an invalidate */
1493 #define BUFFER_FLAGS_DISCARD \
1494 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1495 	 1 << BH_Delay | 1 << BH_Unwritten)
1496 
1497 static void discard_buffer(struct buffer_head * bh)
1498 {
1499 	unsigned long b_state;
1500 
1501 	lock_buffer(bh);
1502 	clear_buffer_dirty(bh);
1503 	bh->b_bdev = NULL;
1504 	b_state = READ_ONCE(bh->b_state);
1505 	do {
1506 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1507 			      b_state & ~BUFFER_FLAGS_DISCARD));
1508 	unlock_buffer(bh);
1509 }
1510 
1511 /**
1512  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1513  * @folio: The folio which is affected.
1514  * @offset: start of the range to invalidate
1515  * @length: length of the range to invalidate
1516  *
1517  * block_invalidate_folio() is called when all or part of the folio has been
1518  * invalidated by a truncate operation.
1519  *
1520  * block_invalidate_folio() does not have to release all buffers, but it must
1521  * ensure that no dirty buffer is left outside @offset and that no I/O
1522  * is underway against any of the blocks which are outside the truncation
1523  * point.  Because the caller is about to free (and possibly reuse) those
1524  * blocks on-disk.
1525  */
1526 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1527 {
1528 	struct buffer_head *head, *bh, *next;
1529 	size_t curr_off = 0;
1530 	size_t stop = length + offset;
1531 
1532 	BUG_ON(!folio_test_locked(folio));
1533 
1534 	/*
1535 	 * Check for overflow
1536 	 */
1537 	BUG_ON(stop > folio_size(folio) || stop < length);
1538 
1539 	head = folio_buffers(folio);
1540 	if (!head)
1541 		return;
1542 
1543 	bh = head;
1544 	do {
1545 		size_t next_off = curr_off + bh->b_size;
1546 		next = bh->b_this_page;
1547 
1548 		/*
1549 		 * Are we still fully in range ?
1550 		 */
1551 		if (next_off > stop)
1552 			goto out;
1553 
1554 		/*
1555 		 * is this block fully invalidated?
1556 		 */
1557 		if (offset <= curr_off)
1558 			discard_buffer(bh);
1559 		curr_off = next_off;
1560 		bh = next;
1561 	} while (bh != head);
1562 
1563 	/*
1564 	 * We release buffers only if the entire folio is being invalidated.
1565 	 * The get_block cached value has been unconditionally invalidated,
1566 	 * so real IO is not possible anymore.
1567 	 */
1568 	if (length == folio_size(folio))
1569 		filemap_release_folio(folio, 0);
1570 out:
1571 	return;
1572 }
1573 EXPORT_SYMBOL(block_invalidate_folio);
1574 
1575 
1576 /*
1577  * We attach and possibly dirty the buffers atomically wrt
1578  * block_dirty_folio() via private_lock.  try_to_free_buffers
1579  * is already excluded via the page lock.
1580  */
1581 void create_empty_buffers(struct page *page,
1582 			unsigned long blocksize, unsigned long b_state)
1583 {
1584 	struct buffer_head *bh, *head, *tail;
1585 
1586 	head = alloc_page_buffers(page, blocksize, true);
1587 	bh = head;
1588 	do {
1589 		bh->b_state |= b_state;
1590 		tail = bh;
1591 		bh = bh->b_this_page;
1592 	} while (bh);
1593 	tail->b_this_page = head;
1594 
1595 	spin_lock(&page->mapping->private_lock);
1596 	if (PageUptodate(page) || PageDirty(page)) {
1597 		bh = head;
1598 		do {
1599 			if (PageDirty(page))
1600 				set_buffer_dirty(bh);
1601 			if (PageUptodate(page))
1602 				set_buffer_uptodate(bh);
1603 			bh = bh->b_this_page;
1604 		} while (bh != head);
1605 	}
1606 	attach_page_private(page, head);
1607 	spin_unlock(&page->mapping->private_lock);
1608 }
1609 EXPORT_SYMBOL(create_empty_buffers);
1610 
1611 /**
1612  * clean_bdev_aliases: clean a range of buffers in block device
1613  * @bdev: Block device to clean buffers in
1614  * @block: Start of a range of blocks to clean
1615  * @len: Number of blocks to clean
1616  *
1617  * We are taking a range of blocks for data and we don't want writeback of any
1618  * buffer-cache aliases starting from return from this function and until the
1619  * moment when something will explicitly mark the buffer dirty (hopefully that
1620  * will not happen until we will free that block ;-) We don't even need to mark
1621  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1622  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1623  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1624  * would confuse anyone who might pick it with bread() afterwards...
1625  *
1626  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1627  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1628  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1629  * need to.  That happens here.
1630  */
1631 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1632 {
1633 	struct inode *bd_inode = bdev->bd_inode;
1634 	struct address_space *bd_mapping = bd_inode->i_mapping;
1635 	struct folio_batch fbatch;
1636 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1637 	pgoff_t end;
1638 	int i, count;
1639 	struct buffer_head *bh;
1640 	struct buffer_head *head;
1641 
1642 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1643 	folio_batch_init(&fbatch);
1644 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1645 		count = folio_batch_count(&fbatch);
1646 		for (i = 0; i < count; i++) {
1647 			struct folio *folio = fbatch.folios[i];
1648 
1649 			if (!folio_buffers(folio))
1650 				continue;
1651 			/*
1652 			 * We use folio lock instead of bd_mapping->private_lock
1653 			 * to pin buffers here since we can afford to sleep and
1654 			 * it scales better than a global spinlock lock.
1655 			 */
1656 			folio_lock(folio);
1657 			/* Recheck when the folio is locked which pins bhs */
1658 			head = folio_buffers(folio);
1659 			if (!head)
1660 				goto unlock_page;
1661 			bh = head;
1662 			do {
1663 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664 					goto next;
1665 				if (bh->b_blocknr >= block + len)
1666 					break;
1667 				clear_buffer_dirty(bh);
1668 				wait_on_buffer(bh);
1669 				clear_buffer_req(bh);
1670 next:
1671 				bh = bh->b_this_page;
1672 			} while (bh != head);
1673 unlock_page:
1674 			folio_unlock(folio);
1675 		}
1676 		folio_batch_release(&fbatch);
1677 		cond_resched();
1678 		/* End of range already reached? */
1679 		if (index > end || !index)
1680 			break;
1681 	}
1682 }
1683 EXPORT_SYMBOL(clean_bdev_aliases);
1684 
1685 /*
1686  * Size is a power-of-two in the range 512..PAGE_SIZE,
1687  * and the case we care about most is PAGE_SIZE.
1688  *
1689  * So this *could* possibly be written with those
1690  * constraints in mind (relevant mostly if some
1691  * architecture has a slow bit-scan instruction)
1692  */
1693 static inline int block_size_bits(unsigned int blocksize)
1694 {
1695 	return ilog2(blocksize);
1696 }
1697 
1698 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1699 {
1700 	BUG_ON(!PageLocked(page));
1701 
1702 	if (!page_has_buffers(page))
1703 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1704 				     b_state);
1705 	return page_buffers(page);
1706 }
1707 
1708 /*
1709  * NOTE! All mapped/uptodate combinations are valid:
1710  *
1711  *	Mapped	Uptodate	Meaning
1712  *
1713  *	No	No		"unknown" - must do get_block()
1714  *	No	Yes		"hole" - zero-filled
1715  *	Yes	No		"allocated" - allocated on disk, not read in
1716  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1717  *
1718  * "Dirty" is valid only with the last case (mapped+uptodate).
1719  */
1720 
1721 /*
1722  * While block_write_full_page is writing back the dirty buffers under
1723  * the page lock, whoever dirtied the buffers may decide to clean them
1724  * again at any time.  We handle that by only looking at the buffer
1725  * state inside lock_buffer().
1726  *
1727  * If block_write_full_page() is called for regular writeback
1728  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729  * locked buffer.   This only can happen if someone has written the buffer
1730  * directly, with submit_bh().  At the address_space level PageWriteback
1731  * prevents this contention from occurring.
1732  *
1733  * If block_write_full_page() is called with wbc->sync_mode ==
1734  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1735  * causes the writes to be flagged as synchronous writes.
1736  */
1737 int __block_write_full_page(struct inode *inode, struct page *page,
1738 			get_block_t *get_block, struct writeback_control *wbc,
1739 			bh_end_io_t *handler)
1740 {
1741 	int err;
1742 	sector_t block;
1743 	sector_t last_block;
1744 	struct buffer_head *bh, *head;
1745 	unsigned int blocksize, bbits;
1746 	int nr_underway = 0;
1747 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1748 
1749 	head = create_page_buffers(page, inode,
1750 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1751 
1752 	/*
1753 	 * Be very careful.  We have no exclusion from block_dirty_folio
1754 	 * here, and the (potentially unmapped) buffers may become dirty at
1755 	 * any time.  If a buffer becomes dirty here after we've inspected it
1756 	 * then we just miss that fact, and the page stays dirty.
1757 	 *
1758 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1759 	 * handle that here by just cleaning them.
1760 	 */
1761 
1762 	bh = head;
1763 	blocksize = bh->b_size;
1764 	bbits = block_size_bits(blocksize);
1765 
1766 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1767 	last_block = (i_size_read(inode) - 1) >> bbits;
1768 
1769 	/*
1770 	 * Get all the dirty buffers mapped to disk addresses and
1771 	 * handle any aliases from the underlying blockdev's mapping.
1772 	 */
1773 	do {
1774 		if (block > last_block) {
1775 			/*
1776 			 * mapped buffers outside i_size will occur, because
1777 			 * this page can be outside i_size when there is a
1778 			 * truncate in progress.
1779 			 */
1780 			/*
1781 			 * The buffer was zeroed by block_write_full_page()
1782 			 */
1783 			clear_buffer_dirty(bh);
1784 			set_buffer_uptodate(bh);
1785 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1786 			   buffer_dirty(bh)) {
1787 			WARN_ON(bh->b_size != blocksize);
1788 			err = get_block(inode, block, bh, 1);
1789 			if (err)
1790 				goto recover;
1791 			clear_buffer_delay(bh);
1792 			if (buffer_new(bh)) {
1793 				/* blockdev mappings never come here */
1794 				clear_buffer_new(bh);
1795 				clean_bdev_bh_alias(bh);
1796 			}
1797 		}
1798 		bh = bh->b_this_page;
1799 		block++;
1800 	} while (bh != head);
1801 
1802 	do {
1803 		if (!buffer_mapped(bh))
1804 			continue;
1805 		/*
1806 		 * If it's a fully non-blocking write attempt and we cannot
1807 		 * lock the buffer then redirty the page.  Note that this can
1808 		 * potentially cause a busy-wait loop from writeback threads
1809 		 * and kswapd activity, but those code paths have their own
1810 		 * higher-level throttling.
1811 		 */
1812 		if (wbc->sync_mode != WB_SYNC_NONE) {
1813 			lock_buffer(bh);
1814 		} else if (!trylock_buffer(bh)) {
1815 			redirty_page_for_writepage(wbc, page);
1816 			continue;
1817 		}
1818 		if (test_clear_buffer_dirty(bh)) {
1819 			mark_buffer_async_write_endio(bh, handler);
1820 		} else {
1821 			unlock_buffer(bh);
1822 		}
1823 	} while ((bh = bh->b_this_page) != head);
1824 
1825 	/*
1826 	 * The page and its buffers are protected by PageWriteback(), so we can
1827 	 * drop the bh refcounts early.
1828 	 */
1829 	BUG_ON(PageWriteback(page));
1830 	set_page_writeback(page);
1831 
1832 	do {
1833 		struct buffer_head *next = bh->b_this_page;
1834 		if (buffer_async_write(bh)) {
1835 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1836 			nr_underway++;
1837 		}
1838 		bh = next;
1839 	} while (bh != head);
1840 	unlock_page(page);
1841 
1842 	err = 0;
1843 done:
1844 	if (nr_underway == 0) {
1845 		/*
1846 		 * The page was marked dirty, but the buffers were
1847 		 * clean.  Someone wrote them back by hand with
1848 		 * write_dirty_buffer/submit_bh.  A rare case.
1849 		 */
1850 		end_page_writeback(page);
1851 
1852 		/*
1853 		 * The page and buffer_heads can be released at any time from
1854 		 * here on.
1855 		 */
1856 	}
1857 	return err;
1858 
1859 recover:
1860 	/*
1861 	 * ENOSPC, or some other error.  We may already have added some
1862 	 * blocks to the file, so we need to write these out to avoid
1863 	 * exposing stale data.
1864 	 * The page is currently locked and not marked for writeback
1865 	 */
1866 	bh = head;
1867 	/* Recovery: lock and submit the mapped buffers */
1868 	do {
1869 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1870 		    !buffer_delay(bh)) {
1871 			lock_buffer(bh);
1872 			mark_buffer_async_write_endio(bh, handler);
1873 		} else {
1874 			/*
1875 			 * The buffer may have been set dirty during
1876 			 * attachment to a dirty page.
1877 			 */
1878 			clear_buffer_dirty(bh);
1879 		}
1880 	} while ((bh = bh->b_this_page) != head);
1881 	SetPageError(page);
1882 	BUG_ON(PageWriteback(page));
1883 	mapping_set_error(page->mapping, err);
1884 	set_page_writeback(page);
1885 	do {
1886 		struct buffer_head *next = bh->b_this_page;
1887 		if (buffer_async_write(bh)) {
1888 			clear_buffer_dirty(bh);
1889 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1890 			nr_underway++;
1891 		}
1892 		bh = next;
1893 	} while (bh != head);
1894 	unlock_page(page);
1895 	goto done;
1896 }
1897 EXPORT_SYMBOL(__block_write_full_page);
1898 
1899 /*
1900  * If a page has any new buffers, zero them out here, and mark them uptodate
1901  * and dirty so they'll be written out (in order to prevent uninitialised
1902  * block data from leaking). And clear the new bit.
1903  */
1904 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1905 {
1906 	unsigned int block_start, block_end;
1907 	struct buffer_head *head, *bh;
1908 
1909 	BUG_ON(!PageLocked(page));
1910 	if (!page_has_buffers(page))
1911 		return;
1912 
1913 	bh = head = page_buffers(page);
1914 	block_start = 0;
1915 	do {
1916 		block_end = block_start + bh->b_size;
1917 
1918 		if (buffer_new(bh)) {
1919 			if (block_end > from && block_start < to) {
1920 				if (!PageUptodate(page)) {
1921 					unsigned start, size;
1922 
1923 					start = max(from, block_start);
1924 					size = min(to, block_end) - start;
1925 
1926 					zero_user(page, start, size);
1927 					set_buffer_uptodate(bh);
1928 				}
1929 
1930 				clear_buffer_new(bh);
1931 				mark_buffer_dirty(bh);
1932 			}
1933 		}
1934 
1935 		block_start = block_end;
1936 		bh = bh->b_this_page;
1937 	} while (bh != head);
1938 }
1939 EXPORT_SYMBOL(page_zero_new_buffers);
1940 
1941 static void
1942 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1943 		const struct iomap *iomap)
1944 {
1945 	loff_t offset = block << inode->i_blkbits;
1946 
1947 	bh->b_bdev = iomap->bdev;
1948 
1949 	/*
1950 	 * Block points to offset in file we need to map, iomap contains
1951 	 * the offset at which the map starts. If the map ends before the
1952 	 * current block, then do not map the buffer and let the caller
1953 	 * handle it.
1954 	 */
1955 	BUG_ON(offset >= iomap->offset + iomap->length);
1956 
1957 	switch (iomap->type) {
1958 	case IOMAP_HOLE:
1959 		/*
1960 		 * If the buffer is not up to date or beyond the current EOF,
1961 		 * we need to mark it as new to ensure sub-block zeroing is
1962 		 * executed if necessary.
1963 		 */
1964 		if (!buffer_uptodate(bh) ||
1965 		    (offset >= i_size_read(inode)))
1966 			set_buffer_new(bh);
1967 		break;
1968 	case IOMAP_DELALLOC:
1969 		if (!buffer_uptodate(bh) ||
1970 		    (offset >= i_size_read(inode)))
1971 			set_buffer_new(bh);
1972 		set_buffer_uptodate(bh);
1973 		set_buffer_mapped(bh);
1974 		set_buffer_delay(bh);
1975 		break;
1976 	case IOMAP_UNWRITTEN:
1977 		/*
1978 		 * For unwritten regions, we always need to ensure that regions
1979 		 * in the block we are not writing to are zeroed. Mark the
1980 		 * buffer as new to ensure this.
1981 		 */
1982 		set_buffer_new(bh);
1983 		set_buffer_unwritten(bh);
1984 		fallthrough;
1985 	case IOMAP_MAPPED:
1986 		if ((iomap->flags & IOMAP_F_NEW) ||
1987 		    offset >= i_size_read(inode))
1988 			set_buffer_new(bh);
1989 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1990 				inode->i_blkbits;
1991 		set_buffer_mapped(bh);
1992 		break;
1993 	}
1994 }
1995 
1996 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1997 		get_block_t *get_block, const struct iomap *iomap)
1998 {
1999 	unsigned from = pos & (PAGE_SIZE - 1);
2000 	unsigned to = from + len;
2001 	struct inode *inode = folio->mapping->host;
2002 	unsigned block_start, block_end;
2003 	sector_t block;
2004 	int err = 0;
2005 	unsigned blocksize, bbits;
2006 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2007 
2008 	BUG_ON(!folio_test_locked(folio));
2009 	BUG_ON(from > PAGE_SIZE);
2010 	BUG_ON(to > PAGE_SIZE);
2011 	BUG_ON(from > to);
2012 
2013 	head = create_page_buffers(&folio->page, inode, 0);
2014 	blocksize = head->b_size;
2015 	bbits = block_size_bits(blocksize);
2016 
2017 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2018 
2019 	for(bh = head, block_start = 0; bh != head || !block_start;
2020 	    block++, block_start=block_end, bh = bh->b_this_page) {
2021 		block_end = block_start + blocksize;
2022 		if (block_end <= from || block_start >= to) {
2023 			if (folio_test_uptodate(folio)) {
2024 				if (!buffer_uptodate(bh))
2025 					set_buffer_uptodate(bh);
2026 			}
2027 			continue;
2028 		}
2029 		if (buffer_new(bh))
2030 			clear_buffer_new(bh);
2031 		if (!buffer_mapped(bh)) {
2032 			WARN_ON(bh->b_size != blocksize);
2033 			if (get_block) {
2034 				err = get_block(inode, block, bh, 1);
2035 				if (err)
2036 					break;
2037 			} else {
2038 				iomap_to_bh(inode, block, bh, iomap);
2039 			}
2040 
2041 			if (buffer_new(bh)) {
2042 				clean_bdev_bh_alias(bh);
2043 				if (folio_test_uptodate(folio)) {
2044 					clear_buffer_new(bh);
2045 					set_buffer_uptodate(bh);
2046 					mark_buffer_dirty(bh);
2047 					continue;
2048 				}
2049 				if (block_end > to || block_start < from)
2050 					folio_zero_segments(folio,
2051 						to, block_end,
2052 						block_start, from);
2053 				continue;
2054 			}
2055 		}
2056 		if (folio_test_uptodate(folio)) {
2057 			if (!buffer_uptodate(bh))
2058 				set_buffer_uptodate(bh);
2059 			continue;
2060 		}
2061 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2062 		    !buffer_unwritten(bh) &&
2063 		     (block_start < from || block_end > to)) {
2064 			bh_read_nowait(bh, 0);
2065 			*wait_bh++=bh;
2066 		}
2067 	}
2068 	/*
2069 	 * If we issued read requests - let them complete.
2070 	 */
2071 	while(wait_bh > wait) {
2072 		wait_on_buffer(*--wait_bh);
2073 		if (!buffer_uptodate(*wait_bh))
2074 			err = -EIO;
2075 	}
2076 	if (unlikely(err))
2077 		page_zero_new_buffers(&folio->page, from, to);
2078 	return err;
2079 }
2080 
2081 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2082 		get_block_t *get_block)
2083 {
2084 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2085 				       NULL);
2086 }
2087 EXPORT_SYMBOL(__block_write_begin);
2088 
2089 static int __block_commit_write(struct inode *inode, struct page *page,
2090 		unsigned from, unsigned to)
2091 {
2092 	unsigned block_start, block_end;
2093 	int partial = 0;
2094 	unsigned blocksize;
2095 	struct buffer_head *bh, *head;
2096 
2097 	bh = head = page_buffers(page);
2098 	blocksize = bh->b_size;
2099 
2100 	block_start = 0;
2101 	do {
2102 		block_end = block_start + blocksize;
2103 		if (block_end <= from || block_start >= to) {
2104 			if (!buffer_uptodate(bh))
2105 				partial = 1;
2106 		} else {
2107 			set_buffer_uptodate(bh);
2108 			mark_buffer_dirty(bh);
2109 		}
2110 		if (buffer_new(bh))
2111 			clear_buffer_new(bh);
2112 
2113 		block_start = block_end;
2114 		bh = bh->b_this_page;
2115 	} while (bh != head);
2116 
2117 	/*
2118 	 * If this is a partial write which happened to make all buffers
2119 	 * uptodate then we can optimize away a bogus read_folio() for
2120 	 * the next read(). Here we 'discover' whether the page went
2121 	 * uptodate as a result of this (potentially partial) write.
2122 	 */
2123 	if (!partial)
2124 		SetPageUptodate(page);
2125 	return 0;
2126 }
2127 
2128 /*
2129  * block_write_begin takes care of the basic task of block allocation and
2130  * bringing partial write blocks uptodate first.
2131  *
2132  * The filesystem needs to handle block truncation upon failure.
2133  */
2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2135 		struct page **pagep, get_block_t *get_block)
2136 {
2137 	pgoff_t index = pos >> PAGE_SHIFT;
2138 	struct page *page;
2139 	int status;
2140 
2141 	page = grab_cache_page_write_begin(mapping, index);
2142 	if (!page)
2143 		return -ENOMEM;
2144 
2145 	status = __block_write_begin(page, pos, len, get_block);
2146 	if (unlikely(status)) {
2147 		unlock_page(page);
2148 		put_page(page);
2149 		page = NULL;
2150 	}
2151 
2152 	*pagep = page;
2153 	return status;
2154 }
2155 EXPORT_SYMBOL(block_write_begin);
2156 
2157 int block_write_end(struct file *file, struct address_space *mapping,
2158 			loff_t pos, unsigned len, unsigned copied,
2159 			struct page *page, void *fsdata)
2160 {
2161 	struct inode *inode = mapping->host;
2162 	unsigned start;
2163 
2164 	start = pos & (PAGE_SIZE - 1);
2165 
2166 	if (unlikely(copied < len)) {
2167 		/*
2168 		 * The buffers that were written will now be uptodate, so
2169 		 * we don't have to worry about a read_folio reading them
2170 		 * and overwriting a partial write. However if we have
2171 		 * encountered a short write and only partially written
2172 		 * into a buffer, it will not be marked uptodate, so a
2173 		 * read_folio might come in and destroy our partial write.
2174 		 *
2175 		 * Do the simplest thing, and just treat any short write to a
2176 		 * non uptodate page as a zero-length write, and force the
2177 		 * caller to redo the whole thing.
2178 		 */
2179 		if (!PageUptodate(page))
2180 			copied = 0;
2181 
2182 		page_zero_new_buffers(page, start+copied, start+len);
2183 	}
2184 	flush_dcache_page(page);
2185 
2186 	/* This could be a short (even 0-length) commit */
2187 	__block_commit_write(inode, page, start, start+copied);
2188 
2189 	return copied;
2190 }
2191 EXPORT_SYMBOL(block_write_end);
2192 
2193 int generic_write_end(struct file *file, struct address_space *mapping,
2194 			loff_t pos, unsigned len, unsigned copied,
2195 			struct page *page, void *fsdata)
2196 {
2197 	struct inode *inode = mapping->host;
2198 	loff_t old_size = inode->i_size;
2199 	bool i_size_changed = false;
2200 
2201 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2202 
2203 	/*
2204 	 * No need to use i_size_read() here, the i_size cannot change under us
2205 	 * because we hold i_rwsem.
2206 	 *
2207 	 * But it's important to update i_size while still holding page lock:
2208 	 * page writeout could otherwise come in and zero beyond i_size.
2209 	 */
2210 	if (pos + copied > inode->i_size) {
2211 		i_size_write(inode, pos + copied);
2212 		i_size_changed = true;
2213 	}
2214 
2215 	unlock_page(page);
2216 	put_page(page);
2217 
2218 	if (old_size < pos)
2219 		pagecache_isize_extended(inode, old_size, pos);
2220 	/*
2221 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2222 	 * makes the holding time of page lock longer. Second, it forces lock
2223 	 * ordering of page lock and transaction start for journaling
2224 	 * filesystems.
2225 	 */
2226 	if (i_size_changed)
2227 		mark_inode_dirty(inode);
2228 	return copied;
2229 }
2230 EXPORT_SYMBOL(generic_write_end);
2231 
2232 /*
2233  * block_is_partially_uptodate checks whether buffers within a folio are
2234  * uptodate or not.
2235  *
2236  * Returns true if all buffers which correspond to the specified part
2237  * of the folio are uptodate.
2238  */
2239 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2240 {
2241 	unsigned block_start, block_end, blocksize;
2242 	unsigned to;
2243 	struct buffer_head *bh, *head;
2244 	bool ret = true;
2245 
2246 	head = folio_buffers(folio);
2247 	if (!head)
2248 		return false;
2249 	blocksize = head->b_size;
2250 	to = min_t(unsigned, folio_size(folio) - from, count);
2251 	to = from + to;
2252 	if (from < blocksize && to > folio_size(folio) - blocksize)
2253 		return false;
2254 
2255 	bh = head;
2256 	block_start = 0;
2257 	do {
2258 		block_end = block_start + blocksize;
2259 		if (block_end > from && block_start < to) {
2260 			if (!buffer_uptodate(bh)) {
2261 				ret = false;
2262 				break;
2263 			}
2264 			if (block_end >= to)
2265 				break;
2266 		}
2267 		block_start = block_end;
2268 		bh = bh->b_this_page;
2269 	} while (bh != head);
2270 
2271 	return ret;
2272 }
2273 EXPORT_SYMBOL(block_is_partially_uptodate);
2274 
2275 /*
2276  * Generic "read_folio" function for block devices that have the normal
2277  * get_block functionality. This is most of the block device filesystems.
2278  * Reads the folio asynchronously --- the unlock_buffer() and
2279  * set/clear_buffer_uptodate() functions propagate buffer state into the
2280  * folio once IO has completed.
2281  */
2282 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2283 {
2284 	struct inode *inode = folio->mapping->host;
2285 	sector_t iblock, lblock;
2286 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2287 	unsigned int blocksize, bbits;
2288 	int nr, i;
2289 	int fully_mapped = 1;
2290 	bool page_error = false;
2291 	loff_t limit = i_size_read(inode);
2292 
2293 	/* This is needed for ext4. */
2294 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2295 		limit = inode->i_sb->s_maxbytes;
2296 
2297 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2298 
2299 	head = create_page_buffers(&folio->page, inode, 0);
2300 	blocksize = head->b_size;
2301 	bbits = block_size_bits(blocksize);
2302 
2303 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2304 	lblock = (limit+blocksize-1) >> bbits;
2305 	bh = head;
2306 	nr = 0;
2307 	i = 0;
2308 
2309 	do {
2310 		if (buffer_uptodate(bh))
2311 			continue;
2312 
2313 		if (!buffer_mapped(bh)) {
2314 			int err = 0;
2315 
2316 			fully_mapped = 0;
2317 			if (iblock < lblock) {
2318 				WARN_ON(bh->b_size != blocksize);
2319 				err = get_block(inode, iblock, bh, 0);
2320 				if (err) {
2321 					folio_set_error(folio);
2322 					page_error = true;
2323 				}
2324 			}
2325 			if (!buffer_mapped(bh)) {
2326 				folio_zero_range(folio, i * blocksize,
2327 						blocksize);
2328 				if (!err)
2329 					set_buffer_uptodate(bh);
2330 				continue;
2331 			}
2332 			/*
2333 			 * get_block() might have updated the buffer
2334 			 * synchronously
2335 			 */
2336 			if (buffer_uptodate(bh))
2337 				continue;
2338 		}
2339 		arr[nr++] = bh;
2340 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2341 
2342 	if (fully_mapped)
2343 		folio_set_mappedtodisk(folio);
2344 
2345 	if (!nr) {
2346 		/*
2347 		 * All buffers are uptodate - we can set the folio uptodate
2348 		 * as well. But not if get_block() returned an error.
2349 		 */
2350 		if (!page_error)
2351 			folio_mark_uptodate(folio);
2352 		folio_unlock(folio);
2353 		return 0;
2354 	}
2355 
2356 	/* Stage two: lock the buffers */
2357 	for (i = 0; i < nr; i++) {
2358 		bh = arr[i];
2359 		lock_buffer(bh);
2360 		mark_buffer_async_read(bh);
2361 	}
2362 
2363 	/*
2364 	 * Stage 3: start the IO.  Check for uptodateness
2365 	 * inside the buffer lock in case another process reading
2366 	 * the underlying blockdev brought it uptodate (the sct fix).
2367 	 */
2368 	for (i = 0; i < nr; i++) {
2369 		bh = arr[i];
2370 		if (buffer_uptodate(bh))
2371 			end_buffer_async_read(bh, 1);
2372 		else
2373 			submit_bh(REQ_OP_READ, bh);
2374 	}
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(block_read_full_folio);
2378 
2379 /* utility function for filesystems that need to do work on expanding
2380  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2381  * deal with the hole.
2382  */
2383 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2384 {
2385 	struct address_space *mapping = inode->i_mapping;
2386 	const struct address_space_operations *aops = mapping->a_ops;
2387 	struct page *page;
2388 	void *fsdata = NULL;
2389 	int err;
2390 
2391 	err = inode_newsize_ok(inode, size);
2392 	if (err)
2393 		goto out;
2394 
2395 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2396 	if (err)
2397 		goto out;
2398 
2399 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2400 	BUG_ON(err > 0);
2401 
2402 out:
2403 	return err;
2404 }
2405 EXPORT_SYMBOL(generic_cont_expand_simple);
2406 
2407 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2408 			    loff_t pos, loff_t *bytes)
2409 {
2410 	struct inode *inode = mapping->host;
2411 	const struct address_space_operations *aops = mapping->a_ops;
2412 	unsigned int blocksize = i_blocksize(inode);
2413 	struct page *page;
2414 	void *fsdata = NULL;
2415 	pgoff_t index, curidx;
2416 	loff_t curpos;
2417 	unsigned zerofrom, offset, len;
2418 	int err = 0;
2419 
2420 	index = pos >> PAGE_SHIFT;
2421 	offset = pos & ~PAGE_MASK;
2422 
2423 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2424 		zerofrom = curpos & ~PAGE_MASK;
2425 		if (zerofrom & (blocksize-1)) {
2426 			*bytes |= (blocksize-1);
2427 			(*bytes)++;
2428 		}
2429 		len = PAGE_SIZE - zerofrom;
2430 
2431 		err = aops->write_begin(file, mapping, curpos, len,
2432 					    &page, &fsdata);
2433 		if (err)
2434 			goto out;
2435 		zero_user(page, zerofrom, len);
2436 		err = aops->write_end(file, mapping, curpos, len, len,
2437 						page, fsdata);
2438 		if (err < 0)
2439 			goto out;
2440 		BUG_ON(err != len);
2441 		err = 0;
2442 
2443 		balance_dirty_pages_ratelimited(mapping);
2444 
2445 		if (fatal_signal_pending(current)) {
2446 			err = -EINTR;
2447 			goto out;
2448 		}
2449 	}
2450 
2451 	/* page covers the boundary, find the boundary offset */
2452 	if (index == curidx) {
2453 		zerofrom = curpos & ~PAGE_MASK;
2454 		/* if we will expand the thing last block will be filled */
2455 		if (offset <= zerofrom) {
2456 			goto out;
2457 		}
2458 		if (zerofrom & (blocksize-1)) {
2459 			*bytes |= (blocksize-1);
2460 			(*bytes)++;
2461 		}
2462 		len = offset - zerofrom;
2463 
2464 		err = aops->write_begin(file, mapping, curpos, len,
2465 					    &page, &fsdata);
2466 		if (err)
2467 			goto out;
2468 		zero_user(page, zerofrom, len);
2469 		err = aops->write_end(file, mapping, curpos, len, len,
2470 						page, fsdata);
2471 		if (err < 0)
2472 			goto out;
2473 		BUG_ON(err != len);
2474 		err = 0;
2475 	}
2476 out:
2477 	return err;
2478 }
2479 
2480 /*
2481  * For moronic filesystems that do not allow holes in file.
2482  * We may have to extend the file.
2483  */
2484 int cont_write_begin(struct file *file, struct address_space *mapping,
2485 			loff_t pos, unsigned len,
2486 			struct page **pagep, void **fsdata,
2487 			get_block_t *get_block, loff_t *bytes)
2488 {
2489 	struct inode *inode = mapping->host;
2490 	unsigned int blocksize = i_blocksize(inode);
2491 	unsigned int zerofrom;
2492 	int err;
2493 
2494 	err = cont_expand_zero(file, mapping, pos, bytes);
2495 	if (err)
2496 		return err;
2497 
2498 	zerofrom = *bytes & ~PAGE_MASK;
2499 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2500 		*bytes |= (blocksize-1);
2501 		(*bytes)++;
2502 	}
2503 
2504 	return block_write_begin(mapping, pos, len, pagep, get_block);
2505 }
2506 EXPORT_SYMBOL(cont_write_begin);
2507 
2508 int block_commit_write(struct page *page, unsigned from, unsigned to)
2509 {
2510 	struct inode *inode = page->mapping->host;
2511 	__block_commit_write(inode,page,from,to);
2512 	return 0;
2513 }
2514 EXPORT_SYMBOL(block_commit_write);
2515 
2516 /*
2517  * block_page_mkwrite() is not allowed to change the file size as it gets
2518  * called from a page fault handler when a page is first dirtied. Hence we must
2519  * be careful to check for EOF conditions here. We set the page up correctly
2520  * for a written page which means we get ENOSPC checking when writing into
2521  * holes and correct delalloc and unwritten extent mapping on filesystems that
2522  * support these features.
2523  *
2524  * We are not allowed to take the i_mutex here so we have to play games to
2525  * protect against truncate races as the page could now be beyond EOF.  Because
2526  * truncate writes the inode size before removing pages, once we have the
2527  * page lock we can determine safely if the page is beyond EOF. If it is not
2528  * beyond EOF, then the page is guaranteed safe against truncation until we
2529  * unlock the page.
2530  *
2531  * Direct callers of this function should protect against filesystem freezing
2532  * using sb_start_pagefault() - sb_end_pagefault() functions.
2533  */
2534 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2535 			 get_block_t get_block)
2536 {
2537 	struct page *page = vmf->page;
2538 	struct inode *inode = file_inode(vma->vm_file);
2539 	unsigned long end;
2540 	loff_t size;
2541 	int ret;
2542 
2543 	lock_page(page);
2544 	size = i_size_read(inode);
2545 	if ((page->mapping != inode->i_mapping) ||
2546 	    (page_offset(page) > size)) {
2547 		/* We overload EFAULT to mean page got truncated */
2548 		ret = -EFAULT;
2549 		goto out_unlock;
2550 	}
2551 
2552 	/* page is wholly or partially inside EOF */
2553 	if (((page->index + 1) << PAGE_SHIFT) > size)
2554 		end = size & ~PAGE_MASK;
2555 	else
2556 		end = PAGE_SIZE;
2557 
2558 	ret = __block_write_begin(page, 0, end, get_block);
2559 	if (!ret)
2560 		ret = block_commit_write(page, 0, end);
2561 
2562 	if (unlikely(ret < 0))
2563 		goto out_unlock;
2564 	set_page_dirty(page);
2565 	wait_for_stable_page(page);
2566 	return 0;
2567 out_unlock:
2568 	unlock_page(page);
2569 	return ret;
2570 }
2571 EXPORT_SYMBOL(block_page_mkwrite);
2572 
2573 int block_truncate_page(struct address_space *mapping,
2574 			loff_t from, get_block_t *get_block)
2575 {
2576 	pgoff_t index = from >> PAGE_SHIFT;
2577 	unsigned offset = from & (PAGE_SIZE-1);
2578 	unsigned blocksize;
2579 	sector_t iblock;
2580 	unsigned length, pos;
2581 	struct inode *inode = mapping->host;
2582 	struct page *page;
2583 	struct buffer_head *bh;
2584 	int err;
2585 
2586 	blocksize = i_blocksize(inode);
2587 	length = offset & (blocksize - 1);
2588 
2589 	/* Block boundary? Nothing to do */
2590 	if (!length)
2591 		return 0;
2592 
2593 	length = blocksize - length;
2594 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2595 
2596 	page = grab_cache_page(mapping, index);
2597 	err = -ENOMEM;
2598 	if (!page)
2599 		goto out;
2600 
2601 	if (!page_has_buffers(page))
2602 		create_empty_buffers(page, blocksize, 0);
2603 
2604 	/* Find the buffer that contains "offset" */
2605 	bh = page_buffers(page);
2606 	pos = blocksize;
2607 	while (offset >= pos) {
2608 		bh = bh->b_this_page;
2609 		iblock++;
2610 		pos += blocksize;
2611 	}
2612 
2613 	err = 0;
2614 	if (!buffer_mapped(bh)) {
2615 		WARN_ON(bh->b_size != blocksize);
2616 		err = get_block(inode, iblock, bh, 0);
2617 		if (err)
2618 			goto unlock;
2619 		/* unmapped? It's a hole - nothing to do */
2620 		if (!buffer_mapped(bh))
2621 			goto unlock;
2622 	}
2623 
2624 	/* Ok, it's mapped. Make sure it's up-to-date */
2625 	if (PageUptodate(page))
2626 		set_buffer_uptodate(bh);
2627 
2628 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2629 		err = bh_read(bh, 0);
2630 		/* Uhhuh. Read error. Complain and punt. */
2631 		if (err < 0)
2632 			goto unlock;
2633 	}
2634 
2635 	zero_user(page, offset, length);
2636 	mark_buffer_dirty(bh);
2637 	err = 0;
2638 
2639 unlock:
2640 	unlock_page(page);
2641 	put_page(page);
2642 out:
2643 	return err;
2644 }
2645 EXPORT_SYMBOL(block_truncate_page);
2646 
2647 /*
2648  * The generic ->writepage function for buffer-backed address_spaces
2649  */
2650 int block_write_full_page(struct page *page, get_block_t *get_block,
2651 			struct writeback_control *wbc)
2652 {
2653 	struct inode * const inode = page->mapping->host;
2654 	loff_t i_size = i_size_read(inode);
2655 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2656 	unsigned offset;
2657 
2658 	/* Is the page fully inside i_size? */
2659 	if (page->index < end_index)
2660 		return __block_write_full_page(inode, page, get_block, wbc,
2661 					       end_buffer_async_write);
2662 
2663 	/* Is the page fully outside i_size? (truncate in progress) */
2664 	offset = i_size & (PAGE_SIZE-1);
2665 	if (page->index >= end_index+1 || !offset) {
2666 		unlock_page(page);
2667 		return 0; /* don't care */
2668 	}
2669 
2670 	/*
2671 	 * The page straddles i_size.  It must be zeroed out on each and every
2672 	 * writepage invocation because it may be mmapped.  "A file is mapped
2673 	 * in multiples of the page size.  For a file that is not a multiple of
2674 	 * the  page size, the remaining memory is zeroed when mapped, and
2675 	 * writes to that region are not written out to the file."
2676 	 */
2677 	zero_user_segment(page, offset, PAGE_SIZE);
2678 	return __block_write_full_page(inode, page, get_block, wbc,
2679 							end_buffer_async_write);
2680 }
2681 EXPORT_SYMBOL(block_write_full_page);
2682 
2683 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2684 			    get_block_t *get_block)
2685 {
2686 	struct inode *inode = mapping->host;
2687 	struct buffer_head tmp = {
2688 		.b_size = i_blocksize(inode),
2689 	};
2690 
2691 	get_block(inode, block, &tmp, 0);
2692 	return tmp.b_blocknr;
2693 }
2694 EXPORT_SYMBOL(generic_block_bmap);
2695 
2696 static void end_bio_bh_io_sync(struct bio *bio)
2697 {
2698 	struct buffer_head *bh = bio->bi_private;
2699 
2700 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2701 		set_bit(BH_Quiet, &bh->b_state);
2702 
2703 	bh->b_end_io(bh, !bio->bi_status);
2704 	bio_put(bio);
2705 }
2706 
2707 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2708 			  struct writeback_control *wbc)
2709 {
2710 	const enum req_op op = opf & REQ_OP_MASK;
2711 	struct bio *bio;
2712 
2713 	BUG_ON(!buffer_locked(bh));
2714 	BUG_ON(!buffer_mapped(bh));
2715 	BUG_ON(!bh->b_end_io);
2716 	BUG_ON(buffer_delay(bh));
2717 	BUG_ON(buffer_unwritten(bh));
2718 
2719 	/*
2720 	 * Only clear out a write error when rewriting
2721 	 */
2722 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2723 		clear_buffer_write_io_error(bh);
2724 
2725 	if (buffer_meta(bh))
2726 		opf |= REQ_META;
2727 	if (buffer_prio(bh))
2728 		opf |= REQ_PRIO;
2729 
2730 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2731 
2732 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2733 
2734 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2735 
2736 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2737 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2738 
2739 	bio->bi_end_io = end_bio_bh_io_sync;
2740 	bio->bi_private = bh;
2741 
2742 	/* Take care of bh's that straddle the end of the device */
2743 	guard_bio_eod(bio);
2744 
2745 	if (wbc) {
2746 		wbc_init_bio(wbc, bio);
2747 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2748 	}
2749 
2750 	submit_bio(bio);
2751 }
2752 
2753 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2754 {
2755 	submit_bh_wbc(opf, bh, NULL);
2756 }
2757 EXPORT_SYMBOL(submit_bh);
2758 
2759 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2760 {
2761 	lock_buffer(bh);
2762 	if (!test_clear_buffer_dirty(bh)) {
2763 		unlock_buffer(bh);
2764 		return;
2765 	}
2766 	bh->b_end_io = end_buffer_write_sync;
2767 	get_bh(bh);
2768 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2769 }
2770 EXPORT_SYMBOL(write_dirty_buffer);
2771 
2772 /*
2773  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2774  * and then start new I/O and then wait upon it.  The caller must have a ref on
2775  * the buffer_head.
2776  */
2777 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2778 {
2779 	WARN_ON(atomic_read(&bh->b_count) < 1);
2780 	lock_buffer(bh);
2781 	if (test_clear_buffer_dirty(bh)) {
2782 		/*
2783 		 * The bh should be mapped, but it might not be if the
2784 		 * device was hot-removed. Not much we can do but fail the I/O.
2785 		 */
2786 		if (!buffer_mapped(bh)) {
2787 			unlock_buffer(bh);
2788 			return -EIO;
2789 		}
2790 
2791 		get_bh(bh);
2792 		bh->b_end_io = end_buffer_write_sync;
2793 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2794 		wait_on_buffer(bh);
2795 		if (!buffer_uptodate(bh))
2796 			return -EIO;
2797 	} else {
2798 		unlock_buffer(bh);
2799 	}
2800 	return 0;
2801 }
2802 EXPORT_SYMBOL(__sync_dirty_buffer);
2803 
2804 int sync_dirty_buffer(struct buffer_head *bh)
2805 {
2806 	return __sync_dirty_buffer(bh, REQ_SYNC);
2807 }
2808 EXPORT_SYMBOL(sync_dirty_buffer);
2809 
2810 /*
2811  * try_to_free_buffers() checks if all the buffers on this particular folio
2812  * are unused, and releases them if so.
2813  *
2814  * Exclusion against try_to_free_buffers may be obtained by either
2815  * locking the folio or by holding its mapping's private_lock.
2816  *
2817  * If the folio is dirty but all the buffers are clean then we need to
2818  * be sure to mark the folio clean as well.  This is because the folio
2819  * may be against a block device, and a later reattachment of buffers
2820  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2821  * filesystem data on the same device.
2822  *
2823  * The same applies to regular filesystem folios: if all the buffers are
2824  * clean then we set the folio clean and proceed.  To do that, we require
2825  * total exclusion from block_dirty_folio().  That is obtained with
2826  * private_lock.
2827  *
2828  * try_to_free_buffers() is non-blocking.
2829  */
2830 static inline int buffer_busy(struct buffer_head *bh)
2831 {
2832 	return atomic_read(&bh->b_count) |
2833 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2834 }
2835 
2836 static bool
2837 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2838 {
2839 	struct buffer_head *head = folio_buffers(folio);
2840 	struct buffer_head *bh;
2841 
2842 	bh = head;
2843 	do {
2844 		if (buffer_busy(bh))
2845 			goto failed;
2846 		bh = bh->b_this_page;
2847 	} while (bh != head);
2848 
2849 	do {
2850 		struct buffer_head *next = bh->b_this_page;
2851 
2852 		if (bh->b_assoc_map)
2853 			__remove_assoc_queue(bh);
2854 		bh = next;
2855 	} while (bh != head);
2856 	*buffers_to_free = head;
2857 	folio_detach_private(folio);
2858 	return true;
2859 failed:
2860 	return false;
2861 }
2862 
2863 bool try_to_free_buffers(struct folio *folio)
2864 {
2865 	struct address_space * const mapping = folio->mapping;
2866 	struct buffer_head *buffers_to_free = NULL;
2867 	bool ret = 0;
2868 
2869 	BUG_ON(!folio_test_locked(folio));
2870 	if (folio_test_writeback(folio))
2871 		return false;
2872 
2873 	if (mapping == NULL) {		/* can this still happen? */
2874 		ret = drop_buffers(folio, &buffers_to_free);
2875 		goto out;
2876 	}
2877 
2878 	spin_lock(&mapping->private_lock);
2879 	ret = drop_buffers(folio, &buffers_to_free);
2880 
2881 	/*
2882 	 * If the filesystem writes its buffers by hand (eg ext3)
2883 	 * then we can have clean buffers against a dirty folio.  We
2884 	 * clean the folio here; otherwise the VM will never notice
2885 	 * that the filesystem did any IO at all.
2886 	 *
2887 	 * Also, during truncate, discard_buffer will have marked all
2888 	 * the folio's buffers clean.  We discover that here and clean
2889 	 * the folio also.
2890 	 *
2891 	 * private_lock must be held over this entire operation in order
2892 	 * to synchronise against block_dirty_folio and prevent the
2893 	 * dirty bit from being lost.
2894 	 */
2895 	if (ret)
2896 		folio_cancel_dirty(folio);
2897 	spin_unlock(&mapping->private_lock);
2898 out:
2899 	if (buffers_to_free) {
2900 		struct buffer_head *bh = buffers_to_free;
2901 
2902 		do {
2903 			struct buffer_head *next = bh->b_this_page;
2904 			free_buffer_head(bh);
2905 			bh = next;
2906 		} while (bh != buffers_to_free);
2907 	}
2908 	return ret;
2909 }
2910 EXPORT_SYMBOL(try_to_free_buffers);
2911 
2912 /*
2913  * Buffer-head allocation
2914  */
2915 static struct kmem_cache *bh_cachep __read_mostly;
2916 
2917 /*
2918  * Once the number of bh's in the machine exceeds this level, we start
2919  * stripping them in writeback.
2920  */
2921 static unsigned long max_buffer_heads;
2922 
2923 int buffer_heads_over_limit;
2924 
2925 struct bh_accounting {
2926 	int nr;			/* Number of live bh's */
2927 	int ratelimit;		/* Limit cacheline bouncing */
2928 };
2929 
2930 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2931 
2932 static void recalc_bh_state(void)
2933 {
2934 	int i;
2935 	int tot = 0;
2936 
2937 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2938 		return;
2939 	__this_cpu_write(bh_accounting.ratelimit, 0);
2940 	for_each_online_cpu(i)
2941 		tot += per_cpu(bh_accounting, i).nr;
2942 	buffer_heads_over_limit = (tot > max_buffer_heads);
2943 }
2944 
2945 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2946 {
2947 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2948 	if (ret) {
2949 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
2950 		spin_lock_init(&ret->b_uptodate_lock);
2951 		preempt_disable();
2952 		__this_cpu_inc(bh_accounting.nr);
2953 		recalc_bh_state();
2954 		preempt_enable();
2955 	}
2956 	return ret;
2957 }
2958 EXPORT_SYMBOL(alloc_buffer_head);
2959 
2960 void free_buffer_head(struct buffer_head *bh)
2961 {
2962 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2963 	kmem_cache_free(bh_cachep, bh);
2964 	preempt_disable();
2965 	__this_cpu_dec(bh_accounting.nr);
2966 	recalc_bh_state();
2967 	preempt_enable();
2968 }
2969 EXPORT_SYMBOL(free_buffer_head);
2970 
2971 static int buffer_exit_cpu_dead(unsigned int cpu)
2972 {
2973 	int i;
2974 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2975 
2976 	for (i = 0; i < BH_LRU_SIZE; i++) {
2977 		brelse(b->bhs[i]);
2978 		b->bhs[i] = NULL;
2979 	}
2980 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2981 	per_cpu(bh_accounting, cpu).nr = 0;
2982 	return 0;
2983 }
2984 
2985 /**
2986  * bh_uptodate_or_lock - Test whether the buffer is uptodate
2987  * @bh: struct buffer_head
2988  *
2989  * Return true if the buffer is up-to-date and false,
2990  * with the buffer locked, if not.
2991  */
2992 int bh_uptodate_or_lock(struct buffer_head *bh)
2993 {
2994 	if (!buffer_uptodate(bh)) {
2995 		lock_buffer(bh);
2996 		if (!buffer_uptodate(bh))
2997 			return 0;
2998 		unlock_buffer(bh);
2999 	}
3000 	return 1;
3001 }
3002 EXPORT_SYMBOL(bh_uptodate_or_lock);
3003 
3004 /**
3005  * __bh_read - Submit read for a locked buffer
3006  * @bh: struct buffer_head
3007  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3008  * @wait: wait until reading finish
3009  *
3010  * Returns zero on success or don't wait, and -EIO on error.
3011  */
3012 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3013 {
3014 	int ret = 0;
3015 
3016 	BUG_ON(!buffer_locked(bh));
3017 
3018 	get_bh(bh);
3019 	bh->b_end_io = end_buffer_read_sync;
3020 	submit_bh(REQ_OP_READ | op_flags, bh);
3021 	if (wait) {
3022 		wait_on_buffer(bh);
3023 		if (!buffer_uptodate(bh))
3024 			ret = -EIO;
3025 	}
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL(__bh_read);
3029 
3030 /**
3031  * __bh_read_batch - Submit read for a batch of unlocked buffers
3032  * @nr: entry number of the buffer batch
3033  * @bhs: a batch of struct buffer_head
3034  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3036  *              buffer that cannot lock.
3037  *
3038  * Returns zero on success or don't wait, and -EIO on error.
3039  */
3040 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3041 		     blk_opf_t op_flags, bool force_lock)
3042 {
3043 	int i;
3044 
3045 	for (i = 0; i < nr; i++) {
3046 		struct buffer_head *bh = bhs[i];
3047 
3048 		if (buffer_uptodate(bh))
3049 			continue;
3050 
3051 		if (force_lock)
3052 			lock_buffer(bh);
3053 		else
3054 			if (!trylock_buffer(bh))
3055 				continue;
3056 
3057 		if (buffer_uptodate(bh)) {
3058 			unlock_buffer(bh);
3059 			continue;
3060 		}
3061 
3062 		bh->b_end_io = end_buffer_read_sync;
3063 		get_bh(bh);
3064 		submit_bh(REQ_OP_READ | op_flags, bh);
3065 	}
3066 }
3067 EXPORT_SYMBOL(__bh_read_batch);
3068 
3069 void __init buffer_init(void)
3070 {
3071 	unsigned long nrpages;
3072 	int ret;
3073 
3074 	bh_cachep = kmem_cache_create("buffer_head",
3075 			sizeof(struct buffer_head), 0,
3076 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3077 				SLAB_MEM_SPREAD),
3078 				NULL);
3079 
3080 	/*
3081 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3082 	 */
3083 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3084 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3085 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3086 					NULL, buffer_exit_cpu_dead);
3087 	WARN_ON(ret < 0);
3088 }
3089