xref: /linux/fs/fs-writeback.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	unsigned long *older_than_this;
46 	enum writeback_sync_modes sync_mode;
47 	unsigned int tagged_writepages:1;
48 	unsigned int for_kupdate:1;
49 	unsigned int range_cyclic:1;
50 	unsigned int for_background:1;
51 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
52 	unsigned int auto_free:1;	/* free on completion */
53 	enum wb_reason reason;		/* why was writeback initiated? */
54 
55 	struct list_head list;		/* pending work list */
56 	struct wb_completion *done;	/* set if the caller waits */
57 };
58 
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73 	return list_entry(head, struct inode, i_io_list);
74 }
75 
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83 
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88 	if (wb_has_dirty_io(wb)) {
89 		return false;
90 	} else {
91 		set_bit(WB_has_dirty_io, &wb->state);
92 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 		atomic_long_add(wb->avg_write_bandwidth,
94 				&wb->bdi->tot_write_bandwidth);
95 		return true;
96 	}
97 }
98 
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103 		clear_bit(WB_has_dirty_io, &wb->state);
104 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 					&wb->bdi->tot_write_bandwidth) < 0);
106 	}
107 }
108 
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120 				      struct bdi_writeback *wb,
121 				      struct list_head *head)
122 {
123 	assert_spin_locked(&wb->list_lock);
124 
125 	list_move(&inode->i_io_list, head);
126 
127 	/* dirty_time doesn't count as dirty_io until expiration */
128 	if (head != &wb->b_dirty_time)
129 		return wb_io_lists_populated(wb);
130 
131 	wb_io_lists_depopulated(wb);
132 	return false;
133 }
134 
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144 				     struct bdi_writeback *wb)
145 {
146 	assert_spin_locked(&wb->list_lock);
147 
148 	list_del_init(&inode->i_io_list);
149 	wb_io_lists_depopulated(wb);
150 }
151 
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154 	spin_lock_bh(&wb->work_lock);
155 	if (test_bit(WB_registered, &wb->state))
156 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 	spin_unlock_bh(&wb->work_lock);
158 }
159 
160 static void finish_writeback_work(struct bdi_writeback *wb,
161 				  struct wb_writeback_work *work)
162 {
163 	struct wb_completion *done = work->done;
164 
165 	if (work->auto_free)
166 		kfree(work);
167 	if (done) {
168 		wait_queue_head_t *waitq = done->waitq;
169 
170 		/* @done can't be accessed after the following dec */
171 		if (atomic_dec_and_test(&done->cnt))
172 			wake_up_all(waitq);
173 	}
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	if (work->done)
182 		atomic_inc(&work->done->cnt);
183 
184 	spin_lock_bh(&wb->work_lock);
185 
186 	if (test_bit(WB_registered, &wb->state)) {
187 		list_add_tail(&work->list, &wb->work_list);
188 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
189 	} else
190 		finish_writeback_work(wb, work);
191 
192 	spin_unlock_bh(&wb->work_lock);
193 }
194 
195 /**
196  * wb_wait_for_completion - wait for completion of bdi_writeback_works
197  * @done: target wb_completion
198  *
199  * Wait for one or more work items issued to @bdi with their ->done field
200  * set to @done, which should have been initialized with
201  * DEFINE_WB_COMPLETION().  This function returns after all such work items
202  * are completed.  Work items which are waited upon aren't freed
203  * automatically on completion.
204  */
205 void wb_wait_for_completion(struct wb_completion *done)
206 {
207 	atomic_dec(&done->cnt);		/* put down the initial count */
208 	wait_event(*done->waitq, !atomic_read(&done->cnt));
209 }
210 
211 #ifdef CONFIG_CGROUP_WRITEBACK
212 
213 /*
214  * Parameters for foreign inode detection, see wbc_detach_inode() to see
215  * how they're used.
216  *
217  * These paramters are inherently heuristical as the detection target
218  * itself is fuzzy.  All we want to do is detaching an inode from the
219  * current owner if it's being written to by some other cgroups too much.
220  *
221  * The current cgroup writeback is built on the assumption that multiple
222  * cgroups writing to the same inode concurrently is very rare and a mode
223  * of operation which isn't well supported.  As such, the goal is not
224  * taking too long when a different cgroup takes over an inode while
225  * avoiding too aggressive flip-flops from occasional foreign writes.
226  *
227  * We record, very roughly, 2s worth of IO time history and if more than
228  * half of that is foreign, trigger the switch.  The recording is quantized
229  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
230  * writes smaller than 1/8 of avg size are ignored.
231  */
232 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
233 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
234 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
235 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
236 
237 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
238 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239 					/* each slot's duration is 2s / 16 */
240 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
241 					/* if foreign slots >= 8, switch */
242 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
243 					/* one round can affect upto 5 slots */
244 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
245 
246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247 static struct workqueue_struct *isw_wq;
248 
249 void __inode_attach_wb(struct inode *inode, struct page *page)
250 {
251 	struct backing_dev_info *bdi = inode_to_bdi(inode);
252 	struct bdi_writeback *wb = NULL;
253 
254 	if (inode_cgwb_enabled(inode)) {
255 		struct cgroup_subsys_state *memcg_css;
256 
257 		if (page) {
258 			memcg_css = mem_cgroup_css_from_page(page);
259 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260 		} else {
261 			/* must pin memcg_css, see wb_get_create() */
262 			memcg_css = task_get_css(current, memory_cgrp_id);
263 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264 			css_put(memcg_css);
265 		}
266 	}
267 
268 	if (!wb)
269 		wb = &bdi->wb;
270 
271 	/*
272 	 * There may be multiple instances of this function racing to
273 	 * update the same inode.  Use cmpxchg() to tell the winner.
274 	 */
275 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276 		wb_put(wb);
277 }
278 EXPORT_SYMBOL_GPL(__inode_attach_wb);
279 
280 /**
281  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282  * @inode: inode of interest with i_lock held
283  *
284  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
285  * held on entry and is released on return.  The returned wb is guaranteed
286  * to stay @inode's associated wb until its list_lock is released.
287  */
288 static struct bdi_writeback *
289 locked_inode_to_wb_and_lock_list(struct inode *inode)
290 	__releases(&inode->i_lock)
291 	__acquires(&wb->list_lock)
292 {
293 	while (true) {
294 		struct bdi_writeback *wb = inode_to_wb(inode);
295 
296 		/*
297 		 * inode_to_wb() association is protected by both
298 		 * @inode->i_lock and @wb->list_lock but list_lock nests
299 		 * outside i_lock.  Drop i_lock and verify that the
300 		 * association hasn't changed after acquiring list_lock.
301 		 */
302 		wb_get(wb);
303 		spin_unlock(&inode->i_lock);
304 		spin_lock(&wb->list_lock);
305 
306 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
307 		if (likely(wb == inode->i_wb)) {
308 			wb_put(wb);	/* @inode already has ref */
309 			return wb;
310 		}
311 
312 		spin_unlock(&wb->list_lock);
313 		wb_put(wb);
314 		cpu_relax();
315 		spin_lock(&inode->i_lock);
316 	}
317 }
318 
319 /**
320  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321  * @inode: inode of interest
322  *
323  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324  * on entry.
325  */
326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327 	__acquires(&wb->list_lock)
328 {
329 	spin_lock(&inode->i_lock);
330 	return locked_inode_to_wb_and_lock_list(inode);
331 }
332 
333 struct inode_switch_wbs_context {
334 	struct inode		*inode;
335 	struct bdi_writeback	*new_wb;
336 
337 	struct rcu_head		rcu_head;
338 	struct work_struct	work;
339 };
340 
341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	down_write(&bdi->wb_switch_rwsem);
344 }
345 
346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347 {
348 	up_write(&bdi->wb_switch_rwsem);
349 }
350 
351 static void inode_switch_wbs_work_fn(struct work_struct *work)
352 {
353 	struct inode_switch_wbs_context *isw =
354 		container_of(work, struct inode_switch_wbs_context, work);
355 	struct inode *inode = isw->inode;
356 	struct backing_dev_info *bdi = inode_to_bdi(inode);
357 	struct address_space *mapping = inode->i_mapping;
358 	struct bdi_writeback *old_wb = inode->i_wb;
359 	struct bdi_writeback *new_wb = isw->new_wb;
360 	XA_STATE(xas, &mapping->i_pages, 0);
361 	struct page *page;
362 	bool switched = false;
363 
364 	/*
365 	 * If @inode switches cgwb membership while sync_inodes_sb() is
366 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
367 	 */
368 	down_read(&bdi->wb_switch_rwsem);
369 
370 	/*
371 	 * By the time control reaches here, RCU grace period has passed
372 	 * since I_WB_SWITCH assertion and all wb stat update transactions
373 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
374 	 * synchronizing against the i_pages lock.
375 	 *
376 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
377 	 * gives us exclusion against all wb related operations on @inode
378 	 * including IO list manipulations and stat updates.
379 	 */
380 	if (old_wb < new_wb) {
381 		spin_lock(&old_wb->list_lock);
382 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383 	} else {
384 		spin_lock(&new_wb->list_lock);
385 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386 	}
387 	spin_lock(&inode->i_lock);
388 	xa_lock_irq(&mapping->i_pages);
389 
390 	/*
391 	 * Once I_FREEING is visible under i_lock, the eviction path owns
392 	 * the inode and we shouldn't modify ->i_io_list.
393 	 */
394 	if (unlikely(inode->i_state & I_FREEING))
395 		goto skip_switch;
396 
397 	trace_inode_switch_wbs(inode, old_wb, new_wb);
398 
399 	/*
400 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
401 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
402 	 * pages actually under writeback.
403 	 */
404 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405 		if (PageDirty(page)) {
406 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
407 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
408 		}
409 	}
410 
411 	xas_set(&xas, 0);
412 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413 		WARN_ON_ONCE(!PageWriteback(page));
414 		dec_wb_stat(old_wb, WB_WRITEBACK);
415 		inc_wb_stat(new_wb, WB_WRITEBACK);
416 	}
417 
418 	wb_get(new_wb);
419 
420 	/*
421 	 * Transfer to @new_wb's IO list if necessary.  The specific list
422 	 * @inode was on is ignored and the inode is put on ->b_dirty which
423 	 * is always correct including from ->b_dirty_time.  The transfer
424 	 * preserves @inode->dirtied_when ordering.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		struct inode *pos;
428 
429 		inode_io_list_del_locked(inode, old_wb);
430 		inode->i_wb = new_wb;
431 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 			if (time_after_eq(inode->dirtied_when,
433 					  pos->dirtied_when))
434 				break;
435 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 	} else {
437 		inode->i_wb = new_wb;
438 	}
439 
440 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 	inode->i_wb_frn_winner = 0;
442 	inode->i_wb_frn_avg_time = 0;
443 	inode->i_wb_frn_history = 0;
444 	switched = true;
445 skip_switch:
446 	/*
447 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 	 */
450 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451 
452 	xa_unlock_irq(&mapping->i_pages);
453 	spin_unlock(&inode->i_lock);
454 	spin_unlock(&new_wb->list_lock);
455 	spin_unlock(&old_wb->list_lock);
456 
457 	up_read(&bdi->wb_switch_rwsem);
458 
459 	if (switched) {
460 		wb_wakeup(new_wb);
461 		wb_put(old_wb);
462 	}
463 	wb_put(new_wb);
464 
465 	iput(inode);
466 	kfree(isw);
467 
468 	atomic_dec(&isw_nr_in_flight);
469 }
470 
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 				struct inode_switch_wbs_context, rcu_head);
475 
476 	/* needs to grab bh-unsafe locks, bounce to work item */
477 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 	queue_work(isw_wq, &isw->work);
479 }
480 
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 	struct backing_dev_info *bdi = inode_to_bdi(inode);
492 	struct cgroup_subsys_state *memcg_css;
493 	struct inode_switch_wbs_context *isw;
494 
495 	/* noop if seems to be already in progress */
496 	if (inode->i_state & I_WB_SWITCH)
497 		return;
498 
499 	/* avoid queueing a new switch if too many are already in flight */
500 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
501 		return;
502 
503 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504 	if (!isw)
505 		return;
506 
507 	/* find and pin the new wb */
508 	rcu_read_lock();
509 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510 	if (memcg_css)
511 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512 	rcu_read_unlock();
513 	if (!isw->new_wb)
514 		goto out_free;
515 
516 	/* while holding I_WB_SWITCH, no one else can update the association */
517 	spin_lock(&inode->i_lock);
518 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
519 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520 	    inode_to_wb(inode) == isw->new_wb) {
521 		spin_unlock(&inode->i_lock);
522 		goto out_free;
523 	}
524 	inode->i_state |= I_WB_SWITCH;
525 	__iget(inode);
526 	spin_unlock(&inode->i_lock);
527 
528 	isw->inode = inode;
529 
530 	/*
531 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
532 	 * the RCU protected stat update paths to grab the i_page
533 	 * lock so that stat transfer can synchronize against them.
534 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535 	 */
536 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
537 
538 	atomic_inc(&isw_nr_in_flight);
539 	return;
540 
541 out_free:
542 	if (isw->new_wb)
543 		wb_put(isw->new_wb);
544 	kfree(isw);
545 }
546 
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 				 struct inode *inode)
559 {
560 	if (!inode_cgwb_enabled(inode)) {
561 		spin_unlock(&inode->i_lock);
562 		return;
563 	}
564 
565 	wbc->wb = inode_to_wb(inode);
566 	wbc->inode = inode;
567 
568 	wbc->wb_id = wbc->wb->memcg_css->id;
569 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 	wbc->wb_tcand_id = 0;
571 	wbc->wb_bytes = 0;
572 	wbc->wb_lcand_bytes = 0;
573 	wbc->wb_tcand_bytes = 0;
574 
575 	wb_get(wbc->wb);
576 	spin_unlock(&inode->i_lock);
577 
578 	/*
579 	 * A dying wb indicates that the memcg-blkcg mapping has changed
580 	 * and a new wb is already serving the memcg.  Switch immediately.
581 	 */
582 	if (unlikely(wb_dying(wbc->wb)))
583 		inode_switch_wbs(inode, wbc->wb_id);
584 }
585 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
586 
587 /**
588  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
589  * @wbc: writeback_control of the just finished writeback
590  *
591  * To be called after a writeback attempt of an inode finishes and undoes
592  * wbc_attach_and_unlock_inode().  Can be called under any context.
593  *
594  * As concurrent write sharing of an inode is expected to be very rare and
595  * memcg only tracks page ownership on first-use basis severely confining
596  * the usefulness of such sharing, cgroup writeback tracks ownership
597  * per-inode.  While the support for concurrent write sharing of an inode
598  * is deemed unnecessary, an inode being written to by different cgroups at
599  * different points in time is a lot more common, and, more importantly,
600  * charging only by first-use can too readily lead to grossly incorrect
601  * behaviors (single foreign page can lead to gigabytes of writeback to be
602  * incorrectly attributed).
603  *
604  * To resolve this issue, cgroup writeback detects the majority dirtier of
605  * an inode and transfers the ownership to it.  To avoid unnnecessary
606  * oscillation, the detection mechanism keeps track of history and gives
607  * out the switch verdict only if the foreign usage pattern is stable over
608  * a certain amount of time and/or writeback attempts.
609  *
610  * On each writeback attempt, @wbc tries to detect the majority writer
611  * using Boyer-Moore majority vote algorithm.  In addition to the byte
612  * count from the majority voting, it also counts the bytes written for the
613  * current wb and the last round's winner wb (max of last round's current
614  * wb, the winner from two rounds ago, and the last round's majority
615  * candidate).  Keeping track of the historical winner helps the algorithm
616  * to semi-reliably detect the most active writer even when it's not the
617  * absolute majority.
618  *
619  * Once the winner of the round is determined, whether the winner is
620  * foreign or not and how much IO time the round consumed is recorded in
621  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
622  * over a certain threshold, the switch verdict is given.
623  */
624 void wbc_detach_inode(struct writeback_control *wbc)
625 {
626 	struct bdi_writeback *wb = wbc->wb;
627 	struct inode *inode = wbc->inode;
628 	unsigned long avg_time, max_bytes, max_time;
629 	u16 history;
630 	int max_id;
631 
632 	if (!wb)
633 		return;
634 
635 	history = inode->i_wb_frn_history;
636 	avg_time = inode->i_wb_frn_avg_time;
637 
638 	/* pick the winner of this round */
639 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
640 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
641 		max_id = wbc->wb_id;
642 		max_bytes = wbc->wb_bytes;
643 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
644 		max_id = wbc->wb_lcand_id;
645 		max_bytes = wbc->wb_lcand_bytes;
646 	} else {
647 		max_id = wbc->wb_tcand_id;
648 		max_bytes = wbc->wb_tcand_bytes;
649 	}
650 
651 	/*
652 	 * Calculate the amount of IO time the winner consumed and fold it
653 	 * into the running average kept per inode.  If the consumed IO
654 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
655 	 * deciding whether to switch or not.  This is to prevent one-off
656 	 * small dirtiers from skewing the verdict.
657 	 */
658 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
659 				wb->avg_write_bandwidth);
660 	if (avg_time)
661 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
662 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
663 	else
664 		avg_time = max_time;	/* immediate catch up on first run */
665 
666 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
667 		int slots;
668 
669 		/*
670 		 * The switch verdict is reached if foreign wb's consume
671 		 * more than a certain proportion of IO time in a
672 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
673 		 * history mask where each bit represents one sixteenth of
674 		 * the period.  Determine the number of slots to shift into
675 		 * history from @max_time.
676 		 */
677 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
678 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
679 		history <<= slots;
680 		if (wbc->wb_id != max_id)
681 			history |= (1U << slots) - 1;
682 
683 		if (history)
684 			trace_inode_foreign_history(inode, wbc, history);
685 
686 		/*
687 		 * Switch if the current wb isn't the consistent winner.
688 		 * If there are multiple closely competing dirtiers, the
689 		 * inode may switch across them repeatedly over time, which
690 		 * is okay.  The main goal is avoiding keeping an inode on
691 		 * the wrong wb for an extended period of time.
692 		 */
693 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
694 			inode_switch_wbs(inode, max_id);
695 	}
696 
697 	/*
698 	 * Multiple instances of this function may race to update the
699 	 * following fields but we don't mind occassional inaccuracies.
700 	 */
701 	inode->i_wb_frn_winner = max_id;
702 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
703 	inode->i_wb_frn_history = history;
704 
705 	wb_put(wbc->wb);
706 	wbc->wb = NULL;
707 }
708 EXPORT_SYMBOL_GPL(wbc_detach_inode);
709 
710 /**
711  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
712  * @wbc: writeback_control of the writeback in progress
713  * @page: page being written out
714  * @bytes: number of bytes being written out
715  *
716  * @bytes from @page are about to written out during the writeback
717  * controlled by @wbc.  Keep the book for foreign inode detection.  See
718  * wbc_detach_inode().
719  */
720 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
721 			      size_t bytes)
722 {
723 	struct cgroup_subsys_state *css;
724 	int id;
725 
726 	/*
727 	 * pageout() path doesn't attach @wbc to the inode being written
728 	 * out.  This is intentional as we don't want the function to block
729 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
730 	 * regular writeback instead of writing things out itself.
731 	 */
732 	if (!wbc->wb || wbc->no_cgroup_owner)
733 		return;
734 
735 	css = mem_cgroup_css_from_page(page);
736 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
737 	if (!(css->flags & CSS_ONLINE))
738 		return;
739 
740 	id = css->id;
741 
742 	if (id == wbc->wb_id) {
743 		wbc->wb_bytes += bytes;
744 		return;
745 	}
746 
747 	if (id == wbc->wb_lcand_id)
748 		wbc->wb_lcand_bytes += bytes;
749 
750 	/* Boyer-Moore majority vote algorithm */
751 	if (!wbc->wb_tcand_bytes)
752 		wbc->wb_tcand_id = id;
753 	if (id == wbc->wb_tcand_id)
754 		wbc->wb_tcand_bytes += bytes;
755 	else
756 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
757 }
758 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
759 
760 /**
761  * inode_congested - test whether an inode is congested
762  * @inode: inode to test for congestion (may be NULL)
763  * @cong_bits: mask of WB_[a]sync_congested bits to test
764  *
765  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
766  * bits to test and the return value is the mask of set bits.
767  *
768  * If cgroup writeback is enabled for @inode, the congestion state is
769  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
770  * associated with @inode is congested; otherwise, the root wb's congestion
771  * state is used.
772  *
773  * @inode is allowed to be NULL as this function is often called on
774  * mapping->host which is NULL for the swapper space.
775  */
776 int inode_congested(struct inode *inode, int cong_bits)
777 {
778 	/*
779 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
780 	 * Start transaction iff ->i_wb is visible.
781 	 */
782 	if (inode && inode_to_wb_is_valid(inode)) {
783 		struct bdi_writeback *wb;
784 		struct wb_lock_cookie lock_cookie = {};
785 		bool congested;
786 
787 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
788 		congested = wb_congested(wb, cong_bits);
789 		unlocked_inode_to_wb_end(inode, &lock_cookie);
790 		return congested;
791 	}
792 
793 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
794 }
795 EXPORT_SYMBOL_GPL(inode_congested);
796 
797 /**
798  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
799  * @wb: target bdi_writeback to split @nr_pages to
800  * @nr_pages: number of pages to write for the whole bdi
801  *
802  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
803  * relation to the total write bandwidth of all wb's w/ dirty inodes on
804  * @wb->bdi.
805  */
806 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
807 {
808 	unsigned long this_bw = wb->avg_write_bandwidth;
809 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
810 
811 	if (nr_pages == LONG_MAX)
812 		return LONG_MAX;
813 
814 	/*
815 	 * This may be called on clean wb's and proportional distribution
816 	 * may not make sense, just use the original @nr_pages in those
817 	 * cases.  In general, we wanna err on the side of writing more.
818 	 */
819 	if (!tot_bw || this_bw >= tot_bw)
820 		return nr_pages;
821 	else
822 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
823 }
824 
825 /**
826  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827  * @bdi: target backing_dev_info
828  * @base_work: wb_writeback_work to issue
829  * @skip_if_busy: skip wb's which already have writeback in progress
830  *
831  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
833  * distributed to the busy wbs according to each wb's proportion in the
834  * total active write bandwidth of @bdi.
835  */
836 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
837 				  struct wb_writeback_work *base_work,
838 				  bool skip_if_busy)
839 {
840 	struct bdi_writeback *last_wb = NULL;
841 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
842 					      struct bdi_writeback, bdi_node);
843 
844 	might_sleep();
845 restart:
846 	rcu_read_lock();
847 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
848 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
849 		struct wb_writeback_work fallback_work;
850 		struct wb_writeback_work *work;
851 		long nr_pages;
852 
853 		if (last_wb) {
854 			wb_put(last_wb);
855 			last_wb = NULL;
856 		}
857 
858 		/* SYNC_ALL writes out I_DIRTY_TIME too */
859 		if (!wb_has_dirty_io(wb) &&
860 		    (base_work->sync_mode == WB_SYNC_NONE ||
861 		     list_empty(&wb->b_dirty_time)))
862 			continue;
863 		if (skip_if_busy && writeback_in_progress(wb))
864 			continue;
865 
866 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
867 
868 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
869 		if (work) {
870 			*work = *base_work;
871 			work->nr_pages = nr_pages;
872 			work->auto_free = 1;
873 			wb_queue_work(wb, work);
874 			continue;
875 		}
876 
877 		/* alloc failed, execute synchronously using on-stack fallback */
878 		work = &fallback_work;
879 		*work = *base_work;
880 		work->nr_pages = nr_pages;
881 		work->auto_free = 0;
882 		work->done = &fallback_work_done;
883 
884 		wb_queue_work(wb, work);
885 
886 		/*
887 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
888 		 * continuing iteration from @wb after dropping and
889 		 * regrabbing rcu read lock.
890 		 */
891 		wb_get(wb);
892 		last_wb = wb;
893 
894 		rcu_read_unlock();
895 		wb_wait_for_completion(&fallback_work_done);
896 		goto restart;
897 	}
898 	rcu_read_unlock();
899 
900 	if (last_wb)
901 		wb_put(last_wb);
902 }
903 
904 /**
905  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
906  * @bdi_id: target bdi id
907  * @memcg_id: target memcg css id
908  * @nr: number of pages to write, 0 for best-effort dirty flushing
909  * @reason: reason why some writeback work initiated
910  * @done: target wb_completion
911  *
912  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
913  * with the specified parameters.
914  */
915 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
916 			   enum wb_reason reason, struct wb_completion *done)
917 {
918 	struct backing_dev_info *bdi;
919 	struct cgroup_subsys_state *memcg_css;
920 	struct bdi_writeback *wb;
921 	struct wb_writeback_work *work;
922 	int ret;
923 
924 	/* lookup bdi and memcg */
925 	bdi = bdi_get_by_id(bdi_id);
926 	if (!bdi)
927 		return -ENOENT;
928 
929 	rcu_read_lock();
930 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
931 	if (memcg_css && !css_tryget(memcg_css))
932 		memcg_css = NULL;
933 	rcu_read_unlock();
934 	if (!memcg_css) {
935 		ret = -ENOENT;
936 		goto out_bdi_put;
937 	}
938 
939 	/*
940 	 * And find the associated wb.  If the wb isn't there already
941 	 * there's nothing to flush, don't create one.
942 	 */
943 	wb = wb_get_lookup(bdi, memcg_css);
944 	if (!wb) {
945 		ret = -ENOENT;
946 		goto out_css_put;
947 	}
948 
949 	/*
950 	 * If @nr is zero, the caller is attempting to write out most of
951 	 * the currently dirty pages.  Let's take the current dirty page
952 	 * count and inflate it by 25% which should be large enough to
953 	 * flush out most dirty pages while avoiding getting livelocked by
954 	 * concurrent dirtiers.
955 	 */
956 	if (!nr) {
957 		unsigned long filepages, headroom, dirty, writeback;
958 
959 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
960 				      &writeback);
961 		nr = dirty * 10 / 8;
962 	}
963 
964 	/* issue the writeback work */
965 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
966 	if (work) {
967 		work->nr_pages = nr;
968 		work->sync_mode = WB_SYNC_NONE;
969 		work->range_cyclic = 1;
970 		work->reason = reason;
971 		work->done = done;
972 		work->auto_free = 1;
973 		wb_queue_work(wb, work);
974 		ret = 0;
975 	} else {
976 		ret = -ENOMEM;
977 	}
978 
979 	wb_put(wb);
980 out_css_put:
981 	css_put(memcg_css);
982 out_bdi_put:
983 	bdi_put(bdi);
984 	return ret;
985 }
986 
987 /**
988  * cgroup_writeback_umount - flush inode wb switches for umount
989  *
990  * This function is called when a super_block is about to be destroyed and
991  * flushes in-flight inode wb switches.  An inode wb switch goes through
992  * RCU and then workqueue, so the two need to be flushed in order to ensure
993  * that all previously scheduled switches are finished.  As wb switches are
994  * rare occurrences and synchronize_rcu() can take a while, perform
995  * flushing iff wb switches are in flight.
996  */
997 void cgroup_writeback_umount(void)
998 {
999 	if (atomic_read(&isw_nr_in_flight)) {
1000 		/*
1001 		 * Use rcu_barrier() to wait for all pending callbacks to
1002 		 * ensure that all in-flight wb switches are in the workqueue.
1003 		 */
1004 		rcu_barrier();
1005 		flush_workqueue(isw_wq);
1006 	}
1007 }
1008 
1009 static int __init cgroup_writeback_init(void)
1010 {
1011 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1012 	if (!isw_wq)
1013 		return -ENOMEM;
1014 	return 0;
1015 }
1016 fs_initcall(cgroup_writeback_init);
1017 
1018 #else	/* CONFIG_CGROUP_WRITEBACK */
1019 
1020 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1021 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1022 
1023 static struct bdi_writeback *
1024 locked_inode_to_wb_and_lock_list(struct inode *inode)
1025 	__releases(&inode->i_lock)
1026 	__acquires(&wb->list_lock)
1027 {
1028 	struct bdi_writeback *wb = inode_to_wb(inode);
1029 
1030 	spin_unlock(&inode->i_lock);
1031 	spin_lock(&wb->list_lock);
1032 	return wb;
1033 }
1034 
1035 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1036 	__acquires(&wb->list_lock)
1037 {
1038 	struct bdi_writeback *wb = inode_to_wb(inode);
1039 
1040 	spin_lock(&wb->list_lock);
1041 	return wb;
1042 }
1043 
1044 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1045 {
1046 	return nr_pages;
1047 }
1048 
1049 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1050 				  struct wb_writeback_work *base_work,
1051 				  bool skip_if_busy)
1052 {
1053 	might_sleep();
1054 
1055 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1056 		base_work->auto_free = 0;
1057 		wb_queue_work(&bdi->wb, base_work);
1058 	}
1059 }
1060 
1061 #endif	/* CONFIG_CGROUP_WRITEBACK */
1062 
1063 /*
1064  * Add in the number of potentially dirty inodes, because each inode
1065  * write can dirty pagecache in the underlying blockdev.
1066  */
1067 static unsigned long get_nr_dirty_pages(void)
1068 {
1069 	return global_node_page_state(NR_FILE_DIRTY) +
1070 		global_node_page_state(NR_UNSTABLE_NFS) +
1071 		get_nr_dirty_inodes();
1072 }
1073 
1074 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1075 {
1076 	if (!wb_has_dirty_io(wb))
1077 		return;
1078 
1079 	/*
1080 	 * All callers of this function want to start writeback of all
1081 	 * dirty pages. Places like vmscan can call this at a very
1082 	 * high frequency, causing pointless allocations of tons of
1083 	 * work items and keeping the flusher threads busy retrieving
1084 	 * that work. Ensure that we only allow one of them pending and
1085 	 * inflight at the time.
1086 	 */
1087 	if (test_bit(WB_start_all, &wb->state) ||
1088 	    test_and_set_bit(WB_start_all, &wb->state))
1089 		return;
1090 
1091 	wb->start_all_reason = reason;
1092 	wb_wakeup(wb);
1093 }
1094 
1095 /**
1096  * wb_start_background_writeback - start background writeback
1097  * @wb: bdi_writback to write from
1098  *
1099  * Description:
1100  *   This makes sure WB_SYNC_NONE background writeback happens. When
1101  *   this function returns, it is only guaranteed that for given wb
1102  *   some IO is happening if we are over background dirty threshold.
1103  *   Caller need not hold sb s_umount semaphore.
1104  */
1105 void wb_start_background_writeback(struct bdi_writeback *wb)
1106 {
1107 	/*
1108 	 * We just wake up the flusher thread. It will perform background
1109 	 * writeback as soon as there is no other work to do.
1110 	 */
1111 	trace_writeback_wake_background(wb);
1112 	wb_wakeup(wb);
1113 }
1114 
1115 /*
1116  * Remove the inode from the writeback list it is on.
1117  */
1118 void inode_io_list_del(struct inode *inode)
1119 {
1120 	struct bdi_writeback *wb;
1121 
1122 	wb = inode_to_wb_and_lock_list(inode);
1123 	inode_io_list_del_locked(inode, wb);
1124 	spin_unlock(&wb->list_lock);
1125 }
1126 
1127 /*
1128  * mark an inode as under writeback on the sb
1129  */
1130 void sb_mark_inode_writeback(struct inode *inode)
1131 {
1132 	struct super_block *sb = inode->i_sb;
1133 	unsigned long flags;
1134 
1135 	if (list_empty(&inode->i_wb_list)) {
1136 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1137 		if (list_empty(&inode->i_wb_list)) {
1138 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1139 			trace_sb_mark_inode_writeback(inode);
1140 		}
1141 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1142 	}
1143 }
1144 
1145 /*
1146  * clear an inode as under writeback on the sb
1147  */
1148 void sb_clear_inode_writeback(struct inode *inode)
1149 {
1150 	struct super_block *sb = inode->i_sb;
1151 	unsigned long flags;
1152 
1153 	if (!list_empty(&inode->i_wb_list)) {
1154 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1155 		if (!list_empty(&inode->i_wb_list)) {
1156 			list_del_init(&inode->i_wb_list);
1157 			trace_sb_clear_inode_writeback(inode);
1158 		}
1159 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1160 	}
1161 }
1162 
1163 /*
1164  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1165  * furthest end of its superblock's dirty-inode list.
1166  *
1167  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1168  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1169  * the case then the inode must have been redirtied while it was being written
1170  * out and we don't reset its dirtied_when.
1171  */
1172 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1173 {
1174 	if (!list_empty(&wb->b_dirty)) {
1175 		struct inode *tail;
1176 
1177 		tail = wb_inode(wb->b_dirty.next);
1178 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1179 			inode->dirtied_when = jiffies;
1180 	}
1181 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1182 }
1183 
1184 /*
1185  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1186  */
1187 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1188 {
1189 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1190 }
1191 
1192 static void inode_sync_complete(struct inode *inode)
1193 {
1194 	inode->i_state &= ~I_SYNC;
1195 	/* If inode is clean an unused, put it into LRU now... */
1196 	inode_add_lru(inode);
1197 	/* Waiters must see I_SYNC cleared before being woken up */
1198 	smp_mb();
1199 	wake_up_bit(&inode->i_state, __I_SYNC);
1200 }
1201 
1202 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1203 {
1204 	bool ret = time_after(inode->dirtied_when, t);
1205 #ifndef CONFIG_64BIT
1206 	/*
1207 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1208 	 * It _appears_ to be in the future, but is actually in distant past.
1209 	 * This test is necessary to prevent such wrapped-around relative times
1210 	 * from permanently stopping the whole bdi writeback.
1211 	 */
1212 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1213 #endif
1214 	return ret;
1215 }
1216 
1217 #define EXPIRE_DIRTY_ATIME 0x0001
1218 
1219 /*
1220  * Move expired (dirtied before work->older_than_this) dirty inodes from
1221  * @delaying_queue to @dispatch_queue.
1222  */
1223 static int move_expired_inodes(struct list_head *delaying_queue,
1224 			       struct list_head *dispatch_queue,
1225 			       int flags,
1226 			       struct wb_writeback_work *work)
1227 {
1228 	unsigned long *older_than_this = NULL;
1229 	unsigned long expire_time;
1230 	LIST_HEAD(tmp);
1231 	struct list_head *pos, *node;
1232 	struct super_block *sb = NULL;
1233 	struct inode *inode;
1234 	int do_sb_sort = 0;
1235 	int moved = 0;
1236 
1237 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1238 		older_than_this = work->older_than_this;
1239 	else if (!work->for_sync) {
1240 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1241 		older_than_this = &expire_time;
1242 	}
1243 	while (!list_empty(delaying_queue)) {
1244 		inode = wb_inode(delaying_queue->prev);
1245 		if (older_than_this &&
1246 		    inode_dirtied_after(inode, *older_than_this))
1247 			break;
1248 		list_move(&inode->i_io_list, &tmp);
1249 		moved++;
1250 		if (flags & EXPIRE_DIRTY_ATIME)
1251 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1252 		if (sb_is_blkdev_sb(inode->i_sb))
1253 			continue;
1254 		if (sb && sb != inode->i_sb)
1255 			do_sb_sort = 1;
1256 		sb = inode->i_sb;
1257 	}
1258 
1259 	/* just one sb in list, splice to dispatch_queue and we're done */
1260 	if (!do_sb_sort) {
1261 		list_splice(&tmp, dispatch_queue);
1262 		goto out;
1263 	}
1264 
1265 	/* Move inodes from one superblock together */
1266 	while (!list_empty(&tmp)) {
1267 		sb = wb_inode(tmp.prev)->i_sb;
1268 		list_for_each_prev_safe(pos, node, &tmp) {
1269 			inode = wb_inode(pos);
1270 			if (inode->i_sb == sb)
1271 				list_move(&inode->i_io_list, dispatch_queue);
1272 		}
1273 	}
1274 out:
1275 	return moved;
1276 }
1277 
1278 /*
1279  * Queue all expired dirty inodes for io, eldest first.
1280  * Before
1281  *         newly dirtied     b_dirty    b_io    b_more_io
1282  *         =============>    gf         edc     BA
1283  * After
1284  *         newly dirtied     b_dirty    b_io    b_more_io
1285  *         =============>    g          fBAedc
1286  *                                           |
1287  *                                           +--> dequeue for IO
1288  */
1289 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1290 {
1291 	int moved;
1292 
1293 	assert_spin_locked(&wb->list_lock);
1294 	list_splice_init(&wb->b_more_io, &wb->b_io);
1295 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1296 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1297 				     EXPIRE_DIRTY_ATIME, work);
1298 	if (moved)
1299 		wb_io_lists_populated(wb);
1300 	trace_writeback_queue_io(wb, work, moved);
1301 }
1302 
1303 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1304 {
1305 	int ret;
1306 
1307 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1308 		trace_writeback_write_inode_start(inode, wbc);
1309 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1310 		trace_writeback_write_inode(inode, wbc);
1311 		return ret;
1312 	}
1313 	return 0;
1314 }
1315 
1316 /*
1317  * Wait for writeback on an inode to complete. Called with i_lock held.
1318  * Caller must make sure inode cannot go away when we drop i_lock.
1319  */
1320 static void __inode_wait_for_writeback(struct inode *inode)
1321 	__releases(inode->i_lock)
1322 	__acquires(inode->i_lock)
1323 {
1324 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1325 	wait_queue_head_t *wqh;
1326 
1327 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1328 	while (inode->i_state & I_SYNC) {
1329 		spin_unlock(&inode->i_lock);
1330 		__wait_on_bit(wqh, &wq, bit_wait,
1331 			      TASK_UNINTERRUPTIBLE);
1332 		spin_lock(&inode->i_lock);
1333 	}
1334 }
1335 
1336 /*
1337  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1338  */
1339 void inode_wait_for_writeback(struct inode *inode)
1340 {
1341 	spin_lock(&inode->i_lock);
1342 	__inode_wait_for_writeback(inode);
1343 	spin_unlock(&inode->i_lock);
1344 }
1345 
1346 /*
1347  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1348  * held and drops it. It is aimed for callers not holding any inode reference
1349  * so once i_lock is dropped, inode can go away.
1350  */
1351 static void inode_sleep_on_writeback(struct inode *inode)
1352 	__releases(inode->i_lock)
1353 {
1354 	DEFINE_WAIT(wait);
1355 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1356 	int sleep;
1357 
1358 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1359 	sleep = inode->i_state & I_SYNC;
1360 	spin_unlock(&inode->i_lock);
1361 	if (sleep)
1362 		schedule();
1363 	finish_wait(wqh, &wait);
1364 }
1365 
1366 /*
1367  * Find proper writeback list for the inode depending on its current state and
1368  * possibly also change of its state while we were doing writeback.  Here we
1369  * handle things such as livelock prevention or fairness of writeback among
1370  * inodes. This function can be called only by flusher thread - noone else
1371  * processes all inodes in writeback lists and requeueing inodes behind flusher
1372  * thread's back can have unexpected consequences.
1373  */
1374 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1375 			  struct writeback_control *wbc)
1376 {
1377 	if (inode->i_state & I_FREEING)
1378 		return;
1379 
1380 	/*
1381 	 * Sync livelock prevention. Each inode is tagged and synced in one
1382 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1383 	 * the dirty time to prevent enqueue and sync it again.
1384 	 */
1385 	if ((inode->i_state & I_DIRTY) &&
1386 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1387 		inode->dirtied_when = jiffies;
1388 
1389 	if (wbc->pages_skipped) {
1390 		/*
1391 		 * writeback is not making progress due to locked
1392 		 * buffers. Skip this inode for now.
1393 		 */
1394 		redirty_tail(inode, wb);
1395 		return;
1396 	}
1397 
1398 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1399 		/*
1400 		 * We didn't write back all the pages.  nfs_writepages()
1401 		 * sometimes bales out without doing anything.
1402 		 */
1403 		if (wbc->nr_to_write <= 0) {
1404 			/* Slice used up. Queue for next turn. */
1405 			requeue_io(inode, wb);
1406 		} else {
1407 			/*
1408 			 * Writeback blocked by something other than
1409 			 * congestion. Delay the inode for some time to
1410 			 * avoid spinning on the CPU (100% iowait)
1411 			 * retrying writeback of the dirty page/inode
1412 			 * that cannot be performed immediately.
1413 			 */
1414 			redirty_tail(inode, wb);
1415 		}
1416 	} else if (inode->i_state & I_DIRTY) {
1417 		/*
1418 		 * Filesystems can dirty the inode during writeback operations,
1419 		 * such as delayed allocation during submission or metadata
1420 		 * updates after data IO completion.
1421 		 */
1422 		redirty_tail(inode, wb);
1423 	} else if (inode->i_state & I_DIRTY_TIME) {
1424 		inode->dirtied_when = jiffies;
1425 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1426 	} else {
1427 		/* The inode is clean. Remove from writeback lists. */
1428 		inode_io_list_del_locked(inode, wb);
1429 	}
1430 }
1431 
1432 /*
1433  * Write out an inode and its dirty pages. Do not update the writeback list
1434  * linkage. That is left to the caller. The caller is also responsible for
1435  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1436  */
1437 static int
1438 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1439 {
1440 	struct address_space *mapping = inode->i_mapping;
1441 	long nr_to_write = wbc->nr_to_write;
1442 	unsigned dirty;
1443 	int ret;
1444 
1445 	WARN_ON(!(inode->i_state & I_SYNC));
1446 
1447 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1448 
1449 	ret = do_writepages(mapping, wbc);
1450 
1451 	/*
1452 	 * Make sure to wait on the data before writing out the metadata.
1453 	 * This is important for filesystems that modify metadata on data
1454 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1455 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1456 	 * inode metadata is written back correctly.
1457 	 */
1458 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1459 		int err = filemap_fdatawait(mapping);
1460 		if (ret == 0)
1461 			ret = err;
1462 	}
1463 
1464 	/*
1465 	 * Some filesystems may redirty the inode during the writeback
1466 	 * due to delalloc, clear dirty metadata flags right before
1467 	 * write_inode()
1468 	 */
1469 	spin_lock(&inode->i_lock);
1470 
1471 	dirty = inode->i_state & I_DIRTY;
1472 	if (inode->i_state & I_DIRTY_TIME) {
1473 		if ((dirty & I_DIRTY_INODE) ||
1474 		    wbc->sync_mode == WB_SYNC_ALL ||
1475 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1476 		    unlikely(time_after(jiffies,
1477 					(inode->dirtied_time_when +
1478 					 dirtytime_expire_interval * HZ)))) {
1479 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1480 			trace_writeback_lazytime(inode);
1481 		}
1482 	} else
1483 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1484 	inode->i_state &= ~dirty;
1485 
1486 	/*
1487 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1488 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1489 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1490 	 * inode.
1491 	 *
1492 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1493 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1494 	 * necessary.  This guarantees that either __mark_inode_dirty()
1495 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1496 	 */
1497 	smp_mb();
1498 
1499 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1500 		inode->i_state |= I_DIRTY_PAGES;
1501 
1502 	spin_unlock(&inode->i_lock);
1503 
1504 	if (dirty & I_DIRTY_TIME)
1505 		mark_inode_dirty_sync(inode);
1506 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1507 	if (dirty & ~I_DIRTY_PAGES) {
1508 		int err = write_inode(inode, wbc);
1509 		if (ret == 0)
1510 			ret = err;
1511 	}
1512 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1513 	return ret;
1514 }
1515 
1516 /*
1517  * Write out an inode's dirty pages. Either the caller has an active reference
1518  * on the inode or the inode has I_WILL_FREE set.
1519  *
1520  * This function is designed to be called for writing back one inode which
1521  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1522  * and does more profound writeback list handling in writeback_sb_inodes().
1523  */
1524 static int writeback_single_inode(struct inode *inode,
1525 				  struct writeback_control *wbc)
1526 {
1527 	struct bdi_writeback *wb;
1528 	int ret = 0;
1529 
1530 	spin_lock(&inode->i_lock);
1531 	if (!atomic_read(&inode->i_count))
1532 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1533 	else
1534 		WARN_ON(inode->i_state & I_WILL_FREE);
1535 
1536 	if (inode->i_state & I_SYNC) {
1537 		if (wbc->sync_mode != WB_SYNC_ALL)
1538 			goto out;
1539 		/*
1540 		 * It's a data-integrity sync. We must wait. Since callers hold
1541 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1542 		 * away under us.
1543 		 */
1544 		__inode_wait_for_writeback(inode);
1545 	}
1546 	WARN_ON(inode->i_state & I_SYNC);
1547 	/*
1548 	 * Skip inode if it is clean and we have no outstanding writeback in
1549 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1550 	 * function since flusher thread may be doing for example sync in
1551 	 * parallel and if we move the inode, it could get skipped. So here we
1552 	 * make sure inode is on some writeback list and leave it there unless
1553 	 * we have completely cleaned the inode.
1554 	 */
1555 	if (!(inode->i_state & I_DIRTY_ALL) &&
1556 	    (wbc->sync_mode != WB_SYNC_ALL ||
1557 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1558 		goto out;
1559 	inode->i_state |= I_SYNC;
1560 	wbc_attach_and_unlock_inode(wbc, inode);
1561 
1562 	ret = __writeback_single_inode(inode, wbc);
1563 
1564 	wbc_detach_inode(wbc);
1565 
1566 	wb = inode_to_wb_and_lock_list(inode);
1567 	spin_lock(&inode->i_lock);
1568 	/*
1569 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1570 	 * touch it. See comment above for explanation.
1571 	 */
1572 	if (!(inode->i_state & I_DIRTY_ALL))
1573 		inode_io_list_del_locked(inode, wb);
1574 	spin_unlock(&wb->list_lock);
1575 	inode_sync_complete(inode);
1576 out:
1577 	spin_unlock(&inode->i_lock);
1578 	return ret;
1579 }
1580 
1581 static long writeback_chunk_size(struct bdi_writeback *wb,
1582 				 struct wb_writeback_work *work)
1583 {
1584 	long pages;
1585 
1586 	/*
1587 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1588 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1589 	 * here avoids calling into writeback_inodes_wb() more than once.
1590 	 *
1591 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1592 	 *
1593 	 *      wb_writeback()
1594 	 *          writeback_sb_inodes()       <== called only once
1595 	 *              write_cache_pages()     <== called once for each inode
1596 	 *                   (quickly) tag currently dirty pages
1597 	 *                   (maybe slowly) sync all tagged pages
1598 	 */
1599 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1600 		pages = LONG_MAX;
1601 	else {
1602 		pages = min(wb->avg_write_bandwidth / 2,
1603 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1604 		pages = min(pages, work->nr_pages);
1605 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1606 				   MIN_WRITEBACK_PAGES);
1607 	}
1608 
1609 	return pages;
1610 }
1611 
1612 /*
1613  * Write a portion of b_io inodes which belong to @sb.
1614  *
1615  * Return the number of pages and/or inodes written.
1616  *
1617  * NOTE! This is called with wb->list_lock held, and will
1618  * unlock and relock that for each inode it ends up doing
1619  * IO for.
1620  */
1621 static long writeback_sb_inodes(struct super_block *sb,
1622 				struct bdi_writeback *wb,
1623 				struct wb_writeback_work *work)
1624 {
1625 	struct writeback_control wbc = {
1626 		.sync_mode		= work->sync_mode,
1627 		.tagged_writepages	= work->tagged_writepages,
1628 		.for_kupdate		= work->for_kupdate,
1629 		.for_background		= work->for_background,
1630 		.for_sync		= work->for_sync,
1631 		.range_cyclic		= work->range_cyclic,
1632 		.range_start		= 0,
1633 		.range_end		= LLONG_MAX,
1634 	};
1635 	unsigned long start_time = jiffies;
1636 	long write_chunk;
1637 	long wrote = 0;  /* count both pages and inodes */
1638 
1639 	while (!list_empty(&wb->b_io)) {
1640 		struct inode *inode = wb_inode(wb->b_io.prev);
1641 		struct bdi_writeback *tmp_wb;
1642 
1643 		if (inode->i_sb != sb) {
1644 			if (work->sb) {
1645 				/*
1646 				 * We only want to write back data for this
1647 				 * superblock, move all inodes not belonging
1648 				 * to it back onto the dirty list.
1649 				 */
1650 				redirty_tail(inode, wb);
1651 				continue;
1652 			}
1653 
1654 			/*
1655 			 * The inode belongs to a different superblock.
1656 			 * Bounce back to the caller to unpin this and
1657 			 * pin the next superblock.
1658 			 */
1659 			break;
1660 		}
1661 
1662 		/*
1663 		 * Don't bother with new inodes or inodes being freed, first
1664 		 * kind does not need periodic writeout yet, and for the latter
1665 		 * kind writeout is handled by the freer.
1666 		 */
1667 		spin_lock(&inode->i_lock);
1668 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1669 			spin_unlock(&inode->i_lock);
1670 			redirty_tail(inode, wb);
1671 			continue;
1672 		}
1673 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1674 			/*
1675 			 * If this inode is locked for writeback and we are not
1676 			 * doing writeback-for-data-integrity, move it to
1677 			 * b_more_io so that writeback can proceed with the
1678 			 * other inodes on s_io.
1679 			 *
1680 			 * We'll have another go at writing back this inode
1681 			 * when we completed a full scan of b_io.
1682 			 */
1683 			spin_unlock(&inode->i_lock);
1684 			requeue_io(inode, wb);
1685 			trace_writeback_sb_inodes_requeue(inode);
1686 			continue;
1687 		}
1688 		spin_unlock(&wb->list_lock);
1689 
1690 		/*
1691 		 * We already requeued the inode if it had I_SYNC set and we
1692 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1693 		 * WB_SYNC_ALL case.
1694 		 */
1695 		if (inode->i_state & I_SYNC) {
1696 			/* Wait for I_SYNC. This function drops i_lock... */
1697 			inode_sleep_on_writeback(inode);
1698 			/* Inode may be gone, start again */
1699 			spin_lock(&wb->list_lock);
1700 			continue;
1701 		}
1702 		inode->i_state |= I_SYNC;
1703 		wbc_attach_and_unlock_inode(&wbc, inode);
1704 
1705 		write_chunk = writeback_chunk_size(wb, work);
1706 		wbc.nr_to_write = write_chunk;
1707 		wbc.pages_skipped = 0;
1708 
1709 		/*
1710 		 * We use I_SYNC to pin the inode in memory. While it is set
1711 		 * evict_inode() will wait so the inode cannot be freed.
1712 		 */
1713 		__writeback_single_inode(inode, &wbc);
1714 
1715 		wbc_detach_inode(&wbc);
1716 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1717 		wrote += write_chunk - wbc.nr_to_write;
1718 
1719 		if (need_resched()) {
1720 			/*
1721 			 * We're trying to balance between building up a nice
1722 			 * long list of IOs to improve our merge rate, and
1723 			 * getting those IOs out quickly for anyone throttling
1724 			 * in balance_dirty_pages().  cond_resched() doesn't
1725 			 * unplug, so get our IOs out the door before we
1726 			 * give up the CPU.
1727 			 */
1728 			blk_flush_plug(current);
1729 			cond_resched();
1730 		}
1731 
1732 		/*
1733 		 * Requeue @inode if still dirty.  Be careful as @inode may
1734 		 * have been switched to another wb in the meantime.
1735 		 */
1736 		tmp_wb = inode_to_wb_and_lock_list(inode);
1737 		spin_lock(&inode->i_lock);
1738 		if (!(inode->i_state & I_DIRTY_ALL))
1739 			wrote++;
1740 		requeue_inode(inode, tmp_wb, &wbc);
1741 		inode_sync_complete(inode);
1742 		spin_unlock(&inode->i_lock);
1743 
1744 		if (unlikely(tmp_wb != wb)) {
1745 			spin_unlock(&tmp_wb->list_lock);
1746 			spin_lock(&wb->list_lock);
1747 		}
1748 
1749 		/*
1750 		 * bail out to wb_writeback() often enough to check
1751 		 * background threshold and other termination conditions.
1752 		 */
1753 		if (wrote) {
1754 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1755 				break;
1756 			if (work->nr_pages <= 0)
1757 				break;
1758 		}
1759 	}
1760 	return wrote;
1761 }
1762 
1763 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1764 				  struct wb_writeback_work *work)
1765 {
1766 	unsigned long start_time = jiffies;
1767 	long wrote = 0;
1768 
1769 	while (!list_empty(&wb->b_io)) {
1770 		struct inode *inode = wb_inode(wb->b_io.prev);
1771 		struct super_block *sb = inode->i_sb;
1772 
1773 		if (!trylock_super(sb)) {
1774 			/*
1775 			 * trylock_super() may fail consistently due to
1776 			 * s_umount being grabbed by someone else. Don't use
1777 			 * requeue_io() to avoid busy retrying the inode/sb.
1778 			 */
1779 			redirty_tail(inode, wb);
1780 			continue;
1781 		}
1782 		wrote += writeback_sb_inodes(sb, wb, work);
1783 		up_read(&sb->s_umount);
1784 
1785 		/* refer to the same tests at the end of writeback_sb_inodes */
1786 		if (wrote) {
1787 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1788 				break;
1789 			if (work->nr_pages <= 0)
1790 				break;
1791 		}
1792 	}
1793 	/* Leave any unwritten inodes on b_io */
1794 	return wrote;
1795 }
1796 
1797 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1798 				enum wb_reason reason)
1799 {
1800 	struct wb_writeback_work work = {
1801 		.nr_pages	= nr_pages,
1802 		.sync_mode	= WB_SYNC_NONE,
1803 		.range_cyclic	= 1,
1804 		.reason		= reason,
1805 	};
1806 	struct blk_plug plug;
1807 
1808 	blk_start_plug(&plug);
1809 	spin_lock(&wb->list_lock);
1810 	if (list_empty(&wb->b_io))
1811 		queue_io(wb, &work);
1812 	__writeback_inodes_wb(wb, &work);
1813 	spin_unlock(&wb->list_lock);
1814 	blk_finish_plug(&plug);
1815 
1816 	return nr_pages - work.nr_pages;
1817 }
1818 
1819 /*
1820  * Explicit flushing or periodic writeback of "old" data.
1821  *
1822  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1823  * dirtying-time in the inode's address_space.  So this periodic writeback code
1824  * just walks the superblock inode list, writing back any inodes which are
1825  * older than a specific point in time.
1826  *
1827  * Try to run once per dirty_writeback_interval.  But if a writeback event
1828  * takes longer than a dirty_writeback_interval interval, then leave a
1829  * one-second gap.
1830  *
1831  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1832  * all dirty pages if they are all attached to "old" mappings.
1833  */
1834 static long wb_writeback(struct bdi_writeback *wb,
1835 			 struct wb_writeback_work *work)
1836 {
1837 	unsigned long wb_start = jiffies;
1838 	long nr_pages = work->nr_pages;
1839 	unsigned long oldest_jif;
1840 	struct inode *inode;
1841 	long progress;
1842 	struct blk_plug plug;
1843 
1844 	oldest_jif = jiffies;
1845 	work->older_than_this = &oldest_jif;
1846 
1847 	blk_start_plug(&plug);
1848 	spin_lock(&wb->list_lock);
1849 	for (;;) {
1850 		/*
1851 		 * Stop writeback when nr_pages has been consumed
1852 		 */
1853 		if (work->nr_pages <= 0)
1854 			break;
1855 
1856 		/*
1857 		 * Background writeout and kupdate-style writeback may
1858 		 * run forever. Stop them if there is other work to do
1859 		 * so that e.g. sync can proceed. They'll be restarted
1860 		 * after the other works are all done.
1861 		 */
1862 		if ((work->for_background || work->for_kupdate) &&
1863 		    !list_empty(&wb->work_list))
1864 			break;
1865 
1866 		/*
1867 		 * For background writeout, stop when we are below the
1868 		 * background dirty threshold
1869 		 */
1870 		if (work->for_background && !wb_over_bg_thresh(wb))
1871 			break;
1872 
1873 		/*
1874 		 * Kupdate and background works are special and we want to
1875 		 * include all inodes that need writing. Livelock avoidance is
1876 		 * handled by these works yielding to any other work so we are
1877 		 * safe.
1878 		 */
1879 		if (work->for_kupdate) {
1880 			oldest_jif = jiffies -
1881 				msecs_to_jiffies(dirty_expire_interval * 10);
1882 		} else if (work->for_background)
1883 			oldest_jif = jiffies;
1884 
1885 		trace_writeback_start(wb, work);
1886 		if (list_empty(&wb->b_io))
1887 			queue_io(wb, work);
1888 		if (work->sb)
1889 			progress = writeback_sb_inodes(work->sb, wb, work);
1890 		else
1891 			progress = __writeback_inodes_wb(wb, work);
1892 		trace_writeback_written(wb, work);
1893 
1894 		wb_update_bandwidth(wb, wb_start);
1895 
1896 		/*
1897 		 * Did we write something? Try for more
1898 		 *
1899 		 * Dirty inodes are moved to b_io for writeback in batches.
1900 		 * The completion of the current batch does not necessarily
1901 		 * mean the overall work is done. So we keep looping as long
1902 		 * as made some progress on cleaning pages or inodes.
1903 		 */
1904 		if (progress)
1905 			continue;
1906 		/*
1907 		 * No more inodes for IO, bail
1908 		 */
1909 		if (list_empty(&wb->b_more_io))
1910 			break;
1911 		/*
1912 		 * Nothing written. Wait for some inode to
1913 		 * become available for writeback. Otherwise
1914 		 * we'll just busyloop.
1915 		 */
1916 		trace_writeback_wait(wb, work);
1917 		inode = wb_inode(wb->b_more_io.prev);
1918 		spin_lock(&inode->i_lock);
1919 		spin_unlock(&wb->list_lock);
1920 		/* This function drops i_lock... */
1921 		inode_sleep_on_writeback(inode);
1922 		spin_lock(&wb->list_lock);
1923 	}
1924 	spin_unlock(&wb->list_lock);
1925 	blk_finish_plug(&plug);
1926 
1927 	return nr_pages - work->nr_pages;
1928 }
1929 
1930 /*
1931  * Return the next wb_writeback_work struct that hasn't been processed yet.
1932  */
1933 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1934 {
1935 	struct wb_writeback_work *work = NULL;
1936 
1937 	spin_lock_bh(&wb->work_lock);
1938 	if (!list_empty(&wb->work_list)) {
1939 		work = list_entry(wb->work_list.next,
1940 				  struct wb_writeback_work, list);
1941 		list_del_init(&work->list);
1942 	}
1943 	spin_unlock_bh(&wb->work_lock);
1944 	return work;
1945 }
1946 
1947 static long wb_check_background_flush(struct bdi_writeback *wb)
1948 {
1949 	if (wb_over_bg_thresh(wb)) {
1950 
1951 		struct wb_writeback_work work = {
1952 			.nr_pages	= LONG_MAX,
1953 			.sync_mode	= WB_SYNC_NONE,
1954 			.for_background	= 1,
1955 			.range_cyclic	= 1,
1956 			.reason		= WB_REASON_BACKGROUND,
1957 		};
1958 
1959 		return wb_writeback(wb, &work);
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1966 {
1967 	unsigned long expired;
1968 	long nr_pages;
1969 
1970 	/*
1971 	 * When set to zero, disable periodic writeback
1972 	 */
1973 	if (!dirty_writeback_interval)
1974 		return 0;
1975 
1976 	expired = wb->last_old_flush +
1977 			msecs_to_jiffies(dirty_writeback_interval * 10);
1978 	if (time_before(jiffies, expired))
1979 		return 0;
1980 
1981 	wb->last_old_flush = jiffies;
1982 	nr_pages = get_nr_dirty_pages();
1983 
1984 	if (nr_pages) {
1985 		struct wb_writeback_work work = {
1986 			.nr_pages	= nr_pages,
1987 			.sync_mode	= WB_SYNC_NONE,
1988 			.for_kupdate	= 1,
1989 			.range_cyclic	= 1,
1990 			.reason		= WB_REASON_PERIODIC,
1991 		};
1992 
1993 		return wb_writeback(wb, &work);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static long wb_check_start_all(struct bdi_writeback *wb)
2000 {
2001 	long nr_pages;
2002 
2003 	if (!test_bit(WB_start_all, &wb->state))
2004 		return 0;
2005 
2006 	nr_pages = get_nr_dirty_pages();
2007 	if (nr_pages) {
2008 		struct wb_writeback_work work = {
2009 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2010 			.sync_mode	= WB_SYNC_NONE,
2011 			.range_cyclic	= 1,
2012 			.reason		= wb->start_all_reason,
2013 		};
2014 
2015 		nr_pages = wb_writeback(wb, &work);
2016 	}
2017 
2018 	clear_bit(WB_start_all, &wb->state);
2019 	return nr_pages;
2020 }
2021 
2022 
2023 /*
2024  * Retrieve work items and do the writeback they describe
2025  */
2026 static long wb_do_writeback(struct bdi_writeback *wb)
2027 {
2028 	struct wb_writeback_work *work;
2029 	long wrote = 0;
2030 
2031 	set_bit(WB_writeback_running, &wb->state);
2032 	while ((work = get_next_work_item(wb)) != NULL) {
2033 		trace_writeback_exec(wb, work);
2034 		wrote += wb_writeback(wb, work);
2035 		finish_writeback_work(wb, work);
2036 	}
2037 
2038 	/*
2039 	 * Check for a flush-everything request
2040 	 */
2041 	wrote += wb_check_start_all(wb);
2042 
2043 	/*
2044 	 * Check for periodic writeback, kupdated() style
2045 	 */
2046 	wrote += wb_check_old_data_flush(wb);
2047 	wrote += wb_check_background_flush(wb);
2048 	clear_bit(WB_writeback_running, &wb->state);
2049 
2050 	return wrote;
2051 }
2052 
2053 /*
2054  * Handle writeback of dirty data for the device backed by this bdi. Also
2055  * reschedules periodically and does kupdated style flushing.
2056  */
2057 void wb_workfn(struct work_struct *work)
2058 {
2059 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2060 						struct bdi_writeback, dwork);
2061 	long pages_written;
2062 
2063 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2064 	current->flags |= PF_SWAPWRITE;
2065 
2066 	if (likely(!current_is_workqueue_rescuer() ||
2067 		   !test_bit(WB_registered, &wb->state))) {
2068 		/*
2069 		 * The normal path.  Keep writing back @wb until its
2070 		 * work_list is empty.  Note that this path is also taken
2071 		 * if @wb is shutting down even when we're running off the
2072 		 * rescuer as work_list needs to be drained.
2073 		 */
2074 		do {
2075 			pages_written = wb_do_writeback(wb);
2076 			trace_writeback_pages_written(pages_written);
2077 		} while (!list_empty(&wb->work_list));
2078 	} else {
2079 		/*
2080 		 * bdi_wq can't get enough workers and we're running off
2081 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2082 		 * enough for efficient IO.
2083 		 */
2084 		pages_written = writeback_inodes_wb(wb, 1024,
2085 						    WB_REASON_FORKER_THREAD);
2086 		trace_writeback_pages_written(pages_written);
2087 	}
2088 
2089 	if (!list_empty(&wb->work_list))
2090 		wb_wakeup(wb);
2091 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2092 		wb_wakeup_delayed(wb);
2093 
2094 	current->flags &= ~PF_SWAPWRITE;
2095 }
2096 
2097 /*
2098  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2099  * write back the whole world.
2100  */
2101 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2102 					 enum wb_reason reason)
2103 {
2104 	struct bdi_writeback *wb;
2105 
2106 	if (!bdi_has_dirty_io(bdi))
2107 		return;
2108 
2109 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2110 		wb_start_writeback(wb, reason);
2111 }
2112 
2113 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2114 				enum wb_reason reason)
2115 {
2116 	rcu_read_lock();
2117 	__wakeup_flusher_threads_bdi(bdi, reason);
2118 	rcu_read_unlock();
2119 }
2120 
2121 /*
2122  * Wakeup the flusher threads to start writeback of all currently dirty pages
2123  */
2124 void wakeup_flusher_threads(enum wb_reason reason)
2125 {
2126 	struct backing_dev_info *bdi;
2127 
2128 	/*
2129 	 * If we are expecting writeback progress we must submit plugged IO.
2130 	 */
2131 	if (blk_needs_flush_plug(current))
2132 		blk_schedule_flush_plug(current);
2133 
2134 	rcu_read_lock();
2135 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2136 		__wakeup_flusher_threads_bdi(bdi, reason);
2137 	rcu_read_unlock();
2138 }
2139 
2140 /*
2141  * Wake up bdi's periodically to make sure dirtytime inodes gets
2142  * written back periodically.  We deliberately do *not* check the
2143  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2144  * kernel to be constantly waking up once there are any dirtytime
2145  * inodes on the system.  So instead we define a separate delayed work
2146  * function which gets called much more rarely.  (By default, only
2147  * once every 12 hours.)
2148  *
2149  * If there is any other write activity going on in the file system,
2150  * this function won't be necessary.  But if the only thing that has
2151  * happened on the file system is a dirtytime inode caused by an atime
2152  * update, we need this infrastructure below to make sure that inode
2153  * eventually gets pushed out to disk.
2154  */
2155 static void wakeup_dirtytime_writeback(struct work_struct *w);
2156 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2157 
2158 static void wakeup_dirtytime_writeback(struct work_struct *w)
2159 {
2160 	struct backing_dev_info *bdi;
2161 
2162 	rcu_read_lock();
2163 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2164 		struct bdi_writeback *wb;
2165 
2166 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2167 			if (!list_empty(&wb->b_dirty_time))
2168 				wb_wakeup(wb);
2169 	}
2170 	rcu_read_unlock();
2171 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172 }
2173 
2174 static int __init start_dirtytime_writeback(void)
2175 {
2176 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2177 	return 0;
2178 }
2179 __initcall(start_dirtytime_writeback);
2180 
2181 int dirtytime_interval_handler(struct ctl_table *table, int write,
2182 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2183 {
2184 	int ret;
2185 
2186 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2187 	if (ret == 0 && write)
2188 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2189 	return ret;
2190 }
2191 
2192 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2193 {
2194 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2195 		struct dentry *dentry;
2196 		const char *name = "?";
2197 
2198 		dentry = d_find_alias(inode);
2199 		if (dentry) {
2200 			spin_lock(&dentry->d_lock);
2201 			name = (const char *) dentry->d_name.name;
2202 		}
2203 		printk(KERN_DEBUG
2204 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2205 		       current->comm, task_pid_nr(current), inode->i_ino,
2206 		       name, inode->i_sb->s_id);
2207 		if (dentry) {
2208 			spin_unlock(&dentry->d_lock);
2209 			dput(dentry);
2210 		}
2211 	}
2212 }
2213 
2214 /**
2215  * __mark_inode_dirty -	internal function
2216  *
2217  * @inode: inode to mark
2218  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2219  *
2220  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2221  * mark_inode_dirty_sync.
2222  *
2223  * Put the inode on the super block's dirty list.
2224  *
2225  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2226  * dirty list only if it is hashed or if it refers to a blockdev.
2227  * If it was not hashed, it will never be added to the dirty list
2228  * even if it is later hashed, as it will have been marked dirty already.
2229  *
2230  * In short, make sure you hash any inodes _before_ you start marking
2231  * them dirty.
2232  *
2233  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2234  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2235  * the kernel-internal blockdev inode represents the dirtying time of the
2236  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2237  * page->mapping->host, so the page-dirtying time is recorded in the internal
2238  * blockdev inode.
2239  */
2240 void __mark_inode_dirty(struct inode *inode, int flags)
2241 {
2242 	struct super_block *sb = inode->i_sb;
2243 	int dirtytime;
2244 
2245 	trace_writeback_mark_inode_dirty(inode, flags);
2246 
2247 	/*
2248 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2249 	 * dirty the inode itself
2250 	 */
2251 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2252 		trace_writeback_dirty_inode_start(inode, flags);
2253 
2254 		if (sb->s_op->dirty_inode)
2255 			sb->s_op->dirty_inode(inode, flags);
2256 
2257 		trace_writeback_dirty_inode(inode, flags);
2258 	}
2259 	if (flags & I_DIRTY_INODE)
2260 		flags &= ~I_DIRTY_TIME;
2261 	dirtytime = flags & I_DIRTY_TIME;
2262 
2263 	/*
2264 	 * Paired with smp_mb() in __writeback_single_inode() for the
2265 	 * following lockless i_state test.  See there for details.
2266 	 */
2267 	smp_mb();
2268 
2269 	if (((inode->i_state & flags) == flags) ||
2270 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2271 		return;
2272 
2273 	if (unlikely(block_dump))
2274 		block_dump___mark_inode_dirty(inode);
2275 
2276 	spin_lock(&inode->i_lock);
2277 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2278 		goto out_unlock_inode;
2279 	if ((inode->i_state & flags) != flags) {
2280 		const int was_dirty = inode->i_state & I_DIRTY;
2281 
2282 		inode_attach_wb(inode, NULL);
2283 
2284 		if (flags & I_DIRTY_INODE)
2285 			inode->i_state &= ~I_DIRTY_TIME;
2286 		inode->i_state |= flags;
2287 
2288 		/*
2289 		 * If the inode is being synced, just update its dirty state.
2290 		 * The unlocker will place the inode on the appropriate
2291 		 * superblock list, based upon its state.
2292 		 */
2293 		if (inode->i_state & I_SYNC)
2294 			goto out_unlock_inode;
2295 
2296 		/*
2297 		 * Only add valid (hashed) inodes to the superblock's
2298 		 * dirty list.  Add blockdev inodes as well.
2299 		 */
2300 		if (!S_ISBLK(inode->i_mode)) {
2301 			if (inode_unhashed(inode))
2302 				goto out_unlock_inode;
2303 		}
2304 		if (inode->i_state & I_FREEING)
2305 			goto out_unlock_inode;
2306 
2307 		/*
2308 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2309 		 * reposition it (that would break b_dirty time-ordering).
2310 		 */
2311 		if (!was_dirty) {
2312 			struct bdi_writeback *wb;
2313 			struct list_head *dirty_list;
2314 			bool wakeup_bdi = false;
2315 
2316 			wb = locked_inode_to_wb_and_lock_list(inode);
2317 
2318 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2319 			     !test_bit(WB_registered, &wb->state),
2320 			     "bdi-%s not registered\n", wb->bdi->name);
2321 
2322 			inode->dirtied_when = jiffies;
2323 			if (dirtytime)
2324 				inode->dirtied_time_when = jiffies;
2325 
2326 			if (inode->i_state & I_DIRTY)
2327 				dirty_list = &wb->b_dirty;
2328 			else
2329 				dirty_list = &wb->b_dirty_time;
2330 
2331 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2332 							       dirty_list);
2333 
2334 			spin_unlock(&wb->list_lock);
2335 			trace_writeback_dirty_inode_enqueue(inode);
2336 
2337 			/*
2338 			 * If this is the first dirty inode for this bdi,
2339 			 * we have to wake-up the corresponding bdi thread
2340 			 * to make sure background write-back happens
2341 			 * later.
2342 			 */
2343 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2344 				wb_wakeup_delayed(wb);
2345 			return;
2346 		}
2347 	}
2348 out_unlock_inode:
2349 	spin_unlock(&inode->i_lock);
2350 }
2351 EXPORT_SYMBOL(__mark_inode_dirty);
2352 
2353 /*
2354  * The @s_sync_lock is used to serialise concurrent sync operations
2355  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2356  * Concurrent callers will block on the s_sync_lock rather than doing contending
2357  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2358  * has been issued up to the time this function is enter is guaranteed to be
2359  * completed by the time we have gained the lock and waited for all IO that is
2360  * in progress regardless of the order callers are granted the lock.
2361  */
2362 static void wait_sb_inodes(struct super_block *sb)
2363 {
2364 	LIST_HEAD(sync_list);
2365 
2366 	/*
2367 	 * We need to be protected against the filesystem going from
2368 	 * r/o to r/w or vice versa.
2369 	 */
2370 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2371 
2372 	mutex_lock(&sb->s_sync_lock);
2373 
2374 	/*
2375 	 * Splice the writeback list onto a temporary list to avoid waiting on
2376 	 * inodes that have started writeback after this point.
2377 	 *
2378 	 * Use rcu_read_lock() to keep the inodes around until we have a
2379 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2380 	 * the local list because inodes can be dropped from either by writeback
2381 	 * completion.
2382 	 */
2383 	rcu_read_lock();
2384 	spin_lock_irq(&sb->s_inode_wblist_lock);
2385 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2386 
2387 	/*
2388 	 * Data integrity sync. Must wait for all pages under writeback, because
2389 	 * there may have been pages dirtied before our sync call, but which had
2390 	 * writeout started before we write it out.  In which case, the inode
2391 	 * may not be on the dirty list, but we still have to wait for that
2392 	 * writeout.
2393 	 */
2394 	while (!list_empty(&sync_list)) {
2395 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2396 						       i_wb_list);
2397 		struct address_space *mapping = inode->i_mapping;
2398 
2399 		/*
2400 		 * Move each inode back to the wb list before we drop the lock
2401 		 * to preserve consistency between i_wb_list and the mapping
2402 		 * writeback tag. Writeback completion is responsible to remove
2403 		 * the inode from either list once the writeback tag is cleared.
2404 		 */
2405 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2406 
2407 		/*
2408 		 * The mapping can appear untagged while still on-list since we
2409 		 * do not have the mapping lock. Skip it here, wb completion
2410 		 * will remove it.
2411 		 */
2412 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2413 			continue;
2414 
2415 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2416 
2417 		spin_lock(&inode->i_lock);
2418 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2419 			spin_unlock(&inode->i_lock);
2420 
2421 			spin_lock_irq(&sb->s_inode_wblist_lock);
2422 			continue;
2423 		}
2424 		__iget(inode);
2425 		spin_unlock(&inode->i_lock);
2426 		rcu_read_unlock();
2427 
2428 		/*
2429 		 * We keep the error status of individual mapping so that
2430 		 * applications can catch the writeback error using fsync(2).
2431 		 * See filemap_fdatawait_keep_errors() for details.
2432 		 */
2433 		filemap_fdatawait_keep_errors(mapping);
2434 
2435 		cond_resched();
2436 
2437 		iput(inode);
2438 
2439 		rcu_read_lock();
2440 		spin_lock_irq(&sb->s_inode_wblist_lock);
2441 	}
2442 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2443 	rcu_read_unlock();
2444 	mutex_unlock(&sb->s_sync_lock);
2445 }
2446 
2447 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2448 				     enum wb_reason reason, bool skip_if_busy)
2449 {
2450 	struct backing_dev_info *bdi = sb->s_bdi;
2451 	DEFINE_WB_COMPLETION(done, bdi);
2452 	struct wb_writeback_work work = {
2453 		.sb			= sb,
2454 		.sync_mode		= WB_SYNC_NONE,
2455 		.tagged_writepages	= 1,
2456 		.done			= &done,
2457 		.nr_pages		= nr,
2458 		.reason			= reason,
2459 	};
2460 
2461 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2462 		return;
2463 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2464 
2465 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2466 	wb_wait_for_completion(&done);
2467 }
2468 
2469 /**
2470  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2471  * @sb: the superblock
2472  * @nr: the number of pages to write
2473  * @reason: reason why some writeback work initiated
2474  *
2475  * Start writeback on some inodes on this super_block. No guarantees are made
2476  * on how many (if any) will be written, and this function does not wait
2477  * for IO completion of submitted IO.
2478  */
2479 void writeback_inodes_sb_nr(struct super_block *sb,
2480 			    unsigned long nr,
2481 			    enum wb_reason reason)
2482 {
2483 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2484 }
2485 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2486 
2487 /**
2488  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2489  * @sb: the superblock
2490  * @reason: reason why some writeback work was initiated
2491  *
2492  * Start writeback on some inodes on this super_block. No guarantees are made
2493  * on how many (if any) will be written, and this function does not wait
2494  * for IO completion of submitted IO.
2495  */
2496 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2497 {
2498 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2499 }
2500 EXPORT_SYMBOL(writeback_inodes_sb);
2501 
2502 /**
2503  * try_to_writeback_inodes_sb - try to start writeback if none underway
2504  * @sb: the superblock
2505  * @reason: reason why some writeback work was initiated
2506  *
2507  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2508  */
2509 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2510 {
2511 	if (!down_read_trylock(&sb->s_umount))
2512 		return;
2513 
2514 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2515 	up_read(&sb->s_umount);
2516 }
2517 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2518 
2519 /**
2520  * sync_inodes_sb	-	sync sb inode pages
2521  * @sb: the superblock
2522  *
2523  * This function writes and waits on any dirty inode belonging to this
2524  * super_block.
2525  */
2526 void sync_inodes_sb(struct super_block *sb)
2527 {
2528 	struct backing_dev_info *bdi = sb->s_bdi;
2529 	DEFINE_WB_COMPLETION(done, bdi);
2530 	struct wb_writeback_work work = {
2531 		.sb		= sb,
2532 		.sync_mode	= WB_SYNC_ALL,
2533 		.nr_pages	= LONG_MAX,
2534 		.range_cyclic	= 0,
2535 		.done		= &done,
2536 		.reason		= WB_REASON_SYNC,
2537 		.for_sync	= 1,
2538 	};
2539 
2540 	/*
2541 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2542 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2543 	 * bdi_has_dirty() need to be written out too.
2544 	 */
2545 	if (bdi == &noop_backing_dev_info)
2546 		return;
2547 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2548 
2549 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2550 	bdi_down_write_wb_switch_rwsem(bdi);
2551 	bdi_split_work_to_wbs(bdi, &work, false);
2552 	wb_wait_for_completion(&done);
2553 	bdi_up_write_wb_switch_rwsem(bdi);
2554 
2555 	wait_sb_inodes(sb);
2556 }
2557 EXPORT_SYMBOL(sync_inodes_sb);
2558 
2559 /**
2560  * write_inode_now	-	write an inode to disk
2561  * @inode: inode to write to disk
2562  * @sync: whether the write should be synchronous or not
2563  *
2564  * This function commits an inode to disk immediately if it is dirty. This is
2565  * primarily needed by knfsd.
2566  *
2567  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2568  */
2569 int write_inode_now(struct inode *inode, int sync)
2570 {
2571 	struct writeback_control wbc = {
2572 		.nr_to_write = LONG_MAX,
2573 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2574 		.range_start = 0,
2575 		.range_end = LLONG_MAX,
2576 	};
2577 
2578 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2579 		wbc.nr_to_write = 0;
2580 
2581 	might_sleep();
2582 	return writeback_single_inode(inode, &wbc);
2583 }
2584 EXPORT_SYMBOL(write_inode_now);
2585 
2586 /**
2587  * sync_inode - write an inode and its pages to disk.
2588  * @inode: the inode to sync
2589  * @wbc: controls the writeback mode
2590  *
2591  * sync_inode() will write an inode and its pages to disk.  It will also
2592  * correctly update the inode on its superblock's dirty inode lists and will
2593  * update inode->i_state.
2594  *
2595  * The caller must have a ref on the inode.
2596  */
2597 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2598 {
2599 	return writeback_single_inode(inode, wbc);
2600 }
2601 EXPORT_SYMBOL(sync_inode);
2602 
2603 /**
2604  * sync_inode_metadata - write an inode to disk
2605  * @inode: the inode to sync
2606  * @wait: wait for I/O to complete.
2607  *
2608  * Write an inode to disk and adjust its dirty state after completion.
2609  *
2610  * Note: only writes the actual inode, no associated data or other metadata.
2611  */
2612 int sync_inode_metadata(struct inode *inode, int wait)
2613 {
2614 	struct writeback_control wbc = {
2615 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2616 		.nr_to_write = 0, /* metadata-only */
2617 	};
2618 
2619 	return sync_inode(inode, &wbc);
2620 }
2621 EXPORT_SYMBOL(sync_inode_metadata);
2622