xref: /linux/fs/eventpoll.c (revision e057e15f)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76 
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79 
80 /* Maximum msec timeout value storeable in a long int */
81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82 
83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84 
85 #define EP_UNACTIVE_PTR ((void *) -1L)
86 
87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88 
89 struct epoll_filefd {
90 	struct file *file;
91 	int fd;
92 };
93 
94 /*
95  * Structure used to track possible nested calls, for too deep recursions
96  * and loop cycles.
97  */
98 struct nested_call_node {
99 	struct list_head llink;
100 	void *cookie;
101 	int cpu;
102 };
103 
104 /*
105  * This structure is used as collector for nested calls, to check for
106  * maximum recursion dept and loop cycles.
107  */
108 struct nested_calls {
109 	struct list_head tasks_call_list;
110 	spinlock_t lock;
111 };
112 
113 /*
114  * Each file descriptor added to the eventpoll interface will
115  * have an entry of this type linked to the "rbr" RB tree.
116  */
117 struct epitem {
118 	/* RB tree node used to link this structure to the eventpoll RB tree */
119 	struct rb_node rbn;
120 
121 	/* List header used to link this structure to the eventpoll ready list */
122 	struct list_head rdllink;
123 
124 	/*
125 	 * Works together "struct eventpoll"->ovflist in keeping the
126 	 * single linked chain of items.
127 	 */
128 	struct epitem *next;
129 
130 	/* The file descriptor information this item refers to */
131 	struct epoll_filefd ffd;
132 
133 	/* Number of active wait queue attached to poll operations */
134 	int nwait;
135 
136 	/* List containing poll wait queues */
137 	struct list_head pwqlist;
138 
139 	/* The "container" of this item */
140 	struct eventpoll *ep;
141 
142 	/* List header used to link this item to the "struct file" items list */
143 	struct list_head fllink;
144 
145 	/* The structure that describe the interested events and the source fd */
146 	struct epoll_event event;
147 };
148 
149 /*
150  * This structure is stored inside the "private_data" member of the file
151  * structure and rapresent the main data sructure for the eventpoll
152  * interface.
153  */
154 struct eventpoll {
155 	/* Protect the this structure access */
156 	spinlock_t lock;
157 
158 	/*
159 	 * This mutex is used to ensure that files are not removed
160 	 * while epoll is using them. This is held during the event
161 	 * collection loop, the file cleanup path, the epoll file exit
162 	 * code and the ctl operations.
163 	 */
164 	struct mutex mtx;
165 
166 	/* Wait queue used by sys_epoll_wait() */
167 	wait_queue_head_t wq;
168 
169 	/* Wait queue used by file->poll() */
170 	wait_queue_head_t poll_wait;
171 
172 	/* List of ready file descriptors */
173 	struct list_head rdllist;
174 
175 	/* RB tree root used to store monitored fd structs */
176 	struct rb_root rbr;
177 
178 	/*
179 	 * This is a single linked list that chains all the "struct epitem" that
180 	 * happened while transfering ready events to userspace w/out
181 	 * holding ->lock.
182 	 */
183 	struct epitem *ovflist;
184 
185 	/* The user that created the eventpoll descriptor */
186 	struct user_struct *user;
187 };
188 
189 /* Wait structure used by the poll hooks */
190 struct eppoll_entry {
191 	/* List header used to link this structure to the "struct epitem" */
192 	struct list_head llink;
193 
194 	/* The "base" pointer is set to the container "struct epitem" */
195 	void *base;
196 
197 	/*
198 	 * Wait queue item that will be linked to the target file wait
199 	 * queue head.
200 	 */
201 	wait_queue_t wait;
202 
203 	/* The wait queue head that linked the "wait" wait queue item */
204 	wait_queue_head_t *whead;
205 };
206 
207 /* Wrapper struct used by poll queueing */
208 struct ep_pqueue {
209 	poll_table pt;
210 	struct epitem *epi;
211 };
212 
213 /* Used by the ep_send_events() function as callback private data */
214 struct ep_send_events_data {
215 	int maxevents;
216 	struct epoll_event __user *events;
217 };
218 
219 /*
220  * Configuration options available inside /proc/sys/fs/epoll/
221  */
222 /* Maximum number of epoll watched descriptors, per user */
223 static int max_user_watches __read_mostly;
224 
225 /*
226  * This mutex is used to serialize ep_free() and eventpoll_release_file().
227  */
228 static DEFINE_MUTEX(epmutex);
229 
230 /* Used for safe wake up implementation */
231 static struct nested_calls poll_safewake_ncalls;
232 
233 /* Used to call file's f_op->poll() under the nested calls boundaries */
234 static struct nested_calls poll_readywalk_ncalls;
235 
236 /* Slab cache used to allocate "struct epitem" */
237 static struct kmem_cache *epi_cache __read_mostly;
238 
239 /* Slab cache used to allocate "struct eppoll_entry" */
240 static struct kmem_cache *pwq_cache __read_mostly;
241 
242 #ifdef CONFIG_SYSCTL
243 
244 #include <linux/sysctl.h>
245 
246 static int zero;
247 
248 ctl_table epoll_table[] = {
249 	{
250 		.procname	= "max_user_watches",
251 		.data		= &max_user_watches,
252 		.maxlen		= sizeof(int),
253 		.mode		= 0644,
254 		.proc_handler	= &proc_dointvec_minmax,
255 		.extra1		= &zero,
256 	},
257 	{ .ctl_name = 0 }
258 };
259 #endif /* CONFIG_SYSCTL */
260 
261 
262 /* Setup the structure that is used as key for the RB tree */
263 static inline void ep_set_ffd(struct epoll_filefd *ffd,
264 			      struct file *file, int fd)
265 {
266 	ffd->file = file;
267 	ffd->fd = fd;
268 }
269 
270 /* Compare RB tree keys */
271 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272 			     struct epoll_filefd *p2)
273 {
274 	return (p1->file > p2->file ? +1:
275 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276 }
277 
278 /* Tells us if the item is currently linked */
279 static inline int ep_is_linked(struct list_head *p)
280 {
281 	return !list_empty(p);
282 }
283 
284 /* Get the "struct epitem" from a wait queue pointer */
285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286 {
287 	return container_of(p, struct eppoll_entry, wait)->base;
288 }
289 
290 /* Get the "struct epitem" from an epoll queue wrapper */
291 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292 {
293 	return container_of(p, struct ep_pqueue, pt)->epi;
294 }
295 
296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297 static inline int ep_op_has_event(int op)
298 {
299 	return op != EPOLL_CTL_DEL;
300 }
301 
302 /* Initialize the poll safe wake up structure */
303 static void ep_nested_calls_init(struct nested_calls *ncalls)
304 {
305 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
306 	spin_lock_init(&ncalls->lock);
307 }
308 
309 /**
310  * ep_call_nested - Perform a bound (possibly) nested call, by checking
311  *                  that the recursion limit is not exceeded, and that
312  *                  the same nested call (by the meaning of same cookie) is
313  *                  no re-entered.
314  *
315  * @ncalls: Pointer to the nested_calls structure to be used for this call.
316  * @max_nests: Maximum number of allowed nesting calls.
317  * @nproc: Nested call core function pointer.
318  * @priv: Opaque data to be passed to the @nproc callback.
319  * @cookie: Cookie to be used to identify this nested call.
320  *
321  * Returns: Returns the code returned by the @nproc callback, or -1 if
322  *          the maximum recursion limit has been exceeded.
323  */
324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 			  int (*nproc)(void *, void *, int), void *priv,
326 			  void *cookie)
327 {
328 	int error, call_nests = 0;
329 	unsigned long flags;
330 	int this_cpu = get_cpu();
331 	struct list_head *lsthead = &ncalls->tasks_call_list;
332 	struct nested_call_node *tncur;
333 	struct nested_call_node tnode;
334 
335 	spin_lock_irqsave(&ncalls->lock, flags);
336 
337 	/*
338 	 * Try to see if the current task is already inside this wakeup call.
339 	 * We use a list here, since the population inside this set is always
340 	 * very much limited.
341 	 */
342 	list_for_each_entry(tncur, lsthead, llink) {
343 		if (tncur->cpu == this_cpu &&
344 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
345 			/*
346 			 * Ops ... loop detected or maximum nest level reached.
347 			 * We abort this wake by breaking the cycle itself.
348 			 */
349 			error = -1;
350 			goto out_unlock;
351 		}
352 	}
353 
354 	/* Add the current task and cookie to the list */
355 	tnode.cpu = this_cpu;
356 	tnode.cookie = cookie;
357 	list_add(&tnode.llink, lsthead);
358 
359 	spin_unlock_irqrestore(&ncalls->lock, flags);
360 
361 	/* Call the nested function */
362 	error = (*nproc)(priv, cookie, call_nests);
363 
364 	/* Remove the current task from the list */
365 	spin_lock_irqsave(&ncalls->lock, flags);
366 	list_del(&tnode.llink);
367  out_unlock:
368 	spin_unlock_irqrestore(&ncalls->lock, flags);
369 
370 	put_cpu();
371 	return error;
372 }
373 
374 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
375 {
376 	wake_up_nested((wait_queue_head_t *) cookie, 1 + call_nests);
377 	return 0;
378 }
379 
380 /*
381  * Perform a safe wake up of the poll wait list. The problem is that
382  * with the new callback'd wake up system, it is possible that the
383  * poll callback is reentered from inside the call to wake_up() done
384  * on the poll wait queue head. The rule is that we cannot reenter the
385  * wake up code from the same task more than EP_MAX_NESTS times,
386  * and we cannot reenter the same wait queue head at all. This will
387  * enable to have a hierarchy of epoll file descriptor of no more than
388  * EP_MAX_NESTS deep.
389  */
390 static void ep_poll_safewake(wait_queue_head_t *wq)
391 {
392 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
393 		       ep_poll_wakeup_proc, NULL, wq);
394 }
395 
396 /*
397  * This function unregisters poll callbacks from the associated file
398  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
399  * ep_free).
400  */
401 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
402 {
403 	struct list_head *lsthead = &epi->pwqlist;
404 	struct eppoll_entry *pwq;
405 
406 	while (!list_empty(lsthead)) {
407 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
408 
409 		list_del(&pwq->llink);
410 		remove_wait_queue(pwq->whead, &pwq->wait);
411 		kmem_cache_free(pwq_cache, pwq);
412 	}
413 }
414 
415 /**
416  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
417  *                      the scan code, to call f_op->poll(). Also allows for
418  *                      O(NumReady) performance.
419  *
420  * @ep: Pointer to the epoll private data structure.
421  * @sproc: Pointer to the scan callback.
422  * @priv: Private opaque data passed to the @sproc callback.
423  *
424  * Returns: The same integer error code returned by the @sproc callback.
425  */
426 static int ep_scan_ready_list(struct eventpoll *ep,
427 			      int (*sproc)(struct eventpoll *,
428 					   struct list_head *, void *),
429 			      void *priv)
430 {
431 	int error, pwake = 0;
432 	unsigned long flags;
433 	struct epitem *epi, *nepi;
434 	LIST_HEAD(txlist);
435 
436 	/*
437 	 * We need to lock this because we could be hit by
438 	 * eventpoll_release_file() and epoll_ctl().
439 	 */
440 	mutex_lock(&ep->mtx);
441 
442 	/*
443 	 * Steal the ready list, and re-init the original one to the
444 	 * empty list. Also, set ep->ovflist to NULL so that events
445 	 * happening while looping w/out locks, are not lost. We cannot
446 	 * have the poll callback to queue directly on ep->rdllist,
447 	 * because we want the "sproc" callback to be able to do it
448 	 * in a lockless way.
449 	 */
450 	spin_lock_irqsave(&ep->lock, flags);
451 	list_splice_init(&ep->rdllist, &txlist);
452 	ep->ovflist = NULL;
453 	spin_unlock_irqrestore(&ep->lock, flags);
454 
455 	/*
456 	 * Now call the callback function.
457 	 */
458 	error = (*sproc)(ep, &txlist, priv);
459 
460 	spin_lock_irqsave(&ep->lock, flags);
461 	/*
462 	 * During the time we spent inside the "sproc" callback, some
463 	 * other events might have been queued by the poll callback.
464 	 * We re-insert them inside the main ready-list here.
465 	 */
466 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
467 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
468 		/*
469 		 * We need to check if the item is already in the list.
470 		 * During the "sproc" callback execution time, items are
471 		 * queued into ->ovflist but the "txlist" might already
472 		 * contain them, and the list_splice() below takes care of them.
473 		 */
474 		if (!ep_is_linked(&epi->rdllink))
475 			list_add_tail(&epi->rdllink, &ep->rdllist);
476 	}
477 	/*
478 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
479 	 * releasing the lock, events will be queued in the normal way inside
480 	 * ep->rdllist.
481 	 */
482 	ep->ovflist = EP_UNACTIVE_PTR;
483 
484 	/*
485 	 * Quickly re-inject items left on "txlist".
486 	 */
487 	list_splice(&txlist, &ep->rdllist);
488 
489 	if (!list_empty(&ep->rdllist)) {
490 		/*
491 		 * Wake up (if active) both the eventpoll wait list and
492 		 * the ->poll() wait list (delayed after we release the lock).
493 		 */
494 		if (waitqueue_active(&ep->wq))
495 			wake_up_locked(&ep->wq);
496 		if (waitqueue_active(&ep->poll_wait))
497 			pwake++;
498 	}
499 	spin_unlock_irqrestore(&ep->lock, flags);
500 
501 	mutex_unlock(&ep->mtx);
502 
503 	/* We have to call this outside the lock */
504 	if (pwake)
505 		ep_poll_safewake(&ep->poll_wait);
506 
507 	return error;
508 }
509 
510 /*
511  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
512  * all the associated resources. Must be called with "mtx" held.
513  */
514 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
515 {
516 	unsigned long flags;
517 	struct file *file = epi->ffd.file;
518 
519 	/*
520 	 * Removes poll wait queue hooks. We _have_ to do this without holding
521 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
522 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
523 	 * queue head lock when unregistering the wait queue. The wakeup callback
524 	 * will run by holding the wait queue head lock and will call our callback
525 	 * that will try to get "ep->lock".
526 	 */
527 	ep_unregister_pollwait(ep, epi);
528 
529 	/* Remove the current item from the list of epoll hooks */
530 	spin_lock(&file->f_lock);
531 	if (ep_is_linked(&epi->fllink))
532 		list_del_init(&epi->fllink);
533 	spin_unlock(&file->f_lock);
534 
535 	rb_erase(&epi->rbn, &ep->rbr);
536 
537 	spin_lock_irqsave(&ep->lock, flags);
538 	if (ep_is_linked(&epi->rdllink))
539 		list_del_init(&epi->rdllink);
540 	spin_unlock_irqrestore(&ep->lock, flags);
541 
542 	/* At this point it is safe to free the eventpoll item */
543 	kmem_cache_free(epi_cache, epi);
544 
545 	atomic_dec(&ep->user->epoll_watches);
546 
547 	return 0;
548 }
549 
550 static void ep_free(struct eventpoll *ep)
551 {
552 	struct rb_node *rbp;
553 	struct epitem *epi;
554 
555 	/* We need to release all tasks waiting for these file */
556 	if (waitqueue_active(&ep->poll_wait))
557 		ep_poll_safewake(&ep->poll_wait);
558 
559 	/*
560 	 * We need to lock this because we could be hit by
561 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
562 	 * We do not need to hold "ep->mtx" here because the epoll file
563 	 * is on the way to be removed and no one has references to it
564 	 * anymore. The only hit might come from eventpoll_release_file() but
565 	 * holding "epmutex" is sufficent here.
566 	 */
567 	mutex_lock(&epmutex);
568 
569 	/*
570 	 * Walks through the whole tree by unregistering poll callbacks.
571 	 */
572 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
573 		epi = rb_entry(rbp, struct epitem, rbn);
574 
575 		ep_unregister_pollwait(ep, epi);
576 	}
577 
578 	/*
579 	 * Walks through the whole tree by freeing each "struct epitem". At this
580 	 * point we are sure no poll callbacks will be lingering around, and also by
581 	 * holding "epmutex" we can be sure that no file cleanup code will hit
582 	 * us during this operation. So we can avoid the lock on "ep->lock".
583 	 */
584 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
585 		epi = rb_entry(rbp, struct epitem, rbn);
586 		ep_remove(ep, epi);
587 	}
588 
589 	mutex_unlock(&epmutex);
590 	mutex_destroy(&ep->mtx);
591 	free_uid(ep->user);
592 	kfree(ep);
593 }
594 
595 static int ep_eventpoll_release(struct inode *inode, struct file *file)
596 {
597 	struct eventpoll *ep = file->private_data;
598 
599 	if (ep)
600 		ep_free(ep);
601 
602 	return 0;
603 }
604 
605 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
606 			       void *priv)
607 {
608 	struct epitem *epi, *tmp;
609 
610 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
611 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
612 		    epi->event.events)
613 			return POLLIN | POLLRDNORM;
614 		else {
615 			/*
616 			 * Item has been dropped into the ready list by the poll
617 			 * callback, but it's not actually ready, as far as
618 			 * caller requested events goes. We can remove it here.
619 			 */
620 			list_del_init(&epi->rdllink);
621 		}
622 	}
623 
624 	return 0;
625 }
626 
627 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
628 {
629 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
630 }
631 
632 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
633 {
634 	int pollflags;
635 	struct eventpoll *ep = file->private_data;
636 
637 	/* Insert inside our poll wait queue */
638 	poll_wait(file, &ep->poll_wait, wait);
639 
640 	/*
641 	 * Proceed to find out if wanted events are really available inside
642 	 * the ready list. This need to be done under ep_call_nested()
643 	 * supervision, since the call to f_op->poll() done on listed files
644 	 * could re-enter here.
645 	 */
646 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
647 				   ep_poll_readyevents_proc, ep, ep);
648 
649 	return pollflags != -1 ? pollflags : 0;
650 }
651 
652 /* File callbacks that implement the eventpoll file behaviour */
653 static const struct file_operations eventpoll_fops = {
654 	.release	= ep_eventpoll_release,
655 	.poll		= ep_eventpoll_poll
656 };
657 
658 /* Fast test to see if the file is an evenpoll file */
659 static inline int is_file_epoll(struct file *f)
660 {
661 	return f->f_op == &eventpoll_fops;
662 }
663 
664 /*
665  * This is called from eventpoll_release() to unlink files from the eventpoll
666  * interface. We need to have this facility to cleanup correctly files that are
667  * closed without being removed from the eventpoll interface.
668  */
669 void eventpoll_release_file(struct file *file)
670 {
671 	struct list_head *lsthead = &file->f_ep_links;
672 	struct eventpoll *ep;
673 	struct epitem *epi;
674 
675 	/*
676 	 * We don't want to get "file->f_lock" because it is not
677 	 * necessary. It is not necessary because we're in the "struct file"
678 	 * cleanup path, and this means that noone is using this file anymore.
679 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
680 	 * point, the file counter already went to zero and fget() would fail.
681 	 * The only hit might come from ep_free() but by holding the mutex
682 	 * will correctly serialize the operation. We do need to acquire
683 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
684 	 * from anywhere but ep_free().
685 	 *
686 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
687 	 */
688 	mutex_lock(&epmutex);
689 
690 	while (!list_empty(lsthead)) {
691 		epi = list_first_entry(lsthead, struct epitem, fllink);
692 
693 		ep = epi->ep;
694 		list_del_init(&epi->fllink);
695 		mutex_lock(&ep->mtx);
696 		ep_remove(ep, epi);
697 		mutex_unlock(&ep->mtx);
698 	}
699 
700 	mutex_unlock(&epmutex);
701 }
702 
703 static int ep_alloc(struct eventpoll **pep)
704 {
705 	int error;
706 	struct user_struct *user;
707 	struct eventpoll *ep;
708 
709 	user = get_current_user();
710 	error = -ENOMEM;
711 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
712 	if (unlikely(!ep))
713 		goto free_uid;
714 
715 	spin_lock_init(&ep->lock);
716 	mutex_init(&ep->mtx);
717 	init_waitqueue_head(&ep->wq);
718 	init_waitqueue_head(&ep->poll_wait);
719 	INIT_LIST_HEAD(&ep->rdllist);
720 	ep->rbr = RB_ROOT;
721 	ep->ovflist = EP_UNACTIVE_PTR;
722 	ep->user = user;
723 
724 	*pep = ep;
725 
726 	return 0;
727 
728 free_uid:
729 	free_uid(user);
730 	return error;
731 }
732 
733 /*
734  * Search the file inside the eventpoll tree. The RB tree operations
735  * are protected by the "mtx" mutex, and ep_find() must be called with
736  * "mtx" held.
737  */
738 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
739 {
740 	int kcmp;
741 	struct rb_node *rbp;
742 	struct epitem *epi, *epir = NULL;
743 	struct epoll_filefd ffd;
744 
745 	ep_set_ffd(&ffd, file, fd);
746 	for (rbp = ep->rbr.rb_node; rbp; ) {
747 		epi = rb_entry(rbp, struct epitem, rbn);
748 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
749 		if (kcmp > 0)
750 			rbp = rbp->rb_right;
751 		else if (kcmp < 0)
752 			rbp = rbp->rb_left;
753 		else {
754 			epir = epi;
755 			break;
756 		}
757 	}
758 
759 	return epir;
760 }
761 
762 /*
763  * This is the callback that is passed to the wait queue wakeup
764  * machanism. It is called by the stored file descriptors when they
765  * have events to report.
766  */
767 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
768 {
769 	int pwake = 0;
770 	unsigned long flags;
771 	struct epitem *epi = ep_item_from_wait(wait);
772 	struct eventpoll *ep = epi->ep;
773 
774 	spin_lock_irqsave(&ep->lock, flags);
775 
776 	/*
777 	 * If the event mask does not contain any poll(2) event, we consider the
778 	 * descriptor to be disabled. This condition is likely the effect of the
779 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
780 	 * until the next EPOLL_CTL_MOD will be issued.
781 	 */
782 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
783 		goto out_unlock;
784 
785 	/*
786 	 * If we are trasfering events to userspace, we can hold no locks
787 	 * (because we're accessing user memory, and because of linux f_op->poll()
788 	 * semantics). All the events that happens during that period of time are
789 	 * chained in ep->ovflist and requeued later on.
790 	 */
791 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
792 		if (epi->next == EP_UNACTIVE_PTR) {
793 			epi->next = ep->ovflist;
794 			ep->ovflist = epi;
795 		}
796 		goto out_unlock;
797 	}
798 
799 	/* If this file is already in the ready list we exit soon */
800 	if (!ep_is_linked(&epi->rdllink))
801 		list_add_tail(&epi->rdllink, &ep->rdllist);
802 
803 	/*
804 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
805 	 * wait list.
806 	 */
807 	if (waitqueue_active(&ep->wq))
808 		wake_up_locked(&ep->wq);
809 	if (waitqueue_active(&ep->poll_wait))
810 		pwake++;
811 
812 out_unlock:
813 	spin_unlock_irqrestore(&ep->lock, flags);
814 
815 	/* We have to call this outside the lock */
816 	if (pwake)
817 		ep_poll_safewake(&ep->poll_wait);
818 
819 	return 1;
820 }
821 
822 /*
823  * This is the callback that is used to add our wait queue to the
824  * target file wakeup lists.
825  */
826 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
827 				 poll_table *pt)
828 {
829 	struct epitem *epi = ep_item_from_epqueue(pt);
830 	struct eppoll_entry *pwq;
831 
832 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
833 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
834 		pwq->whead = whead;
835 		pwq->base = epi;
836 		add_wait_queue(whead, &pwq->wait);
837 		list_add_tail(&pwq->llink, &epi->pwqlist);
838 		epi->nwait++;
839 	} else {
840 		/* We have to signal that an error occurred */
841 		epi->nwait = -1;
842 	}
843 }
844 
845 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
846 {
847 	int kcmp;
848 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
849 	struct epitem *epic;
850 
851 	while (*p) {
852 		parent = *p;
853 		epic = rb_entry(parent, struct epitem, rbn);
854 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
855 		if (kcmp > 0)
856 			p = &parent->rb_right;
857 		else
858 			p = &parent->rb_left;
859 	}
860 	rb_link_node(&epi->rbn, parent, p);
861 	rb_insert_color(&epi->rbn, &ep->rbr);
862 }
863 
864 /*
865  * Must be called with "mtx" held.
866  */
867 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
868 		     struct file *tfile, int fd)
869 {
870 	int error, revents, pwake = 0;
871 	unsigned long flags;
872 	struct epitem *epi;
873 	struct ep_pqueue epq;
874 
875 	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
876 		     max_user_watches))
877 		return -ENOSPC;
878 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
879 		return -ENOMEM;
880 
881 	/* Item initialization follow here ... */
882 	INIT_LIST_HEAD(&epi->rdllink);
883 	INIT_LIST_HEAD(&epi->fllink);
884 	INIT_LIST_HEAD(&epi->pwqlist);
885 	epi->ep = ep;
886 	ep_set_ffd(&epi->ffd, tfile, fd);
887 	epi->event = *event;
888 	epi->nwait = 0;
889 	epi->next = EP_UNACTIVE_PTR;
890 
891 	/* Initialize the poll table using the queue callback */
892 	epq.epi = epi;
893 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
894 
895 	/*
896 	 * Attach the item to the poll hooks and get current event bits.
897 	 * We can safely use the file* here because its usage count has
898 	 * been increased by the caller of this function. Note that after
899 	 * this operation completes, the poll callback can start hitting
900 	 * the new item.
901 	 */
902 	revents = tfile->f_op->poll(tfile, &epq.pt);
903 
904 	/*
905 	 * We have to check if something went wrong during the poll wait queue
906 	 * install process. Namely an allocation for a wait queue failed due
907 	 * high memory pressure.
908 	 */
909 	error = -ENOMEM;
910 	if (epi->nwait < 0)
911 		goto error_unregister;
912 
913 	/* Add the current item to the list of active epoll hook for this file */
914 	spin_lock(&tfile->f_lock);
915 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
916 	spin_unlock(&tfile->f_lock);
917 
918 	/*
919 	 * Add the current item to the RB tree. All RB tree operations are
920 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
921 	 */
922 	ep_rbtree_insert(ep, epi);
923 
924 	/* We have to drop the new item inside our item list to keep track of it */
925 	spin_lock_irqsave(&ep->lock, flags);
926 
927 	/* If the file is already "ready" we drop it inside the ready list */
928 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
929 		list_add_tail(&epi->rdllink, &ep->rdllist);
930 
931 		/* Notify waiting tasks that events are available */
932 		if (waitqueue_active(&ep->wq))
933 			wake_up_locked(&ep->wq);
934 		if (waitqueue_active(&ep->poll_wait))
935 			pwake++;
936 	}
937 
938 	spin_unlock_irqrestore(&ep->lock, flags);
939 
940 	atomic_inc(&ep->user->epoll_watches);
941 
942 	/* We have to call this outside the lock */
943 	if (pwake)
944 		ep_poll_safewake(&ep->poll_wait);
945 
946 	return 0;
947 
948 error_unregister:
949 	ep_unregister_pollwait(ep, epi);
950 
951 	/*
952 	 * We need to do this because an event could have been arrived on some
953 	 * allocated wait queue. Note that we don't care about the ep->ovflist
954 	 * list, since that is used/cleaned only inside a section bound by "mtx".
955 	 * And ep_insert() is called with "mtx" held.
956 	 */
957 	spin_lock_irqsave(&ep->lock, flags);
958 	if (ep_is_linked(&epi->rdllink))
959 		list_del_init(&epi->rdllink);
960 	spin_unlock_irqrestore(&ep->lock, flags);
961 
962 	kmem_cache_free(epi_cache, epi);
963 
964 	return error;
965 }
966 
967 /*
968  * Modify the interest event mask by dropping an event if the new mask
969  * has a match in the current file status. Must be called with "mtx" held.
970  */
971 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
972 {
973 	int pwake = 0;
974 	unsigned int revents;
975 
976 	/*
977 	 * Set the new event interest mask before calling f_op->poll();
978 	 * otherwise we might miss an event that happens between the
979 	 * f_op->poll() call and the new event set registering.
980 	 */
981 	epi->event.events = event->events;
982 	epi->event.data = event->data; /* protected by mtx */
983 
984 	/*
985 	 * Get current event bits. We can safely use the file* here because
986 	 * its usage count has been increased by the caller of this function.
987 	 */
988 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
989 
990 	/*
991 	 * If the item is "hot" and it is not registered inside the ready
992 	 * list, push it inside.
993 	 */
994 	if (revents & event->events) {
995 		spin_lock_irq(&ep->lock);
996 		if (!ep_is_linked(&epi->rdllink)) {
997 			list_add_tail(&epi->rdllink, &ep->rdllist);
998 
999 			/* Notify waiting tasks that events are available */
1000 			if (waitqueue_active(&ep->wq))
1001 				wake_up_locked(&ep->wq);
1002 			if (waitqueue_active(&ep->poll_wait))
1003 				pwake++;
1004 		}
1005 		spin_unlock_irq(&ep->lock);
1006 	}
1007 
1008 	/* We have to call this outside the lock */
1009 	if (pwake)
1010 		ep_poll_safewake(&ep->poll_wait);
1011 
1012 	return 0;
1013 }
1014 
1015 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1016 			       void *priv)
1017 {
1018 	struct ep_send_events_data *esed = priv;
1019 	int eventcnt;
1020 	unsigned int revents;
1021 	struct epitem *epi;
1022 	struct epoll_event __user *uevent;
1023 
1024 	/*
1025 	 * We can loop without lock because we are passed a task private list.
1026 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1027 	 * holding "mtx" during this call.
1028 	 */
1029 	for (eventcnt = 0, uevent = esed->events;
1030 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1031 		epi = list_first_entry(head, struct epitem, rdllink);
1032 
1033 		list_del_init(&epi->rdllink);
1034 
1035 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1036 			epi->event.events;
1037 
1038 		/*
1039 		 * If the event mask intersect the caller-requested one,
1040 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1041 		 * is holding "mtx", so no operations coming from userspace
1042 		 * can change the item.
1043 		 */
1044 		if (revents) {
1045 			if (__put_user(revents, &uevent->events) ||
1046 			    __put_user(epi->event.data, &uevent->data)) {
1047 				list_add(&epi->rdllink, head);
1048 				return eventcnt ? eventcnt : -EFAULT;
1049 			}
1050 			eventcnt++;
1051 			uevent++;
1052 			if (epi->event.events & EPOLLONESHOT)
1053 				epi->event.events &= EP_PRIVATE_BITS;
1054 			else if (!(epi->event.events & EPOLLET)) {
1055 				/*
1056 				 * If this file has been added with Level
1057 				 * Trigger mode, we need to insert back inside
1058 				 * the ready list, so that the next call to
1059 				 * epoll_wait() will check again the events
1060 				 * availability. At this point, noone can insert
1061 				 * into ep->rdllist besides us. The epoll_ctl()
1062 				 * callers are locked out by
1063 				 * ep_scan_ready_list() holding "mtx" and the
1064 				 * poll callback will queue them in ep->ovflist.
1065 				 */
1066 				list_add_tail(&epi->rdllink, &ep->rdllist);
1067 			}
1068 		}
1069 	}
1070 
1071 	return eventcnt;
1072 }
1073 
1074 static int ep_send_events(struct eventpoll *ep,
1075 			  struct epoll_event __user *events, int maxevents)
1076 {
1077 	struct ep_send_events_data esed;
1078 
1079 	esed.maxevents = maxevents;
1080 	esed.events = events;
1081 
1082 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1083 }
1084 
1085 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1086 		   int maxevents, long timeout)
1087 {
1088 	int res, eavail;
1089 	unsigned long flags;
1090 	long jtimeout;
1091 	wait_queue_t wait;
1092 
1093 	/*
1094 	 * Calculate the timeout by checking for the "infinite" value (-1)
1095 	 * and the overflow condition. The passed timeout is in milliseconds,
1096 	 * that why (t * HZ) / 1000.
1097 	 */
1098 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1099 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1100 
1101 retry:
1102 	spin_lock_irqsave(&ep->lock, flags);
1103 
1104 	res = 0;
1105 	if (list_empty(&ep->rdllist)) {
1106 		/*
1107 		 * We don't have any available event to return to the caller.
1108 		 * We need to sleep here, and we will be wake up by
1109 		 * ep_poll_callback() when events will become available.
1110 		 */
1111 		init_waitqueue_entry(&wait, current);
1112 		wait.flags |= WQ_FLAG_EXCLUSIVE;
1113 		__add_wait_queue(&ep->wq, &wait);
1114 
1115 		for (;;) {
1116 			/*
1117 			 * We don't want to sleep if the ep_poll_callback() sends us
1118 			 * a wakeup in between. That's why we set the task state
1119 			 * to TASK_INTERRUPTIBLE before doing the checks.
1120 			 */
1121 			set_current_state(TASK_INTERRUPTIBLE);
1122 			if (!list_empty(&ep->rdllist) || !jtimeout)
1123 				break;
1124 			if (signal_pending(current)) {
1125 				res = -EINTR;
1126 				break;
1127 			}
1128 
1129 			spin_unlock_irqrestore(&ep->lock, flags);
1130 			jtimeout = schedule_timeout(jtimeout);
1131 			spin_lock_irqsave(&ep->lock, flags);
1132 		}
1133 		__remove_wait_queue(&ep->wq, &wait);
1134 
1135 		set_current_state(TASK_RUNNING);
1136 	}
1137 	/* Is it worth to try to dig for events ? */
1138 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1139 
1140 	spin_unlock_irqrestore(&ep->lock, flags);
1141 
1142 	/*
1143 	 * Try to transfer events to user space. In case we get 0 events and
1144 	 * there's still timeout left over, we go trying again in search of
1145 	 * more luck.
1146 	 */
1147 	if (!res && eavail &&
1148 	    !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1149 		goto retry;
1150 
1151 	return res;
1152 }
1153 
1154 /*
1155  * Open an eventpoll file descriptor.
1156  */
1157 SYSCALL_DEFINE1(epoll_create1, int, flags)
1158 {
1159 	int error;
1160 	struct eventpoll *ep = NULL;
1161 
1162 	/* Check the EPOLL_* constant for consistency.  */
1163 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1164 
1165 	if (flags & ~EPOLL_CLOEXEC)
1166 		return -EINVAL;
1167 	/*
1168 	 * Create the internal data structure ("struct eventpoll").
1169 	 */
1170 	error = ep_alloc(&ep);
1171 	if (error < 0)
1172 		return error;
1173 	/*
1174 	 * Creates all the items needed to setup an eventpoll file. That is,
1175 	 * a file structure and a free file descriptor.
1176 	 */
1177 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1178 				 flags & O_CLOEXEC);
1179 	if (error < 0)
1180 		ep_free(ep);
1181 
1182 	return error;
1183 }
1184 
1185 SYSCALL_DEFINE1(epoll_create, int, size)
1186 {
1187 	if (size < 0)
1188 		return -EINVAL;
1189 
1190 	return sys_epoll_create1(0);
1191 }
1192 
1193 /*
1194  * The following function implements the controller interface for
1195  * the eventpoll file that enables the insertion/removal/change of
1196  * file descriptors inside the interest set.
1197  */
1198 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1199 		struct epoll_event __user *, event)
1200 {
1201 	int error;
1202 	struct file *file, *tfile;
1203 	struct eventpoll *ep;
1204 	struct epitem *epi;
1205 	struct epoll_event epds;
1206 
1207 	error = -EFAULT;
1208 	if (ep_op_has_event(op) &&
1209 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1210 		goto error_return;
1211 
1212 	/* Get the "struct file *" for the eventpoll file */
1213 	error = -EBADF;
1214 	file = fget(epfd);
1215 	if (!file)
1216 		goto error_return;
1217 
1218 	/* Get the "struct file *" for the target file */
1219 	tfile = fget(fd);
1220 	if (!tfile)
1221 		goto error_fput;
1222 
1223 	/* The target file descriptor must support poll */
1224 	error = -EPERM;
1225 	if (!tfile->f_op || !tfile->f_op->poll)
1226 		goto error_tgt_fput;
1227 
1228 	/*
1229 	 * We have to check that the file structure underneath the file descriptor
1230 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1231 	 * adding an epoll file descriptor inside itself.
1232 	 */
1233 	error = -EINVAL;
1234 	if (file == tfile || !is_file_epoll(file))
1235 		goto error_tgt_fput;
1236 
1237 	/*
1238 	 * At this point it is safe to assume that the "private_data" contains
1239 	 * our own data structure.
1240 	 */
1241 	ep = file->private_data;
1242 
1243 	mutex_lock(&ep->mtx);
1244 
1245 	/*
1246 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1247 	 * above, we can be sure to be able to use the item looked up by
1248 	 * ep_find() till we release the mutex.
1249 	 */
1250 	epi = ep_find(ep, tfile, fd);
1251 
1252 	error = -EINVAL;
1253 	switch (op) {
1254 	case EPOLL_CTL_ADD:
1255 		if (!epi) {
1256 			epds.events |= POLLERR | POLLHUP;
1257 
1258 			error = ep_insert(ep, &epds, tfile, fd);
1259 		} else
1260 			error = -EEXIST;
1261 		break;
1262 	case EPOLL_CTL_DEL:
1263 		if (epi)
1264 			error = ep_remove(ep, epi);
1265 		else
1266 			error = -ENOENT;
1267 		break;
1268 	case EPOLL_CTL_MOD:
1269 		if (epi) {
1270 			epds.events |= POLLERR | POLLHUP;
1271 			error = ep_modify(ep, epi, &epds);
1272 		} else
1273 			error = -ENOENT;
1274 		break;
1275 	}
1276 	mutex_unlock(&ep->mtx);
1277 
1278 error_tgt_fput:
1279 	fput(tfile);
1280 error_fput:
1281 	fput(file);
1282 error_return:
1283 
1284 	return error;
1285 }
1286 
1287 /*
1288  * Implement the event wait interface for the eventpoll file. It is the kernel
1289  * part of the user space epoll_wait(2).
1290  */
1291 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1292 		int, maxevents, int, timeout)
1293 {
1294 	int error;
1295 	struct file *file;
1296 	struct eventpoll *ep;
1297 
1298 	/* The maximum number of event must be greater than zero */
1299 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1300 		return -EINVAL;
1301 
1302 	/* Verify that the area passed by the user is writeable */
1303 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1304 		error = -EFAULT;
1305 		goto error_return;
1306 	}
1307 
1308 	/* Get the "struct file *" for the eventpoll file */
1309 	error = -EBADF;
1310 	file = fget(epfd);
1311 	if (!file)
1312 		goto error_return;
1313 
1314 	/*
1315 	 * We have to check that the file structure underneath the fd
1316 	 * the user passed to us _is_ an eventpoll file.
1317 	 */
1318 	error = -EINVAL;
1319 	if (!is_file_epoll(file))
1320 		goto error_fput;
1321 
1322 	/*
1323 	 * At this point it is safe to assume that the "private_data" contains
1324 	 * our own data structure.
1325 	 */
1326 	ep = file->private_data;
1327 
1328 	/* Time to fish for events ... */
1329 	error = ep_poll(ep, events, maxevents, timeout);
1330 
1331 error_fput:
1332 	fput(file);
1333 error_return:
1334 
1335 	return error;
1336 }
1337 
1338 #ifdef HAVE_SET_RESTORE_SIGMASK
1339 
1340 /*
1341  * Implement the event wait interface for the eventpoll file. It is the kernel
1342  * part of the user space epoll_pwait(2).
1343  */
1344 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1345 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1346 		size_t, sigsetsize)
1347 {
1348 	int error;
1349 	sigset_t ksigmask, sigsaved;
1350 
1351 	/*
1352 	 * If the caller wants a certain signal mask to be set during the wait,
1353 	 * we apply it here.
1354 	 */
1355 	if (sigmask) {
1356 		if (sigsetsize != sizeof(sigset_t))
1357 			return -EINVAL;
1358 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1359 			return -EFAULT;
1360 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1361 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1362 	}
1363 
1364 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1365 
1366 	/*
1367 	 * If we changed the signal mask, we need to restore the original one.
1368 	 * In case we've got a signal while waiting, we do not restore the
1369 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1370 	 * the way back to userspace, before the signal mask is restored.
1371 	 */
1372 	if (sigmask) {
1373 		if (error == -EINTR) {
1374 			memcpy(&current->saved_sigmask, &sigsaved,
1375 			       sizeof(sigsaved));
1376 			set_restore_sigmask();
1377 		} else
1378 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1379 	}
1380 
1381 	return error;
1382 }
1383 
1384 #endif /* HAVE_SET_RESTORE_SIGMASK */
1385 
1386 static int __init eventpoll_init(void)
1387 {
1388 	struct sysinfo si;
1389 
1390 	si_meminfo(&si);
1391 	/*
1392 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1393 	 */
1394 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1395 		EP_ITEM_COST;
1396 
1397 	/* Initialize the structure used to perform safe poll wait head wake ups */
1398 	ep_nested_calls_init(&poll_safewake_ncalls);
1399 
1400 	/* Initialize the structure used to perform file's f_op->poll() calls */
1401 	ep_nested_calls_init(&poll_readywalk_ncalls);
1402 
1403 	/* Allocates slab cache used to allocate "struct epitem" items */
1404 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1405 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1406 
1407 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1408 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1409 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1410 
1411 	return 0;
1412 }
1413 fs_initcall(eventpoll_init);
1414