xref: /linux/fs/eventpoll.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epnested_mutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * The epnested_mutex is acquired when inserting an epoll fd onto another
61  * epoll fd. We do this so that we walk the epoll tree and ensure that this
62  * insertion does not create a cycle of epoll file descriptors, which
63  * could lead to deadlock. We need a global mutex to prevent two
64  * simultaneous inserts (A into B and B into A) from racing and
65  * constructing a cycle without either insert observing that it is
66  * going to.
67  * It is necessary to acquire multiple "ep->mtx"es at once in the
68  * case when one epoll fd is added to another. In this case, we
69  * always acquire the locks in the order of nesting (i.e. after
70  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71  * before e2->mtx). Since we disallow cycles of epoll file
72  * descriptors, this ensures that the mutexes are well-ordered. In
73  * order to communicate this nesting to lockdep, when walking a tree
74  * of epoll file descriptors, we use the current recursion depth as
75  * the lockdep subkey.
76  * It is possible to drop the "ep->mtx" and to use the global
77  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78  * but having "ep->mtx" will make the interface more scalable.
79  * Events that require holding "epnested_mutex" are very rare, while for
80  * normal operations the epoll private "ep->mtx" will guarantee
81  * a better scalability.
82  */
83 
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86 
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88 
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 } __packed;
105 
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 	/* List header used to link this structure to the "struct epitem" */
109 	struct eppoll_entry *next;
110 
111 	/* The "base" pointer is set to the container "struct epitem" */
112 	struct epitem *base;
113 
114 	/*
115 	 * Wait queue item that will be linked to the target file wait
116 	 * queue head.
117 	 */
118 	wait_queue_entry_t wait;
119 
120 	/* The wait queue head that linked the "wait" wait queue item */
121 	wait_queue_head_t *whead;
122 };
123 
124 /*
125  * Each file descriptor added to the eventpoll interface will
126  * have an entry of this type linked to the "rbr" RB tree.
127  * Avoid increasing the size of this struct, there can be many thousands
128  * of these on a server and we do not want this to take another cache line.
129  */
130 struct epitem {
131 	union {
132 		/* RB tree node links this structure to the eventpoll RB tree */
133 		struct rb_node rbn;
134 		/* Used to free the struct epitem */
135 		struct rcu_head rcu;
136 	};
137 
138 	/* List header used to link this structure to the eventpoll ready list */
139 	struct list_head rdllink;
140 
141 	/*
142 	 * Works together "struct eventpoll"->ovflist in keeping the
143 	 * single linked chain of items.
144 	 */
145 	struct epitem *next;
146 
147 	/* The file descriptor information this item refers to */
148 	struct epoll_filefd ffd;
149 
150 	/*
151 	 * Protected by file->f_lock, true for to-be-released epitem already
152 	 * removed from the "struct file" items list; together with
153 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 	 */
155 	bool dying;
156 
157 	/* List containing poll wait queues */
158 	struct eppoll_entry *pwqlist;
159 
160 	/* The "container" of this item */
161 	struct eventpoll *ep;
162 
163 	/* List header used to link this item to the "struct file" items list */
164 	struct hlist_node fllink;
165 
166 	/* wakeup_source used when EPOLLWAKEUP is set */
167 	struct wakeup_source __rcu *ws;
168 
169 	/* The structure that describe the interested events and the source fd */
170 	struct epoll_event event;
171 };
172 
173 /*
174  * This structure is stored inside the "private_data" member of the file
175  * structure and represents the main data structure for the eventpoll
176  * interface.
177  */
178 struct eventpoll {
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* Lock which protects rdllist and ovflist */
197 	rwlock_t lock;
198 
199 	/* RB tree root used to store monitored fd structs */
200 	struct rb_root_cached rbr;
201 
202 	/*
203 	 * This is a single linked list that chains all the "struct epitem" that
204 	 * happened while transferring ready events to userspace w/out
205 	 * holding ->lock.
206 	 */
207 	struct epitem *ovflist;
208 
209 	/* wakeup_source used when ep_scan_ready_list is running */
210 	struct wakeup_source *ws;
211 
212 	/* The user that created the eventpoll descriptor */
213 	struct user_struct *user;
214 
215 	struct file *file;
216 
217 	/* used to optimize loop detection check */
218 	u64 gen;
219 	struct hlist_head refs;
220 
221 	/*
222 	 * usage count, used together with epitem->dying to
223 	 * orchestrate the disposal of this struct
224 	 */
225 	refcount_t refcount;
226 
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 	/* used to track busy poll napi_id */
229 	unsigned int napi_id;
230 #endif
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 	/* tracks wakeup nests for lockdep validation */
234 	u8 nests;
235 #endif
236 };
237 
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 	poll_table pt;
241 	struct epitem *epi;
242 };
243 
244 /*
245  * Configuration options available inside /proc/sys/fs/epoll/
246  */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249 
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252 
253 static u64 loop_check_gen = 0;
254 
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __ro_after_init;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __ro_after_init;
263 
264 /*
265  * List of files with newly added links, where we may need to limit the number
266  * of emanating paths. Protected by the epnested_mutex.
267  */
268 struct epitems_head {
269 	struct hlist_head epitems;
270 	struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273 
274 static struct kmem_cache *ephead_cache __ro_after_init;
275 
276 static inline void free_ephead(struct epitems_head *head)
277 {
278 	if (head)
279 		kmem_cache_free(ephead_cache, head);
280 }
281 
282 static void list_file(struct file *file)
283 {
284 	struct epitems_head *head;
285 
286 	head = container_of(file->f_ep, struct epitems_head, epitems);
287 	if (!head->next) {
288 		head->next = tfile_check_list;
289 		tfile_check_list = head;
290 	}
291 }
292 
293 static void unlist_file(struct epitems_head *head)
294 {
295 	struct epitems_head *to_free = head;
296 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 	if (p) {
298 		struct epitem *epi= container_of(p, struct epitem, fllink);
299 		spin_lock(&epi->ffd.file->f_lock);
300 		if (!hlist_empty(&head->epitems))
301 			to_free = NULL;
302 		head->next = NULL;
303 		spin_unlock(&epi->ffd.file->f_lock);
304 	}
305 	free_ephead(to_free);
306 }
307 
308 #ifdef CONFIG_SYSCTL
309 
310 #include <linux/sysctl.h>
311 
312 static long long_zero;
313 static long long_max = LONG_MAX;
314 
315 static struct ctl_table epoll_table[] = {
316 	{
317 		.procname	= "max_user_watches",
318 		.data		= &max_user_watches,
319 		.maxlen		= sizeof(max_user_watches),
320 		.mode		= 0644,
321 		.proc_handler	= proc_doulongvec_minmax,
322 		.extra1		= &long_zero,
323 		.extra2		= &long_max,
324 	},
325 };
326 
327 static void __init epoll_sysctls_init(void)
328 {
329 	register_sysctl("fs/epoll", epoll_table);
330 }
331 #else
332 #define epoll_sysctls_init() do { } while (0)
333 #endif /* CONFIG_SYSCTL */
334 
335 static const struct file_operations eventpoll_fops;
336 
337 static inline int is_file_epoll(struct file *f)
338 {
339 	return f->f_op == &eventpoll_fops;
340 }
341 
342 /* Setup the structure that is used as key for the RB tree */
343 static inline void ep_set_ffd(struct epoll_filefd *ffd,
344 			      struct file *file, int fd)
345 {
346 	ffd->file = file;
347 	ffd->fd = fd;
348 }
349 
350 /* Compare RB tree keys */
351 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
352 			     struct epoll_filefd *p2)
353 {
354 	return (p1->file > p2->file ? +1:
355 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
356 }
357 
358 /* Tells us if the item is currently linked */
359 static inline int ep_is_linked(struct epitem *epi)
360 {
361 	return !list_empty(&epi->rdllink);
362 }
363 
364 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
365 {
366 	return container_of(p, struct eppoll_entry, wait);
367 }
368 
369 /* Get the "struct epitem" from a wait queue pointer */
370 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
371 {
372 	return container_of(p, struct eppoll_entry, wait)->base;
373 }
374 
375 /**
376  * ep_events_available - Checks if ready events might be available.
377  *
378  * @ep: Pointer to the eventpoll context.
379  *
380  * Return: a value different than %zero if ready events are available,
381  *          or %zero otherwise.
382  */
383 static inline int ep_events_available(struct eventpoll *ep)
384 {
385 	return !list_empty_careful(&ep->rdllist) ||
386 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
387 }
388 
389 #ifdef CONFIG_NET_RX_BUSY_POLL
390 static bool ep_busy_loop_end(void *p, unsigned long start_time)
391 {
392 	struct eventpoll *ep = p;
393 
394 	return ep_events_available(ep) || busy_loop_timeout(start_time);
395 }
396 
397 /*
398  * Busy poll if globally on and supporting sockets found && no events,
399  * busy loop will return if need_resched or ep_events_available.
400  *
401  * we must do our busy polling with irqs enabled
402  */
403 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
404 {
405 	unsigned int napi_id = READ_ONCE(ep->napi_id);
406 
407 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
408 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
409 			       BUSY_POLL_BUDGET);
410 		if (ep_events_available(ep))
411 			return true;
412 		/*
413 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
414 		 * it back in when we have moved a socket with a valid NAPI
415 		 * ID onto the ready list.
416 		 */
417 		ep->napi_id = 0;
418 		return false;
419 	}
420 	return false;
421 }
422 
423 /*
424  * Set epoll busy poll NAPI ID from sk.
425  */
426 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
427 {
428 	struct eventpoll *ep;
429 	unsigned int napi_id;
430 	struct socket *sock;
431 	struct sock *sk;
432 
433 	if (!net_busy_loop_on())
434 		return;
435 
436 	sock = sock_from_file(epi->ffd.file);
437 	if (!sock)
438 		return;
439 
440 	sk = sock->sk;
441 	if (!sk)
442 		return;
443 
444 	napi_id = READ_ONCE(sk->sk_napi_id);
445 	ep = epi->ep;
446 
447 	/* Non-NAPI IDs can be rejected
448 	 *	or
449 	 * Nothing to do if we already have this ID
450 	 */
451 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
452 		return;
453 
454 	/* record NAPI ID for use in next busy poll */
455 	ep->napi_id = napi_id;
456 }
457 
458 #else
459 
460 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
461 {
462 	return false;
463 }
464 
465 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
466 {
467 }
468 
469 #endif /* CONFIG_NET_RX_BUSY_POLL */
470 
471 /*
472  * As described in commit 0ccf831cb lockdep: annotate epoll
473  * the use of wait queues used by epoll is done in a very controlled
474  * manner. Wake ups can nest inside each other, but are never done
475  * with the same locking. For example:
476  *
477  *   dfd = socket(...);
478  *   efd1 = epoll_create();
479  *   efd2 = epoll_create();
480  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
481  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
482  *
483  * When a packet arrives to the device underneath "dfd", the net code will
484  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
485  * callback wakeup entry on that queue, and the wake_up() performed by the
486  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
487  * (efd1) notices that it may have some event ready, so it needs to wake up
488  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
489  * that ends up in another wake_up(), after having checked about the
490  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
491  * stack blasting.
492  *
493  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
494  * this special case of epoll.
495  */
496 #ifdef CONFIG_DEBUG_LOCK_ALLOC
497 
498 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
499 			     unsigned pollflags)
500 {
501 	struct eventpoll *ep_src;
502 	unsigned long flags;
503 	u8 nests = 0;
504 
505 	/*
506 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
507 	 * it might be natural to create a per-cpu nest count. However, since
508 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
509 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
510 	 * protected. Thus, we are introducing a per eventpoll nest field.
511 	 * If we are not being call from ep_poll_callback(), epi is NULL and
512 	 * we are at the first level of nesting, 0. Otherwise, we are being
513 	 * called from ep_poll_callback() and if a previous wakeup source is
514 	 * not an epoll file itself, we are at depth 1 since the wakeup source
515 	 * is depth 0. If the wakeup source is a previous epoll file in the
516 	 * wakeup chain then we use its nests value and record ours as
517 	 * nests + 1. The previous epoll file nests value is stable since its
518 	 * already holding its own poll_wait.lock.
519 	 */
520 	if (epi) {
521 		if ((is_file_epoll(epi->ffd.file))) {
522 			ep_src = epi->ffd.file->private_data;
523 			nests = ep_src->nests;
524 		} else {
525 			nests = 1;
526 		}
527 	}
528 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
529 	ep->nests = nests + 1;
530 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
531 	ep->nests = 0;
532 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
533 }
534 
535 #else
536 
537 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
538 			     __poll_t pollflags)
539 {
540 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
541 }
542 
543 #endif
544 
545 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
546 {
547 	wait_queue_head_t *whead;
548 
549 	rcu_read_lock();
550 	/*
551 	 * If it is cleared by POLLFREE, it should be rcu-safe.
552 	 * If we read NULL we need a barrier paired with
553 	 * smp_store_release() in ep_poll_callback(), otherwise
554 	 * we rely on whead->lock.
555 	 */
556 	whead = smp_load_acquire(&pwq->whead);
557 	if (whead)
558 		remove_wait_queue(whead, &pwq->wait);
559 	rcu_read_unlock();
560 }
561 
562 /*
563  * This function unregisters poll callbacks from the associated file
564  * descriptor.  Must be called with "mtx" held.
565  */
566 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
567 {
568 	struct eppoll_entry **p = &epi->pwqlist;
569 	struct eppoll_entry *pwq;
570 
571 	while ((pwq = *p) != NULL) {
572 		*p = pwq->next;
573 		ep_remove_wait_queue(pwq);
574 		kmem_cache_free(pwq_cache, pwq);
575 	}
576 }
577 
578 /* call only when ep->mtx is held */
579 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
580 {
581 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
582 }
583 
584 /* call only when ep->mtx is held */
585 static inline void ep_pm_stay_awake(struct epitem *epi)
586 {
587 	struct wakeup_source *ws = ep_wakeup_source(epi);
588 
589 	if (ws)
590 		__pm_stay_awake(ws);
591 }
592 
593 static inline bool ep_has_wakeup_source(struct epitem *epi)
594 {
595 	return rcu_access_pointer(epi->ws) ? true : false;
596 }
597 
598 /* call when ep->mtx cannot be held (ep_poll_callback) */
599 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
600 {
601 	struct wakeup_source *ws;
602 
603 	rcu_read_lock();
604 	ws = rcu_dereference(epi->ws);
605 	if (ws)
606 		__pm_stay_awake(ws);
607 	rcu_read_unlock();
608 }
609 
610 
611 /*
612  * ep->mutex needs to be held because we could be hit by
613  * eventpoll_release_file() and epoll_ctl().
614  */
615 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
616 {
617 	/*
618 	 * Steal the ready list, and re-init the original one to the
619 	 * empty list. Also, set ep->ovflist to NULL so that events
620 	 * happening while looping w/out locks, are not lost. We cannot
621 	 * have the poll callback to queue directly on ep->rdllist,
622 	 * because we want the "sproc" callback to be able to do it
623 	 * in a lockless way.
624 	 */
625 	lockdep_assert_irqs_enabled();
626 	write_lock_irq(&ep->lock);
627 	list_splice_init(&ep->rdllist, txlist);
628 	WRITE_ONCE(ep->ovflist, NULL);
629 	write_unlock_irq(&ep->lock);
630 }
631 
632 static void ep_done_scan(struct eventpoll *ep,
633 			 struct list_head *txlist)
634 {
635 	struct epitem *epi, *nepi;
636 
637 	write_lock_irq(&ep->lock);
638 	/*
639 	 * During the time we spent inside the "sproc" callback, some
640 	 * other events might have been queued by the poll callback.
641 	 * We re-insert them inside the main ready-list here.
642 	 */
643 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
644 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
645 		/*
646 		 * We need to check if the item is already in the list.
647 		 * During the "sproc" callback execution time, items are
648 		 * queued into ->ovflist but the "txlist" might already
649 		 * contain them, and the list_splice() below takes care of them.
650 		 */
651 		if (!ep_is_linked(epi)) {
652 			/*
653 			 * ->ovflist is LIFO, so we have to reverse it in order
654 			 * to keep in FIFO.
655 			 */
656 			list_add(&epi->rdllink, &ep->rdllist);
657 			ep_pm_stay_awake(epi);
658 		}
659 	}
660 	/*
661 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
662 	 * releasing the lock, events will be queued in the normal way inside
663 	 * ep->rdllist.
664 	 */
665 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
666 
667 	/*
668 	 * Quickly re-inject items left on "txlist".
669 	 */
670 	list_splice(txlist, &ep->rdllist);
671 	__pm_relax(ep->ws);
672 
673 	if (!list_empty(&ep->rdllist)) {
674 		if (waitqueue_active(&ep->wq))
675 			wake_up(&ep->wq);
676 	}
677 
678 	write_unlock_irq(&ep->lock);
679 }
680 
681 static void epi_rcu_free(struct rcu_head *head)
682 {
683 	struct epitem *epi = container_of(head, struct epitem, rcu);
684 	kmem_cache_free(epi_cache, epi);
685 }
686 
687 static void ep_get(struct eventpoll *ep)
688 {
689 	refcount_inc(&ep->refcount);
690 }
691 
692 /*
693  * Returns true if the event poll can be disposed
694  */
695 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
696 {
697 	if (!refcount_dec_and_test(&ep->refcount))
698 		return false;
699 
700 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
701 	return true;
702 }
703 
704 static void ep_free(struct eventpoll *ep)
705 {
706 	mutex_destroy(&ep->mtx);
707 	free_uid(ep->user);
708 	wakeup_source_unregister(ep->ws);
709 	kfree(ep);
710 }
711 
712 /*
713  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
714  * all the associated resources. Must be called with "mtx" held.
715  * If the dying flag is set, do the removal only if force is true.
716  * This prevents ep_clear_and_put() from dropping all the ep references
717  * while running concurrently with eventpoll_release_file().
718  * Returns true if the eventpoll can be disposed.
719  */
720 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
721 {
722 	struct file *file = epi->ffd.file;
723 	struct epitems_head *to_free;
724 	struct hlist_head *head;
725 
726 	lockdep_assert_irqs_enabled();
727 
728 	/*
729 	 * Removes poll wait queue hooks.
730 	 */
731 	ep_unregister_pollwait(ep, epi);
732 
733 	/* Remove the current item from the list of epoll hooks */
734 	spin_lock(&file->f_lock);
735 	if (epi->dying && !force) {
736 		spin_unlock(&file->f_lock);
737 		return false;
738 	}
739 
740 	to_free = NULL;
741 	head = file->f_ep;
742 	if (head->first == &epi->fllink && !epi->fllink.next) {
743 		file->f_ep = NULL;
744 		if (!is_file_epoll(file)) {
745 			struct epitems_head *v;
746 			v = container_of(head, struct epitems_head, epitems);
747 			if (!smp_load_acquire(&v->next))
748 				to_free = v;
749 		}
750 	}
751 	hlist_del_rcu(&epi->fllink);
752 	spin_unlock(&file->f_lock);
753 	free_ephead(to_free);
754 
755 	rb_erase_cached(&epi->rbn, &ep->rbr);
756 
757 	write_lock_irq(&ep->lock);
758 	if (ep_is_linked(epi))
759 		list_del_init(&epi->rdllink);
760 	write_unlock_irq(&ep->lock);
761 
762 	wakeup_source_unregister(ep_wakeup_source(epi));
763 	/*
764 	 * At this point it is safe to free the eventpoll item. Use the union
765 	 * field epi->rcu, since we are trying to minimize the size of
766 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
767 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
768 	 * use of the rbn field.
769 	 */
770 	call_rcu(&epi->rcu, epi_rcu_free);
771 
772 	percpu_counter_dec(&ep->user->epoll_watches);
773 	return ep_refcount_dec_and_test(ep);
774 }
775 
776 /*
777  * ep_remove variant for callers owing an additional reference to the ep
778  */
779 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
780 {
781 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
782 }
783 
784 static void ep_clear_and_put(struct eventpoll *ep)
785 {
786 	struct rb_node *rbp, *next;
787 	struct epitem *epi;
788 	bool dispose;
789 
790 	/* We need to release all tasks waiting for these file */
791 	if (waitqueue_active(&ep->poll_wait))
792 		ep_poll_safewake(ep, NULL, 0);
793 
794 	mutex_lock(&ep->mtx);
795 
796 	/*
797 	 * Walks through the whole tree by unregistering poll callbacks.
798 	 */
799 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
800 		epi = rb_entry(rbp, struct epitem, rbn);
801 
802 		ep_unregister_pollwait(ep, epi);
803 		cond_resched();
804 	}
805 
806 	/*
807 	 * Walks through the whole tree and try to free each "struct epitem".
808 	 * Note that ep_remove_safe() will not remove the epitem in case of a
809 	 * racing eventpoll_release_file(); the latter will do the removal.
810 	 * At this point we are sure no poll callbacks will be lingering around.
811 	 * Since we still own a reference to the eventpoll struct, the loop can't
812 	 * dispose it.
813 	 */
814 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
815 		next = rb_next(rbp);
816 		epi = rb_entry(rbp, struct epitem, rbn);
817 		ep_remove_safe(ep, epi);
818 		cond_resched();
819 	}
820 
821 	dispose = ep_refcount_dec_and_test(ep);
822 	mutex_unlock(&ep->mtx);
823 
824 	if (dispose)
825 		ep_free(ep);
826 }
827 
828 static int ep_eventpoll_release(struct inode *inode, struct file *file)
829 {
830 	struct eventpoll *ep = file->private_data;
831 
832 	if (ep)
833 		ep_clear_and_put(ep);
834 
835 	return 0;
836 }
837 
838 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
839 
840 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
841 {
842 	struct eventpoll *ep = file->private_data;
843 	LIST_HEAD(txlist);
844 	struct epitem *epi, *tmp;
845 	poll_table pt;
846 	__poll_t res = 0;
847 
848 	init_poll_funcptr(&pt, NULL);
849 
850 	/* Insert inside our poll wait queue */
851 	poll_wait(file, &ep->poll_wait, wait);
852 
853 	/*
854 	 * Proceed to find out if wanted events are really available inside
855 	 * the ready list.
856 	 */
857 	mutex_lock_nested(&ep->mtx, depth);
858 	ep_start_scan(ep, &txlist);
859 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
860 		if (ep_item_poll(epi, &pt, depth + 1)) {
861 			res = EPOLLIN | EPOLLRDNORM;
862 			break;
863 		} else {
864 			/*
865 			 * Item has been dropped into the ready list by the poll
866 			 * callback, but it's not actually ready, as far as
867 			 * caller requested events goes. We can remove it here.
868 			 */
869 			__pm_relax(ep_wakeup_source(epi));
870 			list_del_init(&epi->rdllink);
871 		}
872 	}
873 	ep_done_scan(ep, &txlist);
874 	mutex_unlock(&ep->mtx);
875 	return res;
876 }
877 
878 /*
879  * Differs from ep_eventpoll_poll() in that internal callers already have
880  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881  * is correctly annotated.
882  */
883 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 				 int depth)
885 {
886 	struct file *file = epi->ffd.file;
887 	__poll_t res;
888 
889 	pt->_key = epi->event.events;
890 	if (!is_file_epoll(file))
891 		res = vfs_poll(file, pt);
892 	else
893 		res = __ep_eventpoll_poll(file, pt, depth);
894 	return res & epi->event.events;
895 }
896 
897 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
898 {
899 	return __ep_eventpoll_poll(file, wait, 0);
900 }
901 
902 #ifdef CONFIG_PROC_FS
903 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
904 {
905 	struct eventpoll *ep = f->private_data;
906 	struct rb_node *rbp;
907 
908 	mutex_lock(&ep->mtx);
909 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
910 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
911 		struct inode *inode = file_inode(epi->ffd.file);
912 
913 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
914 			   " pos:%lli ino:%lx sdev:%x\n",
915 			   epi->ffd.fd, epi->event.events,
916 			   (long long)epi->event.data,
917 			   (long long)epi->ffd.file->f_pos,
918 			   inode->i_ino, inode->i_sb->s_dev);
919 		if (seq_has_overflowed(m))
920 			break;
921 	}
922 	mutex_unlock(&ep->mtx);
923 }
924 #endif
925 
926 /* File callbacks that implement the eventpoll file behaviour */
927 static const struct file_operations eventpoll_fops = {
928 #ifdef CONFIG_PROC_FS
929 	.show_fdinfo	= ep_show_fdinfo,
930 #endif
931 	.release	= ep_eventpoll_release,
932 	.poll		= ep_eventpoll_poll,
933 	.llseek		= noop_llseek,
934 };
935 
936 /*
937  * This is called from eventpoll_release() to unlink files from the eventpoll
938  * interface. We need to have this facility to cleanup correctly files that are
939  * closed without being removed from the eventpoll interface.
940  */
941 void eventpoll_release_file(struct file *file)
942 {
943 	struct eventpoll *ep;
944 	struct epitem *epi;
945 	bool dispose;
946 
947 	/*
948 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
949 	 * touching the epitems list before eventpoll_release_file() can access
950 	 * the ep->mtx.
951 	 */
952 again:
953 	spin_lock(&file->f_lock);
954 	if (file->f_ep && file->f_ep->first) {
955 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
956 		epi->dying = true;
957 		spin_unlock(&file->f_lock);
958 
959 		/*
960 		 * ep access is safe as we still own a reference to the ep
961 		 * struct
962 		 */
963 		ep = epi->ep;
964 		mutex_lock(&ep->mtx);
965 		dispose = __ep_remove(ep, epi, true);
966 		mutex_unlock(&ep->mtx);
967 
968 		if (dispose)
969 			ep_free(ep);
970 		goto again;
971 	}
972 	spin_unlock(&file->f_lock);
973 }
974 
975 static int ep_alloc(struct eventpoll **pep)
976 {
977 	struct eventpoll *ep;
978 
979 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
980 	if (unlikely(!ep))
981 		return -ENOMEM;
982 
983 	mutex_init(&ep->mtx);
984 	rwlock_init(&ep->lock);
985 	init_waitqueue_head(&ep->wq);
986 	init_waitqueue_head(&ep->poll_wait);
987 	INIT_LIST_HEAD(&ep->rdllist);
988 	ep->rbr = RB_ROOT_CACHED;
989 	ep->ovflist = EP_UNACTIVE_PTR;
990 	ep->user = get_current_user();
991 	refcount_set(&ep->refcount, 1);
992 
993 	*pep = ep;
994 
995 	return 0;
996 }
997 
998 /*
999  * Search the file inside the eventpoll tree. The RB tree operations
1000  * are protected by the "mtx" mutex, and ep_find() must be called with
1001  * "mtx" held.
1002  */
1003 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1004 {
1005 	int kcmp;
1006 	struct rb_node *rbp;
1007 	struct epitem *epi, *epir = NULL;
1008 	struct epoll_filefd ffd;
1009 
1010 	ep_set_ffd(&ffd, file, fd);
1011 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1012 		epi = rb_entry(rbp, struct epitem, rbn);
1013 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1014 		if (kcmp > 0)
1015 			rbp = rbp->rb_right;
1016 		else if (kcmp < 0)
1017 			rbp = rbp->rb_left;
1018 		else {
1019 			epir = epi;
1020 			break;
1021 		}
1022 	}
1023 
1024 	return epir;
1025 }
1026 
1027 #ifdef CONFIG_KCMP
1028 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1029 {
1030 	struct rb_node *rbp;
1031 	struct epitem *epi;
1032 
1033 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1034 		epi = rb_entry(rbp, struct epitem, rbn);
1035 		if (epi->ffd.fd == tfd) {
1036 			if (toff == 0)
1037 				return epi;
1038 			else
1039 				toff--;
1040 		}
1041 		cond_resched();
1042 	}
1043 
1044 	return NULL;
1045 }
1046 
1047 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1048 				     unsigned long toff)
1049 {
1050 	struct file *file_raw;
1051 	struct eventpoll *ep;
1052 	struct epitem *epi;
1053 
1054 	if (!is_file_epoll(file))
1055 		return ERR_PTR(-EINVAL);
1056 
1057 	ep = file->private_data;
1058 
1059 	mutex_lock(&ep->mtx);
1060 	epi = ep_find_tfd(ep, tfd, toff);
1061 	if (epi)
1062 		file_raw = epi->ffd.file;
1063 	else
1064 		file_raw = ERR_PTR(-ENOENT);
1065 	mutex_unlock(&ep->mtx);
1066 
1067 	return file_raw;
1068 }
1069 #endif /* CONFIG_KCMP */
1070 
1071 /*
1072  * Adds a new entry to the tail of the list in a lockless way, i.e.
1073  * multiple CPUs are allowed to call this function concurrently.
1074  *
1075  * Beware: it is necessary to prevent any other modifications of the
1076  *         existing list until all changes are completed, in other words
1077  *         concurrent list_add_tail_lockless() calls should be protected
1078  *         with a read lock, where write lock acts as a barrier which
1079  *         makes sure all list_add_tail_lockless() calls are fully
1080  *         completed.
1081  *
1082  *        Also an element can be locklessly added to the list only in one
1083  *        direction i.e. either to the tail or to the head, otherwise
1084  *        concurrent access will corrupt the list.
1085  *
1086  * Return: %false if element has been already added to the list, %true
1087  * otherwise.
1088  */
1089 static inline bool list_add_tail_lockless(struct list_head *new,
1090 					  struct list_head *head)
1091 {
1092 	struct list_head *prev;
1093 
1094 	/*
1095 	 * This is simple 'new->next = head' operation, but cmpxchg()
1096 	 * is used in order to detect that same element has been just
1097 	 * added to the list from another CPU: the winner observes
1098 	 * new->next == new.
1099 	 */
1100 	if (!try_cmpxchg(&new->next, &new, head))
1101 		return false;
1102 
1103 	/*
1104 	 * Initially ->next of a new element must be updated with the head
1105 	 * (we are inserting to the tail) and only then pointers are atomically
1106 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1107 	 * updated before pointers are actually swapped and pointers are
1108 	 * swapped before prev->next is updated.
1109 	 */
1110 
1111 	prev = xchg(&head->prev, new);
1112 
1113 	/*
1114 	 * It is safe to modify prev->next and new->prev, because a new element
1115 	 * is added only to the tail and new->next is updated before XCHG.
1116 	 */
1117 
1118 	prev->next = new;
1119 	new->prev = prev;
1120 
1121 	return true;
1122 }
1123 
1124 /*
1125  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1126  * i.e. multiple CPUs are allowed to call this function concurrently.
1127  *
1128  * Return: %false if epi element has been already chained, %true otherwise.
1129  */
1130 static inline bool chain_epi_lockless(struct epitem *epi)
1131 {
1132 	struct eventpoll *ep = epi->ep;
1133 
1134 	/* Fast preliminary check */
1135 	if (epi->next != EP_UNACTIVE_PTR)
1136 		return false;
1137 
1138 	/* Check that the same epi has not been just chained from another CPU */
1139 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1140 		return false;
1141 
1142 	/* Atomically exchange tail */
1143 	epi->next = xchg(&ep->ovflist, epi);
1144 
1145 	return true;
1146 }
1147 
1148 /*
1149  * This is the callback that is passed to the wait queue wakeup
1150  * mechanism. It is called by the stored file descriptors when they
1151  * have events to report.
1152  *
1153  * This callback takes a read lock in order not to contend with concurrent
1154  * events from another file descriptor, thus all modifications to ->rdllist
1155  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1156  * ep_scan_ready_list(), which stops all list modifications and guarantees
1157  * that lists state is seen correctly.
1158  *
1159  * Another thing worth to mention is that ep_poll_callback() can be called
1160  * concurrently for the same @epi from different CPUs if poll table was inited
1161  * with several wait queues entries.  Plural wakeup from different CPUs of a
1162  * single wait queue is serialized by wq.lock, but the case when multiple wait
1163  * queues are used should be detected accordingly.  This is detected using
1164  * cmpxchg() operation.
1165  */
1166 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1167 {
1168 	int pwake = 0;
1169 	struct epitem *epi = ep_item_from_wait(wait);
1170 	struct eventpoll *ep = epi->ep;
1171 	__poll_t pollflags = key_to_poll(key);
1172 	unsigned long flags;
1173 	int ewake = 0;
1174 
1175 	read_lock_irqsave(&ep->lock, flags);
1176 
1177 	ep_set_busy_poll_napi_id(epi);
1178 
1179 	/*
1180 	 * If the event mask does not contain any poll(2) event, we consider the
1181 	 * descriptor to be disabled. This condition is likely the effect of the
1182 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1183 	 * until the next EPOLL_CTL_MOD will be issued.
1184 	 */
1185 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1186 		goto out_unlock;
1187 
1188 	/*
1189 	 * Check the events coming with the callback. At this stage, not
1190 	 * every device reports the events in the "key" parameter of the
1191 	 * callback. We need to be able to handle both cases here, hence the
1192 	 * test for "key" != NULL before the event match test.
1193 	 */
1194 	if (pollflags && !(pollflags & epi->event.events))
1195 		goto out_unlock;
1196 
1197 	/*
1198 	 * If we are transferring events to userspace, we can hold no locks
1199 	 * (because we're accessing user memory, and because of linux f_op->poll()
1200 	 * semantics). All the events that happen during that period of time are
1201 	 * chained in ep->ovflist and requeued later on.
1202 	 */
1203 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1204 		if (chain_epi_lockless(epi))
1205 			ep_pm_stay_awake_rcu(epi);
1206 	} else if (!ep_is_linked(epi)) {
1207 		/* In the usual case, add event to ready list. */
1208 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1209 			ep_pm_stay_awake_rcu(epi);
1210 	}
1211 
1212 	/*
1213 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1214 	 * wait list.
1215 	 */
1216 	if (waitqueue_active(&ep->wq)) {
1217 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1218 					!(pollflags & POLLFREE)) {
1219 			switch (pollflags & EPOLLINOUT_BITS) {
1220 			case EPOLLIN:
1221 				if (epi->event.events & EPOLLIN)
1222 					ewake = 1;
1223 				break;
1224 			case EPOLLOUT:
1225 				if (epi->event.events & EPOLLOUT)
1226 					ewake = 1;
1227 				break;
1228 			case 0:
1229 				ewake = 1;
1230 				break;
1231 			}
1232 		}
1233 		wake_up(&ep->wq);
1234 	}
1235 	if (waitqueue_active(&ep->poll_wait))
1236 		pwake++;
1237 
1238 out_unlock:
1239 	read_unlock_irqrestore(&ep->lock, flags);
1240 
1241 	/* We have to call this outside the lock */
1242 	if (pwake)
1243 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1244 
1245 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1246 		ewake = 1;
1247 
1248 	if (pollflags & POLLFREE) {
1249 		/*
1250 		 * If we race with ep_remove_wait_queue() it can miss
1251 		 * ->whead = NULL and do another remove_wait_queue() after
1252 		 * us, so we can't use __remove_wait_queue().
1253 		 */
1254 		list_del_init(&wait->entry);
1255 		/*
1256 		 * ->whead != NULL protects us from the race with
1257 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1258 		 * takes whead->lock held by the caller. Once we nullify it,
1259 		 * nothing protects ep/epi or even wait.
1260 		 */
1261 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1262 	}
1263 
1264 	return ewake;
1265 }
1266 
1267 /*
1268  * This is the callback that is used to add our wait queue to the
1269  * target file wakeup lists.
1270  */
1271 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1272 				 poll_table *pt)
1273 {
1274 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1275 	struct epitem *epi = epq->epi;
1276 	struct eppoll_entry *pwq;
1277 
1278 	if (unlikely(!epi))	// an earlier allocation has failed
1279 		return;
1280 
1281 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1282 	if (unlikely(!pwq)) {
1283 		epq->epi = NULL;
1284 		return;
1285 	}
1286 
1287 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1288 	pwq->whead = whead;
1289 	pwq->base = epi;
1290 	if (epi->event.events & EPOLLEXCLUSIVE)
1291 		add_wait_queue_exclusive(whead, &pwq->wait);
1292 	else
1293 		add_wait_queue(whead, &pwq->wait);
1294 	pwq->next = epi->pwqlist;
1295 	epi->pwqlist = pwq;
1296 }
1297 
1298 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1299 {
1300 	int kcmp;
1301 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1302 	struct epitem *epic;
1303 	bool leftmost = true;
1304 
1305 	while (*p) {
1306 		parent = *p;
1307 		epic = rb_entry(parent, struct epitem, rbn);
1308 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1309 		if (kcmp > 0) {
1310 			p = &parent->rb_right;
1311 			leftmost = false;
1312 		} else
1313 			p = &parent->rb_left;
1314 	}
1315 	rb_link_node(&epi->rbn, parent, p);
1316 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1317 }
1318 
1319 
1320 
1321 #define PATH_ARR_SIZE 5
1322 /*
1323  * These are the number paths of length 1 to 5, that we are allowing to emanate
1324  * from a single file of interest. For example, we allow 1000 paths of length
1325  * 1, to emanate from each file of interest. This essentially represents the
1326  * potential wakeup paths, which need to be limited in order to avoid massive
1327  * uncontrolled wakeup storms. The common use case should be a single ep which
1328  * is connected to n file sources. In this case each file source has 1 path
1329  * of length 1. Thus, the numbers below should be more than sufficient. These
1330  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1331  * and delete can't add additional paths. Protected by the epnested_mutex.
1332  */
1333 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1334 static int path_count[PATH_ARR_SIZE];
1335 
1336 static int path_count_inc(int nests)
1337 {
1338 	/* Allow an arbitrary number of depth 1 paths */
1339 	if (nests == 0)
1340 		return 0;
1341 
1342 	if (++path_count[nests] > path_limits[nests])
1343 		return -1;
1344 	return 0;
1345 }
1346 
1347 static void path_count_init(void)
1348 {
1349 	int i;
1350 
1351 	for (i = 0; i < PATH_ARR_SIZE; i++)
1352 		path_count[i] = 0;
1353 }
1354 
1355 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1356 {
1357 	int error = 0;
1358 	struct epitem *epi;
1359 
1360 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1361 		return -1;
1362 
1363 	/* CTL_DEL can remove links here, but that can't increase our count */
1364 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1365 		struct hlist_head *refs = &epi->ep->refs;
1366 		if (hlist_empty(refs))
1367 			error = path_count_inc(depth);
1368 		else
1369 			error = reverse_path_check_proc(refs, depth + 1);
1370 		if (error != 0)
1371 			break;
1372 	}
1373 	return error;
1374 }
1375 
1376 /**
1377  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1378  *                      links that are proposed to be newly added. We need to
1379  *                      make sure that those added links don't add too many
1380  *                      paths such that we will spend all our time waking up
1381  *                      eventpoll objects.
1382  *
1383  * Return: %zero if the proposed links don't create too many paths,
1384  *	    %-1 otherwise.
1385  */
1386 static int reverse_path_check(void)
1387 {
1388 	struct epitems_head *p;
1389 
1390 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1391 		int error;
1392 		path_count_init();
1393 		rcu_read_lock();
1394 		error = reverse_path_check_proc(&p->epitems, 0);
1395 		rcu_read_unlock();
1396 		if (error)
1397 			return error;
1398 	}
1399 	return 0;
1400 }
1401 
1402 static int ep_create_wakeup_source(struct epitem *epi)
1403 {
1404 	struct name_snapshot n;
1405 	struct wakeup_source *ws;
1406 
1407 	if (!epi->ep->ws) {
1408 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1409 		if (!epi->ep->ws)
1410 			return -ENOMEM;
1411 	}
1412 
1413 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1414 	ws = wakeup_source_register(NULL, n.name.name);
1415 	release_dentry_name_snapshot(&n);
1416 
1417 	if (!ws)
1418 		return -ENOMEM;
1419 	rcu_assign_pointer(epi->ws, ws);
1420 
1421 	return 0;
1422 }
1423 
1424 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1425 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1426 {
1427 	struct wakeup_source *ws = ep_wakeup_source(epi);
1428 
1429 	RCU_INIT_POINTER(epi->ws, NULL);
1430 
1431 	/*
1432 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1433 	 * used internally by wakeup_source_remove, too (called by
1434 	 * wakeup_source_unregister), so we cannot use call_rcu
1435 	 */
1436 	synchronize_rcu();
1437 	wakeup_source_unregister(ws);
1438 }
1439 
1440 static int attach_epitem(struct file *file, struct epitem *epi)
1441 {
1442 	struct epitems_head *to_free = NULL;
1443 	struct hlist_head *head = NULL;
1444 	struct eventpoll *ep = NULL;
1445 
1446 	if (is_file_epoll(file))
1447 		ep = file->private_data;
1448 
1449 	if (ep) {
1450 		head = &ep->refs;
1451 	} else if (!READ_ONCE(file->f_ep)) {
1452 allocate:
1453 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1454 		if (!to_free)
1455 			return -ENOMEM;
1456 		head = &to_free->epitems;
1457 	}
1458 	spin_lock(&file->f_lock);
1459 	if (!file->f_ep) {
1460 		if (unlikely(!head)) {
1461 			spin_unlock(&file->f_lock);
1462 			goto allocate;
1463 		}
1464 		file->f_ep = head;
1465 		to_free = NULL;
1466 	}
1467 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1468 	spin_unlock(&file->f_lock);
1469 	free_ephead(to_free);
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Must be called with "mtx" held.
1475  */
1476 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1477 		     struct file *tfile, int fd, int full_check)
1478 {
1479 	int error, pwake = 0;
1480 	__poll_t revents;
1481 	struct epitem *epi;
1482 	struct ep_pqueue epq;
1483 	struct eventpoll *tep = NULL;
1484 
1485 	if (is_file_epoll(tfile))
1486 		tep = tfile->private_data;
1487 
1488 	lockdep_assert_irqs_enabled();
1489 
1490 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1491 					    max_user_watches) >= 0))
1492 		return -ENOSPC;
1493 	percpu_counter_inc(&ep->user->epoll_watches);
1494 
1495 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1496 		percpu_counter_dec(&ep->user->epoll_watches);
1497 		return -ENOMEM;
1498 	}
1499 
1500 	/* Item initialization follow here ... */
1501 	INIT_LIST_HEAD(&epi->rdllink);
1502 	epi->ep = ep;
1503 	ep_set_ffd(&epi->ffd, tfile, fd);
1504 	epi->event = *event;
1505 	epi->next = EP_UNACTIVE_PTR;
1506 
1507 	if (tep)
1508 		mutex_lock_nested(&tep->mtx, 1);
1509 	/* Add the current item to the list of active epoll hook for this file */
1510 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1511 		if (tep)
1512 			mutex_unlock(&tep->mtx);
1513 		kmem_cache_free(epi_cache, epi);
1514 		percpu_counter_dec(&ep->user->epoll_watches);
1515 		return -ENOMEM;
1516 	}
1517 
1518 	if (full_check && !tep)
1519 		list_file(tfile);
1520 
1521 	/*
1522 	 * Add the current item to the RB tree. All RB tree operations are
1523 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1524 	 */
1525 	ep_rbtree_insert(ep, epi);
1526 	if (tep)
1527 		mutex_unlock(&tep->mtx);
1528 
1529 	/*
1530 	 * ep_remove_safe() calls in the later error paths can't lead to
1531 	 * ep_free() as the ep file itself still holds an ep reference.
1532 	 */
1533 	ep_get(ep);
1534 
1535 	/* now check if we've created too many backpaths */
1536 	if (unlikely(full_check && reverse_path_check())) {
1537 		ep_remove_safe(ep, epi);
1538 		return -EINVAL;
1539 	}
1540 
1541 	if (epi->event.events & EPOLLWAKEUP) {
1542 		error = ep_create_wakeup_source(epi);
1543 		if (error) {
1544 			ep_remove_safe(ep, epi);
1545 			return error;
1546 		}
1547 	}
1548 
1549 	/* Initialize the poll table using the queue callback */
1550 	epq.epi = epi;
1551 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1552 
1553 	/*
1554 	 * Attach the item to the poll hooks and get current event bits.
1555 	 * We can safely use the file* here because its usage count has
1556 	 * been increased by the caller of this function. Note that after
1557 	 * this operation completes, the poll callback can start hitting
1558 	 * the new item.
1559 	 */
1560 	revents = ep_item_poll(epi, &epq.pt, 1);
1561 
1562 	/*
1563 	 * We have to check if something went wrong during the poll wait queue
1564 	 * install process. Namely an allocation for a wait queue failed due
1565 	 * high memory pressure.
1566 	 */
1567 	if (unlikely(!epq.epi)) {
1568 		ep_remove_safe(ep, epi);
1569 		return -ENOMEM;
1570 	}
1571 
1572 	/* We have to drop the new item inside our item list to keep track of it */
1573 	write_lock_irq(&ep->lock);
1574 
1575 	/* record NAPI ID of new item if present */
1576 	ep_set_busy_poll_napi_id(epi);
1577 
1578 	/* If the file is already "ready" we drop it inside the ready list */
1579 	if (revents && !ep_is_linked(epi)) {
1580 		list_add_tail(&epi->rdllink, &ep->rdllist);
1581 		ep_pm_stay_awake(epi);
1582 
1583 		/* Notify waiting tasks that events are available */
1584 		if (waitqueue_active(&ep->wq))
1585 			wake_up(&ep->wq);
1586 		if (waitqueue_active(&ep->poll_wait))
1587 			pwake++;
1588 	}
1589 
1590 	write_unlock_irq(&ep->lock);
1591 
1592 	/* We have to call this outside the lock */
1593 	if (pwake)
1594 		ep_poll_safewake(ep, NULL, 0);
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Modify the interest event mask by dropping an event if the new mask
1601  * has a match in the current file status. Must be called with "mtx" held.
1602  */
1603 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1604 		     const struct epoll_event *event)
1605 {
1606 	int pwake = 0;
1607 	poll_table pt;
1608 
1609 	lockdep_assert_irqs_enabled();
1610 
1611 	init_poll_funcptr(&pt, NULL);
1612 
1613 	/*
1614 	 * Set the new event interest mask before calling f_op->poll();
1615 	 * otherwise we might miss an event that happens between the
1616 	 * f_op->poll() call and the new event set registering.
1617 	 */
1618 	epi->event.events = event->events; /* need barrier below */
1619 	epi->event.data = event->data; /* protected by mtx */
1620 	if (epi->event.events & EPOLLWAKEUP) {
1621 		if (!ep_has_wakeup_source(epi))
1622 			ep_create_wakeup_source(epi);
1623 	} else if (ep_has_wakeup_source(epi)) {
1624 		ep_destroy_wakeup_source(epi);
1625 	}
1626 
1627 	/*
1628 	 * The following barrier has two effects:
1629 	 *
1630 	 * 1) Flush epi changes above to other CPUs.  This ensures
1631 	 *    we do not miss events from ep_poll_callback if an
1632 	 *    event occurs immediately after we call f_op->poll().
1633 	 *    We need this because we did not take ep->lock while
1634 	 *    changing epi above (but ep_poll_callback does take
1635 	 *    ep->lock).
1636 	 *
1637 	 * 2) We also need to ensure we do not miss _past_ events
1638 	 *    when calling f_op->poll().  This barrier also
1639 	 *    pairs with the barrier in wq_has_sleeper (see
1640 	 *    comments for wq_has_sleeper).
1641 	 *
1642 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1643 	 * (or both) will notice the readiness of an item.
1644 	 */
1645 	smp_mb();
1646 
1647 	/*
1648 	 * Get current event bits. We can safely use the file* here because
1649 	 * its usage count has been increased by the caller of this function.
1650 	 * If the item is "hot" and it is not registered inside the ready
1651 	 * list, push it inside.
1652 	 */
1653 	if (ep_item_poll(epi, &pt, 1)) {
1654 		write_lock_irq(&ep->lock);
1655 		if (!ep_is_linked(epi)) {
1656 			list_add_tail(&epi->rdllink, &ep->rdllist);
1657 			ep_pm_stay_awake(epi);
1658 
1659 			/* Notify waiting tasks that events are available */
1660 			if (waitqueue_active(&ep->wq))
1661 				wake_up(&ep->wq);
1662 			if (waitqueue_active(&ep->poll_wait))
1663 				pwake++;
1664 		}
1665 		write_unlock_irq(&ep->lock);
1666 	}
1667 
1668 	/* We have to call this outside the lock */
1669 	if (pwake)
1670 		ep_poll_safewake(ep, NULL, 0);
1671 
1672 	return 0;
1673 }
1674 
1675 static int ep_send_events(struct eventpoll *ep,
1676 			  struct epoll_event __user *events, int maxevents)
1677 {
1678 	struct epitem *epi, *tmp;
1679 	LIST_HEAD(txlist);
1680 	poll_table pt;
1681 	int res = 0;
1682 
1683 	/*
1684 	 * Always short-circuit for fatal signals to allow threads to make a
1685 	 * timely exit without the chance of finding more events available and
1686 	 * fetching repeatedly.
1687 	 */
1688 	if (fatal_signal_pending(current))
1689 		return -EINTR;
1690 
1691 	init_poll_funcptr(&pt, NULL);
1692 
1693 	mutex_lock(&ep->mtx);
1694 	ep_start_scan(ep, &txlist);
1695 
1696 	/*
1697 	 * We can loop without lock because we are passed a task private list.
1698 	 * Items cannot vanish during the loop we are holding ep->mtx.
1699 	 */
1700 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1701 		struct wakeup_source *ws;
1702 		__poll_t revents;
1703 
1704 		if (res >= maxevents)
1705 			break;
1706 
1707 		/*
1708 		 * Activate ep->ws before deactivating epi->ws to prevent
1709 		 * triggering auto-suspend here (in case we reactive epi->ws
1710 		 * below).
1711 		 *
1712 		 * This could be rearranged to delay the deactivation of epi->ws
1713 		 * instead, but then epi->ws would temporarily be out of sync
1714 		 * with ep_is_linked().
1715 		 */
1716 		ws = ep_wakeup_source(epi);
1717 		if (ws) {
1718 			if (ws->active)
1719 				__pm_stay_awake(ep->ws);
1720 			__pm_relax(ws);
1721 		}
1722 
1723 		list_del_init(&epi->rdllink);
1724 
1725 		/*
1726 		 * If the event mask intersect the caller-requested one,
1727 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1728 		 * so no operations coming from userspace can change the item.
1729 		 */
1730 		revents = ep_item_poll(epi, &pt, 1);
1731 		if (!revents)
1732 			continue;
1733 
1734 		events = epoll_put_uevent(revents, epi->event.data, events);
1735 		if (!events) {
1736 			list_add(&epi->rdllink, &txlist);
1737 			ep_pm_stay_awake(epi);
1738 			if (!res)
1739 				res = -EFAULT;
1740 			break;
1741 		}
1742 		res++;
1743 		if (epi->event.events & EPOLLONESHOT)
1744 			epi->event.events &= EP_PRIVATE_BITS;
1745 		else if (!(epi->event.events & EPOLLET)) {
1746 			/*
1747 			 * If this file has been added with Level
1748 			 * Trigger mode, we need to insert back inside
1749 			 * the ready list, so that the next call to
1750 			 * epoll_wait() will check again the events
1751 			 * availability. At this point, no one can insert
1752 			 * into ep->rdllist besides us. The epoll_ctl()
1753 			 * callers are locked out by
1754 			 * ep_scan_ready_list() holding "mtx" and the
1755 			 * poll callback will queue them in ep->ovflist.
1756 			 */
1757 			list_add_tail(&epi->rdllink, &ep->rdllist);
1758 			ep_pm_stay_awake(epi);
1759 		}
1760 	}
1761 	ep_done_scan(ep, &txlist);
1762 	mutex_unlock(&ep->mtx);
1763 
1764 	return res;
1765 }
1766 
1767 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1768 {
1769 	struct timespec64 now;
1770 
1771 	if (ms < 0)
1772 		return NULL;
1773 
1774 	if (!ms) {
1775 		to->tv_sec = 0;
1776 		to->tv_nsec = 0;
1777 		return to;
1778 	}
1779 
1780 	to->tv_sec = ms / MSEC_PER_SEC;
1781 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1782 
1783 	ktime_get_ts64(&now);
1784 	*to = timespec64_add_safe(now, *to);
1785 	return to;
1786 }
1787 
1788 /*
1789  * autoremove_wake_function, but remove even on failure to wake up, because we
1790  * know that default_wake_function/ttwu will only fail if the thread is already
1791  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1792  * try to reuse it.
1793  */
1794 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1795 				       unsigned int mode, int sync, void *key)
1796 {
1797 	int ret = default_wake_function(wq_entry, mode, sync, key);
1798 
1799 	/*
1800 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1801 	 * iterations see the cause of this wakeup.
1802 	 */
1803 	list_del_init_careful(&wq_entry->entry);
1804 	return ret;
1805 }
1806 
1807 /**
1808  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1809  *           event buffer.
1810  *
1811  * @ep: Pointer to the eventpoll context.
1812  * @events: Pointer to the userspace buffer where the ready events should be
1813  *          stored.
1814  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1815  * @timeout: Maximum timeout for the ready events fetch operation, in
1816  *           timespec. If the timeout is zero, the function will not block,
1817  *           while if the @timeout ptr is NULL, the function will block
1818  *           until at least one event has been retrieved (or an error
1819  *           occurred).
1820  *
1821  * Return: the number of ready events which have been fetched, or an
1822  *          error code, in case of error.
1823  */
1824 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1825 		   int maxevents, struct timespec64 *timeout)
1826 {
1827 	int res, eavail, timed_out = 0;
1828 	u64 slack = 0;
1829 	wait_queue_entry_t wait;
1830 	ktime_t expires, *to = NULL;
1831 
1832 	lockdep_assert_irqs_enabled();
1833 
1834 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1835 		slack = select_estimate_accuracy(timeout);
1836 		to = &expires;
1837 		*to = timespec64_to_ktime(*timeout);
1838 	} else if (timeout) {
1839 		/*
1840 		 * Avoid the unnecessary trip to the wait queue loop, if the
1841 		 * caller specified a non blocking operation.
1842 		 */
1843 		timed_out = 1;
1844 	}
1845 
1846 	/*
1847 	 * This call is racy: We may or may not see events that are being added
1848 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1849 	 * with a non-zero timeout, this thread will check the ready list under
1850 	 * lock and will add to the wait queue.  For cases with a zero
1851 	 * timeout, the user by definition should not care and will have to
1852 	 * recheck again.
1853 	 */
1854 	eavail = ep_events_available(ep);
1855 
1856 	while (1) {
1857 		if (eavail) {
1858 			/*
1859 			 * Try to transfer events to user space. In case we get
1860 			 * 0 events and there's still timeout left over, we go
1861 			 * trying again in search of more luck.
1862 			 */
1863 			res = ep_send_events(ep, events, maxevents);
1864 			if (res)
1865 				return res;
1866 		}
1867 
1868 		if (timed_out)
1869 			return 0;
1870 
1871 		eavail = ep_busy_loop(ep, timed_out);
1872 		if (eavail)
1873 			continue;
1874 
1875 		if (signal_pending(current))
1876 			return -EINTR;
1877 
1878 		/*
1879 		 * Internally init_wait() uses autoremove_wake_function(),
1880 		 * thus wait entry is removed from the wait queue on each
1881 		 * wakeup. Why it is important? In case of several waiters
1882 		 * each new wakeup will hit the next waiter, giving it the
1883 		 * chance to harvest new event. Otherwise wakeup can be
1884 		 * lost. This is also good performance-wise, because on
1885 		 * normal wakeup path no need to call __remove_wait_queue()
1886 		 * explicitly, thus ep->lock is not taken, which halts the
1887 		 * event delivery.
1888 		 *
1889 		 * In fact, we now use an even more aggressive function that
1890 		 * unconditionally removes, because we don't reuse the wait
1891 		 * entry between loop iterations. This lets us also avoid the
1892 		 * performance issue if a process is killed, causing all of its
1893 		 * threads to wake up without being removed normally.
1894 		 */
1895 		init_wait(&wait);
1896 		wait.func = ep_autoremove_wake_function;
1897 
1898 		write_lock_irq(&ep->lock);
1899 		/*
1900 		 * Barrierless variant, waitqueue_active() is called under
1901 		 * the same lock on wakeup ep_poll_callback() side, so it
1902 		 * is safe to avoid an explicit barrier.
1903 		 */
1904 		__set_current_state(TASK_INTERRUPTIBLE);
1905 
1906 		/*
1907 		 * Do the final check under the lock. ep_scan_ready_list()
1908 		 * plays with two lists (->rdllist and ->ovflist) and there
1909 		 * is always a race when both lists are empty for short
1910 		 * period of time although events are pending, so lock is
1911 		 * important.
1912 		 */
1913 		eavail = ep_events_available(ep);
1914 		if (!eavail)
1915 			__add_wait_queue_exclusive(&ep->wq, &wait);
1916 
1917 		write_unlock_irq(&ep->lock);
1918 
1919 		if (!eavail)
1920 			timed_out = !schedule_hrtimeout_range(to, slack,
1921 							      HRTIMER_MODE_ABS);
1922 		__set_current_state(TASK_RUNNING);
1923 
1924 		/*
1925 		 * We were woken up, thus go and try to harvest some events.
1926 		 * If timed out and still on the wait queue, recheck eavail
1927 		 * carefully under lock, below.
1928 		 */
1929 		eavail = 1;
1930 
1931 		if (!list_empty_careful(&wait.entry)) {
1932 			write_lock_irq(&ep->lock);
1933 			/*
1934 			 * If the thread timed out and is not on the wait queue,
1935 			 * it means that the thread was woken up after its
1936 			 * timeout expired before it could reacquire the lock.
1937 			 * Thus, when wait.entry is empty, it needs to harvest
1938 			 * events.
1939 			 */
1940 			if (timed_out)
1941 				eavail = list_empty(&wait.entry);
1942 			__remove_wait_queue(&ep->wq, &wait);
1943 			write_unlock_irq(&ep->lock);
1944 		}
1945 	}
1946 }
1947 
1948 /**
1949  * ep_loop_check_proc - verify that adding an epoll file inside another
1950  *                      epoll structure does not violate the constraints, in
1951  *                      terms of closed loops, or too deep chains (which can
1952  *                      result in excessive stack usage).
1953  *
1954  * @ep: the &struct eventpoll to be currently checked.
1955  * @depth: Current depth of the path being checked.
1956  *
1957  * Return: %zero if adding the epoll @file inside current epoll
1958  *          structure @ep does not violate the constraints, or %-1 otherwise.
1959  */
1960 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1961 {
1962 	int error = 0;
1963 	struct rb_node *rbp;
1964 	struct epitem *epi;
1965 
1966 	mutex_lock_nested(&ep->mtx, depth + 1);
1967 	ep->gen = loop_check_gen;
1968 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1969 		epi = rb_entry(rbp, struct epitem, rbn);
1970 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1971 			struct eventpoll *ep_tovisit;
1972 			ep_tovisit = epi->ffd.file->private_data;
1973 			if (ep_tovisit->gen == loop_check_gen)
1974 				continue;
1975 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1976 				error = -1;
1977 			else
1978 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1979 			if (error != 0)
1980 				break;
1981 		} else {
1982 			/*
1983 			 * If we've reached a file that is not associated with
1984 			 * an ep, then we need to check if the newly added
1985 			 * links are going to add too many wakeup paths. We do
1986 			 * this by adding it to the tfile_check_list, if it's
1987 			 * not already there, and calling reverse_path_check()
1988 			 * during ep_insert().
1989 			 */
1990 			list_file(epi->ffd.file);
1991 		}
1992 	}
1993 	mutex_unlock(&ep->mtx);
1994 
1995 	return error;
1996 }
1997 
1998 /**
1999  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2000  *                 into another epoll file (represented by @ep) does not create
2001  *                 closed loops or too deep chains.
2002  *
2003  * @ep: Pointer to the epoll we are inserting into.
2004  * @to: Pointer to the epoll to be inserted.
2005  *
2006  * Return: %zero if adding the epoll @to inside the epoll @from
2007  * does not violate the constraints, or %-1 otherwise.
2008  */
2009 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2010 {
2011 	inserting_into = ep;
2012 	return ep_loop_check_proc(to, 0);
2013 }
2014 
2015 static void clear_tfile_check_list(void)
2016 {
2017 	rcu_read_lock();
2018 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2019 		struct epitems_head *head = tfile_check_list;
2020 		tfile_check_list = head->next;
2021 		unlist_file(head);
2022 	}
2023 	rcu_read_unlock();
2024 }
2025 
2026 /*
2027  * Open an eventpoll file descriptor.
2028  */
2029 static int do_epoll_create(int flags)
2030 {
2031 	int error, fd;
2032 	struct eventpoll *ep = NULL;
2033 	struct file *file;
2034 
2035 	/* Check the EPOLL_* constant for consistency.  */
2036 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2037 
2038 	if (flags & ~EPOLL_CLOEXEC)
2039 		return -EINVAL;
2040 	/*
2041 	 * Create the internal data structure ("struct eventpoll").
2042 	 */
2043 	error = ep_alloc(&ep);
2044 	if (error < 0)
2045 		return error;
2046 	/*
2047 	 * Creates all the items needed to setup an eventpoll file. That is,
2048 	 * a file structure and a free file descriptor.
2049 	 */
2050 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2051 	if (fd < 0) {
2052 		error = fd;
2053 		goto out_free_ep;
2054 	}
2055 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2056 				 O_RDWR | (flags & O_CLOEXEC));
2057 	if (IS_ERR(file)) {
2058 		error = PTR_ERR(file);
2059 		goto out_free_fd;
2060 	}
2061 	ep->file = file;
2062 	fd_install(fd, file);
2063 	return fd;
2064 
2065 out_free_fd:
2066 	put_unused_fd(fd);
2067 out_free_ep:
2068 	ep_clear_and_put(ep);
2069 	return error;
2070 }
2071 
2072 SYSCALL_DEFINE1(epoll_create1, int, flags)
2073 {
2074 	return do_epoll_create(flags);
2075 }
2076 
2077 SYSCALL_DEFINE1(epoll_create, int, size)
2078 {
2079 	if (size <= 0)
2080 		return -EINVAL;
2081 
2082 	return do_epoll_create(0);
2083 }
2084 
2085 #ifdef CONFIG_PM_SLEEP
2086 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2087 {
2088 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2089 		epev->events &= ~EPOLLWAKEUP;
2090 }
2091 #else
2092 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2093 {
2094 	epev->events &= ~EPOLLWAKEUP;
2095 }
2096 #endif
2097 
2098 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2099 				   bool nonblock)
2100 {
2101 	if (!nonblock) {
2102 		mutex_lock_nested(mutex, depth);
2103 		return 0;
2104 	}
2105 	if (mutex_trylock(mutex))
2106 		return 0;
2107 	return -EAGAIN;
2108 }
2109 
2110 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2111 		 bool nonblock)
2112 {
2113 	int error;
2114 	int full_check = 0;
2115 	struct fd f, tf;
2116 	struct eventpoll *ep;
2117 	struct epitem *epi;
2118 	struct eventpoll *tep = NULL;
2119 
2120 	error = -EBADF;
2121 	f = fdget(epfd);
2122 	if (!f.file)
2123 		goto error_return;
2124 
2125 	/* Get the "struct file *" for the target file */
2126 	tf = fdget(fd);
2127 	if (!tf.file)
2128 		goto error_fput;
2129 
2130 	/* The target file descriptor must support poll */
2131 	error = -EPERM;
2132 	if (!file_can_poll(tf.file))
2133 		goto error_tgt_fput;
2134 
2135 	/* Check if EPOLLWAKEUP is allowed */
2136 	if (ep_op_has_event(op))
2137 		ep_take_care_of_epollwakeup(epds);
2138 
2139 	/*
2140 	 * We have to check that the file structure underneath the file descriptor
2141 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2142 	 * adding an epoll file descriptor inside itself.
2143 	 */
2144 	error = -EINVAL;
2145 	if (f.file == tf.file || !is_file_epoll(f.file))
2146 		goto error_tgt_fput;
2147 
2148 	/*
2149 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2150 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2151 	 * Also, we do not currently supported nested exclusive wakeups.
2152 	 */
2153 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2154 		if (op == EPOLL_CTL_MOD)
2155 			goto error_tgt_fput;
2156 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2157 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2158 			goto error_tgt_fput;
2159 	}
2160 
2161 	/*
2162 	 * At this point it is safe to assume that the "private_data" contains
2163 	 * our own data structure.
2164 	 */
2165 	ep = f.file->private_data;
2166 
2167 	/*
2168 	 * When we insert an epoll file descriptor inside another epoll file
2169 	 * descriptor, there is the chance of creating closed loops, which are
2170 	 * better be handled here, than in more critical paths. While we are
2171 	 * checking for loops we also determine the list of files reachable
2172 	 * and hang them on the tfile_check_list, so we can check that we
2173 	 * haven't created too many possible wakeup paths.
2174 	 *
2175 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2176 	 * the epoll file descriptor is attaching directly to a wakeup source,
2177 	 * unless the epoll file descriptor is nested. The purpose of taking the
2178 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2179 	 * deep wakeup paths from forming in parallel through multiple
2180 	 * EPOLL_CTL_ADD operations.
2181 	 */
2182 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2183 	if (error)
2184 		goto error_tgt_fput;
2185 	if (op == EPOLL_CTL_ADD) {
2186 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2187 		    is_file_epoll(tf.file)) {
2188 			mutex_unlock(&ep->mtx);
2189 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2190 			if (error)
2191 				goto error_tgt_fput;
2192 			loop_check_gen++;
2193 			full_check = 1;
2194 			if (is_file_epoll(tf.file)) {
2195 				tep = tf.file->private_data;
2196 				error = -ELOOP;
2197 				if (ep_loop_check(ep, tep) != 0)
2198 					goto error_tgt_fput;
2199 			}
2200 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2201 			if (error)
2202 				goto error_tgt_fput;
2203 		}
2204 	}
2205 
2206 	/*
2207 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2208 	 * above, we can be sure to be able to use the item looked up by
2209 	 * ep_find() till we release the mutex.
2210 	 */
2211 	epi = ep_find(ep, tf.file, fd);
2212 
2213 	error = -EINVAL;
2214 	switch (op) {
2215 	case EPOLL_CTL_ADD:
2216 		if (!epi) {
2217 			epds->events |= EPOLLERR | EPOLLHUP;
2218 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2219 		} else
2220 			error = -EEXIST;
2221 		break;
2222 	case EPOLL_CTL_DEL:
2223 		if (epi) {
2224 			/*
2225 			 * The eventpoll itself is still alive: the refcount
2226 			 * can't go to zero here.
2227 			 */
2228 			ep_remove_safe(ep, epi);
2229 			error = 0;
2230 		} else {
2231 			error = -ENOENT;
2232 		}
2233 		break;
2234 	case EPOLL_CTL_MOD:
2235 		if (epi) {
2236 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2237 				epds->events |= EPOLLERR | EPOLLHUP;
2238 				error = ep_modify(ep, epi, epds);
2239 			}
2240 		} else
2241 			error = -ENOENT;
2242 		break;
2243 	}
2244 	mutex_unlock(&ep->mtx);
2245 
2246 error_tgt_fput:
2247 	if (full_check) {
2248 		clear_tfile_check_list();
2249 		loop_check_gen++;
2250 		mutex_unlock(&epnested_mutex);
2251 	}
2252 
2253 	fdput(tf);
2254 error_fput:
2255 	fdput(f);
2256 error_return:
2257 
2258 	return error;
2259 }
2260 
2261 /*
2262  * The following function implements the controller interface for
2263  * the eventpoll file that enables the insertion/removal/change of
2264  * file descriptors inside the interest set.
2265  */
2266 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2267 		struct epoll_event __user *, event)
2268 {
2269 	struct epoll_event epds;
2270 
2271 	if (ep_op_has_event(op) &&
2272 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2273 		return -EFAULT;
2274 
2275 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2276 }
2277 
2278 /*
2279  * Implement the event wait interface for the eventpoll file. It is the kernel
2280  * part of the user space epoll_wait(2).
2281  */
2282 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2283 			 int maxevents, struct timespec64 *to)
2284 {
2285 	int error;
2286 	struct fd f;
2287 	struct eventpoll *ep;
2288 
2289 	/* The maximum number of event must be greater than zero */
2290 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2291 		return -EINVAL;
2292 
2293 	/* Verify that the area passed by the user is writeable */
2294 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2295 		return -EFAULT;
2296 
2297 	/* Get the "struct file *" for the eventpoll file */
2298 	f = fdget(epfd);
2299 	if (!f.file)
2300 		return -EBADF;
2301 
2302 	/*
2303 	 * We have to check that the file structure underneath the fd
2304 	 * the user passed to us _is_ an eventpoll file.
2305 	 */
2306 	error = -EINVAL;
2307 	if (!is_file_epoll(f.file))
2308 		goto error_fput;
2309 
2310 	/*
2311 	 * At this point it is safe to assume that the "private_data" contains
2312 	 * our own data structure.
2313 	 */
2314 	ep = f.file->private_data;
2315 
2316 	/* Time to fish for events ... */
2317 	error = ep_poll(ep, events, maxevents, to);
2318 
2319 error_fput:
2320 	fdput(f);
2321 	return error;
2322 }
2323 
2324 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2325 		int, maxevents, int, timeout)
2326 {
2327 	struct timespec64 to;
2328 
2329 	return do_epoll_wait(epfd, events, maxevents,
2330 			     ep_timeout_to_timespec(&to, timeout));
2331 }
2332 
2333 /*
2334  * Implement the event wait interface for the eventpoll file. It is the kernel
2335  * part of the user space epoll_pwait(2).
2336  */
2337 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2338 			  int maxevents, struct timespec64 *to,
2339 			  const sigset_t __user *sigmask, size_t sigsetsize)
2340 {
2341 	int error;
2342 
2343 	/*
2344 	 * If the caller wants a certain signal mask to be set during the wait,
2345 	 * we apply it here.
2346 	 */
2347 	error = set_user_sigmask(sigmask, sigsetsize);
2348 	if (error)
2349 		return error;
2350 
2351 	error = do_epoll_wait(epfd, events, maxevents, to);
2352 
2353 	restore_saved_sigmask_unless(error == -EINTR);
2354 
2355 	return error;
2356 }
2357 
2358 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2359 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2360 		size_t, sigsetsize)
2361 {
2362 	struct timespec64 to;
2363 
2364 	return do_epoll_pwait(epfd, events, maxevents,
2365 			      ep_timeout_to_timespec(&to, timeout),
2366 			      sigmask, sigsetsize);
2367 }
2368 
2369 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2370 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2371 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2372 {
2373 	struct timespec64 ts, *to = NULL;
2374 
2375 	if (timeout) {
2376 		if (get_timespec64(&ts, timeout))
2377 			return -EFAULT;
2378 		to = &ts;
2379 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2380 			return -EINVAL;
2381 	}
2382 
2383 	return do_epoll_pwait(epfd, events, maxevents, to,
2384 			      sigmask, sigsetsize);
2385 }
2386 
2387 #ifdef CONFIG_COMPAT
2388 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2389 				 int maxevents, struct timespec64 *timeout,
2390 				 const compat_sigset_t __user *sigmask,
2391 				 compat_size_t sigsetsize)
2392 {
2393 	long err;
2394 
2395 	/*
2396 	 * If the caller wants a certain signal mask to be set during the wait,
2397 	 * we apply it here.
2398 	 */
2399 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2400 	if (err)
2401 		return err;
2402 
2403 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2404 
2405 	restore_saved_sigmask_unless(err == -EINTR);
2406 
2407 	return err;
2408 }
2409 
2410 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2411 		       struct epoll_event __user *, events,
2412 		       int, maxevents, int, timeout,
2413 		       const compat_sigset_t __user *, sigmask,
2414 		       compat_size_t, sigsetsize)
2415 {
2416 	struct timespec64 to;
2417 
2418 	return do_compat_epoll_pwait(epfd, events, maxevents,
2419 				     ep_timeout_to_timespec(&to, timeout),
2420 				     sigmask, sigsetsize);
2421 }
2422 
2423 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2424 		       struct epoll_event __user *, events,
2425 		       int, maxevents,
2426 		       const struct __kernel_timespec __user *, timeout,
2427 		       const compat_sigset_t __user *, sigmask,
2428 		       compat_size_t, sigsetsize)
2429 {
2430 	struct timespec64 ts, *to = NULL;
2431 
2432 	if (timeout) {
2433 		if (get_timespec64(&ts, timeout))
2434 			return -EFAULT;
2435 		to = &ts;
2436 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2437 			return -EINVAL;
2438 	}
2439 
2440 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2441 				     sigmask, sigsetsize);
2442 }
2443 
2444 #endif
2445 
2446 static int __init eventpoll_init(void)
2447 {
2448 	struct sysinfo si;
2449 
2450 	si_meminfo(&si);
2451 	/*
2452 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2453 	 */
2454 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2455 		EP_ITEM_COST;
2456 	BUG_ON(max_user_watches < 0);
2457 
2458 	/*
2459 	 * We can have many thousands of epitems, so prevent this from
2460 	 * using an extra cache line on 64-bit (and smaller) CPUs
2461 	 */
2462 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2463 
2464 	/* Allocates slab cache used to allocate "struct epitem" items */
2465 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2466 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2467 
2468 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2469 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2470 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2471 	epoll_sysctls_init();
2472 
2473 	ephead_cache = kmem_cache_create("ep_head",
2474 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2475 
2476 	return 0;
2477 }
2478 fs_initcall(eventpoll_init);
2479