xref: /linux/fs/ext4/inode.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (inode->i_nlink) {
181 		/*
182 		 * When journalling data dirty buffers are tracked only in the
183 		 * journal. So although mm thinks everything is clean and
184 		 * ready for reaping the inode might still have some pages to
185 		 * write in the running transaction or waiting to be
186 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
187 		 * (via truncate_inode_pages()) to discard these buffers can
188 		 * cause data loss. Also even if we did not discard these
189 		 * buffers, we would have no way to find them after the inode
190 		 * is reaped and thus user could see stale data if he tries to
191 		 * read them before the transaction is checkpointed. So be
192 		 * careful and force everything to disk here... We use
193 		 * ei->i_datasync_tid to store the newest transaction
194 		 * containing inode's data.
195 		 *
196 		 * Note that directories do not have this problem because they
197 		 * don't use page cache.
198 		 */
199 		if (inode->i_ino != EXT4_JOURNAL_INO &&
200 		    ext4_should_journal_data(inode) &&
201 		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
202 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
203 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
204 
205 			jbd2_complete_transaction(journal, commit_tid);
206 			filemap_write_and_wait(&inode->i_data);
207 		}
208 		truncate_inode_pages_final(&inode->i_data);
209 
210 		goto no_delete;
211 	}
212 
213 	if (is_bad_inode(inode))
214 		goto no_delete;
215 	dquot_initialize(inode);
216 
217 	if (ext4_should_order_data(inode))
218 		ext4_begin_ordered_truncate(inode, 0);
219 	truncate_inode_pages_final(&inode->i_data);
220 
221 	/*
222 	 * For inodes with journalled data, transaction commit could have
223 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
224 	 * flag but we still need to remove the inode from the writeback lists.
225 	 */
226 	if (!list_empty_careful(&inode->i_io_list)) {
227 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
228 		inode_io_list_del(inode);
229 	}
230 
231 	/*
232 	 * Protect us against freezing - iput() caller didn't have to have any
233 	 * protection against it. When we are in a running transaction though,
234 	 * we are already protected against freezing and we cannot grab further
235 	 * protection due to lock ordering constraints.
236 	 */
237 	if (!ext4_journal_current_handle()) {
238 		sb_start_intwrite(inode->i_sb);
239 		freeze_protected = true;
240 	}
241 
242 	if (!IS_NOQUOTA(inode))
243 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244 
245 	/*
246 	 * Block bitmap, group descriptor, and inode are accounted in both
247 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
248 	 */
249 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
250 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
251 	if (IS_ERR(handle)) {
252 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
253 		/*
254 		 * If we're going to skip the normal cleanup, we still need to
255 		 * make sure that the in-core orphan linked list is properly
256 		 * cleaned up.
257 		 */
258 		ext4_orphan_del(NULL, inode);
259 		if (freeze_protected)
260 			sb_end_intwrite(inode->i_sb);
261 		goto no_delete;
262 	}
263 
264 	if (IS_SYNC(inode))
265 		ext4_handle_sync(handle);
266 
267 	/*
268 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
269 	 * special handling of symlinks here because i_size is used to
270 	 * determine whether ext4_inode_info->i_data contains symlink data or
271 	 * block mappings. Setting i_size to 0 will remove its fast symlink
272 	 * status. Erase i_data so that it becomes a valid empty block map.
273 	 */
274 	if (ext4_inode_is_fast_symlink(inode))
275 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
276 	inode->i_size = 0;
277 	err = ext4_mark_inode_dirty(handle, inode);
278 	if (err) {
279 		ext4_warning(inode->i_sb,
280 			     "couldn't mark inode dirty (err %d)", err);
281 		goto stop_handle;
282 	}
283 	if (inode->i_blocks) {
284 		err = ext4_truncate(inode);
285 		if (err) {
286 			ext4_error_err(inode->i_sb, -err,
287 				       "couldn't truncate inode %lu (err %d)",
288 				       inode->i_ino, err);
289 			goto stop_handle;
290 		}
291 	}
292 
293 	/* Remove xattr references. */
294 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
295 				      extra_credits);
296 	if (err) {
297 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
298 stop_handle:
299 		ext4_journal_stop(handle);
300 		ext4_orphan_del(NULL, inode);
301 		if (freeze_protected)
302 			sb_end_intwrite(inode->i_sb);
303 		ext4_xattr_inode_array_free(ea_inode_array);
304 		goto no_delete;
305 	}
306 
307 	/*
308 	 * Kill off the orphan record which ext4_truncate created.
309 	 * AKPM: I think this can be inside the above `if'.
310 	 * Note that ext4_orphan_del() has to be able to cope with the
311 	 * deletion of a non-existent orphan - this is because we don't
312 	 * know if ext4_truncate() actually created an orphan record.
313 	 * (Well, we could do this if we need to, but heck - it works)
314 	 */
315 	ext4_orphan_del(handle, inode);
316 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
317 
318 	/*
319 	 * One subtle ordering requirement: if anything has gone wrong
320 	 * (transaction abort, IO errors, whatever), then we can still
321 	 * do these next steps (the fs will already have been marked as
322 	 * having errors), but we can't free the inode if the mark_dirty
323 	 * fails.
324 	 */
325 	if (ext4_mark_inode_dirty(handle, inode))
326 		/* If that failed, just do the required in-core inode clear. */
327 		ext4_clear_inode(inode);
328 	else
329 		ext4_free_inode(handle, inode);
330 	ext4_journal_stop(handle);
331 	if (freeze_protected)
332 		sb_end_intwrite(inode->i_sb);
333 	ext4_xattr_inode_array_free(ea_inode_array);
334 	return;
335 no_delete:
336 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
337 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
338 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
339 }
340 
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344 	return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347 
348 /*
349  * Called with i_data_sem down, which is important since we can call
350  * ext4_discard_preallocations() from here.
351  */
352 void ext4_da_update_reserve_space(struct inode *inode,
353 					int used, int quota_claim)
354 {
355 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 	struct ext4_inode_info *ei = EXT4_I(inode);
357 
358 	spin_lock(&ei->i_block_reservation_lock);
359 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360 	if (unlikely(used > ei->i_reserved_data_blocks)) {
361 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362 			 "with only %d reserved data blocks",
363 			 __func__, inode->i_ino, used,
364 			 ei->i_reserved_data_blocks);
365 		WARN_ON(1);
366 		used = ei->i_reserved_data_blocks;
367 	}
368 
369 	/* Update per-inode reservations */
370 	ei->i_reserved_data_blocks -= used;
371 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372 
373 	spin_unlock(&ei->i_block_reservation_lock);
374 
375 	/* Update quota subsystem for data blocks */
376 	if (quota_claim)
377 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
378 	else {
379 		/*
380 		 * We did fallocate with an offset that is already delayed
381 		 * allocated. So on delayed allocated writeback we should
382 		 * not re-claim the quota for fallocated blocks.
383 		 */
384 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385 	}
386 
387 	/*
388 	 * If we have done all the pending block allocations and if
389 	 * there aren't any writers on the inode, we can discard the
390 	 * inode's preallocations.
391 	 */
392 	if ((ei->i_reserved_data_blocks == 0) &&
393 	    !inode_is_open_for_write(inode))
394 		ext4_discard_preallocations(inode, 0);
395 }
396 
397 static int __check_block_validity(struct inode *inode, const char *func,
398 				unsigned int line,
399 				struct ext4_map_blocks *map)
400 {
401 	if (ext4_has_feature_journal(inode->i_sb) &&
402 	    (inode->i_ino ==
403 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
404 		return 0;
405 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
406 		ext4_error_inode(inode, func, line, map->m_pblk,
407 				 "lblock %lu mapped to illegal pblock %llu "
408 				 "(length %d)", (unsigned long) map->m_lblk,
409 				 map->m_pblk, map->m_len);
410 		return -EFSCORRUPTED;
411 	}
412 	return 0;
413 }
414 
415 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
416 		       ext4_lblk_t len)
417 {
418 	int ret;
419 
420 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
421 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
422 
423 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
424 	if (ret > 0)
425 		ret = 0;
426 
427 	return ret;
428 }
429 
430 #define check_block_validity(inode, map)	\
431 	__check_block_validity((inode), __func__, __LINE__, (map))
432 
433 #ifdef ES_AGGRESSIVE_TEST
434 static void ext4_map_blocks_es_recheck(handle_t *handle,
435 				       struct inode *inode,
436 				       struct ext4_map_blocks *es_map,
437 				       struct ext4_map_blocks *map,
438 				       int flags)
439 {
440 	int retval;
441 
442 	map->m_flags = 0;
443 	/*
444 	 * There is a race window that the result is not the same.
445 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
446 	 * is that we lookup a block mapping in extent status tree with
447 	 * out taking i_data_sem.  So at the time the unwritten extent
448 	 * could be converted.
449 	 */
450 	down_read(&EXT4_I(inode)->i_data_sem);
451 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
452 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
453 	} else {
454 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
455 	}
456 	up_read((&EXT4_I(inode)->i_data_sem));
457 
458 	/*
459 	 * We don't check m_len because extent will be collpased in status
460 	 * tree.  So the m_len might not equal.
461 	 */
462 	if (es_map->m_lblk != map->m_lblk ||
463 	    es_map->m_flags != map->m_flags ||
464 	    es_map->m_pblk != map->m_pblk) {
465 		printk("ES cache assertion failed for inode: %lu "
466 		       "es_cached ex [%d/%d/%llu/%x] != "
467 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
469 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 		       map->m_len, map->m_pblk, map->m_flags,
471 		       retval, flags);
472 	}
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475 
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocated.  if
489  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
490  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
491  *
492  * It returns 0 if plain look up failed (blocks have not been allocated), in
493  * that case, @map is returned as unmapped but we still do fill map->m_len to
494  * indicate the length of a hole starting at map->m_lblk.
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 		    struct ext4_map_blocks *map, int flags)
500 {
501 	struct extent_status es;
502 	int retval;
503 	int ret = 0;
504 #ifdef ES_AGGRESSIVE_TEST
505 	struct ext4_map_blocks orig_map;
506 
507 	memcpy(&orig_map, map, sizeof(*map));
508 #endif
509 
510 	map->m_flags = 0;
511 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
512 		  flags, map->m_len, (unsigned long) map->m_lblk);
513 
514 	/*
515 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
516 	 */
517 	if (unlikely(map->m_len > INT_MAX))
518 		map->m_len = INT_MAX;
519 
520 	/* We can handle the block number less than EXT_MAX_BLOCKS */
521 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522 		return -EFSCORRUPTED;
523 
524 	/* Lookup extent status tree firstly */
525 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
526 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
527 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528 			map->m_pblk = ext4_es_pblock(&es) +
529 					map->m_lblk - es.es_lblk;
530 			map->m_flags |= ext4_es_is_written(&es) ?
531 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532 			retval = es.es_len - (map->m_lblk - es.es_lblk);
533 			if (retval > map->m_len)
534 				retval = map->m_len;
535 			map->m_len = retval;
536 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537 			map->m_pblk = 0;
538 			retval = es.es_len - (map->m_lblk - es.es_lblk);
539 			if (retval > map->m_len)
540 				retval = map->m_len;
541 			map->m_len = retval;
542 			retval = 0;
543 		} else {
544 			BUG();
545 		}
546 
547 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
548 			return retval;
549 #ifdef ES_AGGRESSIVE_TEST
550 		ext4_map_blocks_es_recheck(handle, inode, map,
551 					   &orig_map, flags);
552 #endif
553 		goto found;
554 	}
555 	/*
556 	 * In the query cache no-wait mode, nothing we can do more if we
557 	 * cannot find extent in the cache.
558 	 */
559 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
560 		return 0;
561 
562 	/*
563 	 * Try to see if we can get the block without requesting a new
564 	 * file system block.
565 	 */
566 	down_read(&EXT4_I(inode)->i_data_sem);
567 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
568 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
569 	} else {
570 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
571 	}
572 	if (retval > 0) {
573 		unsigned int status;
574 
575 		if (unlikely(retval != map->m_len)) {
576 			ext4_warning(inode->i_sb,
577 				     "ES len assertion failed for inode "
578 				     "%lu: retval %d != map->m_len %d",
579 				     inode->i_ino, retval, map->m_len);
580 			WARN_ON(1);
581 		}
582 
583 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
584 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
585 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
586 		    !(status & EXTENT_STATUS_WRITTEN) &&
587 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
588 				       map->m_lblk + map->m_len - 1))
589 			status |= EXTENT_STATUS_DELAYED;
590 		ret = ext4_es_insert_extent(inode, map->m_lblk,
591 					    map->m_len, map->m_pblk, status);
592 		if (ret < 0)
593 			retval = ret;
594 	}
595 	up_read((&EXT4_I(inode)->i_data_sem));
596 
597 found:
598 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
599 		ret = check_block_validity(inode, map);
600 		if (ret != 0)
601 			return ret;
602 	}
603 
604 	/* If it is only a block(s) look up */
605 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
606 		return retval;
607 
608 	/*
609 	 * Returns if the blocks have already allocated
610 	 *
611 	 * Note that if blocks have been preallocated
612 	 * ext4_ext_get_block() returns the create = 0
613 	 * with buffer head unmapped.
614 	 */
615 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
616 		/*
617 		 * If we need to convert extent to unwritten
618 		 * we continue and do the actual work in
619 		 * ext4_ext_map_blocks()
620 		 */
621 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
622 			return retval;
623 
624 	/*
625 	 * Here we clear m_flags because after allocating an new extent,
626 	 * it will be set again.
627 	 */
628 	map->m_flags &= ~EXT4_MAP_FLAGS;
629 
630 	/*
631 	 * New blocks allocate and/or writing to unwritten extent
632 	 * will possibly result in updating i_data, so we take
633 	 * the write lock of i_data_sem, and call get_block()
634 	 * with create == 1 flag.
635 	 */
636 	down_write(&EXT4_I(inode)->i_data_sem);
637 
638 	/*
639 	 * We need to check for EXT4 here because migrate
640 	 * could have changed the inode type in between
641 	 */
642 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
643 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
644 	} else {
645 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
646 
647 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
648 			/*
649 			 * We allocated new blocks which will result in
650 			 * i_data's format changing.  Force the migrate
651 			 * to fail by clearing migrate flags
652 			 */
653 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
654 		}
655 
656 		/*
657 		 * Update reserved blocks/metadata blocks after successful
658 		 * block allocation which had been deferred till now. We don't
659 		 * support fallocate for non extent files. So we can update
660 		 * reserve space here.
661 		 */
662 		if ((retval > 0) &&
663 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
664 			ext4_da_update_reserve_space(inode, retval, 1);
665 	}
666 
667 	if (retval > 0) {
668 		unsigned int status;
669 
670 		if (unlikely(retval != map->m_len)) {
671 			ext4_warning(inode->i_sb,
672 				     "ES len assertion failed for inode "
673 				     "%lu: retval %d != map->m_len %d",
674 				     inode->i_ino, retval, map->m_len);
675 			WARN_ON(1);
676 		}
677 
678 		/*
679 		 * We have to zeroout blocks before inserting them into extent
680 		 * status tree. Otherwise someone could look them up there and
681 		 * use them before they are really zeroed. We also have to
682 		 * unmap metadata before zeroing as otherwise writeback can
683 		 * overwrite zeros with stale data from block device.
684 		 */
685 		if (flags & EXT4_GET_BLOCKS_ZERO &&
686 		    map->m_flags & EXT4_MAP_MAPPED &&
687 		    map->m_flags & EXT4_MAP_NEW) {
688 			ret = ext4_issue_zeroout(inode, map->m_lblk,
689 						 map->m_pblk, map->m_len);
690 			if (ret) {
691 				retval = ret;
692 				goto out_sem;
693 			}
694 		}
695 
696 		/*
697 		 * If the extent has been zeroed out, we don't need to update
698 		 * extent status tree.
699 		 */
700 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
701 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
702 			if (ext4_es_is_written(&es))
703 				goto out_sem;
704 		}
705 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
706 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
707 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
708 		    !(status & EXTENT_STATUS_WRITTEN) &&
709 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
710 				       map->m_lblk + map->m_len - 1))
711 			status |= EXTENT_STATUS_DELAYED;
712 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
713 					    map->m_pblk, status);
714 		if (ret < 0) {
715 			retval = ret;
716 			goto out_sem;
717 		}
718 	}
719 
720 out_sem:
721 	up_write((&EXT4_I(inode)->i_data_sem));
722 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
723 		ret = check_block_validity(inode, map);
724 		if (ret != 0)
725 			return ret;
726 
727 		/*
728 		 * Inodes with freshly allocated blocks where contents will be
729 		 * visible after transaction commit must be on transaction's
730 		 * ordered data list.
731 		 */
732 		if (map->m_flags & EXT4_MAP_NEW &&
733 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
734 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
735 		    !ext4_is_quota_file(inode) &&
736 		    ext4_should_order_data(inode)) {
737 			loff_t start_byte =
738 				(loff_t)map->m_lblk << inode->i_blkbits;
739 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
740 
741 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
742 				ret = ext4_jbd2_inode_add_wait(handle, inode,
743 						start_byte, length);
744 			else
745 				ret = ext4_jbd2_inode_add_write(handle, inode,
746 						start_byte, length);
747 			if (ret)
748 				return ret;
749 		}
750 	}
751 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
752 				map->m_flags & EXT4_MAP_MAPPED))
753 		ext4_fc_track_range(handle, inode, map->m_lblk,
754 					map->m_lblk + map->m_len - 1);
755 	if (retval < 0)
756 		ext_debug(inode, "failed with err %d\n", retval);
757 	return retval;
758 }
759 
760 /*
761  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
762  * we have to be careful as someone else may be manipulating b_state as well.
763  */
764 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
765 {
766 	unsigned long old_state;
767 	unsigned long new_state;
768 
769 	flags &= EXT4_MAP_FLAGS;
770 
771 	/* Dummy buffer_head? Set non-atomically. */
772 	if (!bh->b_page) {
773 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
774 		return;
775 	}
776 	/*
777 	 * Someone else may be modifying b_state. Be careful! This is ugly but
778 	 * once we get rid of using bh as a container for mapping information
779 	 * to pass to / from get_block functions, this can go away.
780 	 */
781 	do {
782 		old_state = READ_ONCE(bh->b_state);
783 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
784 	} while (unlikely(
785 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
786 }
787 
788 static int _ext4_get_block(struct inode *inode, sector_t iblock,
789 			   struct buffer_head *bh, int flags)
790 {
791 	struct ext4_map_blocks map;
792 	int ret = 0;
793 
794 	if (ext4_has_inline_data(inode))
795 		return -ERANGE;
796 
797 	map.m_lblk = iblock;
798 	map.m_len = bh->b_size >> inode->i_blkbits;
799 
800 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
801 			      flags);
802 	if (ret > 0) {
803 		map_bh(bh, inode->i_sb, map.m_pblk);
804 		ext4_update_bh_state(bh, map.m_flags);
805 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
806 		ret = 0;
807 	} else if (ret == 0) {
808 		/* hole case, need to fill in bh->b_size */
809 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
810 	}
811 	return ret;
812 }
813 
814 int ext4_get_block(struct inode *inode, sector_t iblock,
815 		   struct buffer_head *bh, int create)
816 {
817 	return _ext4_get_block(inode, iblock, bh,
818 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
819 }
820 
821 /*
822  * Get block function used when preparing for buffered write if we require
823  * creating an unwritten extent if blocks haven't been allocated.  The extent
824  * will be converted to written after the IO is complete.
825  */
826 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
827 			     struct buffer_head *bh_result, int create)
828 {
829 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 		   inode->i_ino, create);
831 	return _ext4_get_block(inode, iblock, bh_result,
832 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
833 }
834 
835 /* Maximum number of blocks we map for direct IO at once. */
836 #define DIO_MAX_BLOCKS 4096
837 
838 /*
839  * `handle' can be NULL if create is zero
840  */
841 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
842 				ext4_lblk_t block, int map_flags)
843 {
844 	struct ext4_map_blocks map;
845 	struct buffer_head *bh;
846 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
847 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
848 	int err;
849 
850 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
851 		    || handle != NULL || create == 0);
852 	ASSERT(create == 0 || !nowait);
853 
854 	map.m_lblk = block;
855 	map.m_len = 1;
856 	err = ext4_map_blocks(handle, inode, &map, map_flags);
857 
858 	if (err == 0)
859 		return create ? ERR_PTR(-ENOSPC) : NULL;
860 	if (err < 0)
861 		return ERR_PTR(err);
862 
863 	if (nowait)
864 		return sb_find_get_block(inode->i_sb, map.m_pblk);
865 
866 	bh = sb_getblk(inode->i_sb, map.m_pblk);
867 	if (unlikely(!bh))
868 		return ERR_PTR(-ENOMEM);
869 	if (map.m_flags & EXT4_MAP_NEW) {
870 		ASSERT(create != 0);
871 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
872 			    || (handle != NULL));
873 
874 		/*
875 		 * Now that we do not always journal data, we should
876 		 * keep in mind whether this should always journal the
877 		 * new buffer as metadata.  For now, regular file
878 		 * writes use ext4_get_block instead, so it's not a
879 		 * problem.
880 		 */
881 		lock_buffer(bh);
882 		BUFFER_TRACE(bh, "call get_create_access");
883 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
884 						     EXT4_JTR_NONE);
885 		if (unlikely(err)) {
886 			unlock_buffer(bh);
887 			goto errout;
888 		}
889 		if (!buffer_uptodate(bh)) {
890 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
891 			set_buffer_uptodate(bh);
892 		}
893 		unlock_buffer(bh);
894 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
895 		err = ext4_handle_dirty_metadata(handle, inode, bh);
896 		if (unlikely(err))
897 			goto errout;
898 	} else
899 		BUFFER_TRACE(bh, "not a new buffer");
900 	return bh;
901 errout:
902 	brelse(bh);
903 	return ERR_PTR(err);
904 }
905 
906 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
907 			       ext4_lblk_t block, int map_flags)
908 {
909 	struct buffer_head *bh;
910 	int ret;
911 
912 	bh = ext4_getblk(handle, inode, block, map_flags);
913 	if (IS_ERR(bh))
914 		return bh;
915 	if (!bh || ext4_buffer_uptodate(bh))
916 		return bh;
917 
918 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
919 	if (ret) {
920 		put_bh(bh);
921 		return ERR_PTR(ret);
922 	}
923 	return bh;
924 }
925 
926 /* Read a contiguous batch of blocks. */
927 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
928 		     bool wait, struct buffer_head **bhs)
929 {
930 	int i, err;
931 
932 	for (i = 0; i < bh_count; i++) {
933 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
934 		if (IS_ERR(bhs[i])) {
935 			err = PTR_ERR(bhs[i]);
936 			bh_count = i;
937 			goto out_brelse;
938 		}
939 	}
940 
941 	for (i = 0; i < bh_count; i++)
942 		/* Note that NULL bhs[i] is valid because of holes. */
943 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
944 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
945 
946 	if (!wait)
947 		return 0;
948 
949 	for (i = 0; i < bh_count; i++)
950 		if (bhs[i])
951 			wait_on_buffer(bhs[i]);
952 
953 	for (i = 0; i < bh_count; i++) {
954 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
955 			err = -EIO;
956 			goto out_brelse;
957 		}
958 	}
959 	return 0;
960 
961 out_brelse:
962 	for (i = 0; i < bh_count; i++) {
963 		brelse(bhs[i]);
964 		bhs[i] = NULL;
965 	}
966 	return err;
967 }
968 
969 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
970 			   struct buffer_head *head,
971 			   unsigned from,
972 			   unsigned to,
973 			   int *partial,
974 			   int (*fn)(handle_t *handle, struct inode *inode,
975 				     struct buffer_head *bh))
976 {
977 	struct buffer_head *bh;
978 	unsigned block_start, block_end;
979 	unsigned blocksize = head->b_size;
980 	int err, ret = 0;
981 	struct buffer_head *next;
982 
983 	for (bh = head, block_start = 0;
984 	     ret == 0 && (bh != head || !block_start);
985 	     block_start = block_end, bh = next) {
986 		next = bh->b_this_page;
987 		block_end = block_start + blocksize;
988 		if (block_end <= from || block_start >= to) {
989 			if (partial && !buffer_uptodate(bh))
990 				*partial = 1;
991 			continue;
992 		}
993 		err = (*fn)(handle, inode, bh);
994 		if (!ret)
995 			ret = err;
996 	}
997 	return ret;
998 }
999 
1000 /*
1001  * To preserve ordering, it is essential that the hole instantiation and
1002  * the data write be encapsulated in a single transaction.  We cannot
1003  * close off a transaction and start a new one between the ext4_get_block()
1004  * and the commit_write().  So doing the jbd2_journal_start at the start of
1005  * prepare_write() is the right place.
1006  *
1007  * Also, this function can nest inside ext4_writepage().  In that case, we
1008  * *know* that ext4_writepage() has generated enough buffer credits to do the
1009  * whole page.  So we won't block on the journal in that case, which is good,
1010  * because the caller may be PF_MEMALLOC.
1011  *
1012  * By accident, ext4 can be reentered when a transaction is open via
1013  * quota file writes.  If we were to commit the transaction while thus
1014  * reentered, there can be a deadlock - we would be holding a quota
1015  * lock, and the commit would never complete if another thread had a
1016  * transaction open and was blocking on the quota lock - a ranking
1017  * violation.
1018  *
1019  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1020  * will _not_ run commit under these circumstances because handle->h_ref
1021  * is elevated.  We'll still have enough credits for the tiny quotafile
1022  * write.
1023  */
1024 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1025 				struct buffer_head *bh)
1026 {
1027 	int dirty = buffer_dirty(bh);
1028 	int ret;
1029 
1030 	if (!buffer_mapped(bh) || buffer_freed(bh))
1031 		return 0;
1032 	/*
1033 	 * __block_write_begin() could have dirtied some buffers. Clean
1034 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1035 	 * otherwise about fs integrity issues. Setting of the dirty bit
1036 	 * by __block_write_begin() isn't a real problem here as we clear
1037 	 * the bit before releasing a page lock and thus writeback cannot
1038 	 * ever write the buffer.
1039 	 */
1040 	if (dirty)
1041 		clear_buffer_dirty(bh);
1042 	BUFFER_TRACE(bh, "get write access");
1043 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1044 					    EXT4_JTR_NONE);
1045 	if (!ret && dirty)
1046 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1047 	return ret;
1048 }
1049 
1050 #ifdef CONFIG_FS_ENCRYPTION
1051 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1052 				  get_block_t *get_block)
1053 {
1054 	unsigned from = pos & (PAGE_SIZE - 1);
1055 	unsigned to = from + len;
1056 	struct inode *inode = page->mapping->host;
1057 	unsigned block_start, block_end;
1058 	sector_t block;
1059 	int err = 0;
1060 	unsigned blocksize = inode->i_sb->s_blocksize;
1061 	unsigned bbits;
1062 	struct buffer_head *bh, *head, *wait[2];
1063 	int nr_wait = 0;
1064 	int i;
1065 
1066 	BUG_ON(!PageLocked(page));
1067 	BUG_ON(from > PAGE_SIZE);
1068 	BUG_ON(to > PAGE_SIZE);
1069 	BUG_ON(from > to);
1070 
1071 	if (!page_has_buffers(page))
1072 		create_empty_buffers(page, blocksize, 0);
1073 	head = page_buffers(page);
1074 	bbits = ilog2(blocksize);
1075 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1076 
1077 	for (bh = head, block_start = 0; bh != head || !block_start;
1078 	    block++, block_start = block_end, bh = bh->b_this_page) {
1079 		block_end = block_start + blocksize;
1080 		if (block_end <= from || block_start >= to) {
1081 			if (PageUptodate(page)) {
1082 				set_buffer_uptodate(bh);
1083 			}
1084 			continue;
1085 		}
1086 		if (buffer_new(bh))
1087 			clear_buffer_new(bh);
1088 		if (!buffer_mapped(bh)) {
1089 			WARN_ON(bh->b_size != blocksize);
1090 			err = get_block(inode, block, bh, 1);
1091 			if (err)
1092 				break;
1093 			if (buffer_new(bh)) {
1094 				if (PageUptodate(page)) {
1095 					clear_buffer_new(bh);
1096 					set_buffer_uptodate(bh);
1097 					mark_buffer_dirty(bh);
1098 					continue;
1099 				}
1100 				if (block_end > to || block_start < from)
1101 					zero_user_segments(page, to, block_end,
1102 							   block_start, from);
1103 				continue;
1104 			}
1105 		}
1106 		if (PageUptodate(page)) {
1107 			set_buffer_uptodate(bh);
1108 			continue;
1109 		}
1110 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1111 		    !buffer_unwritten(bh) &&
1112 		    (block_start < from || block_end > to)) {
1113 			ext4_read_bh_lock(bh, 0, false);
1114 			wait[nr_wait++] = bh;
1115 		}
1116 	}
1117 	/*
1118 	 * If we issued read requests, let them complete.
1119 	 */
1120 	for (i = 0; i < nr_wait; i++) {
1121 		wait_on_buffer(wait[i]);
1122 		if (!buffer_uptodate(wait[i]))
1123 			err = -EIO;
1124 	}
1125 	if (unlikely(err)) {
1126 		page_zero_new_buffers(page, from, to);
1127 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1128 		for (i = 0; i < nr_wait; i++) {
1129 			int err2;
1130 
1131 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1132 								bh_offset(wait[i]));
1133 			if (err2) {
1134 				clear_buffer_uptodate(wait[i]);
1135 				err = err2;
1136 			}
1137 		}
1138 	}
1139 
1140 	return err;
1141 }
1142 #endif
1143 
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 			    loff_t pos, unsigned len,
1146 			    struct page **pagep, void **fsdata)
1147 {
1148 	struct inode *inode = mapping->host;
1149 	int ret, needed_blocks;
1150 	handle_t *handle;
1151 	int retries = 0;
1152 	struct page *page;
1153 	pgoff_t index;
1154 	unsigned from, to;
1155 
1156 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1157 		return -EIO;
1158 
1159 	trace_ext4_write_begin(inode, pos, len);
1160 	/*
1161 	 * Reserve one block more for addition to orphan list in case
1162 	 * we allocate blocks but write fails for some reason
1163 	 */
1164 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1165 	index = pos >> PAGE_SHIFT;
1166 	from = pos & (PAGE_SIZE - 1);
1167 	to = from + len;
1168 
1169 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1170 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1171 						    pagep);
1172 		if (ret < 0)
1173 			return ret;
1174 		if (ret == 1)
1175 			return 0;
1176 	}
1177 
1178 	/*
1179 	 * grab_cache_page_write_begin() can take a long time if the
1180 	 * system is thrashing due to memory pressure, or if the page
1181 	 * is being written back.  So grab it first before we start
1182 	 * the transaction handle.  This also allows us to allocate
1183 	 * the page (if needed) without using GFP_NOFS.
1184 	 */
1185 retry_grab:
1186 	page = grab_cache_page_write_begin(mapping, index);
1187 	if (!page)
1188 		return -ENOMEM;
1189 	unlock_page(page);
1190 
1191 retry_journal:
1192 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1193 	if (IS_ERR(handle)) {
1194 		put_page(page);
1195 		return PTR_ERR(handle);
1196 	}
1197 
1198 	lock_page(page);
1199 	if (page->mapping != mapping) {
1200 		/* The page got truncated from under us */
1201 		unlock_page(page);
1202 		put_page(page);
1203 		ext4_journal_stop(handle);
1204 		goto retry_grab;
1205 	}
1206 	/* In case writeback began while the page was unlocked */
1207 	wait_for_stable_page(page);
1208 
1209 #ifdef CONFIG_FS_ENCRYPTION
1210 	if (ext4_should_dioread_nolock(inode))
1211 		ret = ext4_block_write_begin(page, pos, len,
1212 					     ext4_get_block_unwritten);
1213 	else
1214 		ret = ext4_block_write_begin(page, pos, len,
1215 					     ext4_get_block);
1216 #else
1217 	if (ext4_should_dioread_nolock(inode))
1218 		ret = __block_write_begin(page, pos, len,
1219 					  ext4_get_block_unwritten);
1220 	else
1221 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1222 #endif
1223 	if (!ret && ext4_should_journal_data(inode)) {
1224 		ret = ext4_walk_page_buffers(handle, inode,
1225 					     page_buffers(page), from, to, NULL,
1226 					     do_journal_get_write_access);
1227 	}
1228 
1229 	if (ret) {
1230 		bool extended = (pos + len > inode->i_size) &&
1231 				!ext4_verity_in_progress(inode);
1232 
1233 		unlock_page(page);
1234 		/*
1235 		 * __block_write_begin may have instantiated a few blocks
1236 		 * outside i_size.  Trim these off again. Don't need
1237 		 * i_size_read because we hold i_rwsem.
1238 		 *
1239 		 * Add inode to orphan list in case we crash before
1240 		 * truncate finishes
1241 		 */
1242 		if (extended && ext4_can_truncate(inode))
1243 			ext4_orphan_add(handle, inode);
1244 
1245 		ext4_journal_stop(handle);
1246 		if (extended) {
1247 			ext4_truncate_failed_write(inode);
1248 			/*
1249 			 * If truncate failed early the inode might
1250 			 * still be on the orphan list; we need to
1251 			 * make sure the inode is removed from the
1252 			 * orphan list in that case.
1253 			 */
1254 			if (inode->i_nlink)
1255 				ext4_orphan_del(NULL, inode);
1256 		}
1257 
1258 		if (ret == -ENOSPC &&
1259 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1260 			goto retry_journal;
1261 		put_page(page);
1262 		return ret;
1263 	}
1264 	*pagep = page;
1265 	return ret;
1266 }
1267 
1268 /* For write_end() in data=journal mode */
1269 static int write_end_fn(handle_t *handle, struct inode *inode,
1270 			struct buffer_head *bh)
1271 {
1272 	int ret;
1273 	if (!buffer_mapped(bh) || buffer_freed(bh))
1274 		return 0;
1275 	set_buffer_uptodate(bh);
1276 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1277 	clear_buffer_meta(bh);
1278 	clear_buffer_prio(bh);
1279 	return ret;
1280 }
1281 
1282 /*
1283  * We need to pick up the new inode size which generic_commit_write gave us
1284  * `file' can be NULL - eg, when called from page_symlink().
1285  *
1286  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1287  * buffers are managed internally.
1288  */
1289 static int ext4_write_end(struct file *file,
1290 			  struct address_space *mapping,
1291 			  loff_t pos, unsigned len, unsigned copied,
1292 			  struct page *page, void *fsdata)
1293 {
1294 	handle_t *handle = ext4_journal_current_handle();
1295 	struct inode *inode = mapping->host;
1296 	loff_t old_size = inode->i_size;
1297 	int ret = 0, ret2;
1298 	int i_size_changed = 0;
1299 	bool verity = ext4_verity_in_progress(inode);
1300 
1301 	trace_ext4_write_end(inode, pos, len, copied);
1302 
1303 	if (ext4_has_inline_data(inode))
1304 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1305 
1306 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1307 	/*
1308 	 * it's important to update i_size while still holding page lock:
1309 	 * page writeout could otherwise come in and zero beyond i_size.
1310 	 *
1311 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1312 	 * blocks are being written past EOF, so skip the i_size update.
1313 	 */
1314 	if (!verity)
1315 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1316 	unlock_page(page);
1317 	put_page(page);
1318 
1319 	if (old_size < pos && !verity)
1320 		pagecache_isize_extended(inode, old_size, pos);
1321 	/*
1322 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1323 	 * makes the holding time of page lock longer. Second, it forces lock
1324 	 * ordering of page lock and transaction start for journaling
1325 	 * filesystems.
1326 	 */
1327 	if (i_size_changed)
1328 		ret = ext4_mark_inode_dirty(handle, inode);
1329 
1330 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331 		/* if we have allocated more blocks and copied
1332 		 * less. We will have blocks allocated outside
1333 		 * inode->i_size. So truncate them
1334 		 */
1335 		ext4_orphan_add(handle, inode);
1336 
1337 	ret2 = ext4_journal_stop(handle);
1338 	if (!ret)
1339 		ret = ret2;
1340 
1341 	if (pos + len > inode->i_size && !verity) {
1342 		ext4_truncate_failed_write(inode);
1343 		/*
1344 		 * If truncate failed early the inode might still be
1345 		 * on the orphan list; we need to make sure the inode
1346 		 * is removed from the orphan list in that case.
1347 		 */
1348 		if (inode->i_nlink)
1349 			ext4_orphan_del(NULL, inode);
1350 	}
1351 
1352 	return ret ? ret : copied;
1353 }
1354 
1355 /*
1356  * This is a private version of page_zero_new_buffers() which doesn't
1357  * set the buffer to be dirty, since in data=journalled mode we need
1358  * to call ext4_handle_dirty_metadata() instead.
1359  */
1360 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361 					    struct inode *inode,
1362 					    struct page *page,
1363 					    unsigned from, unsigned to)
1364 {
1365 	unsigned int block_start = 0, block_end;
1366 	struct buffer_head *head, *bh;
1367 
1368 	bh = head = page_buffers(page);
1369 	do {
1370 		block_end = block_start + bh->b_size;
1371 		if (buffer_new(bh)) {
1372 			if (block_end > from && block_start < to) {
1373 				if (!PageUptodate(page)) {
1374 					unsigned start, size;
1375 
1376 					start = max(from, block_start);
1377 					size = min(to, block_end) - start;
1378 
1379 					zero_user(page, start, size);
1380 					write_end_fn(handle, inode, bh);
1381 				}
1382 				clear_buffer_new(bh);
1383 			}
1384 		}
1385 		block_start = block_end;
1386 		bh = bh->b_this_page;
1387 	} while (bh != head);
1388 }
1389 
1390 static int ext4_journalled_write_end(struct file *file,
1391 				     struct address_space *mapping,
1392 				     loff_t pos, unsigned len, unsigned copied,
1393 				     struct page *page, void *fsdata)
1394 {
1395 	handle_t *handle = ext4_journal_current_handle();
1396 	struct inode *inode = mapping->host;
1397 	loff_t old_size = inode->i_size;
1398 	int ret = 0, ret2;
1399 	int partial = 0;
1400 	unsigned from, to;
1401 	int size_changed = 0;
1402 	bool verity = ext4_verity_in_progress(inode);
1403 
1404 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405 	from = pos & (PAGE_SIZE - 1);
1406 	to = from + len;
1407 
1408 	BUG_ON(!ext4_handle_valid(handle));
1409 
1410 	if (ext4_has_inline_data(inode))
1411 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1412 
1413 	if (unlikely(copied < len) && !PageUptodate(page)) {
1414 		copied = 0;
1415 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1416 	} else {
1417 		if (unlikely(copied < len))
1418 			ext4_journalled_zero_new_buffers(handle, inode, page,
1419 							 from + copied, to);
1420 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1421 					     from, from + copied, &partial,
1422 					     write_end_fn);
1423 		if (!partial)
1424 			SetPageUptodate(page);
1425 	}
1426 	if (!verity)
1427 		size_changed = ext4_update_inode_size(inode, pos + copied);
1428 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1429 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1430 	unlock_page(page);
1431 	put_page(page);
1432 
1433 	if (old_size < pos && !verity)
1434 		pagecache_isize_extended(inode, old_size, pos);
1435 
1436 	if (size_changed) {
1437 		ret2 = ext4_mark_inode_dirty(handle, inode);
1438 		if (!ret)
1439 			ret = ret2;
1440 	}
1441 
1442 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1443 		/* if we have allocated more blocks and copied
1444 		 * less. We will have blocks allocated outside
1445 		 * inode->i_size. So truncate them
1446 		 */
1447 		ext4_orphan_add(handle, inode);
1448 
1449 	ret2 = ext4_journal_stop(handle);
1450 	if (!ret)
1451 		ret = ret2;
1452 	if (pos + len > inode->i_size && !verity) {
1453 		ext4_truncate_failed_write(inode);
1454 		/*
1455 		 * If truncate failed early the inode might still be
1456 		 * on the orphan list; we need to make sure the inode
1457 		 * is removed from the orphan list in that case.
1458 		 */
1459 		if (inode->i_nlink)
1460 			ext4_orphan_del(NULL, inode);
1461 	}
1462 
1463 	return ret ? ret : copied;
1464 }
1465 
1466 /*
1467  * Reserve space for a single cluster
1468  */
1469 static int ext4_da_reserve_space(struct inode *inode)
1470 {
1471 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1472 	struct ext4_inode_info *ei = EXT4_I(inode);
1473 	int ret;
1474 
1475 	/*
1476 	 * We will charge metadata quota at writeout time; this saves
1477 	 * us from metadata over-estimation, though we may go over by
1478 	 * a small amount in the end.  Here we just reserve for data.
1479 	 */
1480 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1481 	if (ret)
1482 		return ret;
1483 
1484 	spin_lock(&ei->i_block_reservation_lock);
1485 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1486 		spin_unlock(&ei->i_block_reservation_lock);
1487 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1488 		return -ENOSPC;
1489 	}
1490 	ei->i_reserved_data_blocks++;
1491 	trace_ext4_da_reserve_space(inode);
1492 	spin_unlock(&ei->i_block_reservation_lock);
1493 
1494 	return 0;       /* success */
1495 }
1496 
1497 void ext4_da_release_space(struct inode *inode, int to_free)
1498 {
1499 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 	struct ext4_inode_info *ei = EXT4_I(inode);
1501 
1502 	if (!to_free)
1503 		return;		/* Nothing to release, exit */
1504 
1505 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1506 
1507 	trace_ext4_da_release_space(inode, to_free);
1508 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1509 		/*
1510 		 * if there aren't enough reserved blocks, then the
1511 		 * counter is messed up somewhere.  Since this
1512 		 * function is called from invalidate page, it's
1513 		 * harmless to return without any action.
1514 		 */
1515 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1516 			 "ino %lu, to_free %d with only %d reserved "
1517 			 "data blocks", inode->i_ino, to_free,
1518 			 ei->i_reserved_data_blocks);
1519 		WARN_ON(1);
1520 		to_free = ei->i_reserved_data_blocks;
1521 	}
1522 	ei->i_reserved_data_blocks -= to_free;
1523 
1524 	/* update fs dirty data blocks counter */
1525 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1526 
1527 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1528 
1529 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1530 }
1531 
1532 /*
1533  * Delayed allocation stuff
1534  */
1535 
1536 struct mpage_da_data {
1537 	struct inode *inode;
1538 	struct writeback_control *wbc;
1539 
1540 	pgoff_t first_page;	/* The first page to write */
1541 	pgoff_t next_page;	/* Current page to examine */
1542 	pgoff_t last_page;	/* Last page to examine */
1543 	/*
1544 	 * Extent to map - this can be after first_page because that can be
1545 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1546 	 * is delalloc or unwritten.
1547 	 */
1548 	struct ext4_map_blocks map;
1549 	struct ext4_io_submit io_submit;	/* IO submission data */
1550 	unsigned int do_map:1;
1551 	unsigned int scanned_until_end:1;
1552 };
1553 
1554 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1555 				       bool invalidate)
1556 {
1557 	int nr_pages, i;
1558 	pgoff_t index, end;
1559 	struct pagevec pvec;
1560 	struct inode *inode = mpd->inode;
1561 	struct address_space *mapping = inode->i_mapping;
1562 
1563 	/* This is necessary when next_page == 0. */
1564 	if (mpd->first_page >= mpd->next_page)
1565 		return;
1566 
1567 	mpd->scanned_until_end = 0;
1568 	index = mpd->first_page;
1569 	end   = mpd->next_page - 1;
1570 	if (invalidate) {
1571 		ext4_lblk_t start, last;
1572 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1573 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1574 		ext4_es_remove_extent(inode, start, last - start + 1);
1575 	}
1576 
1577 	pagevec_init(&pvec);
1578 	while (index <= end) {
1579 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1580 		if (nr_pages == 0)
1581 			break;
1582 		for (i = 0; i < nr_pages; i++) {
1583 			struct page *page = pvec.pages[i];
1584 			struct folio *folio = page_folio(page);
1585 
1586 			BUG_ON(!folio_test_locked(folio));
1587 			BUG_ON(folio_test_writeback(folio));
1588 			if (invalidate) {
1589 				if (folio_mapped(folio))
1590 					folio_clear_dirty_for_io(folio);
1591 				block_invalidate_folio(folio, 0,
1592 						folio_size(folio));
1593 				folio_clear_uptodate(folio);
1594 			}
1595 			folio_unlock(folio);
1596 		}
1597 		pagevec_release(&pvec);
1598 	}
1599 }
1600 
1601 static void ext4_print_free_blocks(struct inode *inode)
1602 {
1603 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1604 	struct super_block *sb = inode->i_sb;
1605 	struct ext4_inode_info *ei = EXT4_I(inode);
1606 
1607 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1609 			ext4_count_free_clusters(sb)));
1610 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 	       (long long) EXT4_C2B(EXT4_SB(sb),
1613 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 	       (long long) EXT4_C2B(EXT4_SB(sb),
1616 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 		 ei->i_reserved_data_blocks);
1620 	return;
1621 }
1622 
1623 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1624 				      struct buffer_head *bh)
1625 {
1626 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1627 }
1628 
1629 /*
1630  * ext4_insert_delayed_block - adds a delayed block to the extents status
1631  *                             tree, incrementing the reserved cluster/block
1632  *                             count or making a pending reservation
1633  *                             where needed
1634  *
1635  * @inode - file containing the newly added block
1636  * @lblk - logical block to be added
1637  *
1638  * Returns 0 on success, negative error code on failure.
1639  */
1640 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1641 {
1642 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1643 	int ret;
1644 	bool allocated = false;
1645 	bool reserved = false;
1646 
1647 	/*
1648 	 * If the cluster containing lblk is shared with a delayed,
1649 	 * written, or unwritten extent in a bigalloc file system, it's
1650 	 * already been accounted for and does not need to be reserved.
1651 	 * A pending reservation must be made for the cluster if it's
1652 	 * shared with a written or unwritten extent and doesn't already
1653 	 * have one.  Written and unwritten extents can be purged from the
1654 	 * extents status tree if the system is under memory pressure, so
1655 	 * it's necessary to examine the extent tree if a search of the
1656 	 * extents status tree doesn't get a match.
1657 	 */
1658 	if (sbi->s_cluster_ratio == 1) {
1659 		ret = ext4_da_reserve_space(inode);
1660 		if (ret != 0)   /* ENOSPC */
1661 			goto errout;
1662 		reserved = true;
1663 	} else {   /* bigalloc */
1664 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1665 			if (!ext4_es_scan_clu(inode,
1666 					      &ext4_es_is_mapped, lblk)) {
1667 				ret = ext4_clu_mapped(inode,
1668 						      EXT4_B2C(sbi, lblk));
1669 				if (ret < 0)
1670 					goto errout;
1671 				if (ret == 0) {
1672 					ret = ext4_da_reserve_space(inode);
1673 					if (ret != 0)   /* ENOSPC */
1674 						goto errout;
1675 					reserved = true;
1676 				} else {
1677 					allocated = true;
1678 				}
1679 			} else {
1680 				allocated = true;
1681 			}
1682 		}
1683 	}
1684 
1685 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1686 	if (ret && reserved)
1687 		ext4_da_release_space(inode, 1);
1688 
1689 errout:
1690 	return ret;
1691 }
1692 
1693 /*
1694  * This function is grabs code from the very beginning of
1695  * ext4_map_blocks, but assumes that the caller is from delayed write
1696  * time. This function looks up the requested blocks and sets the
1697  * buffer delay bit under the protection of i_data_sem.
1698  */
1699 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1700 			      struct ext4_map_blocks *map,
1701 			      struct buffer_head *bh)
1702 {
1703 	struct extent_status es;
1704 	int retval;
1705 	sector_t invalid_block = ~((sector_t) 0xffff);
1706 #ifdef ES_AGGRESSIVE_TEST
1707 	struct ext4_map_blocks orig_map;
1708 
1709 	memcpy(&orig_map, map, sizeof(*map));
1710 #endif
1711 
1712 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1713 		invalid_block = ~0;
1714 
1715 	map->m_flags = 0;
1716 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1717 		  (unsigned long) map->m_lblk);
1718 
1719 	/* Lookup extent status tree firstly */
1720 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1721 		if (ext4_es_is_hole(&es)) {
1722 			retval = 0;
1723 			down_read(&EXT4_I(inode)->i_data_sem);
1724 			goto add_delayed;
1725 		}
1726 
1727 		/*
1728 		 * Delayed extent could be allocated by fallocate.
1729 		 * So we need to check it.
1730 		 */
1731 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1732 			map_bh(bh, inode->i_sb, invalid_block);
1733 			set_buffer_new(bh);
1734 			set_buffer_delay(bh);
1735 			return 0;
1736 		}
1737 
1738 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1739 		retval = es.es_len - (iblock - es.es_lblk);
1740 		if (retval > map->m_len)
1741 			retval = map->m_len;
1742 		map->m_len = retval;
1743 		if (ext4_es_is_written(&es))
1744 			map->m_flags |= EXT4_MAP_MAPPED;
1745 		else if (ext4_es_is_unwritten(&es))
1746 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1747 		else
1748 			BUG();
1749 
1750 #ifdef ES_AGGRESSIVE_TEST
1751 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1752 #endif
1753 		return retval;
1754 	}
1755 
1756 	/*
1757 	 * Try to see if we can get the block without requesting a new
1758 	 * file system block.
1759 	 */
1760 	down_read(&EXT4_I(inode)->i_data_sem);
1761 	if (ext4_has_inline_data(inode))
1762 		retval = 0;
1763 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1764 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1765 	else
1766 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1767 
1768 add_delayed:
1769 	if (retval == 0) {
1770 		int ret;
1771 
1772 		/*
1773 		 * XXX: __block_prepare_write() unmaps passed block,
1774 		 * is it OK?
1775 		 */
1776 
1777 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1778 		if (ret != 0) {
1779 			retval = ret;
1780 			goto out_unlock;
1781 		}
1782 
1783 		map_bh(bh, inode->i_sb, invalid_block);
1784 		set_buffer_new(bh);
1785 		set_buffer_delay(bh);
1786 	} else if (retval > 0) {
1787 		int ret;
1788 		unsigned int status;
1789 
1790 		if (unlikely(retval != map->m_len)) {
1791 			ext4_warning(inode->i_sb,
1792 				     "ES len assertion failed for inode "
1793 				     "%lu: retval %d != map->m_len %d",
1794 				     inode->i_ino, retval, map->m_len);
1795 			WARN_ON(1);
1796 		}
1797 
1798 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1799 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1800 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1801 					    map->m_pblk, status);
1802 		if (ret != 0)
1803 			retval = ret;
1804 	}
1805 
1806 out_unlock:
1807 	up_read((&EXT4_I(inode)->i_data_sem));
1808 
1809 	return retval;
1810 }
1811 
1812 /*
1813  * This is a special get_block_t callback which is used by
1814  * ext4_da_write_begin().  It will either return mapped block or
1815  * reserve space for a single block.
1816  *
1817  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1818  * We also have b_blocknr = -1 and b_bdev initialized properly
1819  *
1820  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1821  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1822  * initialized properly.
1823  */
1824 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1825 			   struct buffer_head *bh, int create)
1826 {
1827 	struct ext4_map_blocks map;
1828 	int ret = 0;
1829 
1830 	BUG_ON(create == 0);
1831 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1832 
1833 	map.m_lblk = iblock;
1834 	map.m_len = 1;
1835 
1836 	/*
1837 	 * first, we need to know whether the block is allocated already
1838 	 * preallocated blocks are unmapped but should treated
1839 	 * the same as allocated blocks.
1840 	 */
1841 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1842 	if (ret <= 0)
1843 		return ret;
1844 
1845 	map_bh(bh, inode->i_sb, map.m_pblk);
1846 	ext4_update_bh_state(bh, map.m_flags);
1847 
1848 	if (buffer_unwritten(bh)) {
1849 		/* A delayed write to unwritten bh should be marked
1850 		 * new and mapped.  Mapped ensures that we don't do
1851 		 * get_block multiple times when we write to the same
1852 		 * offset and new ensures that we do proper zero out
1853 		 * for partial write.
1854 		 */
1855 		set_buffer_new(bh);
1856 		set_buffer_mapped(bh);
1857 	}
1858 	return 0;
1859 }
1860 
1861 static int __ext4_journalled_writepage(struct page *page,
1862 				       unsigned int len)
1863 {
1864 	struct address_space *mapping = page->mapping;
1865 	struct inode *inode = mapping->host;
1866 	handle_t *handle = NULL;
1867 	int ret = 0, err = 0;
1868 	int inline_data = ext4_has_inline_data(inode);
1869 	struct buffer_head *inode_bh = NULL;
1870 	loff_t size;
1871 
1872 	ClearPageChecked(page);
1873 
1874 	if (inline_data) {
1875 		BUG_ON(page->index != 0);
1876 		BUG_ON(len > ext4_get_max_inline_size(inode));
1877 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1878 		if (inode_bh == NULL)
1879 			goto out;
1880 	}
1881 	/*
1882 	 * We need to release the page lock before we start the
1883 	 * journal, so grab a reference so the page won't disappear
1884 	 * out from under us.
1885 	 */
1886 	get_page(page);
1887 	unlock_page(page);
1888 
1889 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1890 				    ext4_writepage_trans_blocks(inode));
1891 	if (IS_ERR(handle)) {
1892 		ret = PTR_ERR(handle);
1893 		put_page(page);
1894 		goto out_no_pagelock;
1895 	}
1896 	BUG_ON(!ext4_handle_valid(handle));
1897 
1898 	lock_page(page);
1899 	put_page(page);
1900 	size = i_size_read(inode);
1901 	if (page->mapping != mapping || page_offset(page) > size) {
1902 		/* The page got truncated from under us */
1903 		ext4_journal_stop(handle);
1904 		ret = 0;
1905 		goto out;
1906 	}
1907 
1908 	if (inline_data) {
1909 		ret = ext4_mark_inode_dirty(handle, inode);
1910 	} else {
1911 		struct buffer_head *page_bufs = page_buffers(page);
1912 
1913 		if (page->index == size >> PAGE_SHIFT)
1914 			len = size & ~PAGE_MASK;
1915 		else
1916 			len = PAGE_SIZE;
1917 
1918 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1919 					     NULL, do_journal_get_write_access);
1920 
1921 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1922 					     NULL, write_end_fn);
1923 	}
1924 	if (ret == 0)
1925 		ret = err;
1926 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1927 	if (ret == 0)
1928 		ret = err;
1929 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1930 	err = ext4_journal_stop(handle);
1931 	if (!ret)
1932 		ret = err;
1933 
1934 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1935 out:
1936 	unlock_page(page);
1937 out_no_pagelock:
1938 	brelse(inode_bh);
1939 	return ret;
1940 }
1941 
1942 /*
1943  * Note that we don't need to start a transaction unless we're journaling data
1944  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1945  * need to file the inode to the transaction's list in ordered mode because if
1946  * we are writing back data added by write(), the inode is already there and if
1947  * we are writing back data modified via mmap(), no one guarantees in which
1948  * transaction the data will hit the disk. In case we are journaling data, we
1949  * cannot start transaction directly because transaction start ranks above page
1950  * lock so we have to do some magic.
1951  *
1952  * This function can get called via...
1953  *   - ext4_writepages after taking page lock (have journal handle)
1954  *   - journal_submit_inode_data_buffers (no journal handle)
1955  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1956  *   - grab_page_cache when doing write_begin (have journal handle)
1957  *
1958  * We don't do any block allocation in this function. If we have page with
1959  * multiple blocks we need to write those buffer_heads that are mapped. This
1960  * is important for mmaped based write. So if we do with blocksize 1K
1961  * truncate(f, 1024);
1962  * a = mmap(f, 0, 4096);
1963  * a[0] = 'a';
1964  * truncate(f, 4096);
1965  * we have in the page first buffer_head mapped via page_mkwrite call back
1966  * but other buffer_heads would be unmapped but dirty (dirty done via the
1967  * do_wp_page). So writepage should write the first block. If we modify
1968  * the mmap area beyond 1024 we will again get a page_fault and the
1969  * page_mkwrite callback will do the block allocation and mark the
1970  * buffer_heads mapped.
1971  *
1972  * We redirty the page if we have any buffer_heads that is either delay or
1973  * unwritten in the page.
1974  *
1975  * We can get recursively called as show below.
1976  *
1977  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1978  *		ext4_writepage()
1979  *
1980  * But since we don't do any block allocation we should not deadlock.
1981  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1982  */
1983 static int ext4_writepage(struct page *page,
1984 			  struct writeback_control *wbc)
1985 {
1986 	struct folio *folio = page_folio(page);
1987 	int ret = 0;
1988 	loff_t size;
1989 	unsigned int len;
1990 	struct buffer_head *page_bufs = NULL;
1991 	struct inode *inode = page->mapping->host;
1992 	struct ext4_io_submit io_submit;
1993 	bool keep_towrite = false;
1994 
1995 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1996 		folio_invalidate(folio, 0, folio_size(folio));
1997 		folio_unlock(folio);
1998 		return -EIO;
1999 	}
2000 
2001 	trace_ext4_writepage(page);
2002 	size = i_size_read(inode);
2003 	if (page->index == size >> PAGE_SHIFT &&
2004 	    !ext4_verity_in_progress(inode))
2005 		len = size & ~PAGE_MASK;
2006 	else
2007 		len = PAGE_SIZE;
2008 
2009 	/* Should never happen but for bugs in other kernel subsystems */
2010 	if (!page_has_buffers(page)) {
2011 		ext4_warning_inode(inode,
2012 		   "page %lu does not have buffers attached", page->index);
2013 		ClearPageDirty(page);
2014 		unlock_page(page);
2015 		return 0;
2016 	}
2017 
2018 	page_bufs = page_buffers(page);
2019 	/*
2020 	 * We cannot do block allocation or other extent handling in this
2021 	 * function. If there are buffers needing that, we have to redirty
2022 	 * the page. But we may reach here when we do a journal commit via
2023 	 * journal_submit_inode_data_buffers() and in that case we must write
2024 	 * allocated buffers to achieve data=ordered mode guarantees.
2025 	 *
2026 	 * Also, if there is only one buffer per page (the fs block
2027 	 * size == the page size), if one buffer needs block
2028 	 * allocation or needs to modify the extent tree to clear the
2029 	 * unwritten flag, we know that the page can't be written at
2030 	 * all, so we might as well refuse the write immediately.
2031 	 * Unfortunately if the block size != page size, we can't as
2032 	 * easily detect this case using ext4_walk_page_buffers(), but
2033 	 * for the extremely common case, this is an optimization that
2034 	 * skips a useless round trip through ext4_bio_write_page().
2035 	 */
2036 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2037 				   ext4_bh_delay_or_unwritten)) {
2038 		redirty_page_for_writepage(wbc, page);
2039 		if ((current->flags & PF_MEMALLOC) ||
2040 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2041 			/*
2042 			 * For memory cleaning there's no point in writing only
2043 			 * some buffers. So just bail out. Warn if we came here
2044 			 * from direct reclaim.
2045 			 */
2046 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2047 							== PF_MEMALLOC);
2048 			unlock_page(page);
2049 			return 0;
2050 		}
2051 		keep_towrite = true;
2052 	}
2053 
2054 	if (PageChecked(page) && ext4_should_journal_data(inode))
2055 		/*
2056 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2057 		 * doesn't seem much point in redirtying the page here.
2058 		 */
2059 		return __ext4_journalled_writepage(page, len);
2060 
2061 	ext4_io_submit_init(&io_submit, wbc);
2062 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2063 	if (!io_submit.io_end) {
2064 		redirty_page_for_writepage(wbc, page);
2065 		unlock_page(page);
2066 		return -ENOMEM;
2067 	}
2068 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2069 	ext4_io_submit(&io_submit);
2070 	/* Drop io_end reference we got from init */
2071 	ext4_put_io_end_defer(io_submit.io_end);
2072 	return ret;
2073 }
2074 
2075 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2076 {
2077 	int len;
2078 	loff_t size;
2079 	int err;
2080 
2081 	BUG_ON(page->index != mpd->first_page);
2082 	clear_page_dirty_for_io(page);
2083 	/*
2084 	 * We have to be very careful here!  Nothing protects writeback path
2085 	 * against i_size changes and the page can be writeably mapped into
2086 	 * page tables. So an application can be growing i_size and writing
2087 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2088 	 * write-protects our page in page tables and the page cannot get
2089 	 * written to again until we release page lock. So only after
2090 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2091 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2092 	 * on the barrier provided by TestClearPageDirty in
2093 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2094 	 * after page tables are updated.
2095 	 */
2096 	size = i_size_read(mpd->inode);
2097 	if (page->index == size >> PAGE_SHIFT &&
2098 	    !ext4_verity_in_progress(mpd->inode))
2099 		len = size & ~PAGE_MASK;
2100 	else
2101 		len = PAGE_SIZE;
2102 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2103 	if (!err)
2104 		mpd->wbc->nr_to_write--;
2105 	mpd->first_page++;
2106 
2107 	return err;
2108 }
2109 
2110 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2111 
2112 /*
2113  * mballoc gives us at most this number of blocks...
2114  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2115  * The rest of mballoc seems to handle chunks up to full group size.
2116  */
2117 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2118 
2119 /*
2120  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2121  *
2122  * @mpd - extent of blocks
2123  * @lblk - logical number of the block in the file
2124  * @bh - buffer head we want to add to the extent
2125  *
2126  * The function is used to collect contig. blocks in the same state. If the
2127  * buffer doesn't require mapping for writeback and we haven't started the
2128  * extent of buffers to map yet, the function returns 'true' immediately - the
2129  * caller can write the buffer right away. Otherwise the function returns true
2130  * if the block has been added to the extent, false if the block couldn't be
2131  * added.
2132  */
2133 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2134 				   struct buffer_head *bh)
2135 {
2136 	struct ext4_map_blocks *map = &mpd->map;
2137 
2138 	/* Buffer that doesn't need mapping for writeback? */
2139 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2140 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2141 		/* So far no extent to map => we write the buffer right away */
2142 		if (map->m_len == 0)
2143 			return true;
2144 		return false;
2145 	}
2146 
2147 	/* First block in the extent? */
2148 	if (map->m_len == 0) {
2149 		/* We cannot map unless handle is started... */
2150 		if (!mpd->do_map)
2151 			return false;
2152 		map->m_lblk = lblk;
2153 		map->m_len = 1;
2154 		map->m_flags = bh->b_state & BH_FLAGS;
2155 		return true;
2156 	}
2157 
2158 	/* Don't go larger than mballoc is willing to allocate */
2159 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2160 		return false;
2161 
2162 	/* Can we merge the block to our big extent? */
2163 	if (lblk == map->m_lblk + map->m_len &&
2164 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2165 		map->m_len++;
2166 		return true;
2167 	}
2168 	return false;
2169 }
2170 
2171 /*
2172  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2173  *
2174  * @mpd - extent of blocks for mapping
2175  * @head - the first buffer in the page
2176  * @bh - buffer we should start processing from
2177  * @lblk - logical number of the block in the file corresponding to @bh
2178  *
2179  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2180  * the page for IO if all buffers in this page were mapped and there's no
2181  * accumulated extent of buffers to map or add buffers in the page to the
2182  * extent of buffers to map. The function returns 1 if the caller can continue
2183  * by processing the next page, 0 if it should stop adding buffers to the
2184  * extent to map because we cannot extend it anymore. It can also return value
2185  * < 0 in case of error during IO submission.
2186  */
2187 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2188 				   struct buffer_head *head,
2189 				   struct buffer_head *bh,
2190 				   ext4_lblk_t lblk)
2191 {
2192 	struct inode *inode = mpd->inode;
2193 	int err;
2194 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2195 							>> inode->i_blkbits;
2196 
2197 	if (ext4_verity_in_progress(inode))
2198 		blocks = EXT_MAX_BLOCKS;
2199 
2200 	do {
2201 		BUG_ON(buffer_locked(bh));
2202 
2203 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204 			/* Found extent to map? */
2205 			if (mpd->map.m_len)
2206 				return 0;
2207 			/* Buffer needs mapping and handle is not started? */
2208 			if (!mpd->do_map)
2209 				return 0;
2210 			/* Everything mapped so far and we hit EOF */
2211 			break;
2212 		}
2213 	} while (lblk++, (bh = bh->b_this_page) != head);
2214 	/* So far everything mapped? Submit the page for IO. */
2215 	if (mpd->map.m_len == 0) {
2216 		err = mpage_submit_page(mpd, head->b_page);
2217 		if (err < 0)
2218 			return err;
2219 	}
2220 	if (lblk >= blocks) {
2221 		mpd->scanned_until_end = 1;
2222 		return 0;
2223 	}
2224 	return 1;
2225 }
2226 
2227 /*
2228  * mpage_process_page - update page buffers corresponding to changed extent and
2229  *		       may submit fully mapped page for IO
2230  *
2231  * @mpd		- description of extent to map, on return next extent to map
2232  * @m_lblk	- logical block mapping.
2233  * @m_pblk	- corresponding physical mapping.
2234  * @map_bh	- determines on return whether this page requires any further
2235  *		  mapping or not.
2236  * Scan given page buffers corresponding to changed extent and update buffer
2237  * state according to new extent state.
2238  * We map delalloc buffers to their physical location, clear unwritten bits.
2239  * If the given page is not fully mapped, we update @map to the next extent in
2240  * the given page that needs mapping & return @map_bh as true.
2241  */
2242 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2243 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2244 			      bool *map_bh)
2245 {
2246 	struct buffer_head *head, *bh;
2247 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2248 	ext4_lblk_t lblk = *m_lblk;
2249 	ext4_fsblk_t pblock = *m_pblk;
2250 	int err = 0;
2251 	int blkbits = mpd->inode->i_blkbits;
2252 	ssize_t io_end_size = 0;
2253 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2254 
2255 	bh = head = page_buffers(page);
2256 	do {
2257 		if (lblk < mpd->map.m_lblk)
2258 			continue;
2259 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2260 			/*
2261 			 * Buffer after end of mapped extent.
2262 			 * Find next buffer in the page to map.
2263 			 */
2264 			mpd->map.m_len = 0;
2265 			mpd->map.m_flags = 0;
2266 			io_end_vec->size += io_end_size;
2267 
2268 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2269 			if (err > 0)
2270 				err = 0;
2271 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2272 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 				if (IS_ERR(io_end_vec)) {
2274 					err = PTR_ERR(io_end_vec);
2275 					goto out;
2276 				}
2277 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2278 			}
2279 			*map_bh = true;
2280 			goto out;
2281 		}
2282 		if (buffer_delay(bh)) {
2283 			clear_buffer_delay(bh);
2284 			bh->b_blocknr = pblock++;
2285 		}
2286 		clear_buffer_unwritten(bh);
2287 		io_end_size += (1 << blkbits);
2288 	} while (lblk++, (bh = bh->b_this_page) != head);
2289 
2290 	io_end_vec->size += io_end_size;
2291 	*map_bh = false;
2292 out:
2293 	*m_lblk = lblk;
2294 	*m_pblk = pblock;
2295 	return err;
2296 }
2297 
2298 /*
2299  * mpage_map_buffers - update buffers corresponding to changed extent and
2300  *		       submit fully mapped pages for IO
2301  *
2302  * @mpd - description of extent to map, on return next extent to map
2303  *
2304  * Scan buffers corresponding to changed extent (we expect corresponding pages
2305  * to be already locked) and update buffer state according to new extent state.
2306  * We map delalloc buffers to their physical location, clear unwritten bits,
2307  * and mark buffers as uninit when we perform writes to unwritten extents
2308  * and do extent conversion after IO is finished. If the last page is not fully
2309  * mapped, we update @map to the next extent in the last page that needs
2310  * mapping. Otherwise we submit the page for IO.
2311  */
2312 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2313 {
2314 	struct pagevec pvec;
2315 	int nr_pages, i;
2316 	struct inode *inode = mpd->inode;
2317 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2318 	pgoff_t start, end;
2319 	ext4_lblk_t lblk;
2320 	ext4_fsblk_t pblock;
2321 	int err;
2322 	bool map_bh = false;
2323 
2324 	start = mpd->map.m_lblk >> bpp_bits;
2325 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2326 	lblk = start << bpp_bits;
2327 	pblock = mpd->map.m_pblk;
2328 
2329 	pagevec_init(&pvec);
2330 	while (start <= end) {
2331 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2332 						&start, end);
2333 		if (nr_pages == 0)
2334 			break;
2335 		for (i = 0; i < nr_pages; i++) {
2336 			struct page *page = pvec.pages[i];
2337 
2338 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2339 						 &map_bh);
2340 			/*
2341 			 * If map_bh is true, means page may require further bh
2342 			 * mapping, or maybe the page was submitted for IO.
2343 			 * So we return to call further extent mapping.
2344 			 */
2345 			if (err < 0 || map_bh)
2346 				goto out;
2347 			/* Page fully mapped - let IO run! */
2348 			err = mpage_submit_page(mpd, page);
2349 			if (err < 0)
2350 				goto out;
2351 		}
2352 		pagevec_release(&pvec);
2353 	}
2354 	/* Extent fully mapped and matches with page boundary. We are done. */
2355 	mpd->map.m_len = 0;
2356 	mpd->map.m_flags = 0;
2357 	return 0;
2358 out:
2359 	pagevec_release(&pvec);
2360 	return err;
2361 }
2362 
2363 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2364 {
2365 	struct inode *inode = mpd->inode;
2366 	struct ext4_map_blocks *map = &mpd->map;
2367 	int get_blocks_flags;
2368 	int err, dioread_nolock;
2369 
2370 	trace_ext4_da_write_pages_extent(inode, map);
2371 	/*
2372 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2373 	 * to convert an unwritten extent to be initialized (in the case
2374 	 * where we have written into one or more preallocated blocks).  It is
2375 	 * possible that we're going to need more metadata blocks than
2376 	 * previously reserved. However we must not fail because we're in
2377 	 * writeback and there is nothing we can do about it so it might result
2378 	 * in data loss.  So use reserved blocks to allocate metadata if
2379 	 * possible.
2380 	 *
2381 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2382 	 * the blocks in question are delalloc blocks.  This indicates
2383 	 * that the blocks and quotas has already been checked when
2384 	 * the data was copied into the page cache.
2385 	 */
2386 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2387 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2388 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2389 	dioread_nolock = ext4_should_dioread_nolock(inode);
2390 	if (dioread_nolock)
2391 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2392 	if (map->m_flags & BIT(BH_Delay))
2393 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2394 
2395 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2396 	if (err < 0)
2397 		return err;
2398 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2399 		if (!mpd->io_submit.io_end->handle &&
2400 		    ext4_handle_valid(handle)) {
2401 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2402 			handle->h_rsv_handle = NULL;
2403 		}
2404 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2405 	}
2406 
2407 	BUG_ON(map->m_len == 0);
2408 	return 0;
2409 }
2410 
2411 /*
2412  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2413  *				 mpd->len and submit pages underlying it for IO
2414  *
2415  * @handle - handle for journal operations
2416  * @mpd - extent to map
2417  * @give_up_on_write - we set this to true iff there is a fatal error and there
2418  *                     is no hope of writing the data. The caller should discard
2419  *                     dirty pages to avoid infinite loops.
2420  *
2421  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2422  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2423  * them to initialized or split the described range from larger unwritten
2424  * extent. Note that we need not map all the described range since allocation
2425  * can return less blocks or the range is covered by more unwritten extents. We
2426  * cannot map more because we are limited by reserved transaction credits. On
2427  * the other hand we always make sure that the last touched page is fully
2428  * mapped so that it can be written out (and thus forward progress is
2429  * guaranteed). After mapping we submit all mapped pages for IO.
2430  */
2431 static int mpage_map_and_submit_extent(handle_t *handle,
2432 				       struct mpage_da_data *mpd,
2433 				       bool *give_up_on_write)
2434 {
2435 	struct inode *inode = mpd->inode;
2436 	struct ext4_map_blocks *map = &mpd->map;
2437 	int err;
2438 	loff_t disksize;
2439 	int progress = 0;
2440 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2441 	struct ext4_io_end_vec *io_end_vec;
2442 
2443 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2444 	if (IS_ERR(io_end_vec))
2445 		return PTR_ERR(io_end_vec);
2446 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2447 	do {
2448 		err = mpage_map_one_extent(handle, mpd);
2449 		if (err < 0) {
2450 			struct super_block *sb = inode->i_sb;
2451 
2452 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2453 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2454 				goto invalidate_dirty_pages;
2455 			/*
2456 			 * Let the uper layers retry transient errors.
2457 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2458 			 * is non-zero, a commit should free up blocks.
2459 			 */
2460 			if ((err == -ENOMEM) ||
2461 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2462 				if (progress)
2463 					goto update_disksize;
2464 				return err;
2465 			}
2466 			ext4_msg(sb, KERN_CRIT,
2467 				 "Delayed block allocation failed for "
2468 				 "inode %lu at logical offset %llu with"
2469 				 " max blocks %u with error %d",
2470 				 inode->i_ino,
2471 				 (unsigned long long)map->m_lblk,
2472 				 (unsigned)map->m_len, -err);
2473 			ext4_msg(sb, KERN_CRIT,
2474 				 "This should not happen!! Data will "
2475 				 "be lost\n");
2476 			if (err == -ENOSPC)
2477 				ext4_print_free_blocks(inode);
2478 		invalidate_dirty_pages:
2479 			*give_up_on_write = true;
2480 			return err;
2481 		}
2482 		progress = 1;
2483 		/*
2484 		 * Update buffer state, submit mapped pages, and get us new
2485 		 * extent to map
2486 		 */
2487 		err = mpage_map_and_submit_buffers(mpd);
2488 		if (err < 0)
2489 			goto update_disksize;
2490 	} while (map->m_len);
2491 
2492 update_disksize:
2493 	/*
2494 	 * Update on-disk size after IO is submitted.  Races with
2495 	 * truncate are avoided by checking i_size under i_data_sem.
2496 	 */
2497 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2498 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2499 		int err2;
2500 		loff_t i_size;
2501 
2502 		down_write(&EXT4_I(inode)->i_data_sem);
2503 		i_size = i_size_read(inode);
2504 		if (disksize > i_size)
2505 			disksize = i_size;
2506 		if (disksize > EXT4_I(inode)->i_disksize)
2507 			EXT4_I(inode)->i_disksize = disksize;
2508 		up_write(&EXT4_I(inode)->i_data_sem);
2509 		err2 = ext4_mark_inode_dirty(handle, inode);
2510 		if (err2) {
2511 			ext4_error_err(inode->i_sb, -err2,
2512 				       "Failed to mark inode %lu dirty",
2513 				       inode->i_ino);
2514 		}
2515 		if (!err)
2516 			err = err2;
2517 	}
2518 	return err;
2519 }
2520 
2521 /*
2522  * Calculate the total number of credits to reserve for one writepages
2523  * iteration. This is called from ext4_writepages(). We map an extent of
2524  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2525  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2526  * bpp - 1 blocks in bpp different extents.
2527  */
2528 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2529 {
2530 	int bpp = ext4_journal_blocks_per_page(inode);
2531 
2532 	return ext4_meta_trans_blocks(inode,
2533 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2534 }
2535 
2536 /*
2537  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2538  * 				 and underlying extent to map
2539  *
2540  * @mpd - where to look for pages
2541  *
2542  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2543  * IO immediately. When we find a page which isn't mapped we start accumulating
2544  * extent of buffers underlying these pages that needs mapping (formed by
2545  * either delayed or unwritten buffers). We also lock the pages containing
2546  * these buffers. The extent found is returned in @mpd structure (starting at
2547  * mpd->lblk with length mpd->len blocks).
2548  *
2549  * Note that this function can attach bios to one io_end structure which are
2550  * neither logically nor physically contiguous. Although it may seem as an
2551  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2552  * case as we need to track IO to all buffers underlying a page in one io_end.
2553  */
2554 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2555 {
2556 	struct address_space *mapping = mpd->inode->i_mapping;
2557 	struct pagevec pvec;
2558 	unsigned int nr_pages;
2559 	long left = mpd->wbc->nr_to_write;
2560 	pgoff_t index = mpd->first_page;
2561 	pgoff_t end = mpd->last_page;
2562 	xa_mark_t tag;
2563 	int i, err = 0;
2564 	int blkbits = mpd->inode->i_blkbits;
2565 	ext4_lblk_t lblk;
2566 	struct buffer_head *head;
2567 
2568 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2569 		tag = PAGECACHE_TAG_TOWRITE;
2570 	else
2571 		tag = PAGECACHE_TAG_DIRTY;
2572 
2573 	pagevec_init(&pvec);
2574 	mpd->map.m_len = 0;
2575 	mpd->next_page = index;
2576 	while (index <= end) {
2577 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2578 				tag);
2579 		if (nr_pages == 0)
2580 			break;
2581 
2582 		for (i = 0; i < nr_pages; i++) {
2583 			struct page *page = pvec.pages[i];
2584 
2585 			/*
2586 			 * Accumulated enough dirty pages? This doesn't apply
2587 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2588 			 * keep going because someone may be concurrently
2589 			 * dirtying pages, and we might have synced a lot of
2590 			 * newly appeared dirty pages, but have not synced all
2591 			 * of the old dirty pages.
2592 			 */
2593 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2594 				goto out;
2595 
2596 			/* If we can't merge this page, we are done. */
2597 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2598 				goto out;
2599 
2600 			lock_page(page);
2601 			/*
2602 			 * If the page is no longer dirty, or its mapping no
2603 			 * longer corresponds to inode we are writing (which
2604 			 * means it has been truncated or invalidated), or the
2605 			 * page is already under writeback and we are not doing
2606 			 * a data integrity writeback, skip the page
2607 			 */
2608 			if (!PageDirty(page) ||
2609 			    (PageWriteback(page) &&
2610 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2611 			    unlikely(page->mapping != mapping)) {
2612 				unlock_page(page);
2613 				continue;
2614 			}
2615 
2616 			wait_on_page_writeback(page);
2617 			BUG_ON(PageWriteback(page));
2618 
2619 			/*
2620 			 * Should never happen but for buggy code in
2621 			 * other subsystems that call
2622 			 * set_page_dirty() without properly warning
2623 			 * the file system first.  See [1] for more
2624 			 * information.
2625 			 *
2626 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2627 			 */
2628 			if (!page_has_buffers(page)) {
2629 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2630 				ClearPageDirty(page);
2631 				unlock_page(page);
2632 				continue;
2633 			}
2634 
2635 			if (mpd->map.m_len == 0)
2636 				mpd->first_page = page->index;
2637 			mpd->next_page = page->index + 1;
2638 			/* Add all dirty buffers to mpd */
2639 			lblk = ((ext4_lblk_t)page->index) <<
2640 				(PAGE_SHIFT - blkbits);
2641 			head = page_buffers(page);
2642 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2643 			if (err <= 0)
2644 				goto out;
2645 			err = 0;
2646 			left--;
2647 		}
2648 		pagevec_release(&pvec);
2649 		cond_resched();
2650 	}
2651 	mpd->scanned_until_end = 1;
2652 	return 0;
2653 out:
2654 	pagevec_release(&pvec);
2655 	return err;
2656 }
2657 
2658 static int ext4_writepages(struct address_space *mapping,
2659 			   struct writeback_control *wbc)
2660 {
2661 	pgoff_t	writeback_index = 0;
2662 	long nr_to_write = wbc->nr_to_write;
2663 	int range_whole = 0;
2664 	int cycled = 1;
2665 	handle_t *handle = NULL;
2666 	struct mpage_da_data mpd;
2667 	struct inode *inode = mapping->host;
2668 	int needed_blocks, rsv_blocks = 0, ret = 0;
2669 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2670 	struct blk_plug plug;
2671 	bool give_up_on_write = false;
2672 
2673 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2674 		return -EIO;
2675 
2676 	percpu_down_read(&sbi->s_writepages_rwsem);
2677 	trace_ext4_writepages(inode, wbc);
2678 
2679 	/*
2680 	 * No pages to write? This is mainly a kludge to avoid starting
2681 	 * a transaction for special inodes like journal inode on last iput()
2682 	 * because that could violate lock ordering on umount
2683 	 */
2684 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2685 		goto out_writepages;
2686 
2687 	if (ext4_should_journal_data(inode)) {
2688 		ret = generic_writepages(mapping, wbc);
2689 		goto out_writepages;
2690 	}
2691 
2692 	/*
2693 	 * If the filesystem has aborted, it is read-only, so return
2694 	 * right away instead of dumping stack traces later on that
2695 	 * will obscure the real source of the problem.  We test
2696 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2697 	 * the latter could be true if the filesystem is mounted
2698 	 * read-only, and in that case, ext4_writepages should
2699 	 * *never* be called, so if that ever happens, we would want
2700 	 * the stack trace.
2701 	 */
2702 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2703 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2704 		ret = -EROFS;
2705 		goto out_writepages;
2706 	}
2707 
2708 	/*
2709 	 * If we have inline data and arrive here, it means that
2710 	 * we will soon create the block for the 1st page, so
2711 	 * we'd better clear the inline data here.
2712 	 */
2713 	if (ext4_has_inline_data(inode)) {
2714 		/* Just inode will be modified... */
2715 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2716 		if (IS_ERR(handle)) {
2717 			ret = PTR_ERR(handle);
2718 			goto out_writepages;
2719 		}
2720 		BUG_ON(ext4_test_inode_state(inode,
2721 				EXT4_STATE_MAY_INLINE_DATA));
2722 		ext4_destroy_inline_data(handle, inode);
2723 		ext4_journal_stop(handle);
2724 	}
2725 
2726 	if (ext4_should_dioread_nolock(inode)) {
2727 		/*
2728 		 * We may need to convert up to one extent per block in
2729 		 * the page and we may dirty the inode.
2730 		 */
2731 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2732 						PAGE_SIZE >> inode->i_blkbits);
2733 	}
2734 
2735 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736 		range_whole = 1;
2737 
2738 	if (wbc->range_cyclic) {
2739 		writeback_index = mapping->writeback_index;
2740 		if (writeback_index)
2741 			cycled = 0;
2742 		mpd.first_page = writeback_index;
2743 		mpd.last_page = -1;
2744 	} else {
2745 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2747 	}
2748 
2749 	mpd.inode = inode;
2750 	mpd.wbc = wbc;
2751 	ext4_io_submit_init(&mpd.io_submit, wbc);
2752 retry:
2753 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 	blk_start_plug(&plug);
2756 
2757 	/*
2758 	 * First writeback pages that don't need mapping - we can avoid
2759 	 * starting a transaction unnecessarily and also avoid being blocked
2760 	 * in the block layer on device congestion while having transaction
2761 	 * started.
2762 	 */
2763 	mpd.do_map = 0;
2764 	mpd.scanned_until_end = 0;
2765 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 	if (!mpd.io_submit.io_end) {
2767 		ret = -ENOMEM;
2768 		goto unplug;
2769 	}
2770 	ret = mpage_prepare_extent_to_map(&mpd);
2771 	/* Unlock pages we didn't use */
2772 	mpage_release_unused_pages(&mpd, false);
2773 	/* Submit prepared bio */
2774 	ext4_io_submit(&mpd.io_submit);
2775 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2776 	mpd.io_submit.io_end = NULL;
2777 	if (ret < 0)
2778 		goto unplug;
2779 
2780 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2781 		/* For each extent of pages we use new io_end */
2782 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 		if (!mpd.io_submit.io_end) {
2784 			ret = -ENOMEM;
2785 			break;
2786 		}
2787 
2788 		/*
2789 		 * We have two constraints: We find one extent to map and we
2790 		 * must always write out whole page (makes a difference when
2791 		 * blocksize < pagesize) so that we don't block on IO when we
2792 		 * try to write out the rest of the page. Journalled mode is
2793 		 * not supported by delalloc.
2794 		 */
2795 		BUG_ON(ext4_should_journal_data(inode));
2796 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2797 
2798 		/* start a new transaction */
2799 		handle = ext4_journal_start_with_reserve(inode,
2800 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801 		if (IS_ERR(handle)) {
2802 			ret = PTR_ERR(handle);
2803 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804 			       "%ld pages, ino %lu; err %d", __func__,
2805 				wbc->nr_to_write, inode->i_ino, ret);
2806 			/* Release allocated io_end */
2807 			ext4_put_io_end(mpd.io_submit.io_end);
2808 			mpd.io_submit.io_end = NULL;
2809 			break;
2810 		}
2811 		mpd.do_map = 1;
2812 
2813 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 		ret = mpage_prepare_extent_to_map(&mpd);
2815 		if (!ret && mpd.map.m_len)
2816 			ret = mpage_map_and_submit_extent(handle, &mpd,
2817 					&give_up_on_write);
2818 		/*
2819 		 * Caution: If the handle is synchronous,
2820 		 * ext4_journal_stop() can wait for transaction commit
2821 		 * to finish which may depend on writeback of pages to
2822 		 * complete or on page lock to be released.  In that
2823 		 * case, we have to wait until after we have
2824 		 * submitted all the IO, released page locks we hold,
2825 		 * and dropped io_end reference (for extent conversion
2826 		 * to be able to complete) before stopping the handle.
2827 		 */
2828 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2829 			ext4_journal_stop(handle);
2830 			handle = NULL;
2831 			mpd.do_map = 0;
2832 		}
2833 		/* Unlock pages we didn't use */
2834 		mpage_release_unused_pages(&mpd, give_up_on_write);
2835 		/* Submit prepared bio */
2836 		ext4_io_submit(&mpd.io_submit);
2837 
2838 		/*
2839 		 * Drop our io_end reference we got from init. We have
2840 		 * to be careful and use deferred io_end finishing if
2841 		 * we are still holding the transaction as we can
2842 		 * release the last reference to io_end which may end
2843 		 * up doing unwritten extent conversion.
2844 		 */
2845 		if (handle) {
2846 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2847 			ext4_journal_stop(handle);
2848 		} else
2849 			ext4_put_io_end(mpd.io_submit.io_end);
2850 		mpd.io_submit.io_end = NULL;
2851 
2852 		if (ret == -ENOSPC && sbi->s_journal) {
2853 			/*
2854 			 * Commit the transaction which would
2855 			 * free blocks released in the transaction
2856 			 * and try again
2857 			 */
2858 			jbd2_journal_force_commit_nested(sbi->s_journal);
2859 			ret = 0;
2860 			continue;
2861 		}
2862 		/* Fatal error - ENOMEM, EIO... */
2863 		if (ret)
2864 			break;
2865 	}
2866 unplug:
2867 	blk_finish_plug(&plug);
2868 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2869 		cycled = 1;
2870 		mpd.last_page = writeback_index - 1;
2871 		mpd.first_page = 0;
2872 		goto retry;
2873 	}
2874 
2875 	/* Update index */
2876 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2877 		/*
2878 		 * Set the writeback_index so that range_cyclic
2879 		 * mode will write it back later
2880 		 */
2881 		mapping->writeback_index = mpd.first_page;
2882 
2883 out_writepages:
2884 	trace_ext4_writepages_result(inode, wbc, ret,
2885 				     nr_to_write - wbc->nr_to_write);
2886 	percpu_up_read(&sbi->s_writepages_rwsem);
2887 	return ret;
2888 }
2889 
2890 static int ext4_dax_writepages(struct address_space *mapping,
2891 			       struct writeback_control *wbc)
2892 {
2893 	int ret;
2894 	long nr_to_write = wbc->nr_to_write;
2895 	struct inode *inode = mapping->host;
2896 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2897 
2898 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2899 		return -EIO;
2900 
2901 	percpu_down_read(&sbi->s_writepages_rwsem);
2902 	trace_ext4_writepages(inode, wbc);
2903 
2904 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2905 	trace_ext4_writepages_result(inode, wbc, ret,
2906 				     nr_to_write - wbc->nr_to_write);
2907 	percpu_up_read(&sbi->s_writepages_rwsem);
2908 	return ret;
2909 }
2910 
2911 static int ext4_nonda_switch(struct super_block *sb)
2912 {
2913 	s64 free_clusters, dirty_clusters;
2914 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2915 
2916 	/*
2917 	 * switch to non delalloc mode if we are running low
2918 	 * on free block. The free block accounting via percpu
2919 	 * counters can get slightly wrong with percpu_counter_batch getting
2920 	 * accumulated on each CPU without updating global counters
2921 	 * Delalloc need an accurate free block accounting. So switch
2922 	 * to non delalloc when we are near to error range.
2923 	 */
2924 	free_clusters =
2925 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2926 	dirty_clusters =
2927 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2928 	/*
2929 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2930 	 */
2931 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2932 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2933 
2934 	if (2 * free_clusters < 3 * dirty_clusters ||
2935 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2936 		/*
2937 		 * free block count is less than 150% of dirty blocks
2938 		 * or free blocks is less than watermark
2939 		 */
2940 		return 1;
2941 	}
2942 	return 0;
2943 }
2944 
2945 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2946 			       loff_t pos, unsigned len,
2947 			       struct page **pagep, void **fsdata)
2948 {
2949 	int ret, retries = 0;
2950 	struct page *page;
2951 	pgoff_t index;
2952 	struct inode *inode = mapping->host;
2953 
2954 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2955 		return -EIO;
2956 
2957 	index = pos >> PAGE_SHIFT;
2958 
2959 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2960 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2961 		return ext4_write_begin(file, mapping, pos,
2962 					len, pagep, fsdata);
2963 	}
2964 	*fsdata = (void *)0;
2965 	trace_ext4_da_write_begin(inode, pos, len);
2966 
2967 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2968 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2969 						      pagep, fsdata);
2970 		if (ret < 0)
2971 			return ret;
2972 		if (ret == 1)
2973 			return 0;
2974 	}
2975 
2976 retry:
2977 	page = grab_cache_page_write_begin(mapping, index);
2978 	if (!page)
2979 		return -ENOMEM;
2980 
2981 	/* In case writeback began while the page was unlocked */
2982 	wait_for_stable_page(page);
2983 
2984 #ifdef CONFIG_FS_ENCRYPTION
2985 	ret = ext4_block_write_begin(page, pos, len,
2986 				     ext4_da_get_block_prep);
2987 #else
2988 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2989 #endif
2990 	if (ret < 0) {
2991 		unlock_page(page);
2992 		put_page(page);
2993 		/*
2994 		 * block_write_begin may have instantiated a few blocks
2995 		 * outside i_size.  Trim these off again. Don't need
2996 		 * i_size_read because we hold inode lock.
2997 		 */
2998 		if (pos + len > inode->i_size)
2999 			ext4_truncate_failed_write(inode);
3000 
3001 		if (ret == -ENOSPC &&
3002 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3003 			goto retry;
3004 		return ret;
3005 	}
3006 
3007 	*pagep = page;
3008 	return ret;
3009 }
3010 
3011 /*
3012  * Check if we should update i_disksize
3013  * when write to the end of file but not require block allocation
3014  */
3015 static int ext4_da_should_update_i_disksize(struct page *page,
3016 					    unsigned long offset)
3017 {
3018 	struct buffer_head *bh;
3019 	struct inode *inode = page->mapping->host;
3020 	unsigned int idx;
3021 	int i;
3022 
3023 	bh = page_buffers(page);
3024 	idx = offset >> inode->i_blkbits;
3025 
3026 	for (i = 0; i < idx; i++)
3027 		bh = bh->b_this_page;
3028 
3029 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3030 		return 0;
3031 	return 1;
3032 }
3033 
3034 static int ext4_da_write_end(struct file *file,
3035 			     struct address_space *mapping,
3036 			     loff_t pos, unsigned len, unsigned copied,
3037 			     struct page *page, void *fsdata)
3038 {
3039 	struct inode *inode = mapping->host;
3040 	loff_t new_i_size;
3041 	unsigned long start, end;
3042 	int write_mode = (int)(unsigned long)fsdata;
3043 
3044 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3045 		return ext4_write_end(file, mapping, pos,
3046 				      len, copied, page, fsdata);
3047 
3048 	trace_ext4_da_write_end(inode, pos, len, copied);
3049 
3050 	if (write_mode != CONVERT_INLINE_DATA &&
3051 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3052 	    ext4_has_inline_data(inode))
3053 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3054 
3055 	start = pos & (PAGE_SIZE - 1);
3056 	end = start + copied - 1;
3057 
3058 	/*
3059 	 * Since we are holding inode lock, we are sure i_disksize <=
3060 	 * i_size. We also know that if i_disksize < i_size, there are
3061 	 * delalloc writes pending in the range upto i_size. If the end of
3062 	 * the current write is <= i_size, there's no need to touch
3063 	 * i_disksize since writeback will push i_disksize upto i_size
3064 	 * eventually. If the end of the current write is > i_size and
3065 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3066 	 * check), we need to update i_disksize here as neither
3067 	 * ext4_writepage() nor certain ext4_writepages() paths not
3068 	 * allocating blocks update i_disksize.
3069 	 *
3070 	 * Note that we defer inode dirtying to generic_write_end() /
3071 	 * ext4_da_write_inline_data_end().
3072 	 */
3073 	new_i_size = pos + copied;
3074 	if (copied && new_i_size > inode->i_size &&
3075 	    ext4_da_should_update_i_disksize(page, end))
3076 		ext4_update_i_disksize(inode, new_i_size);
3077 
3078 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3079 }
3080 
3081 /*
3082  * Force all delayed allocation blocks to be allocated for a given inode.
3083  */
3084 int ext4_alloc_da_blocks(struct inode *inode)
3085 {
3086 	trace_ext4_alloc_da_blocks(inode);
3087 
3088 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3089 		return 0;
3090 
3091 	/*
3092 	 * We do something simple for now.  The filemap_flush() will
3093 	 * also start triggering a write of the data blocks, which is
3094 	 * not strictly speaking necessary (and for users of
3095 	 * laptop_mode, not even desirable).  However, to do otherwise
3096 	 * would require replicating code paths in:
3097 	 *
3098 	 * ext4_writepages() ->
3099 	 *    write_cache_pages() ---> (via passed in callback function)
3100 	 *        __mpage_da_writepage() -->
3101 	 *           mpage_add_bh_to_extent()
3102 	 *           mpage_da_map_blocks()
3103 	 *
3104 	 * The problem is that write_cache_pages(), located in
3105 	 * mm/page-writeback.c, marks pages clean in preparation for
3106 	 * doing I/O, which is not desirable if we're not planning on
3107 	 * doing I/O at all.
3108 	 *
3109 	 * We could call write_cache_pages(), and then redirty all of
3110 	 * the pages by calling redirty_page_for_writepage() but that
3111 	 * would be ugly in the extreme.  So instead we would need to
3112 	 * replicate parts of the code in the above functions,
3113 	 * simplifying them because we wouldn't actually intend to
3114 	 * write out the pages, but rather only collect contiguous
3115 	 * logical block extents, call the multi-block allocator, and
3116 	 * then update the buffer heads with the block allocations.
3117 	 *
3118 	 * For now, though, we'll cheat by calling filemap_flush(),
3119 	 * which will map the blocks, and start the I/O, but not
3120 	 * actually wait for the I/O to complete.
3121 	 */
3122 	return filemap_flush(inode->i_mapping);
3123 }
3124 
3125 /*
3126  * bmap() is special.  It gets used by applications such as lilo and by
3127  * the swapper to find the on-disk block of a specific piece of data.
3128  *
3129  * Naturally, this is dangerous if the block concerned is still in the
3130  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3131  * filesystem and enables swap, then they may get a nasty shock when the
3132  * data getting swapped to that swapfile suddenly gets overwritten by
3133  * the original zero's written out previously to the journal and
3134  * awaiting writeback in the kernel's buffer cache.
3135  *
3136  * So, if we see any bmap calls here on a modified, data-journaled file,
3137  * take extra steps to flush any blocks which might be in the cache.
3138  */
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140 {
3141 	struct inode *inode = mapping->host;
3142 	journal_t *journal;
3143 	int err;
3144 
3145 	/*
3146 	 * We can get here for an inline file via the FIBMAP ioctl
3147 	 */
3148 	if (ext4_has_inline_data(inode))
3149 		return 0;
3150 
3151 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152 			test_opt(inode->i_sb, DELALLOC)) {
3153 		/*
3154 		 * With delalloc we want to sync the file
3155 		 * so that we can make sure we allocate
3156 		 * blocks for file
3157 		 */
3158 		filemap_write_and_wait(mapping);
3159 	}
3160 
3161 	if (EXT4_JOURNAL(inode) &&
3162 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163 		/*
3164 		 * This is a REALLY heavyweight approach, but the use of
3165 		 * bmap on dirty files is expected to be extremely rare:
3166 		 * only if we run lilo or swapon on a freshly made file
3167 		 * do we expect this to happen.
3168 		 *
3169 		 * (bmap requires CAP_SYS_RAWIO so this does not
3170 		 * represent an unprivileged user DOS attack --- we'd be
3171 		 * in trouble if mortal users could trigger this path at
3172 		 * will.)
3173 		 *
3174 		 * NB. EXT4_STATE_JDATA is not set on files other than
3175 		 * regular files.  If somebody wants to bmap a directory
3176 		 * or symlink and gets confused because the buffer
3177 		 * hasn't yet been flushed to disk, they deserve
3178 		 * everything they get.
3179 		 */
3180 
3181 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182 		journal = EXT4_JOURNAL(inode);
3183 		jbd2_journal_lock_updates(journal);
3184 		err = jbd2_journal_flush(journal, 0);
3185 		jbd2_journal_unlock_updates(journal);
3186 
3187 		if (err)
3188 			return 0;
3189 	}
3190 
3191 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3192 }
3193 
3194 static int ext4_read_folio(struct file *file, struct folio *folio)
3195 {
3196 	struct page *page = &folio->page;
3197 	int ret = -EAGAIN;
3198 	struct inode *inode = page->mapping->host;
3199 
3200 	trace_ext4_readpage(page);
3201 
3202 	if (ext4_has_inline_data(inode))
3203 		ret = ext4_readpage_inline(inode, page);
3204 
3205 	if (ret == -EAGAIN)
3206 		return ext4_mpage_readpages(inode, NULL, page);
3207 
3208 	return ret;
3209 }
3210 
3211 static void ext4_readahead(struct readahead_control *rac)
3212 {
3213 	struct inode *inode = rac->mapping->host;
3214 
3215 	/* If the file has inline data, no need to do readahead. */
3216 	if (ext4_has_inline_data(inode))
3217 		return;
3218 
3219 	ext4_mpage_readpages(inode, rac, NULL);
3220 }
3221 
3222 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3223 				size_t length)
3224 {
3225 	trace_ext4_invalidate_folio(folio, offset, length);
3226 
3227 	/* No journalling happens on data buffers when this function is used */
3228 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3229 
3230 	block_invalidate_folio(folio, offset, length);
3231 }
3232 
3233 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3234 					    size_t offset, size_t length)
3235 {
3236 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3237 
3238 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3239 
3240 	/*
3241 	 * If it's a full truncate we just forget about the pending dirtying
3242 	 */
3243 	if (offset == 0 && length == folio_size(folio))
3244 		folio_clear_checked(folio);
3245 
3246 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3247 }
3248 
3249 /* Wrapper for aops... */
3250 static void ext4_journalled_invalidate_folio(struct folio *folio,
3251 					   size_t offset,
3252 					   size_t length)
3253 {
3254 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3255 }
3256 
3257 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3258 {
3259 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3260 
3261 	trace_ext4_releasepage(&folio->page);
3262 
3263 	/* Page has dirty journalled data -> cannot release */
3264 	if (folio_test_checked(folio))
3265 		return false;
3266 	if (journal)
3267 		return jbd2_journal_try_to_free_buffers(journal, folio);
3268 	else
3269 		return try_to_free_buffers(folio);
3270 }
3271 
3272 static bool ext4_inode_datasync_dirty(struct inode *inode)
3273 {
3274 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3275 
3276 	if (journal) {
3277 		if (jbd2_transaction_committed(journal,
3278 			EXT4_I(inode)->i_datasync_tid))
3279 			return false;
3280 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3281 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3282 		return true;
3283 	}
3284 
3285 	/* Any metadata buffers to write? */
3286 	if (!list_empty(&inode->i_mapping->private_list))
3287 		return true;
3288 	return inode->i_state & I_DIRTY_DATASYNC;
3289 }
3290 
3291 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3292 			   struct ext4_map_blocks *map, loff_t offset,
3293 			   loff_t length, unsigned int flags)
3294 {
3295 	u8 blkbits = inode->i_blkbits;
3296 
3297 	/*
3298 	 * Writes that span EOF might trigger an I/O size update on completion,
3299 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3300 	 * there is no other metadata changes being made or are pending.
3301 	 */
3302 	iomap->flags = 0;
3303 	if (ext4_inode_datasync_dirty(inode) ||
3304 	    offset + length > i_size_read(inode))
3305 		iomap->flags |= IOMAP_F_DIRTY;
3306 
3307 	if (map->m_flags & EXT4_MAP_NEW)
3308 		iomap->flags |= IOMAP_F_NEW;
3309 
3310 	if (flags & IOMAP_DAX)
3311 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3312 	else
3313 		iomap->bdev = inode->i_sb->s_bdev;
3314 	iomap->offset = (u64) map->m_lblk << blkbits;
3315 	iomap->length = (u64) map->m_len << blkbits;
3316 
3317 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3318 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3319 		iomap->flags |= IOMAP_F_MERGED;
3320 
3321 	/*
3322 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3323 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3324 	 * set. In order for any allocated unwritten extents to be converted
3325 	 * into written extents correctly within the ->end_io() handler, we
3326 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3327 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3328 	 * been set first.
3329 	 */
3330 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3331 		iomap->type = IOMAP_UNWRITTEN;
3332 		iomap->addr = (u64) map->m_pblk << blkbits;
3333 		if (flags & IOMAP_DAX)
3334 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3335 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3336 		iomap->type = IOMAP_MAPPED;
3337 		iomap->addr = (u64) map->m_pblk << blkbits;
3338 		if (flags & IOMAP_DAX)
3339 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3340 	} else {
3341 		iomap->type = IOMAP_HOLE;
3342 		iomap->addr = IOMAP_NULL_ADDR;
3343 	}
3344 }
3345 
3346 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3347 			    unsigned int flags)
3348 {
3349 	handle_t *handle;
3350 	u8 blkbits = inode->i_blkbits;
3351 	int ret, dio_credits, m_flags = 0, retries = 0;
3352 
3353 	/*
3354 	 * Trim the mapping request to the maximum value that we can map at
3355 	 * once for direct I/O.
3356 	 */
3357 	if (map->m_len > DIO_MAX_BLOCKS)
3358 		map->m_len = DIO_MAX_BLOCKS;
3359 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3360 
3361 retry:
3362 	/*
3363 	 * Either we allocate blocks and then don't get an unwritten extent, so
3364 	 * in that case we have reserved enough credits. Or, the blocks are
3365 	 * already allocated and unwritten. In that case, the extent conversion
3366 	 * fits into the credits as well.
3367 	 */
3368 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3369 	if (IS_ERR(handle))
3370 		return PTR_ERR(handle);
3371 
3372 	/*
3373 	 * DAX and direct I/O are the only two operations that are currently
3374 	 * supported with IOMAP_WRITE.
3375 	 */
3376 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3377 	if (flags & IOMAP_DAX)
3378 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3379 	/*
3380 	 * We use i_size instead of i_disksize here because delalloc writeback
3381 	 * can complete at any point during the I/O and subsequently push the
3382 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3383 	 * happening and thus expose allocated blocks to direct I/O reads.
3384 	 */
3385 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3386 		m_flags = EXT4_GET_BLOCKS_CREATE;
3387 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3388 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3389 
3390 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3391 
3392 	/*
3393 	 * We cannot fill holes in indirect tree based inodes as that could
3394 	 * expose stale data in the case of a crash. Use the magic error code
3395 	 * to fallback to buffered I/O.
3396 	 */
3397 	if (!m_flags && !ret)
3398 		ret = -ENOTBLK;
3399 
3400 	ext4_journal_stop(handle);
3401 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3402 		goto retry;
3403 
3404 	return ret;
3405 }
3406 
3407 
3408 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3409 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3410 {
3411 	int ret;
3412 	struct ext4_map_blocks map;
3413 	u8 blkbits = inode->i_blkbits;
3414 
3415 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3416 		return -EINVAL;
3417 
3418 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3419 		return -ERANGE;
3420 
3421 	/*
3422 	 * Calculate the first and last logical blocks respectively.
3423 	 */
3424 	map.m_lblk = offset >> blkbits;
3425 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3426 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3427 
3428 	if (flags & IOMAP_WRITE) {
3429 		/*
3430 		 * We check here if the blocks are already allocated, then we
3431 		 * don't need to start a journal txn and we can directly return
3432 		 * the mapping information. This could boost performance
3433 		 * especially in multi-threaded overwrite requests.
3434 		 */
3435 		if (offset + length <= i_size_read(inode)) {
3436 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3437 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3438 				goto out;
3439 		}
3440 		ret = ext4_iomap_alloc(inode, &map, flags);
3441 	} else {
3442 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443 	}
3444 
3445 	if (ret < 0)
3446 		return ret;
3447 out:
3448 	/*
3449 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3450 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3451 	 * limiting the length of the mapping returned.
3452 	 */
3453 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3454 
3455 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3456 
3457 	return 0;
3458 }
3459 
3460 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3461 		loff_t length, unsigned flags, struct iomap *iomap,
3462 		struct iomap *srcmap)
3463 {
3464 	int ret;
3465 
3466 	/*
3467 	 * Even for writes we don't need to allocate blocks, so just pretend
3468 	 * we are reading to save overhead of starting a transaction.
3469 	 */
3470 	flags &= ~IOMAP_WRITE;
3471 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3472 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3473 	return ret;
3474 }
3475 
3476 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3477 			  ssize_t written, unsigned flags, struct iomap *iomap)
3478 {
3479 	/*
3480 	 * Check to see whether an error occurred while writing out the data to
3481 	 * the allocated blocks. If so, return the magic error code so that we
3482 	 * fallback to buffered I/O and attempt to complete the remainder of
3483 	 * the I/O. Any blocks that may have been allocated in preparation for
3484 	 * the direct I/O will be reused during buffered I/O.
3485 	 */
3486 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3487 		return -ENOTBLK;
3488 
3489 	return 0;
3490 }
3491 
3492 const struct iomap_ops ext4_iomap_ops = {
3493 	.iomap_begin		= ext4_iomap_begin,
3494 	.iomap_end		= ext4_iomap_end,
3495 };
3496 
3497 const struct iomap_ops ext4_iomap_overwrite_ops = {
3498 	.iomap_begin		= ext4_iomap_overwrite_begin,
3499 	.iomap_end		= ext4_iomap_end,
3500 };
3501 
3502 static bool ext4_iomap_is_delalloc(struct inode *inode,
3503 				   struct ext4_map_blocks *map)
3504 {
3505 	struct extent_status es;
3506 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3507 
3508 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3509 				  map->m_lblk, end, &es);
3510 
3511 	if (!es.es_len || es.es_lblk > end)
3512 		return false;
3513 
3514 	if (es.es_lblk > map->m_lblk) {
3515 		map->m_len = es.es_lblk - map->m_lblk;
3516 		return false;
3517 	}
3518 
3519 	offset = map->m_lblk - es.es_lblk;
3520 	map->m_len = es.es_len - offset;
3521 
3522 	return true;
3523 }
3524 
3525 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3526 				   loff_t length, unsigned int flags,
3527 				   struct iomap *iomap, struct iomap *srcmap)
3528 {
3529 	int ret;
3530 	bool delalloc = false;
3531 	struct ext4_map_blocks map;
3532 	u8 blkbits = inode->i_blkbits;
3533 
3534 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3535 		return -EINVAL;
3536 
3537 	if (ext4_has_inline_data(inode)) {
3538 		ret = ext4_inline_data_iomap(inode, iomap);
3539 		if (ret != -EAGAIN) {
3540 			if (ret == 0 && offset >= iomap->length)
3541 				ret = -ENOENT;
3542 			return ret;
3543 		}
3544 	}
3545 
3546 	/*
3547 	 * Calculate the first and last logical block respectively.
3548 	 */
3549 	map.m_lblk = offset >> blkbits;
3550 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3551 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3552 
3553 	/*
3554 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3555 	 * So handle it here itself instead of querying ext4_map_blocks().
3556 	 * Since ext4_map_blocks() will warn about it and will return
3557 	 * -EIO error.
3558 	 */
3559 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3560 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3561 
3562 		if (offset >= sbi->s_bitmap_maxbytes) {
3563 			map.m_flags = 0;
3564 			goto set_iomap;
3565 		}
3566 	}
3567 
3568 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3569 	if (ret < 0)
3570 		return ret;
3571 	if (ret == 0)
3572 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3573 
3574 set_iomap:
3575 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3576 	if (delalloc && iomap->type == IOMAP_HOLE)
3577 		iomap->type = IOMAP_DELALLOC;
3578 
3579 	return 0;
3580 }
3581 
3582 const struct iomap_ops ext4_iomap_report_ops = {
3583 	.iomap_begin = ext4_iomap_begin_report,
3584 };
3585 
3586 /*
3587  * Whenever the folio is being dirtied, corresponding buffers should already
3588  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3589  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3590  * lists here because ->dirty_folio is called under VFS locks and the folio
3591  * is not necessarily locked.
3592  *
3593  * We cannot just dirty the folio and leave attached buffers clean, because the
3594  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3595  * or jbddirty because all the journalling code will explode.
3596  *
3597  * So what we do is to mark the folio "pending dirty" and next time writepage
3598  * is called, propagate that into the buffers appropriately.
3599  */
3600 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3601 		struct folio *folio)
3602 {
3603 	WARN_ON_ONCE(!folio_buffers(folio));
3604 	folio_set_checked(folio);
3605 	return filemap_dirty_folio(mapping, folio);
3606 }
3607 
3608 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3609 {
3610 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3611 	WARN_ON_ONCE(!folio_buffers(folio));
3612 	return block_dirty_folio(mapping, folio);
3613 }
3614 
3615 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3616 				    struct file *file, sector_t *span)
3617 {
3618 	return iomap_swapfile_activate(sis, file, span,
3619 				       &ext4_iomap_report_ops);
3620 }
3621 
3622 static const struct address_space_operations ext4_aops = {
3623 	.read_folio		= ext4_read_folio,
3624 	.readahead		= ext4_readahead,
3625 	.writepage		= ext4_writepage,
3626 	.writepages		= ext4_writepages,
3627 	.write_begin		= ext4_write_begin,
3628 	.write_end		= ext4_write_end,
3629 	.dirty_folio		= ext4_dirty_folio,
3630 	.bmap			= ext4_bmap,
3631 	.invalidate_folio	= ext4_invalidate_folio,
3632 	.release_folio		= ext4_release_folio,
3633 	.direct_IO		= noop_direct_IO,
3634 	.migratepage		= buffer_migrate_page,
3635 	.is_partially_uptodate  = block_is_partially_uptodate,
3636 	.error_remove_page	= generic_error_remove_page,
3637 	.swap_activate		= ext4_iomap_swap_activate,
3638 };
3639 
3640 static const struct address_space_operations ext4_journalled_aops = {
3641 	.read_folio		= ext4_read_folio,
3642 	.readahead		= ext4_readahead,
3643 	.writepage		= ext4_writepage,
3644 	.writepages		= ext4_writepages,
3645 	.write_begin		= ext4_write_begin,
3646 	.write_end		= ext4_journalled_write_end,
3647 	.dirty_folio		= ext4_journalled_dirty_folio,
3648 	.bmap			= ext4_bmap,
3649 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3650 	.release_folio		= ext4_release_folio,
3651 	.direct_IO		= noop_direct_IO,
3652 	.is_partially_uptodate  = block_is_partially_uptodate,
3653 	.error_remove_page	= generic_error_remove_page,
3654 	.swap_activate		= ext4_iomap_swap_activate,
3655 };
3656 
3657 static const struct address_space_operations ext4_da_aops = {
3658 	.read_folio		= ext4_read_folio,
3659 	.readahead		= ext4_readahead,
3660 	.writepage		= ext4_writepage,
3661 	.writepages		= ext4_writepages,
3662 	.write_begin		= ext4_da_write_begin,
3663 	.write_end		= ext4_da_write_end,
3664 	.dirty_folio		= ext4_dirty_folio,
3665 	.bmap			= ext4_bmap,
3666 	.invalidate_folio	= ext4_invalidate_folio,
3667 	.release_folio		= ext4_release_folio,
3668 	.direct_IO		= noop_direct_IO,
3669 	.migratepage		= buffer_migrate_page,
3670 	.is_partially_uptodate  = block_is_partially_uptodate,
3671 	.error_remove_page	= generic_error_remove_page,
3672 	.swap_activate		= ext4_iomap_swap_activate,
3673 };
3674 
3675 static const struct address_space_operations ext4_dax_aops = {
3676 	.writepages		= ext4_dax_writepages,
3677 	.direct_IO		= noop_direct_IO,
3678 	.dirty_folio		= noop_dirty_folio,
3679 	.bmap			= ext4_bmap,
3680 	.swap_activate		= ext4_iomap_swap_activate,
3681 };
3682 
3683 void ext4_set_aops(struct inode *inode)
3684 {
3685 	switch (ext4_inode_journal_mode(inode)) {
3686 	case EXT4_INODE_ORDERED_DATA_MODE:
3687 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3688 		break;
3689 	case EXT4_INODE_JOURNAL_DATA_MODE:
3690 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3691 		return;
3692 	default:
3693 		BUG();
3694 	}
3695 	if (IS_DAX(inode))
3696 		inode->i_mapping->a_ops = &ext4_dax_aops;
3697 	else if (test_opt(inode->i_sb, DELALLOC))
3698 		inode->i_mapping->a_ops = &ext4_da_aops;
3699 	else
3700 		inode->i_mapping->a_ops = &ext4_aops;
3701 }
3702 
3703 static int __ext4_block_zero_page_range(handle_t *handle,
3704 		struct address_space *mapping, loff_t from, loff_t length)
3705 {
3706 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3707 	unsigned offset = from & (PAGE_SIZE-1);
3708 	unsigned blocksize, pos;
3709 	ext4_lblk_t iblock;
3710 	struct inode *inode = mapping->host;
3711 	struct buffer_head *bh;
3712 	struct page *page;
3713 	int err = 0;
3714 
3715 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3716 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3717 	if (!page)
3718 		return -ENOMEM;
3719 
3720 	blocksize = inode->i_sb->s_blocksize;
3721 
3722 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3723 
3724 	if (!page_has_buffers(page))
3725 		create_empty_buffers(page, blocksize, 0);
3726 
3727 	/* Find the buffer that contains "offset" */
3728 	bh = page_buffers(page);
3729 	pos = blocksize;
3730 	while (offset >= pos) {
3731 		bh = bh->b_this_page;
3732 		iblock++;
3733 		pos += blocksize;
3734 	}
3735 	if (buffer_freed(bh)) {
3736 		BUFFER_TRACE(bh, "freed: skip");
3737 		goto unlock;
3738 	}
3739 	if (!buffer_mapped(bh)) {
3740 		BUFFER_TRACE(bh, "unmapped");
3741 		ext4_get_block(inode, iblock, bh, 0);
3742 		/* unmapped? It's a hole - nothing to do */
3743 		if (!buffer_mapped(bh)) {
3744 			BUFFER_TRACE(bh, "still unmapped");
3745 			goto unlock;
3746 		}
3747 	}
3748 
3749 	/* Ok, it's mapped. Make sure it's up-to-date */
3750 	if (PageUptodate(page))
3751 		set_buffer_uptodate(bh);
3752 
3753 	if (!buffer_uptodate(bh)) {
3754 		err = ext4_read_bh_lock(bh, 0, true);
3755 		if (err)
3756 			goto unlock;
3757 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3758 			/* We expect the key to be set. */
3759 			BUG_ON(!fscrypt_has_encryption_key(inode));
3760 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3761 							       bh_offset(bh));
3762 			if (err) {
3763 				clear_buffer_uptodate(bh);
3764 				goto unlock;
3765 			}
3766 		}
3767 	}
3768 	if (ext4_should_journal_data(inode)) {
3769 		BUFFER_TRACE(bh, "get write access");
3770 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3771 						    EXT4_JTR_NONE);
3772 		if (err)
3773 			goto unlock;
3774 	}
3775 	zero_user(page, offset, length);
3776 	BUFFER_TRACE(bh, "zeroed end of block");
3777 
3778 	if (ext4_should_journal_data(inode)) {
3779 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3780 	} else {
3781 		err = 0;
3782 		mark_buffer_dirty(bh);
3783 		if (ext4_should_order_data(inode))
3784 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3785 					length);
3786 	}
3787 
3788 unlock:
3789 	unlock_page(page);
3790 	put_page(page);
3791 	return err;
3792 }
3793 
3794 /*
3795  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3796  * starting from file offset 'from'.  The range to be zero'd must
3797  * be contained with in one block.  If the specified range exceeds
3798  * the end of the block it will be shortened to end of the block
3799  * that corresponds to 'from'
3800  */
3801 static int ext4_block_zero_page_range(handle_t *handle,
3802 		struct address_space *mapping, loff_t from, loff_t length)
3803 {
3804 	struct inode *inode = mapping->host;
3805 	unsigned offset = from & (PAGE_SIZE-1);
3806 	unsigned blocksize = inode->i_sb->s_blocksize;
3807 	unsigned max = blocksize - (offset & (blocksize - 1));
3808 
3809 	/*
3810 	 * correct length if it does not fall between
3811 	 * 'from' and the end of the block
3812 	 */
3813 	if (length > max || length < 0)
3814 		length = max;
3815 
3816 	if (IS_DAX(inode)) {
3817 		return dax_zero_range(inode, from, length, NULL,
3818 				      &ext4_iomap_ops);
3819 	}
3820 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3821 }
3822 
3823 /*
3824  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3825  * up to the end of the block which corresponds to `from'.
3826  * This required during truncate. We need to physically zero the tail end
3827  * of that block so it doesn't yield old data if the file is later grown.
3828  */
3829 static int ext4_block_truncate_page(handle_t *handle,
3830 		struct address_space *mapping, loff_t from)
3831 {
3832 	unsigned offset = from & (PAGE_SIZE-1);
3833 	unsigned length;
3834 	unsigned blocksize;
3835 	struct inode *inode = mapping->host;
3836 
3837 	/* If we are processing an encrypted inode during orphan list handling */
3838 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3839 		return 0;
3840 
3841 	blocksize = inode->i_sb->s_blocksize;
3842 	length = blocksize - (offset & (blocksize - 1));
3843 
3844 	return ext4_block_zero_page_range(handle, mapping, from, length);
3845 }
3846 
3847 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3848 			     loff_t lstart, loff_t length)
3849 {
3850 	struct super_block *sb = inode->i_sb;
3851 	struct address_space *mapping = inode->i_mapping;
3852 	unsigned partial_start, partial_end;
3853 	ext4_fsblk_t start, end;
3854 	loff_t byte_end = (lstart + length - 1);
3855 	int err = 0;
3856 
3857 	partial_start = lstart & (sb->s_blocksize - 1);
3858 	partial_end = byte_end & (sb->s_blocksize - 1);
3859 
3860 	start = lstart >> sb->s_blocksize_bits;
3861 	end = byte_end >> sb->s_blocksize_bits;
3862 
3863 	/* Handle partial zero within the single block */
3864 	if (start == end &&
3865 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3866 		err = ext4_block_zero_page_range(handle, mapping,
3867 						 lstart, length);
3868 		return err;
3869 	}
3870 	/* Handle partial zero out on the start of the range */
3871 	if (partial_start) {
3872 		err = ext4_block_zero_page_range(handle, mapping,
3873 						 lstart, sb->s_blocksize);
3874 		if (err)
3875 			return err;
3876 	}
3877 	/* Handle partial zero out on the end of the range */
3878 	if (partial_end != sb->s_blocksize - 1)
3879 		err = ext4_block_zero_page_range(handle, mapping,
3880 						 byte_end - partial_end,
3881 						 partial_end + 1);
3882 	return err;
3883 }
3884 
3885 int ext4_can_truncate(struct inode *inode)
3886 {
3887 	if (S_ISREG(inode->i_mode))
3888 		return 1;
3889 	if (S_ISDIR(inode->i_mode))
3890 		return 1;
3891 	if (S_ISLNK(inode->i_mode))
3892 		return !ext4_inode_is_fast_symlink(inode);
3893 	return 0;
3894 }
3895 
3896 /*
3897  * We have to make sure i_disksize gets properly updated before we truncate
3898  * page cache due to hole punching or zero range. Otherwise i_disksize update
3899  * can get lost as it may have been postponed to submission of writeback but
3900  * that will never happen after we truncate page cache.
3901  */
3902 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3903 				      loff_t len)
3904 {
3905 	handle_t *handle;
3906 	int ret;
3907 
3908 	loff_t size = i_size_read(inode);
3909 
3910 	WARN_ON(!inode_is_locked(inode));
3911 	if (offset > size || offset + len < size)
3912 		return 0;
3913 
3914 	if (EXT4_I(inode)->i_disksize >= size)
3915 		return 0;
3916 
3917 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3918 	if (IS_ERR(handle))
3919 		return PTR_ERR(handle);
3920 	ext4_update_i_disksize(inode, size);
3921 	ret = ext4_mark_inode_dirty(handle, inode);
3922 	ext4_journal_stop(handle);
3923 
3924 	return ret;
3925 }
3926 
3927 static void ext4_wait_dax_page(struct inode *inode)
3928 {
3929 	filemap_invalidate_unlock(inode->i_mapping);
3930 	schedule();
3931 	filemap_invalidate_lock(inode->i_mapping);
3932 }
3933 
3934 int ext4_break_layouts(struct inode *inode)
3935 {
3936 	struct page *page;
3937 	int error;
3938 
3939 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3940 		return -EINVAL;
3941 
3942 	do {
3943 		page = dax_layout_busy_page(inode->i_mapping);
3944 		if (!page)
3945 			return 0;
3946 
3947 		error = ___wait_var_event(&page->_refcount,
3948 				atomic_read(&page->_refcount) == 1,
3949 				TASK_INTERRUPTIBLE, 0, 0,
3950 				ext4_wait_dax_page(inode));
3951 	} while (error == 0);
3952 
3953 	return error;
3954 }
3955 
3956 /*
3957  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3958  * associated with the given offset and length
3959  *
3960  * @inode:  File inode
3961  * @offset: The offset where the hole will begin
3962  * @len:    The length of the hole
3963  *
3964  * Returns: 0 on success or negative on failure
3965  */
3966 
3967 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3968 {
3969 	struct inode *inode = file_inode(file);
3970 	struct super_block *sb = inode->i_sb;
3971 	ext4_lblk_t first_block, stop_block;
3972 	struct address_space *mapping = inode->i_mapping;
3973 	loff_t first_block_offset, last_block_offset, max_length;
3974 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3975 	handle_t *handle;
3976 	unsigned int credits;
3977 	int ret = 0, ret2 = 0;
3978 
3979 	trace_ext4_punch_hole(inode, offset, length, 0);
3980 
3981 	/*
3982 	 * Write out all dirty pages to avoid race conditions
3983 	 * Then release them.
3984 	 */
3985 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3986 		ret = filemap_write_and_wait_range(mapping, offset,
3987 						   offset + length - 1);
3988 		if (ret)
3989 			return ret;
3990 	}
3991 
3992 	inode_lock(inode);
3993 
3994 	/* No need to punch hole beyond i_size */
3995 	if (offset >= inode->i_size)
3996 		goto out_mutex;
3997 
3998 	/*
3999 	 * If the hole extends beyond i_size, set the hole
4000 	 * to end after the page that contains i_size
4001 	 */
4002 	if (offset + length > inode->i_size) {
4003 		length = inode->i_size +
4004 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4005 		   offset;
4006 	}
4007 
4008 	/*
4009 	 * For punch hole the length + offset needs to be within one block
4010 	 * before last range. Adjust the length if it goes beyond that limit.
4011 	 */
4012 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4013 	if (offset + length > max_length)
4014 		length = max_length - offset;
4015 
4016 	if (offset & (sb->s_blocksize - 1) ||
4017 	    (offset + length) & (sb->s_blocksize - 1)) {
4018 		/*
4019 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4020 		 * partial block
4021 		 */
4022 		ret = ext4_inode_attach_jinode(inode);
4023 		if (ret < 0)
4024 			goto out_mutex;
4025 
4026 	}
4027 
4028 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4029 	inode_dio_wait(inode);
4030 
4031 	ret = file_modified(file);
4032 	if (ret)
4033 		goto out_mutex;
4034 
4035 	/*
4036 	 * Prevent page faults from reinstantiating pages we have released from
4037 	 * page cache.
4038 	 */
4039 	filemap_invalidate_lock(mapping);
4040 
4041 	ret = ext4_break_layouts(inode);
4042 	if (ret)
4043 		goto out_dio;
4044 
4045 	first_block_offset = round_up(offset, sb->s_blocksize);
4046 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4047 
4048 	/* Now release the pages and zero block aligned part of pages*/
4049 	if (last_block_offset > first_block_offset) {
4050 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4051 		if (ret)
4052 			goto out_dio;
4053 		truncate_pagecache_range(inode, first_block_offset,
4054 					 last_block_offset);
4055 	}
4056 
4057 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4058 		credits = ext4_writepage_trans_blocks(inode);
4059 	else
4060 		credits = ext4_blocks_for_truncate(inode);
4061 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4062 	if (IS_ERR(handle)) {
4063 		ret = PTR_ERR(handle);
4064 		ext4_std_error(sb, ret);
4065 		goto out_dio;
4066 	}
4067 
4068 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4069 				       length);
4070 	if (ret)
4071 		goto out_stop;
4072 
4073 	first_block = (offset + sb->s_blocksize - 1) >>
4074 		EXT4_BLOCK_SIZE_BITS(sb);
4075 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4076 
4077 	/* If there are blocks to remove, do it */
4078 	if (stop_block > first_block) {
4079 
4080 		down_write(&EXT4_I(inode)->i_data_sem);
4081 		ext4_discard_preallocations(inode, 0);
4082 
4083 		ret = ext4_es_remove_extent(inode, first_block,
4084 					    stop_block - first_block);
4085 		if (ret) {
4086 			up_write(&EXT4_I(inode)->i_data_sem);
4087 			goto out_stop;
4088 		}
4089 
4090 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4091 			ret = ext4_ext_remove_space(inode, first_block,
4092 						    stop_block - 1);
4093 		else
4094 			ret = ext4_ind_remove_space(handle, inode, first_block,
4095 						    stop_block);
4096 
4097 		up_write(&EXT4_I(inode)->i_data_sem);
4098 	}
4099 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4100 	if (IS_SYNC(inode))
4101 		ext4_handle_sync(handle);
4102 
4103 	inode->i_mtime = inode->i_ctime = current_time(inode);
4104 	ret2 = ext4_mark_inode_dirty(handle, inode);
4105 	if (unlikely(ret2))
4106 		ret = ret2;
4107 	if (ret >= 0)
4108 		ext4_update_inode_fsync_trans(handle, inode, 1);
4109 out_stop:
4110 	ext4_journal_stop(handle);
4111 out_dio:
4112 	filemap_invalidate_unlock(mapping);
4113 out_mutex:
4114 	inode_unlock(inode);
4115 	return ret;
4116 }
4117 
4118 int ext4_inode_attach_jinode(struct inode *inode)
4119 {
4120 	struct ext4_inode_info *ei = EXT4_I(inode);
4121 	struct jbd2_inode *jinode;
4122 
4123 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4124 		return 0;
4125 
4126 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4127 	spin_lock(&inode->i_lock);
4128 	if (!ei->jinode) {
4129 		if (!jinode) {
4130 			spin_unlock(&inode->i_lock);
4131 			return -ENOMEM;
4132 		}
4133 		ei->jinode = jinode;
4134 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4135 		jinode = NULL;
4136 	}
4137 	spin_unlock(&inode->i_lock);
4138 	if (unlikely(jinode != NULL))
4139 		jbd2_free_inode(jinode);
4140 	return 0;
4141 }
4142 
4143 /*
4144  * ext4_truncate()
4145  *
4146  * We block out ext4_get_block() block instantiations across the entire
4147  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4148  * simultaneously on behalf of the same inode.
4149  *
4150  * As we work through the truncate and commit bits of it to the journal there
4151  * is one core, guiding principle: the file's tree must always be consistent on
4152  * disk.  We must be able to restart the truncate after a crash.
4153  *
4154  * The file's tree may be transiently inconsistent in memory (although it
4155  * probably isn't), but whenever we close off and commit a journal transaction,
4156  * the contents of (the filesystem + the journal) must be consistent and
4157  * restartable.  It's pretty simple, really: bottom up, right to left (although
4158  * left-to-right works OK too).
4159  *
4160  * Note that at recovery time, journal replay occurs *before* the restart of
4161  * truncate against the orphan inode list.
4162  *
4163  * The committed inode has the new, desired i_size (which is the same as
4164  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4165  * that this inode's truncate did not complete and it will again call
4166  * ext4_truncate() to have another go.  So there will be instantiated blocks
4167  * to the right of the truncation point in a crashed ext4 filesystem.  But
4168  * that's fine - as long as they are linked from the inode, the post-crash
4169  * ext4_truncate() run will find them and release them.
4170  */
4171 int ext4_truncate(struct inode *inode)
4172 {
4173 	struct ext4_inode_info *ei = EXT4_I(inode);
4174 	unsigned int credits;
4175 	int err = 0, err2;
4176 	handle_t *handle;
4177 	struct address_space *mapping = inode->i_mapping;
4178 
4179 	/*
4180 	 * There is a possibility that we're either freeing the inode
4181 	 * or it's a completely new inode. In those cases we might not
4182 	 * have i_rwsem locked because it's not necessary.
4183 	 */
4184 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4185 		WARN_ON(!inode_is_locked(inode));
4186 	trace_ext4_truncate_enter(inode);
4187 
4188 	if (!ext4_can_truncate(inode))
4189 		goto out_trace;
4190 
4191 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4192 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4193 
4194 	if (ext4_has_inline_data(inode)) {
4195 		int has_inline = 1;
4196 
4197 		err = ext4_inline_data_truncate(inode, &has_inline);
4198 		if (err || has_inline)
4199 			goto out_trace;
4200 	}
4201 
4202 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4203 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4204 		if (ext4_inode_attach_jinode(inode) < 0)
4205 			goto out_trace;
4206 	}
4207 
4208 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209 		credits = ext4_writepage_trans_blocks(inode);
4210 	else
4211 		credits = ext4_blocks_for_truncate(inode);
4212 
4213 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4214 	if (IS_ERR(handle)) {
4215 		err = PTR_ERR(handle);
4216 		goto out_trace;
4217 	}
4218 
4219 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4220 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4221 
4222 	/*
4223 	 * We add the inode to the orphan list, so that if this
4224 	 * truncate spans multiple transactions, and we crash, we will
4225 	 * resume the truncate when the filesystem recovers.  It also
4226 	 * marks the inode dirty, to catch the new size.
4227 	 *
4228 	 * Implication: the file must always be in a sane, consistent
4229 	 * truncatable state while each transaction commits.
4230 	 */
4231 	err = ext4_orphan_add(handle, inode);
4232 	if (err)
4233 		goto out_stop;
4234 
4235 	down_write(&EXT4_I(inode)->i_data_sem);
4236 
4237 	ext4_discard_preallocations(inode, 0);
4238 
4239 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240 		err = ext4_ext_truncate(handle, inode);
4241 	else
4242 		ext4_ind_truncate(handle, inode);
4243 
4244 	up_write(&ei->i_data_sem);
4245 	if (err)
4246 		goto out_stop;
4247 
4248 	if (IS_SYNC(inode))
4249 		ext4_handle_sync(handle);
4250 
4251 out_stop:
4252 	/*
4253 	 * If this was a simple ftruncate() and the file will remain alive,
4254 	 * then we need to clear up the orphan record which we created above.
4255 	 * However, if this was a real unlink then we were called by
4256 	 * ext4_evict_inode(), and we allow that function to clean up the
4257 	 * orphan info for us.
4258 	 */
4259 	if (inode->i_nlink)
4260 		ext4_orphan_del(handle, inode);
4261 
4262 	inode->i_mtime = inode->i_ctime = current_time(inode);
4263 	err2 = ext4_mark_inode_dirty(handle, inode);
4264 	if (unlikely(err2 && !err))
4265 		err = err2;
4266 	ext4_journal_stop(handle);
4267 
4268 out_trace:
4269 	trace_ext4_truncate_exit(inode);
4270 	return err;
4271 }
4272 
4273 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4274 {
4275 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4276 		return inode_peek_iversion_raw(inode);
4277 	else
4278 		return inode_peek_iversion(inode);
4279 }
4280 
4281 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4282 				 struct ext4_inode_info *ei)
4283 {
4284 	struct inode *inode = &(ei->vfs_inode);
4285 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4286 	struct super_block *sb = inode->i_sb;
4287 
4288 	if (i_blocks <= ~0U) {
4289 		/*
4290 		 * i_blocks can be represented in a 32 bit variable
4291 		 * as multiple of 512 bytes
4292 		 */
4293 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4294 		raw_inode->i_blocks_high = 0;
4295 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4296 		return 0;
4297 	}
4298 
4299 	/*
4300 	 * This should never happen since sb->s_maxbytes should not have
4301 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4302 	 * feature in ext4_fill_super().
4303 	 */
4304 	if (!ext4_has_feature_huge_file(sb))
4305 		return -EFSCORRUPTED;
4306 
4307 	if (i_blocks <= 0xffffffffffffULL) {
4308 		/*
4309 		 * i_blocks can be represented in a 48 bit variable
4310 		 * as multiple of 512 bytes
4311 		 */
4312 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4313 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4314 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4315 	} else {
4316 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4317 		/* i_block is stored in file system block size */
4318 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4319 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4320 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4321 	}
4322 	return 0;
4323 }
4324 
4325 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4326 {
4327 	struct ext4_inode_info *ei = EXT4_I(inode);
4328 	uid_t i_uid;
4329 	gid_t i_gid;
4330 	projid_t i_projid;
4331 	int block;
4332 	int err;
4333 
4334 	err = ext4_inode_blocks_set(raw_inode, ei);
4335 
4336 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4337 	i_uid = i_uid_read(inode);
4338 	i_gid = i_gid_read(inode);
4339 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4340 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4341 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4342 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4343 		/*
4344 		 * Fix up interoperability with old kernels. Otherwise,
4345 		 * old inodes get re-used with the upper 16 bits of the
4346 		 * uid/gid intact.
4347 		 */
4348 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4349 			raw_inode->i_uid_high = 0;
4350 			raw_inode->i_gid_high = 0;
4351 		} else {
4352 			raw_inode->i_uid_high =
4353 				cpu_to_le16(high_16_bits(i_uid));
4354 			raw_inode->i_gid_high =
4355 				cpu_to_le16(high_16_bits(i_gid));
4356 		}
4357 	} else {
4358 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4359 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4360 		raw_inode->i_uid_high = 0;
4361 		raw_inode->i_gid_high = 0;
4362 	}
4363 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4364 
4365 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4366 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4367 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4368 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4369 
4370 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4371 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4372 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4373 		raw_inode->i_file_acl_high =
4374 			cpu_to_le16(ei->i_file_acl >> 32);
4375 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4376 	ext4_isize_set(raw_inode, ei->i_disksize);
4377 
4378 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4379 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4380 		if (old_valid_dev(inode->i_rdev)) {
4381 			raw_inode->i_block[0] =
4382 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4383 			raw_inode->i_block[1] = 0;
4384 		} else {
4385 			raw_inode->i_block[0] = 0;
4386 			raw_inode->i_block[1] =
4387 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4388 			raw_inode->i_block[2] = 0;
4389 		}
4390 	} else if (!ext4_has_inline_data(inode)) {
4391 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4392 			raw_inode->i_block[block] = ei->i_data[block];
4393 	}
4394 
4395 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396 		u64 ivers = ext4_inode_peek_iversion(inode);
4397 
4398 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4399 		if (ei->i_extra_isize) {
4400 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4401 				raw_inode->i_version_hi =
4402 					cpu_to_le32(ivers >> 32);
4403 			raw_inode->i_extra_isize =
4404 				cpu_to_le16(ei->i_extra_isize);
4405 		}
4406 	}
4407 
4408 	if (i_projid != EXT4_DEF_PROJID &&
4409 	    !ext4_has_feature_project(inode->i_sb))
4410 		err = err ?: -EFSCORRUPTED;
4411 
4412 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4413 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4414 		raw_inode->i_projid = cpu_to_le32(i_projid);
4415 
4416 	ext4_inode_csum_set(inode, raw_inode, ei);
4417 	return err;
4418 }
4419 
4420 /*
4421  * ext4_get_inode_loc returns with an extra refcount against the inode's
4422  * underlying buffer_head on success. If we pass 'inode' and it does not
4423  * have in-inode xattr, we have all inode data in memory that is needed
4424  * to recreate the on-disk version of this inode.
4425  */
4426 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4427 				struct inode *inode, struct ext4_iloc *iloc,
4428 				ext4_fsblk_t *ret_block)
4429 {
4430 	struct ext4_group_desc	*gdp;
4431 	struct buffer_head	*bh;
4432 	ext4_fsblk_t		block;
4433 	struct blk_plug		plug;
4434 	int			inodes_per_block, inode_offset;
4435 
4436 	iloc->bh = NULL;
4437 	if (ino < EXT4_ROOT_INO ||
4438 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4439 		return -EFSCORRUPTED;
4440 
4441 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4442 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4443 	if (!gdp)
4444 		return -EIO;
4445 
4446 	/*
4447 	 * Figure out the offset within the block group inode table
4448 	 */
4449 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4450 	inode_offset = ((ino - 1) %
4451 			EXT4_INODES_PER_GROUP(sb));
4452 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4453 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4454 
4455 	bh = sb_getblk(sb, block);
4456 	if (unlikely(!bh))
4457 		return -ENOMEM;
4458 	if (ext4_buffer_uptodate(bh))
4459 		goto has_buffer;
4460 
4461 	lock_buffer(bh);
4462 	if (ext4_buffer_uptodate(bh)) {
4463 		/* Someone brought it uptodate while we waited */
4464 		unlock_buffer(bh);
4465 		goto has_buffer;
4466 	}
4467 
4468 	/*
4469 	 * If we have all information of the inode in memory and this
4470 	 * is the only valid inode in the block, we need not read the
4471 	 * block.
4472 	 */
4473 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4474 		struct buffer_head *bitmap_bh;
4475 		int i, start;
4476 
4477 		start = inode_offset & ~(inodes_per_block - 1);
4478 
4479 		/* Is the inode bitmap in cache? */
4480 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4481 		if (unlikely(!bitmap_bh))
4482 			goto make_io;
4483 
4484 		/*
4485 		 * If the inode bitmap isn't in cache then the
4486 		 * optimisation may end up performing two reads instead
4487 		 * of one, so skip it.
4488 		 */
4489 		if (!buffer_uptodate(bitmap_bh)) {
4490 			brelse(bitmap_bh);
4491 			goto make_io;
4492 		}
4493 		for (i = start; i < start + inodes_per_block; i++) {
4494 			if (i == inode_offset)
4495 				continue;
4496 			if (ext4_test_bit(i, bitmap_bh->b_data))
4497 				break;
4498 		}
4499 		brelse(bitmap_bh);
4500 		if (i == start + inodes_per_block) {
4501 			struct ext4_inode *raw_inode =
4502 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4503 
4504 			/* all other inodes are free, so skip I/O */
4505 			memset(bh->b_data, 0, bh->b_size);
4506 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4507 				ext4_fill_raw_inode(inode, raw_inode);
4508 			set_buffer_uptodate(bh);
4509 			unlock_buffer(bh);
4510 			goto has_buffer;
4511 		}
4512 	}
4513 
4514 make_io:
4515 	/*
4516 	 * If we need to do any I/O, try to pre-readahead extra
4517 	 * blocks from the inode table.
4518 	 */
4519 	blk_start_plug(&plug);
4520 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4521 		ext4_fsblk_t b, end, table;
4522 		unsigned num;
4523 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4524 
4525 		table = ext4_inode_table(sb, gdp);
4526 		/* s_inode_readahead_blks is always a power of 2 */
4527 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4528 		if (table > b)
4529 			b = table;
4530 		end = b + ra_blks;
4531 		num = EXT4_INODES_PER_GROUP(sb);
4532 		if (ext4_has_group_desc_csum(sb))
4533 			num -= ext4_itable_unused_count(sb, gdp);
4534 		table += num / inodes_per_block;
4535 		if (end > table)
4536 			end = table;
4537 		while (b <= end)
4538 			ext4_sb_breadahead_unmovable(sb, b++);
4539 	}
4540 
4541 	/*
4542 	 * There are other valid inodes in the buffer, this inode
4543 	 * has in-inode xattrs, or we don't have this inode in memory.
4544 	 * Read the block from disk.
4545 	 */
4546 	trace_ext4_load_inode(sb, ino);
4547 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4548 	blk_finish_plug(&plug);
4549 	wait_on_buffer(bh);
4550 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4551 	if (!buffer_uptodate(bh)) {
4552 		if (ret_block)
4553 			*ret_block = block;
4554 		brelse(bh);
4555 		return -EIO;
4556 	}
4557 has_buffer:
4558 	iloc->bh = bh;
4559 	return 0;
4560 }
4561 
4562 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4563 					struct ext4_iloc *iloc)
4564 {
4565 	ext4_fsblk_t err_blk = 0;
4566 	int ret;
4567 
4568 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4569 					&err_blk);
4570 
4571 	if (ret == -EIO)
4572 		ext4_error_inode_block(inode, err_blk, EIO,
4573 					"unable to read itable block");
4574 
4575 	return ret;
4576 }
4577 
4578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4579 {
4580 	ext4_fsblk_t err_blk = 0;
4581 	int ret;
4582 
4583 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4584 					&err_blk);
4585 
4586 	if (ret == -EIO)
4587 		ext4_error_inode_block(inode, err_blk, EIO,
4588 					"unable to read itable block");
4589 
4590 	return ret;
4591 }
4592 
4593 
4594 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4595 			  struct ext4_iloc *iloc)
4596 {
4597 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4598 }
4599 
4600 static bool ext4_should_enable_dax(struct inode *inode)
4601 {
4602 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4603 
4604 	if (test_opt2(inode->i_sb, DAX_NEVER))
4605 		return false;
4606 	if (!S_ISREG(inode->i_mode))
4607 		return false;
4608 	if (ext4_should_journal_data(inode))
4609 		return false;
4610 	if (ext4_has_inline_data(inode))
4611 		return false;
4612 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4613 		return false;
4614 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4615 		return false;
4616 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4617 		return false;
4618 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4619 		return true;
4620 
4621 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4622 }
4623 
4624 void ext4_set_inode_flags(struct inode *inode, bool init)
4625 {
4626 	unsigned int flags = EXT4_I(inode)->i_flags;
4627 	unsigned int new_fl = 0;
4628 
4629 	WARN_ON_ONCE(IS_DAX(inode) && init);
4630 
4631 	if (flags & EXT4_SYNC_FL)
4632 		new_fl |= S_SYNC;
4633 	if (flags & EXT4_APPEND_FL)
4634 		new_fl |= S_APPEND;
4635 	if (flags & EXT4_IMMUTABLE_FL)
4636 		new_fl |= S_IMMUTABLE;
4637 	if (flags & EXT4_NOATIME_FL)
4638 		new_fl |= S_NOATIME;
4639 	if (flags & EXT4_DIRSYNC_FL)
4640 		new_fl |= S_DIRSYNC;
4641 
4642 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4643 	 * here if already set. */
4644 	new_fl |= (inode->i_flags & S_DAX);
4645 	if (init && ext4_should_enable_dax(inode))
4646 		new_fl |= S_DAX;
4647 
4648 	if (flags & EXT4_ENCRYPT_FL)
4649 		new_fl |= S_ENCRYPTED;
4650 	if (flags & EXT4_CASEFOLD_FL)
4651 		new_fl |= S_CASEFOLD;
4652 	if (flags & EXT4_VERITY_FL)
4653 		new_fl |= S_VERITY;
4654 	inode_set_flags(inode, new_fl,
4655 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4656 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4657 }
4658 
4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4660 				  struct ext4_inode_info *ei)
4661 {
4662 	blkcnt_t i_blocks ;
4663 	struct inode *inode = &(ei->vfs_inode);
4664 	struct super_block *sb = inode->i_sb;
4665 
4666 	if (ext4_has_feature_huge_file(sb)) {
4667 		/* we are using combined 48 bit field */
4668 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4669 					le32_to_cpu(raw_inode->i_blocks_lo);
4670 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4671 			/* i_blocks represent file system block size */
4672 			return i_blocks  << (inode->i_blkbits - 9);
4673 		} else {
4674 			return i_blocks;
4675 		}
4676 	} else {
4677 		return le32_to_cpu(raw_inode->i_blocks_lo);
4678 	}
4679 }
4680 
4681 static inline int ext4_iget_extra_inode(struct inode *inode,
4682 					 struct ext4_inode *raw_inode,
4683 					 struct ext4_inode_info *ei)
4684 {
4685 	__le32 *magic = (void *)raw_inode +
4686 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4687 
4688 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4689 	    EXT4_INODE_SIZE(inode->i_sb) &&
4690 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4691 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4692 		return ext4_find_inline_data_nolock(inode);
4693 	} else
4694 		EXT4_I(inode)->i_inline_off = 0;
4695 	return 0;
4696 }
4697 
4698 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4699 {
4700 	if (!ext4_has_feature_project(inode->i_sb))
4701 		return -EOPNOTSUPP;
4702 	*projid = EXT4_I(inode)->i_projid;
4703 	return 0;
4704 }
4705 
4706 /*
4707  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4708  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4709  * set.
4710  */
4711 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4712 {
4713 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4714 		inode_set_iversion_raw(inode, val);
4715 	else
4716 		inode_set_iversion_queried(inode, val);
4717 }
4718 
4719 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4720 			  ext4_iget_flags flags, const char *function,
4721 			  unsigned int line)
4722 {
4723 	struct ext4_iloc iloc;
4724 	struct ext4_inode *raw_inode;
4725 	struct ext4_inode_info *ei;
4726 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4727 	struct inode *inode;
4728 	journal_t *journal = EXT4_SB(sb)->s_journal;
4729 	long ret;
4730 	loff_t size;
4731 	int block;
4732 	uid_t i_uid;
4733 	gid_t i_gid;
4734 	projid_t i_projid;
4735 
4736 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4737 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4738 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4739 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4740 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4741 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4742 	    (ino < EXT4_ROOT_INO) ||
4743 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4744 		if (flags & EXT4_IGET_HANDLE)
4745 			return ERR_PTR(-ESTALE);
4746 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4747 			     "inode #%lu: comm %s: iget: illegal inode #",
4748 			     ino, current->comm);
4749 		return ERR_PTR(-EFSCORRUPTED);
4750 	}
4751 
4752 	inode = iget_locked(sb, ino);
4753 	if (!inode)
4754 		return ERR_PTR(-ENOMEM);
4755 	if (!(inode->i_state & I_NEW))
4756 		return inode;
4757 
4758 	ei = EXT4_I(inode);
4759 	iloc.bh = NULL;
4760 
4761 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4762 	if (ret < 0)
4763 		goto bad_inode;
4764 	raw_inode = ext4_raw_inode(&iloc);
4765 
4766 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4767 		ext4_error_inode(inode, function, line, 0,
4768 				 "iget: root inode unallocated");
4769 		ret = -EFSCORRUPTED;
4770 		goto bad_inode;
4771 	}
4772 
4773 	if ((flags & EXT4_IGET_HANDLE) &&
4774 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4775 		ret = -ESTALE;
4776 		goto bad_inode;
4777 	}
4778 
4779 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4780 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4781 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4782 			EXT4_INODE_SIZE(inode->i_sb) ||
4783 		    (ei->i_extra_isize & 3)) {
4784 			ext4_error_inode(inode, function, line, 0,
4785 					 "iget: bad extra_isize %u "
4786 					 "(inode size %u)",
4787 					 ei->i_extra_isize,
4788 					 EXT4_INODE_SIZE(inode->i_sb));
4789 			ret = -EFSCORRUPTED;
4790 			goto bad_inode;
4791 		}
4792 	} else
4793 		ei->i_extra_isize = 0;
4794 
4795 	/* Precompute checksum seed for inode metadata */
4796 	if (ext4_has_metadata_csum(sb)) {
4797 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4798 		__u32 csum;
4799 		__le32 inum = cpu_to_le32(inode->i_ino);
4800 		__le32 gen = raw_inode->i_generation;
4801 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4802 				   sizeof(inum));
4803 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4804 					      sizeof(gen));
4805 	}
4806 
4807 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4808 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4809 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4810 		ext4_error_inode_err(inode, function, line, 0,
4811 				EFSBADCRC, "iget: checksum invalid");
4812 		ret = -EFSBADCRC;
4813 		goto bad_inode;
4814 	}
4815 
4816 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4817 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4818 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4819 	if (ext4_has_feature_project(sb) &&
4820 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4821 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4822 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4823 	else
4824 		i_projid = EXT4_DEF_PROJID;
4825 
4826 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4827 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4828 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4829 	}
4830 	i_uid_write(inode, i_uid);
4831 	i_gid_write(inode, i_gid);
4832 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4833 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4834 
4835 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4836 	ei->i_inline_off = 0;
4837 	ei->i_dir_start_lookup = 0;
4838 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4839 	/* We now have enough fields to check if the inode was active or not.
4840 	 * This is needed because nfsd might try to access dead inodes
4841 	 * the test is that same one that e2fsck uses
4842 	 * NeilBrown 1999oct15
4843 	 */
4844 	if (inode->i_nlink == 0) {
4845 		if ((inode->i_mode == 0 ||
4846 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4847 		    ino != EXT4_BOOT_LOADER_INO) {
4848 			/* this inode is deleted */
4849 			ret = -ESTALE;
4850 			goto bad_inode;
4851 		}
4852 		/* The only unlinked inodes we let through here have
4853 		 * valid i_mode and are being read by the orphan
4854 		 * recovery code: that's fine, we're about to complete
4855 		 * the process of deleting those.
4856 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4857 		 * not initialized on a new filesystem. */
4858 	}
4859 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4860 	ext4_set_inode_flags(inode, true);
4861 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4862 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4863 	if (ext4_has_feature_64bit(sb))
4864 		ei->i_file_acl |=
4865 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4866 	inode->i_size = ext4_isize(sb, raw_inode);
4867 	if ((size = i_size_read(inode)) < 0) {
4868 		ext4_error_inode(inode, function, line, 0,
4869 				 "iget: bad i_size value: %lld", size);
4870 		ret = -EFSCORRUPTED;
4871 		goto bad_inode;
4872 	}
4873 	/*
4874 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4875 	 * we'd normally treat htree data as empty space. But with metadata
4876 	 * checksumming that corrupts checksums so forbid that.
4877 	 */
4878 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4879 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4880 		ext4_error_inode(inode, function, line, 0,
4881 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4882 		ret = -EFSCORRUPTED;
4883 		goto bad_inode;
4884 	}
4885 	ei->i_disksize = inode->i_size;
4886 #ifdef CONFIG_QUOTA
4887 	ei->i_reserved_quota = 0;
4888 #endif
4889 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4890 	ei->i_block_group = iloc.block_group;
4891 	ei->i_last_alloc_group = ~0;
4892 	/*
4893 	 * NOTE! The in-memory inode i_data array is in little-endian order
4894 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4895 	 */
4896 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4897 		ei->i_data[block] = raw_inode->i_block[block];
4898 	INIT_LIST_HEAD(&ei->i_orphan);
4899 	ext4_fc_init_inode(&ei->vfs_inode);
4900 
4901 	/*
4902 	 * Set transaction id's of transactions that have to be committed
4903 	 * to finish f[data]sync. We set them to currently running transaction
4904 	 * as we cannot be sure that the inode or some of its metadata isn't
4905 	 * part of the transaction - the inode could have been reclaimed and
4906 	 * now it is reread from disk.
4907 	 */
4908 	if (journal) {
4909 		transaction_t *transaction;
4910 		tid_t tid;
4911 
4912 		read_lock(&journal->j_state_lock);
4913 		if (journal->j_running_transaction)
4914 			transaction = journal->j_running_transaction;
4915 		else
4916 			transaction = journal->j_committing_transaction;
4917 		if (transaction)
4918 			tid = transaction->t_tid;
4919 		else
4920 			tid = journal->j_commit_sequence;
4921 		read_unlock(&journal->j_state_lock);
4922 		ei->i_sync_tid = tid;
4923 		ei->i_datasync_tid = tid;
4924 	}
4925 
4926 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4927 		if (ei->i_extra_isize == 0) {
4928 			/* The extra space is currently unused. Use it. */
4929 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4930 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4931 					    EXT4_GOOD_OLD_INODE_SIZE;
4932 		} else {
4933 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4934 			if (ret)
4935 				goto bad_inode;
4936 		}
4937 	}
4938 
4939 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4940 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4941 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4942 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4943 
4944 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4945 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4946 
4947 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4949 				ivers |=
4950 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4951 		}
4952 		ext4_inode_set_iversion_queried(inode, ivers);
4953 	}
4954 
4955 	ret = 0;
4956 	if (ei->i_file_acl &&
4957 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4958 		ext4_error_inode(inode, function, line, 0,
4959 				 "iget: bad extended attribute block %llu",
4960 				 ei->i_file_acl);
4961 		ret = -EFSCORRUPTED;
4962 		goto bad_inode;
4963 	} else if (!ext4_has_inline_data(inode)) {
4964 		/* validate the block references in the inode */
4965 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4966 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4967 			(S_ISLNK(inode->i_mode) &&
4968 			!ext4_inode_is_fast_symlink(inode)))) {
4969 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4970 				ret = ext4_ext_check_inode(inode);
4971 			else
4972 				ret = ext4_ind_check_inode(inode);
4973 		}
4974 	}
4975 	if (ret)
4976 		goto bad_inode;
4977 
4978 	if (S_ISREG(inode->i_mode)) {
4979 		inode->i_op = &ext4_file_inode_operations;
4980 		inode->i_fop = &ext4_file_operations;
4981 		ext4_set_aops(inode);
4982 	} else if (S_ISDIR(inode->i_mode)) {
4983 		inode->i_op = &ext4_dir_inode_operations;
4984 		inode->i_fop = &ext4_dir_operations;
4985 	} else if (S_ISLNK(inode->i_mode)) {
4986 		/* VFS does not allow setting these so must be corruption */
4987 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4988 			ext4_error_inode(inode, function, line, 0,
4989 					 "iget: immutable or append flags "
4990 					 "not allowed on symlinks");
4991 			ret = -EFSCORRUPTED;
4992 			goto bad_inode;
4993 		}
4994 		if (IS_ENCRYPTED(inode)) {
4995 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4996 		} else if (ext4_inode_is_fast_symlink(inode)) {
4997 			inode->i_link = (char *)ei->i_data;
4998 			inode->i_op = &ext4_fast_symlink_inode_operations;
4999 			nd_terminate_link(ei->i_data, inode->i_size,
5000 				sizeof(ei->i_data) - 1);
5001 		} else {
5002 			inode->i_op = &ext4_symlink_inode_operations;
5003 		}
5004 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5005 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5006 		inode->i_op = &ext4_special_inode_operations;
5007 		if (raw_inode->i_block[0])
5008 			init_special_inode(inode, inode->i_mode,
5009 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5010 		else
5011 			init_special_inode(inode, inode->i_mode,
5012 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5013 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5014 		make_bad_inode(inode);
5015 	} else {
5016 		ret = -EFSCORRUPTED;
5017 		ext4_error_inode(inode, function, line, 0,
5018 				 "iget: bogus i_mode (%o)", inode->i_mode);
5019 		goto bad_inode;
5020 	}
5021 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5022 		ext4_error_inode(inode, function, line, 0,
5023 				 "casefold flag without casefold feature");
5024 	brelse(iloc.bh);
5025 
5026 	unlock_new_inode(inode);
5027 	return inode;
5028 
5029 bad_inode:
5030 	brelse(iloc.bh);
5031 	iget_failed(inode);
5032 	return ERR_PTR(ret);
5033 }
5034 
5035 static void __ext4_update_other_inode_time(struct super_block *sb,
5036 					   unsigned long orig_ino,
5037 					   unsigned long ino,
5038 					   struct ext4_inode *raw_inode)
5039 {
5040 	struct inode *inode;
5041 
5042 	inode = find_inode_by_ino_rcu(sb, ino);
5043 	if (!inode)
5044 		return;
5045 
5046 	if (!inode_is_dirtytime_only(inode))
5047 		return;
5048 
5049 	spin_lock(&inode->i_lock);
5050 	if (inode_is_dirtytime_only(inode)) {
5051 		struct ext4_inode_info	*ei = EXT4_I(inode);
5052 
5053 		inode->i_state &= ~I_DIRTY_TIME;
5054 		spin_unlock(&inode->i_lock);
5055 
5056 		spin_lock(&ei->i_raw_lock);
5057 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5058 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5059 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5060 		ext4_inode_csum_set(inode, raw_inode, ei);
5061 		spin_unlock(&ei->i_raw_lock);
5062 		trace_ext4_other_inode_update_time(inode, orig_ino);
5063 		return;
5064 	}
5065 	spin_unlock(&inode->i_lock);
5066 }
5067 
5068 /*
5069  * Opportunistically update the other time fields for other inodes in
5070  * the same inode table block.
5071  */
5072 static void ext4_update_other_inodes_time(struct super_block *sb,
5073 					  unsigned long orig_ino, char *buf)
5074 {
5075 	unsigned long ino;
5076 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5077 	int inode_size = EXT4_INODE_SIZE(sb);
5078 
5079 	/*
5080 	 * Calculate the first inode in the inode table block.  Inode
5081 	 * numbers are one-based.  That is, the first inode in a block
5082 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5083 	 */
5084 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5085 	rcu_read_lock();
5086 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5087 		if (ino == orig_ino)
5088 			continue;
5089 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5090 					       (struct ext4_inode *)buf);
5091 	}
5092 	rcu_read_unlock();
5093 }
5094 
5095 /*
5096  * Post the struct inode info into an on-disk inode location in the
5097  * buffer-cache.  This gobbles the caller's reference to the
5098  * buffer_head in the inode location struct.
5099  *
5100  * The caller must have write access to iloc->bh.
5101  */
5102 static int ext4_do_update_inode(handle_t *handle,
5103 				struct inode *inode,
5104 				struct ext4_iloc *iloc)
5105 {
5106 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5107 	struct ext4_inode_info *ei = EXT4_I(inode);
5108 	struct buffer_head *bh = iloc->bh;
5109 	struct super_block *sb = inode->i_sb;
5110 	int err;
5111 	int need_datasync = 0, set_large_file = 0;
5112 
5113 	spin_lock(&ei->i_raw_lock);
5114 
5115 	/*
5116 	 * For fields not tracked in the in-memory inode, initialise them
5117 	 * to zero for new inodes.
5118 	 */
5119 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5120 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5121 
5122 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5123 		need_datasync = 1;
5124 	if (ei->i_disksize > 0x7fffffffULL) {
5125 		if (!ext4_has_feature_large_file(sb) ||
5126 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5127 			set_large_file = 1;
5128 	}
5129 
5130 	err = ext4_fill_raw_inode(inode, raw_inode);
5131 	spin_unlock(&ei->i_raw_lock);
5132 	if (err) {
5133 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5134 		goto out_brelse;
5135 	}
5136 
5137 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5138 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5139 					      bh->b_data);
5140 
5141 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5142 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5143 	if (err)
5144 		goto out_error;
5145 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5146 	if (set_large_file) {
5147 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5148 		err = ext4_journal_get_write_access(handle, sb,
5149 						    EXT4_SB(sb)->s_sbh,
5150 						    EXT4_JTR_NONE);
5151 		if (err)
5152 			goto out_error;
5153 		lock_buffer(EXT4_SB(sb)->s_sbh);
5154 		ext4_set_feature_large_file(sb);
5155 		ext4_superblock_csum_set(sb);
5156 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5157 		ext4_handle_sync(handle);
5158 		err = ext4_handle_dirty_metadata(handle, NULL,
5159 						 EXT4_SB(sb)->s_sbh);
5160 	}
5161 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5162 out_error:
5163 	ext4_std_error(inode->i_sb, err);
5164 out_brelse:
5165 	brelse(bh);
5166 	return err;
5167 }
5168 
5169 /*
5170  * ext4_write_inode()
5171  *
5172  * We are called from a few places:
5173  *
5174  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5175  *   Here, there will be no transaction running. We wait for any running
5176  *   transaction to commit.
5177  *
5178  * - Within flush work (sys_sync(), kupdate and such).
5179  *   We wait on commit, if told to.
5180  *
5181  * - Within iput_final() -> write_inode_now()
5182  *   We wait on commit, if told to.
5183  *
5184  * In all cases it is actually safe for us to return without doing anything,
5185  * because the inode has been copied into a raw inode buffer in
5186  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5187  * writeback.
5188  *
5189  * Note that we are absolutely dependent upon all inode dirtiers doing the
5190  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5191  * which we are interested.
5192  *
5193  * It would be a bug for them to not do this.  The code:
5194  *
5195  *	mark_inode_dirty(inode)
5196  *	stuff();
5197  *	inode->i_size = expr;
5198  *
5199  * is in error because write_inode() could occur while `stuff()' is running,
5200  * and the new i_size will be lost.  Plus the inode will no longer be on the
5201  * superblock's dirty inode list.
5202  */
5203 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5204 {
5205 	int err;
5206 
5207 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5208 	    sb_rdonly(inode->i_sb))
5209 		return 0;
5210 
5211 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5212 		return -EIO;
5213 
5214 	if (EXT4_SB(inode->i_sb)->s_journal) {
5215 		if (ext4_journal_current_handle()) {
5216 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5217 			dump_stack();
5218 			return -EIO;
5219 		}
5220 
5221 		/*
5222 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5223 		 * ext4_sync_fs() will force the commit after everything is
5224 		 * written.
5225 		 */
5226 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5227 			return 0;
5228 
5229 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5230 						EXT4_I(inode)->i_sync_tid);
5231 	} else {
5232 		struct ext4_iloc iloc;
5233 
5234 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5235 		if (err)
5236 			return err;
5237 		/*
5238 		 * sync(2) will flush the whole buffer cache. No need to do
5239 		 * it here separately for each inode.
5240 		 */
5241 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5242 			sync_dirty_buffer(iloc.bh);
5243 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5244 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5245 					       "IO error syncing inode");
5246 			err = -EIO;
5247 		}
5248 		brelse(iloc.bh);
5249 	}
5250 	return err;
5251 }
5252 
5253 /*
5254  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5255  * buffers that are attached to a folio straddling i_size and are undergoing
5256  * commit. In that case we have to wait for commit to finish and try again.
5257  */
5258 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5259 {
5260 	unsigned offset;
5261 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5262 	tid_t commit_tid = 0;
5263 	int ret;
5264 
5265 	offset = inode->i_size & (PAGE_SIZE - 1);
5266 	/*
5267 	 * If the folio is fully truncated, we don't need to wait for any commit
5268 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5269 	 * strip all buffers from the folio but keep the folio dirty which can then
5270 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5271 	 * buffers). Also we don't need to wait for any commit if all buffers in
5272 	 * the folio remain valid. This is most beneficial for the common case of
5273 	 * blocksize == PAGESIZE.
5274 	 */
5275 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5276 		return;
5277 	while (1) {
5278 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5279 				      inode->i_size >> PAGE_SHIFT);
5280 		if (!folio)
5281 			return;
5282 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5283 						folio_size(folio) - offset);
5284 		folio_unlock(folio);
5285 		folio_put(folio);
5286 		if (ret != -EBUSY)
5287 			return;
5288 		commit_tid = 0;
5289 		read_lock(&journal->j_state_lock);
5290 		if (journal->j_committing_transaction)
5291 			commit_tid = journal->j_committing_transaction->t_tid;
5292 		read_unlock(&journal->j_state_lock);
5293 		if (commit_tid)
5294 			jbd2_log_wait_commit(journal, commit_tid);
5295 	}
5296 }
5297 
5298 /*
5299  * ext4_setattr()
5300  *
5301  * Called from notify_change.
5302  *
5303  * We want to trap VFS attempts to truncate the file as soon as
5304  * possible.  In particular, we want to make sure that when the VFS
5305  * shrinks i_size, we put the inode on the orphan list and modify
5306  * i_disksize immediately, so that during the subsequent flushing of
5307  * dirty pages and freeing of disk blocks, we can guarantee that any
5308  * commit will leave the blocks being flushed in an unused state on
5309  * disk.  (On recovery, the inode will get truncated and the blocks will
5310  * be freed, so we have a strong guarantee that no future commit will
5311  * leave these blocks visible to the user.)
5312  *
5313  * Another thing we have to assure is that if we are in ordered mode
5314  * and inode is still attached to the committing transaction, we must
5315  * we start writeout of all the dirty pages which are being truncated.
5316  * This way we are sure that all the data written in the previous
5317  * transaction are already on disk (truncate waits for pages under
5318  * writeback).
5319  *
5320  * Called with inode->i_rwsem down.
5321  */
5322 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5323 		 struct iattr *attr)
5324 {
5325 	struct inode *inode = d_inode(dentry);
5326 	int error, rc = 0;
5327 	int orphan = 0;
5328 	const unsigned int ia_valid = attr->ia_valid;
5329 
5330 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5331 		return -EIO;
5332 
5333 	if (unlikely(IS_IMMUTABLE(inode)))
5334 		return -EPERM;
5335 
5336 	if (unlikely(IS_APPEND(inode) &&
5337 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5338 				  ATTR_GID | ATTR_TIMES_SET))))
5339 		return -EPERM;
5340 
5341 	error = setattr_prepare(mnt_userns, dentry, attr);
5342 	if (error)
5343 		return error;
5344 
5345 	error = fscrypt_prepare_setattr(dentry, attr);
5346 	if (error)
5347 		return error;
5348 
5349 	error = fsverity_prepare_setattr(dentry, attr);
5350 	if (error)
5351 		return error;
5352 
5353 	if (is_quota_modification(inode, attr)) {
5354 		error = dquot_initialize(inode);
5355 		if (error)
5356 			return error;
5357 	}
5358 
5359 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5360 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5361 		handle_t *handle;
5362 
5363 		/* (user+group)*(old+new) structure, inode write (sb,
5364 		 * inode block, ? - but truncate inode update has it) */
5365 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5366 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5367 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5368 		if (IS_ERR(handle)) {
5369 			error = PTR_ERR(handle);
5370 			goto err_out;
5371 		}
5372 
5373 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5374 		 * counts xattr inode references.
5375 		 */
5376 		down_read(&EXT4_I(inode)->xattr_sem);
5377 		error = dquot_transfer(inode, attr);
5378 		up_read(&EXT4_I(inode)->xattr_sem);
5379 
5380 		if (error) {
5381 			ext4_journal_stop(handle);
5382 			return error;
5383 		}
5384 		/* Update corresponding info in inode so that everything is in
5385 		 * one transaction */
5386 		if (attr->ia_valid & ATTR_UID)
5387 			inode->i_uid = attr->ia_uid;
5388 		if (attr->ia_valid & ATTR_GID)
5389 			inode->i_gid = attr->ia_gid;
5390 		error = ext4_mark_inode_dirty(handle, inode);
5391 		ext4_journal_stop(handle);
5392 		if (unlikely(error)) {
5393 			return error;
5394 		}
5395 	}
5396 
5397 	if (attr->ia_valid & ATTR_SIZE) {
5398 		handle_t *handle;
5399 		loff_t oldsize = inode->i_size;
5400 		loff_t old_disksize;
5401 		int shrink = (attr->ia_size < inode->i_size);
5402 
5403 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5404 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5405 
5406 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5407 				return -EFBIG;
5408 			}
5409 		}
5410 		if (!S_ISREG(inode->i_mode)) {
5411 			return -EINVAL;
5412 		}
5413 
5414 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415 			inode_inc_iversion(inode);
5416 
5417 		if (shrink) {
5418 			if (ext4_should_order_data(inode)) {
5419 				error = ext4_begin_ordered_truncate(inode,
5420 							    attr->ia_size);
5421 				if (error)
5422 					goto err_out;
5423 			}
5424 			/*
5425 			 * Blocks are going to be removed from the inode. Wait
5426 			 * for dio in flight.
5427 			 */
5428 			inode_dio_wait(inode);
5429 		}
5430 
5431 		filemap_invalidate_lock(inode->i_mapping);
5432 
5433 		rc = ext4_break_layouts(inode);
5434 		if (rc) {
5435 			filemap_invalidate_unlock(inode->i_mapping);
5436 			goto err_out;
5437 		}
5438 
5439 		if (attr->ia_size != inode->i_size) {
5440 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441 			if (IS_ERR(handle)) {
5442 				error = PTR_ERR(handle);
5443 				goto out_mmap_sem;
5444 			}
5445 			if (ext4_handle_valid(handle) && shrink) {
5446 				error = ext4_orphan_add(handle, inode);
5447 				orphan = 1;
5448 			}
5449 			/*
5450 			 * Update c/mtime on truncate up, ext4_truncate() will
5451 			 * update c/mtime in shrink case below
5452 			 */
5453 			if (!shrink) {
5454 				inode->i_mtime = current_time(inode);
5455 				inode->i_ctime = inode->i_mtime;
5456 			}
5457 
5458 			if (shrink)
5459 				ext4_fc_track_range(handle, inode,
5460 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5461 					inode->i_sb->s_blocksize_bits,
5462 					EXT_MAX_BLOCKS - 1);
5463 			else
5464 				ext4_fc_track_range(
5465 					handle, inode,
5466 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5467 					inode->i_sb->s_blocksize_bits,
5468 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5469 					inode->i_sb->s_blocksize_bits);
5470 
5471 			down_write(&EXT4_I(inode)->i_data_sem);
5472 			old_disksize = EXT4_I(inode)->i_disksize;
5473 			EXT4_I(inode)->i_disksize = attr->ia_size;
5474 			rc = ext4_mark_inode_dirty(handle, inode);
5475 			if (!error)
5476 				error = rc;
5477 			/*
5478 			 * We have to update i_size under i_data_sem together
5479 			 * with i_disksize to avoid races with writeback code
5480 			 * running ext4_wb_update_i_disksize().
5481 			 */
5482 			if (!error)
5483 				i_size_write(inode, attr->ia_size);
5484 			else
5485 				EXT4_I(inode)->i_disksize = old_disksize;
5486 			up_write(&EXT4_I(inode)->i_data_sem);
5487 			ext4_journal_stop(handle);
5488 			if (error)
5489 				goto out_mmap_sem;
5490 			if (!shrink) {
5491 				pagecache_isize_extended(inode, oldsize,
5492 							 inode->i_size);
5493 			} else if (ext4_should_journal_data(inode)) {
5494 				ext4_wait_for_tail_page_commit(inode);
5495 			}
5496 		}
5497 
5498 		/*
5499 		 * Truncate pagecache after we've waited for commit
5500 		 * in data=journal mode to make pages freeable.
5501 		 */
5502 		truncate_pagecache(inode, inode->i_size);
5503 		/*
5504 		 * Call ext4_truncate() even if i_size didn't change to
5505 		 * truncate possible preallocated blocks.
5506 		 */
5507 		if (attr->ia_size <= oldsize) {
5508 			rc = ext4_truncate(inode);
5509 			if (rc)
5510 				error = rc;
5511 		}
5512 out_mmap_sem:
5513 		filemap_invalidate_unlock(inode->i_mapping);
5514 	}
5515 
5516 	if (!error) {
5517 		setattr_copy(mnt_userns, inode, attr);
5518 		mark_inode_dirty(inode);
5519 	}
5520 
5521 	/*
5522 	 * If the call to ext4_truncate failed to get a transaction handle at
5523 	 * all, we need to clean up the in-core orphan list manually.
5524 	 */
5525 	if (orphan && inode->i_nlink)
5526 		ext4_orphan_del(NULL, inode);
5527 
5528 	if (!error && (ia_valid & ATTR_MODE))
5529 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5530 
5531 err_out:
5532 	if  (error)
5533 		ext4_std_error(inode->i_sb, error);
5534 	if (!error)
5535 		error = rc;
5536 	return error;
5537 }
5538 
5539 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5540 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5541 {
5542 	struct inode *inode = d_inode(path->dentry);
5543 	struct ext4_inode *raw_inode;
5544 	struct ext4_inode_info *ei = EXT4_I(inode);
5545 	unsigned int flags;
5546 
5547 	if ((request_mask & STATX_BTIME) &&
5548 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5549 		stat->result_mask |= STATX_BTIME;
5550 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5551 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5552 	}
5553 
5554 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5555 	if (flags & EXT4_APPEND_FL)
5556 		stat->attributes |= STATX_ATTR_APPEND;
5557 	if (flags & EXT4_COMPR_FL)
5558 		stat->attributes |= STATX_ATTR_COMPRESSED;
5559 	if (flags & EXT4_ENCRYPT_FL)
5560 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5561 	if (flags & EXT4_IMMUTABLE_FL)
5562 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5563 	if (flags & EXT4_NODUMP_FL)
5564 		stat->attributes |= STATX_ATTR_NODUMP;
5565 	if (flags & EXT4_VERITY_FL)
5566 		stat->attributes |= STATX_ATTR_VERITY;
5567 
5568 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5569 				  STATX_ATTR_COMPRESSED |
5570 				  STATX_ATTR_ENCRYPTED |
5571 				  STATX_ATTR_IMMUTABLE |
5572 				  STATX_ATTR_NODUMP |
5573 				  STATX_ATTR_VERITY);
5574 
5575 	generic_fillattr(mnt_userns, inode, stat);
5576 	return 0;
5577 }
5578 
5579 int ext4_file_getattr(struct user_namespace *mnt_userns,
5580 		      const struct path *path, struct kstat *stat,
5581 		      u32 request_mask, unsigned int query_flags)
5582 {
5583 	struct inode *inode = d_inode(path->dentry);
5584 	u64 delalloc_blocks;
5585 
5586 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5587 
5588 	/*
5589 	 * If there is inline data in the inode, the inode will normally not
5590 	 * have data blocks allocated (it may have an external xattr block).
5591 	 * Report at least one sector for such files, so tools like tar, rsync,
5592 	 * others don't incorrectly think the file is completely sparse.
5593 	 */
5594 	if (unlikely(ext4_has_inline_data(inode)))
5595 		stat->blocks += (stat->size + 511) >> 9;
5596 
5597 	/*
5598 	 * We can't update i_blocks if the block allocation is delayed
5599 	 * otherwise in the case of system crash before the real block
5600 	 * allocation is done, we will have i_blocks inconsistent with
5601 	 * on-disk file blocks.
5602 	 * We always keep i_blocks updated together with real
5603 	 * allocation. But to not confuse with user, stat
5604 	 * will return the blocks that include the delayed allocation
5605 	 * blocks for this file.
5606 	 */
5607 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5608 				   EXT4_I(inode)->i_reserved_data_blocks);
5609 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5610 	return 0;
5611 }
5612 
5613 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5614 				   int pextents)
5615 {
5616 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5617 		return ext4_ind_trans_blocks(inode, lblocks);
5618 	return ext4_ext_index_trans_blocks(inode, pextents);
5619 }
5620 
5621 /*
5622  * Account for index blocks, block groups bitmaps and block group
5623  * descriptor blocks if modify datablocks and index blocks
5624  * worse case, the indexs blocks spread over different block groups
5625  *
5626  * If datablocks are discontiguous, they are possible to spread over
5627  * different block groups too. If they are contiguous, with flexbg,
5628  * they could still across block group boundary.
5629  *
5630  * Also account for superblock, inode, quota and xattr blocks
5631  */
5632 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5633 				  int pextents)
5634 {
5635 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5636 	int gdpblocks;
5637 	int idxblocks;
5638 	int ret = 0;
5639 
5640 	/*
5641 	 * How many index blocks need to touch to map @lblocks logical blocks
5642 	 * to @pextents physical extents?
5643 	 */
5644 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5645 
5646 	ret = idxblocks;
5647 
5648 	/*
5649 	 * Now let's see how many group bitmaps and group descriptors need
5650 	 * to account
5651 	 */
5652 	groups = idxblocks + pextents;
5653 	gdpblocks = groups;
5654 	if (groups > ngroups)
5655 		groups = ngroups;
5656 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5657 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5658 
5659 	/* bitmaps and block group descriptor blocks */
5660 	ret += groups + gdpblocks;
5661 
5662 	/* Blocks for super block, inode, quota and xattr blocks */
5663 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5664 
5665 	return ret;
5666 }
5667 
5668 /*
5669  * Calculate the total number of credits to reserve to fit
5670  * the modification of a single pages into a single transaction,
5671  * which may include multiple chunks of block allocations.
5672  *
5673  * This could be called via ext4_write_begin()
5674  *
5675  * We need to consider the worse case, when
5676  * one new block per extent.
5677  */
5678 int ext4_writepage_trans_blocks(struct inode *inode)
5679 {
5680 	int bpp = ext4_journal_blocks_per_page(inode);
5681 	int ret;
5682 
5683 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5684 
5685 	/* Account for data blocks for journalled mode */
5686 	if (ext4_should_journal_data(inode))
5687 		ret += bpp;
5688 	return ret;
5689 }
5690 
5691 /*
5692  * Calculate the journal credits for a chunk of data modification.
5693  *
5694  * This is called from DIO, fallocate or whoever calling
5695  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5696  *
5697  * journal buffers for data blocks are not included here, as DIO
5698  * and fallocate do no need to journal data buffers.
5699  */
5700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5701 {
5702 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5703 }
5704 
5705 /*
5706  * The caller must have previously called ext4_reserve_inode_write().
5707  * Give this, we know that the caller already has write access to iloc->bh.
5708  */
5709 int ext4_mark_iloc_dirty(handle_t *handle,
5710 			 struct inode *inode, struct ext4_iloc *iloc)
5711 {
5712 	int err = 0;
5713 
5714 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5715 		put_bh(iloc->bh);
5716 		return -EIO;
5717 	}
5718 	ext4_fc_track_inode(handle, inode);
5719 
5720 	if (IS_I_VERSION(inode))
5721 		inode_inc_iversion(inode);
5722 
5723 	/* the do_update_inode consumes one bh->b_count */
5724 	get_bh(iloc->bh);
5725 
5726 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5727 	err = ext4_do_update_inode(handle, inode, iloc);
5728 	put_bh(iloc->bh);
5729 	return err;
5730 }
5731 
5732 /*
5733  * On success, We end up with an outstanding reference count against
5734  * iloc->bh.  This _must_ be cleaned up later.
5735  */
5736 
5737 int
5738 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5739 			 struct ext4_iloc *iloc)
5740 {
5741 	int err;
5742 
5743 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5744 		return -EIO;
5745 
5746 	err = ext4_get_inode_loc(inode, iloc);
5747 	if (!err) {
5748 		BUFFER_TRACE(iloc->bh, "get_write_access");
5749 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5750 						    iloc->bh, EXT4_JTR_NONE);
5751 		if (err) {
5752 			brelse(iloc->bh);
5753 			iloc->bh = NULL;
5754 		}
5755 	}
5756 	ext4_std_error(inode->i_sb, err);
5757 	return err;
5758 }
5759 
5760 static int __ext4_expand_extra_isize(struct inode *inode,
5761 				     unsigned int new_extra_isize,
5762 				     struct ext4_iloc *iloc,
5763 				     handle_t *handle, int *no_expand)
5764 {
5765 	struct ext4_inode *raw_inode;
5766 	struct ext4_xattr_ibody_header *header;
5767 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5768 	struct ext4_inode_info *ei = EXT4_I(inode);
5769 	int error;
5770 
5771 	/* this was checked at iget time, but double check for good measure */
5772 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5773 	    (ei->i_extra_isize & 3)) {
5774 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5775 				 ei->i_extra_isize,
5776 				 EXT4_INODE_SIZE(inode->i_sb));
5777 		return -EFSCORRUPTED;
5778 	}
5779 	if ((new_extra_isize < ei->i_extra_isize) ||
5780 	    (new_extra_isize < 4) ||
5781 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5782 		return -EINVAL;	/* Should never happen */
5783 
5784 	raw_inode = ext4_raw_inode(iloc);
5785 
5786 	header = IHDR(inode, raw_inode);
5787 
5788 	/* No extended attributes present */
5789 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5790 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5791 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5792 		       EXT4_I(inode)->i_extra_isize, 0,
5793 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5794 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5795 		return 0;
5796 	}
5797 
5798 	/* try to expand with EAs present */
5799 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5800 					   raw_inode, handle);
5801 	if (error) {
5802 		/*
5803 		 * Inode size expansion failed; don't try again
5804 		 */
5805 		*no_expand = 1;
5806 	}
5807 
5808 	return error;
5809 }
5810 
5811 /*
5812  * Expand an inode by new_extra_isize bytes.
5813  * Returns 0 on success or negative error number on failure.
5814  */
5815 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5816 					  unsigned int new_extra_isize,
5817 					  struct ext4_iloc iloc,
5818 					  handle_t *handle)
5819 {
5820 	int no_expand;
5821 	int error;
5822 
5823 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5824 		return -EOVERFLOW;
5825 
5826 	/*
5827 	 * In nojournal mode, we can immediately attempt to expand
5828 	 * the inode.  When journaled, we first need to obtain extra
5829 	 * buffer credits since we may write into the EA block
5830 	 * with this same handle. If journal_extend fails, then it will
5831 	 * only result in a minor loss of functionality for that inode.
5832 	 * If this is felt to be critical, then e2fsck should be run to
5833 	 * force a large enough s_min_extra_isize.
5834 	 */
5835 	if (ext4_journal_extend(handle,
5836 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5837 		return -ENOSPC;
5838 
5839 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5840 		return -EBUSY;
5841 
5842 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5843 					  handle, &no_expand);
5844 	ext4_write_unlock_xattr(inode, &no_expand);
5845 
5846 	return error;
5847 }
5848 
5849 int ext4_expand_extra_isize(struct inode *inode,
5850 			    unsigned int new_extra_isize,
5851 			    struct ext4_iloc *iloc)
5852 {
5853 	handle_t *handle;
5854 	int no_expand;
5855 	int error, rc;
5856 
5857 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5858 		brelse(iloc->bh);
5859 		return -EOVERFLOW;
5860 	}
5861 
5862 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5863 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5864 	if (IS_ERR(handle)) {
5865 		error = PTR_ERR(handle);
5866 		brelse(iloc->bh);
5867 		return error;
5868 	}
5869 
5870 	ext4_write_lock_xattr(inode, &no_expand);
5871 
5872 	BUFFER_TRACE(iloc->bh, "get_write_access");
5873 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5874 					      EXT4_JTR_NONE);
5875 	if (error) {
5876 		brelse(iloc->bh);
5877 		goto out_unlock;
5878 	}
5879 
5880 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5881 					  handle, &no_expand);
5882 
5883 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5884 	if (!error)
5885 		error = rc;
5886 
5887 out_unlock:
5888 	ext4_write_unlock_xattr(inode, &no_expand);
5889 	ext4_journal_stop(handle);
5890 	return error;
5891 }
5892 
5893 /*
5894  * What we do here is to mark the in-core inode as clean with respect to inode
5895  * dirtiness (it may still be data-dirty).
5896  * This means that the in-core inode may be reaped by prune_icache
5897  * without having to perform any I/O.  This is a very good thing,
5898  * because *any* task may call prune_icache - even ones which
5899  * have a transaction open against a different journal.
5900  *
5901  * Is this cheating?  Not really.  Sure, we haven't written the
5902  * inode out, but prune_icache isn't a user-visible syncing function.
5903  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5904  * we start and wait on commits.
5905  */
5906 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5907 				const char *func, unsigned int line)
5908 {
5909 	struct ext4_iloc iloc;
5910 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5911 	int err;
5912 
5913 	might_sleep();
5914 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5915 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5916 	if (err)
5917 		goto out;
5918 
5919 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5920 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5921 					       iloc, handle);
5922 
5923 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5924 out:
5925 	if (unlikely(err))
5926 		ext4_error_inode_err(inode, func, line, 0, err,
5927 					"mark_inode_dirty error");
5928 	return err;
5929 }
5930 
5931 /*
5932  * ext4_dirty_inode() is called from __mark_inode_dirty()
5933  *
5934  * We're really interested in the case where a file is being extended.
5935  * i_size has been changed by generic_commit_write() and we thus need
5936  * to include the updated inode in the current transaction.
5937  *
5938  * Also, dquot_alloc_block() will always dirty the inode when blocks
5939  * are allocated to the file.
5940  *
5941  * If the inode is marked synchronous, we don't honour that here - doing
5942  * so would cause a commit on atime updates, which we don't bother doing.
5943  * We handle synchronous inodes at the highest possible level.
5944  */
5945 void ext4_dirty_inode(struct inode *inode, int flags)
5946 {
5947 	handle_t *handle;
5948 
5949 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5950 	if (IS_ERR(handle))
5951 		return;
5952 	ext4_mark_inode_dirty(handle, inode);
5953 	ext4_journal_stop(handle);
5954 }
5955 
5956 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5957 {
5958 	journal_t *journal;
5959 	handle_t *handle;
5960 	int err;
5961 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5962 
5963 	/*
5964 	 * We have to be very careful here: changing a data block's
5965 	 * journaling status dynamically is dangerous.  If we write a
5966 	 * data block to the journal, change the status and then delete
5967 	 * that block, we risk forgetting to revoke the old log record
5968 	 * from the journal and so a subsequent replay can corrupt data.
5969 	 * So, first we make sure that the journal is empty and that
5970 	 * nobody is changing anything.
5971 	 */
5972 
5973 	journal = EXT4_JOURNAL(inode);
5974 	if (!journal)
5975 		return 0;
5976 	if (is_journal_aborted(journal))
5977 		return -EROFS;
5978 
5979 	/* Wait for all existing dio workers */
5980 	inode_dio_wait(inode);
5981 
5982 	/*
5983 	 * Before flushing the journal and switching inode's aops, we have
5984 	 * to flush all dirty data the inode has. There can be outstanding
5985 	 * delayed allocations, there can be unwritten extents created by
5986 	 * fallocate or buffered writes in dioread_nolock mode covered by
5987 	 * dirty data which can be converted only after flushing the dirty
5988 	 * data (and journalled aops don't know how to handle these cases).
5989 	 */
5990 	if (val) {
5991 		filemap_invalidate_lock(inode->i_mapping);
5992 		err = filemap_write_and_wait(inode->i_mapping);
5993 		if (err < 0) {
5994 			filemap_invalidate_unlock(inode->i_mapping);
5995 			return err;
5996 		}
5997 	}
5998 
5999 	percpu_down_write(&sbi->s_writepages_rwsem);
6000 	jbd2_journal_lock_updates(journal);
6001 
6002 	/*
6003 	 * OK, there are no updates running now, and all cached data is
6004 	 * synced to disk.  We are now in a completely consistent state
6005 	 * which doesn't have anything in the journal, and we know that
6006 	 * no filesystem updates are running, so it is safe to modify
6007 	 * the inode's in-core data-journaling state flag now.
6008 	 */
6009 
6010 	if (val)
6011 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6012 	else {
6013 		err = jbd2_journal_flush(journal, 0);
6014 		if (err < 0) {
6015 			jbd2_journal_unlock_updates(journal);
6016 			percpu_up_write(&sbi->s_writepages_rwsem);
6017 			return err;
6018 		}
6019 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6020 	}
6021 	ext4_set_aops(inode);
6022 
6023 	jbd2_journal_unlock_updates(journal);
6024 	percpu_up_write(&sbi->s_writepages_rwsem);
6025 
6026 	if (val)
6027 		filemap_invalidate_unlock(inode->i_mapping);
6028 
6029 	/* Finally we can mark the inode as dirty. */
6030 
6031 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6032 	if (IS_ERR(handle))
6033 		return PTR_ERR(handle);
6034 
6035 	ext4_fc_mark_ineligible(inode->i_sb,
6036 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6037 	err = ext4_mark_inode_dirty(handle, inode);
6038 	ext4_handle_sync(handle);
6039 	ext4_journal_stop(handle);
6040 	ext4_std_error(inode->i_sb, err);
6041 
6042 	return err;
6043 }
6044 
6045 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6046 			    struct buffer_head *bh)
6047 {
6048 	return !buffer_mapped(bh);
6049 }
6050 
6051 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6052 {
6053 	struct vm_area_struct *vma = vmf->vma;
6054 	struct page *page = vmf->page;
6055 	loff_t size;
6056 	unsigned long len;
6057 	int err;
6058 	vm_fault_t ret;
6059 	struct file *file = vma->vm_file;
6060 	struct inode *inode = file_inode(file);
6061 	struct address_space *mapping = inode->i_mapping;
6062 	handle_t *handle;
6063 	get_block_t *get_block;
6064 	int retries = 0;
6065 
6066 	if (unlikely(IS_IMMUTABLE(inode)))
6067 		return VM_FAULT_SIGBUS;
6068 
6069 	sb_start_pagefault(inode->i_sb);
6070 	file_update_time(vma->vm_file);
6071 
6072 	filemap_invalidate_lock_shared(mapping);
6073 
6074 	err = ext4_convert_inline_data(inode);
6075 	if (err)
6076 		goto out_ret;
6077 
6078 	/*
6079 	 * On data journalling we skip straight to the transaction handle:
6080 	 * there's no delalloc; page truncated will be checked later; the
6081 	 * early return w/ all buffers mapped (calculates size/len) can't
6082 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6083 	 */
6084 	if (ext4_should_journal_data(inode))
6085 		goto retry_alloc;
6086 
6087 	/* Delalloc case is easy... */
6088 	if (test_opt(inode->i_sb, DELALLOC) &&
6089 	    !ext4_nonda_switch(inode->i_sb)) {
6090 		do {
6091 			err = block_page_mkwrite(vma, vmf,
6092 						   ext4_da_get_block_prep);
6093 		} while (err == -ENOSPC &&
6094 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6095 		goto out_ret;
6096 	}
6097 
6098 	lock_page(page);
6099 	size = i_size_read(inode);
6100 	/* Page got truncated from under us? */
6101 	if (page->mapping != mapping || page_offset(page) > size) {
6102 		unlock_page(page);
6103 		ret = VM_FAULT_NOPAGE;
6104 		goto out;
6105 	}
6106 
6107 	if (page->index == size >> PAGE_SHIFT)
6108 		len = size & ~PAGE_MASK;
6109 	else
6110 		len = PAGE_SIZE;
6111 	/*
6112 	 * Return if we have all the buffers mapped. This avoids the need to do
6113 	 * journal_start/journal_stop which can block and take a long time
6114 	 *
6115 	 * This cannot be done for data journalling, as we have to add the
6116 	 * inode to the transaction's list to writeprotect pages on commit.
6117 	 */
6118 	if (page_has_buffers(page)) {
6119 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6120 					    0, len, NULL,
6121 					    ext4_bh_unmapped)) {
6122 			/* Wait so that we don't change page under IO */
6123 			wait_for_stable_page(page);
6124 			ret = VM_FAULT_LOCKED;
6125 			goto out;
6126 		}
6127 	}
6128 	unlock_page(page);
6129 	/* OK, we need to fill the hole... */
6130 	if (ext4_should_dioread_nolock(inode))
6131 		get_block = ext4_get_block_unwritten;
6132 	else
6133 		get_block = ext4_get_block;
6134 retry_alloc:
6135 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6136 				    ext4_writepage_trans_blocks(inode));
6137 	if (IS_ERR(handle)) {
6138 		ret = VM_FAULT_SIGBUS;
6139 		goto out;
6140 	}
6141 	/*
6142 	 * Data journalling can't use block_page_mkwrite() because it
6143 	 * will set_buffer_dirty() before do_journal_get_write_access()
6144 	 * thus might hit warning messages for dirty metadata buffers.
6145 	 */
6146 	if (!ext4_should_journal_data(inode)) {
6147 		err = block_page_mkwrite(vma, vmf, get_block);
6148 	} else {
6149 		lock_page(page);
6150 		size = i_size_read(inode);
6151 		/* Page got truncated from under us? */
6152 		if (page->mapping != mapping || page_offset(page) > size) {
6153 			ret = VM_FAULT_NOPAGE;
6154 			goto out_error;
6155 		}
6156 
6157 		if (page->index == size >> PAGE_SHIFT)
6158 			len = size & ~PAGE_MASK;
6159 		else
6160 			len = PAGE_SIZE;
6161 
6162 		err = __block_write_begin(page, 0, len, ext4_get_block);
6163 		if (!err) {
6164 			ret = VM_FAULT_SIGBUS;
6165 			if (ext4_walk_page_buffers(handle, inode,
6166 					page_buffers(page), 0, len, NULL,
6167 					do_journal_get_write_access))
6168 				goto out_error;
6169 			if (ext4_walk_page_buffers(handle, inode,
6170 					page_buffers(page), 0, len, NULL,
6171 					write_end_fn))
6172 				goto out_error;
6173 			if (ext4_jbd2_inode_add_write(handle, inode,
6174 						      page_offset(page), len))
6175 				goto out_error;
6176 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6177 		} else {
6178 			unlock_page(page);
6179 		}
6180 	}
6181 	ext4_journal_stop(handle);
6182 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6183 		goto retry_alloc;
6184 out_ret:
6185 	ret = block_page_mkwrite_return(err);
6186 out:
6187 	filemap_invalidate_unlock_shared(mapping);
6188 	sb_end_pagefault(inode->i_sb);
6189 	return ret;
6190 out_error:
6191 	unlock_page(page);
6192 	ext4_journal_stop(handle);
6193 	goto out;
6194 }
6195