xref: /linux/fs/ext4/readpage.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The intent is the ext4_mpage_readpages() function here is intended
11  * to replace mpage_readpages() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 #include <linux/cleancache.h>
47 
48 #include "ext4.h"
49 
50 #define NUM_PREALLOC_POST_READ_CTXS	128
51 
52 static struct kmem_cache *bio_post_read_ctx_cache;
53 static mempool_t *bio_post_read_ctx_pool;
54 
55 /* postprocessing steps for read bios */
56 enum bio_post_read_step {
57 	STEP_INITIAL = 0,
58 	STEP_DECRYPT,
59 	STEP_VERITY,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct page *page;
72 	struct bio_vec *bv;
73 	struct bvec_iter_all iter_all;
74 
75 	bio_for_each_segment_all(bv, bio, iter_all) {
76 		page = bv->bv_page;
77 
78 		/* PG_error was set if any post_read step failed */
79 		if (bio->bi_status || PageError(page)) {
80 			ClearPageUptodate(page);
81 			/* will re-read again later */
82 			ClearPageError(page);
83 		} else {
84 			SetPageUptodate(page);
85 		}
86 		unlock_page(page);
87 	}
88 	if (bio->bi_private)
89 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90 	bio_put(bio);
91 }
92 
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94 
95 static void decrypt_work(struct work_struct *work)
96 {
97 	struct bio_post_read_ctx *ctx =
98 		container_of(work, struct bio_post_read_ctx, work);
99 
100 	fscrypt_decrypt_bio(ctx->bio);
101 
102 	bio_post_read_processing(ctx);
103 }
104 
105 static void verity_work(struct work_struct *work)
106 {
107 	struct bio_post_read_ctx *ctx =
108 		container_of(work, struct bio_post_read_ctx, work);
109 
110 	fsverity_verify_bio(ctx->bio);
111 
112 	bio_post_read_processing(ctx);
113 }
114 
115 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
116 {
117 	/*
118 	 * We use different work queues for decryption and for verity because
119 	 * verity may require reading metadata pages that need decryption, and
120 	 * we shouldn't recurse to the same workqueue.
121 	 */
122 	switch (++ctx->cur_step) {
123 	case STEP_DECRYPT:
124 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
125 			INIT_WORK(&ctx->work, decrypt_work);
126 			fscrypt_enqueue_decrypt_work(&ctx->work);
127 			return;
128 		}
129 		ctx->cur_step++;
130 		/* fall-through */
131 	case STEP_VERITY:
132 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
133 			INIT_WORK(&ctx->work, verity_work);
134 			fsverity_enqueue_verify_work(&ctx->work);
135 			return;
136 		}
137 		ctx->cur_step++;
138 		/* fall-through */
139 	default:
140 		__read_end_io(ctx->bio);
141 	}
142 }
143 
144 static bool bio_post_read_required(struct bio *bio)
145 {
146 	return bio->bi_private && !bio->bi_status;
147 }
148 
149 /*
150  * I/O completion handler for multipage BIOs.
151  *
152  * The mpage code never puts partial pages into a BIO (except for end-of-file).
153  * If a page does not map to a contiguous run of blocks then it simply falls
154  * back to block_read_full_page().
155  *
156  * Why is this?  If a page's completion depends on a number of different BIOs
157  * which can complete in any order (or at the same time) then determining the
158  * status of that page is hard.  See end_buffer_async_read() for the details.
159  * There is no point in duplicating all that complexity.
160  */
161 static void mpage_end_io(struct bio *bio)
162 {
163 	if (bio_post_read_required(bio)) {
164 		struct bio_post_read_ctx *ctx = bio->bi_private;
165 
166 		ctx->cur_step = STEP_INITIAL;
167 		bio_post_read_processing(ctx);
168 		return;
169 	}
170 	__read_end_io(bio);
171 }
172 
173 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
174 {
175 	return fsverity_active(inode) &&
176 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
177 }
178 
179 static struct bio_post_read_ctx *get_bio_post_read_ctx(struct inode *inode,
180 						       struct bio *bio,
181 						       pgoff_t first_idx)
182 {
183 	unsigned int post_read_steps = 0;
184 	struct bio_post_read_ctx *ctx = NULL;
185 
186 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
187 		post_read_steps |= 1 << STEP_DECRYPT;
188 
189 	if (ext4_need_verity(inode, first_idx))
190 		post_read_steps |= 1 << STEP_VERITY;
191 
192 	if (post_read_steps) {
193 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
194 		if (!ctx)
195 			return ERR_PTR(-ENOMEM);
196 		ctx->bio = bio;
197 		ctx->enabled_steps = post_read_steps;
198 		bio->bi_private = ctx;
199 	}
200 	return ctx;
201 }
202 
203 static inline loff_t ext4_readpage_limit(struct inode *inode)
204 {
205 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
206 	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
207 		return inode->i_sb->s_maxbytes;
208 
209 	return i_size_read(inode);
210 }
211 
212 int ext4_mpage_readpages(struct address_space *mapping,
213 			 struct list_head *pages, struct page *page,
214 			 unsigned nr_pages, bool is_readahead)
215 {
216 	struct bio *bio = NULL;
217 	sector_t last_block_in_bio = 0;
218 
219 	struct inode *inode = mapping->host;
220 	const unsigned blkbits = inode->i_blkbits;
221 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
222 	const unsigned blocksize = 1 << blkbits;
223 	sector_t block_in_file;
224 	sector_t last_block;
225 	sector_t last_block_in_file;
226 	sector_t blocks[MAX_BUF_PER_PAGE];
227 	unsigned page_block;
228 	struct block_device *bdev = inode->i_sb->s_bdev;
229 	int length;
230 	unsigned relative_block = 0;
231 	struct ext4_map_blocks map;
232 
233 	map.m_pblk = 0;
234 	map.m_lblk = 0;
235 	map.m_len = 0;
236 	map.m_flags = 0;
237 
238 	for (; nr_pages; nr_pages--) {
239 		int fully_mapped = 1;
240 		unsigned first_hole = blocks_per_page;
241 
242 		if (pages) {
243 			page = lru_to_page(pages);
244 
245 			prefetchw(&page->flags);
246 			list_del(&page->lru);
247 			if (add_to_page_cache_lru(page, mapping, page->index,
248 				  readahead_gfp_mask(mapping)))
249 				goto next_page;
250 		}
251 
252 		if (page_has_buffers(page))
253 			goto confused;
254 
255 		block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
256 		last_block = block_in_file + nr_pages * blocks_per_page;
257 		last_block_in_file = (ext4_readpage_limit(inode) +
258 				      blocksize - 1) >> blkbits;
259 		if (last_block > last_block_in_file)
260 			last_block = last_block_in_file;
261 		page_block = 0;
262 
263 		/*
264 		 * Map blocks using the previous result first.
265 		 */
266 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
267 		    block_in_file > map.m_lblk &&
268 		    block_in_file < (map.m_lblk + map.m_len)) {
269 			unsigned map_offset = block_in_file - map.m_lblk;
270 			unsigned last = map.m_len - map_offset;
271 
272 			for (relative_block = 0; ; relative_block++) {
273 				if (relative_block == last) {
274 					/* needed? */
275 					map.m_flags &= ~EXT4_MAP_MAPPED;
276 					break;
277 				}
278 				if (page_block == blocks_per_page)
279 					break;
280 				blocks[page_block] = map.m_pblk + map_offset +
281 					relative_block;
282 				page_block++;
283 				block_in_file++;
284 			}
285 		}
286 
287 		/*
288 		 * Then do more ext4_map_blocks() calls until we are
289 		 * done with this page.
290 		 */
291 		while (page_block < blocks_per_page) {
292 			if (block_in_file < last_block) {
293 				map.m_lblk = block_in_file;
294 				map.m_len = last_block - block_in_file;
295 
296 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
297 				set_error_page:
298 					SetPageError(page);
299 					zero_user_segment(page, 0,
300 							  PAGE_SIZE);
301 					unlock_page(page);
302 					goto next_page;
303 				}
304 			}
305 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
306 				fully_mapped = 0;
307 				if (first_hole == blocks_per_page)
308 					first_hole = page_block;
309 				page_block++;
310 				block_in_file++;
311 				continue;
312 			}
313 			if (first_hole != blocks_per_page)
314 				goto confused;		/* hole -> non-hole */
315 
316 			/* Contiguous blocks? */
317 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
318 				goto confused;
319 			for (relative_block = 0; ; relative_block++) {
320 				if (relative_block == map.m_len) {
321 					/* needed? */
322 					map.m_flags &= ~EXT4_MAP_MAPPED;
323 					break;
324 				} else if (page_block == blocks_per_page)
325 					break;
326 				blocks[page_block] = map.m_pblk+relative_block;
327 				page_block++;
328 				block_in_file++;
329 			}
330 		}
331 		if (first_hole != blocks_per_page) {
332 			zero_user_segment(page, first_hole << blkbits,
333 					  PAGE_SIZE);
334 			if (first_hole == 0) {
335 				if (ext4_need_verity(inode, page->index) &&
336 				    !fsverity_verify_page(page))
337 					goto set_error_page;
338 				SetPageUptodate(page);
339 				unlock_page(page);
340 				goto next_page;
341 			}
342 		} else if (fully_mapped) {
343 			SetPageMappedToDisk(page);
344 		}
345 		if (fully_mapped && blocks_per_page == 1 &&
346 		    !PageUptodate(page) && cleancache_get_page(page) == 0) {
347 			SetPageUptodate(page);
348 			goto confused;
349 		}
350 
351 		/*
352 		 * This page will go to BIO.  Do we need to send this
353 		 * BIO off first?
354 		 */
355 		if (bio && (last_block_in_bio != blocks[0] - 1)) {
356 		submit_and_realloc:
357 			submit_bio(bio);
358 			bio = NULL;
359 		}
360 		if (bio == NULL) {
361 			struct bio_post_read_ctx *ctx;
362 
363 			/*
364 			 * bio_alloc will _always_ be able to allocate a bio if
365 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
366 			 */
367 			bio = bio_alloc(GFP_KERNEL,
368 				min_t(int, nr_pages, BIO_MAX_PAGES));
369 			ctx = get_bio_post_read_ctx(inode, bio, page->index);
370 			if (IS_ERR(ctx)) {
371 				bio_put(bio);
372 				bio = NULL;
373 				goto set_error_page;
374 			}
375 			bio_set_dev(bio, bdev);
376 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
377 			bio->bi_end_io = mpage_end_io;
378 			bio->bi_private = ctx;
379 			bio_set_op_attrs(bio, REQ_OP_READ,
380 						is_readahead ? REQ_RAHEAD : 0);
381 		}
382 
383 		length = first_hole << blkbits;
384 		if (bio_add_page(bio, page, length, 0) < length)
385 			goto submit_and_realloc;
386 
387 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
388 		     (relative_block == map.m_len)) ||
389 		    (first_hole != blocks_per_page)) {
390 			submit_bio(bio);
391 			bio = NULL;
392 		} else
393 			last_block_in_bio = blocks[blocks_per_page - 1];
394 		goto next_page;
395 	confused:
396 		if (bio) {
397 			submit_bio(bio);
398 			bio = NULL;
399 		}
400 		if (!PageUptodate(page))
401 			block_read_full_page(page, ext4_get_block);
402 		else
403 			unlock_page(page);
404 	next_page:
405 		if (pages)
406 			put_page(page);
407 	}
408 	BUG_ON(pages && !list_empty(pages));
409 	if (bio)
410 		submit_bio(bio);
411 	return 0;
412 }
413 
414 int __init ext4_init_post_read_processing(void)
415 {
416 	bio_post_read_ctx_cache =
417 		kmem_cache_create("ext4_bio_post_read_ctx",
418 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
419 	if (!bio_post_read_ctx_cache)
420 		goto fail;
421 	bio_post_read_ctx_pool =
422 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
423 					 bio_post_read_ctx_cache);
424 	if (!bio_post_read_ctx_pool)
425 		goto fail_free_cache;
426 	return 0;
427 
428 fail_free_cache:
429 	kmem_cache_destroy(bio_post_read_ctx_cache);
430 fail:
431 	return -ENOMEM;
432 }
433 
434 void ext4_exit_post_read_processing(void)
435 {
436 	mempool_destroy(bio_post_read_ctx_pool);
437 	kmem_cache_destroy(bio_post_read_ctx_cache);
438 }
439