xref: /linux/fs/f2fs/data.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22 
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define NUM_PREALLOC_POST_READ_CTXS	128
30 
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34 
35 static bool __is_cp_guaranteed(struct page *page)
36 {
37 	struct address_space *mapping = page->mapping;
38 	struct inode *inode;
39 	struct f2fs_sb_info *sbi;
40 
41 	if (!mapping)
42 		return false;
43 
44 	inode = mapping->host;
45 	sbi = F2FS_I_SB(inode);
46 
47 	if (inode->i_ino == F2FS_META_INO(sbi) ||
48 			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
49 			S_ISDIR(inode->i_mode) ||
50 			(S_ISREG(inode->i_mode) &&
51 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
52 			is_cold_data(page))
53 		return true;
54 	return false;
55 }
56 
57 static enum count_type __read_io_type(struct page *page)
58 {
59 	struct address_space *mapping = page_file_mapping(page);
60 
61 	if (mapping) {
62 		struct inode *inode = mapping->host;
63 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
64 
65 		if (inode->i_ino == F2FS_META_INO(sbi))
66 			return F2FS_RD_META;
67 
68 		if (inode->i_ino == F2FS_NODE_INO(sbi))
69 			return F2FS_RD_NODE;
70 	}
71 	return F2FS_RD_DATA;
72 }
73 
74 /* postprocessing steps for read bios */
75 enum bio_post_read_step {
76 	STEP_INITIAL = 0,
77 	STEP_DECRYPT,
78 	STEP_VERITY,
79 };
80 
81 struct bio_post_read_ctx {
82 	struct bio *bio;
83 	struct work_struct work;
84 	unsigned int cur_step;
85 	unsigned int enabled_steps;
86 };
87 
88 static void __read_end_io(struct bio *bio)
89 {
90 	struct page *page;
91 	struct bio_vec *bv;
92 	struct bvec_iter_all iter_all;
93 
94 	bio_for_each_segment_all(bv, bio, iter_all) {
95 		page = bv->bv_page;
96 
97 		/* PG_error was set if any post_read step failed */
98 		if (bio->bi_status || PageError(page)) {
99 			ClearPageUptodate(page);
100 			/* will re-read again later */
101 			ClearPageError(page);
102 		} else {
103 			SetPageUptodate(page);
104 		}
105 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
106 		unlock_page(page);
107 	}
108 	if (bio->bi_private)
109 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
110 	bio_put(bio);
111 }
112 
113 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
114 
115 static void decrypt_work(struct work_struct *work)
116 {
117 	struct bio_post_read_ctx *ctx =
118 		container_of(work, struct bio_post_read_ctx, work);
119 
120 	fscrypt_decrypt_bio(ctx->bio);
121 
122 	bio_post_read_processing(ctx);
123 }
124 
125 static void verity_work(struct work_struct *work)
126 {
127 	struct bio_post_read_ctx *ctx =
128 		container_of(work, struct bio_post_read_ctx, work);
129 
130 	fsverity_verify_bio(ctx->bio);
131 
132 	bio_post_read_processing(ctx);
133 }
134 
135 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
136 {
137 	/*
138 	 * We use different work queues for decryption and for verity because
139 	 * verity may require reading metadata pages that need decryption, and
140 	 * we shouldn't recurse to the same workqueue.
141 	 */
142 	switch (++ctx->cur_step) {
143 	case STEP_DECRYPT:
144 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
145 			INIT_WORK(&ctx->work, decrypt_work);
146 			fscrypt_enqueue_decrypt_work(&ctx->work);
147 			return;
148 		}
149 		ctx->cur_step++;
150 		/* fall-through */
151 	case STEP_VERITY:
152 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
153 			INIT_WORK(&ctx->work, verity_work);
154 			fsverity_enqueue_verify_work(&ctx->work);
155 			return;
156 		}
157 		ctx->cur_step++;
158 		/* fall-through */
159 	default:
160 		__read_end_io(ctx->bio);
161 	}
162 }
163 
164 static bool f2fs_bio_post_read_required(struct bio *bio)
165 {
166 	return bio->bi_private && !bio->bi_status;
167 }
168 
169 static void f2fs_read_end_io(struct bio *bio)
170 {
171 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
172 
173 	if (time_to_inject(sbi, FAULT_READ_IO)) {
174 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
175 		bio->bi_status = BLK_STS_IOERR;
176 	}
177 
178 	if (f2fs_bio_post_read_required(bio)) {
179 		struct bio_post_read_ctx *ctx = bio->bi_private;
180 
181 		ctx->cur_step = STEP_INITIAL;
182 		bio_post_read_processing(ctx);
183 		return;
184 	}
185 
186 	__read_end_io(bio);
187 }
188 
189 static void f2fs_write_end_io(struct bio *bio)
190 {
191 	struct f2fs_sb_info *sbi = bio->bi_private;
192 	struct bio_vec *bvec;
193 	struct bvec_iter_all iter_all;
194 
195 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
196 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
197 		bio->bi_status = BLK_STS_IOERR;
198 	}
199 
200 	bio_for_each_segment_all(bvec, bio, iter_all) {
201 		struct page *page = bvec->bv_page;
202 		enum count_type type = WB_DATA_TYPE(page);
203 
204 		if (IS_DUMMY_WRITTEN_PAGE(page)) {
205 			set_page_private(page, (unsigned long)NULL);
206 			ClearPagePrivate(page);
207 			unlock_page(page);
208 			mempool_free(page, sbi->write_io_dummy);
209 
210 			if (unlikely(bio->bi_status))
211 				f2fs_stop_checkpoint(sbi, true);
212 			continue;
213 		}
214 
215 		fscrypt_finalize_bounce_page(&page);
216 
217 		if (unlikely(bio->bi_status)) {
218 			mapping_set_error(page->mapping, -EIO);
219 			if (type == F2FS_WB_CP_DATA)
220 				f2fs_stop_checkpoint(sbi, true);
221 		}
222 
223 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
224 					page->index != nid_of_node(page));
225 
226 		dec_page_count(sbi, type);
227 		if (f2fs_in_warm_node_list(sbi, page))
228 			f2fs_del_fsync_node_entry(sbi, page);
229 		clear_cold_data(page);
230 		end_page_writeback(page);
231 	}
232 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
233 				wq_has_sleeper(&sbi->cp_wait))
234 		wake_up(&sbi->cp_wait);
235 
236 	bio_put(bio);
237 }
238 
239 /*
240  * Return true, if pre_bio's bdev is same as its target device.
241  */
242 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
243 				block_t blk_addr, struct bio *bio)
244 {
245 	struct block_device *bdev = sbi->sb->s_bdev;
246 	int i;
247 
248 	if (f2fs_is_multi_device(sbi)) {
249 		for (i = 0; i < sbi->s_ndevs; i++) {
250 			if (FDEV(i).start_blk <= blk_addr &&
251 			    FDEV(i).end_blk >= blk_addr) {
252 				blk_addr -= FDEV(i).start_blk;
253 				bdev = FDEV(i).bdev;
254 				break;
255 			}
256 		}
257 	}
258 	if (bio) {
259 		bio_set_dev(bio, bdev);
260 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
261 	}
262 	return bdev;
263 }
264 
265 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
266 {
267 	int i;
268 
269 	if (!f2fs_is_multi_device(sbi))
270 		return 0;
271 
272 	for (i = 0; i < sbi->s_ndevs; i++)
273 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
274 			return i;
275 	return 0;
276 }
277 
278 static bool __same_bdev(struct f2fs_sb_info *sbi,
279 				block_t blk_addr, struct bio *bio)
280 {
281 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
282 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
283 }
284 
285 /*
286  * Low-level block read/write IO operations.
287  */
288 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
289 {
290 	struct f2fs_sb_info *sbi = fio->sbi;
291 	struct bio *bio;
292 
293 	bio = f2fs_bio_alloc(sbi, npages, true);
294 
295 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
296 	if (is_read_io(fio->op)) {
297 		bio->bi_end_io = f2fs_read_end_io;
298 		bio->bi_private = NULL;
299 	} else {
300 		bio->bi_end_io = f2fs_write_end_io;
301 		bio->bi_private = sbi;
302 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
303 						fio->type, fio->temp);
304 	}
305 	if (fio->io_wbc)
306 		wbc_init_bio(fio->io_wbc, bio);
307 
308 	return bio;
309 }
310 
311 static inline void __submit_bio(struct f2fs_sb_info *sbi,
312 				struct bio *bio, enum page_type type)
313 {
314 	if (!is_read_io(bio_op(bio))) {
315 		unsigned int start;
316 
317 		if (type != DATA && type != NODE)
318 			goto submit_io;
319 
320 		if (test_opt(sbi, LFS) && current->plug)
321 			blk_finish_plug(current->plug);
322 
323 		if (F2FS_IO_ALIGNED(sbi))
324 			goto submit_io;
325 
326 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
327 		start %= F2FS_IO_SIZE(sbi);
328 
329 		if (start == 0)
330 			goto submit_io;
331 
332 		/* fill dummy pages */
333 		for (; start < F2FS_IO_SIZE(sbi); start++) {
334 			struct page *page =
335 				mempool_alloc(sbi->write_io_dummy,
336 					      GFP_NOIO | __GFP_NOFAIL);
337 			f2fs_bug_on(sbi, !page);
338 
339 			zero_user_segment(page, 0, PAGE_SIZE);
340 			SetPagePrivate(page);
341 			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
342 			lock_page(page);
343 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
344 				f2fs_bug_on(sbi, 1);
345 		}
346 		/*
347 		 * In the NODE case, we lose next block address chain. So, we
348 		 * need to do checkpoint in f2fs_sync_file.
349 		 */
350 		if (type == NODE)
351 			set_sbi_flag(sbi, SBI_NEED_CP);
352 	}
353 submit_io:
354 	if (is_read_io(bio_op(bio)))
355 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
356 	else
357 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
358 	submit_bio(bio);
359 }
360 
361 static void __submit_merged_bio(struct f2fs_bio_info *io)
362 {
363 	struct f2fs_io_info *fio = &io->fio;
364 
365 	if (!io->bio)
366 		return;
367 
368 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
369 
370 	if (is_read_io(fio->op))
371 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
372 	else
373 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
374 
375 	__submit_bio(io->sbi, io->bio, fio->type);
376 	io->bio = NULL;
377 }
378 
379 static bool __has_merged_page(struct bio *bio, struct inode *inode,
380 						struct page *page, nid_t ino)
381 {
382 	struct bio_vec *bvec;
383 	struct page *target;
384 	struct bvec_iter_all iter_all;
385 
386 	if (!bio)
387 		return false;
388 
389 	if (!inode && !page && !ino)
390 		return true;
391 
392 	bio_for_each_segment_all(bvec, bio, iter_all) {
393 
394 		target = bvec->bv_page;
395 		if (fscrypt_is_bounce_page(target))
396 			target = fscrypt_pagecache_page(target);
397 
398 		if (inode && inode == target->mapping->host)
399 			return true;
400 		if (page && page == target)
401 			return true;
402 		if (ino && ino == ino_of_node(target))
403 			return true;
404 	}
405 
406 	return false;
407 }
408 
409 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
410 				enum page_type type, enum temp_type temp)
411 {
412 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
413 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
414 
415 	down_write(&io->io_rwsem);
416 
417 	/* change META to META_FLUSH in the checkpoint procedure */
418 	if (type >= META_FLUSH) {
419 		io->fio.type = META_FLUSH;
420 		io->fio.op = REQ_OP_WRITE;
421 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
422 		if (!test_opt(sbi, NOBARRIER))
423 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
424 	}
425 	__submit_merged_bio(io);
426 	up_write(&io->io_rwsem);
427 }
428 
429 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
430 				struct inode *inode, struct page *page,
431 				nid_t ino, enum page_type type, bool force)
432 {
433 	enum temp_type temp;
434 	bool ret = true;
435 
436 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
437 		if (!force)	{
438 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
439 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
440 
441 			down_read(&io->io_rwsem);
442 			ret = __has_merged_page(io->bio, inode, page, ino);
443 			up_read(&io->io_rwsem);
444 		}
445 		if (ret)
446 			__f2fs_submit_merged_write(sbi, type, temp);
447 
448 		/* TODO: use HOT temp only for meta pages now. */
449 		if (type >= META)
450 			break;
451 	}
452 }
453 
454 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
455 {
456 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
457 }
458 
459 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
460 				struct inode *inode, struct page *page,
461 				nid_t ino, enum page_type type)
462 {
463 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
464 }
465 
466 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
467 {
468 	f2fs_submit_merged_write(sbi, DATA);
469 	f2fs_submit_merged_write(sbi, NODE);
470 	f2fs_submit_merged_write(sbi, META);
471 }
472 
473 /*
474  * Fill the locked page with data located in the block address.
475  * A caller needs to unlock the page on failure.
476  */
477 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
478 {
479 	struct bio *bio;
480 	struct page *page = fio->encrypted_page ?
481 			fio->encrypted_page : fio->page;
482 
483 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
484 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
485 			META_GENERIC : DATA_GENERIC_ENHANCE)))
486 		return -EFSCORRUPTED;
487 
488 	trace_f2fs_submit_page_bio(page, fio);
489 	f2fs_trace_ios(fio, 0);
490 
491 	/* Allocate a new bio */
492 	bio = __bio_alloc(fio, 1);
493 
494 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
495 		bio_put(bio);
496 		return -EFAULT;
497 	}
498 
499 	if (fio->io_wbc && !is_read_io(fio->op))
500 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
501 
502 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
503 
504 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
505 			__read_io_type(page): WB_DATA_TYPE(fio->page));
506 
507 	__submit_bio(fio->sbi, bio, fio->type);
508 	return 0;
509 }
510 
511 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
512 				block_t last_blkaddr, block_t cur_blkaddr)
513 {
514 	if (last_blkaddr + 1 != cur_blkaddr)
515 		return false;
516 	return __same_bdev(sbi, cur_blkaddr, bio);
517 }
518 
519 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
520 						struct f2fs_io_info *fio)
521 {
522 	if (io->fio.op != fio->op)
523 		return false;
524 	return io->fio.op_flags == fio->op_flags;
525 }
526 
527 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
528 					struct f2fs_bio_info *io,
529 					struct f2fs_io_info *fio,
530 					block_t last_blkaddr,
531 					block_t cur_blkaddr)
532 {
533 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
534 		unsigned int filled_blocks =
535 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
536 		unsigned int io_size = F2FS_IO_SIZE(sbi);
537 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
538 
539 		/* IOs in bio is aligned and left space of vectors is not enough */
540 		if (!(filled_blocks % io_size) && left_vecs < io_size)
541 			return false;
542 	}
543 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
544 		return false;
545 	return io_type_is_mergeable(io, fio);
546 }
547 
548 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
549 				struct page *page, enum temp_type temp)
550 {
551 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
552 	struct bio_entry *be;
553 
554 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
555 	be->bio = bio;
556 	bio_get(bio);
557 
558 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
559 		f2fs_bug_on(sbi, 1);
560 
561 	down_write(&io->bio_list_lock);
562 	list_add_tail(&be->list, &io->bio_list);
563 	up_write(&io->bio_list_lock);
564 }
565 
566 static void del_bio_entry(struct bio_entry *be)
567 {
568 	list_del(&be->list);
569 	kmem_cache_free(bio_entry_slab, be);
570 }
571 
572 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
573 							struct page *page)
574 {
575 	enum temp_type temp;
576 	bool found = false;
577 	int ret = -EAGAIN;
578 
579 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
580 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
581 		struct list_head *head = &io->bio_list;
582 		struct bio_entry *be;
583 
584 		down_write(&io->bio_list_lock);
585 		list_for_each_entry(be, head, list) {
586 			if (be->bio != *bio)
587 				continue;
588 
589 			found = true;
590 
591 			if (bio_add_page(*bio, page, PAGE_SIZE, 0) == PAGE_SIZE) {
592 				ret = 0;
593 				break;
594 			}
595 
596 			/* bio is full */
597 			del_bio_entry(be);
598 			__submit_bio(sbi, *bio, DATA);
599 			break;
600 		}
601 		up_write(&io->bio_list_lock);
602 	}
603 
604 	if (ret) {
605 		bio_put(*bio);
606 		*bio = NULL;
607 	}
608 
609 	return ret;
610 }
611 
612 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
613 					struct bio **bio, struct page *page)
614 {
615 	enum temp_type temp;
616 	bool found = false;
617 	struct bio *target = bio ? *bio : NULL;
618 
619 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
620 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
621 		struct list_head *head = &io->bio_list;
622 		struct bio_entry *be;
623 
624 		if (list_empty(head))
625 			continue;
626 
627 		down_read(&io->bio_list_lock);
628 		list_for_each_entry(be, head, list) {
629 			if (target)
630 				found = (target == be->bio);
631 			else
632 				found = __has_merged_page(be->bio, NULL,
633 								page, 0);
634 			if (found)
635 				break;
636 		}
637 		up_read(&io->bio_list_lock);
638 
639 		if (!found)
640 			continue;
641 
642 		found = false;
643 
644 		down_write(&io->bio_list_lock);
645 		list_for_each_entry(be, head, list) {
646 			if (target)
647 				found = (target == be->bio);
648 			else
649 				found = __has_merged_page(be->bio, NULL,
650 								page, 0);
651 			if (found) {
652 				target = be->bio;
653 				del_bio_entry(be);
654 				break;
655 			}
656 		}
657 		up_write(&io->bio_list_lock);
658 	}
659 
660 	if (found)
661 		__submit_bio(sbi, target, DATA);
662 	if (bio && *bio) {
663 		bio_put(*bio);
664 		*bio = NULL;
665 	}
666 }
667 
668 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
669 {
670 	struct bio *bio = *fio->bio;
671 	struct page *page = fio->encrypted_page ?
672 			fio->encrypted_page : fio->page;
673 
674 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
675 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
676 		return -EFSCORRUPTED;
677 
678 	trace_f2fs_submit_page_bio(page, fio);
679 	f2fs_trace_ios(fio, 0);
680 
681 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
682 						fio->new_blkaddr))
683 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
684 alloc_new:
685 	if (!bio) {
686 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
687 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
688 
689 		add_bio_entry(fio->sbi, bio, page, fio->temp);
690 	} else {
691 		if (add_ipu_page(fio->sbi, &bio, page))
692 			goto alloc_new;
693 	}
694 
695 	if (fio->io_wbc)
696 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
697 
698 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
699 
700 	*fio->last_block = fio->new_blkaddr;
701 	*fio->bio = bio;
702 
703 	return 0;
704 }
705 
706 void f2fs_submit_page_write(struct f2fs_io_info *fio)
707 {
708 	struct f2fs_sb_info *sbi = fio->sbi;
709 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
710 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
711 	struct page *bio_page;
712 
713 	f2fs_bug_on(sbi, is_read_io(fio->op));
714 
715 	down_write(&io->io_rwsem);
716 next:
717 	if (fio->in_list) {
718 		spin_lock(&io->io_lock);
719 		if (list_empty(&io->io_list)) {
720 			spin_unlock(&io->io_lock);
721 			goto out;
722 		}
723 		fio = list_first_entry(&io->io_list,
724 						struct f2fs_io_info, list);
725 		list_del(&fio->list);
726 		spin_unlock(&io->io_lock);
727 	}
728 
729 	verify_fio_blkaddr(fio);
730 
731 	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
732 
733 	/* set submitted = true as a return value */
734 	fio->submitted = true;
735 
736 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
737 
738 	if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
739 			io->last_block_in_bio, fio->new_blkaddr))
740 		__submit_merged_bio(io);
741 alloc_new:
742 	if (io->bio == NULL) {
743 		if (F2FS_IO_ALIGNED(sbi) &&
744 				(fio->type == DATA || fio->type == NODE) &&
745 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
746 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
747 			fio->retry = true;
748 			goto skip;
749 		}
750 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
751 		io->fio = *fio;
752 	}
753 
754 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
755 		__submit_merged_bio(io);
756 		goto alloc_new;
757 	}
758 
759 	if (fio->io_wbc)
760 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
761 
762 	io->last_block_in_bio = fio->new_blkaddr;
763 	f2fs_trace_ios(fio, 0);
764 
765 	trace_f2fs_submit_page_write(fio->page, fio);
766 skip:
767 	if (fio->in_list)
768 		goto next;
769 out:
770 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
771 				!f2fs_is_checkpoint_ready(sbi))
772 		__submit_merged_bio(io);
773 	up_write(&io->io_rwsem);
774 }
775 
776 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
777 {
778 	return fsverity_active(inode) &&
779 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
780 }
781 
782 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
783 				      unsigned nr_pages, unsigned op_flag,
784 				      pgoff_t first_idx)
785 {
786 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
787 	struct bio *bio;
788 	struct bio_post_read_ctx *ctx;
789 	unsigned int post_read_steps = 0;
790 
791 	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
792 	if (!bio)
793 		return ERR_PTR(-ENOMEM);
794 	f2fs_target_device(sbi, blkaddr, bio);
795 	bio->bi_end_io = f2fs_read_end_io;
796 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
797 
798 	if (f2fs_encrypted_file(inode))
799 		post_read_steps |= 1 << STEP_DECRYPT;
800 
801 	if (f2fs_need_verity(inode, first_idx))
802 		post_read_steps |= 1 << STEP_VERITY;
803 
804 	if (post_read_steps) {
805 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
806 		if (!ctx) {
807 			bio_put(bio);
808 			return ERR_PTR(-ENOMEM);
809 		}
810 		ctx->bio = bio;
811 		ctx->enabled_steps = post_read_steps;
812 		bio->bi_private = ctx;
813 	}
814 
815 	return bio;
816 }
817 
818 /* This can handle encryption stuffs */
819 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
820 							block_t blkaddr)
821 {
822 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823 	struct bio *bio;
824 
825 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
826 	if (IS_ERR(bio))
827 		return PTR_ERR(bio);
828 
829 	/* wait for GCed page writeback via META_MAPPING */
830 	f2fs_wait_on_block_writeback(inode, blkaddr);
831 
832 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
833 		bio_put(bio);
834 		return -EFAULT;
835 	}
836 	ClearPageError(page);
837 	inc_page_count(sbi, F2FS_RD_DATA);
838 	__submit_bio(sbi, bio, DATA);
839 	return 0;
840 }
841 
842 static void __set_data_blkaddr(struct dnode_of_data *dn)
843 {
844 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
845 	__le32 *addr_array;
846 	int base = 0;
847 
848 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
849 		base = get_extra_isize(dn->inode);
850 
851 	/* Get physical address of data block */
852 	addr_array = blkaddr_in_node(rn);
853 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
854 }
855 
856 /*
857  * Lock ordering for the change of data block address:
858  * ->data_page
859  *  ->node_page
860  *    update block addresses in the node page
861  */
862 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
863 {
864 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
865 	__set_data_blkaddr(dn);
866 	if (set_page_dirty(dn->node_page))
867 		dn->node_changed = true;
868 }
869 
870 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
871 {
872 	dn->data_blkaddr = blkaddr;
873 	f2fs_set_data_blkaddr(dn);
874 	f2fs_update_extent_cache(dn);
875 }
876 
877 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
878 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
879 {
880 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
881 	int err;
882 
883 	if (!count)
884 		return 0;
885 
886 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
887 		return -EPERM;
888 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
889 		return err;
890 
891 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
892 						dn->ofs_in_node, count);
893 
894 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
895 
896 	for (; count > 0; dn->ofs_in_node++) {
897 		block_t blkaddr = datablock_addr(dn->inode,
898 					dn->node_page, dn->ofs_in_node);
899 		if (blkaddr == NULL_ADDR) {
900 			dn->data_blkaddr = NEW_ADDR;
901 			__set_data_blkaddr(dn);
902 			count--;
903 		}
904 	}
905 
906 	if (set_page_dirty(dn->node_page))
907 		dn->node_changed = true;
908 	return 0;
909 }
910 
911 /* Should keep dn->ofs_in_node unchanged */
912 int f2fs_reserve_new_block(struct dnode_of_data *dn)
913 {
914 	unsigned int ofs_in_node = dn->ofs_in_node;
915 	int ret;
916 
917 	ret = f2fs_reserve_new_blocks(dn, 1);
918 	dn->ofs_in_node = ofs_in_node;
919 	return ret;
920 }
921 
922 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
923 {
924 	bool need_put = dn->inode_page ? false : true;
925 	int err;
926 
927 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
928 	if (err)
929 		return err;
930 
931 	if (dn->data_blkaddr == NULL_ADDR)
932 		err = f2fs_reserve_new_block(dn);
933 	if (err || need_put)
934 		f2fs_put_dnode(dn);
935 	return err;
936 }
937 
938 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
939 {
940 	struct extent_info ei  = {0,0,0};
941 	struct inode *inode = dn->inode;
942 
943 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
944 		dn->data_blkaddr = ei.blk + index - ei.fofs;
945 		return 0;
946 	}
947 
948 	return f2fs_reserve_block(dn, index);
949 }
950 
951 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
952 						int op_flags, bool for_write)
953 {
954 	struct address_space *mapping = inode->i_mapping;
955 	struct dnode_of_data dn;
956 	struct page *page;
957 	struct extent_info ei = {0,0,0};
958 	int err;
959 
960 	page = f2fs_grab_cache_page(mapping, index, for_write);
961 	if (!page)
962 		return ERR_PTR(-ENOMEM);
963 
964 	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
965 		dn.data_blkaddr = ei.blk + index - ei.fofs;
966 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
967 						DATA_GENERIC_ENHANCE_READ)) {
968 			err = -EFSCORRUPTED;
969 			goto put_err;
970 		}
971 		goto got_it;
972 	}
973 
974 	set_new_dnode(&dn, inode, NULL, NULL, 0);
975 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
976 	if (err)
977 		goto put_err;
978 	f2fs_put_dnode(&dn);
979 
980 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
981 		err = -ENOENT;
982 		goto put_err;
983 	}
984 	if (dn.data_blkaddr != NEW_ADDR &&
985 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
986 						dn.data_blkaddr,
987 						DATA_GENERIC_ENHANCE)) {
988 		err = -EFSCORRUPTED;
989 		goto put_err;
990 	}
991 got_it:
992 	if (PageUptodate(page)) {
993 		unlock_page(page);
994 		return page;
995 	}
996 
997 	/*
998 	 * A new dentry page is allocated but not able to be written, since its
999 	 * new inode page couldn't be allocated due to -ENOSPC.
1000 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1001 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1002 	 * f2fs_init_inode_metadata.
1003 	 */
1004 	if (dn.data_blkaddr == NEW_ADDR) {
1005 		zero_user_segment(page, 0, PAGE_SIZE);
1006 		if (!PageUptodate(page))
1007 			SetPageUptodate(page);
1008 		unlock_page(page);
1009 		return page;
1010 	}
1011 
1012 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
1013 	if (err)
1014 		goto put_err;
1015 	return page;
1016 
1017 put_err:
1018 	f2fs_put_page(page, 1);
1019 	return ERR_PTR(err);
1020 }
1021 
1022 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1023 {
1024 	struct address_space *mapping = inode->i_mapping;
1025 	struct page *page;
1026 
1027 	page = find_get_page(mapping, index);
1028 	if (page && PageUptodate(page))
1029 		return page;
1030 	f2fs_put_page(page, 0);
1031 
1032 	page = f2fs_get_read_data_page(inode, index, 0, false);
1033 	if (IS_ERR(page))
1034 		return page;
1035 
1036 	if (PageUptodate(page))
1037 		return page;
1038 
1039 	wait_on_page_locked(page);
1040 	if (unlikely(!PageUptodate(page))) {
1041 		f2fs_put_page(page, 0);
1042 		return ERR_PTR(-EIO);
1043 	}
1044 	return page;
1045 }
1046 
1047 /*
1048  * If it tries to access a hole, return an error.
1049  * Because, the callers, functions in dir.c and GC, should be able to know
1050  * whether this page exists or not.
1051  */
1052 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1053 							bool for_write)
1054 {
1055 	struct address_space *mapping = inode->i_mapping;
1056 	struct page *page;
1057 repeat:
1058 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1059 	if (IS_ERR(page))
1060 		return page;
1061 
1062 	/* wait for read completion */
1063 	lock_page(page);
1064 	if (unlikely(page->mapping != mapping)) {
1065 		f2fs_put_page(page, 1);
1066 		goto repeat;
1067 	}
1068 	if (unlikely(!PageUptodate(page))) {
1069 		f2fs_put_page(page, 1);
1070 		return ERR_PTR(-EIO);
1071 	}
1072 	return page;
1073 }
1074 
1075 /*
1076  * Caller ensures that this data page is never allocated.
1077  * A new zero-filled data page is allocated in the page cache.
1078  *
1079  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1080  * f2fs_unlock_op().
1081  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1082  * ipage should be released by this function.
1083  */
1084 struct page *f2fs_get_new_data_page(struct inode *inode,
1085 		struct page *ipage, pgoff_t index, bool new_i_size)
1086 {
1087 	struct address_space *mapping = inode->i_mapping;
1088 	struct page *page;
1089 	struct dnode_of_data dn;
1090 	int err;
1091 
1092 	page = f2fs_grab_cache_page(mapping, index, true);
1093 	if (!page) {
1094 		/*
1095 		 * before exiting, we should make sure ipage will be released
1096 		 * if any error occur.
1097 		 */
1098 		f2fs_put_page(ipage, 1);
1099 		return ERR_PTR(-ENOMEM);
1100 	}
1101 
1102 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1103 	err = f2fs_reserve_block(&dn, index);
1104 	if (err) {
1105 		f2fs_put_page(page, 1);
1106 		return ERR_PTR(err);
1107 	}
1108 	if (!ipage)
1109 		f2fs_put_dnode(&dn);
1110 
1111 	if (PageUptodate(page))
1112 		goto got_it;
1113 
1114 	if (dn.data_blkaddr == NEW_ADDR) {
1115 		zero_user_segment(page, 0, PAGE_SIZE);
1116 		if (!PageUptodate(page))
1117 			SetPageUptodate(page);
1118 	} else {
1119 		f2fs_put_page(page, 1);
1120 
1121 		/* if ipage exists, blkaddr should be NEW_ADDR */
1122 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1123 		page = f2fs_get_lock_data_page(inode, index, true);
1124 		if (IS_ERR(page))
1125 			return page;
1126 	}
1127 got_it:
1128 	if (new_i_size && i_size_read(inode) <
1129 				((loff_t)(index + 1) << PAGE_SHIFT))
1130 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1131 	return page;
1132 }
1133 
1134 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1135 {
1136 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1137 	struct f2fs_summary sum;
1138 	struct node_info ni;
1139 	block_t old_blkaddr;
1140 	blkcnt_t count = 1;
1141 	int err;
1142 
1143 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1144 		return -EPERM;
1145 
1146 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1147 	if (err)
1148 		return err;
1149 
1150 	dn->data_blkaddr = datablock_addr(dn->inode,
1151 				dn->node_page, dn->ofs_in_node);
1152 	if (dn->data_blkaddr != NULL_ADDR)
1153 		goto alloc;
1154 
1155 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1156 		return err;
1157 
1158 alloc:
1159 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1160 	old_blkaddr = dn->data_blkaddr;
1161 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1162 					&sum, seg_type, NULL, false);
1163 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1164 		invalidate_mapping_pages(META_MAPPING(sbi),
1165 					old_blkaddr, old_blkaddr);
1166 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1167 
1168 	/*
1169 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1170 	 * data from unwritten block via dio_read.
1171 	 */
1172 	return 0;
1173 }
1174 
1175 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177 	struct inode *inode = file_inode(iocb->ki_filp);
1178 	struct f2fs_map_blocks map;
1179 	int flag;
1180 	int err = 0;
1181 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1182 
1183 	/* convert inline data for Direct I/O*/
1184 	if (direct_io) {
1185 		err = f2fs_convert_inline_inode(inode);
1186 		if (err)
1187 			return err;
1188 	}
1189 
1190 	if (direct_io && allow_outplace_dio(inode, iocb, from))
1191 		return 0;
1192 
1193 	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1194 		return 0;
1195 
1196 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1197 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1198 	if (map.m_len > map.m_lblk)
1199 		map.m_len -= map.m_lblk;
1200 	else
1201 		map.m_len = 0;
1202 
1203 	map.m_next_pgofs = NULL;
1204 	map.m_next_extent = NULL;
1205 	map.m_seg_type = NO_CHECK_TYPE;
1206 	map.m_may_create = true;
1207 
1208 	if (direct_io) {
1209 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1210 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1211 					F2FS_GET_BLOCK_PRE_AIO :
1212 					F2FS_GET_BLOCK_PRE_DIO;
1213 		goto map_blocks;
1214 	}
1215 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1216 		err = f2fs_convert_inline_inode(inode);
1217 		if (err)
1218 			return err;
1219 	}
1220 	if (f2fs_has_inline_data(inode))
1221 		return err;
1222 
1223 	flag = F2FS_GET_BLOCK_PRE_AIO;
1224 
1225 map_blocks:
1226 	err = f2fs_map_blocks(inode, &map, 1, flag);
1227 	if (map.m_len > 0 && err == -ENOSPC) {
1228 		if (!direct_io)
1229 			set_inode_flag(inode, FI_NO_PREALLOC);
1230 		err = 0;
1231 	}
1232 	return err;
1233 }
1234 
1235 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1236 {
1237 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1238 		if (lock)
1239 			down_read(&sbi->node_change);
1240 		else
1241 			up_read(&sbi->node_change);
1242 	} else {
1243 		if (lock)
1244 			f2fs_lock_op(sbi);
1245 		else
1246 			f2fs_unlock_op(sbi);
1247 	}
1248 }
1249 
1250 /*
1251  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1252  * f2fs_map_blocks structure.
1253  * If original data blocks are allocated, then give them to blockdev.
1254  * Otherwise,
1255  *     a. preallocate requested block addresses
1256  *     b. do not use extent cache for better performance
1257  *     c. give the block addresses to blockdev
1258  */
1259 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1260 						int create, int flag)
1261 {
1262 	unsigned int maxblocks = map->m_len;
1263 	struct dnode_of_data dn;
1264 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1265 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1266 	pgoff_t pgofs, end_offset, end;
1267 	int err = 0, ofs = 1;
1268 	unsigned int ofs_in_node, last_ofs_in_node;
1269 	blkcnt_t prealloc;
1270 	struct extent_info ei = {0,0,0};
1271 	block_t blkaddr;
1272 	unsigned int start_pgofs;
1273 
1274 	if (!maxblocks)
1275 		return 0;
1276 
1277 	map->m_len = 0;
1278 	map->m_flags = 0;
1279 
1280 	/* it only supports block size == page size */
1281 	pgofs =	(pgoff_t)map->m_lblk;
1282 	end = pgofs + maxblocks;
1283 
1284 	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1285 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1286 							map->m_may_create)
1287 			goto next_dnode;
1288 
1289 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1290 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1291 		map->m_flags = F2FS_MAP_MAPPED;
1292 		if (map->m_next_extent)
1293 			*map->m_next_extent = pgofs + map->m_len;
1294 
1295 		/* for hardware encryption, but to avoid potential issue in future */
1296 		if (flag == F2FS_GET_BLOCK_DIO)
1297 			f2fs_wait_on_block_writeback_range(inode,
1298 						map->m_pblk, map->m_len);
1299 		goto out;
1300 	}
1301 
1302 next_dnode:
1303 	if (map->m_may_create)
1304 		__do_map_lock(sbi, flag, true);
1305 
1306 	/* When reading holes, we need its node page */
1307 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1308 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1309 	if (err) {
1310 		if (flag == F2FS_GET_BLOCK_BMAP)
1311 			map->m_pblk = 0;
1312 		if (err == -ENOENT) {
1313 			err = 0;
1314 			if (map->m_next_pgofs)
1315 				*map->m_next_pgofs =
1316 					f2fs_get_next_page_offset(&dn, pgofs);
1317 			if (map->m_next_extent)
1318 				*map->m_next_extent =
1319 					f2fs_get_next_page_offset(&dn, pgofs);
1320 		}
1321 		goto unlock_out;
1322 	}
1323 
1324 	start_pgofs = pgofs;
1325 	prealloc = 0;
1326 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1327 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1328 
1329 next_block:
1330 	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1331 
1332 	if (__is_valid_data_blkaddr(blkaddr) &&
1333 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1334 		err = -EFSCORRUPTED;
1335 		goto sync_out;
1336 	}
1337 
1338 	if (__is_valid_data_blkaddr(blkaddr)) {
1339 		/* use out-place-update for driect IO under LFS mode */
1340 		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1341 							map->m_may_create) {
1342 			err = __allocate_data_block(&dn, map->m_seg_type);
1343 			if (err)
1344 				goto sync_out;
1345 			blkaddr = dn.data_blkaddr;
1346 			set_inode_flag(inode, FI_APPEND_WRITE);
1347 		}
1348 	} else {
1349 		if (create) {
1350 			if (unlikely(f2fs_cp_error(sbi))) {
1351 				err = -EIO;
1352 				goto sync_out;
1353 			}
1354 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1355 				if (blkaddr == NULL_ADDR) {
1356 					prealloc++;
1357 					last_ofs_in_node = dn.ofs_in_node;
1358 				}
1359 			} else {
1360 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1361 					flag != F2FS_GET_BLOCK_DIO);
1362 				err = __allocate_data_block(&dn,
1363 							map->m_seg_type);
1364 				if (!err)
1365 					set_inode_flag(inode, FI_APPEND_WRITE);
1366 			}
1367 			if (err)
1368 				goto sync_out;
1369 			map->m_flags |= F2FS_MAP_NEW;
1370 			blkaddr = dn.data_blkaddr;
1371 		} else {
1372 			if (flag == F2FS_GET_BLOCK_BMAP) {
1373 				map->m_pblk = 0;
1374 				goto sync_out;
1375 			}
1376 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1377 				goto sync_out;
1378 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1379 						blkaddr == NULL_ADDR) {
1380 				if (map->m_next_pgofs)
1381 					*map->m_next_pgofs = pgofs + 1;
1382 				goto sync_out;
1383 			}
1384 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1385 				/* for defragment case */
1386 				if (map->m_next_pgofs)
1387 					*map->m_next_pgofs = pgofs + 1;
1388 				goto sync_out;
1389 			}
1390 		}
1391 	}
1392 
1393 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1394 		goto skip;
1395 
1396 	if (map->m_len == 0) {
1397 		/* preallocated unwritten block should be mapped for fiemap. */
1398 		if (blkaddr == NEW_ADDR)
1399 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1400 		map->m_flags |= F2FS_MAP_MAPPED;
1401 
1402 		map->m_pblk = blkaddr;
1403 		map->m_len = 1;
1404 	} else if ((map->m_pblk != NEW_ADDR &&
1405 			blkaddr == (map->m_pblk + ofs)) ||
1406 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1407 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1408 		ofs++;
1409 		map->m_len++;
1410 	} else {
1411 		goto sync_out;
1412 	}
1413 
1414 skip:
1415 	dn.ofs_in_node++;
1416 	pgofs++;
1417 
1418 	/* preallocate blocks in batch for one dnode page */
1419 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1420 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1421 
1422 		dn.ofs_in_node = ofs_in_node;
1423 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1424 		if (err)
1425 			goto sync_out;
1426 
1427 		map->m_len += dn.ofs_in_node - ofs_in_node;
1428 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1429 			err = -ENOSPC;
1430 			goto sync_out;
1431 		}
1432 		dn.ofs_in_node = end_offset;
1433 	}
1434 
1435 	if (pgofs >= end)
1436 		goto sync_out;
1437 	else if (dn.ofs_in_node < end_offset)
1438 		goto next_block;
1439 
1440 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1441 		if (map->m_flags & F2FS_MAP_MAPPED) {
1442 			unsigned int ofs = start_pgofs - map->m_lblk;
1443 
1444 			f2fs_update_extent_cache_range(&dn,
1445 				start_pgofs, map->m_pblk + ofs,
1446 				map->m_len - ofs);
1447 		}
1448 	}
1449 
1450 	f2fs_put_dnode(&dn);
1451 
1452 	if (map->m_may_create) {
1453 		__do_map_lock(sbi, flag, false);
1454 		f2fs_balance_fs(sbi, dn.node_changed);
1455 	}
1456 	goto next_dnode;
1457 
1458 sync_out:
1459 
1460 	/* for hardware encryption, but to avoid potential issue in future */
1461 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1462 		f2fs_wait_on_block_writeback_range(inode,
1463 						map->m_pblk, map->m_len);
1464 
1465 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1466 		if (map->m_flags & F2FS_MAP_MAPPED) {
1467 			unsigned int ofs = start_pgofs - map->m_lblk;
1468 
1469 			f2fs_update_extent_cache_range(&dn,
1470 				start_pgofs, map->m_pblk + ofs,
1471 				map->m_len - ofs);
1472 		}
1473 		if (map->m_next_extent)
1474 			*map->m_next_extent = pgofs + 1;
1475 	}
1476 	f2fs_put_dnode(&dn);
1477 unlock_out:
1478 	if (map->m_may_create) {
1479 		__do_map_lock(sbi, flag, false);
1480 		f2fs_balance_fs(sbi, dn.node_changed);
1481 	}
1482 out:
1483 	trace_f2fs_map_blocks(inode, map, err);
1484 	return err;
1485 }
1486 
1487 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1488 {
1489 	struct f2fs_map_blocks map;
1490 	block_t last_lblk;
1491 	int err;
1492 
1493 	if (pos + len > i_size_read(inode))
1494 		return false;
1495 
1496 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1497 	map.m_next_pgofs = NULL;
1498 	map.m_next_extent = NULL;
1499 	map.m_seg_type = NO_CHECK_TYPE;
1500 	map.m_may_create = false;
1501 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1502 
1503 	while (map.m_lblk < last_lblk) {
1504 		map.m_len = last_lblk - map.m_lblk;
1505 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1506 		if (err || map.m_len == 0)
1507 			return false;
1508 		map.m_lblk += map.m_len;
1509 	}
1510 	return true;
1511 }
1512 
1513 static int __get_data_block(struct inode *inode, sector_t iblock,
1514 			struct buffer_head *bh, int create, int flag,
1515 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1516 {
1517 	struct f2fs_map_blocks map;
1518 	int err;
1519 
1520 	map.m_lblk = iblock;
1521 	map.m_len = bh->b_size >> inode->i_blkbits;
1522 	map.m_next_pgofs = next_pgofs;
1523 	map.m_next_extent = NULL;
1524 	map.m_seg_type = seg_type;
1525 	map.m_may_create = may_write;
1526 
1527 	err = f2fs_map_blocks(inode, &map, create, flag);
1528 	if (!err) {
1529 		map_bh(bh, inode->i_sb, map.m_pblk);
1530 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1531 		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1532 	}
1533 	return err;
1534 }
1535 
1536 static int get_data_block(struct inode *inode, sector_t iblock,
1537 			struct buffer_head *bh_result, int create, int flag,
1538 			pgoff_t *next_pgofs)
1539 {
1540 	return __get_data_block(inode, iblock, bh_result, create,
1541 							flag, next_pgofs,
1542 							NO_CHECK_TYPE, create);
1543 }
1544 
1545 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1546 			struct buffer_head *bh_result, int create)
1547 {
1548 	return __get_data_block(inode, iblock, bh_result, create,
1549 				F2FS_GET_BLOCK_DIO, NULL,
1550 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1551 				IS_SWAPFILE(inode) ? false : true);
1552 }
1553 
1554 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1555 			struct buffer_head *bh_result, int create)
1556 {
1557 	return __get_data_block(inode, iblock, bh_result, create,
1558 				F2FS_GET_BLOCK_DIO, NULL,
1559 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1560 				false);
1561 }
1562 
1563 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1564 			struct buffer_head *bh_result, int create)
1565 {
1566 	/* Block number less than F2FS MAX BLOCKS */
1567 	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1568 		return -EFBIG;
1569 
1570 	return __get_data_block(inode, iblock, bh_result, create,
1571 						F2FS_GET_BLOCK_BMAP, NULL,
1572 						NO_CHECK_TYPE, create);
1573 }
1574 
1575 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1576 {
1577 	return (offset >> inode->i_blkbits);
1578 }
1579 
1580 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1581 {
1582 	return (blk << inode->i_blkbits);
1583 }
1584 
1585 static int f2fs_xattr_fiemap(struct inode *inode,
1586 				struct fiemap_extent_info *fieinfo)
1587 {
1588 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1589 	struct page *page;
1590 	struct node_info ni;
1591 	__u64 phys = 0, len;
1592 	__u32 flags;
1593 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1594 	int err = 0;
1595 
1596 	if (f2fs_has_inline_xattr(inode)) {
1597 		int offset;
1598 
1599 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1600 						inode->i_ino, false);
1601 		if (!page)
1602 			return -ENOMEM;
1603 
1604 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1605 		if (err) {
1606 			f2fs_put_page(page, 1);
1607 			return err;
1608 		}
1609 
1610 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1611 		offset = offsetof(struct f2fs_inode, i_addr) +
1612 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1613 					get_inline_xattr_addrs(inode));
1614 
1615 		phys += offset;
1616 		len = inline_xattr_size(inode);
1617 
1618 		f2fs_put_page(page, 1);
1619 
1620 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1621 
1622 		if (!xnid)
1623 			flags |= FIEMAP_EXTENT_LAST;
1624 
1625 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1626 		if (err || err == 1)
1627 			return err;
1628 	}
1629 
1630 	if (xnid) {
1631 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1632 		if (!page)
1633 			return -ENOMEM;
1634 
1635 		err = f2fs_get_node_info(sbi, xnid, &ni);
1636 		if (err) {
1637 			f2fs_put_page(page, 1);
1638 			return err;
1639 		}
1640 
1641 		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1642 		len = inode->i_sb->s_blocksize;
1643 
1644 		f2fs_put_page(page, 1);
1645 
1646 		flags = FIEMAP_EXTENT_LAST;
1647 	}
1648 
1649 	if (phys)
1650 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1651 
1652 	return (err < 0 ? err : 0);
1653 }
1654 
1655 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1656 		u64 start, u64 len)
1657 {
1658 	struct buffer_head map_bh;
1659 	sector_t start_blk, last_blk;
1660 	pgoff_t next_pgofs;
1661 	u64 logical = 0, phys = 0, size = 0;
1662 	u32 flags = 0;
1663 	int ret = 0;
1664 
1665 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1666 		ret = f2fs_precache_extents(inode);
1667 		if (ret)
1668 			return ret;
1669 	}
1670 
1671 	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1672 	if (ret)
1673 		return ret;
1674 
1675 	inode_lock(inode);
1676 
1677 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1678 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1679 		goto out;
1680 	}
1681 
1682 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1683 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1684 		if (ret != -EAGAIN)
1685 			goto out;
1686 	}
1687 
1688 	if (logical_to_blk(inode, len) == 0)
1689 		len = blk_to_logical(inode, 1);
1690 
1691 	start_blk = logical_to_blk(inode, start);
1692 	last_blk = logical_to_blk(inode, start + len - 1);
1693 
1694 next:
1695 	memset(&map_bh, 0, sizeof(struct buffer_head));
1696 	map_bh.b_size = len;
1697 
1698 	ret = get_data_block(inode, start_blk, &map_bh, 0,
1699 					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1700 	if (ret)
1701 		goto out;
1702 
1703 	/* HOLE */
1704 	if (!buffer_mapped(&map_bh)) {
1705 		start_blk = next_pgofs;
1706 
1707 		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1708 					F2FS_I_SB(inode)->max_file_blocks))
1709 			goto prep_next;
1710 
1711 		flags |= FIEMAP_EXTENT_LAST;
1712 	}
1713 
1714 	if (size) {
1715 		if (IS_ENCRYPTED(inode))
1716 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1717 
1718 		ret = fiemap_fill_next_extent(fieinfo, logical,
1719 				phys, size, flags);
1720 	}
1721 
1722 	if (start_blk > last_blk || ret)
1723 		goto out;
1724 
1725 	logical = blk_to_logical(inode, start_blk);
1726 	phys = blk_to_logical(inode, map_bh.b_blocknr);
1727 	size = map_bh.b_size;
1728 	flags = 0;
1729 	if (buffer_unwritten(&map_bh))
1730 		flags = FIEMAP_EXTENT_UNWRITTEN;
1731 
1732 	start_blk += logical_to_blk(inode, size);
1733 
1734 prep_next:
1735 	cond_resched();
1736 	if (fatal_signal_pending(current))
1737 		ret = -EINTR;
1738 	else
1739 		goto next;
1740 out:
1741 	if (ret == 1)
1742 		ret = 0;
1743 
1744 	inode_unlock(inode);
1745 	return ret;
1746 }
1747 
1748 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1749 {
1750 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1751 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1752 		return inode->i_sb->s_maxbytes;
1753 
1754 	return i_size_read(inode);
1755 }
1756 
1757 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1758 					unsigned nr_pages,
1759 					struct f2fs_map_blocks *map,
1760 					struct bio **bio_ret,
1761 					sector_t *last_block_in_bio,
1762 					bool is_readahead)
1763 {
1764 	struct bio *bio = *bio_ret;
1765 	const unsigned blkbits = inode->i_blkbits;
1766 	const unsigned blocksize = 1 << blkbits;
1767 	sector_t block_in_file;
1768 	sector_t last_block;
1769 	sector_t last_block_in_file;
1770 	sector_t block_nr;
1771 	int ret = 0;
1772 
1773 	block_in_file = (sector_t)page_index(page);
1774 	last_block = block_in_file + nr_pages;
1775 	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1776 							blkbits;
1777 	if (last_block > last_block_in_file)
1778 		last_block = last_block_in_file;
1779 
1780 	/* just zeroing out page which is beyond EOF */
1781 	if (block_in_file >= last_block)
1782 		goto zero_out;
1783 	/*
1784 	 * Map blocks using the previous result first.
1785 	 */
1786 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1787 			block_in_file > map->m_lblk &&
1788 			block_in_file < (map->m_lblk + map->m_len))
1789 		goto got_it;
1790 
1791 	/*
1792 	 * Then do more f2fs_map_blocks() calls until we are
1793 	 * done with this page.
1794 	 */
1795 	map->m_lblk = block_in_file;
1796 	map->m_len = last_block - block_in_file;
1797 
1798 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1799 	if (ret)
1800 		goto out;
1801 got_it:
1802 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1803 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1804 		SetPageMappedToDisk(page);
1805 
1806 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1807 					!cleancache_get_page(page))) {
1808 			SetPageUptodate(page);
1809 			goto confused;
1810 		}
1811 
1812 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1813 						DATA_GENERIC_ENHANCE_READ)) {
1814 			ret = -EFSCORRUPTED;
1815 			goto out;
1816 		}
1817 	} else {
1818 zero_out:
1819 		zero_user_segment(page, 0, PAGE_SIZE);
1820 		if (f2fs_need_verity(inode, page->index) &&
1821 		    !fsverity_verify_page(page)) {
1822 			ret = -EIO;
1823 			goto out;
1824 		}
1825 		if (!PageUptodate(page))
1826 			SetPageUptodate(page);
1827 		unlock_page(page);
1828 		goto out;
1829 	}
1830 
1831 	/*
1832 	 * This page will go to BIO.  Do we need to send this
1833 	 * BIO off first?
1834 	 */
1835 	if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1836 				*last_block_in_bio, block_nr)) {
1837 submit_and_realloc:
1838 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1839 		bio = NULL;
1840 	}
1841 	if (bio == NULL) {
1842 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1843 				is_readahead ? REQ_RAHEAD : 0, page->index);
1844 		if (IS_ERR(bio)) {
1845 			ret = PTR_ERR(bio);
1846 			bio = NULL;
1847 			goto out;
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * If the page is under writeback, we need to wait for
1853 	 * its completion to see the correct decrypted data.
1854 	 */
1855 	f2fs_wait_on_block_writeback(inode, block_nr);
1856 
1857 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1858 		goto submit_and_realloc;
1859 
1860 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1861 	ClearPageError(page);
1862 	*last_block_in_bio = block_nr;
1863 	goto out;
1864 confused:
1865 	if (bio) {
1866 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1867 		bio = NULL;
1868 	}
1869 	unlock_page(page);
1870 out:
1871 	*bio_ret = bio;
1872 	return ret;
1873 }
1874 
1875 /*
1876  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1877  * Major change was from block_size == page_size in f2fs by default.
1878  *
1879  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1880  * this function ever deviates from doing just read-ahead, it should either
1881  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1882  * from read-ahead.
1883  */
1884 static int f2fs_mpage_readpages(struct address_space *mapping,
1885 			struct list_head *pages, struct page *page,
1886 			unsigned nr_pages, bool is_readahead)
1887 {
1888 	struct bio *bio = NULL;
1889 	sector_t last_block_in_bio = 0;
1890 	struct inode *inode = mapping->host;
1891 	struct f2fs_map_blocks map;
1892 	int ret = 0;
1893 
1894 	map.m_pblk = 0;
1895 	map.m_lblk = 0;
1896 	map.m_len = 0;
1897 	map.m_flags = 0;
1898 	map.m_next_pgofs = NULL;
1899 	map.m_next_extent = NULL;
1900 	map.m_seg_type = NO_CHECK_TYPE;
1901 	map.m_may_create = false;
1902 
1903 	for (; nr_pages; nr_pages--) {
1904 		if (pages) {
1905 			page = list_last_entry(pages, struct page, lru);
1906 
1907 			prefetchw(&page->flags);
1908 			list_del(&page->lru);
1909 			if (add_to_page_cache_lru(page, mapping,
1910 						  page_index(page),
1911 						  readahead_gfp_mask(mapping)))
1912 				goto next_page;
1913 		}
1914 
1915 		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1916 					&last_block_in_bio, is_readahead);
1917 		if (ret) {
1918 			SetPageError(page);
1919 			zero_user_segment(page, 0, PAGE_SIZE);
1920 			unlock_page(page);
1921 		}
1922 next_page:
1923 		if (pages)
1924 			put_page(page);
1925 	}
1926 	BUG_ON(pages && !list_empty(pages));
1927 	if (bio)
1928 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1929 	return pages ? 0 : ret;
1930 }
1931 
1932 static int f2fs_read_data_page(struct file *file, struct page *page)
1933 {
1934 	struct inode *inode = page_file_mapping(page)->host;
1935 	int ret = -EAGAIN;
1936 
1937 	trace_f2fs_readpage(page, DATA);
1938 
1939 	/* If the file has inline data, try to read it directly */
1940 	if (f2fs_has_inline_data(inode))
1941 		ret = f2fs_read_inline_data(inode, page);
1942 	if (ret == -EAGAIN)
1943 		ret = f2fs_mpage_readpages(page_file_mapping(page),
1944 						NULL, page, 1, false);
1945 	return ret;
1946 }
1947 
1948 static int f2fs_read_data_pages(struct file *file,
1949 			struct address_space *mapping,
1950 			struct list_head *pages, unsigned nr_pages)
1951 {
1952 	struct inode *inode = mapping->host;
1953 	struct page *page = list_last_entry(pages, struct page, lru);
1954 
1955 	trace_f2fs_readpages(inode, page, nr_pages);
1956 
1957 	/* If the file has inline data, skip readpages */
1958 	if (f2fs_has_inline_data(inode))
1959 		return 0;
1960 
1961 	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1962 }
1963 
1964 static int encrypt_one_page(struct f2fs_io_info *fio)
1965 {
1966 	struct inode *inode = fio->page->mapping->host;
1967 	struct page *mpage;
1968 	gfp_t gfp_flags = GFP_NOFS;
1969 
1970 	if (!f2fs_encrypted_file(inode))
1971 		return 0;
1972 
1973 	/* wait for GCed page writeback via META_MAPPING */
1974 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1975 
1976 retry_encrypt:
1977 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1978 							       PAGE_SIZE, 0,
1979 							       gfp_flags);
1980 	if (IS_ERR(fio->encrypted_page)) {
1981 		/* flush pending IOs and wait for a while in the ENOMEM case */
1982 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1983 			f2fs_flush_merged_writes(fio->sbi);
1984 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1985 			gfp_flags |= __GFP_NOFAIL;
1986 			goto retry_encrypt;
1987 		}
1988 		return PTR_ERR(fio->encrypted_page);
1989 	}
1990 
1991 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1992 	if (mpage) {
1993 		if (PageUptodate(mpage))
1994 			memcpy(page_address(mpage),
1995 				page_address(fio->encrypted_page), PAGE_SIZE);
1996 		f2fs_put_page(mpage, 1);
1997 	}
1998 	return 0;
1999 }
2000 
2001 static inline bool check_inplace_update_policy(struct inode *inode,
2002 				struct f2fs_io_info *fio)
2003 {
2004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2005 	unsigned int policy = SM_I(sbi)->ipu_policy;
2006 
2007 	if (policy & (0x1 << F2FS_IPU_FORCE))
2008 		return true;
2009 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2010 		return true;
2011 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2012 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2013 		return true;
2014 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2015 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2016 		return true;
2017 
2018 	/*
2019 	 * IPU for rewrite async pages
2020 	 */
2021 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2022 			fio && fio->op == REQ_OP_WRITE &&
2023 			!(fio->op_flags & REQ_SYNC) &&
2024 			!IS_ENCRYPTED(inode))
2025 		return true;
2026 
2027 	/* this is only set during fdatasync */
2028 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2029 			is_inode_flag_set(inode, FI_NEED_IPU))
2030 		return true;
2031 
2032 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2033 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2034 		return true;
2035 
2036 	return false;
2037 }
2038 
2039 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2040 {
2041 	if (f2fs_is_pinned_file(inode))
2042 		return true;
2043 
2044 	/* if this is cold file, we should overwrite to avoid fragmentation */
2045 	if (file_is_cold(inode))
2046 		return true;
2047 
2048 	return check_inplace_update_policy(inode, fio);
2049 }
2050 
2051 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2052 {
2053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2054 
2055 	if (test_opt(sbi, LFS))
2056 		return true;
2057 	if (S_ISDIR(inode->i_mode))
2058 		return true;
2059 	if (IS_NOQUOTA(inode))
2060 		return true;
2061 	if (f2fs_is_atomic_file(inode))
2062 		return true;
2063 	if (fio) {
2064 		if (is_cold_data(fio->page))
2065 			return true;
2066 		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2067 			return true;
2068 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2069 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2070 			return true;
2071 	}
2072 	return false;
2073 }
2074 
2075 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2076 {
2077 	struct inode *inode = fio->page->mapping->host;
2078 
2079 	if (f2fs_should_update_outplace(inode, fio))
2080 		return false;
2081 
2082 	return f2fs_should_update_inplace(inode, fio);
2083 }
2084 
2085 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2086 {
2087 	struct page *page = fio->page;
2088 	struct inode *inode = page->mapping->host;
2089 	struct dnode_of_data dn;
2090 	struct extent_info ei = {0,0,0};
2091 	struct node_info ni;
2092 	bool ipu_force = false;
2093 	int err = 0;
2094 
2095 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2096 	if (need_inplace_update(fio) &&
2097 			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2098 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2099 
2100 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2101 						DATA_GENERIC_ENHANCE))
2102 			return -EFSCORRUPTED;
2103 
2104 		ipu_force = true;
2105 		fio->need_lock = LOCK_DONE;
2106 		goto got_it;
2107 	}
2108 
2109 	/* Deadlock due to between page->lock and f2fs_lock_op */
2110 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2111 		return -EAGAIN;
2112 
2113 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2114 	if (err)
2115 		goto out;
2116 
2117 	fio->old_blkaddr = dn.data_blkaddr;
2118 
2119 	/* This page is already truncated */
2120 	if (fio->old_blkaddr == NULL_ADDR) {
2121 		ClearPageUptodate(page);
2122 		clear_cold_data(page);
2123 		goto out_writepage;
2124 	}
2125 got_it:
2126 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2127 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2128 						DATA_GENERIC_ENHANCE)) {
2129 		err = -EFSCORRUPTED;
2130 		goto out_writepage;
2131 	}
2132 	/*
2133 	 * If current allocation needs SSR,
2134 	 * it had better in-place writes for updated data.
2135 	 */
2136 	if (ipu_force ||
2137 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2138 					need_inplace_update(fio))) {
2139 		err = encrypt_one_page(fio);
2140 		if (err)
2141 			goto out_writepage;
2142 
2143 		set_page_writeback(page);
2144 		ClearPageError(page);
2145 		f2fs_put_dnode(&dn);
2146 		if (fio->need_lock == LOCK_REQ)
2147 			f2fs_unlock_op(fio->sbi);
2148 		err = f2fs_inplace_write_data(fio);
2149 		if (err) {
2150 			if (f2fs_encrypted_file(inode))
2151 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2152 			if (PageWriteback(page))
2153 				end_page_writeback(page);
2154 		} else {
2155 			set_inode_flag(inode, FI_UPDATE_WRITE);
2156 		}
2157 		trace_f2fs_do_write_data_page(fio->page, IPU);
2158 		return err;
2159 	}
2160 
2161 	if (fio->need_lock == LOCK_RETRY) {
2162 		if (!f2fs_trylock_op(fio->sbi)) {
2163 			err = -EAGAIN;
2164 			goto out_writepage;
2165 		}
2166 		fio->need_lock = LOCK_REQ;
2167 	}
2168 
2169 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2170 	if (err)
2171 		goto out_writepage;
2172 
2173 	fio->version = ni.version;
2174 
2175 	err = encrypt_one_page(fio);
2176 	if (err)
2177 		goto out_writepage;
2178 
2179 	set_page_writeback(page);
2180 	ClearPageError(page);
2181 
2182 	/* LFS mode write path */
2183 	f2fs_outplace_write_data(&dn, fio);
2184 	trace_f2fs_do_write_data_page(page, OPU);
2185 	set_inode_flag(inode, FI_APPEND_WRITE);
2186 	if (page->index == 0)
2187 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2188 out_writepage:
2189 	f2fs_put_dnode(&dn);
2190 out:
2191 	if (fio->need_lock == LOCK_REQ)
2192 		f2fs_unlock_op(fio->sbi);
2193 	return err;
2194 }
2195 
2196 static int __write_data_page(struct page *page, bool *submitted,
2197 				struct bio **bio,
2198 				sector_t *last_block,
2199 				struct writeback_control *wbc,
2200 				enum iostat_type io_type)
2201 {
2202 	struct inode *inode = page->mapping->host;
2203 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2204 	loff_t i_size = i_size_read(inode);
2205 	const pgoff_t end_index = ((unsigned long long) i_size)
2206 							>> PAGE_SHIFT;
2207 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2208 	unsigned offset = 0;
2209 	bool need_balance_fs = false;
2210 	int err = 0;
2211 	struct f2fs_io_info fio = {
2212 		.sbi = sbi,
2213 		.ino = inode->i_ino,
2214 		.type = DATA,
2215 		.op = REQ_OP_WRITE,
2216 		.op_flags = wbc_to_write_flags(wbc),
2217 		.old_blkaddr = NULL_ADDR,
2218 		.page = page,
2219 		.encrypted_page = NULL,
2220 		.submitted = false,
2221 		.need_lock = LOCK_RETRY,
2222 		.io_type = io_type,
2223 		.io_wbc = wbc,
2224 		.bio = bio,
2225 		.last_block = last_block,
2226 	};
2227 
2228 	trace_f2fs_writepage(page, DATA);
2229 
2230 	/* we should bypass data pages to proceed the kworkder jobs */
2231 	if (unlikely(f2fs_cp_error(sbi))) {
2232 		mapping_set_error(page->mapping, -EIO);
2233 		/*
2234 		 * don't drop any dirty dentry pages for keeping lastest
2235 		 * directory structure.
2236 		 */
2237 		if (S_ISDIR(inode->i_mode))
2238 			goto redirty_out;
2239 		goto out;
2240 	}
2241 
2242 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2243 		goto redirty_out;
2244 
2245 	if (page->index < end_index || f2fs_verity_in_progress(inode))
2246 		goto write;
2247 
2248 	/*
2249 	 * If the offset is out-of-range of file size,
2250 	 * this page does not have to be written to disk.
2251 	 */
2252 	offset = i_size & (PAGE_SIZE - 1);
2253 	if ((page->index >= end_index + 1) || !offset)
2254 		goto out;
2255 
2256 	zero_user_segment(page, offset, PAGE_SIZE);
2257 write:
2258 	if (f2fs_is_drop_cache(inode))
2259 		goto out;
2260 	/* we should not write 0'th page having journal header */
2261 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2262 			(!wbc->for_reclaim &&
2263 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2264 		goto redirty_out;
2265 
2266 	/* Dentry blocks are controlled by checkpoint */
2267 	if (S_ISDIR(inode->i_mode)) {
2268 		fio.need_lock = LOCK_DONE;
2269 		err = f2fs_do_write_data_page(&fio);
2270 		goto done;
2271 	}
2272 
2273 	if (!wbc->for_reclaim)
2274 		need_balance_fs = true;
2275 	else if (has_not_enough_free_secs(sbi, 0, 0))
2276 		goto redirty_out;
2277 	else
2278 		set_inode_flag(inode, FI_HOT_DATA);
2279 
2280 	err = -EAGAIN;
2281 	if (f2fs_has_inline_data(inode)) {
2282 		err = f2fs_write_inline_data(inode, page);
2283 		if (!err)
2284 			goto out;
2285 	}
2286 
2287 	if (err == -EAGAIN) {
2288 		err = f2fs_do_write_data_page(&fio);
2289 		if (err == -EAGAIN) {
2290 			fio.need_lock = LOCK_REQ;
2291 			err = f2fs_do_write_data_page(&fio);
2292 		}
2293 	}
2294 
2295 	if (err) {
2296 		file_set_keep_isize(inode);
2297 	} else {
2298 		down_write(&F2FS_I(inode)->i_sem);
2299 		if (F2FS_I(inode)->last_disk_size < psize)
2300 			F2FS_I(inode)->last_disk_size = psize;
2301 		up_write(&F2FS_I(inode)->i_sem);
2302 	}
2303 
2304 done:
2305 	if (err && err != -ENOENT)
2306 		goto redirty_out;
2307 
2308 out:
2309 	inode_dec_dirty_pages(inode);
2310 	if (err) {
2311 		ClearPageUptodate(page);
2312 		clear_cold_data(page);
2313 	}
2314 
2315 	if (wbc->for_reclaim) {
2316 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2317 		clear_inode_flag(inode, FI_HOT_DATA);
2318 		f2fs_remove_dirty_inode(inode);
2319 		submitted = NULL;
2320 	}
2321 
2322 	unlock_page(page);
2323 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2324 					!F2FS_I(inode)->cp_task)
2325 		f2fs_balance_fs(sbi, need_balance_fs);
2326 
2327 	if (unlikely(f2fs_cp_error(sbi))) {
2328 		f2fs_submit_merged_write(sbi, DATA);
2329 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2330 		submitted = NULL;
2331 	}
2332 
2333 	if (submitted)
2334 		*submitted = fio.submitted;
2335 
2336 	return 0;
2337 
2338 redirty_out:
2339 	redirty_page_for_writepage(wbc, page);
2340 	/*
2341 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2342 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2343 	 * file_write_and_wait_range() will see EIO error, which is critical
2344 	 * to return value of fsync() followed by atomic_write failure to user.
2345 	 */
2346 	if (!err || wbc->for_reclaim)
2347 		return AOP_WRITEPAGE_ACTIVATE;
2348 	unlock_page(page);
2349 	return err;
2350 }
2351 
2352 static int f2fs_write_data_page(struct page *page,
2353 					struct writeback_control *wbc)
2354 {
2355 	return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2356 }
2357 
2358 /*
2359  * This function was copied from write_cche_pages from mm/page-writeback.c.
2360  * The major change is making write step of cold data page separately from
2361  * warm/hot data page.
2362  */
2363 static int f2fs_write_cache_pages(struct address_space *mapping,
2364 					struct writeback_control *wbc,
2365 					enum iostat_type io_type)
2366 {
2367 	int ret = 0;
2368 	int done = 0;
2369 	struct pagevec pvec;
2370 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2371 	struct bio *bio = NULL;
2372 	sector_t last_block;
2373 	int nr_pages;
2374 	pgoff_t uninitialized_var(writeback_index);
2375 	pgoff_t index;
2376 	pgoff_t end;		/* Inclusive */
2377 	pgoff_t done_index;
2378 	int cycled;
2379 	int range_whole = 0;
2380 	xa_mark_t tag;
2381 	int nwritten = 0;
2382 
2383 	pagevec_init(&pvec);
2384 
2385 	if (get_dirty_pages(mapping->host) <=
2386 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2387 		set_inode_flag(mapping->host, FI_HOT_DATA);
2388 	else
2389 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2390 
2391 	if (wbc->range_cyclic) {
2392 		writeback_index = mapping->writeback_index; /* prev offset */
2393 		index = writeback_index;
2394 		if (index == 0)
2395 			cycled = 1;
2396 		else
2397 			cycled = 0;
2398 		end = -1;
2399 	} else {
2400 		index = wbc->range_start >> PAGE_SHIFT;
2401 		end = wbc->range_end >> PAGE_SHIFT;
2402 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2403 			range_whole = 1;
2404 		cycled = 1; /* ignore range_cyclic tests */
2405 	}
2406 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2407 		tag = PAGECACHE_TAG_TOWRITE;
2408 	else
2409 		tag = PAGECACHE_TAG_DIRTY;
2410 retry:
2411 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2412 		tag_pages_for_writeback(mapping, index, end);
2413 	done_index = index;
2414 	while (!done && (index <= end)) {
2415 		int i;
2416 
2417 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2418 				tag);
2419 		if (nr_pages == 0)
2420 			break;
2421 
2422 		for (i = 0; i < nr_pages; i++) {
2423 			struct page *page = pvec.pages[i];
2424 			bool submitted = false;
2425 
2426 			/* give a priority to WB_SYNC threads */
2427 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2428 					wbc->sync_mode == WB_SYNC_NONE) {
2429 				done = 1;
2430 				break;
2431 			}
2432 
2433 			done_index = page->index;
2434 retry_write:
2435 			lock_page(page);
2436 
2437 			if (unlikely(page->mapping != mapping)) {
2438 continue_unlock:
2439 				unlock_page(page);
2440 				continue;
2441 			}
2442 
2443 			if (!PageDirty(page)) {
2444 				/* someone wrote it for us */
2445 				goto continue_unlock;
2446 			}
2447 
2448 			if (PageWriteback(page)) {
2449 				if (wbc->sync_mode != WB_SYNC_NONE)
2450 					f2fs_wait_on_page_writeback(page,
2451 							DATA, true, true);
2452 				else
2453 					goto continue_unlock;
2454 			}
2455 
2456 			if (!clear_page_dirty_for_io(page))
2457 				goto continue_unlock;
2458 
2459 			ret = __write_data_page(page, &submitted, &bio,
2460 					&last_block, wbc, io_type);
2461 			if (unlikely(ret)) {
2462 				/*
2463 				 * keep nr_to_write, since vfs uses this to
2464 				 * get # of written pages.
2465 				 */
2466 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2467 					unlock_page(page);
2468 					ret = 0;
2469 					continue;
2470 				} else if (ret == -EAGAIN) {
2471 					ret = 0;
2472 					if (wbc->sync_mode == WB_SYNC_ALL) {
2473 						cond_resched();
2474 						congestion_wait(BLK_RW_ASYNC,
2475 									HZ/50);
2476 						goto retry_write;
2477 					}
2478 					continue;
2479 				}
2480 				done_index = page->index + 1;
2481 				done = 1;
2482 				break;
2483 			} else if (submitted) {
2484 				nwritten++;
2485 			}
2486 
2487 			if (--wbc->nr_to_write <= 0 &&
2488 					wbc->sync_mode == WB_SYNC_NONE) {
2489 				done = 1;
2490 				break;
2491 			}
2492 		}
2493 		pagevec_release(&pvec);
2494 		cond_resched();
2495 	}
2496 
2497 	if (!cycled && !done) {
2498 		cycled = 1;
2499 		index = 0;
2500 		end = writeback_index - 1;
2501 		goto retry;
2502 	}
2503 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2504 		mapping->writeback_index = done_index;
2505 
2506 	if (nwritten)
2507 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2508 								NULL, 0, DATA);
2509 	/* submit cached bio of IPU write */
2510 	if (bio)
2511 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2512 
2513 	return ret;
2514 }
2515 
2516 static inline bool __should_serialize_io(struct inode *inode,
2517 					struct writeback_control *wbc)
2518 {
2519 	if (!S_ISREG(inode->i_mode))
2520 		return false;
2521 	if (IS_NOQUOTA(inode))
2522 		return false;
2523 	/* to avoid deadlock in path of data flush */
2524 	if (F2FS_I(inode)->cp_task)
2525 		return false;
2526 	if (wbc->sync_mode != WB_SYNC_ALL)
2527 		return true;
2528 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2529 		return true;
2530 	return false;
2531 }
2532 
2533 static int __f2fs_write_data_pages(struct address_space *mapping,
2534 						struct writeback_control *wbc,
2535 						enum iostat_type io_type)
2536 {
2537 	struct inode *inode = mapping->host;
2538 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539 	struct blk_plug plug;
2540 	int ret;
2541 	bool locked = false;
2542 
2543 	/* deal with chardevs and other special file */
2544 	if (!mapping->a_ops->writepage)
2545 		return 0;
2546 
2547 	/* skip writing if there is no dirty page in this inode */
2548 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2549 		return 0;
2550 
2551 	/* during POR, we don't need to trigger writepage at all. */
2552 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2553 		goto skip_write;
2554 
2555 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2556 			wbc->sync_mode == WB_SYNC_NONE &&
2557 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2558 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2559 		goto skip_write;
2560 
2561 	/* skip writing during file defragment */
2562 	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2563 		goto skip_write;
2564 
2565 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2566 
2567 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2568 	if (wbc->sync_mode == WB_SYNC_ALL)
2569 		atomic_inc(&sbi->wb_sync_req[DATA]);
2570 	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2571 		goto skip_write;
2572 
2573 	if (__should_serialize_io(inode, wbc)) {
2574 		mutex_lock(&sbi->writepages);
2575 		locked = true;
2576 	}
2577 
2578 	blk_start_plug(&plug);
2579 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2580 	blk_finish_plug(&plug);
2581 
2582 	if (locked)
2583 		mutex_unlock(&sbi->writepages);
2584 
2585 	if (wbc->sync_mode == WB_SYNC_ALL)
2586 		atomic_dec(&sbi->wb_sync_req[DATA]);
2587 	/*
2588 	 * if some pages were truncated, we cannot guarantee its mapping->host
2589 	 * to detect pending bios.
2590 	 */
2591 
2592 	f2fs_remove_dirty_inode(inode);
2593 	return ret;
2594 
2595 skip_write:
2596 	wbc->pages_skipped += get_dirty_pages(inode);
2597 	trace_f2fs_writepages(mapping->host, wbc, DATA);
2598 	return 0;
2599 }
2600 
2601 static int f2fs_write_data_pages(struct address_space *mapping,
2602 			    struct writeback_control *wbc)
2603 {
2604 	struct inode *inode = mapping->host;
2605 
2606 	return __f2fs_write_data_pages(mapping, wbc,
2607 			F2FS_I(inode)->cp_task == current ?
2608 			FS_CP_DATA_IO : FS_DATA_IO);
2609 }
2610 
2611 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2612 {
2613 	struct inode *inode = mapping->host;
2614 	loff_t i_size = i_size_read(inode);
2615 
2616 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2617 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
2618 		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2619 		down_write(&F2FS_I(inode)->i_mmap_sem);
2620 
2621 		truncate_pagecache(inode, i_size);
2622 		if (!IS_NOQUOTA(inode))
2623 			f2fs_truncate_blocks(inode, i_size, true);
2624 
2625 		up_write(&F2FS_I(inode)->i_mmap_sem);
2626 		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2627 	}
2628 }
2629 
2630 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2631 			struct page *page, loff_t pos, unsigned len,
2632 			block_t *blk_addr, bool *node_changed)
2633 {
2634 	struct inode *inode = page->mapping->host;
2635 	pgoff_t index = page->index;
2636 	struct dnode_of_data dn;
2637 	struct page *ipage;
2638 	bool locked = false;
2639 	struct extent_info ei = {0,0,0};
2640 	int err = 0;
2641 	int flag;
2642 
2643 	/*
2644 	 * we already allocated all the blocks, so we don't need to get
2645 	 * the block addresses when there is no need to fill the page.
2646 	 */
2647 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2648 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2649 	    !f2fs_verity_in_progress(inode))
2650 		return 0;
2651 
2652 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2653 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2654 		flag = F2FS_GET_BLOCK_DEFAULT;
2655 	else
2656 		flag = F2FS_GET_BLOCK_PRE_AIO;
2657 
2658 	if (f2fs_has_inline_data(inode) ||
2659 			(pos & PAGE_MASK) >= i_size_read(inode)) {
2660 		__do_map_lock(sbi, flag, true);
2661 		locked = true;
2662 	}
2663 restart:
2664 	/* check inline_data */
2665 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2666 	if (IS_ERR(ipage)) {
2667 		err = PTR_ERR(ipage);
2668 		goto unlock_out;
2669 	}
2670 
2671 	set_new_dnode(&dn, inode, ipage, ipage, 0);
2672 
2673 	if (f2fs_has_inline_data(inode)) {
2674 		if (pos + len <= MAX_INLINE_DATA(inode)) {
2675 			f2fs_do_read_inline_data(page, ipage);
2676 			set_inode_flag(inode, FI_DATA_EXIST);
2677 			if (inode->i_nlink)
2678 				set_inline_node(ipage);
2679 		} else {
2680 			err = f2fs_convert_inline_page(&dn, page);
2681 			if (err)
2682 				goto out;
2683 			if (dn.data_blkaddr == NULL_ADDR)
2684 				err = f2fs_get_block(&dn, index);
2685 		}
2686 	} else if (locked) {
2687 		err = f2fs_get_block(&dn, index);
2688 	} else {
2689 		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2690 			dn.data_blkaddr = ei.blk + index - ei.fofs;
2691 		} else {
2692 			/* hole case */
2693 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2694 			if (err || dn.data_blkaddr == NULL_ADDR) {
2695 				f2fs_put_dnode(&dn);
2696 				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2697 								true);
2698 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2699 				locked = true;
2700 				goto restart;
2701 			}
2702 		}
2703 	}
2704 
2705 	/* convert_inline_page can make node_changed */
2706 	*blk_addr = dn.data_blkaddr;
2707 	*node_changed = dn.node_changed;
2708 out:
2709 	f2fs_put_dnode(&dn);
2710 unlock_out:
2711 	if (locked)
2712 		__do_map_lock(sbi, flag, false);
2713 	return err;
2714 }
2715 
2716 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2717 		loff_t pos, unsigned len, unsigned flags,
2718 		struct page **pagep, void **fsdata)
2719 {
2720 	struct inode *inode = mapping->host;
2721 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2722 	struct page *page = NULL;
2723 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2724 	bool need_balance = false, drop_atomic = false;
2725 	block_t blkaddr = NULL_ADDR;
2726 	int err = 0;
2727 
2728 	trace_f2fs_write_begin(inode, pos, len, flags);
2729 
2730 	if (!f2fs_is_checkpoint_ready(sbi)) {
2731 		err = -ENOSPC;
2732 		goto fail;
2733 	}
2734 
2735 	if ((f2fs_is_atomic_file(inode) &&
2736 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2737 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2738 		err = -ENOMEM;
2739 		drop_atomic = true;
2740 		goto fail;
2741 	}
2742 
2743 	/*
2744 	 * We should check this at this moment to avoid deadlock on inode page
2745 	 * and #0 page. The locking rule for inline_data conversion should be:
2746 	 * lock_page(page #0) -> lock_page(inode_page)
2747 	 */
2748 	if (index != 0) {
2749 		err = f2fs_convert_inline_inode(inode);
2750 		if (err)
2751 			goto fail;
2752 	}
2753 repeat:
2754 	/*
2755 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2756 	 * wait_for_stable_page. Will wait that below with our IO control.
2757 	 */
2758 	page = f2fs_pagecache_get_page(mapping, index,
2759 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2760 	if (!page) {
2761 		err = -ENOMEM;
2762 		goto fail;
2763 	}
2764 
2765 	*pagep = page;
2766 
2767 	err = prepare_write_begin(sbi, page, pos, len,
2768 					&blkaddr, &need_balance);
2769 	if (err)
2770 		goto fail;
2771 
2772 	if (need_balance && !IS_NOQUOTA(inode) &&
2773 			has_not_enough_free_secs(sbi, 0, 0)) {
2774 		unlock_page(page);
2775 		f2fs_balance_fs(sbi, true);
2776 		lock_page(page);
2777 		if (page->mapping != mapping) {
2778 			/* The page got truncated from under us */
2779 			f2fs_put_page(page, 1);
2780 			goto repeat;
2781 		}
2782 	}
2783 
2784 	f2fs_wait_on_page_writeback(page, DATA, false, true);
2785 
2786 	if (len == PAGE_SIZE || PageUptodate(page))
2787 		return 0;
2788 
2789 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2790 	    !f2fs_verity_in_progress(inode)) {
2791 		zero_user_segment(page, len, PAGE_SIZE);
2792 		return 0;
2793 	}
2794 
2795 	if (blkaddr == NEW_ADDR) {
2796 		zero_user_segment(page, 0, PAGE_SIZE);
2797 		SetPageUptodate(page);
2798 	} else {
2799 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2800 				DATA_GENERIC_ENHANCE_READ)) {
2801 			err = -EFSCORRUPTED;
2802 			goto fail;
2803 		}
2804 		err = f2fs_submit_page_read(inode, page, blkaddr);
2805 		if (err)
2806 			goto fail;
2807 
2808 		lock_page(page);
2809 		if (unlikely(page->mapping != mapping)) {
2810 			f2fs_put_page(page, 1);
2811 			goto repeat;
2812 		}
2813 		if (unlikely(!PageUptodate(page))) {
2814 			err = -EIO;
2815 			goto fail;
2816 		}
2817 	}
2818 	return 0;
2819 
2820 fail:
2821 	f2fs_put_page(page, 1);
2822 	f2fs_write_failed(mapping, pos + len);
2823 	if (drop_atomic)
2824 		f2fs_drop_inmem_pages_all(sbi, false);
2825 	return err;
2826 }
2827 
2828 static int f2fs_write_end(struct file *file,
2829 			struct address_space *mapping,
2830 			loff_t pos, unsigned len, unsigned copied,
2831 			struct page *page, void *fsdata)
2832 {
2833 	struct inode *inode = page->mapping->host;
2834 
2835 	trace_f2fs_write_end(inode, pos, len, copied);
2836 
2837 	/*
2838 	 * This should be come from len == PAGE_SIZE, and we expect copied
2839 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2840 	 * let generic_perform_write() try to copy data again through copied=0.
2841 	 */
2842 	if (!PageUptodate(page)) {
2843 		if (unlikely(copied != len))
2844 			copied = 0;
2845 		else
2846 			SetPageUptodate(page);
2847 	}
2848 	if (!copied)
2849 		goto unlock_out;
2850 
2851 	set_page_dirty(page);
2852 
2853 	if (pos + copied > i_size_read(inode) &&
2854 	    !f2fs_verity_in_progress(inode))
2855 		f2fs_i_size_write(inode, pos + copied);
2856 unlock_out:
2857 	f2fs_put_page(page, 1);
2858 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2859 	return copied;
2860 }
2861 
2862 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2863 			   loff_t offset)
2864 {
2865 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2866 	unsigned blkbits = i_blkbits;
2867 	unsigned blocksize_mask = (1 << blkbits) - 1;
2868 	unsigned long align = offset | iov_iter_alignment(iter);
2869 	struct block_device *bdev = inode->i_sb->s_bdev;
2870 
2871 	if (align & blocksize_mask) {
2872 		if (bdev)
2873 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2874 		blocksize_mask = (1 << blkbits) - 1;
2875 		if (align & blocksize_mask)
2876 			return -EINVAL;
2877 		return 1;
2878 	}
2879 	return 0;
2880 }
2881 
2882 static void f2fs_dio_end_io(struct bio *bio)
2883 {
2884 	struct f2fs_private_dio *dio = bio->bi_private;
2885 
2886 	dec_page_count(F2FS_I_SB(dio->inode),
2887 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2888 
2889 	bio->bi_private = dio->orig_private;
2890 	bio->bi_end_io = dio->orig_end_io;
2891 
2892 	kvfree(dio);
2893 
2894 	bio_endio(bio);
2895 }
2896 
2897 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2898 							loff_t file_offset)
2899 {
2900 	struct f2fs_private_dio *dio;
2901 	bool write = (bio_op(bio) == REQ_OP_WRITE);
2902 
2903 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2904 			sizeof(struct f2fs_private_dio), GFP_NOFS);
2905 	if (!dio)
2906 		goto out;
2907 
2908 	dio->inode = inode;
2909 	dio->orig_end_io = bio->bi_end_io;
2910 	dio->orig_private = bio->bi_private;
2911 	dio->write = write;
2912 
2913 	bio->bi_end_io = f2fs_dio_end_io;
2914 	bio->bi_private = dio;
2915 
2916 	inc_page_count(F2FS_I_SB(inode),
2917 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2918 
2919 	submit_bio(bio);
2920 	return;
2921 out:
2922 	bio->bi_status = BLK_STS_IOERR;
2923 	bio_endio(bio);
2924 }
2925 
2926 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2927 {
2928 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2929 	struct inode *inode = mapping->host;
2930 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2931 	struct f2fs_inode_info *fi = F2FS_I(inode);
2932 	size_t count = iov_iter_count(iter);
2933 	loff_t offset = iocb->ki_pos;
2934 	int rw = iov_iter_rw(iter);
2935 	int err;
2936 	enum rw_hint hint = iocb->ki_hint;
2937 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2938 	bool do_opu;
2939 
2940 	err = check_direct_IO(inode, iter, offset);
2941 	if (err)
2942 		return err < 0 ? err : 0;
2943 
2944 	if (f2fs_force_buffered_io(inode, iocb, iter))
2945 		return 0;
2946 
2947 	do_opu = allow_outplace_dio(inode, iocb, iter);
2948 
2949 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2950 
2951 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2952 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2953 
2954 	if (iocb->ki_flags & IOCB_NOWAIT) {
2955 		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2956 			iocb->ki_hint = hint;
2957 			err = -EAGAIN;
2958 			goto out;
2959 		}
2960 		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2961 			up_read(&fi->i_gc_rwsem[rw]);
2962 			iocb->ki_hint = hint;
2963 			err = -EAGAIN;
2964 			goto out;
2965 		}
2966 	} else {
2967 		down_read(&fi->i_gc_rwsem[rw]);
2968 		if (do_opu)
2969 			down_read(&fi->i_gc_rwsem[READ]);
2970 	}
2971 
2972 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2973 			iter, rw == WRITE ? get_data_block_dio_write :
2974 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2975 			DIO_LOCKING | DIO_SKIP_HOLES);
2976 
2977 	if (do_opu)
2978 		up_read(&fi->i_gc_rwsem[READ]);
2979 
2980 	up_read(&fi->i_gc_rwsem[rw]);
2981 
2982 	if (rw == WRITE) {
2983 		if (whint_mode == WHINT_MODE_OFF)
2984 			iocb->ki_hint = hint;
2985 		if (err > 0) {
2986 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2987 									err);
2988 			if (!do_opu)
2989 				set_inode_flag(inode, FI_UPDATE_WRITE);
2990 		} else if (err < 0) {
2991 			f2fs_write_failed(mapping, offset + count);
2992 		}
2993 	}
2994 
2995 out:
2996 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2997 
2998 	return err;
2999 }
3000 
3001 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3002 							unsigned int length)
3003 {
3004 	struct inode *inode = page->mapping->host;
3005 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3006 
3007 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3008 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3009 		return;
3010 
3011 	if (PageDirty(page)) {
3012 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3013 			dec_page_count(sbi, F2FS_DIRTY_META);
3014 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3015 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3016 		} else {
3017 			inode_dec_dirty_pages(inode);
3018 			f2fs_remove_dirty_inode(inode);
3019 		}
3020 	}
3021 
3022 	clear_cold_data(page);
3023 
3024 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3025 		return f2fs_drop_inmem_page(inode, page);
3026 
3027 	f2fs_clear_page_private(page);
3028 }
3029 
3030 int f2fs_release_page(struct page *page, gfp_t wait)
3031 {
3032 	/* If this is dirty page, keep PagePrivate */
3033 	if (PageDirty(page))
3034 		return 0;
3035 
3036 	/* This is atomic written page, keep Private */
3037 	if (IS_ATOMIC_WRITTEN_PAGE(page))
3038 		return 0;
3039 
3040 	clear_cold_data(page);
3041 	f2fs_clear_page_private(page);
3042 	return 1;
3043 }
3044 
3045 static int f2fs_set_data_page_dirty(struct page *page)
3046 {
3047 	struct inode *inode = page_file_mapping(page)->host;
3048 
3049 	trace_f2fs_set_page_dirty(page, DATA);
3050 
3051 	if (!PageUptodate(page))
3052 		SetPageUptodate(page);
3053 	if (PageSwapCache(page))
3054 		return __set_page_dirty_nobuffers(page);
3055 
3056 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3057 		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3058 			f2fs_register_inmem_page(inode, page);
3059 			return 1;
3060 		}
3061 		/*
3062 		 * Previously, this page has been registered, we just
3063 		 * return here.
3064 		 */
3065 		return 0;
3066 	}
3067 
3068 	if (!PageDirty(page)) {
3069 		__set_page_dirty_nobuffers(page);
3070 		f2fs_update_dirty_page(inode, page);
3071 		return 1;
3072 	}
3073 	return 0;
3074 }
3075 
3076 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3077 {
3078 	struct inode *inode = mapping->host;
3079 
3080 	if (f2fs_has_inline_data(inode))
3081 		return 0;
3082 
3083 	/* make sure allocating whole blocks */
3084 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3085 		filemap_write_and_wait(mapping);
3086 
3087 	return generic_block_bmap(mapping, block, get_data_block_bmap);
3088 }
3089 
3090 #ifdef CONFIG_MIGRATION
3091 #include <linux/migrate.h>
3092 
3093 int f2fs_migrate_page(struct address_space *mapping,
3094 		struct page *newpage, struct page *page, enum migrate_mode mode)
3095 {
3096 	int rc, extra_count;
3097 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3098 	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3099 
3100 	BUG_ON(PageWriteback(page));
3101 
3102 	/* migrating an atomic written page is safe with the inmem_lock hold */
3103 	if (atomic_written) {
3104 		if (mode != MIGRATE_SYNC)
3105 			return -EBUSY;
3106 		if (!mutex_trylock(&fi->inmem_lock))
3107 			return -EAGAIN;
3108 	}
3109 
3110 	/* one extra reference was held for atomic_write page */
3111 	extra_count = atomic_written ? 1 : 0;
3112 	rc = migrate_page_move_mapping(mapping, newpage,
3113 				page, extra_count);
3114 	if (rc != MIGRATEPAGE_SUCCESS) {
3115 		if (atomic_written)
3116 			mutex_unlock(&fi->inmem_lock);
3117 		return rc;
3118 	}
3119 
3120 	if (atomic_written) {
3121 		struct inmem_pages *cur;
3122 		list_for_each_entry(cur, &fi->inmem_pages, list)
3123 			if (cur->page == page) {
3124 				cur->page = newpage;
3125 				break;
3126 			}
3127 		mutex_unlock(&fi->inmem_lock);
3128 		put_page(page);
3129 		get_page(newpage);
3130 	}
3131 
3132 	if (PagePrivate(page)) {
3133 		f2fs_set_page_private(newpage, page_private(page));
3134 		f2fs_clear_page_private(page);
3135 	}
3136 
3137 	if (mode != MIGRATE_SYNC_NO_COPY)
3138 		migrate_page_copy(newpage, page);
3139 	else
3140 		migrate_page_states(newpage, page);
3141 
3142 	return MIGRATEPAGE_SUCCESS;
3143 }
3144 #endif
3145 
3146 #ifdef CONFIG_SWAP
3147 /* Copied from generic_swapfile_activate() to check any holes */
3148 static int check_swap_activate(struct file *swap_file, unsigned int max)
3149 {
3150 	struct address_space *mapping = swap_file->f_mapping;
3151 	struct inode *inode = mapping->host;
3152 	unsigned blocks_per_page;
3153 	unsigned long page_no;
3154 	unsigned blkbits;
3155 	sector_t probe_block;
3156 	sector_t last_block;
3157 	sector_t lowest_block = -1;
3158 	sector_t highest_block = 0;
3159 
3160 	blkbits = inode->i_blkbits;
3161 	blocks_per_page = PAGE_SIZE >> blkbits;
3162 
3163 	/*
3164 	 * Map all the blocks into the extent list.  This code doesn't try
3165 	 * to be very smart.
3166 	 */
3167 	probe_block = 0;
3168 	page_no = 0;
3169 	last_block = i_size_read(inode) >> blkbits;
3170 	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3171 		unsigned block_in_page;
3172 		sector_t first_block;
3173 
3174 		cond_resched();
3175 
3176 		first_block = bmap(inode, probe_block);
3177 		if (first_block == 0)
3178 			goto bad_bmap;
3179 
3180 		/*
3181 		 * It must be PAGE_SIZE aligned on-disk
3182 		 */
3183 		if (first_block & (blocks_per_page - 1)) {
3184 			probe_block++;
3185 			goto reprobe;
3186 		}
3187 
3188 		for (block_in_page = 1; block_in_page < blocks_per_page;
3189 					block_in_page++) {
3190 			sector_t block;
3191 
3192 			block = bmap(inode, probe_block + block_in_page);
3193 			if (block == 0)
3194 				goto bad_bmap;
3195 			if (block != first_block + block_in_page) {
3196 				/* Discontiguity */
3197 				probe_block++;
3198 				goto reprobe;
3199 			}
3200 		}
3201 
3202 		first_block >>= (PAGE_SHIFT - blkbits);
3203 		if (page_no) {	/* exclude the header page */
3204 			if (first_block < lowest_block)
3205 				lowest_block = first_block;
3206 			if (first_block > highest_block)
3207 				highest_block = first_block;
3208 		}
3209 
3210 		page_no++;
3211 		probe_block += blocks_per_page;
3212 reprobe:
3213 		continue;
3214 	}
3215 	return 0;
3216 
3217 bad_bmap:
3218 	pr_err("swapon: swapfile has holes\n");
3219 	return -EINVAL;
3220 }
3221 
3222 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3223 				sector_t *span)
3224 {
3225 	struct inode *inode = file_inode(file);
3226 	int ret;
3227 
3228 	if (!S_ISREG(inode->i_mode))
3229 		return -EINVAL;
3230 
3231 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3232 		return -EROFS;
3233 
3234 	ret = f2fs_convert_inline_inode(inode);
3235 	if (ret)
3236 		return ret;
3237 
3238 	ret = check_swap_activate(file, sis->max);
3239 	if (ret)
3240 		return ret;
3241 
3242 	set_inode_flag(inode, FI_PIN_FILE);
3243 	f2fs_precache_extents(inode);
3244 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3245 	return 0;
3246 }
3247 
3248 static void f2fs_swap_deactivate(struct file *file)
3249 {
3250 	struct inode *inode = file_inode(file);
3251 
3252 	clear_inode_flag(inode, FI_PIN_FILE);
3253 }
3254 #else
3255 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3256 				sector_t *span)
3257 {
3258 	return -EOPNOTSUPP;
3259 }
3260 
3261 static void f2fs_swap_deactivate(struct file *file)
3262 {
3263 }
3264 #endif
3265 
3266 const struct address_space_operations f2fs_dblock_aops = {
3267 	.readpage	= f2fs_read_data_page,
3268 	.readpages	= f2fs_read_data_pages,
3269 	.writepage	= f2fs_write_data_page,
3270 	.writepages	= f2fs_write_data_pages,
3271 	.write_begin	= f2fs_write_begin,
3272 	.write_end	= f2fs_write_end,
3273 	.set_page_dirty	= f2fs_set_data_page_dirty,
3274 	.invalidatepage	= f2fs_invalidate_page,
3275 	.releasepage	= f2fs_release_page,
3276 	.direct_IO	= f2fs_direct_IO,
3277 	.bmap		= f2fs_bmap,
3278 	.swap_activate  = f2fs_swap_activate,
3279 	.swap_deactivate = f2fs_swap_deactivate,
3280 #ifdef CONFIG_MIGRATION
3281 	.migratepage    = f2fs_migrate_page,
3282 #endif
3283 };
3284 
3285 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3286 {
3287 	struct address_space *mapping = page_mapping(page);
3288 	unsigned long flags;
3289 
3290 	xa_lock_irqsave(&mapping->i_pages, flags);
3291 	__xa_clear_mark(&mapping->i_pages, page_index(page),
3292 						PAGECACHE_TAG_DIRTY);
3293 	xa_unlock_irqrestore(&mapping->i_pages, flags);
3294 }
3295 
3296 int __init f2fs_init_post_read_processing(void)
3297 {
3298 	bio_post_read_ctx_cache =
3299 		kmem_cache_create("f2fs_bio_post_read_ctx",
3300 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3301 	if (!bio_post_read_ctx_cache)
3302 		goto fail;
3303 	bio_post_read_ctx_pool =
3304 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3305 					 bio_post_read_ctx_cache);
3306 	if (!bio_post_read_ctx_pool)
3307 		goto fail_free_cache;
3308 	return 0;
3309 
3310 fail_free_cache:
3311 	kmem_cache_destroy(bio_post_read_ctx_cache);
3312 fail:
3313 	return -ENOMEM;
3314 }
3315 
3316 void f2fs_destroy_post_read_processing(void)
3317 {
3318 	mempool_destroy(bio_post_read_ctx_pool);
3319 	kmem_cache_destroy(bio_post_read_ctx_cache);
3320 }
3321 
3322 int __init f2fs_init_bio_entry_cache(void)
3323 {
3324 	bio_entry_slab = f2fs_kmem_cache_create("bio_entry_slab",
3325 			sizeof(struct bio_entry));
3326 	if (!bio_entry_slab)
3327 		return -ENOMEM;
3328 	return 0;
3329 }
3330 
3331 void __exit f2fs_destroy_bio_entry_cache(void)
3332 {
3333 	kmem_cache_destroy(bio_entry_slab);
3334 }
3335