xref: /linux/fs/f2fs/data.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define NUM_PREALLOC_POST_READ_CTXS	128
30 
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static mempool_t *bio_post_read_ctx_pool;
33 
34 static bool __is_cp_guaranteed(struct page *page)
35 {
36 	struct address_space *mapping = page->mapping;
37 	struct inode *inode;
38 	struct f2fs_sb_info *sbi;
39 
40 	if (!mapping)
41 		return false;
42 
43 	inode = mapping->host;
44 	sbi = F2FS_I_SB(inode);
45 
46 	if (inode->i_ino == F2FS_META_INO(sbi) ||
47 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
48 			S_ISDIR(inode->i_mode) ||
49 			(S_ISREG(inode->i_mode) &&
50 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
51 			is_cold_data(page))
52 		return true;
53 	return false;
54 }
55 
56 static enum count_type __read_io_type(struct page *page)
57 {
58 	struct address_space *mapping = page_file_mapping(page);
59 
60 	if (mapping) {
61 		struct inode *inode = mapping->host;
62 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
63 
64 		if (inode->i_ino == F2FS_META_INO(sbi))
65 			return F2FS_RD_META;
66 
67 		if (inode->i_ino == F2FS_NODE_INO(sbi))
68 			return F2FS_RD_NODE;
69 	}
70 	return F2FS_RD_DATA;
71 }
72 
73 /* postprocessing steps for read bios */
74 enum bio_post_read_step {
75 	STEP_INITIAL = 0,
76 	STEP_DECRYPT,
77 	STEP_VERITY,
78 };
79 
80 struct bio_post_read_ctx {
81 	struct bio *bio;
82 	struct work_struct work;
83 	unsigned int cur_step;
84 	unsigned int enabled_steps;
85 };
86 
87 static void __read_end_io(struct bio *bio)
88 {
89 	struct page *page;
90 	struct bio_vec *bv;
91 	struct bvec_iter_all iter_all;
92 
93 	bio_for_each_segment_all(bv, bio, iter_all) {
94 		page = bv->bv_page;
95 
96 		/* PG_error was set if any post_read step failed */
97 		if (bio->bi_status || PageError(page)) {
98 			ClearPageUptodate(page);
99 			/* will re-read again later */
100 			ClearPageError(page);
101 		} else {
102 			SetPageUptodate(page);
103 		}
104 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
105 		unlock_page(page);
106 	}
107 	if (bio->bi_private)
108 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
109 	bio_put(bio);
110 }
111 
112 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
113 
114 static void decrypt_work(struct work_struct *work)
115 {
116 	struct bio_post_read_ctx *ctx =
117 		container_of(work, struct bio_post_read_ctx, work);
118 
119 	fscrypt_decrypt_bio(ctx->bio);
120 
121 	bio_post_read_processing(ctx);
122 }
123 
124 static void verity_work(struct work_struct *work)
125 {
126 	struct bio_post_read_ctx *ctx =
127 		container_of(work, struct bio_post_read_ctx, work);
128 
129 	fsverity_verify_bio(ctx->bio);
130 
131 	bio_post_read_processing(ctx);
132 }
133 
134 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
135 {
136 	/*
137 	 * We use different work queues for decryption and for verity because
138 	 * verity may require reading metadata pages that need decryption, and
139 	 * we shouldn't recurse to the same workqueue.
140 	 */
141 	switch (++ctx->cur_step) {
142 	case STEP_DECRYPT:
143 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
144 			INIT_WORK(&ctx->work, decrypt_work);
145 			fscrypt_enqueue_decrypt_work(&ctx->work);
146 			return;
147 		}
148 		ctx->cur_step++;
149 		/* fall-through */
150 	case STEP_VERITY:
151 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
152 			INIT_WORK(&ctx->work, verity_work);
153 			fsverity_enqueue_verify_work(&ctx->work);
154 			return;
155 		}
156 		ctx->cur_step++;
157 		/* fall-through */
158 	default:
159 		__read_end_io(ctx->bio);
160 	}
161 }
162 
163 static bool f2fs_bio_post_read_required(struct bio *bio)
164 {
165 	return bio->bi_private && !bio->bi_status;
166 }
167 
168 static void f2fs_read_end_io(struct bio *bio)
169 {
170 	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
171 						FAULT_READ_IO)) {
172 		f2fs_show_injection_info(FAULT_READ_IO);
173 		bio->bi_status = BLK_STS_IOERR;
174 	}
175 
176 	if (f2fs_bio_post_read_required(bio)) {
177 		struct bio_post_read_ctx *ctx = bio->bi_private;
178 
179 		ctx->cur_step = STEP_INITIAL;
180 		bio_post_read_processing(ctx);
181 		return;
182 	}
183 
184 	__read_end_io(bio);
185 }
186 
187 static void f2fs_write_end_io(struct bio *bio)
188 {
189 	struct f2fs_sb_info *sbi = bio->bi_private;
190 	struct bio_vec *bvec;
191 	struct bvec_iter_all iter_all;
192 
193 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
194 		f2fs_show_injection_info(FAULT_WRITE_IO);
195 		bio->bi_status = BLK_STS_IOERR;
196 	}
197 
198 	bio_for_each_segment_all(bvec, bio, iter_all) {
199 		struct page *page = bvec->bv_page;
200 		enum count_type type = WB_DATA_TYPE(page);
201 
202 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
203 			set_page_private(page, (unsigned long)NULL);
204 			ClearPagePrivate(page);
205 			unlock_page(page);
206 			mempool_free(page, sbi->write_io_dummy);
207 
208 			if (unlikely(bio->bi_status))
209 				f2fs_stop_checkpoint(sbi, true);
210 			continue;
211 		}
212 
213 		fscrypt_finalize_bounce_page(&page);
214 
215 		if (unlikely(bio->bi_status)) {
216 			mapping_set_error(page->mapping, -EIO);
217 			if (type == F2FS_WB_CP_DATA)
218 				f2fs_stop_checkpoint(sbi, true);
219 		}
220 
221 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
222 					page->index != nid_of_node(page));
223 
224 		dec_page_count(sbi, type);
225 		if (f2fs_in_warm_node_list(sbi, page))
226 			f2fs_del_fsync_node_entry(sbi, page);
227 		clear_cold_data(page);
228 		end_page_writeback(page);
229 	}
230 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
231 				wq_has_sleeper(&sbi->cp_wait))
232 		wake_up(&sbi->cp_wait);
233 
234 	bio_put(bio);
235 }
236 
237 /*
238  * Return true, if pre_bio's bdev is same as its target device.
239  */
240 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
241 				block_t blk_addr, struct bio *bio)
242 {
243 	struct block_device *bdev = sbi->sb->s_bdev;
244 	int i;
245 
246 	if (f2fs_is_multi_device(sbi)) {
247 		for (i = 0; i < sbi->s_ndevs; i++) {
248 			if (FDEV(i).start_blk <= blk_addr &&
249 			    FDEV(i).end_blk >= blk_addr) {
250 				blk_addr -= FDEV(i).start_blk;
251 				bdev = FDEV(i).bdev;
252 				break;
253 			}
254 		}
255 	}
256 	if (bio) {
257 		bio_set_dev(bio, bdev);
258 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
259 	}
260 	return bdev;
261 }
262 
263 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
264 {
265 	int i;
266 
267 	if (!f2fs_is_multi_device(sbi))
268 		return 0;
269 
270 	for (i = 0; i < sbi->s_ndevs; i++)
271 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
272 			return i;
273 	return 0;
274 }
275 
276 static bool __same_bdev(struct f2fs_sb_info *sbi,
277 				block_t blk_addr, struct bio *bio)
278 {
279 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
280 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
281 }
282 
283 /*
284  * Low-level block read/write IO operations.
285  */
286 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
287 {
288 	struct f2fs_sb_info *sbi = fio->sbi;
289 	struct bio *bio;
290 
291 	bio = f2fs_bio_alloc(sbi, npages, true);
292 
293 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
294 	if (is_read_io(fio->op)) {
295 		bio->bi_end_io = f2fs_read_end_io;
296 		bio->bi_private = NULL;
297 	} else {
298 		bio->bi_end_io = f2fs_write_end_io;
299 		bio->bi_private = sbi;
300 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
301 						fio->type, fio->temp);
302 	}
303 	if (fio->io_wbc)
304 		wbc_init_bio(fio->io_wbc, bio);
305 
306 	return bio;
307 }
308 
309 static inline void __submit_bio(struct f2fs_sb_info *sbi,
310 				struct bio *bio, enum page_type type)
311 {
312 	if (!is_read_io(bio_op(bio))) {
313 		unsigned int start;
314 
315 		if (type != DATA && type != NODE)
316 			goto submit_io;
317 
318 		if (test_opt(sbi, LFS) && current->plug)
319 			blk_finish_plug(current->plug);
320 
321 		if (F2FS_IO_ALIGNED(sbi))
322 			goto submit_io;
323 
324 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
325 		start %= F2FS_IO_SIZE(sbi);
326 
327 		if (start == 0)
328 			goto submit_io;
329 
330 		/* fill dummy pages */
331 		for (; start < F2FS_IO_SIZE(sbi); start++) {
332 			struct page *page =
333 				mempool_alloc(sbi->write_io_dummy,
334 					      GFP_NOIO | __GFP_NOFAIL);
335 			f2fs_bug_on(sbi, !page);
336 
337 			zero_user_segment(page, 0, PAGE_SIZE);
338 			SetPagePrivate(page);
339 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
340 			lock_page(page);
341 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
342 				f2fs_bug_on(sbi, 1);
343 		}
344 		/*
345 		 * In the NODE case, we lose next block address chain. So, we
346 		 * need to do checkpoint in f2fs_sync_file.
347 		 */
348 		if (type == NODE)
349 			set_sbi_flag(sbi, SBI_NEED_CP);
350 	}
351 submit_io:
352 	if (is_read_io(bio_op(bio)))
353 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
354 	else
355 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
356 	submit_bio(bio);
357 }
358 
359 static void __submit_merged_bio(struct f2fs_bio_info *io)
360 {
361 	struct f2fs_io_info *fio = &io->fio;
362 
363 	if (!io->bio)
364 		return;
365 
366 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
367 
368 	if (is_read_io(fio->op))
369 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
370 	else
371 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
372 
373 	__submit_bio(io->sbi, io->bio, fio->type);
374 	io->bio = NULL;
375 }
376 
377 static bool __has_merged_page(struct bio *bio, struct inode *inode,
378 						struct page *page, nid_t ino)
379 {
380 	struct bio_vec *bvec;
381 	struct page *target;
382 	struct bvec_iter_all iter_all;
383 
384 	if (!bio)
385 		return false;
386 
387 	if (!inode && !page && !ino)
388 		return true;
389 
390 	bio_for_each_segment_all(bvec, bio, iter_all) {
391 
392 		target = bvec->bv_page;
393 		if (fscrypt_is_bounce_page(target))
394 			target = fscrypt_pagecache_page(target);
395 
396 		if (inode && inode == target->mapping->host)
397 			return true;
398 		if (page && page == target)
399 			return true;
400 		if (ino && ino == ino_of_node(target))
401 			return true;
402 	}
403 
404 	return false;
405 }
406 
407 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
408 				enum page_type type, enum temp_type temp)
409 {
410 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
411 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
412 
413 	down_write(&io->io_rwsem);
414 
415 	/* change META to META_FLUSH in the checkpoint procedure */
416 	if (type >= META_FLUSH) {
417 		io->fio.type = META_FLUSH;
418 		io->fio.op = REQ_OP_WRITE;
419 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
420 		if (!test_opt(sbi, NOBARRIER))
421 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
422 	}
423 	__submit_merged_bio(io);
424 	up_write(&io->io_rwsem);
425 }
426 
427 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
428 				struct inode *inode, struct page *page,
429 				nid_t ino, enum page_type type, bool force)
430 {
431 	enum temp_type temp;
432 	bool ret = true;
433 
434 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
435 		if (!force)	{
436 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
437 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
438 
439 			down_read(&io->io_rwsem);
440 			ret = __has_merged_page(io->bio, inode, page, ino);
441 			up_read(&io->io_rwsem);
442 		}
443 		if (ret)
444 			__f2fs_submit_merged_write(sbi, type, temp);
445 
446 		/* TODO: use HOT temp only for meta pages now. */
447 		if (type >= META)
448 			break;
449 	}
450 }
451 
452 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
453 {
454 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
455 }
456 
457 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
458 				struct inode *inode, struct page *page,
459 				nid_t ino, enum page_type type)
460 {
461 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
462 }
463 
464 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
465 {
466 	f2fs_submit_merged_write(sbi, DATA);
467 	f2fs_submit_merged_write(sbi, NODE);
468 	f2fs_submit_merged_write(sbi, META);
469 }
470 
471 /*
472  * Fill the locked page with data located in the block address.
473  * A caller needs to unlock the page on failure.
474  */
475 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
476 {
477 	struct bio *bio;
478 	struct page *page = fio->encrypted_page ?
479 			fio->encrypted_page : fio->page;
480 
481 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
482 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
483 			META_GENERIC : DATA_GENERIC_ENHANCE)))
484 		return -EFSCORRUPTED;
485 
486 	trace_f2fs_submit_page_bio(page, fio);
487 	f2fs_trace_ios(fio, 0);
488 
489 	/* Allocate a new bio */
490 	bio = __bio_alloc(fio, 1);
491 
492 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
493 		bio_put(bio);
494 		return -EFAULT;
495 	}
496 
497 	if (fio->io_wbc && !is_read_io(fio->op))
498 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
499 
500 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
501 
502 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
503 			__read_io_type(page): WB_DATA_TYPE(fio->page));
504 
505 	__submit_bio(fio->sbi, bio, fio->type);
506 	return 0;
507 }
508 
509 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
510 				block_t last_blkaddr, block_t cur_blkaddr)
511 {
512 	if (last_blkaddr + 1 != cur_blkaddr)
513 		return false;
514 	return __same_bdev(sbi, cur_blkaddr, bio);
515 }
516 
517 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
518 						struct f2fs_io_info *fio)
519 {
520 	if (io->fio.op != fio->op)
521 		return false;
522 	return io->fio.op_flags == fio->op_flags;
523 }
524 
525 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
526 					struct f2fs_bio_info *io,
527 					struct f2fs_io_info *fio,
528 					block_t last_blkaddr,
529 					block_t cur_blkaddr)
530 {
531 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
532 		unsigned int filled_blocks =
533 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
534 		unsigned int io_size = F2FS_IO_SIZE(sbi);
535 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
536 
537 		/* IOs in bio is aligned and left space of vectors is not enough */
538 		if (!(filled_blocks % io_size) && left_vecs < io_size)
539 			return false;
540 	}
541 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
542 		return false;
543 	return io_type_is_mergeable(io, fio);
544 }
545 
546 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
547 {
548 	struct bio *bio = *fio->bio;
549 	struct page *page = fio->encrypted_page ?
550 			fio->encrypted_page : fio->page;
551 
552 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
553 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
554 		return -EFSCORRUPTED;
555 
556 	trace_f2fs_submit_page_bio(page, fio);
557 	f2fs_trace_ios(fio, 0);
558 
559 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
560 						fio->new_blkaddr)) {
561 		__submit_bio(fio->sbi, bio, fio->type);
562 		bio = NULL;
563 	}
564 alloc_new:
565 	if (!bio) {
566 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
567 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
568 	}
569 
570 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
571 		__submit_bio(fio->sbi, bio, fio->type);
572 		bio = NULL;
573 		goto alloc_new;
574 	}
575 
576 	if (fio->io_wbc)
577 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
578 
579 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
580 
581 	*fio->last_block = fio->new_blkaddr;
582 	*fio->bio = bio;
583 
584 	return 0;
585 }
586 
587 static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
588 							struct page *page)
589 {
590 	if (!bio)
591 		return;
592 
593 	if (!__has_merged_page(*bio, NULL, page, 0))
594 		return;
595 
596 	__submit_bio(sbi, *bio, DATA);
597 	*bio = NULL;
598 }
599 
600 void f2fs_submit_page_write(struct f2fs_io_info *fio)
601 {
602 	struct f2fs_sb_info *sbi = fio->sbi;
603 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
604 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
605 	struct page *bio_page;
606 
607 	f2fs_bug_on(sbi, is_read_io(fio->op));
608 
609 	down_write(&io->io_rwsem);
610 next:
611 	if (fio->in_list) {
612 		spin_lock(&io->io_lock);
613 		if (list_empty(&io->io_list)) {
614 			spin_unlock(&io->io_lock);
615 			goto out;
616 		}
617 		fio = list_first_entry(&io->io_list,
618 						struct f2fs_io_info, list);
619 		list_del(&fio->list);
620 		spin_unlock(&io->io_lock);
621 	}
622 
623 	verify_fio_blkaddr(fio);
624 
625 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
626 
627 	/* set submitted = true as a return value */
628 	fio->submitted = true;
629 
630 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
631 
632 	if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
633 			io->last_block_in_bio, fio->new_blkaddr))
634 		__submit_merged_bio(io);
635 alloc_new:
636 	if (io->bio == NULL) {
637 		if (F2FS_IO_ALIGNED(sbi) &&
638 				(fio->type == DATA || fio->type == NODE) &&
639 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
640 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
641 			fio->retry = true;
642 			goto skip;
643 		}
644 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
645 		io->fio = *fio;
646 	}
647 
648 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
649 		__submit_merged_bio(io);
650 		goto alloc_new;
651 	}
652 
653 	if (fio->io_wbc)
654 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
655 
656 	io->last_block_in_bio = fio->new_blkaddr;
657 	f2fs_trace_ios(fio, 0);
658 
659 	trace_f2fs_submit_page_write(fio->page, fio);
660 skip:
661 	if (fio->in_list)
662 		goto next;
663 out:
664 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
665 				!f2fs_is_checkpoint_ready(sbi))
666 		__submit_merged_bio(io);
667 	up_write(&io->io_rwsem);
668 }
669 
670 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
671 {
672 	return fsverity_active(inode) &&
673 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
674 }
675 
676 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
677 				      unsigned nr_pages, unsigned op_flag,
678 				      pgoff_t first_idx)
679 {
680 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
681 	struct bio *bio;
682 	struct bio_post_read_ctx *ctx;
683 	unsigned int post_read_steps = 0;
684 
685 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
686 	if (!bio)
687 		return ERR_PTR(-ENOMEM);
688 	f2fs_target_device(sbi, blkaddr, bio);
689 	bio->bi_end_io = f2fs_read_end_io;
690 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
691 
692 	if (f2fs_encrypted_file(inode))
693 		post_read_steps |= 1 << STEP_DECRYPT;
694 
695 	if (f2fs_need_verity(inode, first_idx))
696 		post_read_steps |= 1 << STEP_VERITY;
697 
698 	if (post_read_steps) {
699 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
700 		if (!ctx) {
701 			bio_put(bio);
702 			return ERR_PTR(-ENOMEM);
703 		}
704 		ctx->bio = bio;
705 		ctx->enabled_steps = post_read_steps;
706 		bio->bi_private = ctx;
707 	}
708 
709 	return bio;
710 }
711 
712 /* This can handle encryption stuffs */
713 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
714 							block_t blkaddr)
715 {
716 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
717 	struct bio *bio;
718 
719 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
720 	if (IS_ERR(bio))
721 		return PTR_ERR(bio);
722 
723 	/* wait for GCed page writeback via META_MAPPING */
724 	f2fs_wait_on_block_writeback(inode, blkaddr);
725 
726 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
727 		bio_put(bio);
728 		return -EFAULT;
729 	}
730 	ClearPageError(page);
731 	inc_page_count(sbi, F2FS_RD_DATA);
732 	__submit_bio(sbi, bio, DATA);
733 	return 0;
734 }
735 
736 static void __set_data_blkaddr(struct dnode_of_data *dn)
737 {
738 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
739 	__le32 *addr_array;
740 	int base = 0;
741 
742 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
743 		base = get_extra_isize(dn->inode);
744 
745 	/* Get physical address of data block */
746 	addr_array = blkaddr_in_node(rn);
747 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
748 }
749 
750 /*
751  * Lock ordering for the change of data block address:
752  * ->data_page
753  *  ->node_page
754  *    update block addresses in the node page
755  */
756 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
757 {
758 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
759 	__set_data_blkaddr(dn);
760 	if (set_page_dirty(dn->node_page))
761 		dn->node_changed = true;
762 }
763 
764 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
765 {
766 	dn->data_blkaddr = blkaddr;
767 	f2fs_set_data_blkaddr(dn);
768 	f2fs_update_extent_cache(dn);
769 }
770 
771 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
772 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
773 {
774 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
775 	int err;
776 
777 	if (!count)
778 		return 0;
779 
780 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
781 		return -EPERM;
782 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
783 		return err;
784 
785 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
786 						dn->ofs_in_node, count);
787 
788 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
789 
790 	for (; count > 0; dn->ofs_in_node++) {
791 		block_t blkaddr = datablock_addr(dn->inode,
792 					dn->node_page, dn->ofs_in_node);
793 		if (blkaddr == NULL_ADDR) {
794 			dn->data_blkaddr = NEW_ADDR;
795 			__set_data_blkaddr(dn);
796 			count--;
797 		}
798 	}
799 
800 	if (set_page_dirty(dn->node_page))
801 		dn->node_changed = true;
802 	return 0;
803 }
804 
805 /* Should keep dn->ofs_in_node unchanged */
806 int f2fs_reserve_new_block(struct dnode_of_data *dn)
807 {
808 	unsigned int ofs_in_node = dn->ofs_in_node;
809 	int ret;
810 
811 	ret = f2fs_reserve_new_blocks(dn, 1);
812 	dn->ofs_in_node = ofs_in_node;
813 	return ret;
814 }
815 
816 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
817 {
818 	bool need_put = dn->inode_page ? false : true;
819 	int err;
820 
821 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
822 	if (err)
823 		return err;
824 
825 	if (dn->data_blkaddr == NULL_ADDR)
826 		err = f2fs_reserve_new_block(dn);
827 	if (err || need_put)
828 		f2fs_put_dnode(dn);
829 	return err;
830 }
831 
832 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
833 {
834 	struct extent_info ei  = {0,0,0};
835 	struct inode *inode = dn->inode;
836 
837 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
838 		dn->data_blkaddr = ei.blk + index - ei.fofs;
839 		return 0;
840 	}
841 
842 	return f2fs_reserve_block(dn, index);
843 }
844 
845 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
846 						int op_flags, bool for_write)
847 {
848 	struct address_space *mapping = inode->i_mapping;
849 	struct dnode_of_data dn;
850 	struct page *page;
851 	struct extent_info ei = {0,0,0};
852 	int err;
853 
854 	page = f2fs_grab_cache_page(mapping, index, for_write);
855 	if (!page)
856 		return ERR_PTR(-ENOMEM);
857 
858 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
859 		dn.data_blkaddr = ei.blk + index - ei.fofs;
860 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
861 						DATA_GENERIC_ENHANCE_READ)) {
862 			err = -EFSCORRUPTED;
863 			goto put_err;
864 		}
865 		goto got_it;
866 	}
867 
868 	set_new_dnode(&dn, inode, NULL, NULL, 0);
869 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
870 	if (err)
871 		goto put_err;
872 	f2fs_put_dnode(&dn);
873 
874 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
875 		err = -ENOENT;
876 		goto put_err;
877 	}
878 	if (dn.data_blkaddr != NEW_ADDR &&
879 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
880 						dn.data_blkaddr,
881 						DATA_GENERIC_ENHANCE)) {
882 		err = -EFSCORRUPTED;
883 		goto put_err;
884 	}
885 got_it:
886 	if (PageUptodate(page)) {
887 		unlock_page(page);
888 		return page;
889 	}
890 
891 	/*
892 	 * A new dentry page is allocated but not able to be written, since its
893 	 * new inode page couldn't be allocated due to -ENOSPC.
894 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
895 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
896 	 * f2fs_init_inode_metadata.
897 	 */
898 	if (dn.data_blkaddr == NEW_ADDR) {
899 		zero_user_segment(page, 0, PAGE_SIZE);
900 		if (!PageUptodate(page))
901 			SetPageUptodate(page);
902 		unlock_page(page);
903 		return page;
904 	}
905 
906 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
907 	if (err)
908 		goto put_err;
909 	return page;
910 
911 put_err:
912 	f2fs_put_page(page, 1);
913 	return ERR_PTR(err);
914 }
915 
916 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
917 {
918 	struct address_space *mapping = inode->i_mapping;
919 	struct page *page;
920 
921 	page = find_get_page(mapping, index);
922 	if (page && PageUptodate(page))
923 		return page;
924 	f2fs_put_page(page, 0);
925 
926 	page = f2fs_get_read_data_page(inode, index, 0, false);
927 	if (IS_ERR(page))
928 		return page;
929 
930 	if (PageUptodate(page))
931 		return page;
932 
933 	wait_on_page_locked(page);
934 	if (unlikely(!PageUptodate(page))) {
935 		f2fs_put_page(page, 0);
936 		return ERR_PTR(-EIO);
937 	}
938 	return page;
939 }
940 
941 /*
942  * If it tries to access a hole, return an error.
943  * Because, the callers, functions in dir.c and GC, should be able to know
944  * whether this page exists or not.
945  */
946 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
947 							bool for_write)
948 {
949 	struct address_space *mapping = inode->i_mapping;
950 	struct page *page;
951 repeat:
952 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
953 	if (IS_ERR(page))
954 		return page;
955 
956 	/* wait for read completion */
957 	lock_page(page);
958 	if (unlikely(page->mapping != mapping)) {
959 		f2fs_put_page(page, 1);
960 		goto repeat;
961 	}
962 	if (unlikely(!PageUptodate(page))) {
963 		f2fs_put_page(page, 1);
964 		return ERR_PTR(-EIO);
965 	}
966 	return page;
967 }
968 
969 /*
970  * Caller ensures that this data page is never allocated.
971  * A new zero-filled data page is allocated in the page cache.
972  *
973  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
974  * f2fs_unlock_op().
975  * Note that, ipage is set only by make_empty_dir, and if any error occur,
976  * ipage should be released by this function.
977  */
978 struct page *f2fs_get_new_data_page(struct inode *inode,
979 		struct page *ipage, pgoff_t index, bool new_i_size)
980 {
981 	struct address_space *mapping = inode->i_mapping;
982 	struct page *page;
983 	struct dnode_of_data dn;
984 	int err;
985 
986 	page = f2fs_grab_cache_page(mapping, index, true);
987 	if (!page) {
988 		/*
989 		 * before exiting, we should make sure ipage will be released
990 		 * if any error occur.
991 		 */
992 		f2fs_put_page(ipage, 1);
993 		return ERR_PTR(-ENOMEM);
994 	}
995 
996 	set_new_dnode(&dn, inode, ipage, NULL, 0);
997 	err = f2fs_reserve_block(&dn, index);
998 	if (err) {
999 		f2fs_put_page(page, 1);
1000 		return ERR_PTR(err);
1001 	}
1002 	if (!ipage)
1003 		f2fs_put_dnode(&dn);
1004 
1005 	if (PageUptodate(page))
1006 		goto got_it;
1007 
1008 	if (dn.data_blkaddr == NEW_ADDR) {
1009 		zero_user_segment(page, 0, PAGE_SIZE);
1010 		if (!PageUptodate(page))
1011 			SetPageUptodate(page);
1012 	} else {
1013 		f2fs_put_page(page, 1);
1014 
1015 		/* if ipage exists, blkaddr should be NEW_ADDR */
1016 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1017 		page = f2fs_get_lock_data_page(inode, index, true);
1018 		if (IS_ERR(page))
1019 			return page;
1020 	}
1021 got_it:
1022 	if (new_i_size && i_size_read(inode) <
1023 				((loff_t)(index + 1) << PAGE_SHIFT))
1024 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1025 	return page;
1026 }
1027 
1028 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1029 {
1030 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031 	struct f2fs_summary sum;
1032 	struct node_info ni;
1033 	block_t old_blkaddr;
1034 	blkcnt_t count = 1;
1035 	int err;
1036 
1037 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1038 		return -EPERM;
1039 
1040 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1041 	if (err)
1042 		return err;
1043 
1044 	dn->data_blkaddr = datablock_addr(dn->inode,
1045 				dn->node_page, dn->ofs_in_node);
1046 	if (dn->data_blkaddr != NULL_ADDR)
1047 		goto alloc;
1048 
1049 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1050 		return err;
1051 
1052 alloc:
1053 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1054 	old_blkaddr = dn->data_blkaddr;
1055 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1056 					&sum, seg_type, NULL, false);
1057 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1058 		invalidate_mapping_pages(META_MAPPING(sbi),
1059 					old_blkaddr, old_blkaddr);
1060 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1061 
1062 	/*
1063 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1064 	 * data from unwritten block via dio_read.
1065 	 */
1066 	return 0;
1067 }
1068 
1069 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1070 {
1071 	struct inode *inode = file_inode(iocb->ki_filp);
1072 	struct f2fs_map_blocks map;
1073 	int flag;
1074 	int err = 0;
1075 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1076 
1077 	/* convert inline data for Direct I/O*/
1078 	if (direct_io) {
1079 		err = f2fs_convert_inline_inode(inode);
1080 		if (err)
1081 			return err;
1082 	}
1083 
1084 	if (direct_io && allow_outplace_dio(inode, iocb, from))
1085 		return 0;
1086 
1087 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1088 		return 0;
1089 
1090 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1091 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1092 	if (map.m_len > map.m_lblk)
1093 		map.m_len -= map.m_lblk;
1094 	else
1095 		map.m_len = 0;
1096 
1097 	map.m_next_pgofs = NULL;
1098 	map.m_next_extent = NULL;
1099 	map.m_seg_type = NO_CHECK_TYPE;
1100 	map.m_may_create = true;
1101 
1102 	if (direct_io) {
1103 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1104 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1105 					F2FS_GET_BLOCK_PRE_AIO :
1106 					F2FS_GET_BLOCK_PRE_DIO;
1107 		goto map_blocks;
1108 	}
1109 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1110 		err = f2fs_convert_inline_inode(inode);
1111 		if (err)
1112 			return err;
1113 	}
1114 	if (f2fs_has_inline_data(inode))
1115 		return err;
1116 
1117 	flag = F2FS_GET_BLOCK_PRE_AIO;
1118 
1119 map_blocks:
1120 	err = f2fs_map_blocks(inode, &map, 1, flag);
1121 	if (map.m_len > 0 && err == -ENOSPC) {
1122 		if (!direct_io)
1123 			set_inode_flag(inode, FI_NO_PREALLOC);
1124 		err = 0;
1125 	}
1126 	return err;
1127 }
1128 
1129 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1130 {
1131 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1132 		if (lock)
1133 			down_read(&sbi->node_change);
1134 		else
1135 			up_read(&sbi->node_change);
1136 	} else {
1137 		if (lock)
1138 			f2fs_lock_op(sbi);
1139 		else
1140 			f2fs_unlock_op(sbi);
1141 	}
1142 }
1143 
1144 /*
1145  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1146  * f2fs_map_blocks structure.
1147  * If original data blocks are allocated, then give them to blockdev.
1148  * Otherwise,
1149  *     a. preallocate requested block addresses
1150  *     b. do not use extent cache for better performance
1151  *     c. give the block addresses to blockdev
1152  */
1153 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1154 						int create, int flag)
1155 {
1156 	unsigned int maxblocks = map->m_len;
1157 	struct dnode_of_data dn;
1158 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1160 	pgoff_t pgofs, end_offset, end;
1161 	int err = 0, ofs = 1;
1162 	unsigned int ofs_in_node, last_ofs_in_node;
1163 	blkcnt_t prealloc;
1164 	struct extent_info ei = {0,0,0};
1165 	block_t blkaddr;
1166 	unsigned int start_pgofs;
1167 
1168 	if (!maxblocks)
1169 		return 0;
1170 
1171 	map->m_len = 0;
1172 	map->m_flags = 0;
1173 
1174 	/* it only supports block size == page size */
1175 	pgofs =	(pgoff_t)map->m_lblk;
1176 	end = pgofs + maxblocks;
1177 
1178 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1179 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1180 							map->m_may_create)
1181 			goto next_dnode;
1182 
1183 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1184 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1185 		map->m_flags = F2FS_MAP_MAPPED;
1186 		if (map->m_next_extent)
1187 			*map->m_next_extent = pgofs + map->m_len;
1188 
1189 		/* for hardware encryption, but to avoid potential issue in future */
1190 		if (flag == F2FS_GET_BLOCK_DIO)
1191 			f2fs_wait_on_block_writeback_range(inode,
1192 						map->m_pblk, map->m_len);
1193 		goto out;
1194 	}
1195 
1196 next_dnode:
1197 	if (map->m_may_create)
1198 		__do_map_lock(sbi, flag, true);
1199 
1200 	/* When reading holes, we need its node page */
1201 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1202 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1203 	if (err) {
1204 		if (flag == F2FS_GET_BLOCK_BMAP)
1205 			map->m_pblk = 0;
1206 		if (err == -ENOENT) {
1207 			err = 0;
1208 			if (map->m_next_pgofs)
1209 				*map->m_next_pgofs =
1210 					f2fs_get_next_page_offset(&dn, pgofs);
1211 			if (map->m_next_extent)
1212 				*map->m_next_extent =
1213 					f2fs_get_next_page_offset(&dn, pgofs);
1214 		}
1215 		goto unlock_out;
1216 	}
1217 
1218 	start_pgofs = pgofs;
1219 	prealloc = 0;
1220 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1221 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1222 
1223 next_block:
1224 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1225 
1226 	if (__is_valid_data_blkaddr(blkaddr) &&
1227 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1228 		err = -EFSCORRUPTED;
1229 		goto sync_out;
1230 	}
1231 
1232 	if (__is_valid_data_blkaddr(blkaddr)) {
1233 		/* use out-place-update for driect IO under LFS mode */
1234 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1235 							map->m_may_create) {
1236 			err = __allocate_data_block(&dn, map->m_seg_type);
1237 			if (err)
1238 				goto sync_out;
1239 			blkaddr = dn.data_blkaddr;
1240 			set_inode_flag(inode, FI_APPEND_WRITE);
1241 		}
1242 	} else {
1243 		if (create) {
1244 			if (unlikely(f2fs_cp_error(sbi))) {
1245 				err = -EIO;
1246 				goto sync_out;
1247 			}
1248 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1249 				if (blkaddr == NULL_ADDR) {
1250 					prealloc++;
1251 					last_ofs_in_node = dn.ofs_in_node;
1252 				}
1253 			} else {
1254 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1255 					flag != F2FS_GET_BLOCK_DIO);
1256 				err = __allocate_data_block(&dn,
1257 							map->m_seg_type);
1258 				if (!err)
1259 					set_inode_flag(inode, FI_APPEND_WRITE);
1260 			}
1261 			if (err)
1262 				goto sync_out;
1263 			map->m_flags |= F2FS_MAP_NEW;
1264 			blkaddr = dn.data_blkaddr;
1265 		} else {
1266 			if (flag == F2FS_GET_BLOCK_BMAP) {
1267 				map->m_pblk = 0;
1268 				goto sync_out;
1269 			}
1270 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1271 				goto sync_out;
1272 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1273 						blkaddr == NULL_ADDR) {
1274 				if (map->m_next_pgofs)
1275 					*map->m_next_pgofs = pgofs + 1;
1276 				goto sync_out;
1277 			}
1278 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1279 				/* for defragment case */
1280 				if (map->m_next_pgofs)
1281 					*map->m_next_pgofs = pgofs + 1;
1282 				goto sync_out;
1283 			}
1284 		}
1285 	}
1286 
1287 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1288 		goto skip;
1289 
1290 	if (map->m_len == 0) {
1291 		/* preallocated unwritten block should be mapped for fiemap. */
1292 		if (blkaddr == NEW_ADDR)
1293 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1294 		map->m_flags |= F2FS_MAP_MAPPED;
1295 
1296 		map->m_pblk = blkaddr;
1297 		map->m_len = 1;
1298 	} else if ((map->m_pblk != NEW_ADDR &&
1299 			blkaddr == (map->m_pblk + ofs)) ||
1300 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1301 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1302 		ofs++;
1303 		map->m_len++;
1304 	} else {
1305 		goto sync_out;
1306 	}
1307 
1308 skip:
1309 	dn.ofs_in_node++;
1310 	pgofs++;
1311 
1312 	/* preallocate blocks in batch for one dnode page */
1313 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1314 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1315 
1316 		dn.ofs_in_node = ofs_in_node;
1317 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1318 		if (err)
1319 			goto sync_out;
1320 
1321 		map->m_len += dn.ofs_in_node - ofs_in_node;
1322 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1323 			err = -ENOSPC;
1324 			goto sync_out;
1325 		}
1326 		dn.ofs_in_node = end_offset;
1327 	}
1328 
1329 	if (pgofs >= end)
1330 		goto sync_out;
1331 	else if (dn.ofs_in_node < end_offset)
1332 		goto next_block;
1333 
1334 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1335 		if (map->m_flags & F2FS_MAP_MAPPED) {
1336 			unsigned int ofs = start_pgofs - map->m_lblk;
1337 
1338 			f2fs_update_extent_cache_range(&dn,
1339 				start_pgofs, map->m_pblk + ofs,
1340 				map->m_len - ofs);
1341 		}
1342 	}
1343 
1344 	f2fs_put_dnode(&dn);
1345 
1346 	if (map->m_may_create) {
1347 		__do_map_lock(sbi, flag, false);
1348 		f2fs_balance_fs(sbi, dn.node_changed);
1349 	}
1350 	goto next_dnode;
1351 
1352 sync_out:
1353 
1354 	/* for hardware encryption, but to avoid potential issue in future */
1355 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1356 		f2fs_wait_on_block_writeback_range(inode,
1357 						map->m_pblk, map->m_len);
1358 
1359 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1360 		if (map->m_flags & F2FS_MAP_MAPPED) {
1361 			unsigned int ofs = start_pgofs - map->m_lblk;
1362 
1363 			f2fs_update_extent_cache_range(&dn,
1364 				start_pgofs, map->m_pblk + ofs,
1365 				map->m_len - ofs);
1366 		}
1367 		if (map->m_next_extent)
1368 			*map->m_next_extent = pgofs + 1;
1369 	}
1370 	f2fs_put_dnode(&dn);
1371 unlock_out:
1372 	if (map->m_may_create) {
1373 		__do_map_lock(sbi, flag, false);
1374 		f2fs_balance_fs(sbi, dn.node_changed);
1375 	}
1376 out:
1377 	trace_f2fs_map_blocks(inode, map, err);
1378 	return err;
1379 }
1380 
1381 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1382 {
1383 	struct f2fs_map_blocks map;
1384 	block_t last_lblk;
1385 	int err;
1386 
1387 	if (pos + len > i_size_read(inode))
1388 		return false;
1389 
1390 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1391 	map.m_next_pgofs = NULL;
1392 	map.m_next_extent = NULL;
1393 	map.m_seg_type = NO_CHECK_TYPE;
1394 	map.m_may_create = false;
1395 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1396 
1397 	while (map.m_lblk < last_lblk) {
1398 		map.m_len = last_lblk - map.m_lblk;
1399 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1400 		if (err || map.m_len == 0)
1401 			return false;
1402 		map.m_lblk += map.m_len;
1403 	}
1404 	return true;
1405 }
1406 
1407 static int __get_data_block(struct inode *inode, sector_t iblock,
1408 			struct buffer_head *bh, int create, int flag,
1409 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1410 {
1411 	struct f2fs_map_blocks map;
1412 	int err;
1413 
1414 	map.m_lblk = iblock;
1415 	map.m_len = bh->b_size >> inode->i_blkbits;
1416 	map.m_next_pgofs = next_pgofs;
1417 	map.m_next_extent = NULL;
1418 	map.m_seg_type = seg_type;
1419 	map.m_may_create = may_write;
1420 
1421 	err = f2fs_map_blocks(inode, &map, create, flag);
1422 	if (!err) {
1423 		map_bh(bh, inode->i_sb, map.m_pblk);
1424 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1425 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1426 	}
1427 	return err;
1428 }
1429 
1430 static int get_data_block(struct inode *inode, sector_t iblock,
1431 			struct buffer_head *bh_result, int create, int flag,
1432 			pgoff_t *next_pgofs)
1433 {
1434 	return __get_data_block(inode, iblock, bh_result, create,
1435 							flag, next_pgofs,
1436 							NO_CHECK_TYPE, create);
1437 }
1438 
1439 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1440 			struct buffer_head *bh_result, int create)
1441 {
1442 	return __get_data_block(inode, iblock, bh_result, create,
1443 				F2FS_GET_BLOCK_DIO, NULL,
1444 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1445 				IS_SWAPFILE(inode) ? false : true);
1446 }
1447 
1448 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1449 			struct buffer_head *bh_result, int create)
1450 {
1451 	return __get_data_block(inode, iblock, bh_result, create,
1452 				F2FS_GET_BLOCK_DIO, NULL,
1453 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1454 				false);
1455 }
1456 
1457 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1458 			struct buffer_head *bh_result, int create)
1459 {
1460 	/* Block number less than F2FS MAX BLOCKS */
1461 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1462 		return -EFBIG;
1463 
1464 	return __get_data_block(inode, iblock, bh_result, create,
1465 						F2FS_GET_BLOCK_BMAP, NULL,
1466 						NO_CHECK_TYPE, create);
1467 }
1468 
1469 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1470 {
1471 	return (offset >> inode->i_blkbits);
1472 }
1473 
1474 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1475 {
1476 	return (blk << inode->i_blkbits);
1477 }
1478 
1479 static int f2fs_xattr_fiemap(struct inode *inode,
1480 				struct fiemap_extent_info *fieinfo)
1481 {
1482 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1483 	struct page *page;
1484 	struct node_info ni;
1485 	__u64 phys = 0, len;
1486 	__u32 flags;
1487 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1488 	int err = 0;
1489 
1490 	if (f2fs_has_inline_xattr(inode)) {
1491 		int offset;
1492 
1493 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1494 						inode->i_ino, false);
1495 		if (!page)
1496 			return -ENOMEM;
1497 
1498 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1499 		if (err) {
1500 			f2fs_put_page(page, 1);
1501 			return err;
1502 		}
1503 
1504 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1505 		offset = offsetof(struct f2fs_inode, i_addr) +
1506 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1507 					get_inline_xattr_addrs(inode));
1508 
1509 		phys += offset;
1510 		len = inline_xattr_size(inode);
1511 
1512 		f2fs_put_page(page, 1);
1513 
1514 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1515 
1516 		if (!xnid)
1517 			flags |= FIEMAP_EXTENT_LAST;
1518 
1519 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1520 		if (err || err == 1)
1521 			return err;
1522 	}
1523 
1524 	if (xnid) {
1525 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1526 		if (!page)
1527 			return -ENOMEM;
1528 
1529 		err = f2fs_get_node_info(sbi, xnid, &ni);
1530 		if (err) {
1531 			f2fs_put_page(page, 1);
1532 			return err;
1533 		}
1534 
1535 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1536 		len = inode->i_sb->s_blocksize;
1537 
1538 		f2fs_put_page(page, 1);
1539 
1540 		flags = FIEMAP_EXTENT_LAST;
1541 	}
1542 
1543 	if (phys)
1544 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1545 
1546 	return (err < 0 ? err : 0);
1547 }
1548 
1549 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1550 		u64 start, u64 len)
1551 {
1552 	struct buffer_head map_bh;
1553 	sector_t start_blk, last_blk;
1554 	pgoff_t next_pgofs;
1555 	u64 logical = 0, phys = 0, size = 0;
1556 	u32 flags = 0;
1557 	int ret = 0;
1558 
1559 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1560 		ret = f2fs_precache_extents(inode);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 
1565 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1566 	if (ret)
1567 		return ret;
1568 
1569 	inode_lock(inode);
1570 
1571 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1572 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1573 		goto out;
1574 	}
1575 
1576 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1577 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1578 		if (ret != -EAGAIN)
1579 			goto out;
1580 	}
1581 
1582 	if (logical_to_blk(inode, len) == 0)
1583 		len = blk_to_logical(inode, 1);
1584 
1585 	start_blk = logical_to_blk(inode, start);
1586 	last_blk = logical_to_blk(inode, start + len - 1);
1587 
1588 next:
1589 	memset(&map_bh, 0, sizeof(struct buffer_head));
1590 	map_bh.b_size = len;
1591 
1592 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1593 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1594 	if (ret)
1595 		goto out;
1596 
1597 	/* HOLE */
1598 	if (!buffer_mapped(&map_bh)) {
1599 		start_blk = next_pgofs;
1600 
1601 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1602 					F2FS_I_SB(inode)->max_file_blocks))
1603 			goto prep_next;
1604 
1605 		flags |= FIEMAP_EXTENT_LAST;
1606 	}
1607 
1608 	if (size) {
1609 		if (IS_ENCRYPTED(inode))
1610 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1611 
1612 		ret = fiemap_fill_next_extent(fieinfo, logical,
1613 				phys, size, flags);
1614 	}
1615 
1616 	if (start_blk > last_blk || ret)
1617 		goto out;
1618 
1619 	logical = blk_to_logical(inode, start_blk);
1620 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1621 	size = map_bh.b_size;
1622 	flags = 0;
1623 	if (buffer_unwritten(&map_bh))
1624 		flags = FIEMAP_EXTENT_UNWRITTEN;
1625 
1626 	start_blk += logical_to_blk(inode, size);
1627 
1628 prep_next:
1629 	cond_resched();
1630 	if (fatal_signal_pending(current))
1631 		ret = -EINTR;
1632 	else
1633 		goto next;
1634 out:
1635 	if (ret == 1)
1636 		ret = 0;
1637 
1638 	inode_unlock(inode);
1639 	return ret;
1640 }
1641 
1642 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1643 {
1644 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1645 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1646 		return inode->i_sb->s_maxbytes;
1647 
1648 	return i_size_read(inode);
1649 }
1650 
1651 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1652 					unsigned nr_pages,
1653 					struct f2fs_map_blocks *map,
1654 					struct bio **bio_ret,
1655 					sector_t *last_block_in_bio,
1656 					bool is_readahead)
1657 {
1658 	struct bio *bio = *bio_ret;
1659 	const unsigned blkbits = inode->i_blkbits;
1660 	const unsigned blocksize = 1 << blkbits;
1661 	sector_t block_in_file;
1662 	sector_t last_block;
1663 	sector_t last_block_in_file;
1664 	sector_t block_nr;
1665 	int ret = 0;
1666 
1667 	block_in_file = (sector_t)page_index(page);
1668 	last_block = block_in_file + nr_pages;
1669 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1670 							blkbits;
1671 	if (last_block > last_block_in_file)
1672 		last_block = last_block_in_file;
1673 
1674 	/* just zeroing out page which is beyond EOF */
1675 	if (block_in_file >= last_block)
1676 		goto zero_out;
1677 	/*
1678 	 * Map blocks using the previous result first.
1679 	 */
1680 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1681 			block_in_file > map->m_lblk &&
1682 			block_in_file < (map->m_lblk + map->m_len))
1683 		goto got_it;
1684 
1685 	/*
1686 	 * Then do more f2fs_map_blocks() calls until we are
1687 	 * done with this page.
1688 	 */
1689 	map->m_lblk = block_in_file;
1690 	map->m_len = last_block - block_in_file;
1691 
1692 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1693 	if (ret)
1694 		goto out;
1695 got_it:
1696 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1697 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1698 		SetPageMappedToDisk(page);
1699 
1700 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1701 					!cleancache_get_page(page))) {
1702 			SetPageUptodate(page);
1703 			goto confused;
1704 		}
1705 
1706 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1707 						DATA_GENERIC_ENHANCE_READ)) {
1708 			ret = -EFSCORRUPTED;
1709 			goto out;
1710 		}
1711 	} else {
1712 zero_out:
1713 		zero_user_segment(page, 0, PAGE_SIZE);
1714 		if (f2fs_need_verity(inode, page->index) &&
1715 		    !fsverity_verify_page(page)) {
1716 			ret = -EIO;
1717 			goto out;
1718 		}
1719 		if (!PageUptodate(page))
1720 			SetPageUptodate(page);
1721 		unlock_page(page);
1722 		goto out;
1723 	}
1724 
1725 	/*
1726 	 * This page will go to BIO.  Do we need to send this
1727 	 * BIO off first?
1728 	 */
1729 	if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1730 				*last_block_in_bio, block_nr)) {
1731 submit_and_realloc:
1732 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1733 		bio = NULL;
1734 	}
1735 	if (bio == NULL) {
1736 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1737 				is_readahead ? REQ_RAHEAD : 0, page->index);
1738 		if (IS_ERR(bio)) {
1739 			ret = PTR_ERR(bio);
1740 			bio = NULL;
1741 			goto out;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * If the page is under writeback, we need to wait for
1747 	 * its completion to see the correct decrypted data.
1748 	 */
1749 	f2fs_wait_on_block_writeback(inode, block_nr);
1750 
1751 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1752 		goto submit_and_realloc;
1753 
1754 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1755 	ClearPageError(page);
1756 	*last_block_in_bio = block_nr;
1757 	goto out;
1758 confused:
1759 	if (bio) {
1760 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1761 		bio = NULL;
1762 	}
1763 	unlock_page(page);
1764 out:
1765 	*bio_ret = bio;
1766 	return ret;
1767 }
1768 
1769 /*
1770  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1771  * Major change was from block_size == page_size in f2fs by default.
1772  *
1773  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1774  * this function ever deviates from doing just read-ahead, it should either
1775  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1776  * from read-ahead.
1777  */
1778 static int f2fs_mpage_readpages(struct address_space *mapping,
1779 			struct list_head *pages, struct page *page,
1780 			unsigned nr_pages, bool is_readahead)
1781 {
1782 	struct bio *bio = NULL;
1783 	sector_t last_block_in_bio = 0;
1784 	struct inode *inode = mapping->host;
1785 	struct f2fs_map_blocks map;
1786 	int ret = 0;
1787 
1788 	map.m_pblk = 0;
1789 	map.m_lblk = 0;
1790 	map.m_len = 0;
1791 	map.m_flags = 0;
1792 	map.m_next_pgofs = NULL;
1793 	map.m_next_extent = NULL;
1794 	map.m_seg_type = NO_CHECK_TYPE;
1795 	map.m_may_create = false;
1796 
1797 	for (; nr_pages; nr_pages--) {
1798 		if (pages) {
1799 			page = list_last_entry(pages, struct page, lru);
1800 
1801 			prefetchw(&page->flags);
1802 			list_del(&page->lru);
1803 			if (add_to_page_cache_lru(page, mapping,
1804 						  page_index(page),
1805 						  readahead_gfp_mask(mapping)))
1806 				goto next_page;
1807 		}
1808 
1809 		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1810 					&last_block_in_bio, is_readahead);
1811 		if (ret) {
1812 			SetPageError(page);
1813 			zero_user_segment(page, 0, PAGE_SIZE);
1814 			unlock_page(page);
1815 		}
1816 next_page:
1817 		if (pages)
1818 			put_page(page);
1819 	}
1820 	BUG_ON(pages && !list_empty(pages));
1821 	if (bio)
1822 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1823 	return pages ? 0 : ret;
1824 }
1825 
1826 static int f2fs_read_data_page(struct file *file, struct page *page)
1827 {
1828 	struct inode *inode = page_file_mapping(page)->host;
1829 	int ret = -EAGAIN;
1830 
1831 	trace_f2fs_readpage(page, DATA);
1832 
1833 	/* If the file has inline data, try to read it directly */
1834 	if (f2fs_has_inline_data(inode))
1835 		ret = f2fs_read_inline_data(inode, page);
1836 	if (ret == -EAGAIN)
1837 		ret = f2fs_mpage_readpages(page_file_mapping(page),
1838 						NULL, page, 1, false);
1839 	return ret;
1840 }
1841 
1842 static int f2fs_read_data_pages(struct file *file,
1843 			struct address_space *mapping,
1844 			struct list_head *pages, unsigned nr_pages)
1845 {
1846 	struct inode *inode = mapping->host;
1847 	struct page *page = list_last_entry(pages, struct page, lru);
1848 
1849 	trace_f2fs_readpages(inode, page, nr_pages);
1850 
1851 	/* If the file has inline data, skip readpages */
1852 	if (f2fs_has_inline_data(inode))
1853 		return 0;
1854 
1855 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1856 }
1857 
1858 static int encrypt_one_page(struct f2fs_io_info *fio)
1859 {
1860 	struct inode *inode = fio->page->mapping->host;
1861 	struct page *mpage;
1862 	gfp_t gfp_flags = GFP_NOFS;
1863 
1864 	if (!f2fs_encrypted_file(inode))
1865 		return 0;
1866 
1867 	/* wait for GCed page writeback via META_MAPPING */
1868 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1869 
1870 retry_encrypt:
1871 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1872 							       PAGE_SIZE, 0,
1873 							       gfp_flags);
1874 	if (IS_ERR(fio->encrypted_page)) {
1875 		/* flush pending IOs and wait for a while in the ENOMEM case */
1876 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1877 			f2fs_flush_merged_writes(fio->sbi);
1878 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1879 			gfp_flags |= __GFP_NOFAIL;
1880 			goto retry_encrypt;
1881 		}
1882 		return PTR_ERR(fio->encrypted_page);
1883 	}
1884 
1885 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1886 	if (mpage) {
1887 		if (PageUptodate(mpage))
1888 			memcpy(page_address(mpage),
1889 				page_address(fio->encrypted_page), PAGE_SIZE);
1890 		f2fs_put_page(mpage, 1);
1891 	}
1892 	return 0;
1893 }
1894 
1895 static inline bool check_inplace_update_policy(struct inode *inode,
1896 				struct f2fs_io_info *fio)
1897 {
1898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1899 	unsigned int policy = SM_I(sbi)->ipu_policy;
1900 
1901 	if (policy & (0x1 << F2FS_IPU_FORCE))
1902 		return true;
1903 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1904 		return true;
1905 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1906 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1907 		return true;
1908 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1909 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1910 		return true;
1911 
1912 	/*
1913 	 * IPU for rewrite async pages
1914 	 */
1915 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1916 			fio && fio->op == REQ_OP_WRITE &&
1917 			!(fio->op_flags & REQ_SYNC) &&
1918 			!IS_ENCRYPTED(inode))
1919 		return true;
1920 
1921 	/* this is only set during fdatasync */
1922 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1923 			is_inode_flag_set(inode, FI_NEED_IPU))
1924 		return true;
1925 
1926 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1927 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1928 		return true;
1929 
1930 	return false;
1931 }
1932 
1933 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1934 {
1935 	if (f2fs_is_pinned_file(inode))
1936 		return true;
1937 
1938 	/* if this is cold file, we should overwrite to avoid fragmentation */
1939 	if (file_is_cold(inode))
1940 		return true;
1941 
1942 	return check_inplace_update_policy(inode, fio);
1943 }
1944 
1945 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1946 {
1947 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1948 
1949 	if (test_opt(sbi, LFS))
1950 		return true;
1951 	if (S_ISDIR(inode->i_mode))
1952 		return true;
1953 	if (IS_NOQUOTA(inode))
1954 		return true;
1955 	if (f2fs_is_atomic_file(inode))
1956 		return true;
1957 	if (fio) {
1958 		if (is_cold_data(fio->page))
1959 			return true;
1960 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1961 			return true;
1962 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1963 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1964 			return true;
1965 	}
1966 	return false;
1967 }
1968 
1969 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1970 {
1971 	struct inode *inode = fio->page->mapping->host;
1972 
1973 	if (f2fs_should_update_outplace(inode, fio))
1974 		return false;
1975 
1976 	return f2fs_should_update_inplace(inode, fio);
1977 }
1978 
1979 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1980 {
1981 	struct page *page = fio->page;
1982 	struct inode *inode = page->mapping->host;
1983 	struct dnode_of_data dn;
1984 	struct extent_info ei = {0,0,0};
1985 	struct node_info ni;
1986 	bool ipu_force = false;
1987 	int err = 0;
1988 
1989 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1990 	if (need_inplace_update(fio) &&
1991 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1992 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1993 
1994 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1995 						DATA_GENERIC_ENHANCE))
1996 			return -EFSCORRUPTED;
1997 
1998 		ipu_force = true;
1999 		fio->need_lock = LOCK_DONE;
2000 		goto got_it;
2001 	}
2002 
2003 	/* Deadlock due to between page->lock and f2fs_lock_op */
2004 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2005 		return -EAGAIN;
2006 
2007 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2008 	if (err)
2009 		goto out;
2010 
2011 	fio->old_blkaddr = dn.data_blkaddr;
2012 
2013 	/* This page is already truncated */
2014 	if (fio->old_blkaddr == NULL_ADDR) {
2015 		ClearPageUptodate(page);
2016 		clear_cold_data(page);
2017 		goto out_writepage;
2018 	}
2019 got_it:
2020 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2021 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2022 						DATA_GENERIC_ENHANCE)) {
2023 		err = -EFSCORRUPTED;
2024 		goto out_writepage;
2025 	}
2026 	/*
2027 	 * If current allocation needs SSR,
2028 	 * it had better in-place writes for updated data.
2029 	 */
2030 	if (ipu_force ||
2031 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2032 					need_inplace_update(fio))) {
2033 		err = encrypt_one_page(fio);
2034 		if (err)
2035 			goto out_writepage;
2036 
2037 		set_page_writeback(page);
2038 		ClearPageError(page);
2039 		f2fs_put_dnode(&dn);
2040 		if (fio->need_lock == LOCK_REQ)
2041 			f2fs_unlock_op(fio->sbi);
2042 		err = f2fs_inplace_write_data(fio);
2043 		if (err) {
2044 			if (f2fs_encrypted_file(inode))
2045 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2046 			if (PageWriteback(page))
2047 				end_page_writeback(page);
2048 		} else {
2049 			set_inode_flag(inode, FI_UPDATE_WRITE);
2050 		}
2051 		trace_f2fs_do_write_data_page(fio->page, IPU);
2052 		return err;
2053 	}
2054 
2055 	if (fio->need_lock == LOCK_RETRY) {
2056 		if (!f2fs_trylock_op(fio->sbi)) {
2057 			err = -EAGAIN;
2058 			goto out_writepage;
2059 		}
2060 		fio->need_lock = LOCK_REQ;
2061 	}
2062 
2063 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2064 	if (err)
2065 		goto out_writepage;
2066 
2067 	fio->version = ni.version;
2068 
2069 	err = encrypt_one_page(fio);
2070 	if (err)
2071 		goto out_writepage;
2072 
2073 	set_page_writeback(page);
2074 	ClearPageError(page);
2075 
2076 	/* LFS mode write path */
2077 	f2fs_outplace_write_data(&dn, fio);
2078 	trace_f2fs_do_write_data_page(page, OPU);
2079 	set_inode_flag(inode, FI_APPEND_WRITE);
2080 	if (page->index == 0)
2081 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2082 out_writepage:
2083 	f2fs_put_dnode(&dn);
2084 out:
2085 	if (fio->need_lock == LOCK_REQ)
2086 		f2fs_unlock_op(fio->sbi);
2087 	return err;
2088 }
2089 
2090 static int __write_data_page(struct page *page, bool *submitted,
2091 				struct bio **bio,
2092 				sector_t *last_block,
2093 				struct writeback_control *wbc,
2094 				enum iostat_type io_type)
2095 {
2096 	struct inode *inode = page->mapping->host;
2097 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2098 	loff_t i_size = i_size_read(inode);
2099 	const pgoff_t end_index = ((unsigned long long) i_size)
2100 							>> PAGE_SHIFT;
2101 	loff_t psize = (page->index + 1) << PAGE_SHIFT;
2102 	unsigned offset = 0;
2103 	bool need_balance_fs = false;
2104 	int err = 0;
2105 	struct f2fs_io_info fio = {
2106 		.sbi = sbi,
2107 		.ino = inode->i_ino,
2108 		.type = DATA,
2109 		.op = REQ_OP_WRITE,
2110 		.op_flags = wbc_to_write_flags(wbc),
2111 		.old_blkaddr = NULL_ADDR,
2112 		.page = page,
2113 		.encrypted_page = NULL,
2114 		.submitted = false,
2115 		.need_lock = LOCK_RETRY,
2116 		.io_type = io_type,
2117 		.io_wbc = wbc,
2118 		.bio = bio,
2119 		.last_block = last_block,
2120 	};
2121 
2122 	trace_f2fs_writepage(page, DATA);
2123 
2124 	/* we should bypass data pages to proceed the kworkder jobs */
2125 	if (unlikely(f2fs_cp_error(sbi))) {
2126 		mapping_set_error(page->mapping, -EIO);
2127 		/*
2128 		 * don't drop any dirty dentry pages for keeping lastest
2129 		 * directory structure.
2130 		 */
2131 		if (S_ISDIR(inode->i_mode))
2132 			goto redirty_out;
2133 		goto out;
2134 	}
2135 
2136 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2137 		goto redirty_out;
2138 
2139 	if (page->index < end_index || f2fs_verity_in_progress(inode))
2140 		goto write;
2141 
2142 	/*
2143 	 * If the offset is out-of-range of file size,
2144 	 * this page does not have to be written to disk.
2145 	 */
2146 	offset = i_size & (PAGE_SIZE - 1);
2147 	if ((page->index >= end_index + 1) || !offset)
2148 		goto out;
2149 
2150 	zero_user_segment(page, offset, PAGE_SIZE);
2151 write:
2152 	if (f2fs_is_drop_cache(inode))
2153 		goto out;
2154 	/* we should not write 0'th page having journal header */
2155 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2156 			(!wbc->for_reclaim &&
2157 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2158 		goto redirty_out;
2159 
2160 	/* Dentry blocks are controlled by checkpoint */
2161 	if (S_ISDIR(inode->i_mode)) {
2162 		fio.need_lock = LOCK_DONE;
2163 		err = f2fs_do_write_data_page(&fio);
2164 		goto done;
2165 	}
2166 
2167 	if (!wbc->for_reclaim)
2168 		need_balance_fs = true;
2169 	else if (has_not_enough_free_secs(sbi, 0, 0))
2170 		goto redirty_out;
2171 	else
2172 		set_inode_flag(inode, FI_HOT_DATA);
2173 
2174 	err = -EAGAIN;
2175 	if (f2fs_has_inline_data(inode)) {
2176 		err = f2fs_write_inline_data(inode, page);
2177 		if (!err)
2178 			goto out;
2179 	}
2180 
2181 	if (err == -EAGAIN) {
2182 		err = f2fs_do_write_data_page(&fio);
2183 		if (err == -EAGAIN) {
2184 			fio.need_lock = LOCK_REQ;
2185 			err = f2fs_do_write_data_page(&fio);
2186 		}
2187 	}
2188 
2189 	if (err) {
2190 		file_set_keep_isize(inode);
2191 	} else {
2192 		down_write(&F2FS_I(inode)->i_sem);
2193 		if (F2FS_I(inode)->last_disk_size < psize)
2194 			F2FS_I(inode)->last_disk_size = psize;
2195 		up_write(&F2FS_I(inode)->i_sem);
2196 	}
2197 
2198 done:
2199 	if (err && err != -ENOENT)
2200 		goto redirty_out;
2201 
2202 out:
2203 	inode_dec_dirty_pages(inode);
2204 	if (err) {
2205 		ClearPageUptodate(page);
2206 		clear_cold_data(page);
2207 	}
2208 
2209 	if (wbc->for_reclaim) {
2210 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2211 		clear_inode_flag(inode, FI_HOT_DATA);
2212 		f2fs_remove_dirty_inode(inode);
2213 		submitted = NULL;
2214 	}
2215 
2216 	unlock_page(page);
2217 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2218 					!F2FS_I(inode)->cp_task) {
2219 		f2fs_submit_ipu_bio(sbi, bio, page);
2220 		f2fs_balance_fs(sbi, need_balance_fs);
2221 	}
2222 
2223 	if (unlikely(f2fs_cp_error(sbi))) {
2224 		f2fs_submit_ipu_bio(sbi, bio, page);
2225 		f2fs_submit_merged_write(sbi, DATA);
2226 		submitted = NULL;
2227 	}
2228 
2229 	if (submitted)
2230 		*submitted = fio.submitted;
2231 
2232 	return 0;
2233 
2234 redirty_out:
2235 	redirty_page_for_writepage(wbc, page);
2236 	/*
2237 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2238 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2239 	 * file_write_and_wait_range() will see EIO error, which is critical
2240 	 * to return value of fsync() followed by atomic_write failure to user.
2241 	 */
2242 	if (!err || wbc->for_reclaim)
2243 		return AOP_WRITEPAGE_ACTIVATE;
2244 	unlock_page(page);
2245 	return err;
2246 }
2247 
2248 static int f2fs_write_data_page(struct page *page,
2249 					struct writeback_control *wbc)
2250 {
2251 	return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2252 }
2253 
2254 /*
2255  * This function was copied from write_cche_pages from mm/page-writeback.c.
2256  * The major change is making write step of cold data page separately from
2257  * warm/hot data page.
2258  */
2259 static int f2fs_write_cache_pages(struct address_space *mapping,
2260 					struct writeback_control *wbc,
2261 					enum iostat_type io_type)
2262 {
2263 	int ret = 0;
2264 	int done = 0;
2265 	struct pagevec pvec;
2266 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2267 	struct bio *bio = NULL;
2268 	sector_t last_block;
2269 	int nr_pages;
2270 	pgoff_t uninitialized_var(writeback_index);
2271 	pgoff_t index;
2272 	pgoff_t end;		/* Inclusive */
2273 	pgoff_t done_index;
2274 	int cycled;
2275 	int range_whole = 0;
2276 	xa_mark_t tag;
2277 	int nwritten = 0;
2278 
2279 	pagevec_init(&pvec);
2280 
2281 	if (get_dirty_pages(mapping->host) <=
2282 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2283 		set_inode_flag(mapping->host, FI_HOT_DATA);
2284 	else
2285 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2286 
2287 	if (wbc->range_cyclic) {
2288 		writeback_index = mapping->writeback_index; /* prev offset */
2289 		index = writeback_index;
2290 		if (index == 0)
2291 			cycled = 1;
2292 		else
2293 			cycled = 0;
2294 		end = -1;
2295 	} else {
2296 		index = wbc->range_start >> PAGE_SHIFT;
2297 		end = wbc->range_end >> PAGE_SHIFT;
2298 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2299 			range_whole = 1;
2300 		cycled = 1; /* ignore range_cyclic tests */
2301 	}
2302 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2303 		tag = PAGECACHE_TAG_TOWRITE;
2304 	else
2305 		tag = PAGECACHE_TAG_DIRTY;
2306 retry:
2307 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2308 		tag_pages_for_writeback(mapping, index, end);
2309 	done_index = index;
2310 	while (!done && (index <= end)) {
2311 		int i;
2312 
2313 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2314 				tag);
2315 		if (nr_pages == 0)
2316 			break;
2317 
2318 		for (i = 0; i < nr_pages; i++) {
2319 			struct page *page = pvec.pages[i];
2320 			bool submitted = false;
2321 
2322 			/* give a priority to WB_SYNC threads */
2323 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2324 					wbc->sync_mode == WB_SYNC_NONE) {
2325 				done = 1;
2326 				break;
2327 			}
2328 
2329 			done_index = page->index;
2330 retry_write:
2331 			lock_page(page);
2332 
2333 			if (unlikely(page->mapping != mapping)) {
2334 continue_unlock:
2335 				unlock_page(page);
2336 				continue;
2337 			}
2338 
2339 			if (!PageDirty(page)) {
2340 				/* someone wrote it for us */
2341 				goto continue_unlock;
2342 			}
2343 
2344 			if (PageWriteback(page)) {
2345 				if (wbc->sync_mode != WB_SYNC_NONE) {
2346 					f2fs_wait_on_page_writeback(page,
2347 							DATA, true, true);
2348 					f2fs_submit_ipu_bio(sbi, &bio, page);
2349 				} else {
2350 					goto continue_unlock;
2351 				}
2352 			}
2353 
2354 			if (!clear_page_dirty_for_io(page))
2355 				goto continue_unlock;
2356 
2357 			ret = __write_data_page(page, &submitted, &bio,
2358 					&last_block, wbc, io_type);
2359 			if (unlikely(ret)) {
2360 				/*
2361 				 * keep nr_to_write, since vfs uses this to
2362 				 * get # of written pages.
2363 				 */
2364 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2365 					unlock_page(page);
2366 					ret = 0;
2367 					continue;
2368 				} else if (ret == -EAGAIN) {
2369 					ret = 0;
2370 					if (wbc->sync_mode == WB_SYNC_ALL) {
2371 						cond_resched();
2372 						congestion_wait(BLK_RW_ASYNC,
2373 									HZ/50);
2374 						goto retry_write;
2375 					}
2376 					continue;
2377 				}
2378 				done_index = page->index + 1;
2379 				done = 1;
2380 				break;
2381 			} else if (submitted) {
2382 				nwritten++;
2383 			}
2384 
2385 			if (--wbc->nr_to_write <= 0 &&
2386 					wbc->sync_mode == WB_SYNC_NONE) {
2387 				done = 1;
2388 				break;
2389 			}
2390 		}
2391 		pagevec_release(&pvec);
2392 		cond_resched();
2393 	}
2394 
2395 	if (!cycled && !done) {
2396 		cycled = 1;
2397 		index = 0;
2398 		end = writeback_index - 1;
2399 		goto retry;
2400 	}
2401 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2402 		mapping->writeback_index = done_index;
2403 
2404 	if (nwritten)
2405 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2406 								NULL, 0, DATA);
2407 	/* submit cached bio of IPU write */
2408 	if (bio)
2409 		__submit_bio(sbi, bio, DATA);
2410 
2411 	return ret;
2412 }
2413 
2414 static inline bool __should_serialize_io(struct inode *inode,
2415 					struct writeback_control *wbc)
2416 {
2417 	if (!S_ISREG(inode->i_mode))
2418 		return false;
2419 	if (IS_NOQUOTA(inode))
2420 		return false;
2421 	/* to avoid deadlock in path of data flush */
2422 	if (F2FS_I(inode)->cp_task)
2423 		return false;
2424 	if (wbc->sync_mode != WB_SYNC_ALL)
2425 		return true;
2426 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2427 		return true;
2428 	return false;
2429 }
2430 
2431 static int __f2fs_write_data_pages(struct address_space *mapping,
2432 						struct writeback_control *wbc,
2433 						enum iostat_type io_type)
2434 {
2435 	struct inode *inode = mapping->host;
2436 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2437 	struct blk_plug plug;
2438 	int ret;
2439 	bool locked = false;
2440 
2441 	/* deal with chardevs and other special file */
2442 	if (!mapping->a_ops->writepage)
2443 		return 0;
2444 
2445 	/* skip writing if there is no dirty page in this inode */
2446 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2447 		return 0;
2448 
2449 	/* during POR, we don't need to trigger writepage at all. */
2450 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2451 		goto skip_write;
2452 
2453 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2454 			wbc->sync_mode == WB_SYNC_NONE &&
2455 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2456 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2457 		goto skip_write;
2458 
2459 	/* skip writing during file defragment */
2460 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2461 		goto skip_write;
2462 
2463 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2464 
2465 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2466 	if (wbc->sync_mode == WB_SYNC_ALL)
2467 		atomic_inc(&sbi->wb_sync_req[DATA]);
2468 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2469 		goto skip_write;
2470 
2471 	if (__should_serialize_io(inode, wbc)) {
2472 		mutex_lock(&sbi->writepages);
2473 		locked = true;
2474 	}
2475 
2476 	blk_start_plug(&plug);
2477 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2478 	blk_finish_plug(&plug);
2479 
2480 	if (locked)
2481 		mutex_unlock(&sbi->writepages);
2482 
2483 	if (wbc->sync_mode == WB_SYNC_ALL)
2484 		atomic_dec(&sbi->wb_sync_req[DATA]);
2485 	/*
2486 	 * if some pages were truncated, we cannot guarantee its mapping->host
2487 	 * to detect pending bios.
2488 	 */
2489 
2490 	f2fs_remove_dirty_inode(inode);
2491 	return ret;
2492 
2493 skip_write:
2494 	wbc->pages_skipped += get_dirty_pages(inode);
2495 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2496 	return 0;
2497 }
2498 
2499 static int f2fs_write_data_pages(struct address_space *mapping,
2500 			    struct writeback_control *wbc)
2501 {
2502 	struct inode *inode = mapping->host;
2503 
2504 	return __f2fs_write_data_pages(mapping, wbc,
2505 			F2FS_I(inode)->cp_task == current ?
2506 			FS_CP_DATA_IO : FS_DATA_IO);
2507 }
2508 
2509 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2510 {
2511 	struct inode *inode = mapping->host;
2512 	loff_t i_size = i_size_read(inode);
2513 
2514 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2515 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
2516 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2517 		down_write(&F2FS_I(inode)->i_mmap_sem);
2518 
2519 		truncate_pagecache(inode, i_size);
2520 		if (!IS_NOQUOTA(inode))
2521 			f2fs_truncate_blocks(inode, i_size, true);
2522 
2523 		up_write(&F2FS_I(inode)->i_mmap_sem);
2524 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2525 	}
2526 }
2527 
2528 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2529 			struct page *page, loff_t pos, unsigned len,
2530 			block_t *blk_addr, bool *node_changed)
2531 {
2532 	struct inode *inode = page->mapping->host;
2533 	pgoff_t index = page->index;
2534 	struct dnode_of_data dn;
2535 	struct page *ipage;
2536 	bool locked = false;
2537 	struct extent_info ei = {0,0,0};
2538 	int err = 0;
2539 	int flag;
2540 
2541 	/*
2542 	 * we already allocated all the blocks, so we don't need to get
2543 	 * the block addresses when there is no need to fill the page.
2544 	 */
2545 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2546 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2547 	    !f2fs_verity_in_progress(inode))
2548 		return 0;
2549 
2550 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2551 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2552 		flag = F2FS_GET_BLOCK_DEFAULT;
2553 	else
2554 		flag = F2FS_GET_BLOCK_PRE_AIO;
2555 
2556 	if (f2fs_has_inline_data(inode) ||
2557 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2558 		__do_map_lock(sbi, flag, true);
2559 		locked = true;
2560 	}
2561 restart:
2562 	/* check inline_data */
2563 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2564 	if (IS_ERR(ipage)) {
2565 		err = PTR_ERR(ipage);
2566 		goto unlock_out;
2567 	}
2568 
2569 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2570 
2571 	if (f2fs_has_inline_data(inode)) {
2572 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2573 			f2fs_do_read_inline_data(page, ipage);
2574 			set_inode_flag(inode, FI_DATA_EXIST);
2575 			if (inode->i_nlink)
2576 				set_inline_node(ipage);
2577 		} else {
2578 			err = f2fs_convert_inline_page(&dn, page);
2579 			if (err)
2580 				goto out;
2581 			if (dn.data_blkaddr == NULL_ADDR)
2582 				err = f2fs_get_block(&dn, index);
2583 		}
2584 	} else if (locked) {
2585 		err = f2fs_get_block(&dn, index);
2586 	} else {
2587 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2588 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2589 		} else {
2590 			/* hole case */
2591 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2592 			if (err || dn.data_blkaddr == NULL_ADDR) {
2593 				f2fs_put_dnode(&dn);
2594 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2595 								true);
2596 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2597 				locked = true;
2598 				goto restart;
2599 			}
2600 		}
2601 	}
2602 
2603 	/* convert_inline_page can make node_changed */
2604 	*blk_addr = dn.data_blkaddr;
2605 	*node_changed = dn.node_changed;
2606 out:
2607 	f2fs_put_dnode(&dn);
2608 unlock_out:
2609 	if (locked)
2610 		__do_map_lock(sbi, flag, false);
2611 	return err;
2612 }
2613 
2614 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2615 		loff_t pos, unsigned len, unsigned flags,
2616 		struct page **pagep, void **fsdata)
2617 {
2618 	struct inode *inode = mapping->host;
2619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620 	struct page *page = NULL;
2621 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2622 	bool need_balance = false, drop_atomic = false;
2623 	block_t blkaddr = NULL_ADDR;
2624 	int err = 0;
2625 
2626 	trace_f2fs_write_begin(inode, pos, len, flags);
2627 
2628 	if (!f2fs_is_checkpoint_ready(sbi)) {
2629 		err = -ENOSPC;
2630 		goto fail;
2631 	}
2632 
2633 	if ((f2fs_is_atomic_file(inode) &&
2634 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2635 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2636 		err = -ENOMEM;
2637 		drop_atomic = true;
2638 		goto fail;
2639 	}
2640 
2641 	/*
2642 	 * We should check this at this moment to avoid deadlock on inode page
2643 	 * and #0 page. The locking rule for inline_data conversion should be:
2644 	 * lock_page(page #0) -> lock_page(inode_page)
2645 	 */
2646 	if (index != 0) {
2647 		err = f2fs_convert_inline_inode(inode);
2648 		if (err)
2649 			goto fail;
2650 	}
2651 repeat:
2652 	/*
2653 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2654 	 * wait_for_stable_page. Will wait that below with our IO control.
2655 	 */
2656 	page = f2fs_pagecache_get_page(mapping, index,
2657 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2658 	if (!page) {
2659 		err = -ENOMEM;
2660 		goto fail;
2661 	}
2662 
2663 	*pagep = page;
2664 
2665 	err = prepare_write_begin(sbi, page, pos, len,
2666 					&blkaddr, &need_balance);
2667 	if (err)
2668 		goto fail;
2669 
2670 	if (need_balance && !IS_NOQUOTA(inode) &&
2671 			has_not_enough_free_secs(sbi, 0, 0)) {
2672 		unlock_page(page);
2673 		f2fs_balance_fs(sbi, true);
2674 		lock_page(page);
2675 		if (page->mapping != mapping) {
2676 			/* The page got truncated from under us */
2677 			f2fs_put_page(page, 1);
2678 			goto repeat;
2679 		}
2680 	}
2681 
2682 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2683 
2684 	if (len == PAGE_SIZE || PageUptodate(page))
2685 		return 0;
2686 
2687 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2688 	    !f2fs_verity_in_progress(inode)) {
2689 		zero_user_segment(page, len, PAGE_SIZE);
2690 		return 0;
2691 	}
2692 
2693 	if (blkaddr == NEW_ADDR) {
2694 		zero_user_segment(page, 0, PAGE_SIZE);
2695 		SetPageUptodate(page);
2696 	} else {
2697 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2698 				DATA_GENERIC_ENHANCE_READ)) {
2699 			err = -EFSCORRUPTED;
2700 			goto fail;
2701 		}
2702 		err = f2fs_submit_page_read(inode, page, blkaddr);
2703 		if (err)
2704 			goto fail;
2705 
2706 		lock_page(page);
2707 		if (unlikely(page->mapping != mapping)) {
2708 			f2fs_put_page(page, 1);
2709 			goto repeat;
2710 		}
2711 		if (unlikely(!PageUptodate(page))) {
2712 			err = -EIO;
2713 			goto fail;
2714 		}
2715 	}
2716 	return 0;
2717 
2718 fail:
2719 	f2fs_put_page(page, 1);
2720 	f2fs_write_failed(mapping, pos + len);
2721 	if (drop_atomic)
2722 		f2fs_drop_inmem_pages_all(sbi, false);
2723 	return err;
2724 }
2725 
2726 static int f2fs_write_end(struct file *file,
2727 			struct address_space *mapping,
2728 			loff_t pos, unsigned len, unsigned copied,
2729 			struct page *page, void *fsdata)
2730 {
2731 	struct inode *inode = page->mapping->host;
2732 
2733 	trace_f2fs_write_end(inode, pos, len, copied);
2734 
2735 	/*
2736 	 * This should be come from len == PAGE_SIZE, and we expect copied
2737 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2738 	 * let generic_perform_write() try to copy data again through copied=0.
2739 	 */
2740 	if (!PageUptodate(page)) {
2741 		if (unlikely(copied != len))
2742 			copied = 0;
2743 		else
2744 			SetPageUptodate(page);
2745 	}
2746 	if (!copied)
2747 		goto unlock_out;
2748 
2749 	set_page_dirty(page);
2750 
2751 	if (pos + copied > i_size_read(inode) &&
2752 	    !f2fs_verity_in_progress(inode))
2753 		f2fs_i_size_write(inode, pos + copied);
2754 unlock_out:
2755 	f2fs_put_page(page, 1);
2756 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2757 	return copied;
2758 }
2759 
2760 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2761 			   loff_t offset)
2762 {
2763 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2764 	unsigned blkbits = i_blkbits;
2765 	unsigned blocksize_mask = (1 << blkbits) - 1;
2766 	unsigned long align = offset | iov_iter_alignment(iter);
2767 	struct block_device *bdev = inode->i_sb->s_bdev;
2768 
2769 	if (align & blocksize_mask) {
2770 		if (bdev)
2771 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2772 		blocksize_mask = (1 << blkbits) - 1;
2773 		if (align & blocksize_mask)
2774 			return -EINVAL;
2775 		return 1;
2776 	}
2777 	return 0;
2778 }
2779 
2780 static void f2fs_dio_end_io(struct bio *bio)
2781 {
2782 	struct f2fs_private_dio *dio = bio->bi_private;
2783 
2784 	dec_page_count(F2FS_I_SB(dio->inode),
2785 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2786 
2787 	bio->bi_private = dio->orig_private;
2788 	bio->bi_end_io = dio->orig_end_io;
2789 
2790 	kvfree(dio);
2791 
2792 	bio_endio(bio);
2793 }
2794 
2795 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2796 							loff_t file_offset)
2797 {
2798 	struct f2fs_private_dio *dio;
2799 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2800 
2801 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2802 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2803 	if (!dio)
2804 		goto out;
2805 
2806 	dio->inode = inode;
2807 	dio->orig_end_io = bio->bi_end_io;
2808 	dio->orig_private = bio->bi_private;
2809 	dio->write = write;
2810 
2811 	bio->bi_end_io = f2fs_dio_end_io;
2812 	bio->bi_private = dio;
2813 
2814 	inc_page_count(F2FS_I_SB(inode),
2815 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2816 
2817 	submit_bio(bio);
2818 	return;
2819 out:
2820 	bio->bi_status = BLK_STS_IOERR;
2821 	bio_endio(bio);
2822 }
2823 
2824 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2825 {
2826 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2827 	struct inode *inode = mapping->host;
2828 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2829 	struct f2fs_inode_info *fi = F2FS_I(inode);
2830 	size_t count = iov_iter_count(iter);
2831 	loff_t offset = iocb->ki_pos;
2832 	int rw = iov_iter_rw(iter);
2833 	int err;
2834 	enum rw_hint hint = iocb->ki_hint;
2835 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2836 	bool do_opu;
2837 
2838 	err = check_direct_IO(inode, iter, offset);
2839 	if (err)
2840 		return err < 0 ? err : 0;
2841 
2842 	if (f2fs_force_buffered_io(inode, iocb, iter))
2843 		return 0;
2844 
2845 	do_opu = allow_outplace_dio(inode, iocb, iter);
2846 
2847 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2848 
2849 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2850 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2851 
2852 	if (iocb->ki_flags & IOCB_NOWAIT) {
2853 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2854 			iocb->ki_hint = hint;
2855 			err = -EAGAIN;
2856 			goto out;
2857 		}
2858 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2859 			up_read(&fi->i_gc_rwsem[rw]);
2860 			iocb->ki_hint = hint;
2861 			err = -EAGAIN;
2862 			goto out;
2863 		}
2864 	} else {
2865 		down_read(&fi->i_gc_rwsem[rw]);
2866 		if (do_opu)
2867 			down_read(&fi->i_gc_rwsem[READ]);
2868 	}
2869 
2870 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2871 			iter, rw == WRITE ? get_data_block_dio_write :
2872 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2873 			DIO_LOCKING | DIO_SKIP_HOLES);
2874 
2875 	if (do_opu)
2876 		up_read(&fi->i_gc_rwsem[READ]);
2877 
2878 	up_read(&fi->i_gc_rwsem[rw]);
2879 
2880 	if (rw == WRITE) {
2881 		if (whint_mode == WHINT_MODE_OFF)
2882 			iocb->ki_hint = hint;
2883 		if (err > 0) {
2884 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2885 									err);
2886 			if (!do_opu)
2887 				set_inode_flag(inode, FI_UPDATE_WRITE);
2888 		} else if (err < 0) {
2889 			f2fs_write_failed(mapping, offset + count);
2890 		}
2891 	}
2892 
2893 out:
2894 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2895 
2896 	return err;
2897 }
2898 
2899 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2900 							unsigned int length)
2901 {
2902 	struct inode *inode = page->mapping->host;
2903 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2904 
2905 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2906 		(offset % PAGE_SIZE || length != PAGE_SIZE))
2907 		return;
2908 
2909 	if (PageDirty(page)) {
2910 		if (inode->i_ino == F2FS_META_INO(sbi)) {
2911 			dec_page_count(sbi, F2FS_DIRTY_META);
2912 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2913 			dec_page_count(sbi, F2FS_DIRTY_NODES);
2914 		} else {
2915 			inode_dec_dirty_pages(inode);
2916 			f2fs_remove_dirty_inode(inode);
2917 		}
2918 	}
2919 
2920 	clear_cold_data(page);
2921 
2922 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2923 		return f2fs_drop_inmem_page(inode, page);
2924 
2925 	f2fs_clear_page_private(page);
2926 }
2927 
2928 int f2fs_release_page(struct page *page, gfp_t wait)
2929 {
2930 	/* If this is dirty page, keep PagePrivate */
2931 	if (PageDirty(page))
2932 		return 0;
2933 
2934 	/* This is atomic written page, keep Private */
2935 	if (IS_ATOMIC_WRITTEN_PAGE(page))
2936 		return 0;
2937 
2938 	clear_cold_data(page);
2939 	f2fs_clear_page_private(page);
2940 	return 1;
2941 }
2942 
2943 static int f2fs_set_data_page_dirty(struct page *page)
2944 {
2945 	struct inode *inode = page_file_mapping(page)->host;
2946 
2947 	trace_f2fs_set_page_dirty(page, DATA);
2948 
2949 	if (!PageUptodate(page))
2950 		SetPageUptodate(page);
2951 	if (PageSwapCache(page))
2952 		return __set_page_dirty_nobuffers(page);
2953 
2954 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2955 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2956 			f2fs_register_inmem_page(inode, page);
2957 			return 1;
2958 		}
2959 		/*
2960 		 * Previously, this page has been registered, we just
2961 		 * return here.
2962 		 */
2963 		return 0;
2964 	}
2965 
2966 	if (!PageDirty(page)) {
2967 		__set_page_dirty_nobuffers(page);
2968 		f2fs_update_dirty_page(inode, page);
2969 		return 1;
2970 	}
2971 	return 0;
2972 }
2973 
2974 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2975 {
2976 	struct inode *inode = mapping->host;
2977 
2978 	if (f2fs_has_inline_data(inode))
2979 		return 0;
2980 
2981 	/* make sure allocating whole blocks */
2982 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2983 		filemap_write_and_wait(mapping);
2984 
2985 	return generic_block_bmap(mapping, block, get_data_block_bmap);
2986 }
2987 
2988 #ifdef CONFIG_MIGRATION
2989 #include <linux/migrate.h>
2990 
2991 int f2fs_migrate_page(struct address_space *mapping,
2992 		struct page *newpage, struct page *page, enum migrate_mode mode)
2993 {
2994 	int rc, extra_count;
2995 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2996 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2997 
2998 	BUG_ON(PageWriteback(page));
2999 
3000 	/* migrating an atomic written page is safe with the inmem_lock hold */
3001 	if (atomic_written) {
3002 		if (mode != MIGRATE_SYNC)
3003 			return -EBUSY;
3004 		if (!mutex_trylock(&fi->inmem_lock))
3005 			return -EAGAIN;
3006 	}
3007 
3008 	/* one extra reference was held for atomic_write page */
3009 	extra_count = atomic_written ? 1 : 0;
3010 	rc = migrate_page_move_mapping(mapping, newpage,
3011 				page, extra_count);
3012 	if (rc != MIGRATEPAGE_SUCCESS) {
3013 		if (atomic_written)
3014 			mutex_unlock(&fi->inmem_lock);
3015 		return rc;
3016 	}
3017 
3018 	if (atomic_written) {
3019 		struct inmem_pages *cur;
3020 		list_for_each_entry(cur, &fi->inmem_pages, list)
3021 			if (cur->page == page) {
3022 				cur->page = newpage;
3023 				break;
3024 			}
3025 		mutex_unlock(&fi->inmem_lock);
3026 		put_page(page);
3027 		get_page(newpage);
3028 	}
3029 
3030 	if (PagePrivate(page)) {
3031 		f2fs_set_page_private(newpage, page_private(page));
3032 		f2fs_clear_page_private(page);
3033 	}
3034 
3035 	if (mode != MIGRATE_SYNC_NO_COPY)
3036 		migrate_page_copy(newpage, page);
3037 	else
3038 		migrate_page_states(newpage, page);
3039 
3040 	return MIGRATEPAGE_SUCCESS;
3041 }
3042 #endif
3043 
3044 #ifdef CONFIG_SWAP
3045 /* Copied from generic_swapfile_activate() to check any holes */
3046 static int check_swap_activate(struct file *swap_file, unsigned int max)
3047 {
3048 	struct address_space *mapping = swap_file->f_mapping;
3049 	struct inode *inode = mapping->host;
3050 	unsigned blocks_per_page;
3051 	unsigned long page_no;
3052 	unsigned blkbits;
3053 	sector_t probe_block;
3054 	sector_t last_block;
3055 	sector_t lowest_block = -1;
3056 	sector_t highest_block = 0;
3057 
3058 	blkbits = inode->i_blkbits;
3059 	blocks_per_page = PAGE_SIZE >> blkbits;
3060 
3061 	/*
3062 	 * Map all the blocks into the extent list.  This code doesn't try
3063 	 * to be very smart.
3064 	 */
3065 	probe_block = 0;
3066 	page_no = 0;
3067 	last_block = i_size_read(inode) >> blkbits;
3068 	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3069 		unsigned block_in_page;
3070 		sector_t first_block;
3071 
3072 		cond_resched();
3073 
3074 		first_block = bmap(inode, probe_block);
3075 		if (first_block == 0)
3076 			goto bad_bmap;
3077 
3078 		/*
3079 		 * It must be PAGE_SIZE aligned on-disk
3080 		 */
3081 		if (first_block & (blocks_per_page - 1)) {
3082 			probe_block++;
3083 			goto reprobe;
3084 		}
3085 
3086 		for (block_in_page = 1; block_in_page < blocks_per_page;
3087 					block_in_page++) {
3088 			sector_t block;
3089 
3090 			block = bmap(inode, probe_block + block_in_page);
3091 			if (block == 0)
3092 				goto bad_bmap;
3093 			if (block != first_block + block_in_page) {
3094 				/* Discontiguity */
3095 				probe_block++;
3096 				goto reprobe;
3097 			}
3098 		}
3099 
3100 		first_block >>= (PAGE_SHIFT - blkbits);
3101 		if (page_no) {	/* exclude the header page */
3102 			if (first_block < lowest_block)
3103 				lowest_block = first_block;
3104 			if (first_block > highest_block)
3105 				highest_block = first_block;
3106 		}
3107 
3108 		page_no++;
3109 		probe_block += blocks_per_page;
3110 reprobe:
3111 		continue;
3112 	}
3113 	return 0;
3114 
3115 bad_bmap:
3116 	pr_err("swapon: swapfile has holes\n");
3117 	return -EINVAL;
3118 }
3119 
3120 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3121 				sector_t *span)
3122 {
3123 	struct inode *inode = file_inode(file);
3124 	int ret;
3125 
3126 	if (!S_ISREG(inode->i_mode))
3127 		return -EINVAL;
3128 
3129 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3130 		return -EROFS;
3131 
3132 	ret = f2fs_convert_inline_inode(inode);
3133 	if (ret)
3134 		return ret;
3135 
3136 	ret = check_swap_activate(file, sis->max);
3137 	if (ret)
3138 		return ret;
3139 
3140 	set_inode_flag(inode, FI_PIN_FILE);
3141 	f2fs_precache_extents(inode);
3142 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3143 	return 0;
3144 }
3145 
3146 static void f2fs_swap_deactivate(struct file *file)
3147 {
3148 	struct inode *inode = file_inode(file);
3149 
3150 	clear_inode_flag(inode, FI_PIN_FILE);
3151 }
3152 #else
3153 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3154 				sector_t *span)
3155 {
3156 	return -EOPNOTSUPP;
3157 }
3158 
3159 static void f2fs_swap_deactivate(struct file *file)
3160 {
3161 }
3162 #endif
3163 
3164 const struct address_space_operations f2fs_dblock_aops = {
3165 	.readpage	= f2fs_read_data_page,
3166 	.readpages	= f2fs_read_data_pages,
3167 	.writepage	= f2fs_write_data_page,
3168 	.writepages	= f2fs_write_data_pages,
3169 	.write_begin	= f2fs_write_begin,
3170 	.write_end	= f2fs_write_end,
3171 	.set_page_dirty	= f2fs_set_data_page_dirty,
3172 	.invalidatepage	= f2fs_invalidate_page,
3173 	.releasepage	= f2fs_release_page,
3174 	.direct_IO	= f2fs_direct_IO,
3175 	.bmap		= f2fs_bmap,
3176 	.swap_activate  = f2fs_swap_activate,
3177 	.swap_deactivate = f2fs_swap_deactivate,
3178 #ifdef CONFIG_MIGRATION
3179 	.migratepage    = f2fs_migrate_page,
3180 #endif
3181 };
3182 
3183 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3184 {
3185 	struct address_space *mapping = page_mapping(page);
3186 	unsigned long flags;
3187 
3188 	xa_lock_irqsave(&mapping->i_pages, flags);
3189 	__xa_clear_mark(&mapping->i_pages, page_index(page),
3190 						PAGECACHE_TAG_DIRTY);
3191 	xa_unlock_irqrestore(&mapping->i_pages, flags);
3192 }
3193 
3194 int __init f2fs_init_post_read_processing(void)
3195 {
3196 	bio_post_read_ctx_cache =
3197 		kmem_cache_create("f2fs_bio_post_read_ctx",
3198 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3199 	if (!bio_post_read_ctx_cache)
3200 		goto fail;
3201 	bio_post_read_ctx_pool =
3202 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3203 					 bio_post_read_ctx_cache);
3204 	if (!bio_post_read_ctx_pool)
3205 		goto fail_free_cache;
3206 	return 0;
3207 
3208 fail_free_cache:
3209 	kmem_cache_destroy(bio_post_read_ctx_cache);
3210 fail:
3211 	return -ENOMEM;
3212 }
3213 
3214 void __exit f2fs_destroy_post_read_processing(void)
3215 {
3216 	mempool_destroy(bio_post_read_ctx_pool);
3217 	kmem_cache_destroy(bio_post_read_ctx_cache);
3218 }
3219