xref: /linux/fs/eventpoll.c (revision 971316f0)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 };
106 
107 /*
108  * Structure used to track possible nested calls, for too deep recursions
109  * and loop cycles.
110  */
111 struct nested_call_node {
112 	struct list_head llink;
113 	void *cookie;
114 	void *ctx;
115 };
116 
117 /*
118  * This structure is used as collector for nested calls, to check for
119  * maximum recursion dept and loop cycles.
120  */
121 struct nested_calls {
122 	struct list_head tasks_call_list;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * Each file descriptor added to the eventpoll interface will
128  * have an entry of this type linked to the "rbr" RB tree.
129  */
130 struct epitem {
131 	/* RB tree node used to link this structure to the eventpoll RB tree */
132 	struct rb_node rbn;
133 
134 	/* List header used to link this structure to the eventpoll ready list */
135 	struct list_head rdllink;
136 
137 	/*
138 	 * Works together "struct eventpoll"->ovflist in keeping the
139 	 * single linked chain of items.
140 	 */
141 	struct epitem *next;
142 
143 	/* The file descriptor information this item refers to */
144 	struct epoll_filefd ffd;
145 
146 	/* Number of active wait queue attached to poll operations */
147 	int nwait;
148 
149 	/* List containing poll wait queues */
150 	struct list_head pwqlist;
151 
152 	/* The "container" of this item */
153 	struct eventpoll *ep;
154 
155 	/* List header used to link this item to the "struct file" items list */
156 	struct list_head fllink;
157 
158 	/* The structure that describe the interested events and the source fd */
159 	struct epoll_event event;
160 };
161 
162 /*
163  * This structure is stored inside the "private_data" member of the file
164  * structure and represents the main data structure for the eventpoll
165  * interface.
166  */
167 struct eventpoll {
168 	/* Protect the access to this structure */
169 	spinlock_t lock;
170 
171 	/*
172 	 * This mutex is used to ensure that files are not removed
173 	 * while epoll is using them. This is held during the event
174 	 * collection loop, the file cleanup path, the epoll file exit
175 	 * code and the ctl operations.
176 	 */
177 	struct mutex mtx;
178 
179 	/* Wait queue used by sys_epoll_wait() */
180 	wait_queue_head_t wq;
181 
182 	/* Wait queue used by file->poll() */
183 	wait_queue_head_t poll_wait;
184 
185 	/* List of ready file descriptors */
186 	struct list_head rdllist;
187 
188 	/* RB tree root used to store monitored fd structs */
189 	struct rb_root rbr;
190 
191 	/*
192 	 * This is a single linked list that chains all the "struct epitem" that
193 	 * happened while transferring ready events to userspace w/out
194 	 * holding ->lock.
195 	 */
196 	struct epitem *ovflist;
197 
198 	/* The user that created the eventpoll descriptor */
199 	struct user_struct *user;
200 
201 	struct file *file;
202 
203 	/* used to optimize loop detection check */
204 	int visited;
205 	struct list_head visited_list_link;
206 };
207 
208 /* Wait structure used by the poll hooks */
209 struct eppoll_entry {
210 	/* List header used to link this structure to the "struct epitem" */
211 	struct list_head llink;
212 
213 	/* The "base" pointer is set to the container "struct epitem" */
214 	struct epitem *base;
215 
216 	/*
217 	 * Wait queue item that will be linked to the target file wait
218 	 * queue head.
219 	 */
220 	wait_queue_t wait;
221 
222 	/* The wait queue head that linked the "wait" wait queue item */
223 	wait_queue_head_t *whead;
224 };
225 
226 /* Wrapper struct used by poll queueing */
227 struct ep_pqueue {
228 	poll_table pt;
229 	struct epitem *epi;
230 };
231 
232 /* Used by the ep_send_events() function as callback private data */
233 struct ep_send_events_data {
234 	int maxevents;
235 	struct epoll_event __user *events;
236 };
237 
238 /*
239  * Configuration options available inside /proc/sys/fs/epoll/
240  */
241 /* Maximum number of epoll watched descriptors, per user */
242 static long max_user_watches __read_mostly;
243 
244 /*
245  * This mutex is used to serialize ep_free() and eventpoll_release_file().
246  */
247 static DEFINE_MUTEX(epmutex);
248 
249 /* Used to check for epoll file descriptor inclusion loops */
250 static struct nested_calls poll_loop_ncalls;
251 
252 /* Used for safe wake up implementation */
253 static struct nested_calls poll_safewake_ncalls;
254 
255 /* Used to call file's f_op->poll() under the nested calls boundaries */
256 static struct nested_calls poll_readywalk_ncalls;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263 
264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
265 static LIST_HEAD(visited_list);
266 
267 /*
268  * List of files with newly added links, where we may need to limit the number
269  * of emanating paths. Protected by the epmutex.
270  */
271 static LIST_HEAD(tfile_check_list);
272 
273 #ifdef CONFIG_SYSCTL
274 
275 #include <linux/sysctl.h>
276 
277 static long zero;
278 static long long_max = LONG_MAX;
279 
280 ctl_table epoll_table[] = {
281 	{
282 		.procname	= "max_user_watches",
283 		.data		= &max_user_watches,
284 		.maxlen		= sizeof(max_user_watches),
285 		.mode		= 0644,
286 		.proc_handler	= proc_doulongvec_minmax,
287 		.extra1		= &zero,
288 		.extra2		= &long_max,
289 	},
290 	{ }
291 };
292 #endif /* CONFIG_SYSCTL */
293 
294 static const struct file_operations eventpoll_fops;
295 
296 static inline int is_file_epoll(struct file *f)
297 {
298 	return f->f_op == &eventpoll_fops;
299 }
300 
301 /* Setup the structure that is used as key for the RB tree */
302 static inline void ep_set_ffd(struct epoll_filefd *ffd,
303 			      struct file *file, int fd)
304 {
305 	ffd->file = file;
306 	ffd->fd = fd;
307 }
308 
309 /* Compare RB tree keys */
310 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
311 			     struct epoll_filefd *p2)
312 {
313 	return (p1->file > p2->file ? +1:
314 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
315 }
316 
317 /* Tells us if the item is currently linked */
318 static inline int ep_is_linked(struct list_head *p)
319 {
320 	return !list_empty(p);
321 }
322 
323 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
324 {
325 	return container_of(p, struct eppoll_entry, wait);
326 }
327 
328 /* Get the "struct epitem" from a wait queue pointer */
329 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
330 {
331 	return container_of(p, struct eppoll_entry, wait)->base;
332 }
333 
334 /* Get the "struct epitem" from an epoll queue wrapper */
335 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
336 {
337 	return container_of(p, struct ep_pqueue, pt)->epi;
338 }
339 
340 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
341 static inline int ep_op_has_event(int op)
342 {
343 	return op != EPOLL_CTL_DEL;
344 }
345 
346 /* Initialize the poll safe wake up structure */
347 static void ep_nested_calls_init(struct nested_calls *ncalls)
348 {
349 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
350 	spin_lock_init(&ncalls->lock);
351 }
352 
353 /**
354  * ep_events_available - Checks if ready events might be available.
355  *
356  * @ep: Pointer to the eventpoll context.
357  *
358  * Returns: Returns a value different than zero if ready events are available,
359  *          or zero otherwise.
360  */
361 static inline int ep_events_available(struct eventpoll *ep)
362 {
363 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
364 }
365 
366 /**
367  * ep_call_nested - Perform a bound (possibly) nested call, by checking
368  *                  that the recursion limit is not exceeded, and that
369  *                  the same nested call (by the meaning of same cookie) is
370  *                  no re-entered.
371  *
372  * @ncalls: Pointer to the nested_calls structure to be used for this call.
373  * @max_nests: Maximum number of allowed nesting calls.
374  * @nproc: Nested call core function pointer.
375  * @priv: Opaque data to be passed to the @nproc callback.
376  * @cookie: Cookie to be used to identify this nested call.
377  * @ctx: This instance context.
378  *
379  * Returns: Returns the code returned by the @nproc callback, or -1 if
380  *          the maximum recursion limit has been exceeded.
381  */
382 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
383 			  int (*nproc)(void *, void *, int), void *priv,
384 			  void *cookie, void *ctx)
385 {
386 	int error, call_nests = 0;
387 	unsigned long flags;
388 	struct list_head *lsthead = &ncalls->tasks_call_list;
389 	struct nested_call_node *tncur;
390 	struct nested_call_node tnode;
391 
392 	spin_lock_irqsave(&ncalls->lock, flags);
393 
394 	/*
395 	 * Try to see if the current task is already inside this wakeup call.
396 	 * We use a list here, since the population inside this set is always
397 	 * very much limited.
398 	 */
399 	list_for_each_entry(tncur, lsthead, llink) {
400 		if (tncur->ctx == ctx &&
401 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
402 			/*
403 			 * Ops ... loop detected or maximum nest level reached.
404 			 * We abort this wake by breaking the cycle itself.
405 			 */
406 			error = -1;
407 			goto out_unlock;
408 		}
409 	}
410 
411 	/* Add the current task and cookie to the list */
412 	tnode.ctx = ctx;
413 	tnode.cookie = cookie;
414 	list_add(&tnode.llink, lsthead);
415 
416 	spin_unlock_irqrestore(&ncalls->lock, flags);
417 
418 	/* Call the nested function */
419 	error = (*nproc)(priv, cookie, call_nests);
420 
421 	/* Remove the current task from the list */
422 	spin_lock_irqsave(&ncalls->lock, flags);
423 	list_del(&tnode.llink);
424 out_unlock:
425 	spin_unlock_irqrestore(&ncalls->lock, flags);
426 
427 	return error;
428 }
429 
430 #ifdef CONFIG_DEBUG_LOCK_ALLOC
431 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
432 				     unsigned long events, int subclass)
433 {
434 	unsigned long flags;
435 
436 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
437 	wake_up_locked_poll(wqueue, events);
438 	spin_unlock_irqrestore(&wqueue->lock, flags);
439 }
440 #else
441 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
442 				     unsigned long events, int subclass)
443 {
444 	wake_up_poll(wqueue, events);
445 }
446 #endif
447 
448 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
449 {
450 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
451 			  1 + call_nests);
452 	return 0;
453 }
454 
455 /*
456  * Perform a safe wake up of the poll wait list. The problem is that
457  * with the new callback'd wake up system, it is possible that the
458  * poll callback is reentered from inside the call to wake_up() done
459  * on the poll wait queue head. The rule is that we cannot reenter the
460  * wake up code from the same task more than EP_MAX_NESTS times,
461  * and we cannot reenter the same wait queue head at all. This will
462  * enable to have a hierarchy of epoll file descriptor of no more than
463  * EP_MAX_NESTS deep.
464  */
465 static void ep_poll_safewake(wait_queue_head_t *wq)
466 {
467 	int this_cpu = get_cpu();
468 
469 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
470 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
471 
472 	put_cpu();
473 }
474 
475 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
476 {
477 	wait_queue_head_t *whead;
478 
479 	rcu_read_lock();
480 	/* If it is cleared by POLLFREE, it should be rcu-safe */
481 	whead = rcu_dereference(pwq->whead);
482 	if (whead)
483 		remove_wait_queue(whead, &pwq->wait);
484 	rcu_read_unlock();
485 }
486 
487 /*
488  * This function unregisters poll callbacks from the associated file
489  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
490  * ep_free).
491  */
492 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
493 {
494 	struct list_head *lsthead = &epi->pwqlist;
495 	struct eppoll_entry *pwq;
496 
497 	while (!list_empty(lsthead)) {
498 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
499 
500 		list_del(&pwq->llink);
501 		ep_remove_wait_queue(pwq);
502 		kmem_cache_free(pwq_cache, pwq);
503 	}
504 }
505 
506 /**
507  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
508  *                      the scan code, to call f_op->poll(). Also allows for
509  *                      O(NumReady) performance.
510  *
511  * @ep: Pointer to the epoll private data structure.
512  * @sproc: Pointer to the scan callback.
513  * @priv: Private opaque data passed to the @sproc callback.
514  * @depth: The current depth of recursive f_op->poll calls.
515  *
516  * Returns: The same integer error code returned by the @sproc callback.
517  */
518 static int ep_scan_ready_list(struct eventpoll *ep,
519 			      int (*sproc)(struct eventpoll *,
520 					   struct list_head *, void *),
521 			      void *priv,
522 			      int depth)
523 {
524 	int error, pwake = 0;
525 	unsigned long flags;
526 	struct epitem *epi, *nepi;
527 	LIST_HEAD(txlist);
528 
529 	/*
530 	 * We need to lock this because we could be hit by
531 	 * eventpoll_release_file() and epoll_ctl().
532 	 */
533 	mutex_lock_nested(&ep->mtx, depth);
534 
535 	/*
536 	 * Steal the ready list, and re-init the original one to the
537 	 * empty list. Also, set ep->ovflist to NULL so that events
538 	 * happening while looping w/out locks, are not lost. We cannot
539 	 * have the poll callback to queue directly on ep->rdllist,
540 	 * because we want the "sproc" callback to be able to do it
541 	 * in a lockless way.
542 	 */
543 	spin_lock_irqsave(&ep->lock, flags);
544 	list_splice_init(&ep->rdllist, &txlist);
545 	ep->ovflist = NULL;
546 	spin_unlock_irqrestore(&ep->lock, flags);
547 
548 	/*
549 	 * Now call the callback function.
550 	 */
551 	error = (*sproc)(ep, &txlist, priv);
552 
553 	spin_lock_irqsave(&ep->lock, flags);
554 	/*
555 	 * During the time we spent inside the "sproc" callback, some
556 	 * other events might have been queued by the poll callback.
557 	 * We re-insert them inside the main ready-list here.
558 	 */
559 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
560 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
561 		/*
562 		 * We need to check if the item is already in the list.
563 		 * During the "sproc" callback execution time, items are
564 		 * queued into ->ovflist but the "txlist" might already
565 		 * contain them, and the list_splice() below takes care of them.
566 		 */
567 		if (!ep_is_linked(&epi->rdllink))
568 			list_add_tail(&epi->rdllink, &ep->rdllist);
569 	}
570 	/*
571 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
572 	 * releasing the lock, events will be queued in the normal way inside
573 	 * ep->rdllist.
574 	 */
575 	ep->ovflist = EP_UNACTIVE_PTR;
576 
577 	/*
578 	 * Quickly re-inject items left on "txlist".
579 	 */
580 	list_splice(&txlist, &ep->rdllist);
581 
582 	if (!list_empty(&ep->rdllist)) {
583 		/*
584 		 * Wake up (if active) both the eventpoll wait list and
585 		 * the ->poll() wait list (delayed after we release the lock).
586 		 */
587 		if (waitqueue_active(&ep->wq))
588 			wake_up_locked(&ep->wq);
589 		if (waitqueue_active(&ep->poll_wait))
590 			pwake++;
591 	}
592 	spin_unlock_irqrestore(&ep->lock, flags);
593 
594 	mutex_unlock(&ep->mtx);
595 
596 	/* We have to call this outside the lock */
597 	if (pwake)
598 		ep_poll_safewake(&ep->poll_wait);
599 
600 	return error;
601 }
602 
603 /*
604  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
605  * all the associated resources. Must be called with "mtx" held.
606  */
607 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
608 {
609 	unsigned long flags;
610 	struct file *file = epi->ffd.file;
611 
612 	/*
613 	 * Removes poll wait queue hooks. We _have_ to do this without holding
614 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
615 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
616 	 * queue head lock when unregistering the wait queue. The wakeup callback
617 	 * will run by holding the wait queue head lock and will call our callback
618 	 * that will try to get "ep->lock".
619 	 */
620 	ep_unregister_pollwait(ep, epi);
621 
622 	/* Remove the current item from the list of epoll hooks */
623 	spin_lock(&file->f_lock);
624 	if (ep_is_linked(&epi->fllink))
625 		list_del_init(&epi->fllink);
626 	spin_unlock(&file->f_lock);
627 
628 	rb_erase(&epi->rbn, &ep->rbr);
629 
630 	spin_lock_irqsave(&ep->lock, flags);
631 	if (ep_is_linked(&epi->rdllink))
632 		list_del_init(&epi->rdllink);
633 	spin_unlock_irqrestore(&ep->lock, flags);
634 
635 	/* At this point it is safe to free the eventpoll item */
636 	kmem_cache_free(epi_cache, epi);
637 
638 	atomic_long_dec(&ep->user->epoll_watches);
639 
640 	return 0;
641 }
642 
643 static void ep_free(struct eventpoll *ep)
644 {
645 	struct rb_node *rbp;
646 	struct epitem *epi;
647 
648 	/* We need to release all tasks waiting for these file */
649 	if (waitqueue_active(&ep->poll_wait))
650 		ep_poll_safewake(&ep->poll_wait);
651 
652 	/*
653 	 * We need to lock this because we could be hit by
654 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
655 	 * We do not need to hold "ep->mtx" here because the epoll file
656 	 * is on the way to be removed and no one has references to it
657 	 * anymore. The only hit might come from eventpoll_release_file() but
658 	 * holding "epmutex" is sufficient here.
659 	 */
660 	mutex_lock(&epmutex);
661 
662 	/*
663 	 * Walks through the whole tree by unregistering poll callbacks.
664 	 */
665 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
666 		epi = rb_entry(rbp, struct epitem, rbn);
667 
668 		ep_unregister_pollwait(ep, epi);
669 	}
670 
671 	/*
672 	 * Walks through the whole tree by freeing each "struct epitem". At this
673 	 * point we are sure no poll callbacks will be lingering around, and also by
674 	 * holding "epmutex" we can be sure that no file cleanup code will hit
675 	 * us during this operation. So we can avoid the lock on "ep->lock".
676 	 */
677 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
678 		epi = rb_entry(rbp, struct epitem, rbn);
679 		ep_remove(ep, epi);
680 	}
681 
682 	mutex_unlock(&epmutex);
683 	mutex_destroy(&ep->mtx);
684 	free_uid(ep->user);
685 	kfree(ep);
686 }
687 
688 static int ep_eventpoll_release(struct inode *inode, struct file *file)
689 {
690 	struct eventpoll *ep = file->private_data;
691 
692 	if (ep)
693 		ep_free(ep);
694 
695 	return 0;
696 }
697 
698 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
699 			       void *priv)
700 {
701 	struct epitem *epi, *tmp;
702 
703 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
704 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
705 		    epi->event.events)
706 			return POLLIN | POLLRDNORM;
707 		else {
708 			/*
709 			 * Item has been dropped into the ready list by the poll
710 			 * callback, but it's not actually ready, as far as
711 			 * caller requested events goes. We can remove it here.
712 			 */
713 			list_del_init(&epi->rdllink);
714 		}
715 	}
716 
717 	return 0;
718 }
719 
720 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
721 {
722 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
723 }
724 
725 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
726 {
727 	int pollflags;
728 	struct eventpoll *ep = file->private_data;
729 
730 	/* Insert inside our poll wait queue */
731 	poll_wait(file, &ep->poll_wait, wait);
732 
733 	/*
734 	 * Proceed to find out if wanted events are really available inside
735 	 * the ready list. This need to be done under ep_call_nested()
736 	 * supervision, since the call to f_op->poll() done on listed files
737 	 * could re-enter here.
738 	 */
739 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
740 				   ep_poll_readyevents_proc, ep, ep, current);
741 
742 	return pollflags != -1 ? pollflags : 0;
743 }
744 
745 /* File callbacks that implement the eventpoll file behaviour */
746 static const struct file_operations eventpoll_fops = {
747 	.release	= ep_eventpoll_release,
748 	.poll		= ep_eventpoll_poll,
749 	.llseek		= noop_llseek,
750 };
751 
752 /*
753  * This is called from eventpoll_release() to unlink files from the eventpoll
754  * interface. We need to have this facility to cleanup correctly files that are
755  * closed without being removed from the eventpoll interface.
756  */
757 void eventpoll_release_file(struct file *file)
758 {
759 	struct list_head *lsthead = &file->f_ep_links;
760 	struct eventpoll *ep;
761 	struct epitem *epi;
762 
763 	/*
764 	 * We don't want to get "file->f_lock" because it is not
765 	 * necessary. It is not necessary because we're in the "struct file"
766 	 * cleanup path, and this means that no one is using this file anymore.
767 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
768 	 * point, the file counter already went to zero and fget() would fail.
769 	 * The only hit might come from ep_free() but by holding the mutex
770 	 * will correctly serialize the operation. We do need to acquire
771 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
772 	 * from anywhere but ep_free().
773 	 *
774 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
775 	 */
776 	mutex_lock(&epmutex);
777 
778 	while (!list_empty(lsthead)) {
779 		epi = list_first_entry(lsthead, struct epitem, fllink);
780 
781 		ep = epi->ep;
782 		list_del_init(&epi->fllink);
783 		mutex_lock_nested(&ep->mtx, 0);
784 		ep_remove(ep, epi);
785 		mutex_unlock(&ep->mtx);
786 	}
787 
788 	mutex_unlock(&epmutex);
789 }
790 
791 static int ep_alloc(struct eventpoll **pep)
792 {
793 	int error;
794 	struct user_struct *user;
795 	struct eventpoll *ep;
796 
797 	user = get_current_user();
798 	error = -ENOMEM;
799 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
800 	if (unlikely(!ep))
801 		goto free_uid;
802 
803 	spin_lock_init(&ep->lock);
804 	mutex_init(&ep->mtx);
805 	init_waitqueue_head(&ep->wq);
806 	init_waitqueue_head(&ep->poll_wait);
807 	INIT_LIST_HEAD(&ep->rdllist);
808 	ep->rbr = RB_ROOT;
809 	ep->ovflist = EP_UNACTIVE_PTR;
810 	ep->user = user;
811 
812 	*pep = ep;
813 
814 	return 0;
815 
816 free_uid:
817 	free_uid(user);
818 	return error;
819 }
820 
821 /*
822  * Search the file inside the eventpoll tree. The RB tree operations
823  * are protected by the "mtx" mutex, and ep_find() must be called with
824  * "mtx" held.
825  */
826 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
827 {
828 	int kcmp;
829 	struct rb_node *rbp;
830 	struct epitem *epi, *epir = NULL;
831 	struct epoll_filefd ffd;
832 
833 	ep_set_ffd(&ffd, file, fd);
834 	for (rbp = ep->rbr.rb_node; rbp; ) {
835 		epi = rb_entry(rbp, struct epitem, rbn);
836 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
837 		if (kcmp > 0)
838 			rbp = rbp->rb_right;
839 		else if (kcmp < 0)
840 			rbp = rbp->rb_left;
841 		else {
842 			epir = epi;
843 			break;
844 		}
845 	}
846 
847 	return epir;
848 }
849 
850 /*
851  * This is the callback that is passed to the wait queue wakeup
852  * mechanism. It is called by the stored file descriptors when they
853  * have events to report.
854  */
855 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
856 {
857 	int pwake = 0;
858 	unsigned long flags;
859 	struct epitem *epi = ep_item_from_wait(wait);
860 	struct eventpoll *ep = epi->ep;
861 
862 	if ((unsigned long)key & POLLFREE) {
863 		ep_pwq_from_wait(wait)->whead = NULL;
864 		/*
865 		 * whead = NULL above can race with ep_remove_wait_queue()
866 		 * which can do another remove_wait_queue() after us, so we
867 		 * can't use __remove_wait_queue(). whead->lock is held by
868 		 * the caller.
869 		 */
870 		list_del_init(&wait->task_list);
871 	}
872 
873 	spin_lock_irqsave(&ep->lock, flags);
874 
875 	/*
876 	 * If the event mask does not contain any poll(2) event, we consider the
877 	 * descriptor to be disabled. This condition is likely the effect of the
878 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
879 	 * until the next EPOLL_CTL_MOD will be issued.
880 	 */
881 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
882 		goto out_unlock;
883 
884 	/*
885 	 * Check the events coming with the callback. At this stage, not
886 	 * every device reports the events in the "key" parameter of the
887 	 * callback. We need to be able to handle both cases here, hence the
888 	 * test for "key" != NULL before the event match test.
889 	 */
890 	if (key && !((unsigned long) key & epi->event.events))
891 		goto out_unlock;
892 
893 	/*
894 	 * If we are transferring events to userspace, we can hold no locks
895 	 * (because we're accessing user memory, and because of linux f_op->poll()
896 	 * semantics). All the events that happen during that period of time are
897 	 * chained in ep->ovflist and requeued later on.
898 	 */
899 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
900 		if (epi->next == EP_UNACTIVE_PTR) {
901 			epi->next = ep->ovflist;
902 			ep->ovflist = epi;
903 		}
904 		goto out_unlock;
905 	}
906 
907 	/* If this file is already in the ready list we exit soon */
908 	if (!ep_is_linked(&epi->rdllink))
909 		list_add_tail(&epi->rdllink, &ep->rdllist);
910 
911 	/*
912 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
913 	 * wait list.
914 	 */
915 	if (waitqueue_active(&ep->wq))
916 		wake_up_locked(&ep->wq);
917 	if (waitqueue_active(&ep->poll_wait))
918 		pwake++;
919 
920 out_unlock:
921 	spin_unlock_irqrestore(&ep->lock, flags);
922 
923 	/* We have to call this outside the lock */
924 	if (pwake)
925 		ep_poll_safewake(&ep->poll_wait);
926 
927 	return 1;
928 }
929 
930 /*
931  * This is the callback that is used to add our wait queue to the
932  * target file wakeup lists.
933  */
934 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
935 				 poll_table *pt)
936 {
937 	struct epitem *epi = ep_item_from_epqueue(pt);
938 	struct eppoll_entry *pwq;
939 
940 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
941 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
942 		pwq->whead = whead;
943 		pwq->base = epi;
944 		add_wait_queue(whead, &pwq->wait);
945 		list_add_tail(&pwq->llink, &epi->pwqlist);
946 		epi->nwait++;
947 	} else {
948 		/* We have to signal that an error occurred */
949 		epi->nwait = -1;
950 	}
951 }
952 
953 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
954 {
955 	int kcmp;
956 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
957 	struct epitem *epic;
958 
959 	while (*p) {
960 		parent = *p;
961 		epic = rb_entry(parent, struct epitem, rbn);
962 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
963 		if (kcmp > 0)
964 			p = &parent->rb_right;
965 		else
966 			p = &parent->rb_left;
967 	}
968 	rb_link_node(&epi->rbn, parent, p);
969 	rb_insert_color(&epi->rbn, &ep->rbr);
970 }
971 
972 
973 
974 #define PATH_ARR_SIZE 5
975 /*
976  * These are the number paths of length 1 to 5, that we are allowing to emanate
977  * from a single file of interest. For example, we allow 1000 paths of length
978  * 1, to emanate from each file of interest. This essentially represents the
979  * potential wakeup paths, which need to be limited in order to avoid massive
980  * uncontrolled wakeup storms. The common use case should be a single ep which
981  * is connected to n file sources. In this case each file source has 1 path
982  * of length 1. Thus, the numbers below should be more than sufficient. These
983  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
984  * and delete can't add additional paths. Protected by the epmutex.
985  */
986 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
987 static int path_count[PATH_ARR_SIZE];
988 
989 static int path_count_inc(int nests)
990 {
991 	if (++path_count[nests] > path_limits[nests])
992 		return -1;
993 	return 0;
994 }
995 
996 static void path_count_init(void)
997 {
998 	int i;
999 
1000 	for (i = 0; i < PATH_ARR_SIZE; i++)
1001 		path_count[i] = 0;
1002 }
1003 
1004 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1005 {
1006 	int error = 0;
1007 	struct file *file = priv;
1008 	struct file *child_file;
1009 	struct epitem *epi;
1010 
1011 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1012 		child_file = epi->ep->file;
1013 		if (is_file_epoll(child_file)) {
1014 			if (list_empty(&child_file->f_ep_links)) {
1015 				if (path_count_inc(call_nests)) {
1016 					error = -1;
1017 					break;
1018 				}
1019 			} else {
1020 				error = ep_call_nested(&poll_loop_ncalls,
1021 							EP_MAX_NESTS,
1022 							reverse_path_check_proc,
1023 							child_file, child_file,
1024 							current);
1025 			}
1026 			if (error != 0)
1027 				break;
1028 		} else {
1029 			printk(KERN_ERR "reverse_path_check_proc: "
1030 				"file is not an ep!\n");
1031 		}
1032 	}
1033 	return error;
1034 }
1035 
1036 /**
1037  * reverse_path_check - The tfile_check_list is list of file *, which have
1038  *                      links that are proposed to be newly added. We need to
1039  *                      make sure that those added links don't add too many
1040  *                      paths such that we will spend all our time waking up
1041  *                      eventpoll objects.
1042  *
1043  * Returns: Returns zero if the proposed links don't create too many paths,
1044  *	    -1 otherwise.
1045  */
1046 static int reverse_path_check(void)
1047 {
1048 	int length = 0;
1049 	int error = 0;
1050 	struct file *current_file;
1051 
1052 	/* let's call this for all tfiles */
1053 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1054 		length++;
1055 		path_count_init();
1056 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1057 					reverse_path_check_proc, current_file,
1058 					current_file, current);
1059 		if (error)
1060 			break;
1061 	}
1062 	return error;
1063 }
1064 
1065 /*
1066  * Must be called with "mtx" held.
1067  */
1068 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1069 		     struct file *tfile, int fd)
1070 {
1071 	int error, revents, pwake = 0;
1072 	unsigned long flags;
1073 	long user_watches;
1074 	struct epitem *epi;
1075 	struct ep_pqueue epq;
1076 
1077 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1078 	if (unlikely(user_watches >= max_user_watches))
1079 		return -ENOSPC;
1080 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1081 		return -ENOMEM;
1082 
1083 	/* Item initialization follow here ... */
1084 	INIT_LIST_HEAD(&epi->rdllink);
1085 	INIT_LIST_HEAD(&epi->fllink);
1086 	INIT_LIST_HEAD(&epi->pwqlist);
1087 	epi->ep = ep;
1088 	ep_set_ffd(&epi->ffd, tfile, fd);
1089 	epi->event = *event;
1090 	epi->nwait = 0;
1091 	epi->next = EP_UNACTIVE_PTR;
1092 
1093 	/* Initialize the poll table using the queue callback */
1094 	epq.epi = epi;
1095 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1096 
1097 	/*
1098 	 * Attach the item to the poll hooks and get current event bits.
1099 	 * We can safely use the file* here because its usage count has
1100 	 * been increased by the caller of this function. Note that after
1101 	 * this operation completes, the poll callback can start hitting
1102 	 * the new item.
1103 	 */
1104 	revents = tfile->f_op->poll(tfile, &epq.pt);
1105 
1106 	/*
1107 	 * We have to check if something went wrong during the poll wait queue
1108 	 * install process. Namely an allocation for a wait queue failed due
1109 	 * high memory pressure.
1110 	 */
1111 	error = -ENOMEM;
1112 	if (epi->nwait < 0)
1113 		goto error_unregister;
1114 
1115 	/* Add the current item to the list of active epoll hook for this file */
1116 	spin_lock(&tfile->f_lock);
1117 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1118 	spin_unlock(&tfile->f_lock);
1119 
1120 	/*
1121 	 * Add the current item to the RB tree. All RB tree operations are
1122 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1123 	 */
1124 	ep_rbtree_insert(ep, epi);
1125 
1126 	/* now check if we've created too many backpaths */
1127 	error = -EINVAL;
1128 	if (reverse_path_check())
1129 		goto error_remove_epi;
1130 
1131 	/* We have to drop the new item inside our item list to keep track of it */
1132 	spin_lock_irqsave(&ep->lock, flags);
1133 
1134 	/* If the file is already "ready" we drop it inside the ready list */
1135 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1136 		list_add_tail(&epi->rdllink, &ep->rdllist);
1137 
1138 		/* Notify waiting tasks that events are available */
1139 		if (waitqueue_active(&ep->wq))
1140 			wake_up_locked(&ep->wq);
1141 		if (waitqueue_active(&ep->poll_wait))
1142 			pwake++;
1143 	}
1144 
1145 	spin_unlock_irqrestore(&ep->lock, flags);
1146 
1147 	atomic_long_inc(&ep->user->epoll_watches);
1148 
1149 	/* We have to call this outside the lock */
1150 	if (pwake)
1151 		ep_poll_safewake(&ep->poll_wait);
1152 
1153 	return 0;
1154 
1155 error_remove_epi:
1156 	spin_lock(&tfile->f_lock);
1157 	if (ep_is_linked(&epi->fllink))
1158 		list_del_init(&epi->fllink);
1159 	spin_unlock(&tfile->f_lock);
1160 
1161 	rb_erase(&epi->rbn, &ep->rbr);
1162 
1163 error_unregister:
1164 	ep_unregister_pollwait(ep, epi);
1165 
1166 	/*
1167 	 * We need to do this because an event could have been arrived on some
1168 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1169 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1170 	 * And ep_insert() is called with "mtx" held.
1171 	 */
1172 	spin_lock_irqsave(&ep->lock, flags);
1173 	if (ep_is_linked(&epi->rdllink))
1174 		list_del_init(&epi->rdllink);
1175 	spin_unlock_irqrestore(&ep->lock, flags);
1176 
1177 	kmem_cache_free(epi_cache, epi);
1178 
1179 	return error;
1180 }
1181 
1182 /*
1183  * Modify the interest event mask by dropping an event if the new mask
1184  * has a match in the current file status. Must be called with "mtx" held.
1185  */
1186 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1187 {
1188 	int pwake = 0;
1189 	unsigned int revents;
1190 
1191 	/*
1192 	 * Set the new event interest mask before calling f_op->poll();
1193 	 * otherwise we might miss an event that happens between the
1194 	 * f_op->poll() call and the new event set registering.
1195 	 */
1196 	epi->event.events = event->events;
1197 	epi->event.data = event->data; /* protected by mtx */
1198 
1199 	/*
1200 	 * Get current event bits. We can safely use the file* here because
1201 	 * its usage count has been increased by the caller of this function.
1202 	 */
1203 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1204 
1205 	/*
1206 	 * If the item is "hot" and it is not registered inside the ready
1207 	 * list, push it inside.
1208 	 */
1209 	if (revents & event->events) {
1210 		spin_lock_irq(&ep->lock);
1211 		if (!ep_is_linked(&epi->rdllink)) {
1212 			list_add_tail(&epi->rdllink, &ep->rdllist);
1213 
1214 			/* Notify waiting tasks that events are available */
1215 			if (waitqueue_active(&ep->wq))
1216 				wake_up_locked(&ep->wq);
1217 			if (waitqueue_active(&ep->poll_wait))
1218 				pwake++;
1219 		}
1220 		spin_unlock_irq(&ep->lock);
1221 	}
1222 
1223 	/* We have to call this outside the lock */
1224 	if (pwake)
1225 		ep_poll_safewake(&ep->poll_wait);
1226 
1227 	return 0;
1228 }
1229 
1230 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1231 			       void *priv)
1232 {
1233 	struct ep_send_events_data *esed = priv;
1234 	int eventcnt;
1235 	unsigned int revents;
1236 	struct epitem *epi;
1237 	struct epoll_event __user *uevent;
1238 
1239 	/*
1240 	 * We can loop without lock because we are passed a task private list.
1241 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1242 	 * holding "mtx" during this call.
1243 	 */
1244 	for (eventcnt = 0, uevent = esed->events;
1245 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1246 		epi = list_first_entry(head, struct epitem, rdllink);
1247 
1248 		list_del_init(&epi->rdllink);
1249 
1250 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1251 			epi->event.events;
1252 
1253 		/*
1254 		 * If the event mask intersect the caller-requested one,
1255 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1256 		 * is holding "mtx", so no operations coming from userspace
1257 		 * can change the item.
1258 		 */
1259 		if (revents) {
1260 			if (__put_user(revents, &uevent->events) ||
1261 			    __put_user(epi->event.data, &uevent->data)) {
1262 				list_add(&epi->rdllink, head);
1263 				return eventcnt ? eventcnt : -EFAULT;
1264 			}
1265 			eventcnt++;
1266 			uevent++;
1267 			if (epi->event.events & EPOLLONESHOT)
1268 				epi->event.events &= EP_PRIVATE_BITS;
1269 			else if (!(epi->event.events & EPOLLET)) {
1270 				/*
1271 				 * If this file has been added with Level
1272 				 * Trigger mode, we need to insert back inside
1273 				 * the ready list, so that the next call to
1274 				 * epoll_wait() will check again the events
1275 				 * availability. At this point, no one can insert
1276 				 * into ep->rdllist besides us. The epoll_ctl()
1277 				 * callers are locked out by
1278 				 * ep_scan_ready_list() holding "mtx" and the
1279 				 * poll callback will queue them in ep->ovflist.
1280 				 */
1281 				list_add_tail(&epi->rdllink, &ep->rdllist);
1282 			}
1283 		}
1284 	}
1285 
1286 	return eventcnt;
1287 }
1288 
1289 static int ep_send_events(struct eventpoll *ep,
1290 			  struct epoll_event __user *events, int maxevents)
1291 {
1292 	struct ep_send_events_data esed;
1293 
1294 	esed.maxevents = maxevents;
1295 	esed.events = events;
1296 
1297 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1298 }
1299 
1300 static inline struct timespec ep_set_mstimeout(long ms)
1301 {
1302 	struct timespec now, ts = {
1303 		.tv_sec = ms / MSEC_PER_SEC,
1304 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1305 	};
1306 
1307 	ktime_get_ts(&now);
1308 	return timespec_add_safe(now, ts);
1309 }
1310 
1311 /**
1312  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1313  *           event buffer.
1314  *
1315  * @ep: Pointer to the eventpoll context.
1316  * @events: Pointer to the userspace buffer where the ready events should be
1317  *          stored.
1318  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1319  * @timeout: Maximum timeout for the ready events fetch operation, in
1320  *           milliseconds. If the @timeout is zero, the function will not block,
1321  *           while if the @timeout is less than zero, the function will block
1322  *           until at least one event has been retrieved (or an error
1323  *           occurred).
1324  *
1325  * Returns: Returns the number of ready events which have been fetched, or an
1326  *          error code, in case of error.
1327  */
1328 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1329 		   int maxevents, long timeout)
1330 {
1331 	int res = 0, eavail, timed_out = 0;
1332 	unsigned long flags;
1333 	long slack = 0;
1334 	wait_queue_t wait;
1335 	ktime_t expires, *to = NULL;
1336 
1337 	if (timeout > 0) {
1338 		struct timespec end_time = ep_set_mstimeout(timeout);
1339 
1340 		slack = select_estimate_accuracy(&end_time);
1341 		to = &expires;
1342 		*to = timespec_to_ktime(end_time);
1343 	} else if (timeout == 0) {
1344 		/*
1345 		 * Avoid the unnecessary trip to the wait queue loop, if the
1346 		 * caller specified a non blocking operation.
1347 		 */
1348 		timed_out = 1;
1349 		spin_lock_irqsave(&ep->lock, flags);
1350 		goto check_events;
1351 	}
1352 
1353 fetch_events:
1354 	spin_lock_irqsave(&ep->lock, flags);
1355 
1356 	if (!ep_events_available(ep)) {
1357 		/*
1358 		 * We don't have any available event to return to the caller.
1359 		 * We need to sleep here, and we will be wake up by
1360 		 * ep_poll_callback() when events will become available.
1361 		 */
1362 		init_waitqueue_entry(&wait, current);
1363 		__add_wait_queue_exclusive(&ep->wq, &wait);
1364 
1365 		for (;;) {
1366 			/*
1367 			 * We don't want to sleep if the ep_poll_callback() sends us
1368 			 * a wakeup in between. That's why we set the task state
1369 			 * to TASK_INTERRUPTIBLE before doing the checks.
1370 			 */
1371 			set_current_state(TASK_INTERRUPTIBLE);
1372 			if (ep_events_available(ep) || timed_out)
1373 				break;
1374 			if (signal_pending(current)) {
1375 				res = -EINTR;
1376 				break;
1377 			}
1378 
1379 			spin_unlock_irqrestore(&ep->lock, flags);
1380 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1381 				timed_out = 1;
1382 
1383 			spin_lock_irqsave(&ep->lock, flags);
1384 		}
1385 		__remove_wait_queue(&ep->wq, &wait);
1386 
1387 		set_current_state(TASK_RUNNING);
1388 	}
1389 check_events:
1390 	/* Is it worth to try to dig for events ? */
1391 	eavail = ep_events_available(ep);
1392 
1393 	spin_unlock_irqrestore(&ep->lock, flags);
1394 
1395 	/*
1396 	 * Try to transfer events to user space. In case we get 0 events and
1397 	 * there's still timeout left over, we go trying again in search of
1398 	 * more luck.
1399 	 */
1400 	if (!res && eavail &&
1401 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1402 		goto fetch_events;
1403 
1404 	return res;
1405 }
1406 
1407 /**
1408  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1409  *                      API, to verify that adding an epoll file inside another
1410  *                      epoll structure, does not violate the constraints, in
1411  *                      terms of closed loops, or too deep chains (which can
1412  *                      result in excessive stack usage).
1413  *
1414  * @priv: Pointer to the epoll file to be currently checked.
1415  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1416  *          data structure pointer.
1417  * @call_nests: Current dept of the @ep_call_nested() call stack.
1418  *
1419  * Returns: Returns zero if adding the epoll @file inside current epoll
1420  *          structure @ep does not violate the constraints, or -1 otherwise.
1421  */
1422 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1423 {
1424 	int error = 0;
1425 	struct file *file = priv;
1426 	struct eventpoll *ep = file->private_data;
1427 	struct eventpoll *ep_tovisit;
1428 	struct rb_node *rbp;
1429 	struct epitem *epi;
1430 
1431 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1432 	ep->visited = 1;
1433 	list_add(&ep->visited_list_link, &visited_list);
1434 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1435 		epi = rb_entry(rbp, struct epitem, rbn);
1436 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1437 			ep_tovisit = epi->ffd.file->private_data;
1438 			if (ep_tovisit->visited)
1439 				continue;
1440 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1441 					ep_loop_check_proc, epi->ffd.file,
1442 					ep_tovisit, current);
1443 			if (error != 0)
1444 				break;
1445 		} else {
1446 			/*
1447 			 * If we've reached a file that is not associated with
1448 			 * an ep, then we need to check if the newly added
1449 			 * links are going to add too many wakeup paths. We do
1450 			 * this by adding it to the tfile_check_list, if it's
1451 			 * not already there, and calling reverse_path_check()
1452 			 * during ep_insert().
1453 			 */
1454 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1455 				list_add(&epi->ffd.file->f_tfile_llink,
1456 					 &tfile_check_list);
1457 		}
1458 	}
1459 	mutex_unlock(&ep->mtx);
1460 
1461 	return error;
1462 }
1463 
1464 /**
1465  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1466  *                 another epoll file (represented by @ep) does not create
1467  *                 closed loops or too deep chains.
1468  *
1469  * @ep: Pointer to the epoll private data structure.
1470  * @file: Pointer to the epoll file to be checked.
1471  *
1472  * Returns: Returns zero if adding the epoll @file inside current epoll
1473  *          structure @ep does not violate the constraints, or -1 otherwise.
1474  */
1475 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1476 {
1477 	int ret;
1478 	struct eventpoll *ep_cur, *ep_next;
1479 
1480 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1481 			      ep_loop_check_proc, file, ep, current);
1482 	/* clear visited list */
1483 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1484 							visited_list_link) {
1485 		ep_cur->visited = 0;
1486 		list_del(&ep_cur->visited_list_link);
1487 	}
1488 	return ret;
1489 }
1490 
1491 static void clear_tfile_check_list(void)
1492 {
1493 	struct file *file;
1494 
1495 	/* first clear the tfile_check_list */
1496 	while (!list_empty(&tfile_check_list)) {
1497 		file = list_first_entry(&tfile_check_list, struct file,
1498 					f_tfile_llink);
1499 		list_del_init(&file->f_tfile_llink);
1500 	}
1501 	INIT_LIST_HEAD(&tfile_check_list);
1502 }
1503 
1504 /*
1505  * Open an eventpoll file descriptor.
1506  */
1507 SYSCALL_DEFINE1(epoll_create1, int, flags)
1508 {
1509 	int error, fd;
1510 	struct eventpoll *ep = NULL;
1511 	struct file *file;
1512 
1513 	/* Check the EPOLL_* constant for consistency.  */
1514 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1515 
1516 	if (flags & ~EPOLL_CLOEXEC)
1517 		return -EINVAL;
1518 	/*
1519 	 * Create the internal data structure ("struct eventpoll").
1520 	 */
1521 	error = ep_alloc(&ep);
1522 	if (error < 0)
1523 		return error;
1524 	/*
1525 	 * Creates all the items needed to setup an eventpoll file. That is,
1526 	 * a file structure and a free file descriptor.
1527 	 */
1528 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1529 	if (fd < 0) {
1530 		error = fd;
1531 		goto out_free_ep;
1532 	}
1533 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1534 				 O_RDWR | (flags & O_CLOEXEC));
1535 	if (IS_ERR(file)) {
1536 		error = PTR_ERR(file);
1537 		goto out_free_fd;
1538 	}
1539 	fd_install(fd, file);
1540 	ep->file = file;
1541 	return fd;
1542 
1543 out_free_fd:
1544 	put_unused_fd(fd);
1545 out_free_ep:
1546 	ep_free(ep);
1547 	return error;
1548 }
1549 
1550 SYSCALL_DEFINE1(epoll_create, int, size)
1551 {
1552 	if (size <= 0)
1553 		return -EINVAL;
1554 
1555 	return sys_epoll_create1(0);
1556 }
1557 
1558 /*
1559  * The following function implements the controller interface for
1560  * the eventpoll file that enables the insertion/removal/change of
1561  * file descriptors inside the interest set.
1562  */
1563 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1564 		struct epoll_event __user *, event)
1565 {
1566 	int error;
1567 	int did_lock_epmutex = 0;
1568 	struct file *file, *tfile;
1569 	struct eventpoll *ep;
1570 	struct epitem *epi;
1571 	struct epoll_event epds;
1572 
1573 	error = -EFAULT;
1574 	if (ep_op_has_event(op) &&
1575 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1576 		goto error_return;
1577 
1578 	/* Get the "struct file *" for the eventpoll file */
1579 	error = -EBADF;
1580 	file = fget(epfd);
1581 	if (!file)
1582 		goto error_return;
1583 
1584 	/* Get the "struct file *" for the target file */
1585 	tfile = fget(fd);
1586 	if (!tfile)
1587 		goto error_fput;
1588 
1589 	/* The target file descriptor must support poll */
1590 	error = -EPERM;
1591 	if (!tfile->f_op || !tfile->f_op->poll)
1592 		goto error_tgt_fput;
1593 
1594 	/*
1595 	 * We have to check that the file structure underneath the file descriptor
1596 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1597 	 * adding an epoll file descriptor inside itself.
1598 	 */
1599 	error = -EINVAL;
1600 	if (file == tfile || !is_file_epoll(file))
1601 		goto error_tgt_fput;
1602 
1603 	/*
1604 	 * At this point it is safe to assume that the "private_data" contains
1605 	 * our own data structure.
1606 	 */
1607 	ep = file->private_data;
1608 
1609 	/*
1610 	 * When we insert an epoll file descriptor, inside another epoll file
1611 	 * descriptor, there is the change of creating closed loops, which are
1612 	 * better be handled here, than in more critical paths. While we are
1613 	 * checking for loops we also determine the list of files reachable
1614 	 * and hang them on the tfile_check_list, so we can check that we
1615 	 * haven't created too many possible wakeup paths.
1616 	 *
1617 	 * We need to hold the epmutex across both ep_insert and ep_remove
1618 	 * b/c we want to make sure we are looking at a coherent view of
1619 	 * epoll network.
1620 	 */
1621 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1622 		mutex_lock(&epmutex);
1623 		did_lock_epmutex = 1;
1624 	}
1625 	if (op == EPOLL_CTL_ADD) {
1626 		if (is_file_epoll(tfile)) {
1627 			error = -ELOOP;
1628 			if (ep_loop_check(ep, tfile) != 0)
1629 				goto error_tgt_fput;
1630 		} else
1631 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1632 	}
1633 
1634 	mutex_lock_nested(&ep->mtx, 0);
1635 
1636 	/*
1637 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1638 	 * above, we can be sure to be able to use the item looked up by
1639 	 * ep_find() till we release the mutex.
1640 	 */
1641 	epi = ep_find(ep, tfile, fd);
1642 
1643 	error = -EINVAL;
1644 	switch (op) {
1645 	case EPOLL_CTL_ADD:
1646 		if (!epi) {
1647 			epds.events |= POLLERR | POLLHUP;
1648 			error = ep_insert(ep, &epds, tfile, fd);
1649 		} else
1650 			error = -EEXIST;
1651 		clear_tfile_check_list();
1652 		break;
1653 	case EPOLL_CTL_DEL:
1654 		if (epi)
1655 			error = ep_remove(ep, epi);
1656 		else
1657 			error = -ENOENT;
1658 		break;
1659 	case EPOLL_CTL_MOD:
1660 		if (epi) {
1661 			epds.events |= POLLERR | POLLHUP;
1662 			error = ep_modify(ep, epi, &epds);
1663 		} else
1664 			error = -ENOENT;
1665 		break;
1666 	}
1667 	mutex_unlock(&ep->mtx);
1668 
1669 error_tgt_fput:
1670 	if (did_lock_epmutex)
1671 		mutex_unlock(&epmutex);
1672 
1673 	fput(tfile);
1674 error_fput:
1675 	fput(file);
1676 error_return:
1677 
1678 	return error;
1679 }
1680 
1681 /*
1682  * Implement the event wait interface for the eventpoll file. It is the kernel
1683  * part of the user space epoll_wait(2).
1684  */
1685 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1686 		int, maxevents, int, timeout)
1687 {
1688 	int error;
1689 	struct file *file;
1690 	struct eventpoll *ep;
1691 
1692 	/* The maximum number of event must be greater than zero */
1693 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1694 		return -EINVAL;
1695 
1696 	/* Verify that the area passed by the user is writeable */
1697 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1698 		error = -EFAULT;
1699 		goto error_return;
1700 	}
1701 
1702 	/* Get the "struct file *" for the eventpoll file */
1703 	error = -EBADF;
1704 	file = fget(epfd);
1705 	if (!file)
1706 		goto error_return;
1707 
1708 	/*
1709 	 * We have to check that the file structure underneath the fd
1710 	 * the user passed to us _is_ an eventpoll file.
1711 	 */
1712 	error = -EINVAL;
1713 	if (!is_file_epoll(file))
1714 		goto error_fput;
1715 
1716 	/*
1717 	 * At this point it is safe to assume that the "private_data" contains
1718 	 * our own data structure.
1719 	 */
1720 	ep = file->private_data;
1721 
1722 	/* Time to fish for events ... */
1723 	error = ep_poll(ep, events, maxevents, timeout);
1724 
1725 error_fput:
1726 	fput(file);
1727 error_return:
1728 
1729 	return error;
1730 }
1731 
1732 #ifdef HAVE_SET_RESTORE_SIGMASK
1733 
1734 /*
1735  * Implement the event wait interface for the eventpoll file. It is the kernel
1736  * part of the user space epoll_pwait(2).
1737  */
1738 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1739 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1740 		size_t, sigsetsize)
1741 {
1742 	int error;
1743 	sigset_t ksigmask, sigsaved;
1744 
1745 	/*
1746 	 * If the caller wants a certain signal mask to be set during the wait,
1747 	 * we apply it here.
1748 	 */
1749 	if (sigmask) {
1750 		if (sigsetsize != sizeof(sigset_t))
1751 			return -EINVAL;
1752 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1753 			return -EFAULT;
1754 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1755 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1756 	}
1757 
1758 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1759 
1760 	/*
1761 	 * If we changed the signal mask, we need to restore the original one.
1762 	 * In case we've got a signal while waiting, we do not restore the
1763 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1764 	 * the way back to userspace, before the signal mask is restored.
1765 	 */
1766 	if (sigmask) {
1767 		if (error == -EINTR) {
1768 			memcpy(&current->saved_sigmask, &sigsaved,
1769 			       sizeof(sigsaved));
1770 			set_restore_sigmask();
1771 		} else
1772 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1773 	}
1774 
1775 	return error;
1776 }
1777 
1778 #endif /* HAVE_SET_RESTORE_SIGMASK */
1779 
1780 static int __init eventpoll_init(void)
1781 {
1782 	struct sysinfo si;
1783 
1784 	si_meminfo(&si);
1785 	/*
1786 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1787 	 */
1788 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1789 		EP_ITEM_COST;
1790 	BUG_ON(max_user_watches < 0);
1791 
1792 	/*
1793 	 * Initialize the structure used to perform epoll file descriptor
1794 	 * inclusion loops checks.
1795 	 */
1796 	ep_nested_calls_init(&poll_loop_ncalls);
1797 
1798 	/* Initialize the structure used to perform safe poll wait head wake ups */
1799 	ep_nested_calls_init(&poll_safewake_ncalls);
1800 
1801 	/* Initialize the structure used to perform file's f_op->poll() calls */
1802 	ep_nested_calls_init(&poll_readywalk_ncalls);
1803 
1804 	/* Allocates slab cache used to allocate "struct epitem" items */
1805 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1806 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1807 
1808 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1809 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1810 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1811 
1812 	return 0;
1813 }
1814 fs_initcall(eventpoll_init);
1815