xref: /linux/fs/kernfs/file.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 
18 #include "kernfs-internal.h"
19 
20 /*
21  * There's one kernfs_open_file for each open file and one kernfs_open_node
22  * for each kernfs_node with one or more open files.
23  *
24  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
25  * protected by kernfs_open_node_lock.
26  *
27  * filp->private_data points to seq_file whose ->private points to
28  * kernfs_open_file.  kernfs_open_files are chained at
29  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
30  */
31 static DEFINE_SPINLOCK(kernfs_open_node_lock);
32 static DEFINE_MUTEX(kernfs_open_file_mutex);
33 
34 struct kernfs_open_node {
35 	atomic_t		refcnt;
36 	atomic_t		event;
37 	wait_queue_head_t	poll;
38 	struct list_head	files; /* goes through kernfs_open_file.list */
39 };
40 
41 /*
42  * kernfs_notify() may be called from any context and bounces notifications
43  * through a work item.  To minimize space overhead in kernfs_node, the
44  * pending queue is implemented as a singly linked list of kernfs_nodes.
45  * The list is terminated with the self pointer so that whether a
46  * kernfs_node is on the list or not can be determined by testing the next
47  * pointer for NULL.
48  */
49 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
50 
51 static DEFINE_SPINLOCK(kernfs_notify_lock);
52 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
53 
54 static struct kernfs_open_file *kernfs_of(struct file *file)
55 {
56 	return ((struct seq_file *)file->private_data)->private;
57 }
58 
59 /*
60  * Determine the kernfs_ops for the given kernfs_node.  This function must
61  * be called while holding an active reference.
62  */
63 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
64 {
65 	if (kn->flags & KERNFS_LOCKDEP)
66 		lockdep_assert_held(kn);
67 	return kn->attr.ops;
68 }
69 
70 /*
71  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
72  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
73  * a seq_file iteration which is fully initialized with an active reference
74  * or an aborted kernfs_seq_start() due to get_active failure.  The
75  * position pointer is the only context for each seq_file iteration and
76  * thus the stop condition should be encoded in it.  As the return value is
77  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
78  * choice to indicate get_active failure.
79  *
80  * Unfortunately, this is complicated due to the optional custom seq_file
81  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
82  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
83  * custom seq_file operations and thus can't decide whether put_active
84  * should be performed or not only on ERR_PTR(-ENODEV).
85  *
86  * This is worked around by factoring out the custom seq_stop() and
87  * put_active part into kernfs_seq_stop_active(), skipping it from
88  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
89  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
90  * that kernfs_seq_stop_active() is skipped only after get_active failure.
91  */
92 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
93 {
94 	struct kernfs_open_file *of = sf->private;
95 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
96 
97 	if (ops->seq_stop)
98 		ops->seq_stop(sf, v);
99 	kernfs_put_active(of->kn);
100 }
101 
102 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
103 {
104 	struct kernfs_open_file *of = sf->private;
105 	const struct kernfs_ops *ops;
106 
107 	/*
108 	 * @of->mutex nests outside active ref and is primarily to ensure that
109 	 * the ops aren't called concurrently for the same open file.
110 	 */
111 	mutex_lock(&of->mutex);
112 	if (!kernfs_get_active(of->kn))
113 		return ERR_PTR(-ENODEV);
114 
115 	ops = kernfs_ops(of->kn);
116 	if (ops->seq_start) {
117 		void *next = ops->seq_start(sf, ppos);
118 		/* see the comment above kernfs_seq_stop_active() */
119 		if (next == ERR_PTR(-ENODEV))
120 			kernfs_seq_stop_active(sf, next);
121 		return next;
122 	} else {
123 		/*
124 		 * The same behavior and code as single_open().  Returns
125 		 * !NULL if pos is at the beginning; otherwise, NULL.
126 		 */
127 		return NULL + !*ppos;
128 	}
129 }
130 
131 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
132 {
133 	struct kernfs_open_file *of = sf->private;
134 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
135 
136 	if (ops->seq_next) {
137 		void *next = ops->seq_next(sf, v, ppos);
138 		/* see the comment above kernfs_seq_stop_active() */
139 		if (next == ERR_PTR(-ENODEV))
140 			kernfs_seq_stop_active(sf, next);
141 		return next;
142 	} else {
143 		/*
144 		 * The same behavior and code as single_open(), always
145 		 * terminate after the initial read.
146 		 */
147 		++*ppos;
148 		return NULL;
149 	}
150 }
151 
152 static void kernfs_seq_stop(struct seq_file *sf, void *v)
153 {
154 	struct kernfs_open_file *of = sf->private;
155 
156 	if (v != ERR_PTR(-ENODEV))
157 		kernfs_seq_stop_active(sf, v);
158 	mutex_unlock(&of->mutex);
159 }
160 
161 static int kernfs_seq_show(struct seq_file *sf, void *v)
162 {
163 	struct kernfs_open_file *of = sf->private;
164 
165 	of->event = atomic_read(&of->kn->attr.open->event);
166 
167 	return of->kn->attr.ops->seq_show(sf, v);
168 }
169 
170 static const struct seq_operations kernfs_seq_ops = {
171 	.start = kernfs_seq_start,
172 	.next = kernfs_seq_next,
173 	.stop = kernfs_seq_stop,
174 	.show = kernfs_seq_show,
175 };
176 
177 /*
178  * As reading a bin file can have side-effects, the exact offset and bytes
179  * specified in read(2) call should be passed to the read callback making
180  * it difficult to use seq_file.  Implement simplistic custom buffering for
181  * bin files.
182  */
183 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
184 				       char __user *user_buf, size_t count,
185 				       loff_t *ppos)
186 {
187 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
188 	const struct kernfs_ops *ops;
189 	char *buf;
190 
191 	buf = of->prealloc_buf;
192 	if (buf)
193 		mutex_lock(&of->prealloc_mutex);
194 	else
195 		buf = kmalloc(len, GFP_KERNEL);
196 	if (!buf)
197 		return -ENOMEM;
198 
199 	/*
200 	 * @of->mutex nests outside active ref and is used both to ensure that
201 	 * the ops aren't called concurrently for the same open file.
202 	 */
203 	mutex_lock(&of->mutex);
204 	if (!kernfs_get_active(of->kn)) {
205 		len = -ENODEV;
206 		mutex_unlock(&of->mutex);
207 		goto out_free;
208 	}
209 
210 	of->event = atomic_read(&of->kn->attr.open->event);
211 	ops = kernfs_ops(of->kn);
212 	if (ops->read)
213 		len = ops->read(of, buf, len, *ppos);
214 	else
215 		len = -EINVAL;
216 
217 	kernfs_put_active(of->kn);
218 	mutex_unlock(&of->mutex);
219 
220 	if (len < 0)
221 		goto out_free;
222 
223 	if (copy_to_user(user_buf, buf, len)) {
224 		len = -EFAULT;
225 		goto out_free;
226 	}
227 
228 	*ppos += len;
229 
230  out_free:
231 	if (buf == of->prealloc_buf)
232 		mutex_unlock(&of->prealloc_mutex);
233 	else
234 		kfree(buf);
235 	return len;
236 }
237 
238 /**
239  * kernfs_fop_read - kernfs vfs read callback
240  * @file: file pointer
241  * @user_buf: data to write
242  * @count: number of bytes
243  * @ppos: starting offset
244  */
245 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
246 			       size_t count, loff_t *ppos)
247 {
248 	struct kernfs_open_file *of = kernfs_of(file);
249 
250 	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
251 		return seq_read(file, user_buf, count, ppos);
252 	else
253 		return kernfs_file_direct_read(of, user_buf, count, ppos);
254 }
255 
256 /**
257  * kernfs_fop_write - kernfs vfs write callback
258  * @file: file pointer
259  * @user_buf: data to write
260  * @count: number of bytes
261  * @ppos: starting offset
262  *
263  * Copy data in from userland and pass it to the matching kernfs write
264  * operation.
265  *
266  * There is no easy way for us to know if userspace is only doing a partial
267  * write, so we don't support them. We expect the entire buffer to come on
268  * the first write.  Hint: if you're writing a value, first read the file,
269  * modify only the the value you're changing, then write entire buffer
270  * back.
271  */
272 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
273 				size_t count, loff_t *ppos)
274 {
275 	struct kernfs_open_file *of = kernfs_of(file);
276 	const struct kernfs_ops *ops;
277 	ssize_t len;
278 	char *buf;
279 
280 	if (of->atomic_write_len) {
281 		len = count;
282 		if (len > of->atomic_write_len)
283 			return -E2BIG;
284 	} else {
285 		len = min_t(size_t, count, PAGE_SIZE);
286 	}
287 
288 	buf = of->prealloc_buf;
289 	if (buf)
290 		mutex_lock(&of->prealloc_mutex);
291 	else
292 		buf = kmalloc(len + 1, GFP_KERNEL);
293 	if (!buf)
294 		return -ENOMEM;
295 
296 	if (copy_from_user(buf, user_buf, len)) {
297 		len = -EFAULT;
298 		goto out_free;
299 	}
300 	buf[len] = '\0';	/* guarantee string termination */
301 
302 	/*
303 	 * @of->mutex nests outside active ref and is used both to ensure that
304 	 * the ops aren't called concurrently for the same open file.
305 	 */
306 	mutex_lock(&of->mutex);
307 	if (!kernfs_get_active(of->kn)) {
308 		mutex_unlock(&of->mutex);
309 		len = -ENODEV;
310 		goto out_free;
311 	}
312 
313 	ops = kernfs_ops(of->kn);
314 	if (ops->write)
315 		len = ops->write(of, buf, len, *ppos);
316 	else
317 		len = -EINVAL;
318 
319 	kernfs_put_active(of->kn);
320 	mutex_unlock(&of->mutex);
321 
322 	if (len > 0)
323 		*ppos += len;
324 
325 out_free:
326 	if (buf == of->prealloc_buf)
327 		mutex_unlock(&of->prealloc_mutex);
328 	else
329 		kfree(buf);
330 	return len;
331 }
332 
333 static void kernfs_vma_open(struct vm_area_struct *vma)
334 {
335 	struct file *file = vma->vm_file;
336 	struct kernfs_open_file *of = kernfs_of(file);
337 
338 	if (!of->vm_ops)
339 		return;
340 
341 	if (!kernfs_get_active(of->kn))
342 		return;
343 
344 	if (of->vm_ops->open)
345 		of->vm_ops->open(vma);
346 
347 	kernfs_put_active(of->kn);
348 }
349 
350 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
351 {
352 	struct file *file = vmf->vma->vm_file;
353 	struct kernfs_open_file *of = kernfs_of(file);
354 	vm_fault_t ret;
355 
356 	if (!of->vm_ops)
357 		return VM_FAULT_SIGBUS;
358 
359 	if (!kernfs_get_active(of->kn))
360 		return VM_FAULT_SIGBUS;
361 
362 	ret = VM_FAULT_SIGBUS;
363 	if (of->vm_ops->fault)
364 		ret = of->vm_ops->fault(vmf);
365 
366 	kernfs_put_active(of->kn);
367 	return ret;
368 }
369 
370 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
371 {
372 	struct file *file = vmf->vma->vm_file;
373 	struct kernfs_open_file *of = kernfs_of(file);
374 	vm_fault_t ret;
375 
376 	if (!of->vm_ops)
377 		return VM_FAULT_SIGBUS;
378 
379 	if (!kernfs_get_active(of->kn))
380 		return VM_FAULT_SIGBUS;
381 
382 	ret = 0;
383 	if (of->vm_ops->page_mkwrite)
384 		ret = of->vm_ops->page_mkwrite(vmf);
385 	else
386 		file_update_time(file);
387 
388 	kernfs_put_active(of->kn);
389 	return ret;
390 }
391 
392 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
393 			     void *buf, int len, int write)
394 {
395 	struct file *file = vma->vm_file;
396 	struct kernfs_open_file *of = kernfs_of(file);
397 	int ret;
398 
399 	if (!of->vm_ops)
400 		return -EINVAL;
401 
402 	if (!kernfs_get_active(of->kn))
403 		return -EINVAL;
404 
405 	ret = -EINVAL;
406 	if (of->vm_ops->access)
407 		ret = of->vm_ops->access(vma, addr, buf, len, write);
408 
409 	kernfs_put_active(of->kn);
410 	return ret;
411 }
412 
413 #ifdef CONFIG_NUMA
414 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
415 				 struct mempolicy *new)
416 {
417 	struct file *file = vma->vm_file;
418 	struct kernfs_open_file *of = kernfs_of(file);
419 	int ret;
420 
421 	if (!of->vm_ops)
422 		return 0;
423 
424 	if (!kernfs_get_active(of->kn))
425 		return -EINVAL;
426 
427 	ret = 0;
428 	if (of->vm_ops->set_policy)
429 		ret = of->vm_ops->set_policy(vma, new);
430 
431 	kernfs_put_active(of->kn);
432 	return ret;
433 }
434 
435 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
436 					       unsigned long addr)
437 {
438 	struct file *file = vma->vm_file;
439 	struct kernfs_open_file *of = kernfs_of(file);
440 	struct mempolicy *pol;
441 
442 	if (!of->vm_ops)
443 		return vma->vm_policy;
444 
445 	if (!kernfs_get_active(of->kn))
446 		return vma->vm_policy;
447 
448 	pol = vma->vm_policy;
449 	if (of->vm_ops->get_policy)
450 		pol = of->vm_ops->get_policy(vma, addr);
451 
452 	kernfs_put_active(of->kn);
453 	return pol;
454 }
455 
456 #endif
457 
458 static const struct vm_operations_struct kernfs_vm_ops = {
459 	.open		= kernfs_vma_open,
460 	.fault		= kernfs_vma_fault,
461 	.page_mkwrite	= kernfs_vma_page_mkwrite,
462 	.access		= kernfs_vma_access,
463 #ifdef CONFIG_NUMA
464 	.set_policy	= kernfs_vma_set_policy,
465 	.get_policy	= kernfs_vma_get_policy,
466 #endif
467 };
468 
469 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
470 {
471 	struct kernfs_open_file *of = kernfs_of(file);
472 	const struct kernfs_ops *ops;
473 	int rc;
474 
475 	/*
476 	 * mmap path and of->mutex are prone to triggering spurious lockdep
477 	 * warnings and we don't want to add spurious locking dependency
478 	 * between the two.  Check whether mmap is actually implemented
479 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
480 	 * comment in kernfs_file_open() for more details.
481 	 */
482 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
483 		return -ENODEV;
484 
485 	mutex_lock(&of->mutex);
486 
487 	rc = -ENODEV;
488 	if (!kernfs_get_active(of->kn))
489 		goto out_unlock;
490 
491 	ops = kernfs_ops(of->kn);
492 	rc = ops->mmap(of, vma);
493 	if (rc)
494 		goto out_put;
495 
496 	/*
497 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
498 	 * to satisfy versions of X which crash if the mmap fails: that
499 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
500 	 */
501 	if (vma->vm_file != file)
502 		goto out_put;
503 
504 	rc = -EINVAL;
505 	if (of->mmapped && of->vm_ops != vma->vm_ops)
506 		goto out_put;
507 
508 	/*
509 	 * It is not possible to successfully wrap close.
510 	 * So error if someone is trying to use close.
511 	 */
512 	rc = -EINVAL;
513 	if (vma->vm_ops && vma->vm_ops->close)
514 		goto out_put;
515 
516 	rc = 0;
517 	of->mmapped = true;
518 	of->vm_ops = vma->vm_ops;
519 	vma->vm_ops = &kernfs_vm_ops;
520 out_put:
521 	kernfs_put_active(of->kn);
522 out_unlock:
523 	mutex_unlock(&of->mutex);
524 
525 	return rc;
526 }
527 
528 /**
529  *	kernfs_get_open_node - get or create kernfs_open_node
530  *	@kn: target kernfs_node
531  *	@of: kernfs_open_file for this instance of open
532  *
533  *	If @kn->attr.open exists, increment its reference count; otherwise,
534  *	create one.  @of is chained to the files list.
535  *
536  *	LOCKING:
537  *	Kernel thread context (may sleep).
538  *
539  *	RETURNS:
540  *	0 on success, -errno on failure.
541  */
542 static int kernfs_get_open_node(struct kernfs_node *kn,
543 				struct kernfs_open_file *of)
544 {
545 	struct kernfs_open_node *on, *new_on = NULL;
546 
547  retry:
548 	mutex_lock(&kernfs_open_file_mutex);
549 	spin_lock_irq(&kernfs_open_node_lock);
550 
551 	if (!kn->attr.open && new_on) {
552 		kn->attr.open = new_on;
553 		new_on = NULL;
554 	}
555 
556 	on = kn->attr.open;
557 	if (on) {
558 		atomic_inc(&on->refcnt);
559 		list_add_tail(&of->list, &on->files);
560 	}
561 
562 	spin_unlock_irq(&kernfs_open_node_lock);
563 	mutex_unlock(&kernfs_open_file_mutex);
564 
565 	if (on) {
566 		kfree(new_on);
567 		return 0;
568 	}
569 
570 	/* not there, initialize a new one and retry */
571 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
572 	if (!new_on)
573 		return -ENOMEM;
574 
575 	atomic_set(&new_on->refcnt, 0);
576 	atomic_set(&new_on->event, 1);
577 	init_waitqueue_head(&new_on->poll);
578 	INIT_LIST_HEAD(&new_on->files);
579 	goto retry;
580 }
581 
582 /**
583  *	kernfs_put_open_node - put kernfs_open_node
584  *	@kn: target kernfs_nodet
585  *	@of: associated kernfs_open_file
586  *
587  *	Put @kn->attr.open and unlink @of from the files list.  If
588  *	reference count reaches zero, disassociate and free it.
589  *
590  *	LOCKING:
591  *	None.
592  */
593 static void kernfs_put_open_node(struct kernfs_node *kn,
594 				 struct kernfs_open_file *of)
595 {
596 	struct kernfs_open_node *on = kn->attr.open;
597 	unsigned long flags;
598 
599 	mutex_lock(&kernfs_open_file_mutex);
600 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
601 
602 	if (of)
603 		list_del(&of->list);
604 
605 	if (atomic_dec_and_test(&on->refcnt))
606 		kn->attr.open = NULL;
607 	else
608 		on = NULL;
609 
610 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
611 	mutex_unlock(&kernfs_open_file_mutex);
612 
613 	kfree(on);
614 }
615 
616 static int kernfs_fop_open(struct inode *inode, struct file *file)
617 {
618 	struct kernfs_node *kn = inode->i_private;
619 	struct kernfs_root *root = kernfs_root(kn);
620 	const struct kernfs_ops *ops;
621 	struct kernfs_open_file *of;
622 	bool has_read, has_write, has_mmap;
623 	int error = -EACCES;
624 
625 	if (!kernfs_get_active(kn))
626 		return -ENODEV;
627 
628 	ops = kernfs_ops(kn);
629 
630 	has_read = ops->seq_show || ops->read || ops->mmap;
631 	has_write = ops->write || ops->mmap;
632 	has_mmap = ops->mmap;
633 
634 	/* see the flag definition for details */
635 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
636 		if ((file->f_mode & FMODE_WRITE) &&
637 		    (!(inode->i_mode & S_IWUGO) || !has_write))
638 			goto err_out;
639 
640 		if ((file->f_mode & FMODE_READ) &&
641 		    (!(inode->i_mode & S_IRUGO) || !has_read))
642 			goto err_out;
643 	}
644 
645 	/* allocate a kernfs_open_file for the file */
646 	error = -ENOMEM;
647 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
648 	if (!of)
649 		goto err_out;
650 
651 	/*
652 	 * The following is done to give a different lockdep key to
653 	 * @of->mutex for files which implement mmap.  This is a rather
654 	 * crude way to avoid false positive lockdep warning around
655 	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
656 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
657 	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
658 	 * open file has a separate mutex, it's okay as long as those don't
659 	 * happen on the same file.  At this point, we can't easily give
660 	 * each file a separate locking class.  Let's differentiate on
661 	 * whether the file has mmap or not for now.
662 	 *
663 	 * Both paths of the branch look the same.  They're supposed to
664 	 * look that way and give @of->mutex different static lockdep keys.
665 	 */
666 	if (has_mmap)
667 		mutex_init(&of->mutex);
668 	else
669 		mutex_init(&of->mutex);
670 
671 	of->kn = kn;
672 	of->file = file;
673 
674 	/*
675 	 * Write path needs to atomic_write_len outside active reference.
676 	 * Cache it in open_file.  See kernfs_fop_write() for details.
677 	 */
678 	of->atomic_write_len = ops->atomic_write_len;
679 
680 	error = -EINVAL;
681 	/*
682 	 * ->seq_show is incompatible with ->prealloc,
683 	 * as seq_read does its own allocation.
684 	 * ->read must be used instead.
685 	 */
686 	if (ops->prealloc && ops->seq_show)
687 		goto err_free;
688 	if (ops->prealloc) {
689 		int len = of->atomic_write_len ?: PAGE_SIZE;
690 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
691 		error = -ENOMEM;
692 		if (!of->prealloc_buf)
693 			goto err_free;
694 		mutex_init(&of->prealloc_mutex);
695 	}
696 
697 	/*
698 	 * Always instantiate seq_file even if read access doesn't use
699 	 * seq_file or is not requested.  This unifies private data access
700 	 * and readable regular files are the vast majority anyway.
701 	 */
702 	if (ops->seq_show)
703 		error = seq_open(file, &kernfs_seq_ops);
704 	else
705 		error = seq_open(file, NULL);
706 	if (error)
707 		goto err_free;
708 
709 	of->seq_file = file->private_data;
710 	of->seq_file->private = of;
711 
712 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
713 	if (file->f_mode & FMODE_WRITE)
714 		file->f_mode |= FMODE_PWRITE;
715 
716 	/* make sure we have open node struct */
717 	error = kernfs_get_open_node(kn, of);
718 	if (error)
719 		goto err_seq_release;
720 
721 	if (ops->open) {
722 		/* nobody has access to @of yet, skip @of->mutex */
723 		error = ops->open(of);
724 		if (error)
725 			goto err_put_node;
726 	}
727 
728 	/* open succeeded, put active references */
729 	kernfs_put_active(kn);
730 	return 0;
731 
732 err_put_node:
733 	kernfs_put_open_node(kn, of);
734 err_seq_release:
735 	seq_release(inode, file);
736 err_free:
737 	kfree(of->prealloc_buf);
738 	kfree(of);
739 err_out:
740 	kernfs_put_active(kn);
741 	return error;
742 }
743 
744 /* used from release/drain to ensure that ->release() is called exactly once */
745 static void kernfs_release_file(struct kernfs_node *kn,
746 				struct kernfs_open_file *of)
747 {
748 	/*
749 	 * @of is guaranteed to have no other file operations in flight and
750 	 * we just want to synchronize release and drain paths.
751 	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
752 	 * here because drain path may be called from places which can
753 	 * cause circular dependency.
754 	 */
755 	lockdep_assert_held(&kernfs_open_file_mutex);
756 
757 	if (!of->released) {
758 		/*
759 		 * A file is never detached without being released and we
760 		 * need to be able to release files which are deactivated
761 		 * and being drained.  Don't use kernfs_ops().
762 		 */
763 		kn->attr.ops->release(of);
764 		of->released = true;
765 	}
766 }
767 
768 static int kernfs_fop_release(struct inode *inode, struct file *filp)
769 {
770 	struct kernfs_node *kn = inode->i_private;
771 	struct kernfs_open_file *of = kernfs_of(filp);
772 
773 	if (kn->flags & KERNFS_HAS_RELEASE) {
774 		mutex_lock(&kernfs_open_file_mutex);
775 		kernfs_release_file(kn, of);
776 		mutex_unlock(&kernfs_open_file_mutex);
777 	}
778 
779 	kernfs_put_open_node(kn, of);
780 	seq_release(inode, filp);
781 	kfree(of->prealloc_buf);
782 	kfree(of);
783 
784 	return 0;
785 }
786 
787 void kernfs_drain_open_files(struct kernfs_node *kn)
788 {
789 	struct kernfs_open_node *on;
790 	struct kernfs_open_file *of;
791 
792 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
793 		return;
794 
795 	spin_lock_irq(&kernfs_open_node_lock);
796 	on = kn->attr.open;
797 	if (on)
798 		atomic_inc(&on->refcnt);
799 	spin_unlock_irq(&kernfs_open_node_lock);
800 	if (!on)
801 		return;
802 
803 	mutex_lock(&kernfs_open_file_mutex);
804 
805 	list_for_each_entry(of, &on->files, list) {
806 		struct inode *inode = file_inode(of->file);
807 
808 		if (kn->flags & KERNFS_HAS_MMAP)
809 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
810 
811 		if (kn->flags & KERNFS_HAS_RELEASE)
812 			kernfs_release_file(kn, of);
813 	}
814 
815 	mutex_unlock(&kernfs_open_file_mutex);
816 
817 	kernfs_put_open_node(kn, NULL);
818 }
819 
820 /*
821  * Kernfs attribute files are pollable.  The idea is that you read
822  * the content and then you use 'poll' or 'select' to wait for
823  * the content to change.  When the content changes (assuming the
824  * manager for the kobject supports notification), poll will
825  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
826  * it is waiting for read, write, or exceptions.
827  * Once poll/select indicates that the value has changed, you
828  * need to close and re-open the file, or seek to 0 and read again.
829  * Reminder: this only works for attributes which actively support
830  * it, and it is not possible to test an attribute from userspace
831  * to see if it supports poll (Neither 'poll' nor 'select' return
832  * an appropriate error code).  When in doubt, set a suitable timeout value.
833  */
834 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
835 {
836 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
837 	struct kernfs_open_node *on = kn->attr.open;
838 
839 	poll_wait(of->file, &on->poll, wait);
840 
841 	if (of->event != atomic_read(&on->event))
842 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
843 
844 	return DEFAULT_POLLMASK;
845 }
846 
847 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
848 {
849 	struct kernfs_open_file *of = kernfs_of(filp);
850 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
851 	__poll_t ret;
852 
853 	if (!kernfs_get_active(kn))
854 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
855 
856 	if (kn->attr.ops->poll)
857 		ret = kn->attr.ops->poll(of, wait);
858 	else
859 		ret = kernfs_generic_poll(of, wait);
860 
861 	kernfs_put_active(kn);
862 	return ret;
863 }
864 
865 static void kernfs_notify_workfn(struct work_struct *work)
866 {
867 	struct kernfs_node *kn;
868 	struct kernfs_super_info *info;
869 repeat:
870 	/* pop one off the notify_list */
871 	spin_lock_irq(&kernfs_notify_lock);
872 	kn = kernfs_notify_list;
873 	if (kn == KERNFS_NOTIFY_EOL) {
874 		spin_unlock_irq(&kernfs_notify_lock);
875 		return;
876 	}
877 	kernfs_notify_list = kn->attr.notify_next;
878 	kn->attr.notify_next = NULL;
879 	spin_unlock_irq(&kernfs_notify_lock);
880 
881 	/* kick fsnotify */
882 	mutex_lock(&kernfs_mutex);
883 
884 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
885 		struct kernfs_node *parent;
886 		struct inode *inode;
887 		struct qstr name;
888 
889 		/*
890 		 * We want fsnotify_modify() on @kn but as the
891 		 * modifications aren't originating from userland don't
892 		 * have the matching @file available.  Look up the inodes
893 		 * and generate the events manually.
894 		 */
895 		inode = ilookup(info->sb, kernfs_ino(kn));
896 		if (!inode)
897 			continue;
898 
899 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
900 		parent = kernfs_get_parent(kn);
901 		if (parent) {
902 			struct inode *p_inode;
903 
904 			p_inode = ilookup(info->sb, kernfs_ino(parent));
905 			if (p_inode) {
906 				fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
907 					 inode, FSNOTIFY_EVENT_INODE, &name, 0);
908 				iput(p_inode);
909 			}
910 
911 			kernfs_put(parent);
912 		}
913 
914 		fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
915 			 &name, 0);
916 		iput(inode);
917 	}
918 
919 	mutex_unlock(&kernfs_mutex);
920 	kernfs_put(kn);
921 	goto repeat;
922 }
923 
924 /**
925  * kernfs_notify - notify a kernfs file
926  * @kn: file to notify
927  *
928  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
929  * context.
930  */
931 void kernfs_notify(struct kernfs_node *kn)
932 {
933 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
934 	unsigned long flags;
935 	struct kernfs_open_node *on;
936 
937 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
938 		return;
939 
940 	/* kick poll immediately */
941 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
942 	on = kn->attr.open;
943 	if (on) {
944 		atomic_inc(&on->event);
945 		wake_up_interruptible(&on->poll);
946 	}
947 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
948 
949 	/* schedule work to kick fsnotify */
950 	spin_lock_irqsave(&kernfs_notify_lock, flags);
951 	if (!kn->attr.notify_next) {
952 		kernfs_get(kn);
953 		kn->attr.notify_next = kernfs_notify_list;
954 		kernfs_notify_list = kn;
955 		schedule_work(&kernfs_notify_work);
956 	}
957 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
958 }
959 EXPORT_SYMBOL_GPL(kernfs_notify);
960 
961 const struct file_operations kernfs_file_fops = {
962 	.read		= kernfs_fop_read,
963 	.write		= kernfs_fop_write,
964 	.llseek		= generic_file_llseek,
965 	.mmap		= kernfs_fop_mmap,
966 	.open		= kernfs_fop_open,
967 	.release	= kernfs_fop_release,
968 	.poll		= kernfs_fop_poll,
969 	.fsync		= noop_fsync,
970 };
971 
972 /**
973  * __kernfs_create_file - kernfs internal function to create a file
974  * @parent: directory to create the file in
975  * @name: name of the file
976  * @mode: mode of the file
977  * @uid: uid of the file
978  * @gid: gid of the file
979  * @size: size of the file
980  * @ops: kernfs operations for the file
981  * @priv: private data for the file
982  * @ns: optional namespace tag of the file
983  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
984  *
985  * Returns the created node on success, ERR_PTR() value on error.
986  */
987 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
988 					 const char *name,
989 					 umode_t mode, kuid_t uid, kgid_t gid,
990 					 loff_t size,
991 					 const struct kernfs_ops *ops,
992 					 void *priv, const void *ns,
993 					 struct lock_class_key *key)
994 {
995 	struct kernfs_node *kn;
996 	unsigned flags;
997 	int rc;
998 
999 	flags = KERNFS_FILE;
1000 
1001 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1002 			     uid, gid, flags);
1003 	if (!kn)
1004 		return ERR_PTR(-ENOMEM);
1005 
1006 	kn->attr.ops = ops;
1007 	kn->attr.size = size;
1008 	kn->ns = ns;
1009 	kn->priv = priv;
1010 
1011 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1012 	if (key) {
1013 		lockdep_init_map(&kn->dep_map, "kn->count", key, 0);
1014 		kn->flags |= KERNFS_LOCKDEP;
1015 	}
1016 #endif
1017 
1018 	/*
1019 	 * kn->attr.ops is accesible only while holding active ref.  We
1020 	 * need to know whether some ops are implemented outside active
1021 	 * ref.  Cache their existence in flags.
1022 	 */
1023 	if (ops->seq_show)
1024 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1025 	if (ops->mmap)
1026 		kn->flags |= KERNFS_HAS_MMAP;
1027 	if (ops->release)
1028 		kn->flags |= KERNFS_HAS_RELEASE;
1029 
1030 	rc = kernfs_add_one(kn);
1031 	if (rc) {
1032 		kernfs_put(kn);
1033 		return ERR_PTR(rc);
1034 	}
1035 	return kn;
1036 }
1037