xref: /linux/fs/iomap/buffered-io.c (revision db10cb9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	atomic_t		read_bytes_pending;
33 	atomic_t		write_bytes_pending;
34 	spinlock_t		state_lock;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static void ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 	unsigned long flags;
68 
69 	spin_lock_irqsave(&ifs->state_lock, flags);
70 	bitmap_set(ifs->state, first_blk, nr_blks);
71 	if (ifs_is_fully_uptodate(folio, ifs))
72 		folio_mark_uptodate(folio);
73 	spin_unlock_irqrestore(&ifs->state_lock, flags);
74 }
75 
76 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
77 		size_t len)
78 {
79 	struct iomap_folio_state *ifs = folio->private;
80 
81 	if (ifs)
82 		ifs_set_range_uptodate(folio, ifs, off, len);
83 	else
84 		folio_mark_uptodate(folio);
85 }
86 
87 static inline bool ifs_block_is_dirty(struct folio *folio,
88 		struct iomap_folio_state *ifs, int block)
89 {
90 	struct inode *inode = folio->mapping->host;
91 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
92 
93 	return test_bit(block + blks_per_folio, ifs->state);
94 }
95 
96 static void ifs_clear_range_dirty(struct folio *folio,
97 		struct iomap_folio_state *ifs, size_t off, size_t len)
98 {
99 	struct inode *inode = folio->mapping->host;
100 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101 	unsigned int first_blk = (off >> inode->i_blkbits);
102 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103 	unsigned int nr_blks = last_blk - first_blk + 1;
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&ifs->state_lock, flags);
107 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108 	spin_unlock_irqrestore(&ifs->state_lock, flags);
109 }
110 
111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
112 {
113 	struct iomap_folio_state *ifs = folio->private;
114 
115 	if (ifs)
116 		ifs_clear_range_dirty(folio, ifs, off, len);
117 }
118 
119 static void ifs_set_range_dirty(struct folio *folio,
120 		struct iomap_folio_state *ifs, size_t off, size_t len)
121 {
122 	struct inode *inode = folio->mapping->host;
123 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124 	unsigned int first_blk = (off >> inode->i_blkbits);
125 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126 	unsigned int nr_blks = last_blk - first_blk + 1;
127 	unsigned long flags;
128 
129 	spin_lock_irqsave(&ifs->state_lock, flags);
130 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131 	spin_unlock_irqrestore(&ifs->state_lock, flags);
132 }
133 
134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
135 {
136 	struct iomap_folio_state *ifs = folio->private;
137 
138 	if (ifs)
139 		ifs_set_range_dirty(folio, ifs, off, len);
140 }
141 
142 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143 		struct folio *folio, unsigned int flags)
144 {
145 	struct iomap_folio_state *ifs = folio->private;
146 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
147 	gfp_t gfp;
148 
149 	if (ifs || nr_blocks <= 1)
150 		return ifs;
151 
152 	if (flags & IOMAP_NOWAIT)
153 		gfp = GFP_NOWAIT;
154 	else
155 		gfp = GFP_NOFS | __GFP_NOFAIL;
156 
157 	/*
158 	 * ifs->state tracks two sets of state flags when the
159 	 * filesystem block size is smaller than the folio size.
160 	 * The first state tracks per-block uptodate and the
161 	 * second tracks per-block dirty state.
162 	 */
163 	ifs = kzalloc(struct_size(ifs, state,
164 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
165 	if (!ifs)
166 		return ifs;
167 
168 	spin_lock_init(&ifs->state_lock);
169 	if (folio_test_uptodate(folio))
170 		bitmap_set(ifs->state, 0, nr_blocks);
171 	if (folio_test_dirty(folio))
172 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
173 	folio_attach_private(folio, ifs);
174 
175 	return ifs;
176 }
177 
178 static void ifs_free(struct folio *folio)
179 {
180 	struct iomap_folio_state *ifs = folio_detach_private(folio);
181 
182 	if (!ifs)
183 		return;
184 	WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187 			folio_test_uptodate(folio));
188 	kfree(ifs);
189 }
190 
191 /*
192  * Calculate the range inside the folio that we actually need to read.
193  */
194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
196 {
197 	struct iomap_folio_state *ifs = folio->private;
198 	loff_t orig_pos = *pos;
199 	loff_t isize = i_size_read(inode);
200 	unsigned block_bits = inode->i_blkbits;
201 	unsigned block_size = (1 << block_bits);
202 	size_t poff = offset_in_folio(folio, *pos);
203 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204 	unsigned first = poff >> block_bits;
205 	unsigned last = (poff + plen - 1) >> block_bits;
206 
207 	/*
208 	 * If the block size is smaller than the page size, we need to check the
209 	 * per-block uptodate status and adjust the offset and length if needed
210 	 * to avoid reading in already uptodate ranges.
211 	 */
212 	if (ifs) {
213 		unsigned int i;
214 
215 		/* move forward for each leading block marked uptodate */
216 		for (i = first; i <= last; i++) {
217 			if (!ifs_block_is_uptodate(ifs, i))
218 				break;
219 			*pos += block_size;
220 			poff += block_size;
221 			plen -= block_size;
222 			first++;
223 		}
224 
225 		/* truncate len if we find any trailing uptodate block(s) */
226 		for ( ; i <= last; i++) {
227 			if (ifs_block_is_uptodate(ifs, i)) {
228 				plen -= (last - i + 1) * block_size;
229 				last = i - 1;
230 				break;
231 			}
232 		}
233 	}
234 
235 	/*
236 	 * If the extent spans the block that contains the i_size, we need to
237 	 * handle both halves separately so that we properly zero data in the
238 	 * page cache for blocks that are entirely outside of i_size.
239 	 */
240 	if (orig_pos <= isize && orig_pos + length > isize) {
241 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
242 
243 		if (first <= end && last > end)
244 			plen -= (last - end) * block_size;
245 	}
246 
247 	*offp = poff;
248 	*lenp = plen;
249 }
250 
251 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
252 		size_t len, int error)
253 {
254 	struct iomap_folio_state *ifs = folio->private;
255 
256 	if (unlikely(error)) {
257 		folio_clear_uptodate(folio);
258 		folio_set_error(folio);
259 	} else {
260 		iomap_set_range_uptodate(folio, offset, len);
261 	}
262 
263 	if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
264 		folio_unlock(folio);
265 }
266 
267 static void iomap_read_end_io(struct bio *bio)
268 {
269 	int error = blk_status_to_errno(bio->bi_status);
270 	struct folio_iter fi;
271 
272 	bio_for_each_folio_all(fi, bio)
273 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
274 	bio_put(bio);
275 }
276 
277 struct iomap_readpage_ctx {
278 	struct folio		*cur_folio;
279 	bool			cur_folio_in_bio;
280 	struct bio		*bio;
281 	struct readahead_control *rac;
282 };
283 
284 /**
285  * iomap_read_inline_data - copy inline data into the page cache
286  * @iter: iteration structure
287  * @folio: folio to copy to
288  *
289  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
290  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
291  * Returns zero for success to complete the read, or the usual negative errno.
292  */
293 static int iomap_read_inline_data(const struct iomap_iter *iter,
294 		struct folio *folio)
295 {
296 	const struct iomap *iomap = iomap_iter_srcmap(iter);
297 	size_t size = i_size_read(iter->inode) - iomap->offset;
298 	size_t poff = offset_in_page(iomap->offset);
299 	size_t offset = offset_in_folio(folio, iomap->offset);
300 	void *addr;
301 
302 	if (folio_test_uptodate(folio))
303 		return 0;
304 
305 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
306 		return -EIO;
307 	if (WARN_ON_ONCE(size > PAGE_SIZE -
308 			 offset_in_page(iomap->inline_data)))
309 		return -EIO;
310 	if (WARN_ON_ONCE(size > iomap->length))
311 		return -EIO;
312 	if (offset > 0)
313 		ifs_alloc(iter->inode, folio, iter->flags);
314 
315 	addr = kmap_local_folio(folio, offset);
316 	memcpy(addr, iomap->inline_data, size);
317 	memset(addr + size, 0, PAGE_SIZE - poff - size);
318 	kunmap_local(addr);
319 	iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
320 	return 0;
321 }
322 
323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
324 		loff_t pos)
325 {
326 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
327 
328 	return srcmap->type != IOMAP_MAPPED ||
329 		(srcmap->flags & IOMAP_F_NEW) ||
330 		pos >= i_size_read(iter->inode);
331 }
332 
333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
334 		struct iomap_readpage_ctx *ctx, loff_t offset)
335 {
336 	const struct iomap *iomap = &iter->iomap;
337 	loff_t pos = iter->pos + offset;
338 	loff_t length = iomap_length(iter) - offset;
339 	struct folio *folio = ctx->cur_folio;
340 	struct iomap_folio_state *ifs;
341 	loff_t orig_pos = pos;
342 	size_t poff, plen;
343 	sector_t sector;
344 
345 	if (iomap->type == IOMAP_INLINE)
346 		return iomap_read_inline_data(iter, folio);
347 
348 	/* zero post-eof blocks as the page may be mapped */
349 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
350 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
351 	if (plen == 0)
352 		goto done;
353 
354 	if (iomap_block_needs_zeroing(iter, pos)) {
355 		folio_zero_range(folio, poff, plen);
356 		iomap_set_range_uptodate(folio, poff, plen);
357 		goto done;
358 	}
359 
360 	ctx->cur_folio_in_bio = true;
361 	if (ifs)
362 		atomic_add(plen, &ifs->read_bytes_pending);
363 
364 	sector = iomap_sector(iomap, pos);
365 	if (!ctx->bio ||
366 	    bio_end_sector(ctx->bio) != sector ||
367 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
368 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
369 		gfp_t orig_gfp = gfp;
370 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
371 
372 		if (ctx->bio)
373 			submit_bio(ctx->bio);
374 
375 		if (ctx->rac) /* same as readahead_gfp_mask */
376 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
377 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
378 				     REQ_OP_READ, gfp);
379 		/*
380 		 * If the bio_alloc fails, try it again for a single page to
381 		 * avoid having to deal with partial page reads.  This emulates
382 		 * what do_mpage_read_folio does.
383 		 */
384 		if (!ctx->bio) {
385 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
386 					     orig_gfp);
387 		}
388 		if (ctx->rac)
389 			ctx->bio->bi_opf |= REQ_RAHEAD;
390 		ctx->bio->bi_iter.bi_sector = sector;
391 		ctx->bio->bi_end_io = iomap_read_end_io;
392 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
393 	}
394 
395 done:
396 	/*
397 	 * Move the caller beyond our range so that it keeps making progress.
398 	 * For that, we have to include any leading non-uptodate ranges, but
399 	 * we can skip trailing ones as they will be handled in the next
400 	 * iteration.
401 	 */
402 	return pos - orig_pos + plen;
403 }
404 
405 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
406 {
407 	struct iomap_iter iter = {
408 		.inode		= folio->mapping->host,
409 		.pos		= folio_pos(folio),
410 		.len		= folio_size(folio),
411 	};
412 	struct iomap_readpage_ctx ctx = {
413 		.cur_folio	= folio,
414 	};
415 	int ret;
416 
417 	trace_iomap_readpage(iter.inode, 1);
418 
419 	while ((ret = iomap_iter(&iter, ops)) > 0)
420 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
421 
422 	if (ret < 0)
423 		folio_set_error(folio);
424 
425 	if (ctx.bio) {
426 		submit_bio(ctx.bio);
427 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
428 	} else {
429 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
430 		folio_unlock(folio);
431 	}
432 
433 	/*
434 	 * Just like mpage_readahead and block_read_full_folio, we always
435 	 * return 0 and just set the folio error flag on errors.  This
436 	 * should be cleaned up throughout the stack eventually.
437 	 */
438 	return 0;
439 }
440 EXPORT_SYMBOL_GPL(iomap_read_folio);
441 
442 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
443 		struct iomap_readpage_ctx *ctx)
444 {
445 	loff_t length = iomap_length(iter);
446 	loff_t done, ret;
447 
448 	for (done = 0; done < length; done += ret) {
449 		if (ctx->cur_folio &&
450 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
451 			if (!ctx->cur_folio_in_bio)
452 				folio_unlock(ctx->cur_folio);
453 			ctx->cur_folio = NULL;
454 		}
455 		if (!ctx->cur_folio) {
456 			ctx->cur_folio = readahead_folio(ctx->rac);
457 			ctx->cur_folio_in_bio = false;
458 		}
459 		ret = iomap_readpage_iter(iter, ctx, done);
460 		if (ret <= 0)
461 			return ret;
462 	}
463 
464 	return done;
465 }
466 
467 /**
468  * iomap_readahead - Attempt to read pages from a file.
469  * @rac: Describes the pages to be read.
470  * @ops: The operations vector for the filesystem.
471  *
472  * This function is for filesystems to call to implement their readahead
473  * address_space operation.
474  *
475  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
476  * blocks from disc), and may wait for it.  The caller may be trying to
477  * access a different page, and so sleeping excessively should be avoided.
478  * It may allocate memory, but should avoid costly allocations.  This
479  * function is called with memalloc_nofs set, so allocations will not cause
480  * the filesystem to be reentered.
481  */
482 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
483 {
484 	struct iomap_iter iter = {
485 		.inode	= rac->mapping->host,
486 		.pos	= readahead_pos(rac),
487 		.len	= readahead_length(rac),
488 	};
489 	struct iomap_readpage_ctx ctx = {
490 		.rac	= rac,
491 	};
492 
493 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
494 
495 	while (iomap_iter(&iter, ops) > 0)
496 		iter.processed = iomap_readahead_iter(&iter, &ctx);
497 
498 	if (ctx.bio)
499 		submit_bio(ctx.bio);
500 	if (ctx.cur_folio) {
501 		if (!ctx.cur_folio_in_bio)
502 			folio_unlock(ctx.cur_folio);
503 	}
504 }
505 EXPORT_SYMBOL_GPL(iomap_readahead);
506 
507 /*
508  * iomap_is_partially_uptodate checks whether blocks within a folio are
509  * uptodate or not.
510  *
511  * Returns true if all blocks which correspond to the specified part
512  * of the folio are uptodate.
513  */
514 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
515 {
516 	struct iomap_folio_state *ifs = folio->private;
517 	struct inode *inode = folio->mapping->host;
518 	unsigned first, last, i;
519 
520 	if (!ifs)
521 		return false;
522 
523 	/* Caller's range may extend past the end of this folio */
524 	count = min(folio_size(folio) - from, count);
525 
526 	/* First and last blocks in range within folio */
527 	first = from >> inode->i_blkbits;
528 	last = (from + count - 1) >> inode->i_blkbits;
529 
530 	for (i = first; i <= last; i++)
531 		if (!ifs_block_is_uptodate(ifs, i))
532 			return false;
533 	return true;
534 }
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
536 
537 /**
538  * iomap_get_folio - get a folio reference for writing
539  * @iter: iteration structure
540  * @pos: start offset of write
541  * @len: Suggested size of folio to create.
542  *
543  * Returns a locked reference to the folio at @pos, or an error pointer if the
544  * folio could not be obtained.
545  */
546 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
547 {
548 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
549 
550 	if (iter->flags & IOMAP_NOWAIT)
551 		fgp |= FGP_NOWAIT;
552 	fgp |= fgf_set_order(len);
553 
554 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
555 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
556 }
557 EXPORT_SYMBOL_GPL(iomap_get_folio);
558 
559 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
560 {
561 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
562 			folio_size(folio));
563 
564 	/*
565 	 * If the folio is dirty, we refuse to release our metadata because
566 	 * it may be partially dirty.  Once we track per-block dirty state,
567 	 * we can release the metadata if every block is dirty.
568 	 */
569 	if (folio_test_dirty(folio))
570 		return false;
571 	ifs_free(folio);
572 	return true;
573 }
574 EXPORT_SYMBOL_GPL(iomap_release_folio);
575 
576 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
577 {
578 	trace_iomap_invalidate_folio(folio->mapping->host,
579 					folio_pos(folio) + offset, len);
580 
581 	/*
582 	 * If we're invalidating the entire folio, clear the dirty state
583 	 * from it and release it to avoid unnecessary buildup of the LRU.
584 	 */
585 	if (offset == 0 && len == folio_size(folio)) {
586 		WARN_ON_ONCE(folio_test_writeback(folio));
587 		folio_cancel_dirty(folio);
588 		ifs_free(folio);
589 	}
590 }
591 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
592 
593 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
594 {
595 	struct inode *inode = mapping->host;
596 	size_t len = folio_size(folio);
597 
598 	ifs_alloc(inode, folio, 0);
599 	iomap_set_range_dirty(folio, 0, len);
600 	return filemap_dirty_folio(mapping, folio);
601 }
602 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
603 
604 static void
605 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
606 {
607 	loff_t i_size = i_size_read(inode);
608 
609 	/*
610 	 * Only truncate newly allocated pages beyoned EOF, even if the
611 	 * write started inside the existing inode size.
612 	 */
613 	if (pos + len > i_size)
614 		truncate_pagecache_range(inode, max(pos, i_size),
615 					 pos + len - 1);
616 }
617 
618 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
619 		size_t poff, size_t plen, const struct iomap *iomap)
620 {
621 	struct bio_vec bvec;
622 	struct bio bio;
623 
624 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
625 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626 	bio_add_folio_nofail(&bio, folio, plen, poff);
627 	return submit_bio_wait(&bio);
628 }
629 
630 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
631 		size_t len, struct folio *folio)
632 {
633 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
634 	struct iomap_folio_state *ifs;
635 	loff_t block_size = i_blocksize(iter->inode);
636 	loff_t block_start = round_down(pos, block_size);
637 	loff_t block_end = round_up(pos + len, block_size);
638 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
639 	size_t from = offset_in_folio(folio, pos), to = from + len;
640 	size_t poff, plen;
641 
642 	/*
643 	 * If the write or zeroing completely overlaps the current folio, then
644 	 * entire folio will be dirtied so there is no need for
645 	 * per-block state tracking structures to be attached to this folio.
646 	 * For the unshare case, we must read in the ondisk contents because we
647 	 * are not changing pagecache contents.
648 	 */
649 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
650 	    pos + len >= folio_pos(folio) + folio_size(folio))
651 		return 0;
652 
653 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
654 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
655 		return -EAGAIN;
656 
657 	if (folio_test_uptodate(folio))
658 		return 0;
659 	folio_clear_error(folio);
660 
661 	do {
662 		iomap_adjust_read_range(iter->inode, folio, &block_start,
663 				block_end - block_start, &poff, &plen);
664 		if (plen == 0)
665 			break;
666 
667 		if (!(iter->flags & IOMAP_UNSHARE) &&
668 		    (from <= poff || from >= poff + plen) &&
669 		    (to <= poff || to >= poff + plen))
670 			continue;
671 
672 		if (iomap_block_needs_zeroing(iter, block_start)) {
673 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
674 				return -EIO;
675 			folio_zero_segments(folio, poff, from, to, poff + plen);
676 		} else {
677 			int status;
678 
679 			if (iter->flags & IOMAP_NOWAIT)
680 				return -EAGAIN;
681 
682 			status = iomap_read_folio_sync(block_start, folio,
683 					poff, plen, srcmap);
684 			if (status)
685 				return status;
686 		}
687 		iomap_set_range_uptodate(folio, poff, plen);
688 	} while ((block_start += plen) < block_end);
689 
690 	return 0;
691 }
692 
693 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
694 		size_t len)
695 {
696 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
697 
698 	if (folio_ops && folio_ops->get_folio)
699 		return folio_ops->get_folio(iter, pos, len);
700 	else
701 		return iomap_get_folio(iter, pos, len);
702 }
703 
704 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
705 		struct folio *folio)
706 {
707 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
708 
709 	if (folio_ops && folio_ops->put_folio) {
710 		folio_ops->put_folio(iter->inode, pos, ret, folio);
711 	} else {
712 		folio_unlock(folio);
713 		folio_put(folio);
714 	}
715 }
716 
717 static int iomap_write_begin_inline(const struct iomap_iter *iter,
718 		struct folio *folio)
719 {
720 	/* needs more work for the tailpacking case; disable for now */
721 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
722 		return -EIO;
723 	return iomap_read_inline_data(iter, folio);
724 }
725 
726 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
727 		size_t len, struct folio **foliop)
728 {
729 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
730 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
731 	struct folio *folio;
732 	int status = 0;
733 
734 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
735 	if (srcmap != &iter->iomap)
736 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
737 
738 	if (fatal_signal_pending(current))
739 		return -EINTR;
740 
741 	if (!mapping_large_folio_support(iter->inode->i_mapping))
742 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
743 
744 	folio = __iomap_get_folio(iter, pos, len);
745 	if (IS_ERR(folio))
746 		return PTR_ERR(folio);
747 
748 	/*
749 	 * Now we have a locked folio, before we do anything with it we need to
750 	 * check that the iomap we have cached is not stale. The inode extent
751 	 * mapping can change due to concurrent IO in flight (e.g.
752 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
753 	 * reclaimed a previously partially written page at this index after IO
754 	 * completion before this write reaches this file offset) and hence we
755 	 * could do the wrong thing here (zero a page range incorrectly or fail
756 	 * to zero) and corrupt data.
757 	 */
758 	if (folio_ops && folio_ops->iomap_valid) {
759 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
760 							 &iter->iomap);
761 		if (!iomap_valid) {
762 			iter->iomap.flags |= IOMAP_F_STALE;
763 			status = 0;
764 			goto out_unlock;
765 		}
766 	}
767 
768 	if (pos + len > folio_pos(folio) + folio_size(folio))
769 		len = folio_pos(folio) + folio_size(folio) - pos;
770 
771 	if (srcmap->type == IOMAP_INLINE)
772 		status = iomap_write_begin_inline(iter, folio);
773 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
774 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
775 	else
776 		status = __iomap_write_begin(iter, pos, len, folio);
777 
778 	if (unlikely(status))
779 		goto out_unlock;
780 
781 	*foliop = folio;
782 	return 0;
783 
784 out_unlock:
785 	__iomap_put_folio(iter, pos, 0, folio);
786 	iomap_write_failed(iter->inode, pos, len);
787 
788 	return status;
789 }
790 
791 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
792 		size_t copied, struct folio *folio)
793 {
794 	flush_dcache_folio(folio);
795 
796 	/*
797 	 * The blocks that were entirely written will now be uptodate, so we
798 	 * don't have to worry about a read_folio reading them and overwriting a
799 	 * partial write.  However, if we've encountered a short write and only
800 	 * partially written into a block, it will not be marked uptodate, so a
801 	 * read_folio might come in and destroy our partial write.
802 	 *
803 	 * Do the simplest thing and just treat any short write to a
804 	 * non-uptodate page as a zero-length write, and force the caller to
805 	 * redo the whole thing.
806 	 */
807 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
808 		return 0;
809 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
810 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
811 	filemap_dirty_folio(inode->i_mapping, folio);
812 	return copied;
813 }
814 
815 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
816 		struct folio *folio, loff_t pos, size_t copied)
817 {
818 	const struct iomap *iomap = &iter->iomap;
819 	void *addr;
820 
821 	WARN_ON_ONCE(!folio_test_uptodate(folio));
822 	BUG_ON(!iomap_inline_data_valid(iomap));
823 
824 	flush_dcache_folio(folio);
825 	addr = kmap_local_folio(folio, pos);
826 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
827 	kunmap_local(addr);
828 
829 	mark_inode_dirty(iter->inode);
830 	return copied;
831 }
832 
833 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
834 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
835 		size_t copied, struct folio *folio)
836 {
837 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
838 	loff_t old_size = iter->inode->i_size;
839 	size_t ret;
840 
841 	if (srcmap->type == IOMAP_INLINE) {
842 		ret = iomap_write_end_inline(iter, folio, pos, copied);
843 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
844 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
845 				copied, &folio->page, NULL);
846 	} else {
847 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
848 	}
849 
850 	/*
851 	 * Update the in-memory inode size after copying the data into the page
852 	 * cache.  It's up to the file system to write the updated size to disk,
853 	 * preferably after I/O completion so that no stale data is exposed.
854 	 */
855 	if (pos + ret > old_size) {
856 		i_size_write(iter->inode, pos + ret);
857 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
858 	}
859 	__iomap_put_folio(iter, pos, ret, folio);
860 
861 	if (old_size < pos)
862 		pagecache_isize_extended(iter->inode, old_size, pos);
863 	if (ret < len)
864 		iomap_write_failed(iter->inode, pos + ret, len - ret);
865 	return ret;
866 }
867 
868 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
869 {
870 	loff_t length = iomap_length(iter);
871 	size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
872 	loff_t pos = iter->pos;
873 	ssize_t written = 0;
874 	long status = 0;
875 	struct address_space *mapping = iter->inode->i_mapping;
876 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
877 
878 	do {
879 		struct folio *folio;
880 		size_t offset;		/* Offset into folio */
881 		size_t bytes;		/* Bytes to write to folio */
882 		size_t copied;		/* Bytes copied from user */
883 
884 		offset = pos & (chunk - 1);
885 		bytes = min(chunk - offset, iov_iter_count(i));
886 		status = balance_dirty_pages_ratelimited_flags(mapping,
887 							       bdp_flags);
888 		if (unlikely(status))
889 			break;
890 
891 		if (bytes > length)
892 			bytes = length;
893 
894 		/*
895 		 * Bring in the user page that we'll copy from _first_.
896 		 * Otherwise there's a nasty deadlock on copying from the
897 		 * same page as we're writing to, without it being marked
898 		 * up-to-date.
899 		 *
900 		 * For async buffered writes the assumption is that the user
901 		 * page has already been faulted in. This can be optimized by
902 		 * faulting the user page.
903 		 */
904 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
905 			status = -EFAULT;
906 			break;
907 		}
908 
909 		status = iomap_write_begin(iter, pos, bytes, &folio);
910 		if (unlikely(status))
911 			break;
912 		if (iter->iomap.flags & IOMAP_F_STALE)
913 			break;
914 
915 		offset = offset_in_folio(folio, pos);
916 		if (bytes > folio_size(folio) - offset)
917 			bytes = folio_size(folio) - offset;
918 
919 		if (mapping_writably_mapped(mapping))
920 			flush_dcache_folio(folio);
921 
922 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
923 		status = iomap_write_end(iter, pos, bytes, copied, folio);
924 
925 		if (unlikely(copied != status))
926 			iov_iter_revert(i, copied - status);
927 
928 		cond_resched();
929 		if (unlikely(status == 0)) {
930 			/*
931 			 * A short copy made iomap_write_end() reject the
932 			 * thing entirely.  Might be memory poisoning
933 			 * halfway through, might be a race with munmap,
934 			 * might be severe memory pressure.
935 			 */
936 			if (copied)
937 				bytes = copied;
938 			if (chunk > PAGE_SIZE)
939 				chunk /= 2;
940 		} else {
941 			pos += status;
942 			written += status;
943 			length -= status;
944 		}
945 	} while (iov_iter_count(i) && length);
946 
947 	if (status == -EAGAIN) {
948 		iov_iter_revert(i, written);
949 		return -EAGAIN;
950 	}
951 	return written ? written : status;
952 }
953 
954 ssize_t
955 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
956 		const struct iomap_ops *ops)
957 {
958 	struct iomap_iter iter = {
959 		.inode		= iocb->ki_filp->f_mapping->host,
960 		.pos		= iocb->ki_pos,
961 		.len		= iov_iter_count(i),
962 		.flags		= IOMAP_WRITE,
963 	};
964 	ssize_t ret;
965 
966 	if (iocb->ki_flags & IOCB_NOWAIT)
967 		iter.flags |= IOMAP_NOWAIT;
968 
969 	while ((ret = iomap_iter(&iter, ops)) > 0)
970 		iter.processed = iomap_write_iter(&iter, i);
971 
972 	if (unlikely(iter.pos == iocb->ki_pos))
973 		return ret;
974 	ret = iter.pos - iocb->ki_pos;
975 	iocb->ki_pos = iter.pos;
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
979 
980 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
981 		struct folio *folio, loff_t start_byte, loff_t end_byte,
982 		iomap_punch_t punch)
983 {
984 	unsigned int first_blk, last_blk, i;
985 	loff_t last_byte;
986 	u8 blkbits = inode->i_blkbits;
987 	struct iomap_folio_state *ifs;
988 	int ret = 0;
989 
990 	/*
991 	 * When we have per-block dirty tracking, there can be
992 	 * blocks within a folio which are marked uptodate
993 	 * but not dirty. In that case it is necessary to punch
994 	 * out such blocks to avoid leaking any delalloc blocks.
995 	 */
996 	ifs = folio->private;
997 	if (!ifs)
998 		return ret;
999 
1000 	last_byte = min_t(loff_t, end_byte - 1,
1001 			folio_pos(folio) + folio_size(folio) - 1);
1002 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1003 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1004 	for (i = first_blk; i <= last_blk; i++) {
1005 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1006 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1007 				    1 << blkbits);
1008 			if (ret)
1009 				return ret;
1010 		}
1011 	}
1012 
1013 	return ret;
1014 }
1015 
1016 
1017 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1018 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1019 		iomap_punch_t punch)
1020 {
1021 	int ret = 0;
1022 
1023 	if (!folio_test_dirty(folio))
1024 		return ret;
1025 
1026 	/* if dirty, punch up to offset */
1027 	if (start_byte > *punch_start_byte) {
1028 		ret = punch(inode, *punch_start_byte,
1029 				start_byte - *punch_start_byte);
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	/* Punch non-dirty blocks within folio */
1035 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1036 			end_byte, punch);
1037 	if (ret)
1038 		return ret;
1039 
1040 	/*
1041 	 * Make sure the next punch start is correctly bound to
1042 	 * the end of this data range, not the end of the folio.
1043 	 */
1044 	*punch_start_byte = min_t(loff_t, end_byte,
1045 				folio_pos(folio) + folio_size(folio));
1046 
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Scan the data range passed to us for dirty page cache folios. If we find a
1052  * dirty folio, punch out the preceeding range and update the offset from which
1053  * the next punch will start from.
1054  *
1055  * We can punch out storage reservations under clean pages because they either
1056  * contain data that has been written back - in which case the delalloc punch
1057  * over that range is a no-op - or they have been read faults in which case they
1058  * contain zeroes and we can remove the delalloc backing range and any new
1059  * writes to those pages will do the normal hole filling operation...
1060  *
1061  * This makes the logic simple: we only need to keep the delalloc extents only
1062  * over the dirty ranges of the page cache.
1063  *
1064  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1065  * simplify range iterations.
1066  */
1067 static int iomap_write_delalloc_scan(struct inode *inode,
1068 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1069 		iomap_punch_t punch)
1070 {
1071 	while (start_byte < end_byte) {
1072 		struct folio	*folio;
1073 		int ret;
1074 
1075 		/* grab locked page */
1076 		folio = filemap_lock_folio(inode->i_mapping,
1077 				start_byte >> PAGE_SHIFT);
1078 		if (IS_ERR(folio)) {
1079 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1080 					PAGE_SIZE;
1081 			continue;
1082 		}
1083 
1084 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1085 						 start_byte, end_byte, punch);
1086 		if (ret) {
1087 			folio_unlock(folio);
1088 			folio_put(folio);
1089 			return ret;
1090 		}
1091 
1092 		/* move offset to start of next folio in range */
1093 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1094 		folio_unlock(folio);
1095 		folio_put(folio);
1096 	}
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Punch out all the delalloc blocks in the range given except for those that
1102  * have dirty data still pending in the page cache - those are going to be
1103  * written and so must still retain the delalloc backing for writeback.
1104  *
1105  * As we are scanning the page cache for data, we don't need to reimplement the
1106  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1107  * start and end of data ranges correctly even for sub-folio block sizes. This
1108  * byte range based iteration is especially convenient because it means we
1109  * don't have to care about variable size folios, nor where the start or end of
1110  * the data range lies within a folio, if they lie within the same folio or even
1111  * if there are multiple discontiguous data ranges within the folio.
1112  *
1113  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1114  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1115  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1116  * date. A write page fault can then mark it dirty. If we then fail a write()
1117  * beyond EOF into that up to date cached range, we allocate a delalloc block
1118  * beyond EOF and then have to punch it out. Because the range is up to date,
1119  * mapping_seek_hole_data() will return it, and we will skip the punch because
1120  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1121  * beyond EOF in this case as writeback will never write back and covert that
1122  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1123  * resulting in always punching out the range from the EOF to the end of the
1124  * range the iomap spans.
1125  *
1126  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1127  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1128  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1129  * returns the end of the data range (data_end). Using closed intervals would
1130  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1131  * the code to subtle off-by-one bugs....
1132  */
1133 static int iomap_write_delalloc_release(struct inode *inode,
1134 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1135 {
1136 	loff_t punch_start_byte = start_byte;
1137 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1138 	int error = 0;
1139 
1140 	/*
1141 	 * Lock the mapping to avoid races with page faults re-instantiating
1142 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1143 	 * cache and perform delalloc extent removal. Failing to do this can
1144 	 * leave dirty pages with no space reservation in the cache.
1145 	 */
1146 	filemap_invalidate_lock(inode->i_mapping);
1147 	while (start_byte < scan_end_byte) {
1148 		loff_t		data_end;
1149 
1150 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1151 				start_byte, scan_end_byte, SEEK_DATA);
1152 		/*
1153 		 * If there is no more data to scan, all that is left is to
1154 		 * punch out the remaining range.
1155 		 */
1156 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1157 			break;
1158 		if (start_byte < 0) {
1159 			error = start_byte;
1160 			goto out_unlock;
1161 		}
1162 		WARN_ON_ONCE(start_byte < punch_start_byte);
1163 		WARN_ON_ONCE(start_byte > scan_end_byte);
1164 
1165 		/*
1166 		 * We find the end of this contiguous cached data range by
1167 		 * seeking from start_byte to the beginning of the next hole.
1168 		 */
1169 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1170 				scan_end_byte, SEEK_HOLE);
1171 		if (data_end < 0) {
1172 			error = data_end;
1173 			goto out_unlock;
1174 		}
1175 		WARN_ON_ONCE(data_end <= start_byte);
1176 		WARN_ON_ONCE(data_end > scan_end_byte);
1177 
1178 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1179 				start_byte, data_end, punch);
1180 		if (error)
1181 			goto out_unlock;
1182 
1183 		/* The next data search starts at the end of this one. */
1184 		start_byte = data_end;
1185 	}
1186 
1187 	if (punch_start_byte < end_byte)
1188 		error = punch(inode, punch_start_byte,
1189 				end_byte - punch_start_byte);
1190 out_unlock:
1191 	filemap_invalidate_unlock(inode->i_mapping);
1192 	return error;
1193 }
1194 
1195 /*
1196  * When a short write occurs, the filesystem may need to remove reserved space
1197  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1198  * filesystems that use delayed allocation, we need to punch out delalloc
1199  * extents from the range that are not dirty in the page cache. As the write can
1200  * race with page faults, there can be dirty pages over the delalloc extent
1201  * outside the range of a short write but still within the delalloc extent
1202  * allocated for this iomap.
1203  *
1204  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1205  * simplify range iterations.
1206  *
1207  * The punch() callback *must* only punch delalloc extents in the range passed
1208  * to it. It must skip over all other types of extents in the range and leave
1209  * them completely unchanged. It must do this punch atomically with respect to
1210  * other extent modifications.
1211  *
1212  * The punch() callback may be called with a folio locked to prevent writeback
1213  * extent allocation racing at the edge of the range we are currently punching.
1214  * The locked folio may or may not cover the range being punched, so it is not
1215  * safe for the punch() callback to lock folios itself.
1216  *
1217  * Lock order is:
1218  *
1219  * inode->i_rwsem (shared or exclusive)
1220  *   inode->i_mapping->invalidate_lock (exclusive)
1221  *     folio_lock()
1222  *       ->punch
1223  *         internal filesystem allocation lock
1224  */
1225 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1226 		struct iomap *iomap, loff_t pos, loff_t length,
1227 		ssize_t written, iomap_punch_t punch)
1228 {
1229 	loff_t			start_byte;
1230 	loff_t			end_byte;
1231 	unsigned int		blocksize = i_blocksize(inode);
1232 
1233 	if (iomap->type != IOMAP_DELALLOC)
1234 		return 0;
1235 
1236 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1237 	if (!(iomap->flags & IOMAP_F_NEW))
1238 		return 0;
1239 
1240 	/*
1241 	 * start_byte refers to the first unused block after a short write. If
1242 	 * nothing was written, round offset down to point at the first block in
1243 	 * the range.
1244 	 */
1245 	if (unlikely(!written))
1246 		start_byte = round_down(pos, blocksize);
1247 	else
1248 		start_byte = round_up(pos + written, blocksize);
1249 	end_byte = round_up(pos + length, blocksize);
1250 
1251 	/* Nothing to do if we've written the entire delalloc extent */
1252 	if (start_byte >= end_byte)
1253 		return 0;
1254 
1255 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1256 					punch);
1257 }
1258 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1259 
1260 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1261 {
1262 	struct iomap *iomap = &iter->iomap;
1263 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1264 	loff_t pos = iter->pos;
1265 	loff_t length = iomap_length(iter);
1266 	loff_t written = 0;
1267 
1268 	/* don't bother with blocks that are not shared to start with */
1269 	if (!(iomap->flags & IOMAP_F_SHARED))
1270 		return length;
1271 	/* don't bother with holes or unwritten extents */
1272 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1273 		return length;
1274 
1275 	do {
1276 		struct folio *folio;
1277 		int status;
1278 		size_t offset;
1279 		size_t bytes = min_t(u64, SIZE_MAX, length);
1280 
1281 		status = iomap_write_begin(iter, pos, bytes, &folio);
1282 		if (unlikely(status))
1283 			return status;
1284 		if (iomap->flags & IOMAP_F_STALE)
1285 			break;
1286 
1287 		offset = offset_in_folio(folio, pos);
1288 		if (bytes > folio_size(folio) - offset)
1289 			bytes = folio_size(folio) - offset;
1290 
1291 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1292 		if (WARN_ON_ONCE(bytes == 0))
1293 			return -EIO;
1294 
1295 		cond_resched();
1296 
1297 		pos += bytes;
1298 		written += bytes;
1299 		length -= bytes;
1300 
1301 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1302 	} while (length > 0);
1303 
1304 	return written;
1305 }
1306 
1307 int
1308 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1309 		const struct iomap_ops *ops)
1310 {
1311 	struct iomap_iter iter = {
1312 		.inode		= inode,
1313 		.pos		= pos,
1314 		.len		= len,
1315 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1316 	};
1317 	int ret;
1318 
1319 	while ((ret = iomap_iter(&iter, ops)) > 0)
1320 		iter.processed = iomap_unshare_iter(&iter);
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1324 
1325 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1326 {
1327 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1328 	loff_t pos = iter->pos;
1329 	loff_t length = iomap_length(iter);
1330 	loff_t written = 0;
1331 
1332 	/* already zeroed?  we're done. */
1333 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1334 		return length;
1335 
1336 	do {
1337 		struct folio *folio;
1338 		int status;
1339 		size_t offset;
1340 		size_t bytes = min_t(u64, SIZE_MAX, length);
1341 
1342 		status = iomap_write_begin(iter, pos, bytes, &folio);
1343 		if (status)
1344 			return status;
1345 		if (iter->iomap.flags & IOMAP_F_STALE)
1346 			break;
1347 
1348 		offset = offset_in_folio(folio, pos);
1349 		if (bytes > folio_size(folio) - offset)
1350 			bytes = folio_size(folio) - offset;
1351 
1352 		folio_zero_range(folio, offset, bytes);
1353 		folio_mark_accessed(folio);
1354 
1355 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1356 		if (WARN_ON_ONCE(bytes == 0))
1357 			return -EIO;
1358 
1359 		pos += bytes;
1360 		length -= bytes;
1361 		written += bytes;
1362 	} while (length > 0);
1363 
1364 	if (did_zero)
1365 		*did_zero = true;
1366 	return written;
1367 }
1368 
1369 int
1370 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1371 		const struct iomap_ops *ops)
1372 {
1373 	struct iomap_iter iter = {
1374 		.inode		= inode,
1375 		.pos		= pos,
1376 		.len		= len,
1377 		.flags		= IOMAP_ZERO,
1378 	};
1379 	int ret;
1380 
1381 	while ((ret = iomap_iter(&iter, ops)) > 0)
1382 		iter.processed = iomap_zero_iter(&iter, did_zero);
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(iomap_zero_range);
1386 
1387 int
1388 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1389 		const struct iomap_ops *ops)
1390 {
1391 	unsigned int blocksize = i_blocksize(inode);
1392 	unsigned int off = pos & (blocksize - 1);
1393 
1394 	/* Block boundary? Nothing to do */
1395 	if (!off)
1396 		return 0;
1397 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1398 }
1399 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1400 
1401 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1402 		struct folio *folio)
1403 {
1404 	loff_t length = iomap_length(iter);
1405 	int ret;
1406 
1407 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1408 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1409 					      &iter->iomap);
1410 		if (ret)
1411 			return ret;
1412 		block_commit_write(&folio->page, 0, length);
1413 	} else {
1414 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1415 		folio_mark_dirty(folio);
1416 	}
1417 
1418 	return length;
1419 }
1420 
1421 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1422 {
1423 	struct iomap_iter iter = {
1424 		.inode		= file_inode(vmf->vma->vm_file),
1425 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1426 	};
1427 	struct folio *folio = page_folio(vmf->page);
1428 	ssize_t ret;
1429 
1430 	folio_lock(folio);
1431 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1432 	if (ret < 0)
1433 		goto out_unlock;
1434 	iter.pos = folio_pos(folio);
1435 	iter.len = ret;
1436 	while ((ret = iomap_iter(&iter, ops)) > 0)
1437 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1438 
1439 	if (ret < 0)
1440 		goto out_unlock;
1441 	folio_wait_stable(folio);
1442 	return VM_FAULT_LOCKED;
1443 out_unlock:
1444 	folio_unlock(folio);
1445 	return vmf_fs_error(ret);
1446 }
1447 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1448 
1449 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1450 		size_t len, int error)
1451 {
1452 	struct iomap_folio_state *ifs = folio->private;
1453 
1454 	if (error) {
1455 		folio_set_error(folio);
1456 		mapping_set_error(inode->i_mapping, error);
1457 	}
1458 
1459 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1460 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1461 
1462 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1463 		folio_end_writeback(folio);
1464 }
1465 
1466 /*
1467  * We're now finished for good with this ioend structure.  Update the page
1468  * state, release holds on bios, and finally free up memory.  Do not use the
1469  * ioend after this.
1470  */
1471 static u32
1472 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1473 {
1474 	struct inode *inode = ioend->io_inode;
1475 	struct bio *bio = &ioend->io_inline_bio;
1476 	struct bio *last = ioend->io_bio, *next;
1477 	u64 start = bio->bi_iter.bi_sector;
1478 	loff_t offset = ioend->io_offset;
1479 	bool quiet = bio_flagged(bio, BIO_QUIET);
1480 	u32 folio_count = 0;
1481 
1482 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1483 		struct folio_iter fi;
1484 
1485 		/*
1486 		 * For the last bio, bi_private points to the ioend, so we
1487 		 * need to explicitly end the iteration here.
1488 		 */
1489 		if (bio == last)
1490 			next = NULL;
1491 		else
1492 			next = bio->bi_private;
1493 
1494 		/* walk all folios in bio, ending page IO on them */
1495 		bio_for_each_folio_all(fi, bio) {
1496 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1497 					error);
1498 			folio_count++;
1499 		}
1500 		bio_put(bio);
1501 	}
1502 	/* The ioend has been freed by bio_put() */
1503 
1504 	if (unlikely(error && !quiet)) {
1505 		printk_ratelimited(KERN_ERR
1506 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1507 			inode->i_sb->s_id, inode->i_ino, offset, start);
1508 	}
1509 	return folio_count;
1510 }
1511 
1512 /*
1513  * Ioend completion routine for merged bios. This can only be called from task
1514  * contexts as merged ioends can be of unbound length. Hence we have to break up
1515  * the writeback completions into manageable chunks to avoid long scheduler
1516  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1517  * good batch processing throughput without creating adverse scheduler latency
1518  * conditions.
1519  */
1520 void
1521 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1522 {
1523 	struct list_head tmp;
1524 	u32 completions;
1525 
1526 	might_sleep();
1527 
1528 	list_replace_init(&ioend->io_list, &tmp);
1529 	completions = iomap_finish_ioend(ioend, error);
1530 
1531 	while (!list_empty(&tmp)) {
1532 		if (completions > IOEND_BATCH_SIZE * 8) {
1533 			cond_resched();
1534 			completions = 0;
1535 		}
1536 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1537 		list_del_init(&ioend->io_list);
1538 		completions += iomap_finish_ioend(ioend, error);
1539 	}
1540 }
1541 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1542 
1543 /*
1544  * We can merge two adjacent ioends if they have the same set of work to do.
1545  */
1546 static bool
1547 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1548 {
1549 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1550 		return false;
1551 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1552 	    (next->io_flags & IOMAP_F_SHARED))
1553 		return false;
1554 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1555 	    (next->io_type == IOMAP_UNWRITTEN))
1556 		return false;
1557 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1558 		return false;
1559 	/*
1560 	 * Do not merge physically discontiguous ioends. The filesystem
1561 	 * completion functions will have to iterate the physical
1562 	 * discontiguities even if we merge the ioends at a logical level, so
1563 	 * we don't gain anything by merging physical discontiguities here.
1564 	 *
1565 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1566 	 * submission so does not point to the start sector of the bio at
1567 	 * completion.
1568 	 */
1569 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1570 		return false;
1571 	return true;
1572 }
1573 
1574 void
1575 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1576 {
1577 	struct iomap_ioend *next;
1578 
1579 	INIT_LIST_HEAD(&ioend->io_list);
1580 
1581 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1582 			io_list))) {
1583 		if (!iomap_ioend_can_merge(ioend, next))
1584 			break;
1585 		list_move_tail(&next->io_list, &ioend->io_list);
1586 		ioend->io_size += next->io_size;
1587 	}
1588 }
1589 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1590 
1591 static int
1592 iomap_ioend_compare(void *priv, const struct list_head *a,
1593 		const struct list_head *b)
1594 {
1595 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1596 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1597 
1598 	if (ia->io_offset < ib->io_offset)
1599 		return -1;
1600 	if (ia->io_offset > ib->io_offset)
1601 		return 1;
1602 	return 0;
1603 }
1604 
1605 void
1606 iomap_sort_ioends(struct list_head *ioend_list)
1607 {
1608 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1609 }
1610 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1611 
1612 static void iomap_writepage_end_bio(struct bio *bio)
1613 {
1614 	struct iomap_ioend *ioend = bio->bi_private;
1615 
1616 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1617 }
1618 
1619 /*
1620  * Submit the final bio for an ioend.
1621  *
1622  * If @error is non-zero, it means that we have a situation where some part of
1623  * the submission process has failed after we've marked pages for writeback
1624  * and unlocked them.  In this situation, we need to fail the bio instead of
1625  * submitting it.  This typically only happens on a filesystem shutdown.
1626  */
1627 static int
1628 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1629 		int error)
1630 {
1631 	ioend->io_bio->bi_private = ioend;
1632 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1633 
1634 	if (wpc->ops->prepare_ioend)
1635 		error = wpc->ops->prepare_ioend(ioend, error);
1636 	if (error) {
1637 		/*
1638 		 * If we're failing the IO now, just mark the ioend with an
1639 		 * error and finish it.  This will run IO completion immediately
1640 		 * as there is only one reference to the ioend at this point in
1641 		 * time.
1642 		 */
1643 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1644 		bio_endio(ioend->io_bio);
1645 		return error;
1646 	}
1647 
1648 	submit_bio(ioend->io_bio);
1649 	return 0;
1650 }
1651 
1652 static struct iomap_ioend *
1653 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1654 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1655 {
1656 	struct iomap_ioend *ioend;
1657 	struct bio *bio;
1658 
1659 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1660 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1661 			       GFP_NOFS, &iomap_ioend_bioset);
1662 	bio->bi_iter.bi_sector = sector;
1663 	wbc_init_bio(wbc, bio);
1664 
1665 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1666 	INIT_LIST_HEAD(&ioend->io_list);
1667 	ioend->io_type = wpc->iomap.type;
1668 	ioend->io_flags = wpc->iomap.flags;
1669 	ioend->io_inode = inode;
1670 	ioend->io_size = 0;
1671 	ioend->io_folios = 0;
1672 	ioend->io_offset = offset;
1673 	ioend->io_bio = bio;
1674 	ioend->io_sector = sector;
1675 	return ioend;
1676 }
1677 
1678 /*
1679  * Allocate a new bio, and chain the old bio to the new one.
1680  *
1681  * Note that we have to perform the chaining in this unintuitive order
1682  * so that the bi_private linkage is set up in the right direction for the
1683  * traversal in iomap_finish_ioend().
1684  */
1685 static struct bio *
1686 iomap_chain_bio(struct bio *prev)
1687 {
1688 	struct bio *new;
1689 
1690 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1691 	bio_clone_blkg_association(new, prev);
1692 	new->bi_iter.bi_sector = bio_end_sector(prev);
1693 
1694 	bio_chain(prev, new);
1695 	bio_get(prev);		/* for iomap_finish_ioend */
1696 	submit_bio(prev);
1697 	return new;
1698 }
1699 
1700 static bool
1701 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1702 		sector_t sector)
1703 {
1704 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1705 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1706 		return false;
1707 	if (wpc->iomap.type != wpc->ioend->io_type)
1708 		return false;
1709 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1710 		return false;
1711 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1712 		return false;
1713 	/*
1714 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1715 	 * also prevents long tight loops ending page writeback on all the
1716 	 * folios in the ioend.
1717 	 */
1718 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1719 		return false;
1720 	return true;
1721 }
1722 
1723 /*
1724  * Test to see if we have an existing ioend structure that we could append to
1725  * first; otherwise finish off the current ioend and start another.
1726  */
1727 static void
1728 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1729 		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1730 		struct writeback_control *wbc, struct list_head *iolist)
1731 {
1732 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1733 	unsigned len = i_blocksize(inode);
1734 	size_t poff = offset_in_folio(folio, pos);
1735 
1736 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1737 		if (wpc->ioend)
1738 			list_add(&wpc->ioend->io_list, iolist);
1739 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1740 	}
1741 
1742 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1743 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1744 		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1745 	}
1746 
1747 	if (ifs)
1748 		atomic_add(len, &ifs->write_bytes_pending);
1749 	wpc->ioend->io_size += len;
1750 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1751 }
1752 
1753 /*
1754  * We implement an immediate ioend submission policy here to avoid needing to
1755  * chain multiple ioends and hence nest mempool allocations which can violate
1756  * the forward progress guarantees we need to provide. The current ioend we're
1757  * adding blocks to is cached in the writepage context, and if the new block
1758  * doesn't append to the cached ioend, it will create a new ioend and cache that
1759  * instead.
1760  *
1761  * If a new ioend is created and cached, the old ioend is returned and queued
1762  * locally for submission once the entire page is processed or an error has been
1763  * detected.  While ioends are submitted immediately after they are completed,
1764  * batching optimisations are provided by higher level block plugging.
1765  *
1766  * At the end of a writeback pass, there will be a cached ioend remaining on the
1767  * writepage context that the caller will need to submit.
1768  */
1769 static int
1770 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1771 		struct writeback_control *wbc, struct inode *inode,
1772 		struct folio *folio, u64 end_pos)
1773 {
1774 	struct iomap_folio_state *ifs = folio->private;
1775 	struct iomap_ioend *ioend, *next;
1776 	unsigned len = i_blocksize(inode);
1777 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1778 	u64 pos = folio_pos(folio);
1779 	int error = 0, count = 0, i;
1780 	LIST_HEAD(submit_list);
1781 
1782 	WARN_ON_ONCE(end_pos <= pos);
1783 
1784 	if (!ifs && nblocks > 1) {
1785 		ifs = ifs_alloc(inode, folio, 0);
1786 		iomap_set_range_dirty(folio, 0, end_pos - pos);
1787 	}
1788 
1789 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1790 
1791 	/*
1792 	 * Walk through the folio to find areas to write back. If we
1793 	 * run off the end of the current map or find the current map
1794 	 * invalid, grab a new one.
1795 	 */
1796 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1797 		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1798 			continue;
1799 
1800 		error = wpc->ops->map_blocks(wpc, inode, pos);
1801 		if (error)
1802 			break;
1803 		trace_iomap_writepage_map(inode, &wpc->iomap);
1804 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1805 			continue;
1806 		if (wpc->iomap.type == IOMAP_HOLE)
1807 			continue;
1808 		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1809 				 &submit_list);
1810 		count++;
1811 	}
1812 	if (count)
1813 		wpc->ioend->io_folios++;
1814 
1815 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1816 	WARN_ON_ONCE(!folio_test_locked(folio));
1817 	WARN_ON_ONCE(folio_test_writeback(folio));
1818 	WARN_ON_ONCE(folio_test_dirty(folio));
1819 
1820 	/*
1821 	 * We cannot cancel the ioend directly here on error.  We may have
1822 	 * already set other pages under writeback and hence we have to run I/O
1823 	 * completion to mark the error state of the pages under writeback
1824 	 * appropriately.
1825 	 */
1826 	if (unlikely(error)) {
1827 		/*
1828 		 * Let the filesystem know what portion of the current page
1829 		 * failed to map. If the page hasn't been added to ioend, it
1830 		 * won't be affected by I/O completion and we must unlock it
1831 		 * now.
1832 		 */
1833 		if (wpc->ops->discard_folio)
1834 			wpc->ops->discard_folio(folio, pos);
1835 		if (!count) {
1836 			folio_unlock(folio);
1837 			goto done;
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * We can have dirty bits set past end of file in page_mkwrite path
1843 	 * while mapping the last partial folio. Hence it's better to clear
1844 	 * all the dirty bits in the folio here.
1845 	 */
1846 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1847 	folio_start_writeback(folio);
1848 	folio_unlock(folio);
1849 
1850 	/*
1851 	 * Preserve the original error if there was one; catch
1852 	 * submission errors here and propagate into subsequent ioend
1853 	 * submissions.
1854 	 */
1855 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1856 		int error2;
1857 
1858 		list_del_init(&ioend->io_list);
1859 		error2 = iomap_submit_ioend(wpc, ioend, error);
1860 		if (error2 && !error)
1861 			error = error2;
1862 	}
1863 
1864 	/*
1865 	 * We can end up here with no error and nothing to write only if we race
1866 	 * with a partial page truncate on a sub-page block sized filesystem.
1867 	 */
1868 	if (!count)
1869 		folio_end_writeback(folio);
1870 done:
1871 	mapping_set_error(inode->i_mapping, error);
1872 	return error;
1873 }
1874 
1875 /*
1876  * Write out a dirty page.
1877  *
1878  * For delalloc space on the page, we need to allocate space and flush it.
1879  * For unwritten space on the page, we need to start the conversion to
1880  * regular allocated space.
1881  */
1882 static int iomap_do_writepage(struct folio *folio,
1883 		struct writeback_control *wbc, void *data)
1884 {
1885 	struct iomap_writepage_ctx *wpc = data;
1886 	struct inode *inode = folio->mapping->host;
1887 	u64 end_pos, isize;
1888 
1889 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1890 
1891 	/*
1892 	 * Refuse to write the folio out if we're called from reclaim context.
1893 	 *
1894 	 * This avoids stack overflows when called from deeply used stacks in
1895 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1896 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1897 	 *
1898 	 * This should never happen except in the case of a VM regression so
1899 	 * warn about it.
1900 	 */
1901 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1902 			PF_MEMALLOC))
1903 		goto redirty;
1904 
1905 	/*
1906 	 * Is this folio beyond the end of the file?
1907 	 *
1908 	 * The folio index is less than the end_index, adjust the end_pos
1909 	 * to the highest offset that this folio should represent.
1910 	 * -----------------------------------------------------
1911 	 * |			file mapping	       | <EOF> |
1912 	 * -----------------------------------------------------
1913 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1914 	 * ^--------------------------------^----------|--------
1915 	 * |     desired writeback range    |      see else    |
1916 	 * ---------------------------------^------------------|
1917 	 */
1918 	isize = i_size_read(inode);
1919 	end_pos = folio_pos(folio) + folio_size(folio);
1920 	if (end_pos > isize) {
1921 		/*
1922 		 * Check whether the page to write out is beyond or straddles
1923 		 * i_size or not.
1924 		 * -------------------------------------------------------
1925 		 * |		file mapping		        | <EOF>  |
1926 		 * -------------------------------------------------------
1927 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1928 		 * ^--------------------------------^-----------|---------
1929 		 * |				    |      Straddles     |
1930 		 * ---------------------------------^-----------|--------|
1931 		 */
1932 		size_t poff = offset_in_folio(folio, isize);
1933 		pgoff_t end_index = isize >> PAGE_SHIFT;
1934 
1935 		/*
1936 		 * Skip the page if it's fully outside i_size, e.g.
1937 		 * due to a truncate operation that's in progress.  We've
1938 		 * cleaned this page and truncate will finish things off for
1939 		 * us.
1940 		 *
1941 		 * Note that the end_index is unsigned long.  If the given
1942 		 * offset is greater than 16TB on a 32-bit system then if we
1943 		 * checked if the page is fully outside i_size with
1944 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1945 		 * overflow and evaluate to 0.  Hence this page would be
1946 		 * redirtied and written out repeatedly, which would result in
1947 		 * an infinite loop; the user program performing this operation
1948 		 * would hang.  Instead, we can detect this situation by
1949 		 * checking if the page is totally beyond i_size or if its
1950 		 * offset is just equal to the EOF.
1951 		 */
1952 		if (folio->index > end_index ||
1953 		    (folio->index == end_index && poff == 0))
1954 			goto unlock;
1955 
1956 		/*
1957 		 * The page straddles i_size.  It must be zeroed out on each
1958 		 * and every writepage invocation because it may be mmapped.
1959 		 * "A file is mapped in multiples of the page size.  For a file
1960 		 * that is not a multiple of the page size, the remaining
1961 		 * memory is zeroed when mapped, and writes to that region are
1962 		 * not written out to the file."
1963 		 */
1964 		folio_zero_segment(folio, poff, folio_size(folio));
1965 		end_pos = isize;
1966 	}
1967 
1968 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1969 
1970 redirty:
1971 	folio_redirty_for_writepage(wbc, folio);
1972 unlock:
1973 	folio_unlock(folio);
1974 	return 0;
1975 }
1976 
1977 int
1978 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1979 		struct iomap_writepage_ctx *wpc,
1980 		const struct iomap_writeback_ops *ops)
1981 {
1982 	int			ret;
1983 
1984 	wpc->ops = ops;
1985 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1986 	if (!wpc->ioend)
1987 		return ret;
1988 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
1989 }
1990 EXPORT_SYMBOL_GPL(iomap_writepages);
1991 
1992 static int __init iomap_init(void)
1993 {
1994 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1995 			   offsetof(struct iomap_ioend, io_inline_bio),
1996 			   BIOSET_NEED_BVECS);
1997 }
1998 fs_initcall(iomap_init);
1999