xref: /linux/fs/namei.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 
135 	result = audit_reusename(filename);
136 	if (result)
137 		return result;
138 
139 	result = __getname();
140 	if (unlikely(!result))
141 		return ERR_PTR(-ENOMEM);
142 
143 	/*
144 	 * First, try to embed the struct filename inside the names_cache
145 	 * allocation
146 	 */
147 	kname = (char *)result->iname;
148 	result->name = kname;
149 
150 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 	if (unlikely(len < 0)) {
152 		__putname(result);
153 		return ERR_PTR(len);
154 	}
155 
156 	/*
157 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 	 * separate struct filename so we can dedicate the entire
159 	 * names_cache allocation for the pathname, and re-do the copy from
160 	 * userland.
161 	 */
162 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 		const size_t size = offsetof(struct filename, iname[1]);
164 		kname = (char *)result;
165 
166 		/*
167 		 * size is chosen that way we to guarantee that
168 		 * result->iname[0] is within the same object and that
169 		 * kname can't be equal to result->iname, no matter what.
170 		 */
171 		result = kzalloc(size, GFP_KERNEL);
172 		if (unlikely(!result)) {
173 			__putname(kname);
174 			return ERR_PTR(-ENOMEM);
175 		}
176 		result->name = kname;
177 		len = strncpy_from_user(kname, filename, PATH_MAX);
178 		if (unlikely(len < 0)) {
179 			__putname(kname);
180 			kfree(result);
181 			return ERR_PTR(len);
182 		}
183 		if (unlikely(len == PATH_MAX)) {
184 			__putname(kname);
185 			kfree(result);
186 			return ERR_PTR(-ENAMETOOLONG);
187 		}
188 	}
189 
190 	atomic_set(&result->refcnt, 1);
191 	/* The empty path is special. */
192 	if (unlikely(!len)) {
193 		if (empty)
194 			*empty = 1;
195 		if (!(flags & LOOKUP_EMPTY)) {
196 			putname(result);
197 			return ERR_PTR(-ENOENT);
198 		}
199 	}
200 
201 	result->uptr = filename;
202 	result->aname = NULL;
203 	audit_getname(result);
204 	return result;
205 }
206 
207 struct filename *
208 getname_uflags(const char __user *filename, int uflags)
209 {
210 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211 
212 	return getname_flags(filename, flags, NULL);
213 }
214 
215 struct filename *
216 getname(const char __user * filename)
217 {
218 	return getname_flags(filename, 0, NULL);
219 }
220 
221 struct filename *
222 getname_kernel(const char * filename)
223 {
224 	struct filename *result;
225 	int len = strlen(filename) + 1;
226 
227 	result = __getname();
228 	if (unlikely(!result))
229 		return ERR_PTR(-ENOMEM);
230 
231 	if (len <= EMBEDDED_NAME_MAX) {
232 		result->name = (char *)result->iname;
233 	} else if (len <= PATH_MAX) {
234 		const size_t size = offsetof(struct filename, iname[1]);
235 		struct filename *tmp;
236 
237 		tmp = kmalloc(size, GFP_KERNEL);
238 		if (unlikely(!tmp)) {
239 			__putname(result);
240 			return ERR_PTR(-ENOMEM);
241 		}
242 		tmp->name = (char *)result;
243 		result = tmp;
244 	} else {
245 		__putname(result);
246 		return ERR_PTR(-ENAMETOOLONG);
247 	}
248 	memcpy((char *)result->name, filename, len);
249 	result->uptr = NULL;
250 	result->aname = NULL;
251 	atomic_set(&result->refcnt, 1);
252 	audit_getname(result);
253 
254 	return result;
255 }
256 EXPORT_SYMBOL(getname_kernel);
257 
258 void putname(struct filename *name)
259 {
260 	if (IS_ERR(name))
261 		return;
262 
263 	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
264 		return;
265 
266 	if (!atomic_dec_and_test(&name->refcnt))
267 		return;
268 
269 	if (name->name != name->iname) {
270 		__putname(name->name);
271 		kfree(name);
272 	} else
273 		__putname(name);
274 }
275 EXPORT_SYMBOL(putname);
276 
277 /**
278  * check_acl - perform ACL permission checking
279  * @idmap:	idmap of the mount the inode was found from
280  * @inode:	inode to check permissions on
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
282  *
283  * This function performs the ACL permission checking. Since this function
284  * retrieve POSIX acls it needs to know whether it is called from a blocking or
285  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
286  *
287  * If the inode has been found through an idmapped mount the idmap of
288  * the vfsmount must be passed through @idmap. This function will then take
289  * care to map the inode according to @idmap before checking permissions.
290  * On non-idmapped mounts or if permission checking is to be performed on the
291  * raw inode simply pass @nop_mnt_idmap.
292  */
293 static int check_acl(struct mnt_idmap *idmap,
294 		     struct inode *inode, int mask)
295 {
296 #ifdef CONFIG_FS_POSIX_ACL
297 	struct posix_acl *acl;
298 
299 	if (mask & MAY_NOT_BLOCK) {
300 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
301 	        if (!acl)
302 	                return -EAGAIN;
303 		/* no ->get_inode_acl() calls in RCU mode... */
304 		if (is_uncached_acl(acl))
305 			return -ECHILD;
306 	        return posix_acl_permission(idmap, inode, acl, mask);
307 	}
308 
309 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
310 	if (IS_ERR(acl))
311 		return PTR_ERR(acl);
312 	if (acl) {
313 	        int error = posix_acl_permission(idmap, inode, acl, mask);
314 	        posix_acl_release(acl);
315 	        return error;
316 	}
317 #endif
318 
319 	return -EAGAIN;
320 }
321 
322 /**
323  * acl_permission_check - perform basic UNIX permission checking
324  * @idmap:	idmap of the mount the inode was found from
325  * @inode:	inode to check permissions on
326  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
327  *
328  * This function performs the basic UNIX permission checking. Since this
329  * function may retrieve POSIX acls it needs to know whether it is called from a
330  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
331  *
332  * If the inode has been found through an idmapped mount the idmap of
333  * the vfsmount must be passed through @idmap. This function will then take
334  * care to map the inode according to @idmap before checking permissions.
335  * On non-idmapped mounts or if permission checking is to be performed on the
336  * raw inode simply pass @nop_mnt_idmap.
337  */
338 static int acl_permission_check(struct mnt_idmap *idmap,
339 				struct inode *inode, int mask)
340 {
341 	unsigned int mode = inode->i_mode;
342 	vfsuid_t vfsuid;
343 
344 	/* Are we the owner? If so, ACL's don't matter */
345 	vfsuid = i_uid_into_vfsuid(idmap, inode);
346 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
347 		mask &= 7;
348 		mode >>= 6;
349 		return (mask & ~mode) ? -EACCES : 0;
350 	}
351 
352 	/* Do we have ACL's? */
353 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 		int error = check_acl(idmap, inode, mask);
355 		if (error != -EAGAIN)
356 			return error;
357 	}
358 
359 	/* Only RWX matters for group/other mode bits */
360 	mask &= 7;
361 
362 	/*
363 	 * Are the group permissions different from
364 	 * the other permissions in the bits we care
365 	 * about? Need to check group ownership if so.
366 	 */
367 	if (mask & (mode ^ (mode >> 3))) {
368 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 		if (vfsgid_in_group_p(vfsgid))
370 			mode >>= 3;
371 	}
372 
373 	/* Bits in 'mode' clear that we require? */
374 	return (mask & ~mode) ? -EACCES : 0;
375 }
376 
377 /**
378  * generic_permission -  check for access rights on a Posix-like filesystem
379  * @idmap:	idmap of the mount the inode was found from
380  * @inode:	inode to check access rights for
381  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382  *		%MAY_NOT_BLOCK ...)
383  *
384  * Used to check for read/write/execute permissions on a file.
385  * We use "fsuid" for this, letting us set arbitrary permissions
386  * for filesystem access without changing the "normal" uids which
387  * are used for other things.
388  *
389  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390  * request cannot be satisfied (eg. requires blocking or too much complexity).
391  * It would then be called again in ref-walk mode.
392  *
393  * If the inode has been found through an idmapped mount the idmap of
394  * the vfsmount must be passed through @idmap. This function will then take
395  * care to map the inode according to @idmap before checking permissions.
396  * On non-idmapped mounts or if permission checking is to be performed on the
397  * raw inode simply pass @nop_mnt_idmap.
398  */
399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
400 		       int mask)
401 {
402 	int ret;
403 
404 	/*
405 	 * Do the basic permission checks.
406 	 */
407 	ret = acl_permission_check(idmap, inode, mask);
408 	if (ret != -EACCES)
409 		return ret;
410 
411 	if (S_ISDIR(inode->i_mode)) {
412 		/* DACs are overridable for directories */
413 		if (!(mask & MAY_WRITE))
414 			if (capable_wrt_inode_uidgid(idmap, inode,
415 						     CAP_DAC_READ_SEARCH))
416 				return 0;
417 		if (capable_wrt_inode_uidgid(idmap, inode,
418 					     CAP_DAC_OVERRIDE))
419 			return 0;
420 		return -EACCES;
421 	}
422 
423 	/*
424 	 * Searching includes executable on directories, else just read.
425 	 */
426 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 	if (mask == MAY_READ)
428 		if (capable_wrt_inode_uidgid(idmap, inode,
429 					     CAP_DAC_READ_SEARCH))
430 			return 0;
431 	/*
432 	 * Read/write DACs are always overridable.
433 	 * Executable DACs are overridable when there is
434 	 * at least one exec bit set.
435 	 */
436 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 		if (capable_wrt_inode_uidgid(idmap, inode,
438 					     CAP_DAC_OVERRIDE))
439 			return 0;
440 
441 	return -EACCES;
442 }
443 EXPORT_SYMBOL(generic_permission);
444 
445 /**
446  * do_inode_permission - UNIX permission checking
447  * @idmap:	idmap of the mount the inode was found from
448  * @inode:	inode to check permissions on
449  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
450  *
451  * We _really_ want to just do "generic_permission()" without
452  * even looking at the inode->i_op values. So we keep a cache
453  * flag in inode->i_opflags, that says "this has not special
454  * permission function, use the fast case".
455  */
456 static inline int do_inode_permission(struct mnt_idmap *idmap,
457 				      struct inode *inode, int mask)
458 {
459 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 		if (likely(inode->i_op->permission))
461 			return inode->i_op->permission(idmap, inode, mask);
462 
463 		/* This gets set once for the inode lifetime */
464 		spin_lock(&inode->i_lock);
465 		inode->i_opflags |= IOP_FASTPERM;
466 		spin_unlock(&inode->i_lock);
467 	}
468 	return generic_permission(idmap, inode, mask);
469 }
470 
471 /**
472  * sb_permission - Check superblock-level permissions
473  * @sb: Superblock of inode to check permission on
474  * @inode: Inode to check permission on
475  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
476  *
477  * Separate out file-system wide checks from inode-specific permission checks.
478  */
479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
480 {
481 	if (unlikely(mask & MAY_WRITE)) {
482 		umode_t mode = inode->i_mode;
483 
484 		/* Nobody gets write access to a read-only fs. */
485 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
486 			return -EROFS;
487 	}
488 	return 0;
489 }
490 
491 /**
492  * inode_permission - Check for access rights to a given inode
493  * @idmap:	idmap of the mount the inode was found from
494  * @inode:	Inode to check permission on
495  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
496  *
497  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
498  * this, letting us set arbitrary permissions for filesystem access without
499  * changing the "normal" UIDs which are used for other things.
500  *
501  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
502  */
503 int inode_permission(struct mnt_idmap *idmap,
504 		     struct inode *inode, int mask)
505 {
506 	int retval;
507 
508 	retval = sb_permission(inode->i_sb, inode, mask);
509 	if (retval)
510 		return retval;
511 
512 	if (unlikely(mask & MAY_WRITE)) {
513 		/*
514 		 * Nobody gets write access to an immutable file.
515 		 */
516 		if (IS_IMMUTABLE(inode))
517 			return -EPERM;
518 
519 		/*
520 		 * Updating mtime will likely cause i_uid and i_gid to be
521 		 * written back improperly if their true value is unknown
522 		 * to the vfs.
523 		 */
524 		if (HAS_UNMAPPED_ID(idmap, inode))
525 			return -EACCES;
526 	}
527 
528 	retval = do_inode_permission(idmap, inode, mask);
529 	if (retval)
530 		return retval;
531 
532 	retval = devcgroup_inode_permission(inode, mask);
533 	if (retval)
534 		return retval;
535 
536 	return security_inode_permission(inode, mask);
537 }
538 EXPORT_SYMBOL(inode_permission);
539 
540 /**
541  * path_get - get a reference to a path
542  * @path: path to get the reference to
543  *
544  * Given a path increment the reference count to the dentry and the vfsmount.
545  */
546 void path_get(const struct path *path)
547 {
548 	mntget(path->mnt);
549 	dget(path->dentry);
550 }
551 EXPORT_SYMBOL(path_get);
552 
553 /**
554  * path_put - put a reference to a path
555  * @path: path to put the reference to
556  *
557  * Given a path decrement the reference count to the dentry and the vfsmount.
558  */
559 void path_put(const struct path *path)
560 {
561 	dput(path->dentry);
562 	mntput(path->mnt);
563 }
564 EXPORT_SYMBOL(path_put);
565 
566 #define EMBEDDED_LEVELS 2
567 struct nameidata {
568 	struct path	path;
569 	struct qstr	last;
570 	struct path	root;
571 	struct inode	*inode; /* path.dentry.d_inode */
572 	unsigned int	flags, state;
573 	unsigned	seq, next_seq, m_seq, r_seq;
574 	int		last_type;
575 	unsigned	depth;
576 	int		total_link_count;
577 	struct saved {
578 		struct path link;
579 		struct delayed_call done;
580 		const char *name;
581 		unsigned seq;
582 	} *stack, internal[EMBEDDED_LEVELS];
583 	struct filename	*name;
584 	struct nameidata *saved;
585 	unsigned	root_seq;
586 	int		dfd;
587 	vfsuid_t	dir_vfsuid;
588 	umode_t		dir_mode;
589 } __randomize_layout;
590 
591 #define ND_ROOT_PRESET 1
592 #define ND_ROOT_GRABBED 2
593 #define ND_JUMPED 4
594 
595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
596 {
597 	struct nameidata *old = current->nameidata;
598 	p->stack = p->internal;
599 	p->depth = 0;
600 	p->dfd = dfd;
601 	p->name = name;
602 	p->path.mnt = NULL;
603 	p->path.dentry = NULL;
604 	p->total_link_count = old ? old->total_link_count : 0;
605 	p->saved = old;
606 	current->nameidata = p;
607 }
608 
609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 			  const struct path *root)
611 {
612 	__set_nameidata(p, dfd, name);
613 	p->state = 0;
614 	if (unlikely(root)) {
615 		p->state = ND_ROOT_PRESET;
616 		p->root = *root;
617 	}
618 }
619 
620 static void restore_nameidata(void)
621 {
622 	struct nameidata *now = current->nameidata, *old = now->saved;
623 
624 	current->nameidata = old;
625 	if (old)
626 		old->total_link_count = now->total_link_count;
627 	if (now->stack != now->internal)
628 		kfree(now->stack);
629 }
630 
631 static bool nd_alloc_stack(struct nameidata *nd)
632 {
633 	struct saved *p;
634 
635 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
636 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
637 	if (unlikely(!p))
638 		return false;
639 	memcpy(p, nd->internal, sizeof(nd->internal));
640 	nd->stack = p;
641 	return true;
642 }
643 
644 /**
645  * path_connected - Verify that a dentry is below mnt.mnt_root
646  * @mnt: The mountpoint to check.
647  * @dentry: The dentry to check.
648  *
649  * Rename can sometimes move a file or directory outside of a bind
650  * mount, path_connected allows those cases to be detected.
651  */
652 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
653 {
654 	struct super_block *sb = mnt->mnt_sb;
655 
656 	/* Bind mounts can have disconnected paths */
657 	if (mnt->mnt_root == sb->s_root)
658 		return true;
659 
660 	return is_subdir(dentry, mnt->mnt_root);
661 }
662 
663 static void drop_links(struct nameidata *nd)
664 {
665 	int i = nd->depth;
666 	while (i--) {
667 		struct saved *last = nd->stack + i;
668 		do_delayed_call(&last->done);
669 		clear_delayed_call(&last->done);
670 	}
671 }
672 
673 static void leave_rcu(struct nameidata *nd)
674 {
675 	nd->flags &= ~LOOKUP_RCU;
676 	nd->seq = nd->next_seq = 0;
677 	rcu_read_unlock();
678 }
679 
680 static void terminate_walk(struct nameidata *nd)
681 {
682 	drop_links(nd);
683 	if (!(nd->flags & LOOKUP_RCU)) {
684 		int i;
685 		path_put(&nd->path);
686 		for (i = 0; i < nd->depth; i++)
687 			path_put(&nd->stack[i].link);
688 		if (nd->state & ND_ROOT_GRABBED) {
689 			path_put(&nd->root);
690 			nd->state &= ~ND_ROOT_GRABBED;
691 		}
692 	} else {
693 		leave_rcu(nd);
694 	}
695 	nd->depth = 0;
696 	nd->path.mnt = NULL;
697 	nd->path.dentry = NULL;
698 }
699 
700 /* path_put is needed afterwards regardless of success or failure */
701 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
702 {
703 	int res = __legitimize_mnt(path->mnt, mseq);
704 	if (unlikely(res)) {
705 		if (res > 0)
706 			path->mnt = NULL;
707 		path->dentry = NULL;
708 		return false;
709 	}
710 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
711 		path->dentry = NULL;
712 		return false;
713 	}
714 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
715 }
716 
717 static inline bool legitimize_path(struct nameidata *nd,
718 			    struct path *path, unsigned seq)
719 {
720 	return __legitimize_path(path, seq, nd->m_seq);
721 }
722 
723 static bool legitimize_links(struct nameidata *nd)
724 {
725 	int i;
726 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
727 		drop_links(nd);
728 		nd->depth = 0;
729 		return false;
730 	}
731 	for (i = 0; i < nd->depth; i++) {
732 		struct saved *last = nd->stack + i;
733 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
734 			drop_links(nd);
735 			nd->depth = i + 1;
736 			return false;
737 		}
738 	}
739 	return true;
740 }
741 
742 static bool legitimize_root(struct nameidata *nd)
743 {
744 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
745 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
746 		return true;
747 	nd->state |= ND_ROOT_GRABBED;
748 	return legitimize_path(nd, &nd->root, nd->root_seq);
749 }
750 
751 /*
752  * Path walking has 2 modes, rcu-walk and ref-walk (see
753  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
754  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
755  * normal reference counts on dentries and vfsmounts to transition to ref-walk
756  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
757  * got stuck, so ref-walk may continue from there. If this is not successful
758  * (eg. a seqcount has changed), then failure is returned and it's up to caller
759  * to restart the path walk from the beginning in ref-walk mode.
760  */
761 
762 /**
763  * try_to_unlazy - try to switch to ref-walk mode.
764  * @nd: nameidata pathwalk data
765  * Returns: true on success, false on failure
766  *
767  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
768  * for ref-walk mode.
769  * Must be called from rcu-walk context.
770  * Nothing should touch nameidata between try_to_unlazy() failure and
771  * terminate_walk().
772  */
773 static bool try_to_unlazy(struct nameidata *nd)
774 {
775 	struct dentry *parent = nd->path.dentry;
776 
777 	BUG_ON(!(nd->flags & LOOKUP_RCU));
778 
779 	if (unlikely(!legitimize_links(nd)))
780 		goto out1;
781 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
782 		goto out;
783 	if (unlikely(!legitimize_root(nd)))
784 		goto out;
785 	leave_rcu(nd);
786 	BUG_ON(nd->inode != parent->d_inode);
787 	return true;
788 
789 out1:
790 	nd->path.mnt = NULL;
791 	nd->path.dentry = NULL;
792 out:
793 	leave_rcu(nd);
794 	return false;
795 }
796 
797 /**
798  * try_to_unlazy_next - try to switch to ref-walk mode.
799  * @nd: nameidata pathwalk data
800  * @dentry: next dentry to step into
801  * Returns: true on success, false on failure
802  *
803  * Similar to try_to_unlazy(), but here we have the next dentry already
804  * picked by rcu-walk and want to legitimize that in addition to the current
805  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
806  * Nothing should touch nameidata between try_to_unlazy_next() failure and
807  * terminate_walk().
808  */
809 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
810 {
811 	int res;
812 	BUG_ON(!(nd->flags & LOOKUP_RCU));
813 
814 	if (unlikely(!legitimize_links(nd)))
815 		goto out2;
816 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
817 	if (unlikely(res)) {
818 		if (res > 0)
819 			goto out2;
820 		goto out1;
821 	}
822 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
823 		goto out1;
824 
825 	/*
826 	 * We need to move both the parent and the dentry from the RCU domain
827 	 * to be properly refcounted. And the sequence number in the dentry
828 	 * validates *both* dentry counters, since we checked the sequence
829 	 * number of the parent after we got the child sequence number. So we
830 	 * know the parent must still be valid if the child sequence number is
831 	 */
832 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
833 		goto out;
834 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
835 		goto out_dput;
836 	/*
837 	 * Sequence counts matched. Now make sure that the root is
838 	 * still valid and get it if required.
839 	 */
840 	if (unlikely(!legitimize_root(nd)))
841 		goto out_dput;
842 	leave_rcu(nd);
843 	return true;
844 
845 out2:
846 	nd->path.mnt = NULL;
847 out1:
848 	nd->path.dentry = NULL;
849 out:
850 	leave_rcu(nd);
851 	return false;
852 out_dput:
853 	leave_rcu(nd);
854 	dput(dentry);
855 	return false;
856 }
857 
858 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
859 {
860 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
861 		return dentry->d_op->d_revalidate(dentry, flags);
862 	else
863 		return 1;
864 }
865 
866 /**
867  * complete_walk - successful completion of path walk
868  * @nd:  pointer nameidata
869  *
870  * If we had been in RCU mode, drop out of it and legitimize nd->path.
871  * Revalidate the final result, unless we'd already done that during
872  * the path walk or the filesystem doesn't ask for it.  Return 0 on
873  * success, -error on failure.  In case of failure caller does not
874  * need to drop nd->path.
875  */
876 static int complete_walk(struct nameidata *nd)
877 {
878 	struct dentry *dentry = nd->path.dentry;
879 	int status;
880 
881 	if (nd->flags & LOOKUP_RCU) {
882 		/*
883 		 * We don't want to zero nd->root for scoped-lookups or
884 		 * externally-managed nd->root.
885 		 */
886 		if (!(nd->state & ND_ROOT_PRESET))
887 			if (!(nd->flags & LOOKUP_IS_SCOPED))
888 				nd->root.mnt = NULL;
889 		nd->flags &= ~LOOKUP_CACHED;
890 		if (!try_to_unlazy(nd))
891 			return -ECHILD;
892 	}
893 
894 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
895 		/*
896 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
897 		 * ever step outside the root during lookup" and should already
898 		 * be guaranteed by the rest of namei, we want to avoid a namei
899 		 * BUG resulting in userspace being given a path that was not
900 		 * scoped within the root at some point during the lookup.
901 		 *
902 		 * So, do a final sanity-check to make sure that in the
903 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
904 		 * we won't silently return an fd completely outside of the
905 		 * requested root to userspace.
906 		 *
907 		 * Userspace could move the path outside the root after this
908 		 * check, but as discussed elsewhere this is not a concern (the
909 		 * resolved file was inside the root at some point).
910 		 */
911 		if (!path_is_under(&nd->path, &nd->root))
912 			return -EXDEV;
913 	}
914 
915 	if (likely(!(nd->state & ND_JUMPED)))
916 		return 0;
917 
918 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
919 		return 0;
920 
921 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
922 	if (status > 0)
923 		return 0;
924 
925 	if (!status)
926 		status = -ESTALE;
927 
928 	return status;
929 }
930 
931 static int set_root(struct nameidata *nd)
932 {
933 	struct fs_struct *fs = current->fs;
934 
935 	/*
936 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
937 	 * still have to ensure it doesn't happen because it will cause a breakout
938 	 * from the dirfd.
939 	 */
940 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
941 		return -ENOTRECOVERABLE;
942 
943 	if (nd->flags & LOOKUP_RCU) {
944 		unsigned seq;
945 
946 		do {
947 			seq = read_seqcount_begin(&fs->seq);
948 			nd->root = fs->root;
949 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
950 		} while (read_seqcount_retry(&fs->seq, seq));
951 	} else {
952 		get_fs_root(fs, &nd->root);
953 		nd->state |= ND_ROOT_GRABBED;
954 	}
955 	return 0;
956 }
957 
958 static int nd_jump_root(struct nameidata *nd)
959 {
960 	if (unlikely(nd->flags & LOOKUP_BENEATH))
961 		return -EXDEV;
962 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
963 		/* Absolute path arguments to path_init() are allowed. */
964 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
965 			return -EXDEV;
966 	}
967 	if (!nd->root.mnt) {
968 		int error = set_root(nd);
969 		if (error)
970 			return error;
971 	}
972 	if (nd->flags & LOOKUP_RCU) {
973 		struct dentry *d;
974 		nd->path = nd->root;
975 		d = nd->path.dentry;
976 		nd->inode = d->d_inode;
977 		nd->seq = nd->root_seq;
978 		if (read_seqcount_retry(&d->d_seq, nd->seq))
979 			return -ECHILD;
980 	} else {
981 		path_put(&nd->path);
982 		nd->path = nd->root;
983 		path_get(&nd->path);
984 		nd->inode = nd->path.dentry->d_inode;
985 	}
986 	nd->state |= ND_JUMPED;
987 	return 0;
988 }
989 
990 /*
991  * Helper to directly jump to a known parsed path from ->get_link,
992  * caller must have taken a reference to path beforehand.
993  */
994 int nd_jump_link(const struct path *path)
995 {
996 	int error = -ELOOP;
997 	struct nameidata *nd = current->nameidata;
998 
999 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1000 		goto err;
1001 
1002 	error = -EXDEV;
1003 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1004 		if (nd->path.mnt != path->mnt)
1005 			goto err;
1006 	}
1007 	/* Not currently safe for scoped-lookups. */
1008 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1009 		goto err;
1010 
1011 	path_put(&nd->path);
1012 	nd->path = *path;
1013 	nd->inode = nd->path.dentry->d_inode;
1014 	nd->state |= ND_JUMPED;
1015 	return 0;
1016 
1017 err:
1018 	path_put(path);
1019 	return error;
1020 }
1021 
1022 static inline void put_link(struct nameidata *nd)
1023 {
1024 	struct saved *last = nd->stack + --nd->depth;
1025 	do_delayed_call(&last->done);
1026 	if (!(nd->flags & LOOKUP_RCU))
1027 		path_put(&last->link);
1028 }
1029 
1030 static int sysctl_protected_symlinks __read_mostly;
1031 static int sysctl_protected_hardlinks __read_mostly;
1032 static int sysctl_protected_fifos __read_mostly;
1033 static int sysctl_protected_regular __read_mostly;
1034 
1035 #ifdef CONFIG_SYSCTL
1036 static struct ctl_table namei_sysctls[] = {
1037 	{
1038 		.procname	= "protected_symlinks",
1039 		.data		= &sysctl_protected_symlinks,
1040 		.maxlen		= sizeof(int),
1041 		.mode		= 0644,
1042 		.proc_handler	= proc_dointvec_minmax,
1043 		.extra1		= SYSCTL_ZERO,
1044 		.extra2		= SYSCTL_ONE,
1045 	},
1046 	{
1047 		.procname	= "protected_hardlinks",
1048 		.data		= &sysctl_protected_hardlinks,
1049 		.maxlen		= sizeof(int),
1050 		.mode		= 0644,
1051 		.proc_handler	= proc_dointvec_minmax,
1052 		.extra1		= SYSCTL_ZERO,
1053 		.extra2		= SYSCTL_ONE,
1054 	},
1055 	{
1056 		.procname	= "protected_fifos",
1057 		.data		= &sysctl_protected_fifos,
1058 		.maxlen		= sizeof(int),
1059 		.mode		= 0644,
1060 		.proc_handler	= proc_dointvec_minmax,
1061 		.extra1		= SYSCTL_ZERO,
1062 		.extra2		= SYSCTL_TWO,
1063 	},
1064 	{
1065 		.procname	= "protected_regular",
1066 		.data		= &sysctl_protected_regular,
1067 		.maxlen		= sizeof(int),
1068 		.mode		= 0644,
1069 		.proc_handler	= proc_dointvec_minmax,
1070 		.extra1		= SYSCTL_ZERO,
1071 		.extra2		= SYSCTL_TWO,
1072 	},
1073 };
1074 
1075 static int __init init_fs_namei_sysctls(void)
1076 {
1077 	register_sysctl_init("fs", namei_sysctls);
1078 	return 0;
1079 }
1080 fs_initcall(init_fs_namei_sysctls);
1081 
1082 #endif /* CONFIG_SYSCTL */
1083 
1084 /**
1085  * may_follow_link - Check symlink following for unsafe situations
1086  * @nd: nameidata pathwalk data
1087  * @inode: Used for idmapping.
1088  *
1089  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1090  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1091  * in a sticky world-writable directory. This is to protect privileged
1092  * processes from failing races against path names that may change out
1093  * from under them by way of other users creating malicious symlinks.
1094  * It will permit symlinks to be followed only when outside a sticky
1095  * world-writable directory, or when the uid of the symlink and follower
1096  * match, or when the directory owner matches the symlink's owner.
1097  *
1098  * Returns 0 if following the symlink is allowed, -ve on error.
1099  */
1100 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1101 {
1102 	struct mnt_idmap *idmap;
1103 	vfsuid_t vfsuid;
1104 
1105 	if (!sysctl_protected_symlinks)
1106 		return 0;
1107 
1108 	idmap = mnt_idmap(nd->path.mnt);
1109 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1110 	/* Allowed if owner and follower match. */
1111 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1112 		return 0;
1113 
1114 	/* Allowed if parent directory not sticky and world-writable. */
1115 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1116 		return 0;
1117 
1118 	/* Allowed if parent directory and link owner match. */
1119 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1120 		return 0;
1121 
1122 	if (nd->flags & LOOKUP_RCU)
1123 		return -ECHILD;
1124 
1125 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1126 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1127 	return -EACCES;
1128 }
1129 
1130 /**
1131  * safe_hardlink_source - Check for safe hardlink conditions
1132  * @idmap: idmap of the mount the inode was found from
1133  * @inode: the source inode to hardlink from
1134  *
1135  * Return false if at least one of the following conditions:
1136  *    - inode is not a regular file
1137  *    - inode is setuid
1138  *    - inode is setgid and group-exec
1139  *    - access failure for read and write
1140  *
1141  * Otherwise returns true.
1142  */
1143 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1144 				 struct inode *inode)
1145 {
1146 	umode_t mode = inode->i_mode;
1147 
1148 	/* Special files should not get pinned to the filesystem. */
1149 	if (!S_ISREG(mode))
1150 		return false;
1151 
1152 	/* Setuid files should not get pinned to the filesystem. */
1153 	if (mode & S_ISUID)
1154 		return false;
1155 
1156 	/* Executable setgid files should not get pinned to the filesystem. */
1157 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1158 		return false;
1159 
1160 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1161 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1162 		return false;
1163 
1164 	return true;
1165 }
1166 
1167 /**
1168  * may_linkat - Check permissions for creating a hardlink
1169  * @idmap: idmap of the mount the inode was found from
1170  * @link:  the source to hardlink from
1171  *
1172  * Block hardlink when all of:
1173  *  - sysctl_protected_hardlinks enabled
1174  *  - fsuid does not match inode
1175  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1176  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1177  *
1178  * If the inode has been found through an idmapped mount the idmap of
1179  * the vfsmount must be passed through @idmap. This function will then take
1180  * care to map the inode according to @idmap before checking permissions.
1181  * On non-idmapped mounts or if permission checking is to be performed on the
1182  * raw inode simply pass @nop_mnt_idmap.
1183  *
1184  * Returns 0 if successful, -ve on error.
1185  */
1186 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1187 {
1188 	struct inode *inode = link->dentry->d_inode;
1189 
1190 	/* Inode writeback is not safe when the uid or gid are invalid. */
1191 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1192 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1193 		return -EOVERFLOW;
1194 
1195 	if (!sysctl_protected_hardlinks)
1196 		return 0;
1197 
1198 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1199 	 * otherwise, it must be a safe source.
1200 	 */
1201 	if (safe_hardlink_source(idmap, inode) ||
1202 	    inode_owner_or_capable(idmap, inode))
1203 		return 0;
1204 
1205 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1206 	return -EPERM;
1207 }
1208 
1209 /**
1210  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1211  *			  should be allowed, or not, on files that already
1212  *			  exist.
1213  * @idmap: idmap of the mount the inode was found from
1214  * @nd: nameidata pathwalk data
1215  * @inode: the inode of the file to open
1216  *
1217  * Block an O_CREAT open of a FIFO (or a regular file) when:
1218  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1219  *   - the file already exists
1220  *   - we are in a sticky directory
1221  *   - we don't own the file
1222  *   - the owner of the directory doesn't own the file
1223  *   - the directory is world writable
1224  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1225  * the directory doesn't have to be world writable: being group writable will
1226  * be enough.
1227  *
1228  * If the inode has been found through an idmapped mount the idmap of
1229  * the vfsmount must be passed through @idmap. This function will then take
1230  * care to map the inode according to @idmap before checking permissions.
1231  * On non-idmapped mounts or if permission checking is to be performed on the
1232  * raw inode simply pass @nop_mnt_idmap.
1233  *
1234  * Returns 0 if the open is allowed, -ve on error.
1235  */
1236 static int may_create_in_sticky(struct mnt_idmap *idmap,
1237 				struct nameidata *nd, struct inode *const inode)
1238 {
1239 	umode_t dir_mode = nd->dir_mode;
1240 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1241 
1242 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1243 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1244 	    likely(!(dir_mode & S_ISVTX)) ||
1245 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1246 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1247 		return 0;
1248 
1249 	if (likely(dir_mode & 0002) ||
1250 	    (dir_mode & 0020 &&
1251 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1252 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1253 		const char *operation = S_ISFIFO(inode->i_mode) ?
1254 					"sticky_create_fifo" :
1255 					"sticky_create_regular";
1256 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1257 		return -EACCES;
1258 	}
1259 	return 0;
1260 }
1261 
1262 /*
1263  * follow_up - Find the mountpoint of path's vfsmount
1264  *
1265  * Given a path, find the mountpoint of its source file system.
1266  * Replace @path with the path of the mountpoint in the parent mount.
1267  * Up is towards /.
1268  *
1269  * Return 1 if we went up a level and 0 if we were already at the
1270  * root.
1271  */
1272 int follow_up(struct path *path)
1273 {
1274 	struct mount *mnt = real_mount(path->mnt);
1275 	struct mount *parent;
1276 	struct dentry *mountpoint;
1277 
1278 	read_seqlock_excl(&mount_lock);
1279 	parent = mnt->mnt_parent;
1280 	if (parent == mnt) {
1281 		read_sequnlock_excl(&mount_lock);
1282 		return 0;
1283 	}
1284 	mntget(&parent->mnt);
1285 	mountpoint = dget(mnt->mnt_mountpoint);
1286 	read_sequnlock_excl(&mount_lock);
1287 	dput(path->dentry);
1288 	path->dentry = mountpoint;
1289 	mntput(path->mnt);
1290 	path->mnt = &parent->mnt;
1291 	return 1;
1292 }
1293 EXPORT_SYMBOL(follow_up);
1294 
1295 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1296 				  struct path *path, unsigned *seqp)
1297 {
1298 	while (mnt_has_parent(m)) {
1299 		struct dentry *mountpoint = m->mnt_mountpoint;
1300 
1301 		m = m->mnt_parent;
1302 		if (unlikely(root->dentry == mountpoint &&
1303 			     root->mnt == &m->mnt))
1304 			break;
1305 		if (mountpoint != m->mnt.mnt_root) {
1306 			path->mnt = &m->mnt;
1307 			path->dentry = mountpoint;
1308 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1309 			return true;
1310 		}
1311 	}
1312 	return false;
1313 }
1314 
1315 static bool choose_mountpoint(struct mount *m, const struct path *root,
1316 			      struct path *path)
1317 {
1318 	bool found;
1319 
1320 	rcu_read_lock();
1321 	while (1) {
1322 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1323 
1324 		found = choose_mountpoint_rcu(m, root, path, &seq);
1325 		if (unlikely(!found)) {
1326 			if (!read_seqretry(&mount_lock, mseq))
1327 				break;
1328 		} else {
1329 			if (likely(__legitimize_path(path, seq, mseq)))
1330 				break;
1331 			rcu_read_unlock();
1332 			path_put(path);
1333 			rcu_read_lock();
1334 		}
1335 	}
1336 	rcu_read_unlock();
1337 	return found;
1338 }
1339 
1340 /*
1341  * Perform an automount
1342  * - return -EISDIR to tell follow_managed() to stop and return the path we
1343  *   were called with.
1344  */
1345 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1346 {
1347 	struct dentry *dentry = path->dentry;
1348 
1349 	/* We don't want to mount if someone's just doing a stat -
1350 	 * unless they're stat'ing a directory and appended a '/' to
1351 	 * the name.
1352 	 *
1353 	 * We do, however, want to mount if someone wants to open or
1354 	 * create a file of any type under the mountpoint, wants to
1355 	 * traverse through the mountpoint or wants to open the
1356 	 * mounted directory.  Also, autofs may mark negative dentries
1357 	 * as being automount points.  These will need the attentions
1358 	 * of the daemon to instantiate them before they can be used.
1359 	 */
1360 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1361 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1362 	    dentry->d_inode)
1363 		return -EISDIR;
1364 
1365 	if (count && (*count)++ >= MAXSYMLINKS)
1366 		return -ELOOP;
1367 
1368 	return finish_automount(dentry->d_op->d_automount(path), path);
1369 }
1370 
1371 /*
1372  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1373  * dentries are pinned but not locked here, so negative dentry can go
1374  * positive right under us.  Use of smp_load_acquire() provides a barrier
1375  * sufficient for ->d_inode and ->d_flags consistency.
1376  */
1377 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1378 			     int *count, unsigned lookup_flags)
1379 {
1380 	struct vfsmount *mnt = path->mnt;
1381 	bool need_mntput = false;
1382 	int ret = 0;
1383 
1384 	while (flags & DCACHE_MANAGED_DENTRY) {
1385 		/* Allow the filesystem to manage the transit without i_mutex
1386 		 * being held. */
1387 		if (flags & DCACHE_MANAGE_TRANSIT) {
1388 			ret = path->dentry->d_op->d_manage(path, false);
1389 			flags = smp_load_acquire(&path->dentry->d_flags);
1390 			if (ret < 0)
1391 				break;
1392 		}
1393 
1394 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1395 			struct vfsmount *mounted = lookup_mnt(path);
1396 			if (mounted) {		// ... in our namespace
1397 				dput(path->dentry);
1398 				if (need_mntput)
1399 					mntput(path->mnt);
1400 				path->mnt = mounted;
1401 				path->dentry = dget(mounted->mnt_root);
1402 				// here we know it's positive
1403 				flags = path->dentry->d_flags;
1404 				need_mntput = true;
1405 				continue;
1406 			}
1407 		}
1408 
1409 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1410 			break;
1411 
1412 		// uncovered automount point
1413 		ret = follow_automount(path, count, lookup_flags);
1414 		flags = smp_load_acquire(&path->dentry->d_flags);
1415 		if (ret < 0)
1416 			break;
1417 	}
1418 
1419 	if (ret == -EISDIR)
1420 		ret = 0;
1421 	// possible if you race with several mount --move
1422 	if (need_mntput && path->mnt == mnt)
1423 		mntput(path->mnt);
1424 	if (!ret && unlikely(d_flags_negative(flags)))
1425 		ret = -ENOENT;
1426 	*jumped = need_mntput;
1427 	return ret;
1428 }
1429 
1430 static inline int traverse_mounts(struct path *path, bool *jumped,
1431 				  int *count, unsigned lookup_flags)
1432 {
1433 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1434 
1435 	/* fastpath */
1436 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1437 		*jumped = false;
1438 		if (unlikely(d_flags_negative(flags)))
1439 			return -ENOENT;
1440 		return 0;
1441 	}
1442 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1443 }
1444 
1445 int follow_down_one(struct path *path)
1446 {
1447 	struct vfsmount *mounted;
1448 
1449 	mounted = lookup_mnt(path);
1450 	if (mounted) {
1451 		dput(path->dentry);
1452 		mntput(path->mnt);
1453 		path->mnt = mounted;
1454 		path->dentry = dget(mounted->mnt_root);
1455 		return 1;
1456 	}
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(follow_down_one);
1460 
1461 /*
1462  * Follow down to the covering mount currently visible to userspace.  At each
1463  * point, the filesystem owning that dentry may be queried as to whether the
1464  * caller is permitted to proceed or not.
1465  */
1466 int follow_down(struct path *path, unsigned int flags)
1467 {
1468 	struct vfsmount *mnt = path->mnt;
1469 	bool jumped;
1470 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1471 
1472 	if (path->mnt != mnt)
1473 		mntput(mnt);
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(follow_down);
1477 
1478 /*
1479  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1480  * we meet a managed dentry that would need blocking.
1481  */
1482 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1483 {
1484 	struct dentry *dentry = path->dentry;
1485 	unsigned int flags = dentry->d_flags;
1486 
1487 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1488 		return true;
1489 
1490 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1491 		return false;
1492 
1493 	for (;;) {
1494 		/*
1495 		 * Don't forget we might have a non-mountpoint managed dentry
1496 		 * that wants to block transit.
1497 		 */
1498 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1499 			int res = dentry->d_op->d_manage(path, true);
1500 			if (res)
1501 				return res == -EISDIR;
1502 			flags = dentry->d_flags;
1503 		}
1504 
1505 		if (flags & DCACHE_MOUNTED) {
1506 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1507 			if (mounted) {
1508 				path->mnt = &mounted->mnt;
1509 				dentry = path->dentry = mounted->mnt.mnt_root;
1510 				nd->state |= ND_JUMPED;
1511 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1512 				flags = dentry->d_flags;
1513 				// makes sure that non-RCU pathwalk could reach
1514 				// this state.
1515 				if (read_seqretry(&mount_lock, nd->m_seq))
1516 					return false;
1517 				continue;
1518 			}
1519 			if (read_seqretry(&mount_lock, nd->m_seq))
1520 				return false;
1521 		}
1522 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1523 	}
1524 }
1525 
1526 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1527 			  struct path *path)
1528 {
1529 	bool jumped;
1530 	int ret;
1531 
1532 	path->mnt = nd->path.mnt;
1533 	path->dentry = dentry;
1534 	if (nd->flags & LOOKUP_RCU) {
1535 		unsigned int seq = nd->next_seq;
1536 		if (likely(__follow_mount_rcu(nd, path)))
1537 			return 0;
1538 		// *path and nd->next_seq might've been clobbered
1539 		path->mnt = nd->path.mnt;
1540 		path->dentry = dentry;
1541 		nd->next_seq = seq;
1542 		if (!try_to_unlazy_next(nd, dentry))
1543 			return -ECHILD;
1544 	}
1545 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1546 	if (jumped) {
1547 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1548 			ret = -EXDEV;
1549 		else
1550 			nd->state |= ND_JUMPED;
1551 	}
1552 	if (unlikely(ret)) {
1553 		dput(path->dentry);
1554 		if (path->mnt != nd->path.mnt)
1555 			mntput(path->mnt);
1556 	}
1557 	return ret;
1558 }
1559 
1560 /*
1561  * This looks up the name in dcache and possibly revalidates the found dentry.
1562  * NULL is returned if the dentry does not exist in the cache.
1563  */
1564 static struct dentry *lookup_dcache(const struct qstr *name,
1565 				    struct dentry *dir,
1566 				    unsigned int flags)
1567 {
1568 	struct dentry *dentry = d_lookup(dir, name);
1569 	if (dentry) {
1570 		int error = d_revalidate(dentry, flags);
1571 		if (unlikely(error <= 0)) {
1572 			if (!error)
1573 				d_invalidate(dentry);
1574 			dput(dentry);
1575 			return ERR_PTR(error);
1576 		}
1577 	}
1578 	return dentry;
1579 }
1580 
1581 /*
1582  * Parent directory has inode locked exclusive.  This is one
1583  * and only case when ->lookup() gets called on non in-lookup
1584  * dentries - as the matter of fact, this only gets called
1585  * when directory is guaranteed to have no in-lookup children
1586  * at all.
1587  */
1588 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1589 				    struct dentry *base,
1590 				    unsigned int flags)
1591 {
1592 	struct dentry *dentry = lookup_dcache(name, base, flags);
1593 	struct dentry *old;
1594 	struct inode *dir = base->d_inode;
1595 
1596 	if (dentry)
1597 		return dentry;
1598 
1599 	/* Don't create child dentry for a dead directory. */
1600 	if (unlikely(IS_DEADDIR(dir)))
1601 		return ERR_PTR(-ENOENT);
1602 
1603 	dentry = d_alloc(base, name);
1604 	if (unlikely(!dentry))
1605 		return ERR_PTR(-ENOMEM);
1606 
1607 	old = dir->i_op->lookup(dir, dentry, flags);
1608 	if (unlikely(old)) {
1609 		dput(dentry);
1610 		dentry = old;
1611 	}
1612 	return dentry;
1613 }
1614 EXPORT_SYMBOL(lookup_one_qstr_excl);
1615 
1616 static struct dentry *lookup_fast(struct nameidata *nd)
1617 {
1618 	struct dentry *dentry, *parent = nd->path.dentry;
1619 	int status = 1;
1620 
1621 	/*
1622 	 * Rename seqlock is not required here because in the off chance
1623 	 * of a false negative due to a concurrent rename, the caller is
1624 	 * going to fall back to non-racy lookup.
1625 	 */
1626 	if (nd->flags & LOOKUP_RCU) {
1627 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1628 		if (unlikely(!dentry)) {
1629 			if (!try_to_unlazy(nd))
1630 				return ERR_PTR(-ECHILD);
1631 			return NULL;
1632 		}
1633 
1634 		/*
1635 		 * This sequence count validates that the parent had no
1636 		 * changes while we did the lookup of the dentry above.
1637 		 */
1638 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1639 			return ERR_PTR(-ECHILD);
1640 
1641 		status = d_revalidate(dentry, nd->flags);
1642 		if (likely(status > 0))
1643 			return dentry;
1644 		if (!try_to_unlazy_next(nd, dentry))
1645 			return ERR_PTR(-ECHILD);
1646 		if (status == -ECHILD)
1647 			/* we'd been told to redo it in non-rcu mode */
1648 			status = d_revalidate(dentry, nd->flags);
1649 	} else {
1650 		dentry = __d_lookup(parent, &nd->last);
1651 		if (unlikely(!dentry))
1652 			return NULL;
1653 		status = d_revalidate(dentry, nd->flags);
1654 	}
1655 	if (unlikely(status <= 0)) {
1656 		if (!status)
1657 			d_invalidate(dentry);
1658 		dput(dentry);
1659 		return ERR_PTR(status);
1660 	}
1661 	return dentry;
1662 }
1663 
1664 /* Fast lookup failed, do it the slow way */
1665 static struct dentry *__lookup_slow(const struct qstr *name,
1666 				    struct dentry *dir,
1667 				    unsigned int flags)
1668 {
1669 	struct dentry *dentry, *old;
1670 	struct inode *inode = dir->d_inode;
1671 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1672 
1673 	/* Don't go there if it's already dead */
1674 	if (unlikely(IS_DEADDIR(inode)))
1675 		return ERR_PTR(-ENOENT);
1676 again:
1677 	dentry = d_alloc_parallel(dir, name, &wq);
1678 	if (IS_ERR(dentry))
1679 		return dentry;
1680 	if (unlikely(!d_in_lookup(dentry))) {
1681 		int error = d_revalidate(dentry, flags);
1682 		if (unlikely(error <= 0)) {
1683 			if (!error) {
1684 				d_invalidate(dentry);
1685 				dput(dentry);
1686 				goto again;
1687 			}
1688 			dput(dentry);
1689 			dentry = ERR_PTR(error);
1690 		}
1691 	} else {
1692 		old = inode->i_op->lookup(inode, dentry, flags);
1693 		d_lookup_done(dentry);
1694 		if (unlikely(old)) {
1695 			dput(dentry);
1696 			dentry = old;
1697 		}
1698 	}
1699 	return dentry;
1700 }
1701 
1702 static struct dentry *lookup_slow(const struct qstr *name,
1703 				  struct dentry *dir,
1704 				  unsigned int flags)
1705 {
1706 	struct inode *inode = dir->d_inode;
1707 	struct dentry *res;
1708 	inode_lock_shared(inode);
1709 	res = __lookup_slow(name, dir, flags);
1710 	inode_unlock_shared(inode);
1711 	return res;
1712 }
1713 
1714 static inline int may_lookup(struct mnt_idmap *idmap,
1715 			     struct nameidata *nd)
1716 {
1717 	if (nd->flags & LOOKUP_RCU) {
1718 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1719 		if (!err)		// success, keep going
1720 			return 0;
1721 		if (!try_to_unlazy(nd))
1722 			return -ECHILD;	// redo it all non-lazy
1723 		if (err != -ECHILD)	// hard error
1724 			return err;
1725 	}
1726 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1727 }
1728 
1729 static int reserve_stack(struct nameidata *nd, struct path *link)
1730 {
1731 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1732 		return -ELOOP;
1733 
1734 	if (likely(nd->depth != EMBEDDED_LEVELS))
1735 		return 0;
1736 	if (likely(nd->stack != nd->internal))
1737 		return 0;
1738 	if (likely(nd_alloc_stack(nd)))
1739 		return 0;
1740 
1741 	if (nd->flags & LOOKUP_RCU) {
1742 		// we need to grab link before we do unlazy.  And we can't skip
1743 		// unlazy even if we fail to grab the link - cleanup needs it
1744 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1745 
1746 		if (!try_to_unlazy(nd) || !grabbed_link)
1747 			return -ECHILD;
1748 
1749 		if (nd_alloc_stack(nd))
1750 			return 0;
1751 	}
1752 	return -ENOMEM;
1753 }
1754 
1755 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1756 
1757 static const char *pick_link(struct nameidata *nd, struct path *link,
1758 		     struct inode *inode, int flags)
1759 {
1760 	struct saved *last;
1761 	const char *res;
1762 	int error = reserve_stack(nd, link);
1763 
1764 	if (unlikely(error)) {
1765 		if (!(nd->flags & LOOKUP_RCU))
1766 			path_put(link);
1767 		return ERR_PTR(error);
1768 	}
1769 	last = nd->stack + nd->depth++;
1770 	last->link = *link;
1771 	clear_delayed_call(&last->done);
1772 	last->seq = nd->next_seq;
1773 
1774 	if (flags & WALK_TRAILING) {
1775 		error = may_follow_link(nd, inode);
1776 		if (unlikely(error))
1777 			return ERR_PTR(error);
1778 	}
1779 
1780 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1781 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1782 		return ERR_PTR(-ELOOP);
1783 
1784 	if (!(nd->flags & LOOKUP_RCU)) {
1785 		touch_atime(&last->link);
1786 		cond_resched();
1787 	} else if (atime_needs_update(&last->link, inode)) {
1788 		if (!try_to_unlazy(nd))
1789 			return ERR_PTR(-ECHILD);
1790 		touch_atime(&last->link);
1791 	}
1792 
1793 	error = security_inode_follow_link(link->dentry, inode,
1794 					   nd->flags & LOOKUP_RCU);
1795 	if (unlikely(error))
1796 		return ERR_PTR(error);
1797 
1798 	res = READ_ONCE(inode->i_link);
1799 	if (!res) {
1800 		const char * (*get)(struct dentry *, struct inode *,
1801 				struct delayed_call *);
1802 		get = inode->i_op->get_link;
1803 		if (nd->flags & LOOKUP_RCU) {
1804 			res = get(NULL, inode, &last->done);
1805 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1806 				res = get(link->dentry, inode, &last->done);
1807 		} else {
1808 			res = get(link->dentry, inode, &last->done);
1809 		}
1810 		if (!res)
1811 			goto all_done;
1812 		if (IS_ERR(res))
1813 			return res;
1814 	}
1815 	if (*res == '/') {
1816 		error = nd_jump_root(nd);
1817 		if (unlikely(error))
1818 			return ERR_PTR(error);
1819 		while (unlikely(*++res == '/'))
1820 			;
1821 	}
1822 	if (*res)
1823 		return res;
1824 all_done: // pure jump
1825 	put_link(nd);
1826 	return NULL;
1827 }
1828 
1829 /*
1830  * Do we need to follow links? We _really_ want to be able
1831  * to do this check without having to look at inode->i_op,
1832  * so we keep a cache of "no, this doesn't need follow_link"
1833  * for the common case.
1834  *
1835  * NOTE: dentry must be what nd->next_seq had been sampled from.
1836  */
1837 static const char *step_into(struct nameidata *nd, int flags,
1838 		     struct dentry *dentry)
1839 {
1840 	struct path path;
1841 	struct inode *inode;
1842 	int err = handle_mounts(nd, dentry, &path);
1843 
1844 	if (err < 0)
1845 		return ERR_PTR(err);
1846 	inode = path.dentry->d_inode;
1847 	if (likely(!d_is_symlink(path.dentry)) ||
1848 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1849 	   (flags & WALK_NOFOLLOW)) {
1850 		/* not a symlink or should not follow */
1851 		if (nd->flags & LOOKUP_RCU) {
1852 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1853 				return ERR_PTR(-ECHILD);
1854 			if (unlikely(!inode))
1855 				return ERR_PTR(-ENOENT);
1856 		} else {
1857 			dput(nd->path.dentry);
1858 			if (nd->path.mnt != path.mnt)
1859 				mntput(nd->path.mnt);
1860 		}
1861 		nd->path = path;
1862 		nd->inode = inode;
1863 		nd->seq = nd->next_seq;
1864 		return NULL;
1865 	}
1866 	if (nd->flags & LOOKUP_RCU) {
1867 		/* make sure that d_is_symlink above matches inode */
1868 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1869 			return ERR_PTR(-ECHILD);
1870 	} else {
1871 		if (path.mnt == nd->path.mnt)
1872 			mntget(path.mnt);
1873 	}
1874 	return pick_link(nd, &path, inode, flags);
1875 }
1876 
1877 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1878 {
1879 	struct dentry *parent, *old;
1880 
1881 	if (path_equal(&nd->path, &nd->root))
1882 		goto in_root;
1883 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1884 		struct path path;
1885 		unsigned seq;
1886 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1887 					   &nd->root, &path, &seq))
1888 			goto in_root;
1889 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1890 			return ERR_PTR(-ECHILD);
1891 		nd->path = path;
1892 		nd->inode = path.dentry->d_inode;
1893 		nd->seq = seq;
1894 		// makes sure that non-RCU pathwalk could reach this state
1895 		if (read_seqretry(&mount_lock, nd->m_seq))
1896 			return ERR_PTR(-ECHILD);
1897 		/* we know that mountpoint was pinned */
1898 	}
1899 	old = nd->path.dentry;
1900 	parent = old->d_parent;
1901 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1902 	// makes sure that non-RCU pathwalk could reach this state
1903 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1904 		return ERR_PTR(-ECHILD);
1905 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1906 		return ERR_PTR(-ECHILD);
1907 	return parent;
1908 in_root:
1909 	if (read_seqretry(&mount_lock, nd->m_seq))
1910 		return ERR_PTR(-ECHILD);
1911 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1912 		return ERR_PTR(-ECHILD);
1913 	nd->next_seq = nd->seq;
1914 	return nd->path.dentry;
1915 }
1916 
1917 static struct dentry *follow_dotdot(struct nameidata *nd)
1918 {
1919 	struct dentry *parent;
1920 
1921 	if (path_equal(&nd->path, &nd->root))
1922 		goto in_root;
1923 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1924 		struct path path;
1925 
1926 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1927 				       &nd->root, &path))
1928 			goto in_root;
1929 		path_put(&nd->path);
1930 		nd->path = path;
1931 		nd->inode = path.dentry->d_inode;
1932 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1933 			return ERR_PTR(-EXDEV);
1934 	}
1935 	/* rare case of legitimate dget_parent()... */
1936 	parent = dget_parent(nd->path.dentry);
1937 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1938 		dput(parent);
1939 		return ERR_PTR(-ENOENT);
1940 	}
1941 	return parent;
1942 
1943 in_root:
1944 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1945 		return ERR_PTR(-EXDEV);
1946 	return dget(nd->path.dentry);
1947 }
1948 
1949 static const char *handle_dots(struct nameidata *nd, int type)
1950 {
1951 	if (type == LAST_DOTDOT) {
1952 		const char *error = NULL;
1953 		struct dentry *parent;
1954 
1955 		if (!nd->root.mnt) {
1956 			error = ERR_PTR(set_root(nd));
1957 			if (error)
1958 				return error;
1959 		}
1960 		if (nd->flags & LOOKUP_RCU)
1961 			parent = follow_dotdot_rcu(nd);
1962 		else
1963 			parent = follow_dotdot(nd);
1964 		if (IS_ERR(parent))
1965 			return ERR_CAST(parent);
1966 		error = step_into(nd, WALK_NOFOLLOW, parent);
1967 		if (unlikely(error))
1968 			return error;
1969 
1970 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1971 			/*
1972 			 * If there was a racing rename or mount along our
1973 			 * path, then we can't be sure that ".." hasn't jumped
1974 			 * above nd->root (and so userspace should retry or use
1975 			 * some fallback).
1976 			 */
1977 			smp_rmb();
1978 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1979 				return ERR_PTR(-EAGAIN);
1980 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1981 				return ERR_PTR(-EAGAIN);
1982 		}
1983 	}
1984 	return NULL;
1985 }
1986 
1987 static const char *walk_component(struct nameidata *nd, int flags)
1988 {
1989 	struct dentry *dentry;
1990 	/*
1991 	 * "." and ".." are special - ".." especially so because it has
1992 	 * to be able to know about the current root directory and
1993 	 * parent relationships.
1994 	 */
1995 	if (unlikely(nd->last_type != LAST_NORM)) {
1996 		if (!(flags & WALK_MORE) && nd->depth)
1997 			put_link(nd);
1998 		return handle_dots(nd, nd->last_type);
1999 	}
2000 	dentry = lookup_fast(nd);
2001 	if (IS_ERR(dentry))
2002 		return ERR_CAST(dentry);
2003 	if (unlikely(!dentry)) {
2004 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2005 		if (IS_ERR(dentry))
2006 			return ERR_CAST(dentry);
2007 	}
2008 	if (!(flags & WALK_MORE) && nd->depth)
2009 		put_link(nd);
2010 	return step_into(nd, flags, dentry);
2011 }
2012 
2013 /*
2014  * We can do the critical dentry name comparison and hashing
2015  * operations one word at a time, but we are limited to:
2016  *
2017  * - Architectures with fast unaligned word accesses. We could
2018  *   do a "get_unaligned()" if this helps and is sufficiently
2019  *   fast.
2020  *
2021  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2022  *   do not trap on the (extremely unlikely) case of a page
2023  *   crossing operation.
2024  *
2025  * - Furthermore, we need an efficient 64-bit compile for the
2026  *   64-bit case in order to generate the "number of bytes in
2027  *   the final mask". Again, that could be replaced with a
2028  *   efficient population count instruction or similar.
2029  */
2030 #ifdef CONFIG_DCACHE_WORD_ACCESS
2031 
2032 #include <asm/word-at-a-time.h>
2033 
2034 #ifdef HASH_MIX
2035 
2036 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2037 
2038 #elif defined(CONFIG_64BIT)
2039 /*
2040  * Register pressure in the mixing function is an issue, particularly
2041  * on 32-bit x86, but almost any function requires one state value and
2042  * one temporary.  Instead, use a function designed for two state values
2043  * and no temporaries.
2044  *
2045  * This function cannot create a collision in only two iterations, so
2046  * we have two iterations to achieve avalanche.  In those two iterations,
2047  * we have six layers of mixing, which is enough to spread one bit's
2048  * influence out to 2^6 = 64 state bits.
2049  *
2050  * Rotate constants are scored by considering either 64 one-bit input
2051  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2052  * probability of that delta causing a change to each of the 128 output
2053  * bits, using a sample of random initial states.
2054  *
2055  * The Shannon entropy of the computed probabilities is then summed
2056  * to produce a score.  Ideally, any input change has a 50% chance of
2057  * toggling any given output bit.
2058  *
2059  * Mixing scores (in bits) for (12,45):
2060  * Input delta: 1-bit      2-bit
2061  * 1 round:     713.3    42542.6
2062  * 2 rounds:   2753.7   140389.8
2063  * 3 rounds:   5954.1   233458.2
2064  * 4 rounds:   7862.6   256672.2
2065  * Perfect:    8192     258048
2066  *            (64*128) (64*63/2 * 128)
2067  */
2068 #define HASH_MIX(x, y, a)	\
2069 	(	x ^= (a),	\
2070 	y ^= x,	x = rol64(x,12),\
2071 	x += y,	y = rol64(y,45),\
2072 	y *= 9			)
2073 
2074 /*
2075  * Fold two longs into one 32-bit hash value.  This must be fast, but
2076  * latency isn't quite as critical, as there is a fair bit of additional
2077  * work done before the hash value is used.
2078  */
2079 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2080 {
2081 	y ^= x * GOLDEN_RATIO_64;
2082 	y *= GOLDEN_RATIO_64;
2083 	return y >> 32;
2084 }
2085 
2086 #else	/* 32-bit case */
2087 
2088 /*
2089  * Mixing scores (in bits) for (7,20):
2090  * Input delta: 1-bit      2-bit
2091  * 1 round:     330.3     9201.6
2092  * 2 rounds:   1246.4    25475.4
2093  * 3 rounds:   1907.1    31295.1
2094  * 4 rounds:   2042.3    31718.6
2095  * Perfect:    2048      31744
2096  *            (32*64)   (32*31/2 * 64)
2097  */
2098 #define HASH_MIX(x, y, a)	\
2099 	(	x ^= (a),	\
2100 	y ^= x,	x = rol32(x, 7),\
2101 	x += y,	y = rol32(y,20),\
2102 	y *= 9			)
2103 
2104 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2105 {
2106 	/* Use arch-optimized multiply if one exists */
2107 	return __hash_32(y ^ __hash_32(x));
2108 }
2109 
2110 #endif
2111 
2112 /*
2113  * Return the hash of a string of known length.  This is carfully
2114  * designed to match hash_name(), which is the more critical function.
2115  * In particular, we must end by hashing a final word containing 0..7
2116  * payload bytes, to match the way that hash_name() iterates until it
2117  * finds the delimiter after the name.
2118  */
2119 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2120 {
2121 	unsigned long a, x = 0, y = (unsigned long)salt;
2122 
2123 	for (;;) {
2124 		if (!len)
2125 			goto done;
2126 		a = load_unaligned_zeropad(name);
2127 		if (len < sizeof(unsigned long))
2128 			break;
2129 		HASH_MIX(x, y, a);
2130 		name += sizeof(unsigned long);
2131 		len -= sizeof(unsigned long);
2132 	}
2133 	x ^= a & bytemask_from_count(len);
2134 done:
2135 	return fold_hash(x, y);
2136 }
2137 EXPORT_SYMBOL(full_name_hash);
2138 
2139 /* Return the "hash_len" (hash and length) of a null-terminated string */
2140 u64 hashlen_string(const void *salt, const char *name)
2141 {
2142 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2143 	unsigned long adata, mask, len;
2144 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2145 
2146 	len = 0;
2147 	goto inside;
2148 
2149 	do {
2150 		HASH_MIX(x, y, a);
2151 		len += sizeof(unsigned long);
2152 inside:
2153 		a = load_unaligned_zeropad(name+len);
2154 	} while (!has_zero(a, &adata, &constants));
2155 
2156 	adata = prep_zero_mask(a, adata, &constants);
2157 	mask = create_zero_mask(adata);
2158 	x ^= a & zero_bytemask(mask);
2159 
2160 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2161 }
2162 EXPORT_SYMBOL(hashlen_string);
2163 
2164 /*
2165  * Calculate the length and hash of the path component, and
2166  * return the "hash_len" as the result.
2167  */
2168 static inline u64 hash_name(const void *salt, const char *name)
2169 {
2170 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2171 	unsigned long adata, bdata, mask, len;
2172 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2173 
2174 	len = 0;
2175 	goto inside;
2176 
2177 	do {
2178 		HASH_MIX(x, y, a);
2179 		len += sizeof(unsigned long);
2180 inside:
2181 		a = load_unaligned_zeropad(name+len);
2182 		b = a ^ REPEAT_BYTE('/');
2183 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2184 
2185 	adata = prep_zero_mask(a, adata, &constants);
2186 	bdata = prep_zero_mask(b, bdata, &constants);
2187 	mask = create_zero_mask(adata | bdata);
2188 	x ^= a & zero_bytemask(mask);
2189 
2190 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2191 }
2192 
2193 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2194 
2195 /* Return the hash of a string of known length */
2196 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2197 {
2198 	unsigned long hash = init_name_hash(salt);
2199 	while (len--)
2200 		hash = partial_name_hash((unsigned char)*name++, hash);
2201 	return end_name_hash(hash);
2202 }
2203 EXPORT_SYMBOL(full_name_hash);
2204 
2205 /* Return the "hash_len" (hash and length) of a null-terminated string */
2206 u64 hashlen_string(const void *salt, const char *name)
2207 {
2208 	unsigned long hash = init_name_hash(salt);
2209 	unsigned long len = 0, c;
2210 
2211 	c = (unsigned char)*name;
2212 	while (c) {
2213 		len++;
2214 		hash = partial_name_hash(c, hash);
2215 		c = (unsigned char)name[len];
2216 	}
2217 	return hashlen_create(end_name_hash(hash), len);
2218 }
2219 EXPORT_SYMBOL(hashlen_string);
2220 
2221 /*
2222  * We know there's a real path component here of at least
2223  * one character.
2224  */
2225 static inline u64 hash_name(const void *salt, const char *name)
2226 {
2227 	unsigned long hash = init_name_hash(salt);
2228 	unsigned long len = 0, c;
2229 
2230 	c = (unsigned char)*name;
2231 	do {
2232 		len++;
2233 		hash = partial_name_hash(c, hash);
2234 		c = (unsigned char)name[len];
2235 	} while (c && c != '/');
2236 	return hashlen_create(end_name_hash(hash), len);
2237 }
2238 
2239 #endif
2240 
2241 /*
2242  * Name resolution.
2243  * This is the basic name resolution function, turning a pathname into
2244  * the final dentry. We expect 'base' to be positive and a directory.
2245  *
2246  * Returns 0 and nd will have valid dentry and mnt on success.
2247  * Returns error and drops reference to input namei data on failure.
2248  */
2249 static int link_path_walk(const char *name, struct nameidata *nd)
2250 {
2251 	int depth = 0; // depth <= nd->depth
2252 	int err;
2253 
2254 	nd->last_type = LAST_ROOT;
2255 	nd->flags |= LOOKUP_PARENT;
2256 	if (IS_ERR(name))
2257 		return PTR_ERR(name);
2258 	while (*name=='/')
2259 		name++;
2260 	if (!*name) {
2261 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2262 		return 0;
2263 	}
2264 
2265 	/* At this point we know we have a real path component. */
2266 	for(;;) {
2267 		struct mnt_idmap *idmap;
2268 		const char *link;
2269 		u64 hash_len;
2270 		int type;
2271 
2272 		idmap = mnt_idmap(nd->path.mnt);
2273 		err = may_lookup(idmap, nd);
2274 		if (err)
2275 			return err;
2276 
2277 		hash_len = hash_name(nd->path.dentry, name);
2278 
2279 		type = LAST_NORM;
2280 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2281 			case 2:
2282 				if (name[1] == '.') {
2283 					type = LAST_DOTDOT;
2284 					nd->state |= ND_JUMPED;
2285 				}
2286 				break;
2287 			case 1:
2288 				type = LAST_DOT;
2289 		}
2290 		if (likely(type == LAST_NORM)) {
2291 			struct dentry *parent = nd->path.dentry;
2292 			nd->state &= ~ND_JUMPED;
2293 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2294 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2295 				err = parent->d_op->d_hash(parent, &this);
2296 				if (err < 0)
2297 					return err;
2298 				hash_len = this.hash_len;
2299 				name = this.name;
2300 			}
2301 		}
2302 
2303 		nd->last.hash_len = hash_len;
2304 		nd->last.name = name;
2305 		nd->last_type = type;
2306 
2307 		name += hashlen_len(hash_len);
2308 		if (!*name)
2309 			goto OK;
2310 		/*
2311 		 * If it wasn't NUL, we know it was '/'. Skip that
2312 		 * slash, and continue until no more slashes.
2313 		 */
2314 		do {
2315 			name++;
2316 		} while (unlikely(*name == '/'));
2317 		if (unlikely(!*name)) {
2318 OK:
2319 			/* pathname or trailing symlink, done */
2320 			if (!depth) {
2321 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2322 				nd->dir_mode = nd->inode->i_mode;
2323 				nd->flags &= ~LOOKUP_PARENT;
2324 				return 0;
2325 			}
2326 			/* last component of nested symlink */
2327 			name = nd->stack[--depth].name;
2328 			link = walk_component(nd, 0);
2329 		} else {
2330 			/* not the last component */
2331 			link = walk_component(nd, WALK_MORE);
2332 		}
2333 		if (unlikely(link)) {
2334 			if (IS_ERR(link))
2335 				return PTR_ERR(link);
2336 			/* a symlink to follow */
2337 			nd->stack[depth++].name = name;
2338 			name = link;
2339 			continue;
2340 		}
2341 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2342 			if (nd->flags & LOOKUP_RCU) {
2343 				if (!try_to_unlazy(nd))
2344 					return -ECHILD;
2345 			}
2346 			return -ENOTDIR;
2347 		}
2348 	}
2349 }
2350 
2351 /* must be paired with terminate_walk() */
2352 static const char *path_init(struct nameidata *nd, unsigned flags)
2353 {
2354 	int error;
2355 	const char *s = nd->name->name;
2356 
2357 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2358 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2359 		return ERR_PTR(-EAGAIN);
2360 
2361 	if (!*s)
2362 		flags &= ~LOOKUP_RCU;
2363 	if (flags & LOOKUP_RCU)
2364 		rcu_read_lock();
2365 	else
2366 		nd->seq = nd->next_seq = 0;
2367 
2368 	nd->flags = flags;
2369 	nd->state |= ND_JUMPED;
2370 
2371 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2372 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2373 	smp_rmb();
2374 
2375 	if (nd->state & ND_ROOT_PRESET) {
2376 		struct dentry *root = nd->root.dentry;
2377 		struct inode *inode = root->d_inode;
2378 		if (*s && unlikely(!d_can_lookup(root)))
2379 			return ERR_PTR(-ENOTDIR);
2380 		nd->path = nd->root;
2381 		nd->inode = inode;
2382 		if (flags & LOOKUP_RCU) {
2383 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2384 			nd->root_seq = nd->seq;
2385 		} else {
2386 			path_get(&nd->path);
2387 		}
2388 		return s;
2389 	}
2390 
2391 	nd->root.mnt = NULL;
2392 
2393 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2394 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2395 		error = nd_jump_root(nd);
2396 		if (unlikely(error))
2397 			return ERR_PTR(error);
2398 		return s;
2399 	}
2400 
2401 	/* Relative pathname -- get the starting-point it is relative to. */
2402 	if (nd->dfd == AT_FDCWD) {
2403 		if (flags & LOOKUP_RCU) {
2404 			struct fs_struct *fs = current->fs;
2405 			unsigned seq;
2406 
2407 			do {
2408 				seq = read_seqcount_begin(&fs->seq);
2409 				nd->path = fs->pwd;
2410 				nd->inode = nd->path.dentry->d_inode;
2411 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2412 			} while (read_seqcount_retry(&fs->seq, seq));
2413 		} else {
2414 			get_fs_pwd(current->fs, &nd->path);
2415 			nd->inode = nd->path.dentry->d_inode;
2416 		}
2417 	} else {
2418 		/* Caller must check execute permissions on the starting path component */
2419 		struct fd f = fdget_raw(nd->dfd);
2420 		struct dentry *dentry;
2421 
2422 		if (!f.file)
2423 			return ERR_PTR(-EBADF);
2424 
2425 		dentry = f.file->f_path.dentry;
2426 
2427 		if (*s && unlikely(!d_can_lookup(dentry))) {
2428 			fdput(f);
2429 			return ERR_PTR(-ENOTDIR);
2430 		}
2431 
2432 		nd->path = f.file->f_path;
2433 		if (flags & LOOKUP_RCU) {
2434 			nd->inode = nd->path.dentry->d_inode;
2435 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2436 		} else {
2437 			path_get(&nd->path);
2438 			nd->inode = nd->path.dentry->d_inode;
2439 		}
2440 		fdput(f);
2441 	}
2442 
2443 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2444 	if (flags & LOOKUP_IS_SCOPED) {
2445 		nd->root = nd->path;
2446 		if (flags & LOOKUP_RCU) {
2447 			nd->root_seq = nd->seq;
2448 		} else {
2449 			path_get(&nd->root);
2450 			nd->state |= ND_ROOT_GRABBED;
2451 		}
2452 	}
2453 	return s;
2454 }
2455 
2456 static inline const char *lookup_last(struct nameidata *nd)
2457 {
2458 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2459 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2460 
2461 	return walk_component(nd, WALK_TRAILING);
2462 }
2463 
2464 static int handle_lookup_down(struct nameidata *nd)
2465 {
2466 	if (!(nd->flags & LOOKUP_RCU))
2467 		dget(nd->path.dentry);
2468 	nd->next_seq = nd->seq;
2469 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2470 }
2471 
2472 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2473 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2474 {
2475 	const char *s = path_init(nd, flags);
2476 	int err;
2477 
2478 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2479 		err = handle_lookup_down(nd);
2480 		if (unlikely(err < 0))
2481 			s = ERR_PTR(err);
2482 	}
2483 
2484 	while (!(err = link_path_walk(s, nd)) &&
2485 	       (s = lookup_last(nd)) != NULL)
2486 		;
2487 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2488 		err = handle_lookup_down(nd);
2489 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2490 	}
2491 	if (!err)
2492 		err = complete_walk(nd);
2493 
2494 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2495 		if (!d_can_lookup(nd->path.dentry))
2496 			err = -ENOTDIR;
2497 	if (!err) {
2498 		*path = nd->path;
2499 		nd->path.mnt = NULL;
2500 		nd->path.dentry = NULL;
2501 	}
2502 	terminate_walk(nd);
2503 	return err;
2504 }
2505 
2506 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2507 		    struct path *path, struct path *root)
2508 {
2509 	int retval;
2510 	struct nameidata nd;
2511 	if (IS_ERR(name))
2512 		return PTR_ERR(name);
2513 	set_nameidata(&nd, dfd, name, root);
2514 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2515 	if (unlikely(retval == -ECHILD))
2516 		retval = path_lookupat(&nd, flags, path);
2517 	if (unlikely(retval == -ESTALE))
2518 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2519 
2520 	if (likely(!retval))
2521 		audit_inode(name, path->dentry,
2522 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2523 	restore_nameidata();
2524 	return retval;
2525 }
2526 
2527 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2528 static int path_parentat(struct nameidata *nd, unsigned flags,
2529 				struct path *parent)
2530 {
2531 	const char *s = path_init(nd, flags);
2532 	int err = link_path_walk(s, nd);
2533 	if (!err)
2534 		err = complete_walk(nd);
2535 	if (!err) {
2536 		*parent = nd->path;
2537 		nd->path.mnt = NULL;
2538 		nd->path.dentry = NULL;
2539 	}
2540 	terminate_walk(nd);
2541 	return err;
2542 }
2543 
2544 /* Note: this does not consume "name" */
2545 static int __filename_parentat(int dfd, struct filename *name,
2546 			       unsigned int flags, struct path *parent,
2547 			       struct qstr *last, int *type,
2548 			       const struct path *root)
2549 {
2550 	int retval;
2551 	struct nameidata nd;
2552 
2553 	if (IS_ERR(name))
2554 		return PTR_ERR(name);
2555 	set_nameidata(&nd, dfd, name, root);
2556 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2557 	if (unlikely(retval == -ECHILD))
2558 		retval = path_parentat(&nd, flags, parent);
2559 	if (unlikely(retval == -ESTALE))
2560 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2561 	if (likely(!retval)) {
2562 		*last = nd.last;
2563 		*type = nd.last_type;
2564 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2565 	}
2566 	restore_nameidata();
2567 	return retval;
2568 }
2569 
2570 static int filename_parentat(int dfd, struct filename *name,
2571 			     unsigned int flags, struct path *parent,
2572 			     struct qstr *last, int *type)
2573 {
2574 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2575 }
2576 
2577 /* does lookup, returns the object with parent locked */
2578 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2579 {
2580 	struct dentry *d;
2581 	struct qstr last;
2582 	int type, error;
2583 
2584 	error = filename_parentat(dfd, name, 0, path, &last, &type);
2585 	if (error)
2586 		return ERR_PTR(error);
2587 	if (unlikely(type != LAST_NORM)) {
2588 		path_put(path);
2589 		return ERR_PTR(-EINVAL);
2590 	}
2591 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2592 	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2593 	if (IS_ERR(d)) {
2594 		inode_unlock(path->dentry->d_inode);
2595 		path_put(path);
2596 	}
2597 	return d;
2598 }
2599 
2600 struct dentry *kern_path_locked(const char *name, struct path *path)
2601 {
2602 	struct filename *filename = getname_kernel(name);
2603 	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2604 
2605 	putname(filename);
2606 	return res;
2607 }
2608 
2609 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2610 {
2611 	struct filename *filename = getname(name);
2612 	struct dentry *res = __kern_path_locked(dfd, filename, path);
2613 
2614 	putname(filename);
2615 	return res;
2616 }
2617 EXPORT_SYMBOL(user_path_locked_at);
2618 
2619 int kern_path(const char *name, unsigned int flags, struct path *path)
2620 {
2621 	struct filename *filename = getname_kernel(name);
2622 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2623 
2624 	putname(filename);
2625 	return ret;
2626 
2627 }
2628 EXPORT_SYMBOL(kern_path);
2629 
2630 /**
2631  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2632  * @filename: filename structure
2633  * @flags: lookup flags
2634  * @parent: pointer to struct path to fill
2635  * @last: last component
2636  * @type: type of the last component
2637  * @root: pointer to struct path of the base directory
2638  */
2639 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2640 			   struct path *parent, struct qstr *last, int *type,
2641 			   const struct path *root)
2642 {
2643 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2644 				    type, root);
2645 }
2646 EXPORT_SYMBOL(vfs_path_parent_lookup);
2647 
2648 /**
2649  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2650  * @dentry:  pointer to dentry of the base directory
2651  * @mnt: pointer to vfs mount of the base directory
2652  * @name: pointer to file name
2653  * @flags: lookup flags
2654  * @path: pointer to struct path to fill
2655  */
2656 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2657 		    const char *name, unsigned int flags,
2658 		    struct path *path)
2659 {
2660 	struct filename *filename;
2661 	struct path root = {.mnt = mnt, .dentry = dentry};
2662 	int ret;
2663 
2664 	filename = getname_kernel(name);
2665 	/* the first argument of filename_lookup() is ignored with root */
2666 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2667 	putname(filename);
2668 	return ret;
2669 }
2670 EXPORT_SYMBOL(vfs_path_lookup);
2671 
2672 static int lookup_one_common(struct mnt_idmap *idmap,
2673 			     const char *name, struct dentry *base, int len,
2674 			     struct qstr *this)
2675 {
2676 	this->name = name;
2677 	this->len = len;
2678 	this->hash = full_name_hash(base, name, len);
2679 	if (!len)
2680 		return -EACCES;
2681 
2682 	if (is_dot_dotdot(name, len))
2683 		return -EACCES;
2684 
2685 	while (len--) {
2686 		unsigned int c = *(const unsigned char *)name++;
2687 		if (c == '/' || c == '\0')
2688 			return -EACCES;
2689 	}
2690 	/*
2691 	 * See if the low-level filesystem might want
2692 	 * to use its own hash..
2693 	 */
2694 	if (base->d_flags & DCACHE_OP_HASH) {
2695 		int err = base->d_op->d_hash(base, this);
2696 		if (err < 0)
2697 			return err;
2698 	}
2699 
2700 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2701 }
2702 
2703 /**
2704  * try_lookup_one_len - filesystem helper to lookup single pathname component
2705  * @name:	pathname component to lookup
2706  * @base:	base directory to lookup from
2707  * @len:	maximum length @len should be interpreted to
2708  *
2709  * Look up a dentry by name in the dcache, returning NULL if it does not
2710  * currently exist.  The function does not try to create a dentry.
2711  *
2712  * Note that this routine is purely a helper for filesystem usage and should
2713  * not be called by generic code.
2714  *
2715  * The caller must hold base->i_mutex.
2716  */
2717 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2718 {
2719 	struct qstr this;
2720 	int err;
2721 
2722 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2723 
2724 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2725 	if (err)
2726 		return ERR_PTR(err);
2727 
2728 	return lookup_dcache(&this, base, 0);
2729 }
2730 EXPORT_SYMBOL(try_lookup_one_len);
2731 
2732 /**
2733  * lookup_one_len - filesystem helper to lookup single pathname component
2734  * @name:	pathname component to lookup
2735  * @base:	base directory to lookup from
2736  * @len:	maximum length @len should be interpreted to
2737  *
2738  * Note that this routine is purely a helper for filesystem usage and should
2739  * not be called by generic code.
2740  *
2741  * The caller must hold base->i_mutex.
2742  */
2743 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2744 {
2745 	struct dentry *dentry;
2746 	struct qstr this;
2747 	int err;
2748 
2749 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2750 
2751 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2752 	if (err)
2753 		return ERR_PTR(err);
2754 
2755 	dentry = lookup_dcache(&this, base, 0);
2756 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2757 }
2758 EXPORT_SYMBOL(lookup_one_len);
2759 
2760 /**
2761  * lookup_one - filesystem helper to lookup single pathname component
2762  * @idmap:	idmap of the mount the lookup is performed from
2763  * @name:	pathname component to lookup
2764  * @base:	base directory to lookup from
2765  * @len:	maximum length @len should be interpreted to
2766  *
2767  * Note that this routine is purely a helper for filesystem usage and should
2768  * not be called by generic code.
2769  *
2770  * The caller must hold base->i_mutex.
2771  */
2772 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2773 			  struct dentry *base, int len)
2774 {
2775 	struct dentry *dentry;
2776 	struct qstr this;
2777 	int err;
2778 
2779 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2780 
2781 	err = lookup_one_common(idmap, name, base, len, &this);
2782 	if (err)
2783 		return ERR_PTR(err);
2784 
2785 	dentry = lookup_dcache(&this, base, 0);
2786 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2787 }
2788 EXPORT_SYMBOL(lookup_one);
2789 
2790 /**
2791  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2792  * @idmap:	idmap of the mount the lookup is performed from
2793  * @name:	pathname component to lookup
2794  * @base:	base directory to lookup from
2795  * @len:	maximum length @len should be interpreted to
2796  *
2797  * Note that this routine is purely a helper for filesystem usage and should
2798  * not be called by generic code.
2799  *
2800  * Unlike lookup_one_len, it should be called without the parent
2801  * i_mutex held, and will take the i_mutex itself if necessary.
2802  */
2803 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2804 				   const char *name, struct dentry *base,
2805 				   int len)
2806 {
2807 	struct qstr this;
2808 	int err;
2809 	struct dentry *ret;
2810 
2811 	err = lookup_one_common(idmap, name, base, len, &this);
2812 	if (err)
2813 		return ERR_PTR(err);
2814 
2815 	ret = lookup_dcache(&this, base, 0);
2816 	if (!ret)
2817 		ret = lookup_slow(&this, base, 0);
2818 	return ret;
2819 }
2820 EXPORT_SYMBOL(lookup_one_unlocked);
2821 
2822 /**
2823  * lookup_one_positive_unlocked - filesystem helper to lookup single
2824  *				  pathname component
2825  * @idmap:	idmap of the mount the lookup is performed from
2826  * @name:	pathname component to lookup
2827  * @base:	base directory to lookup from
2828  * @len:	maximum length @len should be interpreted to
2829  *
2830  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2831  * known positive or ERR_PTR(). This is what most of the users want.
2832  *
2833  * Note that pinned negative with unlocked parent _can_ become positive at any
2834  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2835  * positives have >d_inode stable, so this one avoids such problems.
2836  *
2837  * Note that this routine is purely a helper for filesystem usage and should
2838  * not be called by generic code.
2839  *
2840  * The helper should be called without i_mutex held.
2841  */
2842 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2843 					    const char *name,
2844 					    struct dentry *base, int len)
2845 {
2846 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2847 
2848 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2849 		dput(ret);
2850 		ret = ERR_PTR(-ENOENT);
2851 	}
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2855 
2856 /**
2857  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2858  * @name:	pathname component to lookup
2859  * @base:	base directory to lookup from
2860  * @len:	maximum length @len should be interpreted to
2861  *
2862  * Note that this routine is purely a helper for filesystem usage and should
2863  * not be called by generic code.
2864  *
2865  * Unlike lookup_one_len, it should be called without the parent
2866  * i_mutex held, and will take the i_mutex itself if necessary.
2867  */
2868 struct dentry *lookup_one_len_unlocked(const char *name,
2869 				       struct dentry *base, int len)
2870 {
2871 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2872 }
2873 EXPORT_SYMBOL(lookup_one_len_unlocked);
2874 
2875 /*
2876  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2877  * on negatives.  Returns known positive or ERR_PTR(); that's what
2878  * most of the users want.  Note that pinned negative with unlocked parent
2879  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2880  * need to be very careful; pinned positives have ->d_inode stable, so
2881  * this one avoids such problems.
2882  */
2883 struct dentry *lookup_positive_unlocked(const char *name,
2884 				       struct dentry *base, int len)
2885 {
2886 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2887 }
2888 EXPORT_SYMBOL(lookup_positive_unlocked);
2889 
2890 #ifdef CONFIG_UNIX98_PTYS
2891 int path_pts(struct path *path)
2892 {
2893 	/* Find something mounted on "pts" in the same directory as
2894 	 * the input path.
2895 	 */
2896 	struct dentry *parent = dget_parent(path->dentry);
2897 	struct dentry *child;
2898 	struct qstr this = QSTR_INIT("pts", 3);
2899 
2900 	if (unlikely(!path_connected(path->mnt, parent))) {
2901 		dput(parent);
2902 		return -ENOENT;
2903 	}
2904 	dput(path->dentry);
2905 	path->dentry = parent;
2906 	child = d_hash_and_lookup(parent, &this);
2907 	if (IS_ERR_OR_NULL(child))
2908 		return -ENOENT;
2909 
2910 	path->dentry = child;
2911 	dput(parent);
2912 	follow_down(path, 0);
2913 	return 0;
2914 }
2915 #endif
2916 
2917 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2918 		 struct path *path, int *empty)
2919 {
2920 	struct filename *filename = getname_flags(name, flags, empty);
2921 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2922 
2923 	putname(filename);
2924 	return ret;
2925 }
2926 EXPORT_SYMBOL(user_path_at_empty);
2927 
2928 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2929 		   struct inode *inode)
2930 {
2931 	kuid_t fsuid = current_fsuid();
2932 
2933 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2934 		return 0;
2935 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2936 		return 0;
2937 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2938 }
2939 EXPORT_SYMBOL(__check_sticky);
2940 
2941 /*
2942  *	Check whether we can remove a link victim from directory dir, check
2943  *  whether the type of victim is right.
2944  *  1. We can't do it if dir is read-only (done in permission())
2945  *  2. We should have write and exec permissions on dir
2946  *  3. We can't remove anything from append-only dir
2947  *  4. We can't do anything with immutable dir (done in permission())
2948  *  5. If the sticky bit on dir is set we should either
2949  *	a. be owner of dir, or
2950  *	b. be owner of victim, or
2951  *	c. have CAP_FOWNER capability
2952  *  6. If the victim is append-only or immutable we can't do antyhing with
2953  *     links pointing to it.
2954  *  7. If the victim has an unknown uid or gid we can't change the inode.
2955  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2956  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2957  * 10. We can't remove a root or mountpoint.
2958  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2959  *     nfs_async_unlink().
2960  */
2961 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2962 		      struct dentry *victim, bool isdir)
2963 {
2964 	struct inode *inode = d_backing_inode(victim);
2965 	int error;
2966 
2967 	if (d_is_negative(victim))
2968 		return -ENOENT;
2969 	BUG_ON(!inode);
2970 
2971 	BUG_ON(victim->d_parent->d_inode != dir);
2972 
2973 	/* Inode writeback is not safe when the uid or gid are invalid. */
2974 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2975 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2976 		return -EOVERFLOW;
2977 
2978 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2979 
2980 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2981 	if (error)
2982 		return error;
2983 	if (IS_APPEND(dir))
2984 		return -EPERM;
2985 
2986 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2987 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2988 	    HAS_UNMAPPED_ID(idmap, inode))
2989 		return -EPERM;
2990 	if (isdir) {
2991 		if (!d_is_dir(victim))
2992 			return -ENOTDIR;
2993 		if (IS_ROOT(victim))
2994 			return -EBUSY;
2995 	} else if (d_is_dir(victim))
2996 		return -EISDIR;
2997 	if (IS_DEADDIR(dir))
2998 		return -ENOENT;
2999 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3000 		return -EBUSY;
3001 	return 0;
3002 }
3003 
3004 /*	Check whether we can create an object with dentry child in directory
3005  *  dir.
3006  *  1. We can't do it if child already exists (open has special treatment for
3007  *     this case, but since we are inlined it's OK)
3008  *  2. We can't do it if dir is read-only (done in permission())
3009  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3010  *  4. We should have write and exec permissions on dir
3011  *  5. We can't do it if dir is immutable (done in permission())
3012  */
3013 static inline int may_create(struct mnt_idmap *idmap,
3014 			     struct inode *dir, struct dentry *child)
3015 {
3016 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3017 	if (child->d_inode)
3018 		return -EEXIST;
3019 	if (IS_DEADDIR(dir))
3020 		return -ENOENT;
3021 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3022 		return -EOVERFLOW;
3023 
3024 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3025 }
3026 
3027 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3028 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3029 {
3030 	struct dentry *p = p1, *q = p2, *r;
3031 
3032 	while ((r = p->d_parent) != p2 && r != p)
3033 		p = r;
3034 	if (r == p2) {
3035 		// p is a child of p2 and an ancestor of p1 or p1 itself
3036 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3037 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3038 		return p;
3039 	}
3040 	// p is the root of connected component that contains p1
3041 	// p2 does not occur on the path from p to p1
3042 	while ((r = q->d_parent) != p1 && r != p && r != q)
3043 		q = r;
3044 	if (r == p1) {
3045 		// q is a child of p1 and an ancestor of p2 or p2 itself
3046 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3047 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3048 		return q;
3049 	} else if (likely(r == p)) {
3050 		// both p2 and p1 are descendents of p
3051 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3052 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3053 		return NULL;
3054 	} else { // no common ancestor at the time we'd been called
3055 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3056 		return ERR_PTR(-EXDEV);
3057 	}
3058 }
3059 
3060 /*
3061  * p1 and p2 should be directories on the same fs.
3062  */
3063 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3064 {
3065 	if (p1 == p2) {
3066 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3067 		return NULL;
3068 	}
3069 
3070 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3071 	return lock_two_directories(p1, p2);
3072 }
3073 EXPORT_SYMBOL(lock_rename);
3074 
3075 /*
3076  * c1 and p2 should be on the same fs.
3077  */
3078 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3079 {
3080 	if (READ_ONCE(c1->d_parent) == p2) {
3081 		/*
3082 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3083 		 */
3084 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3085 		/*
3086 		 * now that p2 is locked, nobody can move in or out of it,
3087 		 * so the test below is safe.
3088 		 */
3089 		if (likely(c1->d_parent == p2))
3090 			return NULL;
3091 
3092 		/*
3093 		 * c1 got moved out of p2 while we'd been taking locks;
3094 		 * unlock and fall back to slow case.
3095 		 */
3096 		inode_unlock(p2->d_inode);
3097 	}
3098 
3099 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3100 	/*
3101 	 * nobody can move out of any directories on this fs.
3102 	 */
3103 	if (likely(c1->d_parent != p2))
3104 		return lock_two_directories(c1->d_parent, p2);
3105 
3106 	/*
3107 	 * c1 got moved into p2 while we were taking locks;
3108 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3109 	 * for consistency with lock_rename().
3110 	 */
3111 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3112 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3113 	return NULL;
3114 }
3115 EXPORT_SYMBOL(lock_rename_child);
3116 
3117 void unlock_rename(struct dentry *p1, struct dentry *p2)
3118 {
3119 	inode_unlock(p1->d_inode);
3120 	if (p1 != p2) {
3121 		inode_unlock(p2->d_inode);
3122 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3123 	}
3124 }
3125 EXPORT_SYMBOL(unlock_rename);
3126 
3127 /**
3128  * vfs_prepare_mode - prepare the mode to be used for a new inode
3129  * @idmap:	idmap of the mount the inode was found from
3130  * @dir:	parent directory of the new inode
3131  * @mode:	mode of the new inode
3132  * @mask_perms:	allowed permission by the vfs
3133  * @type:	type of file to be created
3134  *
3135  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3136  * object to be created.
3137  *
3138  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3139  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3140  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3141  * POSIX ACL supporting filesystems.
3142  *
3143  * Note that it's currently valid for @type to be 0 if a directory is created.
3144  * Filesystems raise that flag individually and we need to check whether each
3145  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3146  * non-zero type.
3147  *
3148  * Returns: mode to be passed to the filesystem
3149  */
3150 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3151 				       const struct inode *dir, umode_t mode,
3152 				       umode_t mask_perms, umode_t type)
3153 {
3154 	mode = mode_strip_sgid(idmap, dir, mode);
3155 	mode = mode_strip_umask(dir, mode);
3156 
3157 	/*
3158 	 * Apply the vfs mandated allowed permission mask and set the type of
3159 	 * file to be created before we call into the filesystem.
3160 	 */
3161 	mode &= (mask_perms & ~S_IFMT);
3162 	mode |= (type & S_IFMT);
3163 
3164 	return mode;
3165 }
3166 
3167 /**
3168  * vfs_create - create new file
3169  * @idmap:	idmap of the mount the inode was found from
3170  * @dir:	inode of @dentry
3171  * @dentry:	pointer to dentry of the base directory
3172  * @mode:	mode of the new file
3173  * @want_excl:	whether the file must not yet exist
3174  *
3175  * Create a new file.
3176  *
3177  * If the inode has been found through an idmapped mount the idmap of
3178  * the vfsmount must be passed through @idmap. This function will then take
3179  * care to map the inode according to @idmap before checking permissions.
3180  * On non-idmapped mounts or if permission checking is to be performed on the
3181  * raw inode simply pass @nop_mnt_idmap.
3182  */
3183 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3184 	       struct dentry *dentry, umode_t mode, bool want_excl)
3185 {
3186 	int error;
3187 
3188 	error = may_create(idmap, dir, dentry);
3189 	if (error)
3190 		return error;
3191 
3192 	if (!dir->i_op->create)
3193 		return -EACCES;	/* shouldn't it be ENOSYS? */
3194 
3195 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3196 	error = security_inode_create(dir, dentry, mode);
3197 	if (error)
3198 		return error;
3199 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3200 	if (!error)
3201 		fsnotify_create(dir, dentry);
3202 	return error;
3203 }
3204 EXPORT_SYMBOL(vfs_create);
3205 
3206 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3207 		int (*f)(struct dentry *, umode_t, void *),
3208 		void *arg)
3209 {
3210 	struct inode *dir = dentry->d_parent->d_inode;
3211 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3212 	if (error)
3213 		return error;
3214 
3215 	mode &= S_IALLUGO;
3216 	mode |= S_IFREG;
3217 	error = security_inode_create(dir, dentry, mode);
3218 	if (error)
3219 		return error;
3220 	error = f(dentry, mode, arg);
3221 	if (!error)
3222 		fsnotify_create(dir, dentry);
3223 	return error;
3224 }
3225 EXPORT_SYMBOL(vfs_mkobj);
3226 
3227 bool may_open_dev(const struct path *path)
3228 {
3229 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3230 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3231 }
3232 
3233 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3234 		    int acc_mode, int flag)
3235 {
3236 	struct dentry *dentry = path->dentry;
3237 	struct inode *inode = dentry->d_inode;
3238 	int error;
3239 
3240 	if (!inode)
3241 		return -ENOENT;
3242 
3243 	switch (inode->i_mode & S_IFMT) {
3244 	case S_IFLNK:
3245 		return -ELOOP;
3246 	case S_IFDIR:
3247 		if (acc_mode & MAY_WRITE)
3248 			return -EISDIR;
3249 		if (acc_mode & MAY_EXEC)
3250 			return -EACCES;
3251 		break;
3252 	case S_IFBLK:
3253 	case S_IFCHR:
3254 		if (!may_open_dev(path))
3255 			return -EACCES;
3256 		fallthrough;
3257 	case S_IFIFO:
3258 	case S_IFSOCK:
3259 		if (acc_mode & MAY_EXEC)
3260 			return -EACCES;
3261 		flag &= ~O_TRUNC;
3262 		break;
3263 	case S_IFREG:
3264 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3265 			return -EACCES;
3266 		break;
3267 	}
3268 
3269 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3270 	if (error)
3271 		return error;
3272 
3273 	/*
3274 	 * An append-only file must be opened in append mode for writing.
3275 	 */
3276 	if (IS_APPEND(inode)) {
3277 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3278 			return -EPERM;
3279 		if (flag & O_TRUNC)
3280 			return -EPERM;
3281 	}
3282 
3283 	/* O_NOATIME can only be set by the owner or superuser */
3284 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3285 		return -EPERM;
3286 
3287 	return 0;
3288 }
3289 
3290 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3291 {
3292 	const struct path *path = &filp->f_path;
3293 	struct inode *inode = path->dentry->d_inode;
3294 	int error = get_write_access(inode);
3295 	if (error)
3296 		return error;
3297 
3298 	error = security_file_truncate(filp);
3299 	if (!error) {
3300 		error = do_truncate(idmap, path->dentry, 0,
3301 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3302 				    filp);
3303 	}
3304 	put_write_access(inode);
3305 	return error;
3306 }
3307 
3308 static inline int open_to_namei_flags(int flag)
3309 {
3310 	if ((flag & O_ACCMODE) == 3)
3311 		flag--;
3312 	return flag;
3313 }
3314 
3315 static int may_o_create(struct mnt_idmap *idmap,
3316 			const struct path *dir, struct dentry *dentry,
3317 			umode_t mode)
3318 {
3319 	int error = security_path_mknod(dir, dentry, mode, 0);
3320 	if (error)
3321 		return error;
3322 
3323 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3324 		return -EOVERFLOW;
3325 
3326 	error = inode_permission(idmap, dir->dentry->d_inode,
3327 				 MAY_WRITE | MAY_EXEC);
3328 	if (error)
3329 		return error;
3330 
3331 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3332 }
3333 
3334 /*
3335  * Attempt to atomically look up, create and open a file from a negative
3336  * dentry.
3337  *
3338  * Returns 0 if successful.  The file will have been created and attached to
3339  * @file by the filesystem calling finish_open().
3340  *
3341  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3342  * be set.  The caller will need to perform the open themselves.  @path will
3343  * have been updated to point to the new dentry.  This may be negative.
3344  *
3345  * Returns an error code otherwise.
3346  */
3347 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3348 				  struct file *file,
3349 				  int open_flag, umode_t mode)
3350 {
3351 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3352 	struct inode *dir =  nd->path.dentry->d_inode;
3353 	int error;
3354 
3355 	if (nd->flags & LOOKUP_DIRECTORY)
3356 		open_flag |= O_DIRECTORY;
3357 
3358 	file->f_path.dentry = DENTRY_NOT_SET;
3359 	file->f_path.mnt = nd->path.mnt;
3360 	error = dir->i_op->atomic_open(dir, dentry, file,
3361 				       open_to_namei_flags(open_flag), mode);
3362 	d_lookup_done(dentry);
3363 	if (!error) {
3364 		if (file->f_mode & FMODE_OPENED) {
3365 			if (unlikely(dentry != file->f_path.dentry)) {
3366 				dput(dentry);
3367 				dentry = dget(file->f_path.dentry);
3368 			}
3369 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3370 			error = -EIO;
3371 		} else {
3372 			if (file->f_path.dentry) {
3373 				dput(dentry);
3374 				dentry = file->f_path.dentry;
3375 			}
3376 			if (unlikely(d_is_negative(dentry)))
3377 				error = -ENOENT;
3378 		}
3379 	}
3380 	if (error) {
3381 		dput(dentry);
3382 		dentry = ERR_PTR(error);
3383 	}
3384 	return dentry;
3385 }
3386 
3387 /*
3388  * Look up and maybe create and open the last component.
3389  *
3390  * Must be called with parent locked (exclusive in O_CREAT case).
3391  *
3392  * Returns 0 on success, that is, if
3393  *  the file was successfully atomically created (if necessary) and opened, or
3394  *  the file was not completely opened at this time, though lookups and
3395  *  creations were performed.
3396  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3397  * In the latter case dentry returned in @path might be negative if O_CREAT
3398  * hadn't been specified.
3399  *
3400  * An error code is returned on failure.
3401  */
3402 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3403 				  const struct open_flags *op,
3404 				  bool got_write)
3405 {
3406 	struct mnt_idmap *idmap;
3407 	struct dentry *dir = nd->path.dentry;
3408 	struct inode *dir_inode = dir->d_inode;
3409 	int open_flag = op->open_flag;
3410 	struct dentry *dentry;
3411 	int error, create_error = 0;
3412 	umode_t mode = op->mode;
3413 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3414 
3415 	if (unlikely(IS_DEADDIR(dir_inode)))
3416 		return ERR_PTR(-ENOENT);
3417 
3418 	file->f_mode &= ~FMODE_CREATED;
3419 	dentry = d_lookup(dir, &nd->last);
3420 	for (;;) {
3421 		if (!dentry) {
3422 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3423 			if (IS_ERR(dentry))
3424 				return dentry;
3425 		}
3426 		if (d_in_lookup(dentry))
3427 			break;
3428 
3429 		error = d_revalidate(dentry, nd->flags);
3430 		if (likely(error > 0))
3431 			break;
3432 		if (error)
3433 			goto out_dput;
3434 		d_invalidate(dentry);
3435 		dput(dentry);
3436 		dentry = NULL;
3437 	}
3438 	if (dentry->d_inode) {
3439 		/* Cached positive dentry: will open in f_op->open */
3440 		return dentry;
3441 	}
3442 
3443 	/*
3444 	 * Checking write permission is tricky, bacuse we don't know if we are
3445 	 * going to actually need it: O_CREAT opens should work as long as the
3446 	 * file exists.  But checking existence breaks atomicity.  The trick is
3447 	 * to check access and if not granted clear O_CREAT from the flags.
3448 	 *
3449 	 * Another problem is returing the "right" error value (e.g. for an
3450 	 * O_EXCL open we want to return EEXIST not EROFS).
3451 	 */
3452 	if (unlikely(!got_write))
3453 		open_flag &= ~O_TRUNC;
3454 	idmap = mnt_idmap(nd->path.mnt);
3455 	if (open_flag & O_CREAT) {
3456 		if (open_flag & O_EXCL)
3457 			open_flag &= ~O_TRUNC;
3458 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3459 		if (likely(got_write))
3460 			create_error = may_o_create(idmap, &nd->path,
3461 						    dentry, mode);
3462 		else
3463 			create_error = -EROFS;
3464 	}
3465 	if (create_error)
3466 		open_flag &= ~O_CREAT;
3467 	if (dir_inode->i_op->atomic_open) {
3468 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3469 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3470 			dentry = ERR_PTR(create_error);
3471 		return dentry;
3472 	}
3473 
3474 	if (d_in_lookup(dentry)) {
3475 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3476 							     nd->flags);
3477 		d_lookup_done(dentry);
3478 		if (unlikely(res)) {
3479 			if (IS_ERR(res)) {
3480 				error = PTR_ERR(res);
3481 				goto out_dput;
3482 			}
3483 			dput(dentry);
3484 			dentry = res;
3485 		}
3486 	}
3487 
3488 	/* Negative dentry, just create the file */
3489 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3490 		file->f_mode |= FMODE_CREATED;
3491 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3492 		if (!dir_inode->i_op->create) {
3493 			error = -EACCES;
3494 			goto out_dput;
3495 		}
3496 
3497 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3498 						mode, open_flag & O_EXCL);
3499 		if (error)
3500 			goto out_dput;
3501 	}
3502 	if (unlikely(create_error) && !dentry->d_inode) {
3503 		error = create_error;
3504 		goto out_dput;
3505 	}
3506 	return dentry;
3507 
3508 out_dput:
3509 	dput(dentry);
3510 	return ERR_PTR(error);
3511 }
3512 
3513 static const char *open_last_lookups(struct nameidata *nd,
3514 		   struct file *file, const struct open_flags *op)
3515 {
3516 	struct dentry *dir = nd->path.dentry;
3517 	int open_flag = op->open_flag;
3518 	bool got_write = false;
3519 	struct dentry *dentry;
3520 	const char *res;
3521 
3522 	nd->flags |= op->intent;
3523 
3524 	if (nd->last_type != LAST_NORM) {
3525 		if (nd->depth)
3526 			put_link(nd);
3527 		return handle_dots(nd, nd->last_type);
3528 	}
3529 
3530 	if (!(open_flag & O_CREAT)) {
3531 		if (nd->last.name[nd->last.len])
3532 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3533 		/* we _can_ be in RCU mode here */
3534 		dentry = lookup_fast(nd);
3535 		if (IS_ERR(dentry))
3536 			return ERR_CAST(dentry);
3537 		if (likely(dentry))
3538 			goto finish_lookup;
3539 
3540 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3541 			return ERR_PTR(-ECHILD);
3542 	} else {
3543 		/* create side of things */
3544 		if (nd->flags & LOOKUP_RCU) {
3545 			if (!try_to_unlazy(nd))
3546 				return ERR_PTR(-ECHILD);
3547 		}
3548 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3549 		/* trailing slashes? */
3550 		if (unlikely(nd->last.name[nd->last.len]))
3551 			return ERR_PTR(-EISDIR);
3552 	}
3553 
3554 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3555 		got_write = !mnt_want_write(nd->path.mnt);
3556 		/*
3557 		 * do _not_ fail yet - we might not need that or fail with
3558 		 * a different error; let lookup_open() decide; we'll be
3559 		 * dropping this one anyway.
3560 		 */
3561 	}
3562 	if (open_flag & O_CREAT)
3563 		inode_lock(dir->d_inode);
3564 	else
3565 		inode_lock_shared(dir->d_inode);
3566 	dentry = lookup_open(nd, file, op, got_write);
3567 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3568 		fsnotify_create(dir->d_inode, dentry);
3569 	if (open_flag & O_CREAT)
3570 		inode_unlock(dir->d_inode);
3571 	else
3572 		inode_unlock_shared(dir->d_inode);
3573 
3574 	if (got_write)
3575 		mnt_drop_write(nd->path.mnt);
3576 
3577 	if (IS_ERR(dentry))
3578 		return ERR_CAST(dentry);
3579 
3580 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3581 		dput(nd->path.dentry);
3582 		nd->path.dentry = dentry;
3583 		return NULL;
3584 	}
3585 
3586 finish_lookup:
3587 	if (nd->depth)
3588 		put_link(nd);
3589 	res = step_into(nd, WALK_TRAILING, dentry);
3590 	if (unlikely(res))
3591 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3592 	return res;
3593 }
3594 
3595 /*
3596  * Handle the last step of open()
3597  */
3598 static int do_open(struct nameidata *nd,
3599 		   struct file *file, const struct open_flags *op)
3600 {
3601 	struct mnt_idmap *idmap;
3602 	int open_flag = op->open_flag;
3603 	bool do_truncate;
3604 	int acc_mode;
3605 	int error;
3606 
3607 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3608 		error = complete_walk(nd);
3609 		if (error)
3610 			return error;
3611 	}
3612 	if (!(file->f_mode & FMODE_CREATED))
3613 		audit_inode(nd->name, nd->path.dentry, 0);
3614 	idmap = mnt_idmap(nd->path.mnt);
3615 	if (open_flag & O_CREAT) {
3616 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3617 			return -EEXIST;
3618 		if (d_is_dir(nd->path.dentry))
3619 			return -EISDIR;
3620 		error = may_create_in_sticky(idmap, nd,
3621 					     d_backing_inode(nd->path.dentry));
3622 		if (unlikely(error))
3623 			return error;
3624 	}
3625 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3626 		return -ENOTDIR;
3627 
3628 	do_truncate = false;
3629 	acc_mode = op->acc_mode;
3630 	if (file->f_mode & FMODE_CREATED) {
3631 		/* Don't check for write permission, don't truncate */
3632 		open_flag &= ~O_TRUNC;
3633 		acc_mode = 0;
3634 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3635 		error = mnt_want_write(nd->path.mnt);
3636 		if (error)
3637 			return error;
3638 		do_truncate = true;
3639 	}
3640 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3641 	if (!error && !(file->f_mode & FMODE_OPENED))
3642 		error = vfs_open(&nd->path, file);
3643 	if (!error)
3644 		error = security_file_post_open(file, op->acc_mode);
3645 	if (!error && do_truncate)
3646 		error = handle_truncate(idmap, file);
3647 	if (unlikely(error > 0)) {
3648 		WARN_ON(1);
3649 		error = -EINVAL;
3650 	}
3651 	if (do_truncate)
3652 		mnt_drop_write(nd->path.mnt);
3653 	return error;
3654 }
3655 
3656 /**
3657  * vfs_tmpfile - create tmpfile
3658  * @idmap:	idmap of the mount the inode was found from
3659  * @parentpath:	pointer to the path of the base directory
3660  * @file:	file descriptor of the new tmpfile
3661  * @mode:	mode of the new tmpfile
3662  *
3663  * Create a temporary file.
3664  *
3665  * If the inode has been found through an idmapped mount the idmap of
3666  * the vfsmount must be passed through @idmap. This function will then take
3667  * care to map the inode according to @idmap before checking permissions.
3668  * On non-idmapped mounts or if permission checking is to be performed on the
3669  * raw inode simply pass @nop_mnt_idmap.
3670  */
3671 static int vfs_tmpfile(struct mnt_idmap *idmap,
3672 		       const struct path *parentpath,
3673 		       struct file *file, umode_t mode)
3674 {
3675 	struct dentry *child;
3676 	struct inode *dir = d_inode(parentpath->dentry);
3677 	struct inode *inode;
3678 	int error;
3679 	int open_flag = file->f_flags;
3680 
3681 	/* we want directory to be writable */
3682 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3683 	if (error)
3684 		return error;
3685 	if (!dir->i_op->tmpfile)
3686 		return -EOPNOTSUPP;
3687 	child = d_alloc(parentpath->dentry, &slash_name);
3688 	if (unlikely(!child))
3689 		return -ENOMEM;
3690 	file->f_path.mnt = parentpath->mnt;
3691 	file->f_path.dentry = child;
3692 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3693 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3694 	dput(child);
3695 	if (error)
3696 		return error;
3697 	/* Don't check for other permissions, the inode was just created */
3698 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3699 	if (error)
3700 		return error;
3701 	inode = file_inode(file);
3702 	if (!(open_flag & O_EXCL)) {
3703 		spin_lock(&inode->i_lock);
3704 		inode->i_state |= I_LINKABLE;
3705 		spin_unlock(&inode->i_lock);
3706 	}
3707 	security_inode_post_create_tmpfile(idmap, inode);
3708 	return 0;
3709 }
3710 
3711 /**
3712  * kernel_tmpfile_open - open a tmpfile for kernel internal use
3713  * @idmap:	idmap of the mount the inode was found from
3714  * @parentpath:	path of the base directory
3715  * @mode:	mode of the new tmpfile
3716  * @open_flag:	flags
3717  * @cred:	credentials for open
3718  *
3719  * Create and open a temporary file.  The file is not accounted in nr_files,
3720  * hence this is only for kernel internal use, and must not be installed into
3721  * file tables or such.
3722  */
3723 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3724 				 const struct path *parentpath,
3725 				 umode_t mode, int open_flag,
3726 				 const struct cred *cred)
3727 {
3728 	struct file *file;
3729 	int error;
3730 
3731 	file = alloc_empty_file_noaccount(open_flag, cred);
3732 	if (IS_ERR(file))
3733 		return file;
3734 
3735 	error = vfs_tmpfile(idmap, parentpath, file, mode);
3736 	if (error) {
3737 		fput(file);
3738 		file = ERR_PTR(error);
3739 	}
3740 	return file;
3741 }
3742 EXPORT_SYMBOL(kernel_tmpfile_open);
3743 
3744 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3745 		const struct open_flags *op,
3746 		struct file *file)
3747 {
3748 	struct path path;
3749 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3750 
3751 	if (unlikely(error))
3752 		return error;
3753 	error = mnt_want_write(path.mnt);
3754 	if (unlikely(error))
3755 		goto out;
3756 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3757 	if (error)
3758 		goto out2;
3759 	audit_inode(nd->name, file->f_path.dentry, 0);
3760 out2:
3761 	mnt_drop_write(path.mnt);
3762 out:
3763 	path_put(&path);
3764 	return error;
3765 }
3766 
3767 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3768 {
3769 	struct path path;
3770 	int error = path_lookupat(nd, flags, &path);
3771 	if (!error) {
3772 		audit_inode(nd->name, path.dentry, 0);
3773 		error = vfs_open(&path, file);
3774 		path_put(&path);
3775 	}
3776 	return error;
3777 }
3778 
3779 static struct file *path_openat(struct nameidata *nd,
3780 			const struct open_flags *op, unsigned flags)
3781 {
3782 	struct file *file;
3783 	int error;
3784 
3785 	file = alloc_empty_file(op->open_flag, current_cred());
3786 	if (IS_ERR(file))
3787 		return file;
3788 
3789 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3790 		error = do_tmpfile(nd, flags, op, file);
3791 	} else if (unlikely(file->f_flags & O_PATH)) {
3792 		error = do_o_path(nd, flags, file);
3793 	} else {
3794 		const char *s = path_init(nd, flags);
3795 		while (!(error = link_path_walk(s, nd)) &&
3796 		       (s = open_last_lookups(nd, file, op)) != NULL)
3797 			;
3798 		if (!error)
3799 			error = do_open(nd, file, op);
3800 		terminate_walk(nd);
3801 	}
3802 	if (likely(!error)) {
3803 		if (likely(file->f_mode & FMODE_OPENED))
3804 			return file;
3805 		WARN_ON(1);
3806 		error = -EINVAL;
3807 	}
3808 	fput(file);
3809 	if (error == -EOPENSTALE) {
3810 		if (flags & LOOKUP_RCU)
3811 			error = -ECHILD;
3812 		else
3813 			error = -ESTALE;
3814 	}
3815 	return ERR_PTR(error);
3816 }
3817 
3818 struct file *do_filp_open(int dfd, struct filename *pathname,
3819 		const struct open_flags *op)
3820 {
3821 	struct nameidata nd;
3822 	int flags = op->lookup_flags;
3823 	struct file *filp;
3824 
3825 	set_nameidata(&nd, dfd, pathname, NULL);
3826 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3827 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3828 		filp = path_openat(&nd, op, flags);
3829 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3830 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3831 	restore_nameidata();
3832 	return filp;
3833 }
3834 
3835 struct file *do_file_open_root(const struct path *root,
3836 		const char *name, const struct open_flags *op)
3837 {
3838 	struct nameidata nd;
3839 	struct file *file;
3840 	struct filename *filename;
3841 	int flags = op->lookup_flags;
3842 
3843 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3844 		return ERR_PTR(-ELOOP);
3845 
3846 	filename = getname_kernel(name);
3847 	if (IS_ERR(filename))
3848 		return ERR_CAST(filename);
3849 
3850 	set_nameidata(&nd, -1, filename, root);
3851 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3852 	if (unlikely(file == ERR_PTR(-ECHILD)))
3853 		file = path_openat(&nd, op, flags);
3854 	if (unlikely(file == ERR_PTR(-ESTALE)))
3855 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3856 	restore_nameidata();
3857 	putname(filename);
3858 	return file;
3859 }
3860 
3861 static struct dentry *filename_create(int dfd, struct filename *name,
3862 				      struct path *path, unsigned int lookup_flags)
3863 {
3864 	struct dentry *dentry = ERR_PTR(-EEXIST);
3865 	struct qstr last;
3866 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3867 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3868 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3869 	int type;
3870 	int err2;
3871 	int error;
3872 
3873 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3874 	if (error)
3875 		return ERR_PTR(error);
3876 
3877 	/*
3878 	 * Yucky last component or no last component at all?
3879 	 * (foo/., foo/.., /////)
3880 	 */
3881 	if (unlikely(type != LAST_NORM))
3882 		goto out;
3883 
3884 	/* don't fail immediately if it's r/o, at least try to report other errors */
3885 	err2 = mnt_want_write(path->mnt);
3886 	/*
3887 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3888 	 * '/', and a directory wasn't requested.
3889 	 */
3890 	if (last.name[last.len] && !want_dir)
3891 		create_flags = 0;
3892 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3893 	dentry = lookup_one_qstr_excl(&last, path->dentry,
3894 				      reval_flag | create_flags);
3895 	if (IS_ERR(dentry))
3896 		goto unlock;
3897 
3898 	error = -EEXIST;
3899 	if (d_is_positive(dentry))
3900 		goto fail;
3901 
3902 	/*
3903 	 * Special case - lookup gave negative, but... we had foo/bar/
3904 	 * From the vfs_mknod() POV we just have a negative dentry -
3905 	 * all is fine. Let's be bastards - you had / on the end, you've
3906 	 * been asking for (non-existent) directory. -ENOENT for you.
3907 	 */
3908 	if (unlikely(!create_flags)) {
3909 		error = -ENOENT;
3910 		goto fail;
3911 	}
3912 	if (unlikely(err2)) {
3913 		error = err2;
3914 		goto fail;
3915 	}
3916 	return dentry;
3917 fail:
3918 	dput(dentry);
3919 	dentry = ERR_PTR(error);
3920 unlock:
3921 	inode_unlock(path->dentry->d_inode);
3922 	if (!err2)
3923 		mnt_drop_write(path->mnt);
3924 out:
3925 	path_put(path);
3926 	return dentry;
3927 }
3928 
3929 struct dentry *kern_path_create(int dfd, const char *pathname,
3930 				struct path *path, unsigned int lookup_flags)
3931 {
3932 	struct filename *filename = getname_kernel(pathname);
3933 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3934 
3935 	putname(filename);
3936 	return res;
3937 }
3938 EXPORT_SYMBOL(kern_path_create);
3939 
3940 void done_path_create(struct path *path, struct dentry *dentry)
3941 {
3942 	dput(dentry);
3943 	inode_unlock(path->dentry->d_inode);
3944 	mnt_drop_write(path->mnt);
3945 	path_put(path);
3946 }
3947 EXPORT_SYMBOL(done_path_create);
3948 
3949 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3950 				struct path *path, unsigned int lookup_flags)
3951 {
3952 	struct filename *filename = getname(pathname);
3953 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3954 
3955 	putname(filename);
3956 	return res;
3957 }
3958 EXPORT_SYMBOL(user_path_create);
3959 
3960 /**
3961  * vfs_mknod - create device node or file
3962  * @idmap:	idmap of the mount the inode was found from
3963  * @dir:	inode of @dentry
3964  * @dentry:	pointer to dentry of the base directory
3965  * @mode:	mode of the new device node or file
3966  * @dev:	device number of device to create
3967  *
3968  * Create a device node or file.
3969  *
3970  * If the inode has been found through an idmapped mount the idmap of
3971  * the vfsmount must be passed through @idmap. This function will then take
3972  * care to map the inode according to @idmap before checking permissions.
3973  * On non-idmapped mounts or if permission checking is to be performed on the
3974  * raw inode simply pass @nop_mnt_idmap.
3975  */
3976 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3977 	      struct dentry *dentry, umode_t mode, dev_t dev)
3978 {
3979 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3980 	int error = may_create(idmap, dir, dentry);
3981 
3982 	if (error)
3983 		return error;
3984 
3985 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3986 	    !capable(CAP_MKNOD))
3987 		return -EPERM;
3988 
3989 	if (!dir->i_op->mknod)
3990 		return -EPERM;
3991 
3992 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3993 	error = devcgroup_inode_mknod(mode, dev);
3994 	if (error)
3995 		return error;
3996 
3997 	error = security_inode_mknod(dir, dentry, mode, dev);
3998 	if (error)
3999 		return error;
4000 
4001 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4002 	if (!error)
4003 		fsnotify_create(dir, dentry);
4004 	return error;
4005 }
4006 EXPORT_SYMBOL(vfs_mknod);
4007 
4008 static int may_mknod(umode_t mode)
4009 {
4010 	switch (mode & S_IFMT) {
4011 	case S_IFREG:
4012 	case S_IFCHR:
4013 	case S_IFBLK:
4014 	case S_IFIFO:
4015 	case S_IFSOCK:
4016 	case 0: /* zero mode translates to S_IFREG */
4017 		return 0;
4018 	case S_IFDIR:
4019 		return -EPERM;
4020 	default:
4021 		return -EINVAL;
4022 	}
4023 }
4024 
4025 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4026 		unsigned int dev)
4027 {
4028 	struct mnt_idmap *idmap;
4029 	struct dentry *dentry;
4030 	struct path path;
4031 	int error;
4032 	unsigned int lookup_flags = 0;
4033 
4034 	error = may_mknod(mode);
4035 	if (error)
4036 		goto out1;
4037 retry:
4038 	dentry = filename_create(dfd, name, &path, lookup_flags);
4039 	error = PTR_ERR(dentry);
4040 	if (IS_ERR(dentry))
4041 		goto out1;
4042 
4043 	error = security_path_mknod(&path, dentry,
4044 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4045 	if (error)
4046 		goto out2;
4047 
4048 	idmap = mnt_idmap(path.mnt);
4049 	switch (mode & S_IFMT) {
4050 		case 0: case S_IFREG:
4051 			error = vfs_create(idmap, path.dentry->d_inode,
4052 					   dentry, mode, true);
4053 			if (!error)
4054 				security_path_post_mknod(idmap, dentry);
4055 			break;
4056 		case S_IFCHR: case S_IFBLK:
4057 			error = vfs_mknod(idmap, path.dentry->d_inode,
4058 					  dentry, mode, new_decode_dev(dev));
4059 			break;
4060 		case S_IFIFO: case S_IFSOCK:
4061 			error = vfs_mknod(idmap, path.dentry->d_inode,
4062 					  dentry, mode, 0);
4063 			break;
4064 	}
4065 out2:
4066 	done_path_create(&path, dentry);
4067 	if (retry_estale(error, lookup_flags)) {
4068 		lookup_flags |= LOOKUP_REVAL;
4069 		goto retry;
4070 	}
4071 out1:
4072 	putname(name);
4073 	return error;
4074 }
4075 
4076 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4077 		unsigned int, dev)
4078 {
4079 	return do_mknodat(dfd, getname(filename), mode, dev);
4080 }
4081 
4082 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4083 {
4084 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4085 }
4086 
4087 /**
4088  * vfs_mkdir - create directory
4089  * @idmap:	idmap of the mount the inode was found from
4090  * @dir:	inode of @dentry
4091  * @dentry:	pointer to dentry of the base directory
4092  * @mode:	mode of the new directory
4093  *
4094  * Create a directory.
4095  *
4096  * If the inode has been found through an idmapped mount the idmap of
4097  * the vfsmount must be passed through @idmap. This function will then take
4098  * care to map the inode according to @idmap before checking permissions.
4099  * On non-idmapped mounts or if permission checking is to be performed on the
4100  * raw inode simply pass @nop_mnt_idmap.
4101  */
4102 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4103 	      struct dentry *dentry, umode_t mode)
4104 {
4105 	int error;
4106 	unsigned max_links = dir->i_sb->s_max_links;
4107 
4108 	error = may_create(idmap, dir, dentry);
4109 	if (error)
4110 		return error;
4111 
4112 	if (!dir->i_op->mkdir)
4113 		return -EPERM;
4114 
4115 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4116 	error = security_inode_mkdir(dir, dentry, mode);
4117 	if (error)
4118 		return error;
4119 
4120 	if (max_links && dir->i_nlink >= max_links)
4121 		return -EMLINK;
4122 
4123 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4124 	if (!error)
4125 		fsnotify_mkdir(dir, dentry);
4126 	return error;
4127 }
4128 EXPORT_SYMBOL(vfs_mkdir);
4129 
4130 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4131 {
4132 	struct dentry *dentry;
4133 	struct path path;
4134 	int error;
4135 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4136 
4137 retry:
4138 	dentry = filename_create(dfd, name, &path, lookup_flags);
4139 	error = PTR_ERR(dentry);
4140 	if (IS_ERR(dentry))
4141 		goto out_putname;
4142 
4143 	error = security_path_mkdir(&path, dentry,
4144 			mode_strip_umask(path.dentry->d_inode, mode));
4145 	if (!error) {
4146 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4147 				  dentry, mode);
4148 	}
4149 	done_path_create(&path, dentry);
4150 	if (retry_estale(error, lookup_flags)) {
4151 		lookup_flags |= LOOKUP_REVAL;
4152 		goto retry;
4153 	}
4154 out_putname:
4155 	putname(name);
4156 	return error;
4157 }
4158 
4159 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4160 {
4161 	return do_mkdirat(dfd, getname(pathname), mode);
4162 }
4163 
4164 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4165 {
4166 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4167 }
4168 
4169 /**
4170  * vfs_rmdir - remove directory
4171  * @idmap:	idmap of the mount the inode was found from
4172  * @dir:	inode of @dentry
4173  * @dentry:	pointer to dentry of the base directory
4174  *
4175  * Remove a directory.
4176  *
4177  * If the inode has been found through an idmapped mount the idmap of
4178  * the vfsmount must be passed through @idmap. This function will then take
4179  * care to map the inode according to @idmap before checking permissions.
4180  * On non-idmapped mounts or if permission checking is to be performed on the
4181  * raw inode simply pass @nop_mnt_idmap.
4182  */
4183 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4184 		     struct dentry *dentry)
4185 {
4186 	int error = may_delete(idmap, dir, dentry, 1);
4187 
4188 	if (error)
4189 		return error;
4190 
4191 	if (!dir->i_op->rmdir)
4192 		return -EPERM;
4193 
4194 	dget(dentry);
4195 	inode_lock(dentry->d_inode);
4196 
4197 	error = -EBUSY;
4198 	if (is_local_mountpoint(dentry) ||
4199 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4200 		goto out;
4201 
4202 	error = security_inode_rmdir(dir, dentry);
4203 	if (error)
4204 		goto out;
4205 
4206 	error = dir->i_op->rmdir(dir, dentry);
4207 	if (error)
4208 		goto out;
4209 
4210 	shrink_dcache_parent(dentry);
4211 	dentry->d_inode->i_flags |= S_DEAD;
4212 	dont_mount(dentry);
4213 	detach_mounts(dentry);
4214 
4215 out:
4216 	inode_unlock(dentry->d_inode);
4217 	dput(dentry);
4218 	if (!error)
4219 		d_delete_notify(dir, dentry);
4220 	return error;
4221 }
4222 EXPORT_SYMBOL(vfs_rmdir);
4223 
4224 int do_rmdir(int dfd, struct filename *name)
4225 {
4226 	int error;
4227 	struct dentry *dentry;
4228 	struct path path;
4229 	struct qstr last;
4230 	int type;
4231 	unsigned int lookup_flags = 0;
4232 retry:
4233 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4234 	if (error)
4235 		goto exit1;
4236 
4237 	switch (type) {
4238 	case LAST_DOTDOT:
4239 		error = -ENOTEMPTY;
4240 		goto exit2;
4241 	case LAST_DOT:
4242 		error = -EINVAL;
4243 		goto exit2;
4244 	case LAST_ROOT:
4245 		error = -EBUSY;
4246 		goto exit2;
4247 	}
4248 
4249 	error = mnt_want_write(path.mnt);
4250 	if (error)
4251 		goto exit2;
4252 
4253 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4254 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4255 	error = PTR_ERR(dentry);
4256 	if (IS_ERR(dentry))
4257 		goto exit3;
4258 	if (!dentry->d_inode) {
4259 		error = -ENOENT;
4260 		goto exit4;
4261 	}
4262 	error = security_path_rmdir(&path, dentry);
4263 	if (error)
4264 		goto exit4;
4265 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4266 exit4:
4267 	dput(dentry);
4268 exit3:
4269 	inode_unlock(path.dentry->d_inode);
4270 	mnt_drop_write(path.mnt);
4271 exit2:
4272 	path_put(&path);
4273 	if (retry_estale(error, lookup_flags)) {
4274 		lookup_flags |= LOOKUP_REVAL;
4275 		goto retry;
4276 	}
4277 exit1:
4278 	putname(name);
4279 	return error;
4280 }
4281 
4282 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4283 {
4284 	return do_rmdir(AT_FDCWD, getname(pathname));
4285 }
4286 
4287 /**
4288  * vfs_unlink - unlink a filesystem object
4289  * @idmap:	idmap of the mount the inode was found from
4290  * @dir:	parent directory
4291  * @dentry:	victim
4292  * @delegated_inode: returns victim inode, if the inode is delegated.
4293  *
4294  * The caller must hold dir->i_mutex.
4295  *
4296  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4297  * return a reference to the inode in delegated_inode.  The caller
4298  * should then break the delegation on that inode and retry.  Because
4299  * breaking a delegation may take a long time, the caller should drop
4300  * dir->i_mutex before doing so.
4301  *
4302  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4303  * be appropriate for callers that expect the underlying filesystem not
4304  * to be NFS exported.
4305  *
4306  * If the inode has been found through an idmapped mount the idmap of
4307  * the vfsmount must be passed through @idmap. This function will then take
4308  * care to map the inode according to @idmap before checking permissions.
4309  * On non-idmapped mounts or if permission checking is to be performed on the
4310  * raw inode simply pass @nop_mnt_idmap.
4311  */
4312 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4313 	       struct dentry *dentry, struct inode **delegated_inode)
4314 {
4315 	struct inode *target = dentry->d_inode;
4316 	int error = may_delete(idmap, dir, dentry, 0);
4317 
4318 	if (error)
4319 		return error;
4320 
4321 	if (!dir->i_op->unlink)
4322 		return -EPERM;
4323 
4324 	inode_lock(target);
4325 	if (IS_SWAPFILE(target))
4326 		error = -EPERM;
4327 	else if (is_local_mountpoint(dentry))
4328 		error = -EBUSY;
4329 	else {
4330 		error = security_inode_unlink(dir, dentry);
4331 		if (!error) {
4332 			error = try_break_deleg(target, delegated_inode);
4333 			if (error)
4334 				goto out;
4335 			error = dir->i_op->unlink(dir, dentry);
4336 			if (!error) {
4337 				dont_mount(dentry);
4338 				detach_mounts(dentry);
4339 			}
4340 		}
4341 	}
4342 out:
4343 	inode_unlock(target);
4344 
4345 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4346 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4347 		fsnotify_unlink(dir, dentry);
4348 	} else if (!error) {
4349 		fsnotify_link_count(target);
4350 		d_delete_notify(dir, dentry);
4351 	}
4352 
4353 	return error;
4354 }
4355 EXPORT_SYMBOL(vfs_unlink);
4356 
4357 /*
4358  * Make sure that the actual truncation of the file will occur outside its
4359  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4360  * writeout happening, and we don't want to prevent access to the directory
4361  * while waiting on the I/O.
4362  */
4363 int do_unlinkat(int dfd, struct filename *name)
4364 {
4365 	int error;
4366 	struct dentry *dentry;
4367 	struct path path;
4368 	struct qstr last;
4369 	int type;
4370 	struct inode *inode = NULL;
4371 	struct inode *delegated_inode = NULL;
4372 	unsigned int lookup_flags = 0;
4373 retry:
4374 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4375 	if (error)
4376 		goto exit1;
4377 
4378 	error = -EISDIR;
4379 	if (type != LAST_NORM)
4380 		goto exit2;
4381 
4382 	error = mnt_want_write(path.mnt);
4383 	if (error)
4384 		goto exit2;
4385 retry_deleg:
4386 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4387 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4388 	error = PTR_ERR(dentry);
4389 	if (!IS_ERR(dentry)) {
4390 
4391 		/* Why not before? Because we want correct error value */
4392 		if (last.name[last.len] || d_is_negative(dentry))
4393 			goto slashes;
4394 		inode = dentry->d_inode;
4395 		ihold(inode);
4396 		error = security_path_unlink(&path, dentry);
4397 		if (error)
4398 			goto exit3;
4399 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4400 				   dentry, &delegated_inode);
4401 exit3:
4402 		dput(dentry);
4403 	}
4404 	inode_unlock(path.dentry->d_inode);
4405 	if (inode)
4406 		iput(inode);	/* truncate the inode here */
4407 	inode = NULL;
4408 	if (delegated_inode) {
4409 		error = break_deleg_wait(&delegated_inode);
4410 		if (!error)
4411 			goto retry_deleg;
4412 	}
4413 	mnt_drop_write(path.mnt);
4414 exit2:
4415 	path_put(&path);
4416 	if (retry_estale(error, lookup_flags)) {
4417 		lookup_flags |= LOOKUP_REVAL;
4418 		inode = NULL;
4419 		goto retry;
4420 	}
4421 exit1:
4422 	putname(name);
4423 	return error;
4424 
4425 slashes:
4426 	if (d_is_negative(dentry))
4427 		error = -ENOENT;
4428 	else if (d_is_dir(dentry))
4429 		error = -EISDIR;
4430 	else
4431 		error = -ENOTDIR;
4432 	goto exit3;
4433 }
4434 
4435 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4436 {
4437 	if ((flag & ~AT_REMOVEDIR) != 0)
4438 		return -EINVAL;
4439 
4440 	if (flag & AT_REMOVEDIR)
4441 		return do_rmdir(dfd, getname(pathname));
4442 	return do_unlinkat(dfd, getname(pathname));
4443 }
4444 
4445 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4446 {
4447 	return do_unlinkat(AT_FDCWD, getname(pathname));
4448 }
4449 
4450 /**
4451  * vfs_symlink - create symlink
4452  * @idmap:	idmap of the mount the inode was found from
4453  * @dir:	inode of @dentry
4454  * @dentry:	pointer to dentry of the base directory
4455  * @oldname:	name of the file to link to
4456  *
4457  * Create a symlink.
4458  *
4459  * If the inode has been found through an idmapped mount the idmap of
4460  * the vfsmount must be passed through @idmap. This function will then take
4461  * care to map the inode according to @idmap before checking permissions.
4462  * On non-idmapped mounts or if permission checking is to be performed on the
4463  * raw inode simply pass @nop_mnt_idmap.
4464  */
4465 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4466 		struct dentry *dentry, const char *oldname)
4467 {
4468 	int error;
4469 
4470 	error = may_create(idmap, dir, dentry);
4471 	if (error)
4472 		return error;
4473 
4474 	if (!dir->i_op->symlink)
4475 		return -EPERM;
4476 
4477 	error = security_inode_symlink(dir, dentry, oldname);
4478 	if (error)
4479 		return error;
4480 
4481 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4482 	if (!error)
4483 		fsnotify_create(dir, dentry);
4484 	return error;
4485 }
4486 EXPORT_SYMBOL(vfs_symlink);
4487 
4488 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4489 {
4490 	int error;
4491 	struct dentry *dentry;
4492 	struct path path;
4493 	unsigned int lookup_flags = 0;
4494 
4495 	if (IS_ERR(from)) {
4496 		error = PTR_ERR(from);
4497 		goto out_putnames;
4498 	}
4499 retry:
4500 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4501 	error = PTR_ERR(dentry);
4502 	if (IS_ERR(dentry))
4503 		goto out_putnames;
4504 
4505 	error = security_path_symlink(&path, dentry, from->name);
4506 	if (!error)
4507 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4508 				    dentry, from->name);
4509 	done_path_create(&path, dentry);
4510 	if (retry_estale(error, lookup_flags)) {
4511 		lookup_flags |= LOOKUP_REVAL;
4512 		goto retry;
4513 	}
4514 out_putnames:
4515 	putname(to);
4516 	putname(from);
4517 	return error;
4518 }
4519 
4520 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4521 		int, newdfd, const char __user *, newname)
4522 {
4523 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4524 }
4525 
4526 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4527 {
4528 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4529 }
4530 
4531 /**
4532  * vfs_link - create a new link
4533  * @old_dentry:	object to be linked
4534  * @idmap:	idmap of the mount
4535  * @dir:	new parent
4536  * @new_dentry:	where to create the new link
4537  * @delegated_inode: returns inode needing a delegation break
4538  *
4539  * The caller must hold dir->i_mutex
4540  *
4541  * If vfs_link discovers a delegation on the to-be-linked file in need
4542  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4543  * inode in delegated_inode.  The caller should then break the delegation
4544  * and retry.  Because breaking a delegation may take a long time, the
4545  * caller should drop the i_mutex before doing so.
4546  *
4547  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4548  * be appropriate for callers that expect the underlying filesystem not
4549  * to be NFS exported.
4550  *
4551  * If the inode has been found through an idmapped mount the idmap of
4552  * the vfsmount must be passed through @idmap. This function will then take
4553  * care to map the inode according to @idmap before checking permissions.
4554  * On non-idmapped mounts or if permission checking is to be performed on the
4555  * raw inode simply pass @nop_mnt_idmap.
4556  */
4557 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4558 	     struct inode *dir, struct dentry *new_dentry,
4559 	     struct inode **delegated_inode)
4560 {
4561 	struct inode *inode = old_dentry->d_inode;
4562 	unsigned max_links = dir->i_sb->s_max_links;
4563 	int error;
4564 
4565 	if (!inode)
4566 		return -ENOENT;
4567 
4568 	error = may_create(idmap, dir, new_dentry);
4569 	if (error)
4570 		return error;
4571 
4572 	if (dir->i_sb != inode->i_sb)
4573 		return -EXDEV;
4574 
4575 	/*
4576 	 * A link to an append-only or immutable file cannot be created.
4577 	 */
4578 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579 		return -EPERM;
4580 	/*
4581 	 * Updating the link count will likely cause i_uid and i_gid to
4582 	 * be writen back improperly if their true value is unknown to
4583 	 * the vfs.
4584 	 */
4585 	if (HAS_UNMAPPED_ID(idmap, inode))
4586 		return -EPERM;
4587 	if (!dir->i_op->link)
4588 		return -EPERM;
4589 	if (S_ISDIR(inode->i_mode))
4590 		return -EPERM;
4591 
4592 	error = security_inode_link(old_dentry, dir, new_dentry);
4593 	if (error)
4594 		return error;
4595 
4596 	inode_lock(inode);
4597 	/* Make sure we don't allow creating hardlink to an unlinked file */
4598 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4599 		error =  -ENOENT;
4600 	else if (max_links && inode->i_nlink >= max_links)
4601 		error = -EMLINK;
4602 	else {
4603 		error = try_break_deleg(inode, delegated_inode);
4604 		if (!error)
4605 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4606 	}
4607 
4608 	if (!error && (inode->i_state & I_LINKABLE)) {
4609 		spin_lock(&inode->i_lock);
4610 		inode->i_state &= ~I_LINKABLE;
4611 		spin_unlock(&inode->i_lock);
4612 	}
4613 	inode_unlock(inode);
4614 	if (!error)
4615 		fsnotify_link(dir, inode, new_dentry);
4616 	return error;
4617 }
4618 EXPORT_SYMBOL(vfs_link);
4619 
4620 /*
4621  * Hardlinks are often used in delicate situations.  We avoid
4622  * security-related surprises by not following symlinks on the
4623  * newname.  --KAB
4624  *
4625  * We don't follow them on the oldname either to be compatible
4626  * with linux 2.0, and to avoid hard-linking to directories
4627  * and other special files.  --ADM
4628  */
4629 int do_linkat(int olddfd, struct filename *old, int newdfd,
4630 	      struct filename *new, int flags)
4631 {
4632 	struct mnt_idmap *idmap;
4633 	struct dentry *new_dentry;
4634 	struct path old_path, new_path;
4635 	struct inode *delegated_inode = NULL;
4636 	int how = 0;
4637 	int error;
4638 
4639 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4640 		error = -EINVAL;
4641 		goto out_putnames;
4642 	}
4643 	/*
4644 	 * To use null names we require CAP_DAC_READ_SEARCH
4645 	 * This ensures that not everyone will be able to create
4646 	 * handlink using the passed filedescriptor.
4647 	 */
4648 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4649 		error = -ENOENT;
4650 		goto out_putnames;
4651 	}
4652 
4653 	if (flags & AT_SYMLINK_FOLLOW)
4654 		how |= LOOKUP_FOLLOW;
4655 retry:
4656 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4657 	if (error)
4658 		goto out_putnames;
4659 
4660 	new_dentry = filename_create(newdfd, new, &new_path,
4661 					(how & LOOKUP_REVAL));
4662 	error = PTR_ERR(new_dentry);
4663 	if (IS_ERR(new_dentry))
4664 		goto out_putpath;
4665 
4666 	error = -EXDEV;
4667 	if (old_path.mnt != new_path.mnt)
4668 		goto out_dput;
4669 	idmap = mnt_idmap(new_path.mnt);
4670 	error = may_linkat(idmap, &old_path);
4671 	if (unlikely(error))
4672 		goto out_dput;
4673 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4674 	if (error)
4675 		goto out_dput;
4676 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4677 			 new_dentry, &delegated_inode);
4678 out_dput:
4679 	done_path_create(&new_path, new_dentry);
4680 	if (delegated_inode) {
4681 		error = break_deleg_wait(&delegated_inode);
4682 		if (!error) {
4683 			path_put(&old_path);
4684 			goto retry;
4685 		}
4686 	}
4687 	if (retry_estale(error, how)) {
4688 		path_put(&old_path);
4689 		how |= LOOKUP_REVAL;
4690 		goto retry;
4691 	}
4692 out_putpath:
4693 	path_put(&old_path);
4694 out_putnames:
4695 	putname(old);
4696 	putname(new);
4697 
4698 	return error;
4699 }
4700 
4701 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4702 		int, newdfd, const char __user *, newname, int, flags)
4703 {
4704 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4705 		newdfd, getname(newname), flags);
4706 }
4707 
4708 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4709 {
4710 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4711 }
4712 
4713 /**
4714  * vfs_rename - rename a filesystem object
4715  * @rd:		pointer to &struct renamedata info
4716  *
4717  * The caller must hold multiple mutexes--see lock_rename()).
4718  *
4719  * If vfs_rename discovers a delegation in need of breaking at either
4720  * the source or destination, it will return -EWOULDBLOCK and return a
4721  * reference to the inode in delegated_inode.  The caller should then
4722  * break the delegation and retry.  Because breaking a delegation may
4723  * take a long time, the caller should drop all locks before doing
4724  * so.
4725  *
4726  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4727  * be appropriate for callers that expect the underlying filesystem not
4728  * to be NFS exported.
4729  *
4730  * The worst of all namespace operations - renaming directory. "Perverted"
4731  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4732  * Problems:
4733  *
4734  *	a) we can get into loop creation.
4735  *	b) race potential - two innocent renames can create a loop together.
4736  *	   That's where 4.4BSD screws up. Current fix: serialization on
4737  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4738  *	   story.
4739  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4740  *	   and source (if it's a non-directory or a subdirectory that moves to
4741  *	   different parent).
4742  *	   And that - after we got ->i_mutex on parents (until then we don't know
4743  *	   whether the target exists).  Solution: try to be smart with locking
4744  *	   order for inodes.  We rely on the fact that tree topology may change
4745  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4746  *	   move will be locked.  Thus we can rank directories by the tree
4747  *	   (ancestors first) and rank all non-directories after them.
4748  *	   That works since everybody except rename does "lock parent, lookup,
4749  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4750  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4751  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4752  *	   we'd better make sure that there's no link(2) for them.
4753  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4754  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4755  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4756  *	   ->i_mutex on parents, which works but leads to some truly excessive
4757  *	   locking].
4758  */
4759 int vfs_rename(struct renamedata *rd)
4760 {
4761 	int error;
4762 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4763 	struct dentry *old_dentry = rd->old_dentry;
4764 	struct dentry *new_dentry = rd->new_dentry;
4765 	struct inode **delegated_inode = rd->delegated_inode;
4766 	unsigned int flags = rd->flags;
4767 	bool is_dir = d_is_dir(old_dentry);
4768 	struct inode *source = old_dentry->d_inode;
4769 	struct inode *target = new_dentry->d_inode;
4770 	bool new_is_dir = false;
4771 	unsigned max_links = new_dir->i_sb->s_max_links;
4772 	struct name_snapshot old_name;
4773 	bool lock_old_subdir, lock_new_subdir;
4774 
4775 	if (source == target)
4776 		return 0;
4777 
4778 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4779 	if (error)
4780 		return error;
4781 
4782 	if (!target) {
4783 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4784 	} else {
4785 		new_is_dir = d_is_dir(new_dentry);
4786 
4787 		if (!(flags & RENAME_EXCHANGE))
4788 			error = may_delete(rd->new_mnt_idmap, new_dir,
4789 					   new_dentry, is_dir);
4790 		else
4791 			error = may_delete(rd->new_mnt_idmap, new_dir,
4792 					   new_dentry, new_is_dir);
4793 	}
4794 	if (error)
4795 		return error;
4796 
4797 	if (!old_dir->i_op->rename)
4798 		return -EPERM;
4799 
4800 	/*
4801 	 * If we are going to change the parent - check write permissions,
4802 	 * we'll need to flip '..'.
4803 	 */
4804 	if (new_dir != old_dir) {
4805 		if (is_dir) {
4806 			error = inode_permission(rd->old_mnt_idmap, source,
4807 						 MAY_WRITE);
4808 			if (error)
4809 				return error;
4810 		}
4811 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4812 			error = inode_permission(rd->new_mnt_idmap, target,
4813 						 MAY_WRITE);
4814 			if (error)
4815 				return error;
4816 		}
4817 	}
4818 
4819 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4820 				      flags);
4821 	if (error)
4822 		return error;
4823 
4824 	take_dentry_name_snapshot(&old_name, old_dentry);
4825 	dget(new_dentry);
4826 	/*
4827 	 * Lock children.
4828 	 * The source subdirectory needs to be locked on cross-directory
4829 	 * rename or cross-directory exchange since its parent changes.
4830 	 * The target subdirectory needs to be locked on cross-directory
4831 	 * exchange due to parent change and on any rename due to becoming
4832 	 * a victim.
4833 	 * Non-directories need locking in all cases (for NFS reasons);
4834 	 * they get locked after any subdirectories (in inode address order).
4835 	 *
4836 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4837 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4838 	 */
4839 	lock_old_subdir = new_dir != old_dir;
4840 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4841 	if (is_dir) {
4842 		if (lock_old_subdir)
4843 			inode_lock_nested(source, I_MUTEX_CHILD);
4844 		if (target && (!new_is_dir || lock_new_subdir))
4845 			inode_lock(target);
4846 	} else if (new_is_dir) {
4847 		if (lock_new_subdir)
4848 			inode_lock_nested(target, I_MUTEX_CHILD);
4849 		inode_lock(source);
4850 	} else {
4851 		lock_two_nondirectories(source, target);
4852 	}
4853 
4854 	error = -EPERM;
4855 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4856 		goto out;
4857 
4858 	error = -EBUSY;
4859 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4860 		goto out;
4861 
4862 	if (max_links && new_dir != old_dir) {
4863 		error = -EMLINK;
4864 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4865 			goto out;
4866 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4867 		    old_dir->i_nlink >= max_links)
4868 			goto out;
4869 	}
4870 	if (!is_dir) {
4871 		error = try_break_deleg(source, delegated_inode);
4872 		if (error)
4873 			goto out;
4874 	}
4875 	if (target && !new_is_dir) {
4876 		error = try_break_deleg(target, delegated_inode);
4877 		if (error)
4878 			goto out;
4879 	}
4880 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4881 				      new_dir, new_dentry, flags);
4882 	if (error)
4883 		goto out;
4884 
4885 	if (!(flags & RENAME_EXCHANGE) && target) {
4886 		if (is_dir) {
4887 			shrink_dcache_parent(new_dentry);
4888 			target->i_flags |= S_DEAD;
4889 		}
4890 		dont_mount(new_dentry);
4891 		detach_mounts(new_dentry);
4892 	}
4893 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4894 		if (!(flags & RENAME_EXCHANGE))
4895 			d_move(old_dentry, new_dentry);
4896 		else
4897 			d_exchange(old_dentry, new_dentry);
4898 	}
4899 out:
4900 	if (!is_dir || lock_old_subdir)
4901 		inode_unlock(source);
4902 	if (target && (!new_is_dir || lock_new_subdir))
4903 		inode_unlock(target);
4904 	dput(new_dentry);
4905 	if (!error) {
4906 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4907 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4908 		if (flags & RENAME_EXCHANGE) {
4909 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4910 				      new_is_dir, NULL, new_dentry);
4911 		}
4912 	}
4913 	release_dentry_name_snapshot(&old_name);
4914 
4915 	return error;
4916 }
4917 EXPORT_SYMBOL(vfs_rename);
4918 
4919 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4920 		 struct filename *to, unsigned int flags)
4921 {
4922 	struct renamedata rd;
4923 	struct dentry *old_dentry, *new_dentry;
4924 	struct dentry *trap;
4925 	struct path old_path, new_path;
4926 	struct qstr old_last, new_last;
4927 	int old_type, new_type;
4928 	struct inode *delegated_inode = NULL;
4929 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4930 	bool should_retry = false;
4931 	int error = -EINVAL;
4932 
4933 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4934 		goto put_names;
4935 
4936 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4937 	    (flags & RENAME_EXCHANGE))
4938 		goto put_names;
4939 
4940 	if (flags & RENAME_EXCHANGE)
4941 		target_flags = 0;
4942 
4943 retry:
4944 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4945 				  &old_last, &old_type);
4946 	if (error)
4947 		goto put_names;
4948 
4949 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4950 				  &new_type);
4951 	if (error)
4952 		goto exit1;
4953 
4954 	error = -EXDEV;
4955 	if (old_path.mnt != new_path.mnt)
4956 		goto exit2;
4957 
4958 	error = -EBUSY;
4959 	if (old_type != LAST_NORM)
4960 		goto exit2;
4961 
4962 	if (flags & RENAME_NOREPLACE)
4963 		error = -EEXIST;
4964 	if (new_type != LAST_NORM)
4965 		goto exit2;
4966 
4967 	error = mnt_want_write(old_path.mnt);
4968 	if (error)
4969 		goto exit2;
4970 
4971 retry_deleg:
4972 	trap = lock_rename(new_path.dentry, old_path.dentry);
4973 	if (IS_ERR(trap)) {
4974 		error = PTR_ERR(trap);
4975 		goto exit_lock_rename;
4976 	}
4977 
4978 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4979 					  lookup_flags);
4980 	error = PTR_ERR(old_dentry);
4981 	if (IS_ERR(old_dentry))
4982 		goto exit3;
4983 	/* source must exist */
4984 	error = -ENOENT;
4985 	if (d_is_negative(old_dentry))
4986 		goto exit4;
4987 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4988 					  lookup_flags | target_flags);
4989 	error = PTR_ERR(new_dentry);
4990 	if (IS_ERR(new_dentry))
4991 		goto exit4;
4992 	error = -EEXIST;
4993 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4994 		goto exit5;
4995 	if (flags & RENAME_EXCHANGE) {
4996 		error = -ENOENT;
4997 		if (d_is_negative(new_dentry))
4998 			goto exit5;
4999 
5000 		if (!d_is_dir(new_dentry)) {
5001 			error = -ENOTDIR;
5002 			if (new_last.name[new_last.len])
5003 				goto exit5;
5004 		}
5005 	}
5006 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5007 	if (!d_is_dir(old_dentry)) {
5008 		error = -ENOTDIR;
5009 		if (old_last.name[old_last.len])
5010 			goto exit5;
5011 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5012 			goto exit5;
5013 	}
5014 	/* source should not be ancestor of target */
5015 	error = -EINVAL;
5016 	if (old_dentry == trap)
5017 		goto exit5;
5018 	/* target should not be an ancestor of source */
5019 	if (!(flags & RENAME_EXCHANGE))
5020 		error = -ENOTEMPTY;
5021 	if (new_dentry == trap)
5022 		goto exit5;
5023 
5024 	error = security_path_rename(&old_path, old_dentry,
5025 				     &new_path, new_dentry, flags);
5026 	if (error)
5027 		goto exit5;
5028 
5029 	rd.old_dir	   = old_path.dentry->d_inode;
5030 	rd.old_dentry	   = old_dentry;
5031 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5032 	rd.new_dir	   = new_path.dentry->d_inode;
5033 	rd.new_dentry	   = new_dentry;
5034 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5035 	rd.delegated_inode = &delegated_inode;
5036 	rd.flags	   = flags;
5037 	error = vfs_rename(&rd);
5038 exit5:
5039 	dput(new_dentry);
5040 exit4:
5041 	dput(old_dentry);
5042 exit3:
5043 	unlock_rename(new_path.dentry, old_path.dentry);
5044 exit_lock_rename:
5045 	if (delegated_inode) {
5046 		error = break_deleg_wait(&delegated_inode);
5047 		if (!error)
5048 			goto retry_deleg;
5049 	}
5050 	mnt_drop_write(old_path.mnt);
5051 exit2:
5052 	if (retry_estale(error, lookup_flags))
5053 		should_retry = true;
5054 	path_put(&new_path);
5055 exit1:
5056 	path_put(&old_path);
5057 	if (should_retry) {
5058 		should_retry = false;
5059 		lookup_flags |= LOOKUP_REVAL;
5060 		goto retry;
5061 	}
5062 put_names:
5063 	putname(from);
5064 	putname(to);
5065 	return error;
5066 }
5067 
5068 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5069 		int, newdfd, const char __user *, newname, unsigned int, flags)
5070 {
5071 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5072 				flags);
5073 }
5074 
5075 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5076 		int, newdfd, const char __user *, newname)
5077 {
5078 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5079 				0);
5080 }
5081 
5082 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5083 {
5084 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5085 				getname(newname), 0);
5086 }
5087 
5088 int readlink_copy(char __user *buffer, int buflen, const char *link)
5089 {
5090 	int len = PTR_ERR(link);
5091 	if (IS_ERR(link))
5092 		goto out;
5093 
5094 	len = strlen(link);
5095 	if (len > (unsigned) buflen)
5096 		len = buflen;
5097 	if (copy_to_user(buffer, link, len))
5098 		len = -EFAULT;
5099 out:
5100 	return len;
5101 }
5102 
5103 /**
5104  * vfs_readlink - copy symlink body into userspace buffer
5105  * @dentry: dentry on which to get symbolic link
5106  * @buffer: user memory pointer
5107  * @buflen: size of buffer
5108  *
5109  * Does not touch atime.  That's up to the caller if necessary
5110  *
5111  * Does not call security hook.
5112  */
5113 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5114 {
5115 	struct inode *inode = d_inode(dentry);
5116 	DEFINE_DELAYED_CALL(done);
5117 	const char *link;
5118 	int res;
5119 
5120 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5121 		if (unlikely(inode->i_op->readlink))
5122 			return inode->i_op->readlink(dentry, buffer, buflen);
5123 
5124 		if (!d_is_symlink(dentry))
5125 			return -EINVAL;
5126 
5127 		spin_lock(&inode->i_lock);
5128 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5129 		spin_unlock(&inode->i_lock);
5130 	}
5131 
5132 	link = READ_ONCE(inode->i_link);
5133 	if (!link) {
5134 		link = inode->i_op->get_link(dentry, inode, &done);
5135 		if (IS_ERR(link))
5136 			return PTR_ERR(link);
5137 	}
5138 	res = readlink_copy(buffer, buflen, link);
5139 	do_delayed_call(&done);
5140 	return res;
5141 }
5142 EXPORT_SYMBOL(vfs_readlink);
5143 
5144 /**
5145  * vfs_get_link - get symlink body
5146  * @dentry: dentry on which to get symbolic link
5147  * @done: caller needs to free returned data with this
5148  *
5149  * Calls security hook and i_op->get_link() on the supplied inode.
5150  *
5151  * It does not touch atime.  That's up to the caller if necessary.
5152  *
5153  * Does not work on "special" symlinks like /proc/$$/fd/N
5154  */
5155 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5156 {
5157 	const char *res = ERR_PTR(-EINVAL);
5158 	struct inode *inode = d_inode(dentry);
5159 
5160 	if (d_is_symlink(dentry)) {
5161 		res = ERR_PTR(security_inode_readlink(dentry));
5162 		if (!res)
5163 			res = inode->i_op->get_link(dentry, inode, done);
5164 	}
5165 	return res;
5166 }
5167 EXPORT_SYMBOL(vfs_get_link);
5168 
5169 /* get the link contents into pagecache */
5170 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5171 			  struct delayed_call *callback)
5172 {
5173 	char *kaddr;
5174 	struct page *page;
5175 	struct address_space *mapping = inode->i_mapping;
5176 
5177 	if (!dentry) {
5178 		page = find_get_page(mapping, 0);
5179 		if (!page)
5180 			return ERR_PTR(-ECHILD);
5181 		if (!PageUptodate(page)) {
5182 			put_page(page);
5183 			return ERR_PTR(-ECHILD);
5184 		}
5185 	} else {
5186 		page = read_mapping_page(mapping, 0, NULL);
5187 		if (IS_ERR(page))
5188 			return (char*)page;
5189 	}
5190 	set_delayed_call(callback, page_put_link, page);
5191 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5192 	kaddr = page_address(page);
5193 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5194 	return kaddr;
5195 }
5196 
5197 EXPORT_SYMBOL(page_get_link);
5198 
5199 void page_put_link(void *arg)
5200 {
5201 	put_page(arg);
5202 }
5203 EXPORT_SYMBOL(page_put_link);
5204 
5205 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5206 {
5207 	DEFINE_DELAYED_CALL(done);
5208 	int res = readlink_copy(buffer, buflen,
5209 				page_get_link(dentry, d_inode(dentry),
5210 					      &done));
5211 	do_delayed_call(&done);
5212 	return res;
5213 }
5214 EXPORT_SYMBOL(page_readlink);
5215 
5216 int page_symlink(struct inode *inode, const char *symname, int len)
5217 {
5218 	struct address_space *mapping = inode->i_mapping;
5219 	const struct address_space_operations *aops = mapping->a_ops;
5220 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5221 	struct page *page;
5222 	void *fsdata = NULL;
5223 	int err;
5224 	unsigned int flags;
5225 
5226 retry:
5227 	if (nofs)
5228 		flags = memalloc_nofs_save();
5229 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5230 	if (nofs)
5231 		memalloc_nofs_restore(flags);
5232 	if (err)
5233 		goto fail;
5234 
5235 	memcpy(page_address(page), symname, len-1);
5236 
5237 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5238 							page, fsdata);
5239 	if (err < 0)
5240 		goto fail;
5241 	if (err < len-1)
5242 		goto retry;
5243 
5244 	mark_inode_dirty(inode);
5245 	return 0;
5246 fail:
5247 	return err;
5248 }
5249 EXPORT_SYMBOL(page_symlink);
5250 
5251 const struct inode_operations page_symlink_inode_operations = {
5252 	.get_link	= page_get_link,
5253 };
5254 EXPORT_SYMBOL(page_symlink_inode_operations);
5255