xref: /linux/fs/libfs.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	u64 id = huge_encode_dev(dentry->d_sb->s_dev);
45 
46 	buf->f_fsid = u64_to_fsid(id);
47 	buf->f_type = dentry->d_sb->s_magic;
48 	buf->f_bsize = PAGE_SIZE;
49 	buf->f_namelen = NAME_MAX;
50 	return 0;
51 }
52 EXPORT_SYMBOL(simple_statfs);
53 
54 /*
55  * Retaining negative dentries for an in-memory filesystem just wastes
56  * memory and lookup time: arrange for them to be deleted immediately.
57  */
58 int always_delete_dentry(const struct dentry *dentry)
59 {
60 	return 1;
61 }
62 EXPORT_SYMBOL(always_delete_dentry);
63 
64 const struct dentry_operations simple_dentry_operations = {
65 	.d_delete = always_delete_dentry,
66 };
67 EXPORT_SYMBOL(simple_dentry_operations);
68 
69 /*
70  * Lookup the data. This is trivial - if the dentry didn't already
71  * exist, we know it is negative.  Set d_op to delete negative dentries.
72  */
73 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
74 {
75 	if (dentry->d_name.len > NAME_MAX)
76 		return ERR_PTR(-ENAMETOOLONG);
77 	if (!dentry->d_sb->s_d_op)
78 		d_set_d_op(dentry, &simple_dentry_operations);
79 	d_add(dentry, NULL);
80 	return NULL;
81 }
82 EXPORT_SYMBOL(simple_lookup);
83 
84 int dcache_dir_open(struct inode *inode, struct file *file)
85 {
86 	file->private_data = d_alloc_cursor(file->f_path.dentry);
87 
88 	return file->private_data ? 0 : -ENOMEM;
89 }
90 EXPORT_SYMBOL(dcache_dir_open);
91 
92 int dcache_dir_close(struct inode *inode, struct file *file)
93 {
94 	dput(file->private_data);
95 	return 0;
96 }
97 EXPORT_SYMBOL(dcache_dir_close);
98 
99 /* parent is locked at least shared */
100 /*
101  * Returns an element of siblings' list.
102  * We are looking for <count>th positive after <p>; if
103  * found, dentry is grabbed and returned to caller.
104  * If no such element exists, NULL is returned.
105  */
106 static struct dentry *scan_positives(struct dentry *cursor,
107 					struct hlist_node **p,
108 					loff_t count,
109 					struct dentry *last)
110 {
111 	struct dentry *dentry = cursor->d_parent, *found = NULL;
112 
113 	spin_lock(&dentry->d_lock);
114 	while (*p) {
115 		struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
116 		p = &d->d_sib.next;
117 		// we must at least skip cursors, to avoid livelocks
118 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
119 			continue;
120 		if (simple_positive(d) && !--count) {
121 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
122 			if (simple_positive(d))
123 				found = dget_dlock(d);
124 			spin_unlock(&d->d_lock);
125 			if (likely(found))
126 				break;
127 			count = 1;
128 		}
129 		if (need_resched()) {
130 			if (!hlist_unhashed(&cursor->d_sib))
131 				__hlist_del(&cursor->d_sib);
132 			hlist_add_behind(&cursor->d_sib, &d->d_sib);
133 			p = &cursor->d_sib.next;
134 			spin_unlock(&dentry->d_lock);
135 			cond_resched();
136 			spin_lock(&dentry->d_lock);
137 		}
138 	}
139 	spin_unlock(&dentry->d_lock);
140 	dput(last);
141 	return found;
142 }
143 
144 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
145 {
146 	struct dentry *dentry = file->f_path.dentry;
147 	switch (whence) {
148 		case 1:
149 			offset += file->f_pos;
150 			fallthrough;
151 		case 0:
152 			if (offset >= 0)
153 				break;
154 			fallthrough;
155 		default:
156 			return -EINVAL;
157 	}
158 	if (offset != file->f_pos) {
159 		struct dentry *cursor = file->private_data;
160 		struct dentry *to = NULL;
161 
162 		inode_lock_shared(dentry->d_inode);
163 
164 		if (offset > 2)
165 			to = scan_positives(cursor, &dentry->d_children.first,
166 					    offset - 2, NULL);
167 		spin_lock(&dentry->d_lock);
168 		hlist_del_init(&cursor->d_sib);
169 		if (to)
170 			hlist_add_behind(&cursor->d_sib, &to->d_sib);
171 		spin_unlock(&dentry->d_lock);
172 		dput(to);
173 
174 		file->f_pos = offset;
175 
176 		inode_unlock_shared(dentry->d_inode);
177 	}
178 	return offset;
179 }
180 EXPORT_SYMBOL(dcache_dir_lseek);
181 
182 /*
183  * Directory is locked and all positive dentries in it are safe, since
184  * for ramfs-type trees they can't go away without unlink() or rmdir(),
185  * both impossible due to the lock on directory.
186  */
187 
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 	struct dentry *dentry = file->f_path.dentry;
191 	struct dentry *cursor = file->private_data;
192 	struct dentry *next = NULL;
193 	struct hlist_node **p;
194 
195 	if (!dir_emit_dots(file, ctx))
196 		return 0;
197 
198 	if (ctx->pos == 2)
199 		p = &dentry->d_children.first;
200 	else
201 		p = &cursor->d_sib.next;
202 
203 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
204 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
205 			      d_inode(next)->i_ino,
206 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
207 			break;
208 		ctx->pos++;
209 		p = &next->d_sib.next;
210 	}
211 	spin_lock(&dentry->d_lock);
212 	hlist_del_init(&cursor->d_sib);
213 	if (next)
214 		hlist_add_before(&cursor->d_sib, &next->d_sib);
215 	spin_unlock(&dentry->d_lock);
216 	dput(next);
217 
218 	return 0;
219 }
220 EXPORT_SYMBOL(dcache_readdir);
221 
222 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223 {
224 	return -EISDIR;
225 }
226 EXPORT_SYMBOL(generic_read_dir);
227 
228 const struct file_operations simple_dir_operations = {
229 	.open		= dcache_dir_open,
230 	.release	= dcache_dir_close,
231 	.llseek		= dcache_dir_lseek,
232 	.read		= generic_read_dir,
233 	.iterate_shared	= dcache_readdir,
234 	.fsync		= noop_fsync,
235 };
236 EXPORT_SYMBOL(simple_dir_operations);
237 
238 const struct inode_operations simple_dir_inode_operations = {
239 	.lookup		= simple_lookup,
240 };
241 EXPORT_SYMBOL(simple_dir_inode_operations);
242 
243 static void offset_set(struct dentry *dentry, u32 offset)
244 {
245 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
246 }
247 
248 static u32 dentry2offset(struct dentry *dentry)
249 {
250 	return (u32)((uintptr_t)(dentry->d_fsdata));
251 }
252 
253 static struct lock_class_key simple_offset_xa_lock;
254 
255 /**
256  * simple_offset_init - initialize an offset_ctx
257  * @octx: directory offset map to be initialized
258  *
259  */
260 void simple_offset_init(struct offset_ctx *octx)
261 {
262 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
263 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
264 
265 	/* 0 is '.', 1 is '..', so always start with offset 2 */
266 	octx->next_offset = 2;
267 }
268 
269 /**
270  * simple_offset_add - Add an entry to a directory's offset map
271  * @octx: directory offset ctx to be updated
272  * @dentry: new dentry being added
273  *
274  * Returns zero on success. @so_ctx and the dentry offset are updated.
275  * Otherwise, a negative errno value is returned.
276  */
277 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
278 {
279 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
280 	u32 offset;
281 	int ret;
282 
283 	if (dentry2offset(dentry) != 0)
284 		return -EBUSY;
285 
286 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
287 			      &octx->next_offset, GFP_KERNEL);
288 	if (ret < 0)
289 		return ret;
290 
291 	offset_set(dentry, offset);
292 	return 0;
293 }
294 
295 /**
296  * simple_offset_remove - Remove an entry to a directory's offset map
297  * @octx: directory offset ctx to be updated
298  * @dentry: dentry being removed
299  *
300  */
301 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
302 {
303 	u32 offset;
304 
305 	offset = dentry2offset(dentry);
306 	if (offset == 0)
307 		return;
308 
309 	xa_erase(&octx->xa, offset);
310 	offset_set(dentry, 0);
311 }
312 
313 /**
314  * simple_offset_rename_exchange - exchange rename with directory offsets
315  * @old_dir: parent of dentry being moved
316  * @old_dentry: dentry being moved
317  * @new_dir: destination parent
318  * @new_dentry: destination dentry
319  *
320  * Returns zero on success. Otherwise a negative errno is returned and the
321  * rename is rolled back.
322  */
323 int simple_offset_rename_exchange(struct inode *old_dir,
324 				  struct dentry *old_dentry,
325 				  struct inode *new_dir,
326 				  struct dentry *new_dentry)
327 {
328 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
329 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
330 	u32 old_index = dentry2offset(old_dentry);
331 	u32 new_index = dentry2offset(new_dentry);
332 	int ret;
333 
334 	simple_offset_remove(old_ctx, old_dentry);
335 	simple_offset_remove(new_ctx, new_dentry);
336 
337 	ret = simple_offset_add(new_ctx, old_dentry);
338 	if (ret)
339 		goto out_restore;
340 
341 	ret = simple_offset_add(old_ctx, new_dentry);
342 	if (ret) {
343 		simple_offset_remove(new_ctx, old_dentry);
344 		goto out_restore;
345 	}
346 
347 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
348 	if (ret) {
349 		simple_offset_remove(new_ctx, old_dentry);
350 		simple_offset_remove(old_ctx, new_dentry);
351 		goto out_restore;
352 	}
353 	return 0;
354 
355 out_restore:
356 	offset_set(old_dentry, old_index);
357 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
358 	offset_set(new_dentry, new_index);
359 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
360 	return ret;
361 }
362 
363 /**
364  * simple_offset_destroy - Release offset map
365  * @octx: directory offset ctx that is about to be destroyed
366  *
367  * During fs teardown (eg. umount), a directory's offset map might still
368  * contain entries. xa_destroy() cleans out anything that remains.
369  */
370 void simple_offset_destroy(struct offset_ctx *octx)
371 {
372 	xa_destroy(&octx->xa);
373 }
374 
375 /**
376  * offset_dir_llseek - Advance the read position of a directory descriptor
377  * @file: an open directory whose position is to be updated
378  * @offset: a byte offset
379  * @whence: enumerator describing the starting position for this update
380  *
381  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
382  *
383  * Returns the updated read position if successful; otherwise a
384  * negative errno is returned and the read position remains unchanged.
385  */
386 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
387 {
388 	switch (whence) {
389 	case SEEK_CUR:
390 		offset += file->f_pos;
391 		fallthrough;
392 	case SEEK_SET:
393 		if (offset >= 0)
394 			break;
395 		fallthrough;
396 	default:
397 		return -EINVAL;
398 	}
399 
400 	/* In this case, ->private_data is protected by f_pos_lock */
401 	file->private_data = NULL;
402 	return vfs_setpos(file, offset, U32_MAX);
403 }
404 
405 static struct dentry *offset_find_next(struct xa_state *xas)
406 {
407 	struct dentry *child, *found = NULL;
408 
409 	rcu_read_lock();
410 	child = xas_next_entry(xas, U32_MAX);
411 	if (!child)
412 		goto out;
413 	spin_lock(&child->d_lock);
414 	if (simple_positive(child))
415 		found = dget_dlock(child);
416 	spin_unlock(&child->d_lock);
417 out:
418 	rcu_read_unlock();
419 	return found;
420 }
421 
422 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
423 {
424 	u32 offset = dentry2offset(dentry);
425 	struct inode *inode = d_inode(dentry);
426 
427 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
428 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
429 }
430 
431 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
432 {
433 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
434 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
435 	struct dentry *dentry;
436 
437 	while (true) {
438 		dentry = offset_find_next(&xas);
439 		if (!dentry)
440 			return ERR_PTR(-ENOENT);
441 
442 		if (!offset_dir_emit(ctx, dentry)) {
443 			dput(dentry);
444 			break;
445 		}
446 
447 		dput(dentry);
448 		ctx->pos = xas.xa_index + 1;
449 	}
450 	return NULL;
451 }
452 
453 /**
454  * offset_readdir - Emit entries starting at offset @ctx->pos
455  * @file: an open directory to iterate over
456  * @ctx: directory iteration context
457  *
458  * Caller must hold @file's i_rwsem to prevent insertion or removal of
459  * entries during this call.
460  *
461  * On entry, @ctx->pos contains an offset that represents the first entry
462  * to be read from the directory.
463  *
464  * The operation continues until there are no more entries to read, or
465  * until the ctx->actor indicates there is no more space in the caller's
466  * output buffer.
467  *
468  * On return, @ctx->pos contains an offset that will read the next entry
469  * in this directory when offset_readdir() is called again with @ctx.
470  *
471  * Return values:
472  *   %0 - Complete
473  */
474 static int offset_readdir(struct file *file, struct dir_context *ctx)
475 {
476 	struct dentry *dir = file->f_path.dentry;
477 
478 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
479 
480 	if (!dir_emit_dots(file, ctx))
481 		return 0;
482 
483 	/* In this case, ->private_data is protected by f_pos_lock */
484 	if (ctx->pos == 2)
485 		file->private_data = NULL;
486 	else if (file->private_data == ERR_PTR(-ENOENT))
487 		return 0;
488 	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
489 	return 0;
490 }
491 
492 const struct file_operations simple_offset_dir_operations = {
493 	.llseek		= offset_dir_llseek,
494 	.iterate_shared	= offset_readdir,
495 	.read		= generic_read_dir,
496 	.fsync		= noop_fsync,
497 };
498 
499 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
500 {
501 	struct dentry *child = NULL, *d;
502 
503 	spin_lock(&parent->d_lock);
504 	d = prev ? d_next_sibling(prev) : d_first_child(parent);
505 	hlist_for_each_entry_from(d, d_sib) {
506 		if (simple_positive(d)) {
507 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
508 			if (simple_positive(d))
509 				child = dget_dlock(d);
510 			spin_unlock(&d->d_lock);
511 			if (likely(child))
512 				break;
513 		}
514 	}
515 	spin_unlock(&parent->d_lock);
516 	dput(prev);
517 	return child;
518 }
519 
520 void simple_recursive_removal(struct dentry *dentry,
521                               void (*callback)(struct dentry *))
522 {
523 	struct dentry *this = dget(dentry);
524 	while (true) {
525 		struct dentry *victim = NULL, *child;
526 		struct inode *inode = this->d_inode;
527 
528 		inode_lock(inode);
529 		if (d_is_dir(this))
530 			inode->i_flags |= S_DEAD;
531 		while ((child = find_next_child(this, victim)) == NULL) {
532 			// kill and ascend
533 			// update metadata while it's still locked
534 			inode_set_ctime_current(inode);
535 			clear_nlink(inode);
536 			inode_unlock(inode);
537 			victim = this;
538 			this = this->d_parent;
539 			inode = this->d_inode;
540 			inode_lock(inode);
541 			if (simple_positive(victim)) {
542 				d_invalidate(victim);	// avoid lost mounts
543 				if (d_is_dir(victim))
544 					fsnotify_rmdir(inode, victim);
545 				else
546 					fsnotify_unlink(inode, victim);
547 				if (callback)
548 					callback(victim);
549 				dput(victim);		// unpin it
550 			}
551 			if (victim == dentry) {
552 				inode_set_mtime_to_ts(inode,
553 						      inode_set_ctime_current(inode));
554 				if (d_is_dir(dentry))
555 					drop_nlink(inode);
556 				inode_unlock(inode);
557 				dput(dentry);
558 				return;
559 			}
560 		}
561 		inode_unlock(inode);
562 		this = child;
563 	}
564 }
565 EXPORT_SYMBOL(simple_recursive_removal);
566 
567 static const struct super_operations simple_super_operations = {
568 	.statfs		= simple_statfs,
569 };
570 
571 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
572 {
573 	struct pseudo_fs_context *ctx = fc->fs_private;
574 	struct inode *root;
575 
576 	s->s_maxbytes = MAX_LFS_FILESIZE;
577 	s->s_blocksize = PAGE_SIZE;
578 	s->s_blocksize_bits = PAGE_SHIFT;
579 	s->s_magic = ctx->magic;
580 	s->s_op = ctx->ops ?: &simple_super_operations;
581 	s->s_xattr = ctx->xattr;
582 	s->s_time_gran = 1;
583 	root = new_inode(s);
584 	if (!root)
585 		return -ENOMEM;
586 
587 	/*
588 	 * since this is the first inode, make it number 1. New inodes created
589 	 * after this must take care not to collide with it (by passing
590 	 * max_reserved of 1 to iunique).
591 	 */
592 	root->i_ino = 1;
593 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
594 	simple_inode_init_ts(root);
595 	s->s_root = d_make_root(root);
596 	if (!s->s_root)
597 		return -ENOMEM;
598 	s->s_d_op = ctx->dops;
599 	return 0;
600 }
601 
602 static int pseudo_fs_get_tree(struct fs_context *fc)
603 {
604 	return get_tree_nodev(fc, pseudo_fs_fill_super);
605 }
606 
607 static void pseudo_fs_free(struct fs_context *fc)
608 {
609 	kfree(fc->fs_private);
610 }
611 
612 static const struct fs_context_operations pseudo_fs_context_ops = {
613 	.free		= pseudo_fs_free,
614 	.get_tree	= pseudo_fs_get_tree,
615 };
616 
617 /*
618  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
619  * will never be mountable)
620  */
621 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
622 					unsigned long magic)
623 {
624 	struct pseudo_fs_context *ctx;
625 
626 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
627 	if (likely(ctx)) {
628 		ctx->magic = magic;
629 		fc->fs_private = ctx;
630 		fc->ops = &pseudo_fs_context_ops;
631 		fc->sb_flags |= SB_NOUSER;
632 		fc->global = true;
633 	}
634 	return ctx;
635 }
636 EXPORT_SYMBOL(init_pseudo);
637 
638 int simple_open(struct inode *inode, struct file *file)
639 {
640 	if (inode->i_private)
641 		file->private_data = inode->i_private;
642 	return 0;
643 }
644 EXPORT_SYMBOL(simple_open);
645 
646 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
647 {
648 	struct inode *inode = d_inode(old_dentry);
649 
650 	inode_set_mtime_to_ts(dir,
651 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
652 	inc_nlink(inode);
653 	ihold(inode);
654 	dget(dentry);
655 	d_instantiate(dentry, inode);
656 	return 0;
657 }
658 EXPORT_SYMBOL(simple_link);
659 
660 int simple_empty(struct dentry *dentry)
661 {
662 	struct dentry *child;
663 	int ret = 0;
664 
665 	spin_lock(&dentry->d_lock);
666 	hlist_for_each_entry(child, &dentry->d_children, d_sib) {
667 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
668 		if (simple_positive(child)) {
669 			spin_unlock(&child->d_lock);
670 			goto out;
671 		}
672 		spin_unlock(&child->d_lock);
673 	}
674 	ret = 1;
675 out:
676 	spin_unlock(&dentry->d_lock);
677 	return ret;
678 }
679 EXPORT_SYMBOL(simple_empty);
680 
681 int simple_unlink(struct inode *dir, struct dentry *dentry)
682 {
683 	struct inode *inode = d_inode(dentry);
684 
685 	inode_set_mtime_to_ts(dir,
686 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
687 	drop_nlink(inode);
688 	dput(dentry);
689 	return 0;
690 }
691 EXPORT_SYMBOL(simple_unlink);
692 
693 int simple_rmdir(struct inode *dir, struct dentry *dentry)
694 {
695 	if (!simple_empty(dentry))
696 		return -ENOTEMPTY;
697 
698 	drop_nlink(d_inode(dentry));
699 	simple_unlink(dir, dentry);
700 	drop_nlink(dir);
701 	return 0;
702 }
703 EXPORT_SYMBOL(simple_rmdir);
704 
705 /**
706  * simple_rename_timestamp - update the various inode timestamps for rename
707  * @old_dir: old parent directory
708  * @old_dentry: dentry that is being renamed
709  * @new_dir: new parent directory
710  * @new_dentry: target for rename
711  *
712  * POSIX mandates that the old and new parent directories have their ctime and
713  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
714  * their ctime updated.
715  */
716 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
717 			     struct inode *new_dir, struct dentry *new_dentry)
718 {
719 	struct inode *newino = d_inode(new_dentry);
720 
721 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
722 	if (new_dir != old_dir)
723 		inode_set_mtime_to_ts(new_dir,
724 				      inode_set_ctime_current(new_dir));
725 	inode_set_ctime_current(d_inode(old_dentry));
726 	if (newino)
727 		inode_set_ctime_current(newino);
728 }
729 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
730 
731 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
732 			   struct inode *new_dir, struct dentry *new_dentry)
733 {
734 	bool old_is_dir = d_is_dir(old_dentry);
735 	bool new_is_dir = d_is_dir(new_dentry);
736 
737 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
738 		if (old_is_dir) {
739 			drop_nlink(old_dir);
740 			inc_nlink(new_dir);
741 		} else {
742 			drop_nlink(new_dir);
743 			inc_nlink(old_dir);
744 		}
745 	}
746 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
747 	return 0;
748 }
749 EXPORT_SYMBOL_GPL(simple_rename_exchange);
750 
751 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
752 		  struct dentry *old_dentry, struct inode *new_dir,
753 		  struct dentry *new_dentry, unsigned int flags)
754 {
755 	int they_are_dirs = d_is_dir(old_dentry);
756 
757 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
758 		return -EINVAL;
759 
760 	if (flags & RENAME_EXCHANGE)
761 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
762 
763 	if (!simple_empty(new_dentry))
764 		return -ENOTEMPTY;
765 
766 	if (d_really_is_positive(new_dentry)) {
767 		simple_unlink(new_dir, new_dentry);
768 		if (they_are_dirs) {
769 			drop_nlink(d_inode(new_dentry));
770 			drop_nlink(old_dir);
771 		}
772 	} else if (they_are_dirs) {
773 		drop_nlink(old_dir);
774 		inc_nlink(new_dir);
775 	}
776 
777 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
778 	return 0;
779 }
780 EXPORT_SYMBOL(simple_rename);
781 
782 /**
783  * simple_setattr - setattr for simple filesystem
784  * @idmap: idmap of the target mount
785  * @dentry: dentry
786  * @iattr: iattr structure
787  *
788  * Returns 0 on success, -error on failure.
789  *
790  * simple_setattr is a simple ->setattr implementation without a proper
791  * implementation of size changes.
792  *
793  * It can either be used for in-memory filesystems or special files
794  * on simple regular filesystems.  Anything that needs to change on-disk
795  * or wire state on size changes needs its own setattr method.
796  */
797 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
798 		   struct iattr *iattr)
799 {
800 	struct inode *inode = d_inode(dentry);
801 	int error;
802 
803 	error = setattr_prepare(idmap, dentry, iattr);
804 	if (error)
805 		return error;
806 
807 	if (iattr->ia_valid & ATTR_SIZE)
808 		truncate_setsize(inode, iattr->ia_size);
809 	setattr_copy(idmap, inode, iattr);
810 	mark_inode_dirty(inode);
811 	return 0;
812 }
813 EXPORT_SYMBOL(simple_setattr);
814 
815 static int simple_read_folio(struct file *file, struct folio *folio)
816 {
817 	folio_zero_range(folio, 0, folio_size(folio));
818 	flush_dcache_folio(folio);
819 	folio_mark_uptodate(folio);
820 	folio_unlock(folio);
821 	return 0;
822 }
823 
824 int simple_write_begin(struct file *file, struct address_space *mapping,
825 			loff_t pos, unsigned len,
826 			struct page **pagep, void **fsdata)
827 {
828 	struct folio *folio;
829 
830 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
831 			mapping_gfp_mask(mapping));
832 	if (IS_ERR(folio))
833 		return PTR_ERR(folio);
834 
835 	*pagep = &folio->page;
836 
837 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
838 		size_t from = offset_in_folio(folio, pos);
839 
840 		folio_zero_segments(folio, 0, from,
841 				from + len, folio_size(folio));
842 	}
843 	return 0;
844 }
845 EXPORT_SYMBOL(simple_write_begin);
846 
847 /**
848  * simple_write_end - .write_end helper for non-block-device FSes
849  * @file: See .write_end of address_space_operations
850  * @mapping: 		"
851  * @pos: 		"
852  * @len: 		"
853  * @copied: 		"
854  * @page: 		"
855  * @fsdata: 		"
856  *
857  * simple_write_end does the minimum needed for updating a page after writing is
858  * done. It has the same API signature as the .write_end of
859  * address_space_operations vector. So it can just be set onto .write_end for
860  * FSes that don't need any other processing. i_mutex is assumed to be held.
861  * Block based filesystems should use generic_write_end().
862  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
863  * is not called, so a filesystem that actually does store data in .write_inode
864  * should extend on what's done here with a call to mark_inode_dirty() in the
865  * case that i_size has changed.
866  *
867  * Use *ONLY* with simple_read_folio()
868  */
869 static int simple_write_end(struct file *file, struct address_space *mapping,
870 			loff_t pos, unsigned len, unsigned copied,
871 			struct page *page, void *fsdata)
872 {
873 	struct folio *folio = page_folio(page);
874 	struct inode *inode = folio->mapping->host;
875 	loff_t last_pos = pos + copied;
876 
877 	/* zero the stale part of the folio if we did a short copy */
878 	if (!folio_test_uptodate(folio)) {
879 		if (copied < len) {
880 			size_t from = offset_in_folio(folio, pos);
881 
882 			folio_zero_range(folio, from + copied, len - copied);
883 		}
884 		folio_mark_uptodate(folio);
885 	}
886 	/*
887 	 * No need to use i_size_read() here, the i_size
888 	 * cannot change under us because we hold the i_mutex.
889 	 */
890 	if (last_pos > inode->i_size)
891 		i_size_write(inode, last_pos);
892 
893 	folio_mark_dirty(folio);
894 	folio_unlock(folio);
895 	folio_put(folio);
896 
897 	return copied;
898 }
899 
900 /*
901  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
902  */
903 const struct address_space_operations ram_aops = {
904 	.read_folio	= simple_read_folio,
905 	.write_begin	= simple_write_begin,
906 	.write_end	= simple_write_end,
907 	.dirty_folio	= noop_dirty_folio,
908 };
909 EXPORT_SYMBOL(ram_aops);
910 
911 /*
912  * the inodes created here are not hashed. If you use iunique to generate
913  * unique inode values later for this filesystem, then you must take care
914  * to pass it an appropriate max_reserved value to avoid collisions.
915  */
916 int simple_fill_super(struct super_block *s, unsigned long magic,
917 		      const struct tree_descr *files)
918 {
919 	struct inode *inode;
920 	struct dentry *dentry;
921 	int i;
922 
923 	s->s_blocksize = PAGE_SIZE;
924 	s->s_blocksize_bits = PAGE_SHIFT;
925 	s->s_magic = magic;
926 	s->s_op = &simple_super_operations;
927 	s->s_time_gran = 1;
928 
929 	inode = new_inode(s);
930 	if (!inode)
931 		return -ENOMEM;
932 	/*
933 	 * because the root inode is 1, the files array must not contain an
934 	 * entry at index 1
935 	 */
936 	inode->i_ino = 1;
937 	inode->i_mode = S_IFDIR | 0755;
938 	simple_inode_init_ts(inode);
939 	inode->i_op = &simple_dir_inode_operations;
940 	inode->i_fop = &simple_dir_operations;
941 	set_nlink(inode, 2);
942 	s->s_root = d_make_root(inode);
943 	if (!s->s_root)
944 		return -ENOMEM;
945 	for (i = 0; !files->name || files->name[0]; i++, files++) {
946 		if (!files->name)
947 			continue;
948 
949 		/* warn if it tries to conflict with the root inode */
950 		if (unlikely(i == 1))
951 			printk(KERN_WARNING "%s: %s passed in a files array"
952 				"with an index of 1!\n", __func__,
953 				s->s_type->name);
954 
955 		dentry = d_alloc_name(s->s_root, files->name);
956 		if (!dentry)
957 			return -ENOMEM;
958 		inode = new_inode(s);
959 		if (!inode) {
960 			dput(dentry);
961 			return -ENOMEM;
962 		}
963 		inode->i_mode = S_IFREG | files->mode;
964 		simple_inode_init_ts(inode);
965 		inode->i_fop = files->ops;
966 		inode->i_ino = i;
967 		d_add(dentry, inode);
968 	}
969 	return 0;
970 }
971 EXPORT_SYMBOL(simple_fill_super);
972 
973 static DEFINE_SPINLOCK(pin_fs_lock);
974 
975 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
976 {
977 	struct vfsmount *mnt = NULL;
978 	spin_lock(&pin_fs_lock);
979 	if (unlikely(!*mount)) {
980 		spin_unlock(&pin_fs_lock);
981 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
982 		if (IS_ERR(mnt))
983 			return PTR_ERR(mnt);
984 		spin_lock(&pin_fs_lock);
985 		if (!*mount)
986 			*mount = mnt;
987 	}
988 	mntget(*mount);
989 	++*count;
990 	spin_unlock(&pin_fs_lock);
991 	mntput(mnt);
992 	return 0;
993 }
994 EXPORT_SYMBOL(simple_pin_fs);
995 
996 void simple_release_fs(struct vfsmount **mount, int *count)
997 {
998 	struct vfsmount *mnt;
999 	spin_lock(&pin_fs_lock);
1000 	mnt = *mount;
1001 	if (!--*count)
1002 		*mount = NULL;
1003 	spin_unlock(&pin_fs_lock);
1004 	mntput(mnt);
1005 }
1006 EXPORT_SYMBOL(simple_release_fs);
1007 
1008 /**
1009  * simple_read_from_buffer - copy data from the buffer to user space
1010  * @to: the user space buffer to read to
1011  * @count: the maximum number of bytes to read
1012  * @ppos: the current position in the buffer
1013  * @from: the buffer to read from
1014  * @available: the size of the buffer
1015  *
1016  * The simple_read_from_buffer() function reads up to @count bytes from the
1017  * buffer @from at offset @ppos into the user space address starting at @to.
1018  *
1019  * On success, the number of bytes read is returned and the offset @ppos is
1020  * advanced by this number, or negative value is returned on error.
1021  **/
1022 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1023 				const void *from, size_t available)
1024 {
1025 	loff_t pos = *ppos;
1026 	size_t ret;
1027 
1028 	if (pos < 0)
1029 		return -EINVAL;
1030 	if (pos >= available || !count)
1031 		return 0;
1032 	if (count > available - pos)
1033 		count = available - pos;
1034 	ret = copy_to_user(to, from + pos, count);
1035 	if (ret == count)
1036 		return -EFAULT;
1037 	count -= ret;
1038 	*ppos = pos + count;
1039 	return count;
1040 }
1041 EXPORT_SYMBOL(simple_read_from_buffer);
1042 
1043 /**
1044  * simple_write_to_buffer - copy data from user space to the buffer
1045  * @to: the buffer to write to
1046  * @available: the size of the buffer
1047  * @ppos: the current position in the buffer
1048  * @from: the user space buffer to read from
1049  * @count: the maximum number of bytes to read
1050  *
1051  * The simple_write_to_buffer() function reads up to @count bytes from the user
1052  * space address starting at @from into the buffer @to at offset @ppos.
1053  *
1054  * On success, the number of bytes written is returned and the offset @ppos is
1055  * advanced by this number, or negative value is returned on error.
1056  **/
1057 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1058 		const void __user *from, size_t count)
1059 {
1060 	loff_t pos = *ppos;
1061 	size_t res;
1062 
1063 	if (pos < 0)
1064 		return -EINVAL;
1065 	if (pos >= available || !count)
1066 		return 0;
1067 	if (count > available - pos)
1068 		count = available - pos;
1069 	res = copy_from_user(to + pos, from, count);
1070 	if (res == count)
1071 		return -EFAULT;
1072 	count -= res;
1073 	*ppos = pos + count;
1074 	return count;
1075 }
1076 EXPORT_SYMBOL(simple_write_to_buffer);
1077 
1078 /**
1079  * memory_read_from_buffer - copy data from the buffer
1080  * @to: the kernel space buffer to read to
1081  * @count: the maximum number of bytes to read
1082  * @ppos: the current position in the buffer
1083  * @from: the buffer to read from
1084  * @available: the size of the buffer
1085  *
1086  * The memory_read_from_buffer() function reads up to @count bytes from the
1087  * buffer @from at offset @ppos into the kernel space address starting at @to.
1088  *
1089  * On success, the number of bytes read is returned and the offset @ppos is
1090  * advanced by this number, or negative value is returned on error.
1091  **/
1092 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1093 				const void *from, size_t available)
1094 {
1095 	loff_t pos = *ppos;
1096 
1097 	if (pos < 0)
1098 		return -EINVAL;
1099 	if (pos >= available)
1100 		return 0;
1101 	if (count > available - pos)
1102 		count = available - pos;
1103 	memcpy(to, from + pos, count);
1104 	*ppos = pos + count;
1105 
1106 	return count;
1107 }
1108 EXPORT_SYMBOL(memory_read_from_buffer);
1109 
1110 /*
1111  * Transaction based IO.
1112  * The file expects a single write which triggers the transaction, and then
1113  * possibly a read which collects the result - which is stored in a
1114  * file-local buffer.
1115  */
1116 
1117 void simple_transaction_set(struct file *file, size_t n)
1118 {
1119 	struct simple_transaction_argresp *ar = file->private_data;
1120 
1121 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1122 
1123 	/*
1124 	 * The barrier ensures that ar->size will really remain zero until
1125 	 * ar->data is ready for reading.
1126 	 */
1127 	smp_mb();
1128 	ar->size = n;
1129 }
1130 EXPORT_SYMBOL(simple_transaction_set);
1131 
1132 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1133 {
1134 	struct simple_transaction_argresp *ar;
1135 	static DEFINE_SPINLOCK(simple_transaction_lock);
1136 
1137 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1138 		return ERR_PTR(-EFBIG);
1139 
1140 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1141 	if (!ar)
1142 		return ERR_PTR(-ENOMEM);
1143 
1144 	spin_lock(&simple_transaction_lock);
1145 
1146 	/* only one write allowed per open */
1147 	if (file->private_data) {
1148 		spin_unlock(&simple_transaction_lock);
1149 		free_page((unsigned long)ar);
1150 		return ERR_PTR(-EBUSY);
1151 	}
1152 
1153 	file->private_data = ar;
1154 
1155 	spin_unlock(&simple_transaction_lock);
1156 
1157 	if (copy_from_user(ar->data, buf, size))
1158 		return ERR_PTR(-EFAULT);
1159 
1160 	return ar->data;
1161 }
1162 EXPORT_SYMBOL(simple_transaction_get);
1163 
1164 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1165 {
1166 	struct simple_transaction_argresp *ar = file->private_data;
1167 
1168 	if (!ar)
1169 		return 0;
1170 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1171 }
1172 EXPORT_SYMBOL(simple_transaction_read);
1173 
1174 int simple_transaction_release(struct inode *inode, struct file *file)
1175 {
1176 	free_page((unsigned long)file->private_data);
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL(simple_transaction_release);
1180 
1181 /* Simple attribute files */
1182 
1183 struct simple_attr {
1184 	int (*get)(void *, u64 *);
1185 	int (*set)(void *, u64);
1186 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1187 	char set_buf[24];
1188 	void *data;
1189 	const char *fmt;	/* format for read operation */
1190 	struct mutex mutex;	/* protects access to these buffers */
1191 };
1192 
1193 /* simple_attr_open is called by an actual attribute open file operation
1194  * to set the attribute specific access operations. */
1195 int simple_attr_open(struct inode *inode, struct file *file,
1196 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1197 		     const char *fmt)
1198 {
1199 	struct simple_attr *attr;
1200 
1201 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1202 	if (!attr)
1203 		return -ENOMEM;
1204 
1205 	attr->get = get;
1206 	attr->set = set;
1207 	attr->data = inode->i_private;
1208 	attr->fmt = fmt;
1209 	mutex_init(&attr->mutex);
1210 
1211 	file->private_data = attr;
1212 
1213 	return nonseekable_open(inode, file);
1214 }
1215 EXPORT_SYMBOL_GPL(simple_attr_open);
1216 
1217 int simple_attr_release(struct inode *inode, struct file *file)
1218 {
1219 	kfree(file->private_data);
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1223 
1224 /* read from the buffer that is filled with the get function */
1225 ssize_t simple_attr_read(struct file *file, char __user *buf,
1226 			 size_t len, loff_t *ppos)
1227 {
1228 	struct simple_attr *attr;
1229 	size_t size;
1230 	ssize_t ret;
1231 
1232 	attr = file->private_data;
1233 
1234 	if (!attr->get)
1235 		return -EACCES;
1236 
1237 	ret = mutex_lock_interruptible(&attr->mutex);
1238 	if (ret)
1239 		return ret;
1240 
1241 	if (*ppos && attr->get_buf[0]) {
1242 		/* continued read */
1243 		size = strlen(attr->get_buf);
1244 	} else {
1245 		/* first read */
1246 		u64 val;
1247 		ret = attr->get(attr->data, &val);
1248 		if (ret)
1249 			goto out;
1250 
1251 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1252 				 attr->fmt, (unsigned long long)val);
1253 	}
1254 
1255 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1256 out:
1257 	mutex_unlock(&attr->mutex);
1258 	return ret;
1259 }
1260 EXPORT_SYMBOL_GPL(simple_attr_read);
1261 
1262 /* interpret the buffer as a number to call the set function with */
1263 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1264 			  size_t len, loff_t *ppos, bool is_signed)
1265 {
1266 	struct simple_attr *attr;
1267 	unsigned long long val;
1268 	size_t size;
1269 	ssize_t ret;
1270 
1271 	attr = file->private_data;
1272 	if (!attr->set)
1273 		return -EACCES;
1274 
1275 	ret = mutex_lock_interruptible(&attr->mutex);
1276 	if (ret)
1277 		return ret;
1278 
1279 	ret = -EFAULT;
1280 	size = min(sizeof(attr->set_buf) - 1, len);
1281 	if (copy_from_user(attr->set_buf, buf, size))
1282 		goto out;
1283 
1284 	attr->set_buf[size] = '\0';
1285 	if (is_signed)
1286 		ret = kstrtoll(attr->set_buf, 0, &val);
1287 	else
1288 		ret = kstrtoull(attr->set_buf, 0, &val);
1289 	if (ret)
1290 		goto out;
1291 	ret = attr->set(attr->data, val);
1292 	if (ret == 0)
1293 		ret = len; /* on success, claim we got the whole input */
1294 out:
1295 	mutex_unlock(&attr->mutex);
1296 	return ret;
1297 }
1298 
1299 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1300 			  size_t len, loff_t *ppos)
1301 {
1302 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1303 }
1304 EXPORT_SYMBOL_GPL(simple_attr_write);
1305 
1306 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1307 			  size_t len, loff_t *ppos)
1308 {
1309 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1310 }
1311 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1312 
1313 /**
1314  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1315  * @inode:   the object to encode
1316  * @fh:      where to store the file handle fragment
1317  * @max_len: maximum length to store there (in 4 byte units)
1318  * @parent:  parent directory inode, if wanted
1319  *
1320  * This generic encode_fh function assumes that the 32 inode number
1321  * is suitable for locating an inode, and that the generation number
1322  * can be used to check that it is still valid.  It places them in the
1323  * filehandle fragment where export_decode_fh expects to find them.
1324  */
1325 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1326 			    struct inode *parent)
1327 {
1328 	struct fid *fid = (void *)fh;
1329 	int len = *max_len;
1330 	int type = FILEID_INO32_GEN;
1331 
1332 	if (parent && (len < 4)) {
1333 		*max_len = 4;
1334 		return FILEID_INVALID;
1335 	} else if (len < 2) {
1336 		*max_len = 2;
1337 		return FILEID_INVALID;
1338 	}
1339 
1340 	len = 2;
1341 	fid->i32.ino = inode->i_ino;
1342 	fid->i32.gen = inode->i_generation;
1343 	if (parent) {
1344 		fid->i32.parent_ino = parent->i_ino;
1345 		fid->i32.parent_gen = parent->i_generation;
1346 		len = 4;
1347 		type = FILEID_INO32_GEN_PARENT;
1348 	}
1349 	*max_len = len;
1350 	return type;
1351 }
1352 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1353 
1354 /**
1355  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1356  * @sb:		filesystem to do the file handle conversion on
1357  * @fid:	file handle to convert
1358  * @fh_len:	length of the file handle in bytes
1359  * @fh_type:	type of file handle
1360  * @get_inode:	filesystem callback to retrieve inode
1361  *
1362  * This function decodes @fid as long as it has one of the well-known
1363  * Linux filehandle types and calls @get_inode on it to retrieve the
1364  * inode for the object specified in the file handle.
1365  */
1366 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1367 		int fh_len, int fh_type, struct inode *(*get_inode)
1368 			(struct super_block *sb, u64 ino, u32 gen))
1369 {
1370 	struct inode *inode = NULL;
1371 
1372 	if (fh_len < 2)
1373 		return NULL;
1374 
1375 	switch (fh_type) {
1376 	case FILEID_INO32_GEN:
1377 	case FILEID_INO32_GEN_PARENT:
1378 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1379 		break;
1380 	}
1381 
1382 	return d_obtain_alias(inode);
1383 }
1384 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1385 
1386 /**
1387  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1388  * @sb:		filesystem to do the file handle conversion on
1389  * @fid:	file handle to convert
1390  * @fh_len:	length of the file handle in bytes
1391  * @fh_type:	type of file handle
1392  * @get_inode:	filesystem callback to retrieve inode
1393  *
1394  * This function decodes @fid as long as it has one of the well-known
1395  * Linux filehandle types and calls @get_inode on it to retrieve the
1396  * inode for the _parent_ object specified in the file handle if it
1397  * is specified in the file handle, or NULL otherwise.
1398  */
1399 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1400 		int fh_len, int fh_type, struct inode *(*get_inode)
1401 			(struct super_block *sb, u64 ino, u32 gen))
1402 {
1403 	struct inode *inode = NULL;
1404 
1405 	if (fh_len <= 2)
1406 		return NULL;
1407 
1408 	switch (fh_type) {
1409 	case FILEID_INO32_GEN_PARENT:
1410 		inode = get_inode(sb, fid->i32.parent_ino,
1411 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1412 		break;
1413 	}
1414 
1415 	return d_obtain_alias(inode);
1416 }
1417 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1418 
1419 /**
1420  * __generic_file_fsync - generic fsync implementation for simple filesystems
1421  *
1422  * @file:	file to synchronize
1423  * @start:	start offset in bytes
1424  * @end:	end offset in bytes (inclusive)
1425  * @datasync:	only synchronize essential metadata if true
1426  *
1427  * This is a generic implementation of the fsync method for simple
1428  * filesystems which track all non-inode metadata in the buffers list
1429  * hanging off the address_space structure.
1430  */
1431 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1432 				 int datasync)
1433 {
1434 	struct inode *inode = file->f_mapping->host;
1435 	int err;
1436 	int ret;
1437 
1438 	err = file_write_and_wait_range(file, start, end);
1439 	if (err)
1440 		return err;
1441 
1442 	inode_lock(inode);
1443 	ret = sync_mapping_buffers(inode->i_mapping);
1444 	if (!(inode->i_state & I_DIRTY_ALL))
1445 		goto out;
1446 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1447 		goto out;
1448 
1449 	err = sync_inode_metadata(inode, 1);
1450 	if (ret == 0)
1451 		ret = err;
1452 
1453 out:
1454 	inode_unlock(inode);
1455 	/* check and advance again to catch errors after syncing out buffers */
1456 	err = file_check_and_advance_wb_err(file);
1457 	if (ret == 0)
1458 		ret = err;
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(__generic_file_fsync);
1462 
1463 /**
1464  * generic_file_fsync - generic fsync implementation for simple filesystems
1465  *			with flush
1466  * @file:	file to synchronize
1467  * @start:	start offset in bytes
1468  * @end:	end offset in bytes (inclusive)
1469  * @datasync:	only synchronize essential metadata if true
1470  *
1471  */
1472 
1473 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1474 		       int datasync)
1475 {
1476 	struct inode *inode = file->f_mapping->host;
1477 	int err;
1478 
1479 	err = __generic_file_fsync(file, start, end, datasync);
1480 	if (err)
1481 		return err;
1482 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1483 }
1484 EXPORT_SYMBOL(generic_file_fsync);
1485 
1486 /**
1487  * generic_check_addressable - Check addressability of file system
1488  * @blocksize_bits:	log of file system block size
1489  * @num_blocks:		number of blocks in file system
1490  *
1491  * Determine whether a file system with @num_blocks blocks (and a
1492  * block size of 2**@blocksize_bits) is addressable by the sector_t
1493  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1494  */
1495 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1496 {
1497 	u64 last_fs_block = num_blocks - 1;
1498 	u64 last_fs_page =
1499 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1500 
1501 	if (unlikely(num_blocks == 0))
1502 		return 0;
1503 
1504 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1505 		return -EINVAL;
1506 
1507 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1508 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1509 		return -EFBIG;
1510 	}
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL(generic_check_addressable);
1514 
1515 /*
1516  * No-op implementation of ->fsync for in-memory filesystems.
1517  */
1518 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1519 {
1520 	return 0;
1521 }
1522 EXPORT_SYMBOL(noop_fsync);
1523 
1524 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1525 {
1526 	/*
1527 	 * iomap based filesystems support direct I/O without need for
1528 	 * this callback. However, it still needs to be set in
1529 	 * inode->a_ops so that open/fcntl know that direct I/O is
1530 	 * generally supported.
1531 	 */
1532 	return -EINVAL;
1533 }
1534 EXPORT_SYMBOL_GPL(noop_direct_IO);
1535 
1536 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1537 void kfree_link(void *p)
1538 {
1539 	kfree(p);
1540 }
1541 EXPORT_SYMBOL(kfree_link);
1542 
1543 struct inode *alloc_anon_inode(struct super_block *s)
1544 {
1545 	static const struct address_space_operations anon_aops = {
1546 		.dirty_folio	= noop_dirty_folio,
1547 	};
1548 	struct inode *inode = new_inode_pseudo(s);
1549 
1550 	if (!inode)
1551 		return ERR_PTR(-ENOMEM);
1552 
1553 	inode->i_ino = get_next_ino();
1554 	inode->i_mapping->a_ops = &anon_aops;
1555 
1556 	/*
1557 	 * Mark the inode dirty from the very beginning,
1558 	 * that way it will never be moved to the dirty
1559 	 * list because mark_inode_dirty() will think
1560 	 * that it already _is_ on the dirty list.
1561 	 */
1562 	inode->i_state = I_DIRTY;
1563 	inode->i_mode = S_IRUSR | S_IWUSR;
1564 	inode->i_uid = current_fsuid();
1565 	inode->i_gid = current_fsgid();
1566 	inode->i_flags |= S_PRIVATE;
1567 	simple_inode_init_ts(inode);
1568 	return inode;
1569 }
1570 EXPORT_SYMBOL(alloc_anon_inode);
1571 
1572 /**
1573  * simple_nosetlease - generic helper for prohibiting leases
1574  * @filp: file pointer
1575  * @arg: type of lease to obtain
1576  * @flp: new lease supplied for insertion
1577  * @priv: private data for lm_setup operation
1578  *
1579  * Generic helper for filesystems that do not wish to allow leases to be set.
1580  * All arguments are ignored and it just returns -EINVAL.
1581  */
1582 int
1583 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1584 		  void **priv)
1585 {
1586 	return -EINVAL;
1587 }
1588 EXPORT_SYMBOL(simple_nosetlease);
1589 
1590 /**
1591  * simple_get_link - generic helper to get the target of "fast" symlinks
1592  * @dentry: not used here
1593  * @inode: the symlink inode
1594  * @done: not used here
1595  *
1596  * Generic helper for filesystems to use for symlink inodes where a pointer to
1597  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1598  * since as an optimization the path lookup code uses any non-NULL ->i_link
1599  * directly, without calling ->get_link().  But ->get_link() still must be set,
1600  * to mark the inode_operations as being for a symlink.
1601  *
1602  * Return: the symlink target
1603  */
1604 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1605 			    struct delayed_call *done)
1606 {
1607 	return inode->i_link;
1608 }
1609 EXPORT_SYMBOL(simple_get_link);
1610 
1611 const struct inode_operations simple_symlink_inode_operations = {
1612 	.get_link = simple_get_link,
1613 };
1614 EXPORT_SYMBOL(simple_symlink_inode_operations);
1615 
1616 /*
1617  * Operations for a permanently empty directory.
1618  */
1619 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1620 {
1621 	return ERR_PTR(-ENOENT);
1622 }
1623 
1624 static int empty_dir_getattr(struct mnt_idmap *idmap,
1625 			     const struct path *path, struct kstat *stat,
1626 			     u32 request_mask, unsigned int query_flags)
1627 {
1628 	struct inode *inode = d_inode(path->dentry);
1629 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1630 	return 0;
1631 }
1632 
1633 static int empty_dir_setattr(struct mnt_idmap *idmap,
1634 			     struct dentry *dentry, struct iattr *attr)
1635 {
1636 	return -EPERM;
1637 }
1638 
1639 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1640 {
1641 	return -EOPNOTSUPP;
1642 }
1643 
1644 static const struct inode_operations empty_dir_inode_operations = {
1645 	.lookup		= empty_dir_lookup,
1646 	.permission	= generic_permission,
1647 	.setattr	= empty_dir_setattr,
1648 	.getattr	= empty_dir_getattr,
1649 	.listxattr	= empty_dir_listxattr,
1650 };
1651 
1652 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1653 {
1654 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1655 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1656 }
1657 
1658 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1659 {
1660 	dir_emit_dots(file, ctx);
1661 	return 0;
1662 }
1663 
1664 static const struct file_operations empty_dir_operations = {
1665 	.llseek		= empty_dir_llseek,
1666 	.read		= generic_read_dir,
1667 	.iterate_shared	= empty_dir_readdir,
1668 	.fsync		= noop_fsync,
1669 };
1670 
1671 
1672 void make_empty_dir_inode(struct inode *inode)
1673 {
1674 	set_nlink(inode, 2);
1675 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1676 	inode->i_uid = GLOBAL_ROOT_UID;
1677 	inode->i_gid = GLOBAL_ROOT_GID;
1678 	inode->i_rdev = 0;
1679 	inode->i_size = 0;
1680 	inode->i_blkbits = PAGE_SHIFT;
1681 	inode->i_blocks = 0;
1682 
1683 	inode->i_op = &empty_dir_inode_operations;
1684 	inode->i_opflags &= ~IOP_XATTR;
1685 	inode->i_fop = &empty_dir_operations;
1686 }
1687 
1688 bool is_empty_dir_inode(struct inode *inode)
1689 {
1690 	return (inode->i_fop == &empty_dir_operations) &&
1691 		(inode->i_op == &empty_dir_inode_operations);
1692 }
1693 
1694 #if IS_ENABLED(CONFIG_UNICODE)
1695 /**
1696  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1697  * @dentry:	dentry whose name we are checking against
1698  * @len:	len of name of dentry
1699  * @str:	str pointer to name of dentry
1700  * @name:	Name to compare against
1701  *
1702  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1703  */
1704 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1705 				const char *str, const struct qstr *name)
1706 {
1707 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1708 	const struct inode *dir = READ_ONCE(parent->d_inode);
1709 	const struct super_block *sb = dentry->d_sb;
1710 	const struct unicode_map *um = sb->s_encoding;
1711 	struct qstr qstr = QSTR_INIT(str, len);
1712 	char strbuf[DNAME_INLINE_LEN];
1713 	int ret;
1714 
1715 	if (!dir || !IS_CASEFOLDED(dir))
1716 		goto fallback;
1717 	/*
1718 	 * If the dentry name is stored in-line, then it may be concurrently
1719 	 * modified by a rename.  If this happens, the VFS will eventually retry
1720 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1721 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1722 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1723 	 */
1724 	if (len <= DNAME_INLINE_LEN - 1) {
1725 		memcpy(strbuf, str, len);
1726 		strbuf[len] = 0;
1727 		qstr.name = strbuf;
1728 		/* prevent compiler from optimizing out the temporary buffer */
1729 		barrier();
1730 	}
1731 	ret = utf8_strncasecmp(um, name, &qstr);
1732 	if (ret >= 0)
1733 		return ret;
1734 
1735 	if (sb_has_strict_encoding(sb))
1736 		return -EINVAL;
1737 fallback:
1738 	if (len != name->len)
1739 		return 1;
1740 	return !!memcmp(str, name->name, len);
1741 }
1742 
1743 /**
1744  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1745  * @dentry:	dentry of the parent directory
1746  * @str:	qstr of name whose hash we should fill in
1747  *
1748  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1749  */
1750 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1751 {
1752 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1753 	struct super_block *sb = dentry->d_sb;
1754 	const struct unicode_map *um = sb->s_encoding;
1755 	int ret = 0;
1756 
1757 	if (!dir || !IS_CASEFOLDED(dir))
1758 		return 0;
1759 
1760 	ret = utf8_casefold_hash(um, dentry, str);
1761 	if (ret < 0 && sb_has_strict_encoding(sb))
1762 		return -EINVAL;
1763 	return 0;
1764 }
1765 
1766 static const struct dentry_operations generic_ci_dentry_ops = {
1767 	.d_hash = generic_ci_d_hash,
1768 	.d_compare = generic_ci_d_compare,
1769 };
1770 #endif
1771 
1772 #ifdef CONFIG_FS_ENCRYPTION
1773 static const struct dentry_operations generic_encrypted_dentry_ops = {
1774 	.d_revalidate = fscrypt_d_revalidate,
1775 };
1776 #endif
1777 
1778 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1779 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1780 	.d_hash = generic_ci_d_hash,
1781 	.d_compare = generic_ci_d_compare,
1782 	.d_revalidate = fscrypt_d_revalidate,
1783 };
1784 #endif
1785 
1786 /**
1787  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1788  * @dentry:	dentry to set ops on
1789  *
1790  * Casefolded directories need d_hash and d_compare set, so that the dentries
1791  * contained in them are handled case-insensitively.  Note that these operations
1792  * are needed on the parent directory rather than on the dentries in it, and
1793  * while the casefolding flag can be toggled on and off on an empty directory,
1794  * dentry_operations can't be changed later.  As a result, if the filesystem has
1795  * casefolding support enabled at all, we have to give all dentries the
1796  * casefolding operations even if their inode doesn't have the casefolding flag
1797  * currently (and thus the casefolding ops would be no-ops for now).
1798  *
1799  * Encryption works differently in that the only dentry operation it needs is
1800  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1801  * The no-key flag can't be set "later", so we don't have to worry about that.
1802  *
1803  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1804  * with certain dentry operations) and to avoid taking an unnecessary
1805  * performance hit, we use custom dentry_operations for each possible
1806  * combination rather than always installing all operations.
1807  */
1808 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1809 {
1810 #ifdef CONFIG_FS_ENCRYPTION
1811 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1812 #endif
1813 #if IS_ENABLED(CONFIG_UNICODE)
1814 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1815 #endif
1816 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1817 	if (needs_encrypt_ops && needs_ci_ops) {
1818 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1819 		return;
1820 	}
1821 #endif
1822 #ifdef CONFIG_FS_ENCRYPTION
1823 	if (needs_encrypt_ops) {
1824 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1825 		return;
1826 	}
1827 #endif
1828 #if IS_ENABLED(CONFIG_UNICODE)
1829 	if (needs_ci_ops) {
1830 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1831 		return;
1832 	}
1833 #endif
1834 }
1835 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1836 
1837 /**
1838  * inode_maybe_inc_iversion - increments i_version
1839  * @inode: inode with the i_version that should be updated
1840  * @force: increment the counter even if it's not necessary?
1841  *
1842  * Every time the inode is modified, the i_version field must be seen to have
1843  * changed by any observer.
1844  *
1845  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1846  * the value, and clear the queried flag.
1847  *
1848  * In the common case where neither is set, then we can return "false" without
1849  * updating i_version.
1850  *
1851  * If this function returns false, and no other metadata has changed, then we
1852  * can avoid logging the metadata.
1853  */
1854 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1855 {
1856 	u64 cur, new;
1857 
1858 	/*
1859 	 * The i_version field is not strictly ordered with any other inode
1860 	 * information, but the legacy inode_inc_iversion code used a spinlock
1861 	 * to serialize increments.
1862 	 *
1863 	 * Here, we add full memory barriers to ensure that any de-facto
1864 	 * ordering with other info is preserved.
1865 	 *
1866 	 * This barrier pairs with the barrier in inode_query_iversion()
1867 	 */
1868 	smp_mb();
1869 	cur = inode_peek_iversion_raw(inode);
1870 	do {
1871 		/* If flag is clear then we needn't do anything */
1872 		if (!force && !(cur & I_VERSION_QUERIED))
1873 			return false;
1874 
1875 		/* Since lowest bit is flag, add 2 to avoid it */
1876 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1877 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1878 	return true;
1879 }
1880 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1881 
1882 /**
1883  * inode_query_iversion - read i_version for later use
1884  * @inode: inode from which i_version should be read
1885  *
1886  * Read the inode i_version counter. This should be used by callers that wish
1887  * to store the returned i_version for later comparison. This will guarantee
1888  * that a later query of the i_version will result in a different value if
1889  * anything has changed.
1890  *
1891  * In this implementation, we fetch the current value, set the QUERIED flag and
1892  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1893  * that fails, we try again with the newly fetched value from the cmpxchg.
1894  */
1895 u64 inode_query_iversion(struct inode *inode)
1896 {
1897 	u64 cur, new;
1898 
1899 	cur = inode_peek_iversion_raw(inode);
1900 	do {
1901 		/* If flag is already set, then no need to swap */
1902 		if (cur & I_VERSION_QUERIED) {
1903 			/*
1904 			 * This barrier (and the implicit barrier in the
1905 			 * cmpxchg below) pairs with the barrier in
1906 			 * inode_maybe_inc_iversion().
1907 			 */
1908 			smp_mb();
1909 			break;
1910 		}
1911 
1912 		new = cur | I_VERSION_QUERIED;
1913 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1914 	return cur >> I_VERSION_QUERIED_SHIFT;
1915 }
1916 EXPORT_SYMBOL(inode_query_iversion);
1917 
1918 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1919 		ssize_t direct_written, ssize_t buffered_written)
1920 {
1921 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1922 	loff_t pos = iocb->ki_pos - buffered_written;
1923 	loff_t end = iocb->ki_pos - 1;
1924 	int err;
1925 
1926 	/*
1927 	 * If the buffered write fallback returned an error, we want to return
1928 	 * the number of bytes which were written by direct I/O, or the error
1929 	 * code if that was zero.
1930 	 *
1931 	 * Note that this differs from normal direct-io semantics, which will
1932 	 * return -EFOO even if some bytes were written.
1933 	 */
1934 	if (unlikely(buffered_written < 0)) {
1935 		if (direct_written)
1936 			return direct_written;
1937 		return buffered_written;
1938 	}
1939 
1940 	/*
1941 	 * We need to ensure that the page cache pages are written to disk and
1942 	 * invalidated to preserve the expected O_DIRECT semantics.
1943 	 */
1944 	err = filemap_write_and_wait_range(mapping, pos, end);
1945 	if (err < 0) {
1946 		/*
1947 		 * We don't know how much we wrote, so just return the number of
1948 		 * bytes which were direct-written
1949 		 */
1950 		iocb->ki_pos -= buffered_written;
1951 		if (direct_written)
1952 			return direct_written;
1953 		return err;
1954 	}
1955 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1956 	return direct_written + buffered_written;
1957 }
1958 EXPORT_SYMBOL_GPL(direct_write_fallback);
1959 
1960 /**
1961  * simple_inode_init_ts - initialize the timestamps for a new inode
1962  * @inode: inode to be initialized
1963  *
1964  * When a new inode is created, most filesystems set the timestamps to the
1965  * current time. Add a helper to do this.
1966  */
1967 struct timespec64 simple_inode_init_ts(struct inode *inode)
1968 {
1969 	struct timespec64 ts = inode_set_ctime_current(inode);
1970 
1971 	inode_set_atime_to_ts(inode, ts);
1972 	inode_set_mtime_to_ts(inode, ts);
1973 	return ts;
1974 }
1975 EXPORT_SYMBOL(simple_inode_init_ts);
1976