xref: /linux/fs/f2fs/data.c (revision db10cb9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 static bool __is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if (f2fs_is_compressed_page(page))
69 		return false;
70 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 			page_private_gcing(page))
72 		return true;
73 	return false;
74 }
75 
76 static enum count_type __read_io_type(struct page *page)
77 {
78 	struct address_space *mapping = page_file_mapping(page);
79 
80 	if (mapping) {
81 		struct inode *inode = mapping->host;
82 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83 
84 		if (inode->i_ino == F2FS_META_INO(sbi))
85 			return F2FS_RD_META;
86 
87 		if (inode->i_ino == F2FS_NODE_INO(sbi))
88 			return F2FS_RD_NODE;
89 	}
90 	return F2FS_RD_DATA;
91 }
92 
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 	STEP_DECRYPT	= BIT(0),
97 #else
98 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
99 #endif
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 	STEP_DECOMPRESS	= BIT(1),
102 #else
103 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
104 #endif
105 #ifdef CONFIG_FS_VERITY
106 	STEP_VERITY	= BIT(2),
107 #else
108 	STEP_VERITY	= 0,	/* compile out the verity-related code */
109 #endif
110 };
111 
112 struct bio_post_read_ctx {
113 	struct bio *bio;
114 	struct f2fs_sb_info *sbi;
115 	struct work_struct work;
116 	unsigned int enabled_steps;
117 	/*
118 	 * decompression_attempted keeps track of whether
119 	 * f2fs_end_read_compressed_page() has been called on the pages in the
120 	 * bio that belong to a compressed cluster yet.
121 	 */
122 	bool decompression_attempted;
123 	block_t fs_blkaddr;
124 };
125 
126 /*
127  * Update and unlock a bio's pages, and free the bio.
128  *
129  * This marks pages up-to-date only if there was no error in the bio (I/O error,
130  * decryption error, or verity error), as indicated by bio->bi_status.
131  *
132  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133  * aren't marked up-to-date here, as decompression is done on a per-compression-
134  * cluster basis rather than a per-bio basis.  Instead, we only must do two
135  * things for each compressed page here: call f2fs_end_read_compressed_page()
136  * with failed=true if an error occurred before it would have normally gotten
137  * called (i.e., I/O error or decryption error, but *not* verity error), and
138  * release the bio's reference to the decompress_io_ctx of the page's cluster.
139  */
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141 {
142 	struct bio_vec *bv;
143 	struct bvec_iter_all iter_all;
144 	struct bio_post_read_ctx *ctx = bio->bi_private;
145 
146 	bio_for_each_segment_all(bv, bio, iter_all) {
147 		struct page *page = bv->bv_page;
148 
149 		if (f2fs_is_compressed_page(page)) {
150 			if (ctx && !ctx->decompression_attempted)
151 				f2fs_end_read_compressed_page(page, true, 0,
152 							in_task);
153 			f2fs_put_page_dic(page, in_task);
154 			continue;
155 		}
156 
157 		if (bio->bi_status)
158 			ClearPageUptodate(page);
159 		else
160 			SetPageUptodate(page);
161 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 		unlock_page(page);
163 	}
164 
165 	if (ctx)
166 		mempool_free(ctx, bio_post_read_ctx_pool);
167 	bio_put(bio);
168 }
169 
170 static void f2fs_verify_bio(struct work_struct *work)
171 {
172 	struct bio_post_read_ctx *ctx =
173 		container_of(work, struct bio_post_read_ctx, work);
174 	struct bio *bio = ctx->bio;
175 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176 
177 	/*
178 	 * fsverity_verify_bio() may call readahead() again, and while verity
179 	 * will be disabled for this, decryption and/or decompression may still
180 	 * be needed, resulting in another bio_post_read_ctx being allocated.
181 	 * So to prevent deadlocks we need to release the current ctx to the
182 	 * mempool first.  This assumes that verity is the last post-read step.
183 	 */
184 	mempool_free(ctx, bio_post_read_ctx_pool);
185 	bio->bi_private = NULL;
186 
187 	/*
188 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
189 	 * as those were handled separately by f2fs_end_read_compressed_page().
190 	 */
191 	if (may_have_compressed_pages) {
192 		struct bio_vec *bv;
193 		struct bvec_iter_all iter_all;
194 
195 		bio_for_each_segment_all(bv, bio, iter_all) {
196 			struct page *page = bv->bv_page;
197 
198 			if (!f2fs_is_compressed_page(page) &&
199 			    !fsverity_verify_page(page)) {
200 				bio->bi_status = BLK_STS_IOERR;
201 				break;
202 			}
203 		}
204 	} else {
205 		fsverity_verify_bio(bio);
206 	}
207 
208 	f2fs_finish_read_bio(bio, true);
209 }
210 
211 /*
212  * If the bio's data needs to be verified with fs-verity, then enqueue the
213  * verity work for the bio.  Otherwise finish the bio now.
214  *
215  * Note that to avoid deadlocks, the verity work can't be done on the
216  * decryption/decompression workqueue.  This is because verifying the data pages
217  * can involve reading verity metadata pages from the file, and these verity
218  * metadata pages may be encrypted and/or compressed.
219  */
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221 {
222 	struct bio_post_read_ctx *ctx = bio->bi_private;
223 
224 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 		INIT_WORK(&ctx->work, f2fs_verify_bio);
226 		fsverity_enqueue_verify_work(&ctx->work);
227 	} else {
228 		f2fs_finish_read_bio(bio, in_task);
229 	}
230 }
231 
232 /*
233  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234  * remaining page was read by @ctx->bio.
235  *
236  * Note that a bio may span clusters (even a mix of compressed and uncompressed
237  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
238  * that the bio includes at least one compressed page.  The actual decompression
239  * is done on a per-cluster basis, not a per-bio basis.
240  */
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 		bool in_task)
243 {
244 	struct bio_vec *bv;
245 	struct bvec_iter_all iter_all;
246 	bool all_compressed = true;
247 	block_t blkaddr = ctx->fs_blkaddr;
248 
249 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 		struct page *page = bv->bv_page;
251 
252 		if (f2fs_is_compressed_page(page))
253 			f2fs_end_read_compressed_page(page, false, blkaddr,
254 						      in_task);
255 		else
256 			all_compressed = false;
257 
258 		blkaddr++;
259 	}
260 
261 	ctx->decompression_attempted = true;
262 
263 	/*
264 	 * Optimization: if all the bio's pages are compressed, then scheduling
265 	 * the per-bio verity work is unnecessary, as verity will be fully
266 	 * handled at the compression cluster level.
267 	 */
268 	if (all_compressed)
269 		ctx->enabled_steps &= ~STEP_VERITY;
270 }
271 
272 static void f2fs_post_read_work(struct work_struct *work)
273 {
274 	struct bio_post_read_ctx *ctx =
275 		container_of(work, struct bio_post_read_ctx, work);
276 	struct bio *bio = ctx->bio;
277 
278 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 		f2fs_finish_read_bio(bio, true);
280 		return;
281 	}
282 
283 	if (ctx->enabled_steps & STEP_DECOMPRESS)
284 		f2fs_handle_step_decompress(ctx, true);
285 
286 	f2fs_verify_and_finish_bio(bio, true);
287 }
288 
289 static void f2fs_read_end_io(struct bio *bio)
290 {
291 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 	struct bio_post_read_ctx *ctx;
293 	bool intask = in_task();
294 
295 	iostat_update_and_unbind_ctx(bio);
296 	ctx = bio->bi_private;
297 
298 	if (time_to_inject(sbi, FAULT_READ_IO))
299 		bio->bi_status = BLK_STS_IOERR;
300 
301 	if (bio->bi_status) {
302 		f2fs_finish_read_bio(bio, intask);
303 		return;
304 	}
305 
306 	if (ctx) {
307 		unsigned int enabled_steps = ctx->enabled_steps &
308 					(STEP_DECRYPT | STEP_DECOMPRESS);
309 
310 		/*
311 		 * If we have only decompression step between decompression and
312 		 * decrypt, we don't need post processing for this.
313 		 */
314 		if (enabled_steps == STEP_DECOMPRESS &&
315 				!f2fs_low_mem_mode(sbi)) {
316 			f2fs_handle_step_decompress(ctx, intask);
317 		} else if (enabled_steps) {
318 			INIT_WORK(&ctx->work, f2fs_post_read_work);
319 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 			return;
321 		}
322 	}
323 
324 	f2fs_verify_and_finish_bio(bio, intask);
325 }
326 
327 static void f2fs_write_end_io(struct bio *bio)
328 {
329 	struct f2fs_sb_info *sbi;
330 	struct bio_vec *bvec;
331 	struct bvec_iter_all iter_all;
332 
333 	iostat_update_and_unbind_ctx(bio);
334 	sbi = bio->bi_private;
335 
336 	if (time_to_inject(sbi, FAULT_WRITE_IO))
337 		bio->bi_status = BLK_STS_IOERR;
338 
339 	bio_for_each_segment_all(bvec, bio, iter_all) {
340 		struct page *page = bvec->bv_page;
341 		enum count_type type = WB_DATA_TYPE(page);
342 
343 		if (page_private_dummy(page)) {
344 			clear_page_private_dummy(page);
345 			unlock_page(page);
346 			mempool_free(page, sbi->write_io_dummy);
347 
348 			if (unlikely(bio->bi_status))
349 				f2fs_stop_checkpoint(sbi, true,
350 						STOP_CP_REASON_WRITE_FAIL);
351 			continue;
352 		}
353 
354 		fscrypt_finalize_bounce_page(&page);
355 
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357 		if (f2fs_is_compressed_page(page)) {
358 			f2fs_compress_write_end_io(bio, page);
359 			continue;
360 		}
361 #endif
362 
363 		if (unlikely(bio->bi_status)) {
364 			mapping_set_error(page->mapping, -EIO);
365 			if (type == F2FS_WB_CP_DATA)
366 				f2fs_stop_checkpoint(sbi, true,
367 						STOP_CP_REASON_WRITE_FAIL);
368 		}
369 
370 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 					page->index != nid_of_node(page));
372 
373 		dec_page_count(sbi, type);
374 		if (f2fs_in_warm_node_list(sbi, page))
375 			f2fs_del_fsync_node_entry(sbi, page);
376 		clear_page_private_gcing(page);
377 		end_page_writeback(page);
378 	}
379 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 				wq_has_sleeper(&sbi->cp_wait))
381 		wake_up(&sbi->cp_wait);
382 
383 	bio_put(bio);
384 }
385 
386 #ifdef CONFIG_BLK_DEV_ZONED
387 static void f2fs_zone_write_end_io(struct bio *bio)
388 {
389 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390 
391 	bio->bi_private = io->bi_private;
392 	complete(&io->zone_wait);
393 	f2fs_write_end_io(bio);
394 }
395 #endif
396 
397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398 		block_t blk_addr, sector_t *sector)
399 {
400 	struct block_device *bdev = sbi->sb->s_bdev;
401 	int i;
402 
403 	if (f2fs_is_multi_device(sbi)) {
404 		for (i = 0; i < sbi->s_ndevs; i++) {
405 			if (FDEV(i).start_blk <= blk_addr &&
406 			    FDEV(i).end_blk >= blk_addr) {
407 				blk_addr -= FDEV(i).start_blk;
408 				bdev = FDEV(i).bdev;
409 				break;
410 			}
411 		}
412 	}
413 
414 	if (sector)
415 		*sector = SECTOR_FROM_BLOCK(blk_addr);
416 	return bdev;
417 }
418 
419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420 {
421 	int i;
422 
423 	if (!f2fs_is_multi_device(sbi))
424 		return 0;
425 
426 	for (i = 0; i < sbi->s_ndevs; i++)
427 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428 			return i;
429 	return 0;
430 }
431 
432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433 {
434 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435 	unsigned int fua_flag, meta_flag, io_flag;
436 	blk_opf_t op_flags = 0;
437 
438 	if (fio->op != REQ_OP_WRITE)
439 		return 0;
440 	if (fio->type == DATA)
441 		io_flag = fio->sbi->data_io_flag;
442 	else if (fio->type == NODE)
443 		io_flag = fio->sbi->node_io_flag;
444 	else
445 		return 0;
446 
447 	fua_flag = io_flag & temp_mask;
448 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449 
450 	/*
451 	 * data/node io flag bits per temp:
452 	 *      REQ_META     |      REQ_FUA      |
453 	 *    5 |    4 |   3 |    2 |    1 |   0 |
454 	 * Cold | Warm | Hot | Cold | Warm | Hot |
455 	 */
456 	if (BIT(fio->temp) & meta_flag)
457 		op_flags |= REQ_META;
458 	if (BIT(fio->temp) & fua_flag)
459 		op_flags |= REQ_FUA;
460 	return op_flags;
461 }
462 
463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464 {
465 	struct f2fs_sb_info *sbi = fio->sbi;
466 	struct block_device *bdev;
467 	sector_t sector;
468 	struct bio *bio;
469 
470 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
471 	bio = bio_alloc_bioset(bdev, npages,
472 				fio->op | fio->op_flags | f2fs_io_flags(fio),
473 				GFP_NOIO, &f2fs_bioset);
474 	bio->bi_iter.bi_sector = sector;
475 	if (is_read_io(fio->op)) {
476 		bio->bi_end_io = f2fs_read_end_io;
477 		bio->bi_private = NULL;
478 	} else {
479 		bio->bi_end_io = f2fs_write_end_io;
480 		bio->bi_private = sbi;
481 	}
482 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483 
484 	if (fio->io_wbc)
485 		wbc_init_bio(fio->io_wbc, bio);
486 
487 	return bio;
488 }
489 
490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491 				  pgoff_t first_idx,
492 				  const struct f2fs_io_info *fio,
493 				  gfp_t gfp_mask)
494 {
495 	/*
496 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 	 * read/write raw data without encryption.
498 	 */
499 	if (!fio || !fio->encrypted_page)
500 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501 }
502 
503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504 				     pgoff_t next_idx,
505 				     const struct f2fs_io_info *fio)
506 {
507 	/*
508 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
509 	 * read/write raw data without encryption.
510 	 */
511 	if (fio && fio->encrypted_page)
512 		return !bio_has_crypt_ctx(bio);
513 
514 	return fscrypt_mergeable_bio(bio, inode, next_idx);
515 }
516 
517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518 				 enum page_type type)
519 {
520 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522 
523 	iostat_update_submit_ctx(bio, type);
524 	submit_bio(bio);
525 }
526 
527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528 {
529 	unsigned int start =
530 		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531 
532 	if (start == 0)
533 		return;
534 
535 	/* fill dummy pages */
536 	for (; start < F2FS_IO_SIZE(sbi); start++) {
537 		struct page *page =
538 			mempool_alloc(sbi->write_io_dummy,
539 				      GFP_NOIO | __GFP_NOFAIL);
540 		f2fs_bug_on(sbi, !page);
541 
542 		lock_page(page);
543 
544 		zero_user_segment(page, 0, PAGE_SIZE);
545 		set_page_private_dummy(page);
546 
547 		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548 			f2fs_bug_on(sbi, 1);
549 	}
550 }
551 
552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553 				  enum page_type type)
554 {
555 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
556 
557 	if (type == DATA || type == NODE) {
558 		if (f2fs_lfs_mode(sbi) && current->plug)
559 			blk_finish_plug(current->plug);
560 
561 		if (F2FS_IO_ALIGNED(sbi)) {
562 			f2fs_align_write_bio(sbi, bio);
563 			/*
564 			 * In the NODE case, we lose next block address chain.
565 			 * So, we need to do checkpoint in f2fs_sync_file.
566 			 */
567 			if (type == NODE)
568 				set_sbi_flag(sbi, SBI_NEED_CP);
569 		}
570 	}
571 
572 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573 	iostat_update_submit_ctx(bio, type);
574 	submit_bio(bio);
575 }
576 
577 static void __submit_merged_bio(struct f2fs_bio_info *io)
578 {
579 	struct f2fs_io_info *fio = &io->fio;
580 
581 	if (!io->bio)
582 		return;
583 
584 	if (is_read_io(fio->op)) {
585 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587 	} else {
588 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590 	}
591 	io->bio = NULL;
592 }
593 
594 static bool __has_merged_page(struct bio *bio, struct inode *inode,
595 						struct page *page, nid_t ino)
596 {
597 	struct bio_vec *bvec;
598 	struct bvec_iter_all iter_all;
599 
600 	if (!bio)
601 		return false;
602 
603 	if (!inode && !page && !ino)
604 		return true;
605 
606 	bio_for_each_segment_all(bvec, bio, iter_all) {
607 		struct page *target = bvec->bv_page;
608 
609 		if (fscrypt_is_bounce_page(target)) {
610 			target = fscrypt_pagecache_page(target);
611 			if (IS_ERR(target))
612 				continue;
613 		}
614 		if (f2fs_is_compressed_page(target)) {
615 			target = f2fs_compress_control_page(target);
616 			if (IS_ERR(target))
617 				continue;
618 		}
619 
620 		if (inode && inode == target->mapping->host)
621 			return true;
622 		if (page && page == target)
623 			return true;
624 		if (ino && ino == ino_of_node(target))
625 			return true;
626 	}
627 
628 	return false;
629 }
630 
631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632 {
633 	int i;
634 
635 	for (i = 0; i < NR_PAGE_TYPE; i++) {
636 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
637 		int j;
638 
639 		sbi->write_io[i] = f2fs_kmalloc(sbi,
640 				array_size(n, sizeof(struct f2fs_bio_info)),
641 				GFP_KERNEL);
642 		if (!sbi->write_io[i])
643 			return -ENOMEM;
644 
645 		for (j = HOT; j < n; j++) {
646 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647 			sbi->write_io[i][j].sbi = sbi;
648 			sbi->write_io[i][j].bio = NULL;
649 			spin_lock_init(&sbi->write_io[i][j].io_lock);
650 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653 #ifdef CONFIG_BLK_DEV_ZONED
654 			init_completion(&sbi->write_io[i][j].zone_wait);
655 			sbi->write_io[i][j].zone_pending_bio = NULL;
656 			sbi->write_io[i][j].bi_private = NULL;
657 #endif
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665 				enum page_type type, enum temp_type temp)
666 {
667 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
668 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669 
670 	f2fs_down_write(&io->io_rwsem);
671 
672 	if (!io->bio)
673 		goto unlock_out;
674 
675 	/* change META to META_FLUSH in the checkpoint procedure */
676 	if (type >= META_FLUSH) {
677 		io->fio.type = META_FLUSH;
678 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679 		if (!test_opt(sbi, NOBARRIER))
680 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681 	}
682 	__submit_merged_bio(io);
683 unlock_out:
684 	f2fs_up_write(&io->io_rwsem);
685 }
686 
687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688 				struct inode *inode, struct page *page,
689 				nid_t ino, enum page_type type, bool force)
690 {
691 	enum temp_type temp;
692 	bool ret = true;
693 
694 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695 		if (!force)	{
696 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
697 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698 
699 			f2fs_down_read(&io->io_rwsem);
700 			ret = __has_merged_page(io->bio, inode, page, ino);
701 			f2fs_up_read(&io->io_rwsem);
702 		}
703 		if (ret)
704 			__f2fs_submit_merged_write(sbi, type, temp);
705 
706 		/* TODO: use HOT temp only for meta pages now. */
707 		if (type >= META)
708 			break;
709 	}
710 }
711 
712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713 {
714 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715 }
716 
717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718 				struct inode *inode, struct page *page,
719 				nid_t ino, enum page_type type)
720 {
721 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
722 }
723 
724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725 {
726 	f2fs_submit_merged_write(sbi, DATA);
727 	f2fs_submit_merged_write(sbi, NODE);
728 	f2fs_submit_merged_write(sbi, META);
729 }
730 
731 /*
732  * Fill the locked page with data located in the block address.
733  * A caller needs to unlock the page on failure.
734  */
735 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736 {
737 	struct bio *bio;
738 	struct page *page = fio->encrypted_page ?
739 			fio->encrypted_page : fio->page;
740 
741 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
743 			META_GENERIC : DATA_GENERIC_ENHANCE))) {
744 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745 		return -EFSCORRUPTED;
746 	}
747 
748 	trace_f2fs_submit_page_bio(page, fio);
749 
750 	/* Allocate a new bio */
751 	bio = __bio_alloc(fio, 1);
752 
753 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754 			       fio->page->index, fio, GFP_NOIO);
755 
756 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757 		bio_put(bio);
758 		return -EFAULT;
759 	}
760 
761 	if (fio->io_wbc && !is_read_io(fio->op))
762 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763 
764 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
765 			__read_io_type(page) : WB_DATA_TYPE(fio->page));
766 
767 	if (is_read_io(bio_op(bio)))
768 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769 	else
770 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771 	return 0;
772 }
773 
774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775 				block_t last_blkaddr, block_t cur_blkaddr)
776 {
777 	if (unlikely(sbi->max_io_bytes &&
778 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
779 		return false;
780 	if (last_blkaddr + 1 != cur_blkaddr)
781 		return false;
782 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783 }
784 
785 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786 						struct f2fs_io_info *fio)
787 {
788 	if (io->fio.op != fio->op)
789 		return false;
790 	return io->fio.op_flags == fio->op_flags;
791 }
792 
793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794 					struct f2fs_bio_info *io,
795 					struct f2fs_io_info *fio,
796 					block_t last_blkaddr,
797 					block_t cur_blkaddr)
798 {
799 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800 		unsigned int filled_blocks =
801 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802 		unsigned int io_size = F2FS_IO_SIZE(sbi);
803 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804 
805 		/* IOs in bio is aligned and left space of vectors is not enough */
806 		if (!(filled_blocks % io_size) && left_vecs < io_size)
807 			return false;
808 	}
809 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810 		return false;
811 	return io_type_is_mergeable(io, fio);
812 }
813 
814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815 				struct page *page, enum temp_type temp)
816 {
817 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818 	struct bio_entry *be;
819 
820 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821 	be->bio = bio;
822 	bio_get(bio);
823 
824 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825 		f2fs_bug_on(sbi, 1);
826 
827 	f2fs_down_write(&io->bio_list_lock);
828 	list_add_tail(&be->list, &io->bio_list);
829 	f2fs_up_write(&io->bio_list_lock);
830 }
831 
832 static void del_bio_entry(struct bio_entry *be)
833 {
834 	list_del(&be->list);
835 	kmem_cache_free(bio_entry_slab, be);
836 }
837 
838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839 							struct page *page)
840 {
841 	struct f2fs_sb_info *sbi = fio->sbi;
842 	enum temp_type temp;
843 	bool found = false;
844 	int ret = -EAGAIN;
845 
846 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848 		struct list_head *head = &io->bio_list;
849 		struct bio_entry *be;
850 
851 		f2fs_down_write(&io->bio_list_lock);
852 		list_for_each_entry(be, head, list) {
853 			if (be->bio != *bio)
854 				continue;
855 
856 			found = true;
857 
858 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859 							    *fio->last_block,
860 							    fio->new_blkaddr));
861 			if (f2fs_crypt_mergeable_bio(*bio,
862 					fio->page->mapping->host,
863 					fio->page->index, fio) &&
864 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865 					PAGE_SIZE) {
866 				ret = 0;
867 				break;
868 			}
869 
870 			/* page can't be merged into bio; submit the bio */
871 			del_bio_entry(be);
872 			f2fs_submit_write_bio(sbi, *bio, DATA);
873 			break;
874 		}
875 		f2fs_up_write(&io->bio_list_lock);
876 	}
877 
878 	if (ret) {
879 		bio_put(*bio);
880 		*bio = NULL;
881 	}
882 
883 	return ret;
884 }
885 
886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887 					struct bio **bio, struct page *page)
888 {
889 	enum temp_type temp;
890 	bool found = false;
891 	struct bio *target = bio ? *bio : NULL;
892 
893 	f2fs_bug_on(sbi, !target && !page);
894 
895 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897 		struct list_head *head = &io->bio_list;
898 		struct bio_entry *be;
899 
900 		if (list_empty(head))
901 			continue;
902 
903 		f2fs_down_read(&io->bio_list_lock);
904 		list_for_each_entry(be, head, list) {
905 			if (target)
906 				found = (target == be->bio);
907 			else
908 				found = __has_merged_page(be->bio, NULL,
909 								page, 0);
910 			if (found)
911 				break;
912 		}
913 		f2fs_up_read(&io->bio_list_lock);
914 
915 		if (!found)
916 			continue;
917 
918 		found = false;
919 
920 		f2fs_down_write(&io->bio_list_lock);
921 		list_for_each_entry(be, head, list) {
922 			if (target)
923 				found = (target == be->bio);
924 			else
925 				found = __has_merged_page(be->bio, NULL,
926 								page, 0);
927 			if (found) {
928 				target = be->bio;
929 				del_bio_entry(be);
930 				break;
931 			}
932 		}
933 		f2fs_up_write(&io->bio_list_lock);
934 	}
935 
936 	if (found)
937 		f2fs_submit_write_bio(sbi, target, DATA);
938 	if (bio && *bio) {
939 		bio_put(*bio);
940 		*bio = NULL;
941 	}
942 }
943 
944 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945 {
946 	struct bio *bio = *fio->bio;
947 	struct page *page = fio->encrypted_page ?
948 			fio->encrypted_page : fio->page;
949 
950 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953 		return -EFSCORRUPTED;
954 	}
955 
956 	trace_f2fs_submit_page_bio(page, fio);
957 
958 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959 						fio->new_blkaddr))
960 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961 alloc_new:
962 	if (!bio) {
963 		bio = __bio_alloc(fio, BIO_MAX_VECS);
964 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965 				       fio->page->index, fio, GFP_NOIO);
966 
967 		add_bio_entry(fio->sbi, bio, page, fio->temp);
968 	} else {
969 		if (add_ipu_page(fio, &bio, page))
970 			goto alloc_new;
971 	}
972 
973 	if (fio->io_wbc)
974 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975 
976 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977 
978 	*fio->last_block = fio->new_blkaddr;
979 	*fio->bio = bio;
980 
981 	return 0;
982 }
983 
984 #ifdef CONFIG_BLK_DEV_ZONED
985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986 {
987 	int devi = 0;
988 
989 	if (f2fs_is_multi_device(sbi)) {
990 		devi = f2fs_target_device_index(sbi, blkaddr);
991 		if (blkaddr < FDEV(devi).start_blk ||
992 		    blkaddr > FDEV(devi).end_blk) {
993 			f2fs_err(sbi, "Invalid block %x", blkaddr);
994 			return false;
995 		}
996 		blkaddr -= FDEV(devi).start_blk;
997 	}
998 	return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001 }
1002 #endif
1003 
1004 void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005 {
1006 	struct f2fs_sb_info *sbi = fio->sbi;
1007 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009 	struct page *bio_page;
1010 
1011 	f2fs_bug_on(sbi, is_read_io(fio->op));
1012 
1013 	f2fs_down_write(&io->io_rwsem);
1014 
1015 #ifdef CONFIG_BLK_DEV_ZONED
1016 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017 		wait_for_completion_io(&io->zone_wait);
1018 		bio_put(io->zone_pending_bio);
1019 		io->zone_pending_bio = NULL;
1020 		io->bi_private = NULL;
1021 	}
1022 #endif
1023 
1024 next:
1025 	if (fio->in_list) {
1026 		spin_lock(&io->io_lock);
1027 		if (list_empty(&io->io_list)) {
1028 			spin_unlock(&io->io_lock);
1029 			goto out;
1030 		}
1031 		fio = list_first_entry(&io->io_list,
1032 						struct f2fs_io_info, list);
1033 		list_del(&fio->list);
1034 		spin_unlock(&io->io_lock);
1035 	}
1036 
1037 	verify_fio_blkaddr(fio);
1038 
1039 	if (fio->encrypted_page)
1040 		bio_page = fio->encrypted_page;
1041 	else if (fio->compressed_page)
1042 		bio_page = fio->compressed_page;
1043 	else
1044 		bio_page = fio->page;
1045 
1046 	/* set submitted = true as a return value */
1047 	fio->submitted = 1;
1048 
1049 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050 
1051 	if (io->bio &&
1052 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053 			      fio->new_blkaddr) ||
1054 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055 				       bio_page->index, fio)))
1056 		__submit_merged_bio(io);
1057 alloc_new:
1058 	if (io->bio == NULL) {
1059 		if (F2FS_IO_ALIGNED(sbi) &&
1060 				(fio->type == DATA || fio->type == NODE) &&
1061 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063 			fio->retry = 1;
1064 			goto skip;
1065 		}
1066 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068 				       bio_page->index, fio, GFP_NOIO);
1069 		io->fio = *fio;
1070 	}
1071 
1072 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073 		__submit_merged_bio(io);
1074 		goto alloc_new;
1075 	}
1076 
1077 	if (fio->io_wbc)
1078 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079 
1080 	io->last_block_in_bio = fio->new_blkaddr;
1081 
1082 	trace_f2fs_submit_page_write(fio->page, fio);
1083 skip:
1084 	if (fio->in_list)
1085 		goto next;
1086 out:
1087 #ifdef CONFIG_BLK_DEV_ZONED
1088 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090 		bio_get(io->bio);
1091 		reinit_completion(&io->zone_wait);
1092 		io->bi_private = io->bio->bi_private;
1093 		io->bio->bi_private = io;
1094 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1095 		io->zone_pending_bio = io->bio;
1096 		__submit_merged_bio(io);
1097 	}
1098 #endif
1099 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100 				!f2fs_is_checkpoint_ready(sbi))
1101 		__submit_merged_bio(io);
1102 	f2fs_up_write(&io->io_rwsem);
1103 }
1104 
1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106 				      unsigned nr_pages, blk_opf_t op_flag,
1107 				      pgoff_t first_idx, bool for_write)
1108 {
1109 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110 	struct bio *bio;
1111 	struct bio_post_read_ctx *ctx = NULL;
1112 	unsigned int post_read_steps = 0;
1113 	sector_t sector;
1114 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115 
1116 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117 			       REQ_OP_READ | op_flag,
1118 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119 	if (!bio)
1120 		return ERR_PTR(-ENOMEM);
1121 	bio->bi_iter.bi_sector = sector;
1122 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123 	bio->bi_end_io = f2fs_read_end_io;
1124 
1125 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126 		post_read_steps |= STEP_DECRYPT;
1127 
1128 	if (f2fs_need_verity(inode, first_idx))
1129 		post_read_steps |= STEP_VERITY;
1130 
1131 	/*
1132 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1134 	 * bio_post_read_ctx if the file is compressed, but the caller is
1135 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136 	 */
1137 
1138 	if (post_read_steps || f2fs_compressed_file(inode)) {
1139 		/* Due to the mempool, this never fails. */
1140 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141 		ctx->bio = bio;
1142 		ctx->sbi = sbi;
1143 		ctx->enabled_steps = post_read_steps;
1144 		ctx->fs_blkaddr = blkaddr;
1145 		ctx->decompression_attempted = false;
1146 		bio->bi_private = ctx;
1147 	}
1148 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149 
1150 	return bio;
1151 }
1152 
1153 /* This can handle encryption stuffs */
1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155 				 block_t blkaddr, blk_opf_t op_flags,
1156 				 bool for_write)
1157 {
1158 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 	struct bio *bio;
1160 
1161 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162 					page->index, for_write);
1163 	if (IS_ERR(bio))
1164 		return PTR_ERR(bio);
1165 
1166 	/* wait for GCed page writeback via META_MAPPING */
1167 	f2fs_wait_on_block_writeback(inode, blkaddr);
1168 
1169 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170 		iostat_update_and_unbind_ctx(bio);
1171 		if (bio->bi_private)
1172 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173 		bio_put(bio);
1174 		return -EFAULT;
1175 	}
1176 	inc_page_count(sbi, F2FS_RD_DATA);
1177 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178 	f2fs_submit_read_bio(sbi, bio, DATA);
1179 	return 0;
1180 }
1181 
1182 static void __set_data_blkaddr(struct dnode_of_data *dn)
1183 {
1184 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1185 	__le32 *addr_array;
1186 	int base = 0;
1187 
1188 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1189 		base = get_extra_isize(dn->inode);
1190 
1191 	/* Get physical address of data block */
1192 	addr_array = blkaddr_in_node(rn);
1193 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1194 }
1195 
1196 /*
1197  * Lock ordering for the change of data block address:
1198  * ->data_page
1199  *  ->node_page
1200  *    update block addresses in the node page
1201  */
1202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1203 {
1204 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1205 	__set_data_blkaddr(dn);
1206 	if (set_page_dirty(dn->node_page))
1207 		dn->node_changed = true;
1208 }
1209 
1210 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1211 {
1212 	dn->data_blkaddr = blkaddr;
1213 	f2fs_set_data_blkaddr(dn);
1214 	f2fs_update_read_extent_cache(dn);
1215 }
1216 
1217 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1218 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1219 {
1220 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1221 	int err;
1222 
1223 	if (!count)
1224 		return 0;
1225 
1226 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227 		return -EPERM;
1228 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1229 		return err;
1230 
1231 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1232 						dn->ofs_in_node, count);
1233 
1234 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1235 
1236 	for (; count > 0; dn->ofs_in_node++) {
1237 		block_t blkaddr = f2fs_data_blkaddr(dn);
1238 
1239 		if (blkaddr == NULL_ADDR) {
1240 			dn->data_blkaddr = NEW_ADDR;
1241 			__set_data_blkaddr(dn);
1242 			count--;
1243 		}
1244 	}
1245 
1246 	if (set_page_dirty(dn->node_page))
1247 		dn->node_changed = true;
1248 	return 0;
1249 }
1250 
1251 /* Should keep dn->ofs_in_node unchanged */
1252 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1253 {
1254 	unsigned int ofs_in_node = dn->ofs_in_node;
1255 	int ret;
1256 
1257 	ret = f2fs_reserve_new_blocks(dn, 1);
1258 	dn->ofs_in_node = ofs_in_node;
1259 	return ret;
1260 }
1261 
1262 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1263 {
1264 	bool need_put = dn->inode_page ? false : true;
1265 	int err;
1266 
1267 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1268 	if (err)
1269 		return err;
1270 
1271 	if (dn->data_blkaddr == NULL_ADDR)
1272 		err = f2fs_reserve_new_block(dn);
1273 	if (err || need_put)
1274 		f2fs_put_dnode(dn);
1275 	return err;
1276 }
1277 
1278 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1279 				     blk_opf_t op_flags, bool for_write,
1280 				     pgoff_t *next_pgofs)
1281 {
1282 	struct address_space *mapping = inode->i_mapping;
1283 	struct dnode_of_data dn;
1284 	struct page *page;
1285 	int err;
1286 
1287 	page = f2fs_grab_cache_page(mapping, index, for_write);
1288 	if (!page)
1289 		return ERR_PTR(-ENOMEM);
1290 
1291 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1292 						&dn.data_blkaddr)) {
1293 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1294 						DATA_GENERIC_ENHANCE_READ)) {
1295 			err = -EFSCORRUPTED;
1296 			f2fs_handle_error(F2FS_I_SB(inode),
1297 						ERROR_INVALID_BLKADDR);
1298 			goto put_err;
1299 		}
1300 		goto got_it;
1301 	}
1302 
1303 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1304 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1305 	if (err) {
1306 		if (err == -ENOENT && next_pgofs)
1307 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1308 		goto put_err;
1309 	}
1310 	f2fs_put_dnode(&dn);
1311 
1312 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1313 		err = -ENOENT;
1314 		if (next_pgofs)
1315 			*next_pgofs = index + 1;
1316 		goto put_err;
1317 	}
1318 	if (dn.data_blkaddr != NEW_ADDR &&
1319 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1320 						dn.data_blkaddr,
1321 						DATA_GENERIC_ENHANCE)) {
1322 		err = -EFSCORRUPTED;
1323 		f2fs_handle_error(F2FS_I_SB(inode),
1324 					ERROR_INVALID_BLKADDR);
1325 		goto put_err;
1326 	}
1327 got_it:
1328 	if (PageUptodate(page)) {
1329 		unlock_page(page);
1330 		return page;
1331 	}
1332 
1333 	/*
1334 	 * A new dentry page is allocated but not able to be written, since its
1335 	 * new inode page couldn't be allocated due to -ENOSPC.
1336 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1337 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1338 	 * f2fs_init_inode_metadata.
1339 	 */
1340 	if (dn.data_blkaddr == NEW_ADDR) {
1341 		zero_user_segment(page, 0, PAGE_SIZE);
1342 		if (!PageUptodate(page))
1343 			SetPageUptodate(page);
1344 		unlock_page(page);
1345 		return page;
1346 	}
1347 
1348 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1349 						op_flags, for_write);
1350 	if (err)
1351 		goto put_err;
1352 	return page;
1353 
1354 put_err:
1355 	f2fs_put_page(page, 1);
1356 	return ERR_PTR(err);
1357 }
1358 
1359 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1360 					pgoff_t *next_pgofs)
1361 {
1362 	struct address_space *mapping = inode->i_mapping;
1363 	struct page *page;
1364 
1365 	page = find_get_page(mapping, index);
1366 	if (page && PageUptodate(page))
1367 		return page;
1368 	f2fs_put_page(page, 0);
1369 
1370 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1371 	if (IS_ERR(page))
1372 		return page;
1373 
1374 	if (PageUptodate(page))
1375 		return page;
1376 
1377 	wait_on_page_locked(page);
1378 	if (unlikely(!PageUptodate(page))) {
1379 		f2fs_put_page(page, 0);
1380 		return ERR_PTR(-EIO);
1381 	}
1382 	return page;
1383 }
1384 
1385 /*
1386  * If it tries to access a hole, return an error.
1387  * Because, the callers, functions in dir.c and GC, should be able to know
1388  * whether this page exists or not.
1389  */
1390 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1391 							bool for_write)
1392 {
1393 	struct address_space *mapping = inode->i_mapping;
1394 	struct page *page;
1395 
1396 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1397 	if (IS_ERR(page))
1398 		return page;
1399 
1400 	/* wait for read completion */
1401 	lock_page(page);
1402 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1403 		f2fs_put_page(page, 1);
1404 		return ERR_PTR(-EIO);
1405 	}
1406 	return page;
1407 }
1408 
1409 /*
1410  * Caller ensures that this data page is never allocated.
1411  * A new zero-filled data page is allocated in the page cache.
1412  *
1413  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1414  * f2fs_unlock_op().
1415  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1416  * ipage should be released by this function.
1417  */
1418 struct page *f2fs_get_new_data_page(struct inode *inode,
1419 		struct page *ipage, pgoff_t index, bool new_i_size)
1420 {
1421 	struct address_space *mapping = inode->i_mapping;
1422 	struct page *page;
1423 	struct dnode_of_data dn;
1424 	int err;
1425 
1426 	page = f2fs_grab_cache_page(mapping, index, true);
1427 	if (!page) {
1428 		/*
1429 		 * before exiting, we should make sure ipage will be released
1430 		 * if any error occur.
1431 		 */
1432 		f2fs_put_page(ipage, 1);
1433 		return ERR_PTR(-ENOMEM);
1434 	}
1435 
1436 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1437 	err = f2fs_reserve_block(&dn, index);
1438 	if (err) {
1439 		f2fs_put_page(page, 1);
1440 		return ERR_PTR(err);
1441 	}
1442 	if (!ipage)
1443 		f2fs_put_dnode(&dn);
1444 
1445 	if (PageUptodate(page))
1446 		goto got_it;
1447 
1448 	if (dn.data_blkaddr == NEW_ADDR) {
1449 		zero_user_segment(page, 0, PAGE_SIZE);
1450 		if (!PageUptodate(page))
1451 			SetPageUptodate(page);
1452 	} else {
1453 		f2fs_put_page(page, 1);
1454 
1455 		/* if ipage exists, blkaddr should be NEW_ADDR */
1456 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1457 		page = f2fs_get_lock_data_page(inode, index, true);
1458 		if (IS_ERR(page))
1459 			return page;
1460 	}
1461 got_it:
1462 	if (new_i_size && i_size_read(inode) <
1463 				((loff_t)(index + 1) << PAGE_SHIFT))
1464 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1465 	return page;
1466 }
1467 
1468 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1469 {
1470 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471 	struct f2fs_summary sum;
1472 	struct node_info ni;
1473 	block_t old_blkaddr;
1474 	blkcnt_t count = 1;
1475 	int err;
1476 
1477 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1478 		return -EPERM;
1479 
1480 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1481 	if (err)
1482 		return err;
1483 
1484 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1485 	if (dn->data_blkaddr == NULL_ADDR) {
1486 		err = inc_valid_block_count(sbi, dn->inode, &count);
1487 		if (unlikely(err))
1488 			return err;
1489 	}
1490 
1491 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1492 	old_blkaddr = dn->data_blkaddr;
1493 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1494 				&sum, seg_type, NULL);
1495 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1496 		invalidate_mapping_pages(META_MAPPING(sbi),
1497 					old_blkaddr, old_blkaddr);
1498 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1499 	}
1500 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1501 	return 0;
1502 }
1503 
1504 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1505 {
1506 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1507 		f2fs_down_read(&sbi->node_change);
1508 	else
1509 		f2fs_lock_op(sbi);
1510 }
1511 
1512 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1513 {
1514 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1515 		f2fs_up_read(&sbi->node_change);
1516 	else
1517 		f2fs_unlock_op(sbi);
1518 }
1519 
1520 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1521 {
1522 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1523 	int err = 0;
1524 
1525 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1526 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1527 						&dn->data_blkaddr))
1528 		err = f2fs_reserve_block(dn, index);
1529 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1530 
1531 	return err;
1532 }
1533 
1534 static int f2fs_map_no_dnode(struct inode *inode,
1535 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1536 		pgoff_t pgoff)
1537 {
1538 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1539 
1540 	/*
1541 	 * There is one exceptional case that read_node_page() may return
1542 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1543 	 * -EIO in that case.
1544 	 */
1545 	if (map->m_may_create &&
1546 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1547 		return -EIO;
1548 
1549 	if (map->m_next_pgofs)
1550 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1551 	if (map->m_next_extent)
1552 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1553 	return 0;
1554 }
1555 
1556 static bool f2fs_map_blocks_cached(struct inode *inode,
1557 		struct f2fs_map_blocks *map, int flag)
1558 {
1559 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1560 	unsigned int maxblocks = map->m_len;
1561 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1562 	struct extent_info ei = {};
1563 
1564 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1565 		return false;
1566 
1567 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1568 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1569 	map->m_flags = F2FS_MAP_MAPPED;
1570 	if (map->m_next_extent)
1571 		*map->m_next_extent = pgoff + map->m_len;
1572 
1573 	/* for hardware encryption, but to avoid potential issue in future */
1574 	if (flag == F2FS_GET_BLOCK_DIO)
1575 		f2fs_wait_on_block_writeback_range(inode,
1576 					map->m_pblk, map->m_len);
1577 
1578 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1579 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1580 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1581 
1582 		map->m_bdev = dev->bdev;
1583 		map->m_pblk -= dev->start_blk;
1584 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1585 	} else {
1586 		map->m_bdev = inode->i_sb->s_bdev;
1587 	}
1588 	return true;
1589 }
1590 
1591 /*
1592  * f2fs_map_blocks() tries to find or build mapping relationship which
1593  * maps continuous logical blocks to physical blocks, and return such
1594  * info via f2fs_map_blocks structure.
1595  */
1596 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1597 {
1598 	unsigned int maxblocks = map->m_len;
1599 	struct dnode_of_data dn;
1600 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1602 	pgoff_t pgofs, end_offset, end;
1603 	int err = 0, ofs = 1;
1604 	unsigned int ofs_in_node, last_ofs_in_node;
1605 	blkcnt_t prealloc;
1606 	block_t blkaddr;
1607 	unsigned int start_pgofs;
1608 	int bidx = 0;
1609 	bool is_hole;
1610 
1611 	if (!maxblocks)
1612 		return 0;
1613 
1614 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1615 		goto out;
1616 
1617 	map->m_bdev = inode->i_sb->s_bdev;
1618 	map->m_multidev_dio =
1619 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1620 
1621 	map->m_len = 0;
1622 	map->m_flags = 0;
1623 
1624 	/* it only supports block size == page size */
1625 	pgofs =	(pgoff_t)map->m_lblk;
1626 	end = pgofs + maxblocks;
1627 
1628 next_dnode:
1629 	if (map->m_may_create)
1630 		f2fs_map_lock(sbi, flag);
1631 
1632 	/* When reading holes, we need its node page */
1633 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1634 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1635 	if (err) {
1636 		if (flag == F2FS_GET_BLOCK_BMAP)
1637 			map->m_pblk = 0;
1638 		if (err == -ENOENT)
1639 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1640 		goto unlock_out;
1641 	}
1642 
1643 	start_pgofs = pgofs;
1644 	prealloc = 0;
1645 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1646 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1647 
1648 next_block:
1649 	blkaddr = f2fs_data_blkaddr(&dn);
1650 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1651 	if (!is_hole &&
1652 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1653 		err = -EFSCORRUPTED;
1654 		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1655 		goto sync_out;
1656 	}
1657 
1658 	/* use out-place-update for direct IO under LFS mode */
1659 	if (map->m_may_create &&
1660 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1661 		if (unlikely(f2fs_cp_error(sbi))) {
1662 			err = -EIO;
1663 			goto sync_out;
1664 		}
1665 
1666 		switch (flag) {
1667 		case F2FS_GET_BLOCK_PRE_AIO:
1668 			if (blkaddr == NULL_ADDR) {
1669 				prealloc++;
1670 				last_ofs_in_node = dn.ofs_in_node;
1671 			}
1672 			break;
1673 		case F2FS_GET_BLOCK_PRE_DIO:
1674 		case F2FS_GET_BLOCK_DIO:
1675 			err = __allocate_data_block(&dn, map->m_seg_type);
1676 			if (err)
1677 				goto sync_out;
1678 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1679 				file_need_truncate(inode);
1680 			set_inode_flag(inode, FI_APPEND_WRITE);
1681 			break;
1682 		default:
1683 			WARN_ON_ONCE(1);
1684 			err = -EIO;
1685 			goto sync_out;
1686 		}
1687 
1688 		blkaddr = dn.data_blkaddr;
1689 		if (is_hole)
1690 			map->m_flags |= F2FS_MAP_NEW;
1691 	} else if (is_hole) {
1692 		if (f2fs_compressed_file(inode) &&
1693 		    f2fs_sanity_check_cluster(&dn) &&
1694 		    (flag != F2FS_GET_BLOCK_FIEMAP ||
1695 		     IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1696 			err = -EFSCORRUPTED;
1697 			f2fs_handle_error(sbi,
1698 					ERROR_CORRUPTED_CLUSTER);
1699 			goto sync_out;
1700 		}
1701 
1702 		switch (flag) {
1703 		case F2FS_GET_BLOCK_PRECACHE:
1704 			goto sync_out;
1705 		case F2FS_GET_BLOCK_BMAP:
1706 			map->m_pblk = 0;
1707 			goto sync_out;
1708 		case F2FS_GET_BLOCK_FIEMAP:
1709 			if (blkaddr == NULL_ADDR) {
1710 				if (map->m_next_pgofs)
1711 					*map->m_next_pgofs = pgofs + 1;
1712 				goto sync_out;
1713 			}
1714 			break;
1715 		default:
1716 			/* for defragment case */
1717 			if (map->m_next_pgofs)
1718 				*map->m_next_pgofs = pgofs + 1;
1719 			goto sync_out;
1720 		}
1721 	}
1722 
1723 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1724 		goto skip;
1725 
1726 	if (map->m_multidev_dio)
1727 		bidx = f2fs_target_device_index(sbi, blkaddr);
1728 
1729 	if (map->m_len == 0) {
1730 		/* reserved delalloc block should be mapped for fiemap. */
1731 		if (blkaddr == NEW_ADDR)
1732 			map->m_flags |= F2FS_MAP_DELALLOC;
1733 		map->m_flags |= F2FS_MAP_MAPPED;
1734 
1735 		map->m_pblk = blkaddr;
1736 		map->m_len = 1;
1737 
1738 		if (map->m_multidev_dio)
1739 			map->m_bdev = FDEV(bidx).bdev;
1740 	} else if ((map->m_pblk != NEW_ADDR &&
1741 			blkaddr == (map->m_pblk + ofs)) ||
1742 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1743 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1744 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1745 			goto sync_out;
1746 		ofs++;
1747 		map->m_len++;
1748 	} else {
1749 		goto sync_out;
1750 	}
1751 
1752 skip:
1753 	dn.ofs_in_node++;
1754 	pgofs++;
1755 
1756 	/* preallocate blocks in batch for one dnode page */
1757 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1758 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1759 
1760 		dn.ofs_in_node = ofs_in_node;
1761 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1762 		if (err)
1763 			goto sync_out;
1764 
1765 		map->m_len += dn.ofs_in_node - ofs_in_node;
1766 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1767 			err = -ENOSPC;
1768 			goto sync_out;
1769 		}
1770 		dn.ofs_in_node = end_offset;
1771 	}
1772 
1773 	if (pgofs >= end)
1774 		goto sync_out;
1775 	else if (dn.ofs_in_node < end_offset)
1776 		goto next_block;
1777 
1778 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1779 		if (map->m_flags & F2FS_MAP_MAPPED) {
1780 			unsigned int ofs = start_pgofs - map->m_lblk;
1781 
1782 			f2fs_update_read_extent_cache_range(&dn,
1783 				start_pgofs, map->m_pblk + ofs,
1784 				map->m_len - ofs);
1785 		}
1786 	}
1787 
1788 	f2fs_put_dnode(&dn);
1789 
1790 	if (map->m_may_create) {
1791 		f2fs_map_unlock(sbi, flag);
1792 		f2fs_balance_fs(sbi, dn.node_changed);
1793 	}
1794 	goto next_dnode;
1795 
1796 sync_out:
1797 
1798 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1799 		/*
1800 		 * for hardware encryption, but to avoid potential issue
1801 		 * in future
1802 		 */
1803 		f2fs_wait_on_block_writeback_range(inode,
1804 						map->m_pblk, map->m_len);
1805 
1806 		if (map->m_multidev_dio) {
1807 			block_t blk_addr = map->m_pblk;
1808 
1809 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1810 
1811 			map->m_bdev = FDEV(bidx).bdev;
1812 			map->m_pblk -= FDEV(bidx).start_blk;
1813 
1814 			if (map->m_may_create)
1815 				f2fs_update_device_state(sbi, inode->i_ino,
1816 							blk_addr, map->m_len);
1817 
1818 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1819 						FDEV(bidx).end_blk + 1);
1820 		}
1821 	}
1822 
1823 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1824 		if (map->m_flags & F2FS_MAP_MAPPED) {
1825 			unsigned int ofs = start_pgofs - map->m_lblk;
1826 
1827 			f2fs_update_read_extent_cache_range(&dn,
1828 				start_pgofs, map->m_pblk + ofs,
1829 				map->m_len - ofs);
1830 		}
1831 		if (map->m_next_extent)
1832 			*map->m_next_extent = pgofs + 1;
1833 	}
1834 	f2fs_put_dnode(&dn);
1835 unlock_out:
1836 	if (map->m_may_create) {
1837 		f2fs_map_unlock(sbi, flag);
1838 		f2fs_balance_fs(sbi, dn.node_changed);
1839 	}
1840 out:
1841 	trace_f2fs_map_blocks(inode, map, flag, err);
1842 	return err;
1843 }
1844 
1845 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1846 {
1847 	struct f2fs_map_blocks map;
1848 	block_t last_lblk;
1849 	int err;
1850 
1851 	if (pos + len > i_size_read(inode))
1852 		return false;
1853 
1854 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1855 	map.m_next_pgofs = NULL;
1856 	map.m_next_extent = NULL;
1857 	map.m_seg_type = NO_CHECK_TYPE;
1858 	map.m_may_create = false;
1859 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1860 
1861 	while (map.m_lblk < last_lblk) {
1862 		map.m_len = last_lblk - map.m_lblk;
1863 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1864 		if (err || map.m_len == 0)
1865 			return false;
1866 		map.m_lblk += map.m_len;
1867 	}
1868 	return true;
1869 }
1870 
1871 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1872 {
1873 	return (bytes >> inode->i_blkbits);
1874 }
1875 
1876 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1877 {
1878 	return (blks << inode->i_blkbits);
1879 }
1880 
1881 static int f2fs_xattr_fiemap(struct inode *inode,
1882 				struct fiemap_extent_info *fieinfo)
1883 {
1884 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1885 	struct page *page;
1886 	struct node_info ni;
1887 	__u64 phys = 0, len;
1888 	__u32 flags;
1889 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1890 	int err = 0;
1891 
1892 	if (f2fs_has_inline_xattr(inode)) {
1893 		int offset;
1894 
1895 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1896 						inode->i_ino, false);
1897 		if (!page)
1898 			return -ENOMEM;
1899 
1900 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1901 		if (err) {
1902 			f2fs_put_page(page, 1);
1903 			return err;
1904 		}
1905 
1906 		phys = blks_to_bytes(inode, ni.blk_addr);
1907 		offset = offsetof(struct f2fs_inode, i_addr) +
1908 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1909 					get_inline_xattr_addrs(inode));
1910 
1911 		phys += offset;
1912 		len = inline_xattr_size(inode);
1913 
1914 		f2fs_put_page(page, 1);
1915 
1916 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1917 
1918 		if (!xnid)
1919 			flags |= FIEMAP_EXTENT_LAST;
1920 
1921 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1922 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1923 		if (err)
1924 			return err;
1925 	}
1926 
1927 	if (xnid) {
1928 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1929 		if (!page)
1930 			return -ENOMEM;
1931 
1932 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1933 		if (err) {
1934 			f2fs_put_page(page, 1);
1935 			return err;
1936 		}
1937 
1938 		phys = blks_to_bytes(inode, ni.blk_addr);
1939 		len = inode->i_sb->s_blocksize;
1940 
1941 		f2fs_put_page(page, 1);
1942 
1943 		flags = FIEMAP_EXTENT_LAST;
1944 	}
1945 
1946 	if (phys) {
1947 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1948 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1949 	}
1950 
1951 	return (err < 0 ? err : 0);
1952 }
1953 
1954 static loff_t max_inode_blocks(struct inode *inode)
1955 {
1956 	loff_t result = ADDRS_PER_INODE(inode);
1957 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1958 
1959 	/* two direct node blocks */
1960 	result += (leaf_count * 2);
1961 
1962 	/* two indirect node blocks */
1963 	leaf_count *= NIDS_PER_BLOCK;
1964 	result += (leaf_count * 2);
1965 
1966 	/* one double indirect node block */
1967 	leaf_count *= NIDS_PER_BLOCK;
1968 	result += leaf_count;
1969 
1970 	return result;
1971 }
1972 
1973 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1974 		u64 start, u64 len)
1975 {
1976 	struct f2fs_map_blocks map;
1977 	sector_t start_blk, last_blk;
1978 	pgoff_t next_pgofs;
1979 	u64 logical = 0, phys = 0, size = 0;
1980 	u32 flags = 0;
1981 	int ret = 0;
1982 	bool compr_cluster = false, compr_appended;
1983 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1984 	unsigned int count_in_cluster = 0;
1985 	loff_t maxbytes;
1986 
1987 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1988 		ret = f2fs_precache_extents(inode);
1989 		if (ret)
1990 			return ret;
1991 	}
1992 
1993 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1994 	if (ret)
1995 		return ret;
1996 
1997 	inode_lock(inode);
1998 
1999 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2000 	if (start > maxbytes) {
2001 		ret = -EFBIG;
2002 		goto out;
2003 	}
2004 
2005 	if (len > maxbytes || (maxbytes - len) < start)
2006 		len = maxbytes - start;
2007 
2008 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2009 		ret = f2fs_xattr_fiemap(inode, fieinfo);
2010 		goto out;
2011 	}
2012 
2013 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2014 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2015 		if (ret != -EAGAIN)
2016 			goto out;
2017 	}
2018 
2019 	if (bytes_to_blks(inode, len) == 0)
2020 		len = blks_to_bytes(inode, 1);
2021 
2022 	start_blk = bytes_to_blks(inode, start);
2023 	last_blk = bytes_to_blks(inode, start + len - 1);
2024 
2025 next:
2026 	memset(&map, 0, sizeof(map));
2027 	map.m_lblk = start_blk;
2028 	map.m_len = bytes_to_blks(inode, len);
2029 	map.m_next_pgofs = &next_pgofs;
2030 	map.m_seg_type = NO_CHECK_TYPE;
2031 
2032 	if (compr_cluster) {
2033 		map.m_lblk += 1;
2034 		map.m_len = cluster_size - count_in_cluster;
2035 	}
2036 
2037 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2038 	if (ret)
2039 		goto out;
2040 
2041 	/* HOLE */
2042 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2043 		start_blk = next_pgofs;
2044 
2045 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2046 						max_inode_blocks(inode)))
2047 			goto prep_next;
2048 
2049 		flags |= FIEMAP_EXTENT_LAST;
2050 	}
2051 
2052 	compr_appended = false;
2053 	/* In a case of compressed cluster, append this to the last extent */
2054 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2055 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2056 		compr_appended = true;
2057 		goto skip_fill;
2058 	}
2059 
2060 	if (size) {
2061 		flags |= FIEMAP_EXTENT_MERGED;
2062 		if (IS_ENCRYPTED(inode))
2063 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2064 
2065 		ret = fiemap_fill_next_extent(fieinfo, logical,
2066 				phys, size, flags);
2067 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2068 		if (ret)
2069 			goto out;
2070 		size = 0;
2071 	}
2072 
2073 	if (start_blk > last_blk)
2074 		goto out;
2075 
2076 skip_fill:
2077 	if (map.m_pblk == COMPRESS_ADDR) {
2078 		compr_cluster = true;
2079 		count_in_cluster = 1;
2080 	} else if (compr_appended) {
2081 		unsigned int appended_blks = cluster_size -
2082 						count_in_cluster + 1;
2083 		size += blks_to_bytes(inode, appended_blks);
2084 		start_blk += appended_blks;
2085 		compr_cluster = false;
2086 	} else {
2087 		logical = blks_to_bytes(inode, start_blk);
2088 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2089 			blks_to_bytes(inode, map.m_pblk) : 0;
2090 		size = blks_to_bytes(inode, map.m_len);
2091 		flags = 0;
2092 
2093 		if (compr_cluster) {
2094 			flags = FIEMAP_EXTENT_ENCODED;
2095 			count_in_cluster += map.m_len;
2096 			if (count_in_cluster == cluster_size) {
2097 				compr_cluster = false;
2098 				size += blks_to_bytes(inode, 1);
2099 			}
2100 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2101 			flags = FIEMAP_EXTENT_UNWRITTEN;
2102 		}
2103 
2104 		start_blk += bytes_to_blks(inode, size);
2105 	}
2106 
2107 prep_next:
2108 	cond_resched();
2109 	if (fatal_signal_pending(current))
2110 		ret = -EINTR;
2111 	else
2112 		goto next;
2113 out:
2114 	if (ret == 1)
2115 		ret = 0;
2116 
2117 	inode_unlock(inode);
2118 	return ret;
2119 }
2120 
2121 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2122 {
2123 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2124 		return inode->i_sb->s_maxbytes;
2125 
2126 	return i_size_read(inode);
2127 }
2128 
2129 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2130 					unsigned nr_pages,
2131 					struct f2fs_map_blocks *map,
2132 					struct bio **bio_ret,
2133 					sector_t *last_block_in_bio,
2134 					bool is_readahead)
2135 {
2136 	struct bio *bio = *bio_ret;
2137 	const unsigned blocksize = blks_to_bytes(inode, 1);
2138 	sector_t block_in_file;
2139 	sector_t last_block;
2140 	sector_t last_block_in_file;
2141 	sector_t block_nr;
2142 	int ret = 0;
2143 
2144 	block_in_file = (sector_t)page_index(page);
2145 	last_block = block_in_file + nr_pages;
2146 	last_block_in_file = bytes_to_blks(inode,
2147 			f2fs_readpage_limit(inode) + blocksize - 1);
2148 	if (last_block > last_block_in_file)
2149 		last_block = last_block_in_file;
2150 
2151 	/* just zeroing out page which is beyond EOF */
2152 	if (block_in_file >= last_block)
2153 		goto zero_out;
2154 	/*
2155 	 * Map blocks using the previous result first.
2156 	 */
2157 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2158 			block_in_file > map->m_lblk &&
2159 			block_in_file < (map->m_lblk + map->m_len))
2160 		goto got_it;
2161 
2162 	/*
2163 	 * Then do more f2fs_map_blocks() calls until we are
2164 	 * done with this page.
2165 	 */
2166 	map->m_lblk = block_in_file;
2167 	map->m_len = last_block - block_in_file;
2168 
2169 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2170 	if (ret)
2171 		goto out;
2172 got_it:
2173 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2174 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2175 		SetPageMappedToDisk(page);
2176 
2177 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2178 						DATA_GENERIC_ENHANCE_READ)) {
2179 			ret = -EFSCORRUPTED;
2180 			f2fs_handle_error(F2FS_I_SB(inode),
2181 						ERROR_INVALID_BLKADDR);
2182 			goto out;
2183 		}
2184 	} else {
2185 zero_out:
2186 		zero_user_segment(page, 0, PAGE_SIZE);
2187 		if (f2fs_need_verity(inode, page->index) &&
2188 		    !fsverity_verify_page(page)) {
2189 			ret = -EIO;
2190 			goto out;
2191 		}
2192 		if (!PageUptodate(page))
2193 			SetPageUptodate(page);
2194 		unlock_page(page);
2195 		goto out;
2196 	}
2197 
2198 	/*
2199 	 * This page will go to BIO.  Do we need to send this
2200 	 * BIO off first?
2201 	 */
2202 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2203 				       *last_block_in_bio, block_nr) ||
2204 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2205 submit_and_realloc:
2206 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2207 		bio = NULL;
2208 	}
2209 	if (bio == NULL) {
2210 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2211 				is_readahead ? REQ_RAHEAD : 0, page->index,
2212 				false);
2213 		if (IS_ERR(bio)) {
2214 			ret = PTR_ERR(bio);
2215 			bio = NULL;
2216 			goto out;
2217 		}
2218 	}
2219 
2220 	/*
2221 	 * If the page is under writeback, we need to wait for
2222 	 * its completion to see the correct decrypted data.
2223 	 */
2224 	f2fs_wait_on_block_writeback(inode, block_nr);
2225 
2226 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2227 		goto submit_and_realloc;
2228 
2229 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2230 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2231 							F2FS_BLKSIZE);
2232 	*last_block_in_bio = block_nr;
2233 out:
2234 	*bio_ret = bio;
2235 	return ret;
2236 }
2237 
2238 #ifdef CONFIG_F2FS_FS_COMPRESSION
2239 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2240 				unsigned nr_pages, sector_t *last_block_in_bio,
2241 				bool is_readahead, bool for_write)
2242 {
2243 	struct dnode_of_data dn;
2244 	struct inode *inode = cc->inode;
2245 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2246 	struct bio *bio = *bio_ret;
2247 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2248 	sector_t last_block_in_file;
2249 	const unsigned blocksize = blks_to_bytes(inode, 1);
2250 	struct decompress_io_ctx *dic = NULL;
2251 	struct extent_info ei = {};
2252 	bool from_dnode = true;
2253 	int i;
2254 	int ret = 0;
2255 
2256 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2257 
2258 	last_block_in_file = bytes_to_blks(inode,
2259 			f2fs_readpage_limit(inode) + blocksize - 1);
2260 
2261 	/* get rid of pages beyond EOF */
2262 	for (i = 0; i < cc->cluster_size; i++) {
2263 		struct page *page = cc->rpages[i];
2264 
2265 		if (!page)
2266 			continue;
2267 		if ((sector_t)page->index >= last_block_in_file) {
2268 			zero_user_segment(page, 0, PAGE_SIZE);
2269 			if (!PageUptodate(page))
2270 				SetPageUptodate(page);
2271 		} else if (!PageUptodate(page)) {
2272 			continue;
2273 		}
2274 		unlock_page(page);
2275 		if (for_write)
2276 			put_page(page);
2277 		cc->rpages[i] = NULL;
2278 		cc->nr_rpages--;
2279 	}
2280 
2281 	/* we are done since all pages are beyond EOF */
2282 	if (f2fs_cluster_is_empty(cc))
2283 		goto out;
2284 
2285 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2286 		from_dnode = false;
2287 
2288 	if (!from_dnode)
2289 		goto skip_reading_dnode;
2290 
2291 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2292 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2293 	if (ret)
2294 		goto out;
2295 
2296 	if (unlikely(f2fs_cp_error(sbi))) {
2297 		ret = -EIO;
2298 		goto out_put_dnode;
2299 	}
2300 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2301 
2302 skip_reading_dnode:
2303 	for (i = 1; i < cc->cluster_size; i++) {
2304 		block_t blkaddr;
2305 
2306 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2307 					dn.ofs_in_node + i) :
2308 					ei.blk + i - 1;
2309 
2310 		if (!__is_valid_data_blkaddr(blkaddr))
2311 			break;
2312 
2313 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2314 			ret = -EFAULT;
2315 			goto out_put_dnode;
2316 		}
2317 		cc->nr_cpages++;
2318 
2319 		if (!from_dnode && i >= ei.c_len)
2320 			break;
2321 	}
2322 
2323 	/* nothing to decompress */
2324 	if (cc->nr_cpages == 0) {
2325 		ret = 0;
2326 		goto out_put_dnode;
2327 	}
2328 
2329 	dic = f2fs_alloc_dic(cc);
2330 	if (IS_ERR(dic)) {
2331 		ret = PTR_ERR(dic);
2332 		goto out_put_dnode;
2333 	}
2334 
2335 	for (i = 0; i < cc->nr_cpages; i++) {
2336 		struct page *page = dic->cpages[i];
2337 		block_t blkaddr;
2338 		struct bio_post_read_ctx *ctx;
2339 
2340 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2341 					dn.ofs_in_node + i + 1) :
2342 					ei.blk + i;
2343 
2344 		f2fs_wait_on_block_writeback(inode, blkaddr);
2345 
2346 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2347 			if (atomic_dec_and_test(&dic->remaining_pages))
2348 				f2fs_decompress_cluster(dic, true);
2349 			continue;
2350 		}
2351 
2352 		if (bio && (!page_is_mergeable(sbi, bio,
2353 					*last_block_in_bio, blkaddr) ||
2354 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2355 submit_and_realloc:
2356 			f2fs_submit_read_bio(sbi, bio, DATA);
2357 			bio = NULL;
2358 		}
2359 
2360 		if (!bio) {
2361 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2362 					is_readahead ? REQ_RAHEAD : 0,
2363 					page->index, for_write);
2364 			if (IS_ERR(bio)) {
2365 				ret = PTR_ERR(bio);
2366 				f2fs_decompress_end_io(dic, ret, true);
2367 				f2fs_put_dnode(&dn);
2368 				*bio_ret = NULL;
2369 				return ret;
2370 			}
2371 		}
2372 
2373 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2374 			goto submit_and_realloc;
2375 
2376 		ctx = get_post_read_ctx(bio);
2377 		ctx->enabled_steps |= STEP_DECOMPRESS;
2378 		refcount_inc(&dic->refcnt);
2379 
2380 		inc_page_count(sbi, F2FS_RD_DATA);
2381 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2382 		*last_block_in_bio = blkaddr;
2383 	}
2384 
2385 	if (from_dnode)
2386 		f2fs_put_dnode(&dn);
2387 
2388 	*bio_ret = bio;
2389 	return 0;
2390 
2391 out_put_dnode:
2392 	if (from_dnode)
2393 		f2fs_put_dnode(&dn);
2394 out:
2395 	for (i = 0; i < cc->cluster_size; i++) {
2396 		if (cc->rpages[i]) {
2397 			ClearPageUptodate(cc->rpages[i]);
2398 			unlock_page(cc->rpages[i]);
2399 		}
2400 	}
2401 	*bio_ret = bio;
2402 	return ret;
2403 }
2404 #endif
2405 
2406 /*
2407  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2408  * Major change was from block_size == page_size in f2fs by default.
2409  */
2410 static int f2fs_mpage_readpages(struct inode *inode,
2411 		struct readahead_control *rac, struct page *page)
2412 {
2413 	struct bio *bio = NULL;
2414 	sector_t last_block_in_bio = 0;
2415 	struct f2fs_map_blocks map;
2416 #ifdef CONFIG_F2FS_FS_COMPRESSION
2417 	struct compress_ctx cc = {
2418 		.inode = inode,
2419 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2420 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2421 		.cluster_idx = NULL_CLUSTER,
2422 		.rpages = NULL,
2423 		.cpages = NULL,
2424 		.nr_rpages = 0,
2425 		.nr_cpages = 0,
2426 	};
2427 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2428 #endif
2429 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2430 	unsigned max_nr_pages = nr_pages;
2431 	int ret = 0;
2432 
2433 	map.m_pblk = 0;
2434 	map.m_lblk = 0;
2435 	map.m_len = 0;
2436 	map.m_flags = 0;
2437 	map.m_next_pgofs = NULL;
2438 	map.m_next_extent = NULL;
2439 	map.m_seg_type = NO_CHECK_TYPE;
2440 	map.m_may_create = false;
2441 
2442 	for (; nr_pages; nr_pages--) {
2443 		if (rac) {
2444 			page = readahead_page(rac);
2445 			prefetchw(&page->flags);
2446 		}
2447 
2448 #ifdef CONFIG_F2FS_FS_COMPRESSION
2449 		if (f2fs_compressed_file(inode)) {
2450 			/* there are remained compressed pages, submit them */
2451 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2452 				ret = f2fs_read_multi_pages(&cc, &bio,
2453 							max_nr_pages,
2454 							&last_block_in_bio,
2455 							rac != NULL, false);
2456 				f2fs_destroy_compress_ctx(&cc, false);
2457 				if (ret)
2458 					goto set_error_page;
2459 			}
2460 			if (cc.cluster_idx == NULL_CLUSTER) {
2461 				if (nc_cluster_idx ==
2462 					page->index >> cc.log_cluster_size) {
2463 					goto read_single_page;
2464 				}
2465 
2466 				ret = f2fs_is_compressed_cluster(inode, page->index);
2467 				if (ret < 0)
2468 					goto set_error_page;
2469 				else if (!ret) {
2470 					nc_cluster_idx =
2471 						page->index >> cc.log_cluster_size;
2472 					goto read_single_page;
2473 				}
2474 
2475 				nc_cluster_idx = NULL_CLUSTER;
2476 			}
2477 			ret = f2fs_init_compress_ctx(&cc);
2478 			if (ret)
2479 				goto set_error_page;
2480 
2481 			f2fs_compress_ctx_add_page(&cc, page);
2482 
2483 			goto next_page;
2484 		}
2485 read_single_page:
2486 #endif
2487 
2488 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2489 					&bio, &last_block_in_bio, rac);
2490 		if (ret) {
2491 #ifdef CONFIG_F2FS_FS_COMPRESSION
2492 set_error_page:
2493 #endif
2494 			zero_user_segment(page, 0, PAGE_SIZE);
2495 			unlock_page(page);
2496 		}
2497 #ifdef CONFIG_F2FS_FS_COMPRESSION
2498 next_page:
2499 #endif
2500 		if (rac)
2501 			put_page(page);
2502 
2503 #ifdef CONFIG_F2FS_FS_COMPRESSION
2504 		if (f2fs_compressed_file(inode)) {
2505 			/* last page */
2506 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2507 				ret = f2fs_read_multi_pages(&cc, &bio,
2508 							max_nr_pages,
2509 							&last_block_in_bio,
2510 							rac != NULL, false);
2511 				f2fs_destroy_compress_ctx(&cc, false);
2512 			}
2513 		}
2514 #endif
2515 	}
2516 	if (bio)
2517 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2518 	return ret;
2519 }
2520 
2521 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2522 {
2523 	struct page *page = &folio->page;
2524 	struct inode *inode = page_file_mapping(page)->host;
2525 	int ret = -EAGAIN;
2526 
2527 	trace_f2fs_readpage(page, DATA);
2528 
2529 	if (!f2fs_is_compress_backend_ready(inode)) {
2530 		unlock_page(page);
2531 		return -EOPNOTSUPP;
2532 	}
2533 
2534 	/* If the file has inline data, try to read it directly */
2535 	if (f2fs_has_inline_data(inode))
2536 		ret = f2fs_read_inline_data(inode, page);
2537 	if (ret == -EAGAIN)
2538 		ret = f2fs_mpage_readpages(inode, NULL, page);
2539 	return ret;
2540 }
2541 
2542 static void f2fs_readahead(struct readahead_control *rac)
2543 {
2544 	struct inode *inode = rac->mapping->host;
2545 
2546 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2547 
2548 	if (!f2fs_is_compress_backend_ready(inode))
2549 		return;
2550 
2551 	/* If the file has inline data, skip readahead */
2552 	if (f2fs_has_inline_data(inode))
2553 		return;
2554 
2555 	f2fs_mpage_readpages(inode, rac, NULL);
2556 }
2557 
2558 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2559 {
2560 	struct inode *inode = fio->page->mapping->host;
2561 	struct page *mpage, *page;
2562 	gfp_t gfp_flags = GFP_NOFS;
2563 
2564 	if (!f2fs_encrypted_file(inode))
2565 		return 0;
2566 
2567 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2568 
2569 	/* wait for GCed page writeback via META_MAPPING */
2570 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2571 
2572 	if (fscrypt_inode_uses_inline_crypto(inode))
2573 		return 0;
2574 
2575 retry_encrypt:
2576 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2577 					PAGE_SIZE, 0, gfp_flags);
2578 	if (IS_ERR(fio->encrypted_page)) {
2579 		/* flush pending IOs and wait for a while in the ENOMEM case */
2580 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2581 			f2fs_flush_merged_writes(fio->sbi);
2582 			memalloc_retry_wait(GFP_NOFS);
2583 			gfp_flags |= __GFP_NOFAIL;
2584 			goto retry_encrypt;
2585 		}
2586 		return PTR_ERR(fio->encrypted_page);
2587 	}
2588 
2589 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2590 	if (mpage) {
2591 		if (PageUptodate(mpage))
2592 			memcpy(page_address(mpage),
2593 				page_address(fio->encrypted_page), PAGE_SIZE);
2594 		f2fs_put_page(mpage, 1);
2595 	}
2596 	return 0;
2597 }
2598 
2599 static inline bool check_inplace_update_policy(struct inode *inode,
2600 				struct f2fs_io_info *fio)
2601 {
2602 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2603 
2604 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2605 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2606 		return false;
2607 	if (IS_F2FS_IPU_FORCE(sbi))
2608 		return true;
2609 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2610 		return true;
2611 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2612 		return true;
2613 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2614 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2615 		return true;
2616 
2617 	/*
2618 	 * IPU for rewrite async pages
2619 	 */
2620 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2621 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2622 		return true;
2623 
2624 	/* this is only set during fdatasync */
2625 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2626 		return true;
2627 
2628 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2629 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2630 		return true;
2631 
2632 	return false;
2633 }
2634 
2635 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2636 {
2637 	/* swap file is migrating in aligned write mode */
2638 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2639 		return false;
2640 
2641 	if (f2fs_is_pinned_file(inode))
2642 		return true;
2643 
2644 	/* if this is cold file, we should overwrite to avoid fragmentation */
2645 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2646 		return true;
2647 
2648 	return check_inplace_update_policy(inode, fio);
2649 }
2650 
2651 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2652 {
2653 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2654 
2655 	/* The below cases were checked when setting it. */
2656 	if (f2fs_is_pinned_file(inode))
2657 		return false;
2658 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2659 		return true;
2660 	if (f2fs_lfs_mode(sbi))
2661 		return true;
2662 	if (S_ISDIR(inode->i_mode))
2663 		return true;
2664 	if (IS_NOQUOTA(inode))
2665 		return true;
2666 	if (f2fs_is_atomic_file(inode))
2667 		return true;
2668 
2669 	/* swap file is migrating in aligned write mode */
2670 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2671 		return true;
2672 
2673 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2674 		return true;
2675 
2676 	if (fio) {
2677 		if (page_private_gcing(fio->page))
2678 			return true;
2679 		if (page_private_dummy(fio->page))
2680 			return true;
2681 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2682 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2683 			return true;
2684 	}
2685 	return false;
2686 }
2687 
2688 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2689 {
2690 	struct inode *inode = fio->page->mapping->host;
2691 
2692 	if (f2fs_should_update_outplace(inode, fio))
2693 		return false;
2694 
2695 	return f2fs_should_update_inplace(inode, fio);
2696 }
2697 
2698 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2699 {
2700 	struct page *page = fio->page;
2701 	struct inode *inode = page->mapping->host;
2702 	struct dnode_of_data dn;
2703 	struct node_info ni;
2704 	bool ipu_force = false;
2705 	int err = 0;
2706 
2707 	/* Use COW inode to make dnode_of_data for atomic write */
2708 	if (f2fs_is_atomic_file(inode))
2709 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2710 	else
2711 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2712 
2713 	if (need_inplace_update(fio) &&
2714 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2715 						&fio->old_blkaddr)) {
2716 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2717 						DATA_GENERIC_ENHANCE)) {
2718 			f2fs_handle_error(fio->sbi,
2719 						ERROR_INVALID_BLKADDR);
2720 			return -EFSCORRUPTED;
2721 		}
2722 
2723 		ipu_force = true;
2724 		fio->need_lock = LOCK_DONE;
2725 		goto got_it;
2726 	}
2727 
2728 	/* Deadlock due to between page->lock and f2fs_lock_op */
2729 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2730 		return -EAGAIN;
2731 
2732 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2733 	if (err)
2734 		goto out;
2735 
2736 	fio->old_blkaddr = dn.data_blkaddr;
2737 
2738 	/* This page is already truncated */
2739 	if (fio->old_blkaddr == NULL_ADDR) {
2740 		ClearPageUptodate(page);
2741 		clear_page_private_gcing(page);
2742 		goto out_writepage;
2743 	}
2744 got_it:
2745 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2746 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2747 						DATA_GENERIC_ENHANCE)) {
2748 		err = -EFSCORRUPTED;
2749 		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2750 		goto out_writepage;
2751 	}
2752 
2753 	/*
2754 	 * If current allocation needs SSR,
2755 	 * it had better in-place writes for updated data.
2756 	 */
2757 	if (ipu_force ||
2758 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2759 					need_inplace_update(fio))) {
2760 		err = f2fs_encrypt_one_page(fio);
2761 		if (err)
2762 			goto out_writepage;
2763 
2764 		set_page_writeback(page);
2765 		f2fs_put_dnode(&dn);
2766 		if (fio->need_lock == LOCK_REQ)
2767 			f2fs_unlock_op(fio->sbi);
2768 		err = f2fs_inplace_write_data(fio);
2769 		if (err) {
2770 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2771 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2772 			if (PageWriteback(page))
2773 				end_page_writeback(page);
2774 		} else {
2775 			set_inode_flag(inode, FI_UPDATE_WRITE);
2776 		}
2777 		trace_f2fs_do_write_data_page(fio->page, IPU);
2778 		return err;
2779 	}
2780 
2781 	if (fio->need_lock == LOCK_RETRY) {
2782 		if (!f2fs_trylock_op(fio->sbi)) {
2783 			err = -EAGAIN;
2784 			goto out_writepage;
2785 		}
2786 		fio->need_lock = LOCK_REQ;
2787 	}
2788 
2789 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2790 	if (err)
2791 		goto out_writepage;
2792 
2793 	fio->version = ni.version;
2794 
2795 	err = f2fs_encrypt_one_page(fio);
2796 	if (err)
2797 		goto out_writepage;
2798 
2799 	set_page_writeback(page);
2800 
2801 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2802 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2803 
2804 	/* LFS mode write path */
2805 	f2fs_outplace_write_data(&dn, fio);
2806 	trace_f2fs_do_write_data_page(page, OPU);
2807 	set_inode_flag(inode, FI_APPEND_WRITE);
2808 	if (page->index == 0)
2809 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2810 out_writepage:
2811 	f2fs_put_dnode(&dn);
2812 out:
2813 	if (fio->need_lock == LOCK_REQ)
2814 		f2fs_unlock_op(fio->sbi);
2815 	return err;
2816 }
2817 
2818 int f2fs_write_single_data_page(struct page *page, int *submitted,
2819 				struct bio **bio,
2820 				sector_t *last_block,
2821 				struct writeback_control *wbc,
2822 				enum iostat_type io_type,
2823 				int compr_blocks,
2824 				bool allow_balance)
2825 {
2826 	struct inode *inode = page->mapping->host;
2827 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2828 	loff_t i_size = i_size_read(inode);
2829 	const pgoff_t end_index = ((unsigned long long)i_size)
2830 							>> PAGE_SHIFT;
2831 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2832 	unsigned offset = 0;
2833 	bool need_balance_fs = false;
2834 	bool quota_inode = IS_NOQUOTA(inode);
2835 	int err = 0;
2836 	struct f2fs_io_info fio = {
2837 		.sbi = sbi,
2838 		.ino = inode->i_ino,
2839 		.type = DATA,
2840 		.op = REQ_OP_WRITE,
2841 		.op_flags = wbc_to_write_flags(wbc),
2842 		.old_blkaddr = NULL_ADDR,
2843 		.page = page,
2844 		.encrypted_page = NULL,
2845 		.submitted = 0,
2846 		.compr_blocks = compr_blocks,
2847 		.need_lock = LOCK_RETRY,
2848 		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2849 		.io_type = io_type,
2850 		.io_wbc = wbc,
2851 		.bio = bio,
2852 		.last_block = last_block,
2853 	};
2854 
2855 	trace_f2fs_writepage(page, DATA);
2856 
2857 	/* we should bypass data pages to proceed the kworker jobs */
2858 	if (unlikely(f2fs_cp_error(sbi))) {
2859 		mapping_set_error(page->mapping, -EIO);
2860 		/*
2861 		 * don't drop any dirty dentry pages for keeping lastest
2862 		 * directory structure.
2863 		 */
2864 		if (S_ISDIR(inode->i_mode) &&
2865 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2866 			goto redirty_out;
2867 
2868 		/* keep data pages in remount-ro mode */
2869 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2870 			goto redirty_out;
2871 		goto out;
2872 	}
2873 
2874 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2875 		goto redirty_out;
2876 
2877 	if (page->index < end_index ||
2878 			f2fs_verity_in_progress(inode) ||
2879 			compr_blocks)
2880 		goto write;
2881 
2882 	/*
2883 	 * If the offset is out-of-range of file size,
2884 	 * this page does not have to be written to disk.
2885 	 */
2886 	offset = i_size & (PAGE_SIZE - 1);
2887 	if ((page->index >= end_index + 1) || !offset)
2888 		goto out;
2889 
2890 	zero_user_segment(page, offset, PAGE_SIZE);
2891 write:
2892 	if (f2fs_is_drop_cache(inode))
2893 		goto out;
2894 
2895 	/* Dentry/quota blocks are controlled by checkpoint */
2896 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2897 		/*
2898 		 * We need to wait for node_write to avoid block allocation during
2899 		 * checkpoint. This can only happen to quota writes which can cause
2900 		 * the below discard race condition.
2901 		 */
2902 		if (quota_inode)
2903 			f2fs_down_read(&sbi->node_write);
2904 
2905 		fio.need_lock = LOCK_DONE;
2906 		err = f2fs_do_write_data_page(&fio);
2907 
2908 		if (quota_inode)
2909 			f2fs_up_read(&sbi->node_write);
2910 
2911 		goto done;
2912 	}
2913 
2914 	if (!wbc->for_reclaim)
2915 		need_balance_fs = true;
2916 	else if (has_not_enough_free_secs(sbi, 0, 0))
2917 		goto redirty_out;
2918 	else
2919 		set_inode_flag(inode, FI_HOT_DATA);
2920 
2921 	err = -EAGAIN;
2922 	if (f2fs_has_inline_data(inode)) {
2923 		err = f2fs_write_inline_data(inode, page);
2924 		if (!err)
2925 			goto out;
2926 	}
2927 
2928 	if (err == -EAGAIN) {
2929 		err = f2fs_do_write_data_page(&fio);
2930 		if (err == -EAGAIN) {
2931 			fio.need_lock = LOCK_REQ;
2932 			err = f2fs_do_write_data_page(&fio);
2933 		}
2934 	}
2935 
2936 	if (err) {
2937 		file_set_keep_isize(inode);
2938 	} else {
2939 		spin_lock(&F2FS_I(inode)->i_size_lock);
2940 		if (F2FS_I(inode)->last_disk_size < psize)
2941 			F2FS_I(inode)->last_disk_size = psize;
2942 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2943 	}
2944 
2945 done:
2946 	if (err && err != -ENOENT)
2947 		goto redirty_out;
2948 
2949 out:
2950 	inode_dec_dirty_pages(inode);
2951 	if (err) {
2952 		ClearPageUptodate(page);
2953 		clear_page_private_gcing(page);
2954 	}
2955 
2956 	if (wbc->for_reclaim) {
2957 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2958 		clear_inode_flag(inode, FI_HOT_DATA);
2959 		f2fs_remove_dirty_inode(inode);
2960 		submitted = NULL;
2961 	}
2962 	unlock_page(page);
2963 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2964 			!F2FS_I(inode)->wb_task && allow_balance)
2965 		f2fs_balance_fs(sbi, need_balance_fs);
2966 
2967 	if (unlikely(f2fs_cp_error(sbi))) {
2968 		f2fs_submit_merged_write(sbi, DATA);
2969 		if (bio && *bio)
2970 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2971 		submitted = NULL;
2972 	}
2973 
2974 	if (submitted)
2975 		*submitted = fio.submitted;
2976 
2977 	return 0;
2978 
2979 redirty_out:
2980 	redirty_page_for_writepage(wbc, page);
2981 	/*
2982 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2983 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2984 	 * file_write_and_wait_range() will see EIO error, which is critical
2985 	 * to return value of fsync() followed by atomic_write failure to user.
2986 	 */
2987 	if (!err || wbc->for_reclaim)
2988 		return AOP_WRITEPAGE_ACTIVATE;
2989 	unlock_page(page);
2990 	return err;
2991 }
2992 
2993 static int f2fs_write_data_page(struct page *page,
2994 					struct writeback_control *wbc)
2995 {
2996 #ifdef CONFIG_F2FS_FS_COMPRESSION
2997 	struct inode *inode = page->mapping->host;
2998 
2999 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3000 		goto out;
3001 
3002 	if (f2fs_compressed_file(inode)) {
3003 		if (f2fs_is_compressed_cluster(inode, page->index)) {
3004 			redirty_page_for_writepage(wbc, page);
3005 			return AOP_WRITEPAGE_ACTIVATE;
3006 		}
3007 	}
3008 out:
3009 #endif
3010 
3011 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3012 						wbc, FS_DATA_IO, 0, true);
3013 }
3014 
3015 /*
3016  * This function was copied from write_cache_pages from mm/page-writeback.c.
3017  * The major change is making write step of cold data page separately from
3018  * warm/hot data page.
3019  */
3020 static int f2fs_write_cache_pages(struct address_space *mapping,
3021 					struct writeback_control *wbc,
3022 					enum iostat_type io_type)
3023 {
3024 	int ret = 0;
3025 	int done = 0, retry = 0;
3026 	struct page *pages[F2FS_ONSTACK_PAGES];
3027 	struct folio_batch fbatch;
3028 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3029 	struct bio *bio = NULL;
3030 	sector_t last_block;
3031 #ifdef CONFIG_F2FS_FS_COMPRESSION
3032 	struct inode *inode = mapping->host;
3033 	struct compress_ctx cc = {
3034 		.inode = inode,
3035 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3036 		.cluster_size = F2FS_I(inode)->i_cluster_size,
3037 		.cluster_idx = NULL_CLUSTER,
3038 		.rpages = NULL,
3039 		.nr_rpages = 0,
3040 		.cpages = NULL,
3041 		.valid_nr_cpages = 0,
3042 		.rbuf = NULL,
3043 		.cbuf = NULL,
3044 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3045 		.private = NULL,
3046 	};
3047 #endif
3048 	int nr_folios, p, idx;
3049 	int nr_pages;
3050 	pgoff_t index;
3051 	pgoff_t end;		/* Inclusive */
3052 	pgoff_t done_index;
3053 	int range_whole = 0;
3054 	xa_mark_t tag;
3055 	int nwritten = 0;
3056 	int submitted = 0;
3057 	int i;
3058 
3059 	folio_batch_init(&fbatch);
3060 
3061 	if (get_dirty_pages(mapping->host) <=
3062 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3063 		set_inode_flag(mapping->host, FI_HOT_DATA);
3064 	else
3065 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3066 
3067 	if (wbc->range_cyclic) {
3068 		index = mapping->writeback_index; /* prev offset */
3069 		end = -1;
3070 	} else {
3071 		index = wbc->range_start >> PAGE_SHIFT;
3072 		end = wbc->range_end >> PAGE_SHIFT;
3073 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3074 			range_whole = 1;
3075 	}
3076 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3077 		tag = PAGECACHE_TAG_TOWRITE;
3078 	else
3079 		tag = PAGECACHE_TAG_DIRTY;
3080 retry:
3081 	retry = 0;
3082 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3083 		tag_pages_for_writeback(mapping, index, end);
3084 	done_index = index;
3085 	while (!done && !retry && (index <= end)) {
3086 		nr_pages = 0;
3087 again:
3088 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3089 				tag, &fbatch);
3090 		if (nr_folios == 0) {
3091 			if (nr_pages)
3092 				goto write;
3093 			break;
3094 		}
3095 
3096 		for (i = 0; i < nr_folios; i++) {
3097 			struct folio *folio = fbatch.folios[i];
3098 
3099 			idx = 0;
3100 			p = folio_nr_pages(folio);
3101 add_more:
3102 			pages[nr_pages] = folio_page(folio, idx);
3103 			folio_get(folio);
3104 			if (++nr_pages == F2FS_ONSTACK_PAGES) {
3105 				index = folio->index + idx + 1;
3106 				folio_batch_release(&fbatch);
3107 				goto write;
3108 			}
3109 			if (++idx < p)
3110 				goto add_more;
3111 		}
3112 		folio_batch_release(&fbatch);
3113 		goto again;
3114 write:
3115 		for (i = 0; i < nr_pages; i++) {
3116 			struct page *page = pages[i];
3117 			struct folio *folio = page_folio(page);
3118 			bool need_readd;
3119 readd:
3120 			need_readd = false;
3121 #ifdef CONFIG_F2FS_FS_COMPRESSION
3122 			if (f2fs_compressed_file(inode)) {
3123 				void *fsdata = NULL;
3124 				struct page *pagep;
3125 				int ret2;
3126 
3127 				ret = f2fs_init_compress_ctx(&cc);
3128 				if (ret) {
3129 					done = 1;
3130 					break;
3131 				}
3132 
3133 				if (!f2fs_cluster_can_merge_page(&cc,
3134 								folio->index)) {
3135 					ret = f2fs_write_multi_pages(&cc,
3136 						&submitted, wbc, io_type);
3137 					if (!ret)
3138 						need_readd = true;
3139 					goto result;
3140 				}
3141 
3142 				if (unlikely(f2fs_cp_error(sbi)))
3143 					goto lock_folio;
3144 
3145 				if (!f2fs_cluster_is_empty(&cc))
3146 					goto lock_folio;
3147 
3148 				if (f2fs_all_cluster_page_ready(&cc,
3149 					pages, i, nr_pages, true))
3150 					goto lock_folio;
3151 
3152 				ret2 = f2fs_prepare_compress_overwrite(
3153 							inode, &pagep,
3154 							folio->index, &fsdata);
3155 				if (ret2 < 0) {
3156 					ret = ret2;
3157 					done = 1;
3158 					break;
3159 				} else if (ret2 &&
3160 					(!f2fs_compress_write_end(inode,
3161 						fsdata, folio->index, 1) ||
3162 					 !f2fs_all_cluster_page_ready(&cc,
3163 						pages, i, nr_pages,
3164 						false))) {
3165 					retry = 1;
3166 					break;
3167 				}
3168 			}
3169 #endif
3170 			/* give a priority to WB_SYNC threads */
3171 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3172 					wbc->sync_mode == WB_SYNC_NONE) {
3173 				done = 1;
3174 				break;
3175 			}
3176 #ifdef CONFIG_F2FS_FS_COMPRESSION
3177 lock_folio:
3178 #endif
3179 			done_index = folio->index;
3180 retry_write:
3181 			folio_lock(folio);
3182 
3183 			if (unlikely(folio->mapping != mapping)) {
3184 continue_unlock:
3185 				folio_unlock(folio);
3186 				continue;
3187 			}
3188 
3189 			if (!folio_test_dirty(folio)) {
3190 				/* someone wrote it for us */
3191 				goto continue_unlock;
3192 			}
3193 
3194 			if (folio_test_writeback(folio)) {
3195 				if (wbc->sync_mode == WB_SYNC_NONE)
3196 					goto continue_unlock;
3197 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3198 			}
3199 
3200 			if (!folio_clear_dirty_for_io(folio))
3201 				goto continue_unlock;
3202 
3203 #ifdef CONFIG_F2FS_FS_COMPRESSION
3204 			if (f2fs_compressed_file(inode)) {
3205 				folio_get(folio);
3206 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3207 				continue;
3208 			}
3209 #endif
3210 			ret = f2fs_write_single_data_page(&folio->page,
3211 					&submitted, &bio, &last_block,
3212 					wbc, io_type, 0, true);
3213 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3214 				folio_unlock(folio);
3215 #ifdef CONFIG_F2FS_FS_COMPRESSION
3216 result:
3217 #endif
3218 			nwritten += submitted;
3219 			wbc->nr_to_write -= submitted;
3220 
3221 			if (unlikely(ret)) {
3222 				/*
3223 				 * keep nr_to_write, since vfs uses this to
3224 				 * get # of written pages.
3225 				 */
3226 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3227 					ret = 0;
3228 					goto next;
3229 				} else if (ret == -EAGAIN) {
3230 					ret = 0;
3231 					if (wbc->sync_mode == WB_SYNC_ALL) {
3232 						f2fs_io_schedule_timeout(
3233 							DEFAULT_IO_TIMEOUT);
3234 						goto retry_write;
3235 					}
3236 					goto next;
3237 				}
3238 				done_index = folio_next_index(folio);
3239 				done = 1;
3240 				break;
3241 			}
3242 
3243 			if (wbc->nr_to_write <= 0 &&
3244 					wbc->sync_mode == WB_SYNC_NONE) {
3245 				done = 1;
3246 				break;
3247 			}
3248 next:
3249 			if (need_readd)
3250 				goto readd;
3251 		}
3252 		release_pages(pages, nr_pages);
3253 		cond_resched();
3254 	}
3255 #ifdef CONFIG_F2FS_FS_COMPRESSION
3256 	/* flush remained pages in compress cluster */
3257 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3258 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3259 		nwritten += submitted;
3260 		wbc->nr_to_write -= submitted;
3261 		if (ret) {
3262 			done = 1;
3263 			retry = 0;
3264 		}
3265 	}
3266 	if (f2fs_compressed_file(inode))
3267 		f2fs_destroy_compress_ctx(&cc, false);
3268 #endif
3269 	if (retry) {
3270 		index = 0;
3271 		end = -1;
3272 		goto retry;
3273 	}
3274 	if (wbc->range_cyclic && !done)
3275 		done_index = 0;
3276 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3277 		mapping->writeback_index = done_index;
3278 
3279 	if (nwritten)
3280 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3281 								NULL, 0, DATA);
3282 	/* submit cached bio of IPU write */
3283 	if (bio)
3284 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3285 
3286 	return ret;
3287 }
3288 
3289 static inline bool __should_serialize_io(struct inode *inode,
3290 					struct writeback_control *wbc)
3291 {
3292 	/* to avoid deadlock in path of data flush */
3293 	if (F2FS_I(inode)->wb_task)
3294 		return false;
3295 
3296 	if (!S_ISREG(inode->i_mode))
3297 		return false;
3298 	if (IS_NOQUOTA(inode))
3299 		return false;
3300 
3301 	if (f2fs_need_compress_data(inode))
3302 		return true;
3303 	if (wbc->sync_mode != WB_SYNC_ALL)
3304 		return true;
3305 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3306 		return true;
3307 	return false;
3308 }
3309 
3310 static int __f2fs_write_data_pages(struct address_space *mapping,
3311 						struct writeback_control *wbc,
3312 						enum iostat_type io_type)
3313 {
3314 	struct inode *inode = mapping->host;
3315 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3316 	struct blk_plug plug;
3317 	int ret;
3318 	bool locked = false;
3319 
3320 	/* deal with chardevs and other special file */
3321 	if (!mapping->a_ops->writepage)
3322 		return 0;
3323 
3324 	/* skip writing if there is no dirty page in this inode */
3325 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3326 		return 0;
3327 
3328 	/* during POR, we don't need to trigger writepage at all. */
3329 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3330 		goto skip_write;
3331 
3332 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3333 			wbc->sync_mode == WB_SYNC_NONE &&
3334 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3335 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3336 		goto skip_write;
3337 
3338 	/* skip writing in file defragment preparing stage */
3339 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3340 		goto skip_write;
3341 
3342 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3343 
3344 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3345 	if (wbc->sync_mode == WB_SYNC_ALL)
3346 		atomic_inc(&sbi->wb_sync_req[DATA]);
3347 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3348 		/* to avoid potential deadlock */
3349 		if (current->plug)
3350 			blk_finish_plug(current->plug);
3351 		goto skip_write;
3352 	}
3353 
3354 	if (__should_serialize_io(inode, wbc)) {
3355 		mutex_lock(&sbi->writepages);
3356 		locked = true;
3357 	}
3358 
3359 	blk_start_plug(&plug);
3360 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3361 	blk_finish_plug(&plug);
3362 
3363 	if (locked)
3364 		mutex_unlock(&sbi->writepages);
3365 
3366 	if (wbc->sync_mode == WB_SYNC_ALL)
3367 		atomic_dec(&sbi->wb_sync_req[DATA]);
3368 	/*
3369 	 * if some pages were truncated, we cannot guarantee its mapping->host
3370 	 * to detect pending bios.
3371 	 */
3372 
3373 	f2fs_remove_dirty_inode(inode);
3374 	return ret;
3375 
3376 skip_write:
3377 	wbc->pages_skipped += get_dirty_pages(inode);
3378 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3379 	return 0;
3380 }
3381 
3382 static int f2fs_write_data_pages(struct address_space *mapping,
3383 			    struct writeback_control *wbc)
3384 {
3385 	struct inode *inode = mapping->host;
3386 
3387 	return __f2fs_write_data_pages(mapping, wbc,
3388 			F2FS_I(inode)->cp_task == current ?
3389 			FS_CP_DATA_IO : FS_DATA_IO);
3390 }
3391 
3392 void f2fs_write_failed(struct inode *inode, loff_t to)
3393 {
3394 	loff_t i_size = i_size_read(inode);
3395 
3396 	if (IS_NOQUOTA(inode))
3397 		return;
3398 
3399 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3400 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3401 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3402 		filemap_invalidate_lock(inode->i_mapping);
3403 
3404 		truncate_pagecache(inode, i_size);
3405 		f2fs_truncate_blocks(inode, i_size, true);
3406 
3407 		filemap_invalidate_unlock(inode->i_mapping);
3408 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3409 	}
3410 }
3411 
3412 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3413 			struct page *page, loff_t pos, unsigned len,
3414 			block_t *blk_addr, bool *node_changed)
3415 {
3416 	struct inode *inode = page->mapping->host;
3417 	pgoff_t index = page->index;
3418 	struct dnode_of_data dn;
3419 	struct page *ipage;
3420 	bool locked = false;
3421 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3422 	int err = 0;
3423 
3424 	/*
3425 	 * If a whole page is being written and we already preallocated all the
3426 	 * blocks, then there is no need to get a block address now.
3427 	 */
3428 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3429 		return 0;
3430 
3431 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3432 	if (f2fs_has_inline_data(inode)) {
3433 		if (pos + len > MAX_INLINE_DATA(inode))
3434 			flag = F2FS_GET_BLOCK_DEFAULT;
3435 		f2fs_map_lock(sbi, flag);
3436 		locked = true;
3437 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3438 		f2fs_map_lock(sbi, flag);
3439 		locked = true;
3440 	}
3441 
3442 restart:
3443 	/* check inline_data */
3444 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3445 	if (IS_ERR(ipage)) {
3446 		err = PTR_ERR(ipage);
3447 		goto unlock_out;
3448 	}
3449 
3450 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3451 
3452 	if (f2fs_has_inline_data(inode)) {
3453 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3454 			f2fs_do_read_inline_data(page, ipage);
3455 			set_inode_flag(inode, FI_DATA_EXIST);
3456 			if (inode->i_nlink)
3457 				set_page_private_inline(ipage);
3458 			goto out;
3459 		}
3460 		err = f2fs_convert_inline_page(&dn, page);
3461 		if (err || dn.data_blkaddr != NULL_ADDR)
3462 			goto out;
3463 	}
3464 
3465 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3466 						 &dn.data_blkaddr)) {
3467 		if (locked) {
3468 			err = f2fs_reserve_block(&dn, index);
3469 			goto out;
3470 		}
3471 
3472 		/* hole case */
3473 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3474 		if (!err && dn.data_blkaddr != NULL_ADDR)
3475 			goto out;
3476 		f2fs_put_dnode(&dn);
3477 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3478 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3479 		locked = true;
3480 		goto restart;
3481 	}
3482 out:
3483 	if (!err) {
3484 		/* convert_inline_page can make node_changed */
3485 		*blk_addr = dn.data_blkaddr;
3486 		*node_changed = dn.node_changed;
3487 	}
3488 	f2fs_put_dnode(&dn);
3489 unlock_out:
3490 	if (locked)
3491 		f2fs_map_unlock(sbi, flag);
3492 	return err;
3493 }
3494 
3495 static int __find_data_block(struct inode *inode, pgoff_t index,
3496 				block_t *blk_addr)
3497 {
3498 	struct dnode_of_data dn;
3499 	struct page *ipage;
3500 	int err = 0;
3501 
3502 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3503 	if (IS_ERR(ipage))
3504 		return PTR_ERR(ipage);
3505 
3506 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3507 
3508 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3509 						 &dn.data_blkaddr)) {
3510 		/* hole case */
3511 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3512 		if (err) {
3513 			dn.data_blkaddr = NULL_ADDR;
3514 			err = 0;
3515 		}
3516 	}
3517 	*blk_addr = dn.data_blkaddr;
3518 	f2fs_put_dnode(&dn);
3519 	return err;
3520 }
3521 
3522 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3523 				block_t *blk_addr, bool *node_changed)
3524 {
3525 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3526 	struct dnode_of_data dn;
3527 	struct page *ipage;
3528 	int err = 0;
3529 
3530 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3531 
3532 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3533 	if (IS_ERR(ipage)) {
3534 		err = PTR_ERR(ipage);
3535 		goto unlock_out;
3536 	}
3537 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3538 
3539 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3540 						&dn.data_blkaddr))
3541 		err = f2fs_reserve_block(&dn, index);
3542 
3543 	*blk_addr = dn.data_blkaddr;
3544 	*node_changed = dn.node_changed;
3545 	f2fs_put_dnode(&dn);
3546 
3547 unlock_out:
3548 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3549 	return err;
3550 }
3551 
3552 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3553 			struct page *page, loff_t pos, unsigned int len,
3554 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3555 {
3556 	struct inode *inode = page->mapping->host;
3557 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3558 	pgoff_t index = page->index;
3559 	int err = 0;
3560 	block_t ori_blk_addr = NULL_ADDR;
3561 
3562 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3563 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3564 		goto reserve_block;
3565 
3566 	/* Look for the block in COW inode first */
3567 	err = __find_data_block(cow_inode, index, blk_addr);
3568 	if (err) {
3569 		return err;
3570 	} else if (*blk_addr != NULL_ADDR) {
3571 		*use_cow = true;
3572 		return 0;
3573 	}
3574 
3575 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3576 		goto reserve_block;
3577 
3578 	/* Look for the block in the original inode */
3579 	err = __find_data_block(inode, index, &ori_blk_addr);
3580 	if (err)
3581 		return err;
3582 
3583 reserve_block:
3584 	/* Finally, we should reserve a new block in COW inode for the update */
3585 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3586 	if (err)
3587 		return err;
3588 	inc_atomic_write_cnt(inode);
3589 
3590 	if (ori_blk_addr != NULL_ADDR)
3591 		*blk_addr = ori_blk_addr;
3592 	return 0;
3593 }
3594 
3595 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3596 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3597 {
3598 	struct inode *inode = mapping->host;
3599 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3600 	struct page *page = NULL;
3601 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3602 	bool need_balance = false;
3603 	bool use_cow = false;
3604 	block_t blkaddr = NULL_ADDR;
3605 	int err = 0;
3606 
3607 	trace_f2fs_write_begin(inode, pos, len);
3608 
3609 	if (!f2fs_is_checkpoint_ready(sbi)) {
3610 		err = -ENOSPC;
3611 		goto fail;
3612 	}
3613 
3614 	/*
3615 	 * We should check this at this moment to avoid deadlock on inode page
3616 	 * and #0 page. The locking rule for inline_data conversion should be:
3617 	 * lock_page(page #0) -> lock_page(inode_page)
3618 	 */
3619 	if (index != 0) {
3620 		err = f2fs_convert_inline_inode(inode);
3621 		if (err)
3622 			goto fail;
3623 	}
3624 
3625 #ifdef CONFIG_F2FS_FS_COMPRESSION
3626 	if (f2fs_compressed_file(inode)) {
3627 		int ret;
3628 
3629 		*fsdata = NULL;
3630 
3631 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3632 			goto repeat;
3633 
3634 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3635 							index, fsdata);
3636 		if (ret < 0) {
3637 			err = ret;
3638 			goto fail;
3639 		} else if (ret) {
3640 			return 0;
3641 		}
3642 	}
3643 #endif
3644 
3645 repeat:
3646 	/*
3647 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3648 	 * wait_for_stable_page. Will wait that below with our IO control.
3649 	 */
3650 	page = f2fs_pagecache_get_page(mapping, index,
3651 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3652 	if (!page) {
3653 		err = -ENOMEM;
3654 		goto fail;
3655 	}
3656 
3657 	/* TODO: cluster can be compressed due to race with .writepage */
3658 
3659 	*pagep = page;
3660 
3661 	if (f2fs_is_atomic_file(inode))
3662 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3663 					&blkaddr, &need_balance, &use_cow);
3664 	else
3665 		err = prepare_write_begin(sbi, page, pos, len,
3666 					&blkaddr, &need_balance);
3667 	if (err)
3668 		goto fail;
3669 
3670 	if (need_balance && !IS_NOQUOTA(inode) &&
3671 			has_not_enough_free_secs(sbi, 0, 0)) {
3672 		unlock_page(page);
3673 		f2fs_balance_fs(sbi, true);
3674 		lock_page(page);
3675 		if (page->mapping != mapping) {
3676 			/* The page got truncated from under us */
3677 			f2fs_put_page(page, 1);
3678 			goto repeat;
3679 		}
3680 	}
3681 
3682 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3683 
3684 	if (len == PAGE_SIZE || PageUptodate(page))
3685 		return 0;
3686 
3687 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3688 	    !f2fs_verity_in_progress(inode)) {
3689 		zero_user_segment(page, len, PAGE_SIZE);
3690 		return 0;
3691 	}
3692 
3693 	if (blkaddr == NEW_ADDR) {
3694 		zero_user_segment(page, 0, PAGE_SIZE);
3695 		SetPageUptodate(page);
3696 	} else {
3697 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3698 				DATA_GENERIC_ENHANCE_READ)) {
3699 			err = -EFSCORRUPTED;
3700 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3701 			goto fail;
3702 		}
3703 		err = f2fs_submit_page_read(use_cow ?
3704 				F2FS_I(inode)->cow_inode : inode, page,
3705 				blkaddr, 0, true);
3706 		if (err)
3707 			goto fail;
3708 
3709 		lock_page(page);
3710 		if (unlikely(page->mapping != mapping)) {
3711 			f2fs_put_page(page, 1);
3712 			goto repeat;
3713 		}
3714 		if (unlikely(!PageUptodate(page))) {
3715 			err = -EIO;
3716 			goto fail;
3717 		}
3718 	}
3719 	return 0;
3720 
3721 fail:
3722 	f2fs_put_page(page, 1);
3723 	f2fs_write_failed(inode, pos + len);
3724 	return err;
3725 }
3726 
3727 static int f2fs_write_end(struct file *file,
3728 			struct address_space *mapping,
3729 			loff_t pos, unsigned len, unsigned copied,
3730 			struct page *page, void *fsdata)
3731 {
3732 	struct inode *inode = page->mapping->host;
3733 
3734 	trace_f2fs_write_end(inode, pos, len, copied);
3735 
3736 	/*
3737 	 * This should be come from len == PAGE_SIZE, and we expect copied
3738 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3739 	 * let generic_perform_write() try to copy data again through copied=0.
3740 	 */
3741 	if (!PageUptodate(page)) {
3742 		if (unlikely(copied != len))
3743 			copied = 0;
3744 		else
3745 			SetPageUptodate(page);
3746 	}
3747 
3748 #ifdef CONFIG_F2FS_FS_COMPRESSION
3749 	/* overwrite compressed file */
3750 	if (f2fs_compressed_file(inode) && fsdata) {
3751 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3752 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3753 
3754 		if (pos + copied > i_size_read(inode) &&
3755 				!f2fs_verity_in_progress(inode))
3756 			f2fs_i_size_write(inode, pos + copied);
3757 		return copied;
3758 	}
3759 #endif
3760 
3761 	if (!copied)
3762 		goto unlock_out;
3763 
3764 	set_page_dirty(page);
3765 
3766 	if (pos + copied > i_size_read(inode) &&
3767 	    !f2fs_verity_in_progress(inode)) {
3768 		f2fs_i_size_write(inode, pos + copied);
3769 		if (f2fs_is_atomic_file(inode))
3770 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3771 					pos + copied);
3772 	}
3773 unlock_out:
3774 	f2fs_put_page(page, 1);
3775 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3776 	return copied;
3777 }
3778 
3779 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3780 {
3781 	struct inode *inode = folio->mapping->host;
3782 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3783 
3784 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3785 				(offset || length != folio_size(folio)))
3786 		return;
3787 
3788 	if (folio_test_dirty(folio)) {
3789 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3790 			dec_page_count(sbi, F2FS_DIRTY_META);
3791 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3792 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3793 		} else {
3794 			inode_dec_dirty_pages(inode);
3795 			f2fs_remove_dirty_inode(inode);
3796 		}
3797 	}
3798 	clear_page_private_all(&folio->page);
3799 }
3800 
3801 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3802 {
3803 	/* If this is dirty folio, keep private data */
3804 	if (folio_test_dirty(folio))
3805 		return false;
3806 
3807 	clear_page_private_all(&folio->page);
3808 	return true;
3809 }
3810 
3811 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3812 		struct folio *folio)
3813 {
3814 	struct inode *inode = mapping->host;
3815 
3816 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3817 
3818 	if (!folio_test_uptodate(folio))
3819 		folio_mark_uptodate(folio);
3820 	BUG_ON(folio_test_swapcache(folio));
3821 
3822 	if (filemap_dirty_folio(mapping, folio)) {
3823 		f2fs_update_dirty_folio(inode, folio);
3824 		return true;
3825 	}
3826 	return false;
3827 }
3828 
3829 
3830 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3831 {
3832 #ifdef CONFIG_F2FS_FS_COMPRESSION
3833 	struct dnode_of_data dn;
3834 	sector_t start_idx, blknr = 0;
3835 	int ret;
3836 
3837 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3838 
3839 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3840 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3841 	if (ret)
3842 		return 0;
3843 
3844 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3845 		dn.ofs_in_node += block - start_idx;
3846 		blknr = f2fs_data_blkaddr(&dn);
3847 		if (!__is_valid_data_blkaddr(blknr))
3848 			blknr = 0;
3849 	}
3850 
3851 	f2fs_put_dnode(&dn);
3852 	return blknr;
3853 #else
3854 	return 0;
3855 #endif
3856 }
3857 
3858 
3859 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3860 {
3861 	struct inode *inode = mapping->host;
3862 	sector_t blknr = 0;
3863 
3864 	if (f2fs_has_inline_data(inode))
3865 		goto out;
3866 
3867 	/* make sure allocating whole blocks */
3868 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3869 		filemap_write_and_wait(mapping);
3870 
3871 	/* Block number less than F2FS MAX BLOCKS */
3872 	if (unlikely(block >= max_file_blocks(inode)))
3873 		goto out;
3874 
3875 	if (f2fs_compressed_file(inode)) {
3876 		blknr = f2fs_bmap_compress(inode, block);
3877 	} else {
3878 		struct f2fs_map_blocks map;
3879 
3880 		memset(&map, 0, sizeof(map));
3881 		map.m_lblk = block;
3882 		map.m_len = 1;
3883 		map.m_next_pgofs = NULL;
3884 		map.m_seg_type = NO_CHECK_TYPE;
3885 
3886 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3887 			blknr = map.m_pblk;
3888 	}
3889 out:
3890 	trace_f2fs_bmap(inode, block, blknr);
3891 	return blknr;
3892 }
3893 
3894 #ifdef CONFIG_SWAP
3895 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3896 							unsigned int blkcnt)
3897 {
3898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3899 	unsigned int blkofs;
3900 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3901 	unsigned int secidx = start_blk / blk_per_sec;
3902 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3903 	int ret = 0;
3904 
3905 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3906 	filemap_invalidate_lock(inode->i_mapping);
3907 
3908 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3909 	set_inode_flag(inode, FI_OPU_WRITE);
3910 
3911 	for (; secidx < end_sec; secidx++) {
3912 		f2fs_down_write(&sbi->pin_sem);
3913 
3914 		f2fs_lock_op(sbi);
3915 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3916 		f2fs_unlock_op(sbi);
3917 
3918 		set_inode_flag(inode, FI_SKIP_WRITES);
3919 
3920 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3921 			struct page *page;
3922 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3923 
3924 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3925 			if (IS_ERR(page)) {
3926 				f2fs_up_write(&sbi->pin_sem);
3927 				ret = PTR_ERR(page);
3928 				goto done;
3929 			}
3930 
3931 			set_page_dirty(page);
3932 			f2fs_put_page(page, 1);
3933 		}
3934 
3935 		clear_inode_flag(inode, FI_SKIP_WRITES);
3936 
3937 		ret = filemap_fdatawrite(inode->i_mapping);
3938 
3939 		f2fs_up_write(&sbi->pin_sem);
3940 
3941 		if (ret)
3942 			break;
3943 	}
3944 
3945 done:
3946 	clear_inode_flag(inode, FI_SKIP_WRITES);
3947 	clear_inode_flag(inode, FI_OPU_WRITE);
3948 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3949 
3950 	filemap_invalidate_unlock(inode->i_mapping);
3951 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3952 
3953 	return ret;
3954 }
3955 
3956 static int check_swap_activate(struct swap_info_struct *sis,
3957 				struct file *swap_file, sector_t *span)
3958 {
3959 	struct address_space *mapping = swap_file->f_mapping;
3960 	struct inode *inode = mapping->host;
3961 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3962 	sector_t cur_lblock;
3963 	sector_t last_lblock;
3964 	sector_t pblock;
3965 	sector_t lowest_pblock = -1;
3966 	sector_t highest_pblock = 0;
3967 	int nr_extents = 0;
3968 	unsigned long nr_pblocks;
3969 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3970 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3971 	unsigned int not_aligned = 0;
3972 	int ret = 0;
3973 
3974 	/*
3975 	 * Map all the blocks into the extent list.  This code doesn't try
3976 	 * to be very smart.
3977 	 */
3978 	cur_lblock = 0;
3979 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3980 
3981 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3982 		struct f2fs_map_blocks map;
3983 retry:
3984 		cond_resched();
3985 
3986 		memset(&map, 0, sizeof(map));
3987 		map.m_lblk = cur_lblock;
3988 		map.m_len = last_lblock - cur_lblock;
3989 		map.m_next_pgofs = NULL;
3990 		map.m_next_extent = NULL;
3991 		map.m_seg_type = NO_CHECK_TYPE;
3992 		map.m_may_create = false;
3993 
3994 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3995 		if (ret)
3996 			goto out;
3997 
3998 		/* hole */
3999 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4000 			f2fs_err(sbi, "Swapfile has holes");
4001 			ret = -EINVAL;
4002 			goto out;
4003 		}
4004 
4005 		pblock = map.m_pblk;
4006 		nr_pblocks = map.m_len;
4007 
4008 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4009 				nr_pblocks & sec_blks_mask) {
4010 			not_aligned++;
4011 
4012 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4013 			if (cur_lblock + nr_pblocks > sis->max)
4014 				nr_pblocks -= blks_per_sec;
4015 
4016 			if (!nr_pblocks) {
4017 				/* this extent is last one */
4018 				nr_pblocks = map.m_len;
4019 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4020 				goto next;
4021 			}
4022 
4023 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4024 							nr_pblocks);
4025 			if (ret)
4026 				goto out;
4027 			goto retry;
4028 		}
4029 next:
4030 		if (cur_lblock + nr_pblocks >= sis->max)
4031 			nr_pblocks = sis->max - cur_lblock;
4032 
4033 		if (cur_lblock) {	/* exclude the header page */
4034 			if (pblock < lowest_pblock)
4035 				lowest_pblock = pblock;
4036 			if (pblock + nr_pblocks - 1 > highest_pblock)
4037 				highest_pblock = pblock + nr_pblocks - 1;
4038 		}
4039 
4040 		/*
4041 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4042 		 */
4043 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4044 		if (ret < 0)
4045 			goto out;
4046 		nr_extents += ret;
4047 		cur_lblock += nr_pblocks;
4048 	}
4049 	ret = nr_extents;
4050 	*span = 1 + highest_pblock - lowest_pblock;
4051 	if (cur_lblock == 0)
4052 		cur_lblock = 1;	/* force Empty message */
4053 	sis->max = cur_lblock;
4054 	sis->pages = cur_lblock - 1;
4055 	sis->highest_bit = cur_lblock - 1;
4056 out:
4057 	if (not_aligned)
4058 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4059 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4060 	return ret;
4061 }
4062 
4063 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4064 				sector_t *span)
4065 {
4066 	struct inode *inode = file_inode(file);
4067 	int ret;
4068 
4069 	if (!S_ISREG(inode->i_mode))
4070 		return -EINVAL;
4071 
4072 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4073 		return -EROFS;
4074 
4075 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4076 		f2fs_err(F2FS_I_SB(inode),
4077 			"Swapfile not supported in LFS mode");
4078 		return -EINVAL;
4079 	}
4080 
4081 	ret = f2fs_convert_inline_inode(inode);
4082 	if (ret)
4083 		return ret;
4084 
4085 	if (!f2fs_disable_compressed_file(inode))
4086 		return -EINVAL;
4087 
4088 	f2fs_precache_extents(inode);
4089 
4090 	ret = check_swap_activate(sis, file, span);
4091 	if (ret < 0)
4092 		return ret;
4093 
4094 	stat_inc_swapfile_inode(inode);
4095 	set_inode_flag(inode, FI_PIN_FILE);
4096 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4097 	return ret;
4098 }
4099 
4100 static void f2fs_swap_deactivate(struct file *file)
4101 {
4102 	struct inode *inode = file_inode(file);
4103 
4104 	stat_dec_swapfile_inode(inode);
4105 	clear_inode_flag(inode, FI_PIN_FILE);
4106 }
4107 #else
4108 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4109 				sector_t *span)
4110 {
4111 	return -EOPNOTSUPP;
4112 }
4113 
4114 static void f2fs_swap_deactivate(struct file *file)
4115 {
4116 }
4117 #endif
4118 
4119 const struct address_space_operations f2fs_dblock_aops = {
4120 	.read_folio	= f2fs_read_data_folio,
4121 	.readahead	= f2fs_readahead,
4122 	.writepage	= f2fs_write_data_page,
4123 	.writepages	= f2fs_write_data_pages,
4124 	.write_begin	= f2fs_write_begin,
4125 	.write_end	= f2fs_write_end,
4126 	.dirty_folio	= f2fs_dirty_data_folio,
4127 	.migrate_folio	= filemap_migrate_folio,
4128 	.invalidate_folio = f2fs_invalidate_folio,
4129 	.release_folio	= f2fs_release_folio,
4130 	.bmap		= f2fs_bmap,
4131 	.swap_activate  = f2fs_swap_activate,
4132 	.swap_deactivate = f2fs_swap_deactivate,
4133 };
4134 
4135 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4136 {
4137 	struct address_space *mapping = page_mapping(page);
4138 	unsigned long flags;
4139 
4140 	xa_lock_irqsave(&mapping->i_pages, flags);
4141 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4142 						PAGECACHE_TAG_DIRTY);
4143 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4144 }
4145 
4146 int __init f2fs_init_post_read_processing(void)
4147 {
4148 	bio_post_read_ctx_cache =
4149 		kmem_cache_create("f2fs_bio_post_read_ctx",
4150 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4151 	if (!bio_post_read_ctx_cache)
4152 		goto fail;
4153 	bio_post_read_ctx_pool =
4154 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4155 					 bio_post_read_ctx_cache);
4156 	if (!bio_post_read_ctx_pool)
4157 		goto fail_free_cache;
4158 	return 0;
4159 
4160 fail_free_cache:
4161 	kmem_cache_destroy(bio_post_read_ctx_cache);
4162 fail:
4163 	return -ENOMEM;
4164 }
4165 
4166 void f2fs_destroy_post_read_processing(void)
4167 {
4168 	mempool_destroy(bio_post_read_ctx_pool);
4169 	kmem_cache_destroy(bio_post_read_ctx_cache);
4170 }
4171 
4172 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4173 {
4174 	if (!f2fs_sb_has_encrypt(sbi) &&
4175 		!f2fs_sb_has_verity(sbi) &&
4176 		!f2fs_sb_has_compression(sbi))
4177 		return 0;
4178 
4179 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4180 						 WQ_UNBOUND | WQ_HIGHPRI,
4181 						 num_online_cpus());
4182 	return sbi->post_read_wq ? 0 : -ENOMEM;
4183 }
4184 
4185 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4186 {
4187 	if (sbi->post_read_wq)
4188 		destroy_workqueue(sbi->post_read_wq);
4189 }
4190 
4191 int __init f2fs_init_bio_entry_cache(void)
4192 {
4193 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4194 			sizeof(struct bio_entry));
4195 	return bio_entry_slab ? 0 : -ENOMEM;
4196 }
4197 
4198 void f2fs_destroy_bio_entry_cache(void)
4199 {
4200 	kmem_cache_destroy(bio_entry_slab);
4201 }
4202 
4203 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4204 			    unsigned int flags, struct iomap *iomap,
4205 			    struct iomap *srcmap)
4206 {
4207 	struct f2fs_map_blocks map = {};
4208 	pgoff_t next_pgofs = 0;
4209 	int err;
4210 
4211 	map.m_lblk = bytes_to_blks(inode, offset);
4212 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4213 	map.m_next_pgofs = &next_pgofs;
4214 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4215 	if (flags & IOMAP_WRITE)
4216 		map.m_may_create = true;
4217 
4218 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4219 	if (err)
4220 		return err;
4221 
4222 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4223 
4224 	/*
4225 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4226 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4227 	 * limiting the length of the mapping returned.
4228 	 */
4229 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4230 
4231 	/*
4232 	 * We should never see delalloc or compressed extents here based on
4233 	 * prior flushing and checks.
4234 	 */
4235 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4236 		return -EINVAL;
4237 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4238 		return -EINVAL;
4239 
4240 	if (map.m_pblk != NULL_ADDR) {
4241 		iomap->length = blks_to_bytes(inode, map.m_len);
4242 		iomap->type = IOMAP_MAPPED;
4243 		iomap->flags |= IOMAP_F_MERGED;
4244 		iomap->bdev = map.m_bdev;
4245 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4246 	} else {
4247 		if (flags & IOMAP_WRITE)
4248 			return -ENOTBLK;
4249 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4250 				iomap->offset;
4251 		iomap->type = IOMAP_HOLE;
4252 		iomap->addr = IOMAP_NULL_ADDR;
4253 	}
4254 
4255 	if (map.m_flags & F2FS_MAP_NEW)
4256 		iomap->flags |= IOMAP_F_NEW;
4257 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4258 	    offset + length > i_size_read(inode))
4259 		iomap->flags |= IOMAP_F_DIRTY;
4260 
4261 	return 0;
4262 }
4263 
4264 const struct iomap_ops f2fs_iomap_ops = {
4265 	.iomap_begin	= f2fs_iomap_begin,
4266 };
4267