xref: /linux/fs/namei.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 		return true;
646 	nd->flags |= LOOKUP_ROOT_GRABBED;
647 	return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649 
650 /*
651  * Path walking has 2 modes, rcu-walk and ref-walk (see
652  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
653  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654  * normal reference counts on dentries and vfsmounts to transition to ref-walk
655  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
656  * got stuck, so ref-walk may continue from there. If this is not successful
657  * (eg. a seqcount has changed), then failure is returned and it's up to caller
658  * to restart the path walk from the beginning in ref-walk mode.
659  */
660 
661 /**
662  * unlazy_walk - try to switch to ref-walk mode.
663  * @nd: nameidata pathwalk data
664  * Returns: 0 on success, -ECHILD on failure
665  *
666  * unlazy_walk attempts to legitimize the current nd->path and nd->root
667  * for ref-walk mode.
668  * Must be called from rcu-walk context.
669  * Nothing should touch nameidata between unlazy_walk() failure and
670  * terminate_walk().
671  */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 	struct dentry *parent = nd->path.dentry;
675 
676 	BUG_ON(!(nd->flags & LOOKUP_RCU));
677 
678 	nd->flags &= ~LOOKUP_RCU;
679 	if (unlikely(!legitimize_links(nd)))
680 		goto out1;
681 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 		goto out;
683 	if (unlikely(!legitimize_root(nd)))
684 		goto out;
685 	rcu_read_unlock();
686 	BUG_ON(nd->inode != parent->d_inode);
687 	return 0;
688 
689 out1:
690 	nd->path.mnt = NULL;
691 	nd->path.dentry = NULL;
692 out:
693 	rcu_read_unlock();
694 	return -ECHILD;
695 }
696 
697 /**
698  * unlazy_child - try to switch to ref-walk mode.
699  * @nd: nameidata pathwalk data
700  * @dentry: child of nd->path.dentry
701  * @seq: seq number to check dentry against
702  * Returns: 0 on success, -ECHILD on failure
703  *
704  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
706  * @nd.  Must be called from rcu-walk context.
707  * Nothing should touch nameidata between unlazy_child() failure and
708  * terminate_walk().
709  */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 	BUG_ON(!(nd->flags & LOOKUP_RCU));
713 
714 	nd->flags &= ~LOOKUP_RCU;
715 	if (unlikely(!legitimize_links(nd)))
716 		goto out2;
717 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 		goto out2;
719 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 		goto out1;
721 
722 	/*
723 	 * We need to move both the parent and the dentry from the RCU domain
724 	 * to be properly refcounted. And the sequence number in the dentry
725 	 * validates *both* dentry counters, since we checked the sequence
726 	 * number of the parent after we got the child sequence number. So we
727 	 * know the parent must still be valid if the child sequence number is
728 	 */
729 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 		goto out;
731 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 		goto out_dput;
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (unlikely(!legitimize_root(nd)))
738 		goto out_dput;
739 	rcu_read_unlock();
740 	return 0;
741 
742 out2:
743 	nd->path.mnt = NULL;
744 out1:
745 	nd->path.dentry = NULL;
746 out:
747 	rcu_read_unlock();
748 	return -ECHILD;
749 out_dput:
750 	rcu_read_unlock();
751 	dput(dentry);
752 	return -ECHILD;
753 }
754 
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 		return dentry->d_op->d_revalidate(dentry, flags);
759 	else
760 		return 1;
761 }
762 
763 /**
764  * complete_walk - successful completion of path walk
765  * @nd:  pointer nameidata
766  *
767  * If we had been in RCU mode, drop out of it and legitimize nd->path.
768  * Revalidate the final result, unless we'd already done that during
769  * the path walk or the filesystem doesn't ask for it.  Return 0 on
770  * success, -error on failure.  In case of failure caller does not
771  * need to drop nd->path.
772  */
773 static int complete_walk(struct nameidata *nd)
774 {
775 	struct dentry *dentry = nd->path.dentry;
776 	int status;
777 
778 	if (nd->flags & LOOKUP_RCU) {
779 		if (!(nd->flags & LOOKUP_ROOT))
780 			nd->root.mnt = NULL;
781 		if (unlikely(unlazy_walk(nd)))
782 			return -ECHILD;
783 	}
784 
785 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 		return 0;
787 
788 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 		return 0;
790 
791 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 	if (status > 0)
793 		return 0;
794 
795 	if (!status)
796 		status = -ESTALE;
797 
798 	return status;
799 }
800 
801 static void set_root(struct nameidata *nd)
802 {
803 	struct fs_struct *fs = current->fs;
804 
805 	if (nd->flags & LOOKUP_RCU) {
806 		unsigned seq;
807 
808 		do {
809 			seq = read_seqcount_begin(&fs->seq);
810 			nd->root = fs->root;
811 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 		} while (read_seqcount_retry(&fs->seq, seq));
813 	} else {
814 		get_fs_root(fs, &nd->root);
815 		nd->flags |= LOOKUP_ROOT_GRABBED;
816 	}
817 }
818 
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 	dput(path->dentry);
822 	if (path->mnt != nd->path.mnt)
823 		mntput(path->mnt);
824 }
825 
826 static inline void path_to_nameidata(const struct path *path,
827 					struct nameidata *nd)
828 {
829 	if (!(nd->flags & LOOKUP_RCU)) {
830 		dput(nd->path.dentry);
831 		if (nd->path.mnt != path->mnt)
832 			mntput(nd->path.mnt);
833 	}
834 	nd->path.mnt = path->mnt;
835 	nd->path.dentry = path->dentry;
836 }
837 
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 	if (nd->flags & LOOKUP_RCU) {
841 		struct dentry *d;
842 		nd->path = nd->root;
843 		d = nd->path.dentry;
844 		nd->inode = d->d_inode;
845 		nd->seq = nd->root_seq;
846 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 			return -ECHILD;
848 	} else {
849 		path_put(&nd->path);
850 		nd->path = nd->root;
851 		path_get(&nd->path);
852 		nd->inode = nd->path.dentry->d_inode;
853 	}
854 	nd->flags |= LOOKUP_JUMPED;
855 	return 0;
856 }
857 
858 /*
859  * Helper to directly jump to a known parsed path from ->get_link,
860  * caller must have taken a reference to path beforehand.
861  */
862 void nd_jump_link(struct path *path)
863 {
864 	struct nameidata *nd = current->nameidata;
865 	path_put(&nd->path);
866 
867 	nd->path = *path;
868 	nd->inode = nd->path.dentry->d_inode;
869 	nd->flags |= LOOKUP_JUMPED;
870 }
871 
872 static inline void put_link(struct nameidata *nd)
873 {
874 	struct saved *last = nd->stack + --nd->depth;
875 	do_delayed_call(&last->done);
876 	if (!(nd->flags & LOOKUP_RCU))
877 		path_put(&last->link);
878 }
879 
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 	kuid_t puid;
905 
906 	if (!sysctl_protected_symlinks)
907 		return 0;
908 
909 	/* Allowed if owner and follower match. */
910 	inode = nd->link_inode;
911 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 		return 0;
913 
914 	/* Allowed if parent directory not sticky and world-writable. */
915 	parent = nd->inode;
916 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 		return 0;
918 
919 	/* Allowed if parent directory and link owner match. */
920 	puid = parent->i_uid;
921 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 		return 0;
923 
924 	if (nd->flags & LOOKUP_RCU)
925 		return -ECHILD;
926 
927 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 	return -EACCES;
930 }
931 
932 /**
933  * safe_hardlink_source - Check for safe hardlink conditions
934  * @inode: the source inode to hardlink from
935  *
936  * Return false if at least one of the following conditions:
937  *    - inode is not a regular file
938  *    - inode is setuid
939  *    - inode is setgid and group-exec
940  *    - access failure for read and write
941  *
942  * Otherwise returns true.
943  */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 	umode_t mode = inode->i_mode;
947 
948 	/* Special files should not get pinned to the filesystem. */
949 	if (!S_ISREG(mode))
950 		return false;
951 
952 	/* Setuid files should not get pinned to the filesystem. */
953 	if (mode & S_ISUID)
954 		return false;
955 
956 	/* Executable setgid files should not get pinned to the filesystem. */
957 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 		return false;
959 
960 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
961 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 		return false;
963 
964 	return true;
965 }
966 
967 /**
968  * may_linkat - Check permissions for creating a hardlink
969  * @link: the source to hardlink from
970  *
971  * Block hardlink when all of:
972  *  - sysctl_protected_hardlinks enabled
973  *  - fsuid does not match inode
974  *  - hardlink source is unsafe (see safe_hardlink_source() above)
975  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
976  *
977  * Returns 0 if successful, -ve on error.
978  */
979 static int may_linkat(struct path *link)
980 {
981 	struct inode *inode = link->dentry->d_inode;
982 
983 	/* Inode writeback is not safe when the uid or gid are invalid. */
984 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 		return -EOVERFLOW;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 	return -EPERM;
998 }
999 
1000 /**
1001  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002  *			  should be allowed, or not, on files that already
1003  *			  exist.
1004  * @dir: the sticky parent directory
1005  * @inode: the inode of the file to open
1006  *
1007  * Block an O_CREAT open of a FIFO (or a regular file) when:
1008  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009  *   - the file already exists
1010  *   - we are in a sticky directory
1011  *   - we don't own the file
1012  *   - the owner of the directory doesn't own the file
1013  *   - the directory is world writable
1014  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015  * the directory doesn't have to be world writable: being group writable will
1016  * be enough.
1017  *
1018  * Returns 0 if the open is allowed, -ve on error.
1019  */
1020 static int may_create_in_sticky(struct dentry * const dir,
1021 				struct inode * const inode)
1022 {
1023 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025 	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026 	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027 	    uid_eq(current_fsuid(), inode->i_uid))
1028 		return 0;
1029 
1030 	if (likely(dir->d_inode->i_mode & 0002) ||
1031 	    (dir->d_inode->i_mode & 0020 &&
1032 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034 		const char *operation = S_ISFIFO(inode->i_mode) ?
1035 					"sticky_create_fifo" :
1036 					"sticky_create_regular";
1037 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1038 		return -EACCES;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static __always_inline
1044 const char *get_link(struct nameidata *nd)
1045 {
1046 	struct saved *last = nd->stack + nd->depth - 1;
1047 	struct dentry *dentry = last->link.dentry;
1048 	struct inode *inode = nd->link_inode;
1049 	int error;
1050 	const char *res;
1051 
1052 	if (!(nd->flags & LOOKUP_RCU)) {
1053 		touch_atime(&last->link);
1054 		cond_resched();
1055 	} else if (atime_needs_update(&last->link, inode)) {
1056 		if (unlikely(unlazy_walk(nd)))
1057 			return ERR_PTR(-ECHILD);
1058 		touch_atime(&last->link);
1059 	}
1060 
1061 	error = security_inode_follow_link(dentry, inode,
1062 					   nd->flags & LOOKUP_RCU);
1063 	if (unlikely(error))
1064 		return ERR_PTR(error);
1065 
1066 	nd->last_type = LAST_BIND;
1067 	res = READ_ONCE(inode->i_link);
1068 	if (!res) {
1069 		const char * (*get)(struct dentry *, struct inode *,
1070 				struct delayed_call *);
1071 		get = inode->i_op->get_link;
1072 		if (nd->flags & LOOKUP_RCU) {
1073 			res = get(NULL, inode, &last->done);
1074 			if (res == ERR_PTR(-ECHILD)) {
1075 				if (unlikely(unlazy_walk(nd)))
1076 					return ERR_PTR(-ECHILD);
1077 				res = get(dentry, inode, &last->done);
1078 			}
1079 		} else {
1080 			res = get(dentry, inode, &last->done);
1081 		}
1082 		if (IS_ERR_OR_NULL(res))
1083 			return res;
1084 	}
1085 	if (*res == '/') {
1086 		if (!nd->root.mnt)
1087 			set_root(nd);
1088 		if (unlikely(nd_jump_root(nd)))
1089 			return ERR_PTR(-ECHILD);
1090 		while (unlikely(*++res == '/'))
1091 			;
1092 	}
1093 	if (!*res)
1094 		res = NULL;
1095 	return res;
1096 }
1097 
1098 /*
1099  * follow_up - Find the mountpoint of path's vfsmount
1100  *
1101  * Given a path, find the mountpoint of its source file system.
1102  * Replace @path with the path of the mountpoint in the parent mount.
1103  * Up is towards /.
1104  *
1105  * Return 1 if we went up a level and 0 if we were already at the
1106  * root.
1107  */
1108 int follow_up(struct path *path)
1109 {
1110 	struct mount *mnt = real_mount(path->mnt);
1111 	struct mount *parent;
1112 	struct dentry *mountpoint;
1113 
1114 	read_seqlock_excl(&mount_lock);
1115 	parent = mnt->mnt_parent;
1116 	if (parent == mnt) {
1117 		read_sequnlock_excl(&mount_lock);
1118 		return 0;
1119 	}
1120 	mntget(&parent->mnt);
1121 	mountpoint = dget(mnt->mnt_mountpoint);
1122 	read_sequnlock_excl(&mount_lock);
1123 	dput(path->dentry);
1124 	path->dentry = mountpoint;
1125 	mntput(path->mnt);
1126 	path->mnt = &parent->mnt;
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130 
1131 /*
1132  * Perform an automount
1133  * - return -EISDIR to tell follow_managed() to stop and return the path we
1134  *   were called with.
1135  */
1136 static int follow_automount(struct path *path, struct nameidata *nd,
1137 			    bool *need_mntput)
1138 {
1139 	struct vfsmount *mnt;
1140 	int err;
1141 
1142 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1143 		return -EREMOTE;
1144 
1145 	/* We don't want to mount if someone's just doing a stat -
1146 	 * unless they're stat'ing a directory and appended a '/' to
1147 	 * the name.
1148 	 *
1149 	 * We do, however, want to mount if someone wants to open or
1150 	 * create a file of any type under the mountpoint, wants to
1151 	 * traverse through the mountpoint or wants to open the
1152 	 * mounted directory.  Also, autofs may mark negative dentries
1153 	 * as being automount points.  These will need the attentions
1154 	 * of the daemon to instantiate them before they can be used.
1155 	 */
1156 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1157 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1158 	    path->dentry->d_inode)
1159 		return -EISDIR;
1160 
1161 	nd->total_link_count++;
1162 	if (nd->total_link_count >= 40)
1163 		return -ELOOP;
1164 
1165 	mnt = path->dentry->d_op->d_automount(path);
1166 	if (IS_ERR(mnt)) {
1167 		/*
1168 		 * The filesystem is allowed to return -EISDIR here to indicate
1169 		 * it doesn't want to automount.  For instance, autofs would do
1170 		 * this so that its userspace daemon can mount on this dentry.
1171 		 *
1172 		 * However, we can only permit this if it's a terminal point in
1173 		 * the path being looked up; if it wasn't then the remainder of
1174 		 * the path is inaccessible and we should say so.
1175 		 */
1176 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1177 			return -EREMOTE;
1178 		return PTR_ERR(mnt);
1179 	}
1180 
1181 	if (!mnt) /* mount collision */
1182 		return 0;
1183 
1184 	if (!*need_mntput) {
1185 		/* lock_mount() may release path->mnt on error */
1186 		mntget(path->mnt);
1187 		*need_mntput = true;
1188 	}
1189 	err = finish_automount(mnt, path);
1190 
1191 	switch (err) {
1192 	case -EBUSY:
1193 		/* Someone else made a mount here whilst we were busy */
1194 		return 0;
1195 	case 0:
1196 		path_put(path);
1197 		path->mnt = mnt;
1198 		path->dentry = dget(mnt->mnt_root);
1199 		return 0;
1200 	default:
1201 		return err;
1202 	}
1203 
1204 }
1205 
1206 /*
1207  * Handle a dentry that is managed in some way.
1208  * - Flagged for transit management (autofs)
1209  * - Flagged as mountpoint
1210  * - Flagged as automount point
1211  *
1212  * This may only be called in refwalk mode.
1213  * On success path->dentry is known positive.
1214  *
1215  * Serialization is taken care of in namespace.c
1216  */
1217 static int follow_managed(struct path *path, struct nameidata *nd)
1218 {
1219 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1220 	unsigned flags;
1221 	bool need_mntput = false;
1222 	int ret = 0;
1223 
1224 	/* Given that we're not holding a lock here, we retain the value in a
1225 	 * local variable for each dentry as we look at it so that we don't see
1226 	 * the components of that value change under us */
1227 	while (flags = smp_load_acquire(&path->dentry->d_flags),
1228 	       unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1229 		/* Allow the filesystem to manage the transit without i_mutex
1230 		 * being held. */
1231 		if (flags & DCACHE_MANAGE_TRANSIT) {
1232 			BUG_ON(!path->dentry->d_op);
1233 			BUG_ON(!path->dentry->d_op->d_manage);
1234 			ret = path->dentry->d_op->d_manage(path, false);
1235 			if (ret < 0)
1236 				break;
1237 		}
1238 
1239 		/* Transit to a mounted filesystem. */
1240 		if (flags & DCACHE_MOUNTED) {
1241 			struct vfsmount *mounted = lookup_mnt(path);
1242 			if (mounted) {
1243 				dput(path->dentry);
1244 				if (need_mntput)
1245 					mntput(path->mnt);
1246 				path->mnt = mounted;
1247 				path->dentry = dget(mounted->mnt_root);
1248 				need_mntput = true;
1249 				continue;
1250 			}
1251 
1252 			/* Something is mounted on this dentry in another
1253 			 * namespace and/or whatever was mounted there in this
1254 			 * namespace got unmounted before lookup_mnt() could
1255 			 * get it */
1256 		}
1257 
1258 		/* Handle an automount point */
1259 		if (flags & DCACHE_NEED_AUTOMOUNT) {
1260 			ret = follow_automount(path, nd, &need_mntput);
1261 			if (ret < 0)
1262 				break;
1263 			continue;
1264 		}
1265 
1266 		/* We didn't change the current path point */
1267 		break;
1268 	}
1269 
1270 	if (need_mntput && path->mnt == mnt)
1271 		mntput(path->mnt);
1272 	if (need_mntput)
1273 		nd->flags |= LOOKUP_JUMPED;
1274 	if (ret == -EISDIR || !ret)
1275 		ret = 1;
1276 	if (ret > 0 && unlikely(d_flags_negative(flags)))
1277 		ret = -ENOENT;
1278 	if (unlikely(ret < 0))
1279 		path_put_conditional(path, nd);
1280 	return ret;
1281 }
1282 
1283 int follow_down_one(struct path *path)
1284 {
1285 	struct vfsmount *mounted;
1286 
1287 	mounted = lookup_mnt(path);
1288 	if (mounted) {
1289 		dput(path->dentry);
1290 		mntput(path->mnt);
1291 		path->mnt = mounted;
1292 		path->dentry = dget(mounted->mnt_root);
1293 		return 1;
1294 	}
1295 	return 0;
1296 }
1297 EXPORT_SYMBOL(follow_down_one);
1298 
1299 static inline int managed_dentry_rcu(const struct path *path)
1300 {
1301 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1302 		path->dentry->d_op->d_manage(path, true) : 0;
1303 }
1304 
1305 /*
1306  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1307  * we meet a managed dentry that would need blocking.
1308  */
1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1310 			       struct inode **inode, unsigned *seqp)
1311 {
1312 	for (;;) {
1313 		struct mount *mounted;
1314 		/*
1315 		 * Don't forget we might have a non-mountpoint managed dentry
1316 		 * that wants to block transit.
1317 		 */
1318 		switch (managed_dentry_rcu(path)) {
1319 		case -ECHILD:
1320 		default:
1321 			return false;
1322 		case -EISDIR:
1323 			return true;
1324 		case 0:
1325 			break;
1326 		}
1327 
1328 		if (!d_mountpoint(path->dentry))
1329 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1330 
1331 		mounted = __lookup_mnt(path->mnt, path->dentry);
1332 		if (!mounted)
1333 			break;
1334 		path->mnt = &mounted->mnt;
1335 		path->dentry = mounted->mnt.mnt_root;
1336 		nd->flags |= LOOKUP_JUMPED;
1337 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1338 		/*
1339 		 * Update the inode too. We don't need to re-check the
1340 		 * dentry sequence number here after this d_inode read,
1341 		 * because a mount-point is always pinned.
1342 		 */
1343 		*inode = path->dentry->d_inode;
1344 	}
1345 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1346 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1347 }
1348 
1349 static int follow_dotdot_rcu(struct nameidata *nd)
1350 {
1351 	struct inode *inode = nd->inode;
1352 
1353 	while (1) {
1354 		if (path_equal(&nd->path, &nd->root))
1355 			break;
1356 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1357 			struct dentry *old = nd->path.dentry;
1358 			struct dentry *parent = old->d_parent;
1359 			unsigned seq;
1360 
1361 			inode = parent->d_inode;
1362 			seq = read_seqcount_begin(&parent->d_seq);
1363 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1364 				return -ECHILD;
1365 			nd->path.dentry = parent;
1366 			nd->seq = seq;
1367 			if (unlikely(!path_connected(&nd->path)))
1368 				return -ENOENT;
1369 			break;
1370 		} else {
1371 			struct mount *mnt = real_mount(nd->path.mnt);
1372 			struct mount *mparent = mnt->mnt_parent;
1373 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1374 			struct inode *inode2 = mountpoint->d_inode;
1375 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1376 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1377 				return -ECHILD;
1378 			if (&mparent->mnt == nd->path.mnt)
1379 				break;
1380 			/* we know that mountpoint was pinned */
1381 			nd->path.dentry = mountpoint;
1382 			nd->path.mnt = &mparent->mnt;
1383 			inode = inode2;
1384 			nd->seq = seq;
1385 		}
1386 	}
1387 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1388 		struct mount *mounted;
1389 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1390 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1391 			return -ECHILD;
1392 		if (!mounted)
1393 			break;
1394 		nd->path.mnt = &mounted->mnt;
1395 		nd->path.dentry = mounted->mnt.mnt_root;
1396 		inode = nd->path.dentry->d_inode;
1397 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1398 	}
1399 	nd->inode = inode;
1400 	return 0;
1401 }
1402 
1403 /*
1404  * Follow down to the covering mount currently visible to userspace.  At each
1405  * point, the filesystem owning that dentry may be queried as to whether the
1406  * caller is permitted to proceed or not.
1407  */
1408 int follow_down(struct path *path)
1409 {
1410 	unsigned managed;
1411 	int ret;
1412 
1413 	while (managed = READ_ONCE(path->dentry->d_flags),
1414 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1415 		/* Allow the filesystem to manage the transit without i_mutex
1416 		 * being held.
1417 		 *
1418 		 * We indicate to the filesystem if someone is trying to mount
1419 		 * something here.  This gives autofs the chance to deny anyone
1420 		 * other than its daemon the right to mount on its
1421 		 * superstructure.
1422 		 *
1423 		 * The filesystem may sleep at this point.
1424 		 */
1425 		if (managed & DCACHE_MANAGE_TRANSIT) {
1426 			BUG_ON(!path->dentry->d_op);
1427 			BUG_ON(!path->dentry->d_op->d_manage);
1428 			ret = path->dentry->d_op->d_manage(path, false);
1429 			if (ret < 0)
1430 				return ret == -EISDIR ? 0 : ret;
1431 		}
1432 
1433 		/* Transit to a mounted filesystem. */
1434 		if (managed & DCACHE_MOUNTED) {
1435 			struct vfsmount *mounted = lookup_mnt(path);
1436 			if (!mounted)
1437 				break;
1438 			dput(path->dentry);
1439 			mntput(path->mnt);
1440 			path->mnt = mounted;
1441 			path->dentry = dget(mounted->mnt_root);
1442 			continue;
1443 		}
1444 
1445 		/* Don't handle automount points here */
1446 		break;
1447 	}
1448 	return 0;
1449 }
1450 EXPORT_SYMBOL(follow_down);
1451 
1452 /*
1453  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1454  */
1455 static void follow_mount(struct path *path)
1456 {
1457 	while (d_mountpoint(path->dentry)) {
1458 		struct vfsmount *mounted = lookup_mnt(path);
1459 		if (!mounted)
1460 			break;
1461 		dput(path->dentry);
1462 		mntput(path->mnt);
1463 		path->mnt = mounted;
1464 		path->dentry = dget(mounted->mnt_root);
1465 	}
1466 }
1467 
1468 static int path_parent_directory(struct path *path)
1469 {
1470 	struct dentry *old = path->dentry;
1471 	/* rare case of legitimate dget_parent()... */
1472 	path->dentry = dget_parent(path->dentry);
1473 	dput(old);
1474 	if (unlikely(!path_connected(path)))
1475 		return -ENOENT;
1476 	return 0;
1477 }
1478 
1479 static int follow_dotdot(struct nameidata *nd)
1480 {
1481 	while(1) {
1482 		if (path_equal(&nd->path, &nd->root))
1483 			break;
1484 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1485 			int ret = path_parent_directory(&nd->path);
1486 			if (ret)
1487 				return ret;
1488 			break;
1489 		}
1490 		if (!follow_up(&nd->path))
1491 			break;
1492 	}
1493 	follow_mount(&nd->path);
1494 	nd->inode = nd->path.dentry->d_inode;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * This looks up the name in dcache and possibly revalidates the found dentry.
1500  * NULL is returned if the dentry does not exist in the cache.
1501  */
1502 static struct dentry *lookup_dcache(const struct qstr *name,
1503 				    struct dentry *dir,
1504 				    unsigned int flags)
1505 {
1506 	struct dentry *dentry = d_lookup(dir, name);
1507 	if (dentry) {
1508 		int error = d_revalidate(dentry, flags);
1509 		if (unlikely(error <= 0)) {
1510 			if (!error)
1511 				d_invalidate(dentry);
1512 			dput(dentry);
1513 			return ERR_PTR(error);
1514 		}
1515 	}
1516 	return dentry;
1517 }
1518 
1519 /*
1520  * Parent directory has inode locked exclusive.  This is one
1521  * and only case when ->lookup() gets called on non in-lookup
1522  * dentries - as the matter of fact, this only gets called
1523  * when directory is guaranteed to have no in-lookup children
1524  * at all.
1525  */
1526 static struct dentry *__lookup_hash(const struct qstr *name,
1527 		struct dentry *base, unsigned int flags)
1528 {
1529 	struct dentry *dentry = lookup_dcache(name, base, flags);
1530 	struct dentry *old;
1531 	struct inode *dir = base->d_inode;
1532 
1533 	if (dentry)
1534 		return dentry;
1535 
1536 	/* Don't create child dentry for a dead directory. */
1537 	if (unlikely(IS_DEADDIR(dir)))
1538 		return ERR_PTR(-ENOENT);
1539 
1540 	dentry = d_alloc(base, name);
1541 	if (unlikely(!dentry))
1542 		return ERR_PTR(-ENOMEM);
1543 
1544 	old = dir->i_op->lookup(dir, dentry, flags);
1545 	if (unlikely(old)) {
1546 		dput(dentry);
1547 		dentry = old;
1548 	}
1549 	return dentry;
1550 }
1551 
1552 static int lookup_fast(struct nameidata *nd,
1553 		       struct path *path, struct inode **inode,
1554 		       unsigned *seqp)
1555 {
1556 	struct vfsmount *mnt = nd->path.mnt;
1557 	struct dentry *dentry, *parent = nd->path.dentry;
1558 	int status = 1;
1559 	int err;
1560 
1561 	/*
1562 	 * Rename seqlock is not required here because in the off chance
1563 	 * of a false negative due to a concurrent rename, the caller is
1564 	 * going to fall back to non-racy lookup.
1565 	 */
1566 	if (nd->flags & LOOKUP_RCU) {
1567 		unsigned seq;
1568 		bool negative;
1569 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570 		if (unlikely(!dentry)) {
1571 			if (unlazy_walk(nd))
1572 				return -ECHILD;
1573 			return 0;
1574 		}
1575 
1576 		/*
1577 		 * This sequence count validates that the inode matches
1578 		 * the dentry name information from lookup.
1579 		 */
1580 		*inode = d_backing_inode(dentry);
1581 		negative = d_is_negative(dentry);
1582 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1583 			return -ECHILD;
1584 
1585 		/*
1586 		 * This sequence count validates that the parent had no
1587 		 * changes while we did the lookup of the dentry above.
1588 		 *
1589 		 * The memory barrier in read_seqcount_begin of child is
1590 		 *  enough, we can use __read_seqcount_retry here.
1591 		 */
1592 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1593 			return -ECHILD;
1594 
1595 		*seqp = seq;
1596 		status = d_revalidate(dentry, nd->flags);
1597 		if (likely(status > 0)) {
1598 			/*
1599 			 * Note: do negative dentry check after revalidation in
1600 			 * case that drops it.
1601 			 */
1602 			if (unlikely(negative))
1603 				return -ENOENT;
1604 			path->mnt = mnt;
1605 			path->dentry = dentry;
1606 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1607 				return 1;
1608 		}
1609 		if (unlazy_child(nd, dentry, seq))
1610 			return -ECHILD;
1611 		if (unlikely(status == -ECHILD))
1612 			/* we'd been told to redo it in non-rcu mode */
1613 			status = d_revalidate(dentry, nd->flags);
1614 	} else {
1615 		dentry = __d_lookup(parent, &nd->last);
1616 		if (unlikely(!dentry))
1617 			return 0;
1618 		status = d_revalidate(dentry, nd->flags);
1619 	}
1620 	if (unlikely(status <= 0)) {
1621 		if (!status)
1622 			d_invalidate(dentry);
1623 		dput(dentry);
1624 		return status;
1625 	}
1626 
1627 	path->mnt = mnt;
1628 	path->dentry = dentry;
1629 	err = follow_managed(path, nd);
1630 	if (likely(err > 0))
1631 		*inode = d_backing_inode(path->dentry);
1632 	return err;
1633 }
1634 
1635 /* Fast lookup failed, do it the slow way */
1636 static struct dentry *__lookup_slow(const struct qstr *name,
1637 				    struct dentry *dir,
1638 				    unsigned int flags)
1639 {
1640 	struct dentry *dentry, *old;
1641 	struct inode *inode = dir->d_inode;
1642 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1643 
1644 	/* Don't go there if it's already dead */
1645 	if (unlikely(IS_DEADDIR(inode)))
1646 		return ERR_PTR(-ENOENT);
1647 again:
1648 	dentry = d_alloc_parallel(dir, name, &wq);
1649 	if (IS_ERR(dentry))
1650 		return dentry;
1651 	if (unlikely(!d_in_lookup(dentry))) {
1652 		if (!(flags & LOOKUP_NO_REVAL)) {
1653 			int error = d_revalidate(dentry, flags);
1654 			if (unlikely(error <= 0)) {
1655 				if (!error) {
1656 					d_invalidate(dentry);
1657 					dput(dentry);
1658 					goto again;
1659 				}
1660 				dput(dentry);
1661 				dentry = ERR_PTR(error);
1662 			}
1663 		}
1664 	} else {
1665 		old = inode->i_op->lookup(inode, dentry, flags);
1666 		d_lookup_done(dentry);
1667 		if (unlikely(old)) {
1668 			dput(dentry);
1669 			dentry = old;
1670 		}
1671 	}
1672 	return dentry;
1673 }
1674 
1675 static struct dentry *lookup_slow(const struct qstr *name,
1676 				  struct dentry *dir,
1677 				  unsigned int flags)
1678 {
1679 	struct inode *inode = dir->d_inode;
1680 	struct dentry *res;
1681 	inode_lock_shared(inode);
1682 	res = __lookup_slow(name, dir, flags);
1683 	inode_unlock_shared(inode);
1684 	return res;
1685 }
1686 
1687 static inline int may_lookup(struct nameidata *nd)
1688 {
1689 	if (nd->flags & LOOKUP_RCU) {
1690 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1691 		if (err != -ECHILD)
1692 			return err;
1693 		if (unlazy_walk(nd))
1694 			return -ECHILD;
1695 	}
1696 	return inode_permission(nd->inode, MAY_EXEC);
1697 }
1698 
1699 static inline int handle_dots(struct nameidata *nd, int type)
1700 {
1701 	if (type == LAST_DOTDOT) {
1702 		if (!nd->root.mnt)
1703 			set_root(nd);
1704 		if (nd->flags & LOOKUP_RCU) {
1705 			return follow_dotdot_rcu(nd);
1706 		} else
1707 			return follow_dotdot(nd);
1708 	}
1709 	return 0;
1710 }
1711 
1712 static int pick_link(struct nameidata *nd, struct path *link,
1713 		     struct inode *inode, unsigned seq)
1714 {
1715 	int error;
1716 	struct saved *last;
1717 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1718 		path_to_nameidata(link, nd);
1719 		return -ELOOP;
1720 	}
1721 	if (!(nd->flags & LOOKUP_RCU)) {
1722 		if (link->mnt == nd->path.mnt)
1723 			mntget(link->mnt);
1724 	}
1725 	error = nd_alloc_stack(nd);
1726 	if (unlikely(error)) {
1727 		if (error == -ECHILD) {
1728 			if (unlikely(!legitimize_path(nd, link, seq))) {
1729 				drop_links(nd);
1730 				nd->depth = 0;
1731 				nd->flags &= ~LOOKUP_RCU;
1732 				nd->path.mnt = NULL;
1733 				nd->path.dentry = NULL;
1734 				rcu_read_unlock();
1735 			} else if (likely(unlazy_walk(nd)) == 0)
1736 				error = nd_alloc_stack(nd);
1737 		}
1738 		if (error) {
1739 			path_put(link);
1740 			return error;
1741 		}
1742 	}
1743 
1744 	last = nd->stack + nd->depth++;
1745 	last->link = *link;
1746 	clear_delayed_call(&last->done);
1747 	nd->link_inode = inode;
1748 	last->seq = seq;
1749 	return 1;
1750 }
1751 
1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1753 
1754 /*
1755  * Do we need to follow links? We _really_ want to be able
1756  * to do this check without having to look at inode->i_op,
1757  * so we keep a cache of "no, this doesn't need follow_link"
1758  * for the common case.
1759  */
1760 static inline int step_into(struct nameidata *nd, struct path *path,
1761 			    int flags, struct inode *inode, unsigned seq)
1762 {
1763 	if (!(flags & WALK_MORE) && nd->depth)
1764 		put_link(nd);
1765 	if (likely(!d_is_symlink(path->dentry)) ||
1766 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1767 		/* not a symlink or should not follow */
1768 		path_to_nameidata(path, nd);
1769 		nd->inode = inode;
1770 		nd->seq = seq;
1771 		return 0;
1772 	}
1773 	/* make sure that d_is_symlink above matches inode */
1774 	if (nd->flags & LOOKUP_RCU) {
1775 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1776 			return -ECHILD;
1777 	}
1778 	return pick_link(nd, path, inode, seq);
1779 }
1780 
1781 static int walk_component(struct nameidata *nd, int flags)
1782 {
1783 	struct path path;
1784 	struct inode *inode;
1785 	unsigned seq;
1786 	int err;
1787 	/*
1788 	 * "." and ".." are special - ".." especially so because it has
1789 	 * to be able to know about the current root directory and
1790 	 * parent relationships.
1791 	 */
1792 	if (unlikely(nd->last_type != LAST_NORM)) {
1793 		err = handle_dots(nd, nd->last_type);
1794 		if (!(flags & WALK_MORE) && nd->depth)
1795 			put_link(nd);
1796 		return err;
1797 	}
1798 	err = lookup_fast(nd, &path, &inode, &seq);
1799 	if (unlikely(err <= 0)) {
1800 		if (err < 0)
1801 			return err;
1802 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1803 					  nd->flags);
1804 		if (IS_ERR(path.dentry))
1805 			return PTR_ERR(path.dentry);
1806 
1807 		path.mnt = nd->path.mnt;
1808 		err = follow_managed(&path, nd);
1809 		if (unlikely(err < 0))
1810 			return err;
1811 
1812 		seq = 0;	/* we are already out of RCU mode */
1813 		inode = d_backing_inode(path.dentry);
1814 	}
1815 
1816 	return step_into(nd, &path, flags, inode, seq);
1817 }
1818 
1819 /*
1820  * We can do the critical dentry name comparison and hashing
1821  * operations one word at a time, but we are limited to:
1822  *
1823  * - Architectures with fast unaligned word accesses. We could
1824  *   do a "get_unaligned()" if this helps and is sufficiently
1825  *   fast.
1826  *
1827  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1828  *   do not trap on the (extremely unlikely) case of a page
1829  *   crossing operation.
1830  *
1831  * - Furthermore, we need an efficient 64-bit compile for the
1832  *   64-bit case in order to generate the "number of bytes in
1833  *   the final mask". Again, that could be replaced with a
1834  *   efficient population count instruction or similar.
1835  */
1836 #ifdef CONFIG_DCACHE_WORD_ACCESS
1837 
1838 #include <asm/word-at-a-time.h>
1839 
1840 #ifdef HASH_MIX
1841 
1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1843 
1844 #elif defined(CONFIG_64BIT)
1845 /*
1846  * Register pressure in the mixing function is an issue, particularly
1847  * on 32-bit x86, but almost any function requires one state value and
1848  * one temporary.  Instead, use a function designed for two state values
1849  * and no temporaries.
1850  *
1851  * This function cannot create a collision in only two iterations, so
1852  * we have two iterations to achieve avalanche.  In those two iterations,
1853  * we have six layers of mixing, which is enough to spread one bit's
1854  * influence out to 2^6 = 64 state bits.
1855  *
1856  * Rotate constants are scored by considering either 64 one-bit input
1857  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1858  * probability of that delta causing a change to each of the 128 output
1859  * bits, using a sample of random initial states.
1860  *
1861  * The Shannon entropy of the computed probabilities is then summed
1862  * to produce a score.  Ideally, any input change has a 50% chance of
1863  * toggling any given output bit.
1864  *
1865  * Mixing scores (in bits) for (12,45):
1866  * Input delta: 1-bit      2-bit
1867  * 1 round:     713.3    42542.6
1868  * 2 rounds:   2753.7   140389.8
1869  * 3 rounds:   5954.1   233458.2
1870  * 4 rounds:   7862.6   256672.2
1871  * Perfect:    8192     258048
1872  *            (64*128) (64*63/2 * 128)
1873  */
1874 #define HASH_MIX(x, y, a)	\
1875 	(	x ^= (a),	\
1876 	y ^= x,	x = rol64(x,12),\
1877 	x += y,	y = rol64(y,45),\
1878 	y *= 9			)
1879 
1880 /*
1881  * Fold two longs into one 32-bit hash value.  This must be fast, but
1882  * latency isn't quite as critical, as there is a fair bit of additional
1883  * work done before the hash value is used.
1884  */
1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1886 {
1887 	y ^= x * GOLDEN_RATIO_64;
1888 	y *= GOLDEN_RATIO_64;
1889 	return y >> 32;
1890 }
1891 
1892 #else	/* 32-bit case */
1893 
1894 /*
1895  * Mixing scores (in bits) for (7,20):
1896  * Input delta: 1-bit      2-bit
1897  * 1 round:     330.3     9201.6
1898  * 2 rounds:   1246.4    25475.4
1899  * 3 rounds:   1907.1    31295.1
1900  * 4 rounds:   2042.3    31718.6
1901  * Perfect:    2048      31744
1902  *            (32*64)   (32*31/2 * 64)
1903  */
1904 #define HASH_MIX(x, y, a)	\
1905 	(	x ^= (a),	\
1906 	y ^= x,	x = rol32(x, 7),\
1907 	x += y,	y = rol32(y,20),\
1908 	y *= 9			)
1909 
1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1911 {
1912 	/* Use arch-optimized multiply if one exists */
1913 	return __hash_32(y ^ __hash_32(x));
1914 }
1915 
1916 #endif
1917 
1918 /*
1919  * Return the hash of a string of known length.  This is carfully
1920  * designed to match hash_name(), which is the more critical function.
1921  * In particular, we must end by hashing a final word containing 0..7
1922  * payload bytes, to match the way that hash_name() iterates until it
1923  * finds the delimiter after the name.
1924  */
1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1926 {
1927 	unsigned long a, x = 0, y = (unsigned long)salt;
1928 
1929 	for (;;) {
1930 		if (!len)
1931 			goto done;
1932 		a = load_unaligned_zeropad(name);
1933 		if (len < sizeof(unsigned long))
1934 			break;
1935 		HASH_MIX(x, y, a);
1936 		name += sizeof(unsigned long);
1937 		len -= sizeof(unsigned long);
1938 	}
1939 	x ^= a & bytemask_from_count(len);
1940 done:
1941 	return fold_hash(x, y);
1942 }
1943 EXPORT_SYMBOL(full_name_hash);
1944 
1945 /* Return the "hash_len" (hash and length) of a null-terminated string */
1946 u64 hashlen_string(const void *salt, const char *name)
1947 {
1948 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1949 	unsigned long adata, mask, len;
1950 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951 
1952 	len = 0;
1953 	goto inside;
1954 
1955 	do {
1956 		HASH_MIX(x, y, a);
1957 		len += sizeof(unsigned long);
1958 inside:
1959 		a = load_unaligned_zeropad(name+len);
1960 	} while (!has_zero(a, &adata, &constants));
1961 
1962 	adata = prep_zero_mask(a, adata, &constants);
1963 	mask = create_zero_mask(adata);
1964 	x ^= a & zero_bytemask(mask);
1965 
1966 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1967 }
1968 EXPORT_SYMBOL(hashlen_string);
1969 
1970 /*
1971  * Calculate the length and hash of the path component, and
1972  * return the "hash_len" as the result.
1973  */
1974 static inline u64 hash_name(const void *salt, const char *name)
1975 {
1976 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1977 	unsigned long adata, bdata, mask, len;
1978 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1979 
1980 	len = 0;
1981 	goto inside;
1982 
1983 	do {
1984 		HASH_MIX(x, y, a);
1985 		len += sizeof(unsigned long);
1986 inside:
1987 		a = load_unaligned_zeropad(name+len);
1988 		b = a ^ REPEAT_BYTE('/');
1989 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1990 
1991 	adata = prep_zero_mask(a, adata, &constants);
1992 	bdata = prep_zero_mask(b, bdata, &constants);
1993 	mask = create_zero_mask(adata | bdata);
1994 	x ^= a & zero_bytemask(mask);
1995 
1996 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1997 }
1998 
1999 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2000 
2001 /* Return the hash of a string of known length */
2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2003 {
2004 	unsigned long hash = init_name_hash(salt);
2005 	while (len--)
2006 		hash = partial_name_hash((unsigned char)*name++, hash);
2007 	return end_name_hash(hash);
2008 }
2009 EXPORT_SYMBOL(full_name_hash);
2010 
2011 /* Return the "hash_len" (hash and length) of a null-terminated string */
2012 u64 hashlen_string(const void *salt, const char *name)
2013 {
2014 	unsigned long hash = init_name_hash(salt);
2015 	unsigned long len = 0, c;
2016 
2017 	c = (unsigned char)*name;
2018 	while (c) {
2019 		len++;
2020 		hash = partial_name_hash(c, hash);
2021 		c = (unsigned char)name[len];
2022 	}
2023 	return hashlen_create(end_name_hash(hash), len);
2024 }
2025 EXPORT_SYMBOL(hashlen_string);
2026 
2027 /*
2028  * We know there's a real path component here of at least
2029  * one character.
2030  */
2031 static inline u64 hash_name(const void *salt, const char *name)
2032 {
2033 	unsigned long hash = init_name_hash(salt);
2034 	unsigned long len = 0, c;
2035 
2036 	c = (unsigned char)*name;
2037 	do {
2038 		len++;
2039 		hash = partial_name_hash(c, hash);
2040 		c = (unsigned char)name[len];
2041 	} while (c && c != '/');
2042 	return hashlen_create(end_name_hash(hash), len);
2043 }
2044 
2045 #endif
2046 
2047 /*
2048  * Name resolution.
2049  * This is the basic name resolution function, turning a pathname into
2050  * the final dentry. We expect 'base' to be positive and a directory.
2051  *
2052  * Returns 0 and nd will have valid dentry and mnt on success.
2053  * Returns error and drops reference to input namei data on failure.
2054  */
2055 static int link_path_walk(const char *name, struct nameidata *nd)
2056 {
2057 	int err;
2058 
2059 	if (IS_ERR(name))
2060 		return PTR_ERR(name);
2061 	while (*name=='/')
2062 		name++;
2063 	if (!*name)
2064 		return 0;
2065 
2066 	/* At this point we know we have a real path component. */
2067 	for(;;) {
2068 		u64 hash_len;
2069 		int type;
2070 
2071 		err = may_lookup(nd);
2072 		if (err)
2073 			return err;
2074 
2075 		hash_len = hash_name(nd->path.dentry, name);
2076 
2077 		type = LAST_NORM;
2078 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2079 			case 2:
2080 				if (name[1] == '.') {
2081 					type = LAST_DOTDOT;
2082 					nd->flags |= LOOKUP_JUMPED;
2083 				}
2084 				break;
2085 			case 1:
2086 				type = LAST_DOT;
2087 		}
2088 		if (likely(type == LAST_NORM)) {
2089 			struct dentry *parent = nd->path.dentry;
2090 			nd->flags &= ~LOOKUP_JUMPED;
2091 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2092 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2093 				err = parent->d_op->d_hash(parent, &this);
2094 				if (err < 0)
2095 					return err;
2096 				hash_len = this.hash_len;
2097 				name = this.name;
2098 			}
2099 		}
2100 
2101 		nd->last.hash_len = hash_len;
2102 		nd->last.name = name;
2103 		nd->last_type = type;
2104 
2105 		name += hashlen_len(hash_len);
2106 		if (!*name)
2107 			goto OK;
2108 		/*
2109 		 * If it wasn't NUL, we know it was '/'. Skip that
2110 		 * slash, and continue until no more slashes.
2111 		 */
2112 		do {
2113 			name++;
2114 		} while (unlikely(*name == '/'));
2115 		if (unlikely(!*name)) {
2116 OK:
2117 			/* pathname body, done */
2118 			if (!nd->depth)
2119 				return 0;
2120 			name = nd->stack[nd->depth - 1].name;
2121 			/* trailing symlink, done */
2122 			if (!name)
2123 				return 0;
2124 			/* last component of nested symlink */
2125 			err = walk_component(nd, WALK_FOLLOW);
2126 		} else {
2127 			/* not the last component */
2128 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2129 		}
2130 		if (err < 0)
2131 			return err;
2132 
2133 		if (err) {
2134 			const char *s = get_link(nd);
2135 
2136 			if (IS_ERR(s))
2137 				return PTR_ERR(s);
2138 			err = 0;
2139 			if (unlikely(!s)) {
2140 				/* jumped */
2141 				put_link(nd);
2142 			} else {
2143 				nd->stack[nd->depth - 1].name = name;
2144 				name = s;
2145 				continue;
2146 			}
2147 		}
2148 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2149 			if (nd->flags & LOOKUP_RCU) {
2150 				if (unlazy_walk(nd))
2151 					return -ECHILD;
2152 			}
2153 			return -ENOTDIR;
2154 		}
2155 	}
2156 }
2157 
2158 /* must be paired with terminate_walk() */
2159 static const char *path_init(struct nameidata *nd, unsigned flags)
2160 {
2161 	const char *s = nd->name->name;
2162 
2163 	if (!*s)
2164 		flags &= ~LOOKUP_RCU;
2165 	if (flags & LOOKUP_RCU)
2166 		rcu_read_lock();
2167 
2168 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2169 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2170 	nd->depth = 0;
2171 	if (flags & LOOKUP_ROOT) {
2172 		struct dentry *root = nd->root.dentry;
2173 		struct inode *inode = root->d_inode;
2174 		if (*s && unlikely(!d_can_lookup(root)))
2175 			return ERR_PTR(-ENOTDIR);
2176 		nd->path = nd->root;
2177 		nd->inode = inode;
2178 		if (flags & LOOKUP_RCU) {
2179 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 			nd->root_seq = nd->seq;
2181 			nd->m_seq = read_seqbegin(&mount_lock);
2182 		} else {
2183 			path_get(&nd->path);
2184 		}
2185 		return s;
2186 	}
2187 
2188 	nd->root.mnt = NULL;
2189 	nd->path.mnt = NULL;
2190 	nd->path.dentry = NULL;
2191 
2192 	nd->m_seq = read_seqbegin(&mount_lock);
2193 	if (*s == '/') {
2194 		set_root(nd);
2195 		if (likely(!nd_jump_root(nd)))
2196 			return s;
2197 		return ERR_PTR(-ECHILD);
2198 	} else if (nd->dfd == AT_FDCWD) {
2199 		if (flags & LOOKUP_RCU) {
2200 			struct fs_struct *fs = current->fs;
2201 			unsigned seq;
2202 
2203 			do {
2204 				seq = read_seqcount_begin(&fs->seq);
2205 				nd->path = fs->pwd;
2206 				nd->inode = nd->path.dentry->d_inode;
2207 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2208 			} while (read_seqcount_retry(&fs->seq, seq));
2209 		} else {
2210 			get_fs_pwd(current->fs, &nd->path);
2211 			nd->inode = nd->path.dentry->d_inode;
2212 		}
2213 		return s;
2214 	} else {
2215 		/* Caller must check execute permissions on the starting path component */
2216 		struct fd f = fdget_raw(nd->dfd);
2217 		struct dentry *dentry;
2218 
2219 		if (!f.file)
2220 			return ERR_PTR(-EBADF);
2221 
2222 		dentry = f.file->f_path.dentry;
2223 
2224 		if (*s && unlikely(!d_can_lookup(dentry))) {
2225 			fdput(f);
2226 			return ERR_PTR(-ENOTDIR);
2227 		}
2228 
2229 		nd->path = f.file->f_path;
2230 		if (flags & LOOKUP_RCU) {
2231 			nd->inode = nd->path.dentry->d_inode;
2232 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 		} else {
2234 			path_get(&nd->path);
2235 			nd->inode = nd->path.dentry->d_inode;
2236 		}
2237 		fdput(f);
2238 		return s;
2239 	}
2240 }
2241 
2242 static const char *trailing_symlink(struct nameidata *nd)
2243 {
2244 	const char *s;
2245 	int error = may_follow_link(nd);
2246 	if (unlikely(error))
2247 		return ERR_PTR(error);
2248 	nd->flags |= LOOKUP_PARENT;
2249 	nd->stack[0].name = NULL;
2250 	s = get_link(nd);
2251 	return s ? s : "";
2252 }
2253 
2254 static inline int lookup_last(struct nameidata *nd)
2255 {
2256 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2258 
2259 	nd->flags &= ~LOOKUP_PARENT;
2260 	return walk_component(nd, 0);
2261 }
2262 
2263 static int handle_lookup_down(struct nameidata *nd)
2264 {
2265 	struct path path = nd->path;
2266 	struct inode *inode = nd->inode;
2267 	unsigned seq = nd->seq;
2268 	int err;
2269 
2270 	if (nd->flags & LOOKUP_RCU) {
2271 		/*
2272 		 * don't bother with unlazy_walk on failure - we are
2273 		 * at the very beginning of walk, so we lose nothing
2274 		 * if we simply redo everything in non-RCU mode
2275 		 */
2276 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2277 			return -ECHILD;
2278 	} else {
2279 		dget(path.dentry);
2280 		err = follow_managed(&path, nd);
2281 		if (unlikely(err < 0))
2282 			return err;
2283 		inode = d_backing_inode(path.dentry);
2284 		seq = 0;
2285 	}
2286 	path_to_nameidata(&path, nd);
2287 	nd->inode = inode;
2288 	nd->seq = seq;
2289 	return 0;
2290 }
2291 
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2294 {
2295 	const char *s = path_init(nd, flags);
2296 	int err;
2297 
2298 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2299 		err = handle_lookup_down(nd);
2300 		if (unlikely(err < 0))
2301 			s = ERR_PTR(err);
2302 	}
2303 
2304 	while (!(err = link_path_walk(s, nd))
2305 		&& ((err = lookup_last(nd)) > 0)) {
2306 		s = trailing_symlink(nd);
2307 	}
2308 	if (!err)
2309 		err = complete_walk(nd);
2310 
2311 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2312 		if (!d_can_lookup(nd->path.dentry))
2313 			err = -ENOTDIR;
2314 	if (!err) {
2315 		*path = nd->path;
2316 		nd->path.mnt = NULL;
2317 		nd->path.dentry = NULL;
2318 	}
2319 	terminate_walk(nd);
2320 	return err;
2321 }
2322 
2323 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324 		    struct path *path, struct path *root)
2325 {
2326 	int retval;
2327 	struct nameidata nd;
2328 	if (IS_ERR(name))
2329 		return PTR_ERR(name);
2330 	if (unlikely(root)) {
2331 		nd.root = *root;
2332 		flags |= LOOKUP_ROOT;
2333 	}
2334 	set_nameidata(&nd, dfd, name);
2335 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336 	if (unlikely(retval == -ECHILD))
2337 		retval = path_lookupat(&nd, flags, path);
2338 	if (unlikely(retval == -ESTALE))
2339 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2340 
2341 	if (likely(!retval))
2342 		audit_inode(name, path->dentry, 0);
2343 	restore_nameidata();
2344 	putname(name);
2345 	return retval;
2346 }
2347 
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350 				struct path *parent)
2351 {
2352 	const char *s = path_init(nd, flags);
2353 	int err = link_path_walk(s, nd);
2354 	if (!err)
2355 		err = complete_walk(nd);
2356 	if (!err) {
2357 		*parent = nd->path;
2358 		nd->path.mnt = NULL;
2359 		nd->path.dentry = NULL;
2360 	}
2361 	terminate_walk(nd);
2362 	return err;
2363 }
2364 
2365 static struct filename *filename_parentat(int dfd, struct filename *name,
2366 				unsigned int flags, struct path *parent,
2367 				struct qstr *last, int *type)
2368 {
2369 	int retval;
2370 	struct nameidata nd;
2371 
2372 	if (IS_ERR(name))
2373 		return name;
2374 	set_nameidata(&nd, dfd, name);
2375 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2376 	if (unlikely(retval == -ECHILD))
2377 		retval = path_parentat(&nd, flags, parent);
2378 	if (unlikely(retval == -ESTALE))
2379 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2380 	if (likely(!retval)) {
2381 		*last = nd.last;
2382 		*type = nd.last_type;
2383 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2384 	} else {
2385 		putname(name);
2386 		name = ERR_PTR(retval);
2387 	}
2388 	restore_nameidata();
2389 	return name;
2390 }
2391 
2392 /* does lookup, returns the object with parent locked */
2393 struct dentry *kern_path_locked(const char *name, struct path *path)
2394 {
2395 	struct filename *filename;
2396 	struct dentry *d;
2397 	struct qstr last;
2398 	int type;
2399 
2400 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2401 				    &last, &type);
2402 	if (IS_ERR(filename))
2403 		return ERR_CAST(filename);
2404 	if (unlikely(type != LAST_NORM)) {
2405 		path_put(path);
2406 		putname(filename);
2407 		return ERR_PTR(-EINVAL);
2408 	}
2409 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2410 	d = __lookup_hash(&last, path->dentry, 0);
2411 	if (IS_ERR(d)) {
2412 		inode_unlock(path->dentry->d_inode);
2413 		path_put(path);
2414 	}
2415 	putname(filename);
2416 	return d;
2417 }
2418 
2419 int kern_path(const char *name, unsigned int flags, struct path *path)
2420 {
2421 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2422 			       flags, path, NULL);
2423 }
2424 EXPORT_SYMBOL(kern_path);
2425 
2426 /**
2427  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2428  * @dentry:  pointer to dentry of the base directory
2429  * @mnt: pointer to vfs mount of the base directory
2430  * @name: pointer to file name
2431  * @flags: lookup flags
2432  * @path: pointer to struct path to fill
2433  */
2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2435 		    const char *name, unsigned int flags,
2436 		    struct path *path)
2437 {
2438 	struct path root = {.mnt = mnt, .dentry = dentry};
2439 	/* the first argument of filename_lookup() is ignored with root */
2440 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2441 			       flags , path, &root);
2442 }
2443 EXPORT_SYMBOL(vfs_path_lookup);
2444 
2445 static int lookup_one_len_common(const char *name, struct dentry *base,
2446 				 int len, struct qstr *this)
2447 {
2448 	this->name = name;
2449 	this->len = len;
2450 	this->hash = full_name_hash(base, name, len);
2451 	if (!len)
2452 		return -EACCES;
2453 
2454 	if (unlikely(name[0] == '.')) {
2455 		if (len < 2 || (len == 2 && name[1] == '.'))
2456 			return -EACCES;
2457 	}
2458 
2459 	while (len--) {
2460 		unsigned int c = *(const unsigned char *)name++;
2461 		if (c == '/' || c == '\0')
2462 			return -EACCES;
2463 	}
2464 	/*
2465 	 * See if the low-level filesystem might want
2466 	 * to use its own hash..
2467 	 */
2468 	if (base->d_flags & DCACHE_OP_HASH) {
2469 		int err = base->d_op->d_hash(base, this);
2470 		if (err < 0)
2471 			return err;
2472 	}
2473 
2474 	return inode_permission(base->d_inode, MAY_EXEC);
2475 }
2476 
2477 /**
2478  * try_lookup_one_len - filesystem helper to lookup single pathname component
2479  * @name:	pathname component to lookup
2480  * @base:	base directory to lookup from
2481  * @len:	maximum length @len should be interpreted to
2482  *
2483  * Look up a dentry by name in the dcache, returning NULL if it does not
2484  * currently exist.  The function does not try to create a dentry.
2485  *
2486  * Note that this routine is purely a helper for filesystem usage and should
2487  * not be called by generic code.
2488  *
2489  * The caller must hold base->i_mutex.
2490  */
2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2492 {
2493 	struct qstr this;
2494 	int err;
2495 
2496 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2497 
2498 	err = lookup_one_len_common(name, base, len, &this);
2499 	if (err)
2500 		return ERR_PTR(err);
2501 
2502 	return lookup_dcache(&this, base, 0);
2503 }
2504 EXPORT_SYMBOL(try_lookup_one_len);
2505 
2506 /**
2507  * lookup_one_len - filesystem helper to lookup single pathname component
2508  * @name:	pathname component to lookup
2509  * @base:	base directory to lookup from
2510  * @len:	maximum length @len should be interpreted to
2511  *
2512  * Note that this routine is purely a helper for filesystem usage and should
2513  * not be called by generic code.
2514  *
2515  * The caller must hold base->i_mutex.
2516  */
2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2518 {
2519 	struct dentry *dentry;
2520 	struct qstr this;
2521 	int err;
2522 
2523 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2524 
2525 	err = lookup_one_len_common(name, base, len, &this);
2526 	if (err)
2527 		return ERR_PTR(err);
2528 
2529 	dentry = lookup_dcache(&this, base, 0);
2530 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2531 }
2532 EXPORT_SYMBOL(lookup_one_len);
2533 
2534 /**
2535  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2536  * @name:	pathname component to lookup
2537  * @base:	base directory to lookup from
2538  * @len:	maximum length @len should be interpreted to
2539  *
2540  * Note that this routine is purely a helper for filesystem usage and should
2541  * not be called by generic code.
2542  *
2543  * Unlike lookup_one_len, it should be called without the parent
2544  * i_mutex held, and will take the i_mutex itself if necessary.
2545  */
2546 struct dentry *lookup_one_len_unlocked(const char *name,
2547 				       struct dentry *base, int len)
2548 {
2549 	struct qstr this;
2550 	int err;
2551 	struct dentry *ret;
2552 
2553 	err = lookup_one_len_common(name, base, len, &this);
2554 	if (err)
2555 		return ERR_PTR(err);
2556 
2557 	ret = lookup_dcache(&this, base, 0);
2558 	if (!ret)
2559 		ret = lookup_slow(&this, base, 0);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(lookup_one_len_unlocked);
2563 
2564 /*
2565  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2566  * on negatives.  Returns known positive or ERR_PTR(); that's what
2567  * most of the users want.  Note that pinned negative with unlocked parent
2568  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2569  * need to be very careful; pinned positives have ->d_inode stable, so
2570  * this one avoids such problems.
2571  */
2572 struct dentry *lookup_positive_unlocked(const char *name,
2573 				       struct dentry *base, int len)
2574 {
2575 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2576 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2577 		dput(ret);
2578 		ret = ERR_PTR(-ENOENT);
2579 	}
2580 	return ret;
2581 }
2582 EXPORT_SYMBOL(lookup_positive_unlocked);
2583 
2584 #ifdef CONFIG_UNIX98_PTYS
2585 int path_pts(struct path *path)
2586 {
2587 	/* Find something mounted on "pts" in the same directory as
2588 	 * the input path.
2589 	 */
2590 	struct dentry *child, *parent;
2591 	struct qstr this;
2592 	int ret;
2593 
2594 	ret = path_parent_directory(path);
2595 	if (ret)
2596 		return ret;
2597 
2598 	parent = path->dentry;
2599 	this.name = "pts";
2600 	this.len = 3;
2601 	child = d_hash_and_lookup(parent, &this);
2602 	if (!child)
2603 		return -ENOENT;
2604 
2605 	path->dentry = child;
2606 	dput(parent);
2607 	follow_mount(path);
2608 	return 0;
2609 }
2610 #endif
2611 
2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2613 		 struct path *path, int *empty)
2614 {
2615 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2616 			       flags, path, NULL);
2617 }
2618 EXPORT_SYMBOL(user_path_at_empty);
2619 
2620 /**
2621  * mountpoint_last - look up last component for umount
2622  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2623  *
2624  * This is a special lookup_last function just for umount. In this case, we
2625  * need to resolve the path without doing any revalidation.
2626  *
2627  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2628  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2629  * in almost all cases, this lookup will be served out of the dcache. The only
2630  * cases where it won't are if nd->last refers to a symlink or the path is
2631  * bogus and it doesn't exist.
2632  *
2633  * Returns:
2634  * -error: if there was an error during lookup. This includes -ENOENT if the
2635  *         lookup found a negative dentry.
2636  *
2637  * 0:      if we successfully resolved nd->last and found it to not to be a
2638  *         symlink that needs to be followed.
2639  *
2640  * 1:      if we successfully resolved nd->last and found it to be a symlink
2641  *         that needs to be followed.
2642  */
2643 static int
2644 mountpoint_last(struct nameidata *nd)
2645 {
2646 	int error = 0;
2647 	struct dentry *dir = nd->path.dentry;
2648 	struct path path;
2649 
2650 	/* If we're in rcuwalk, drop out of it to handle last component */
2651 	if (nd->flags & LOOKUP_RCU) {
2652 		if (unlazy_walk(nd))
2653 			return -ECHILD;
2654 	}
2655 
2656 	nd->flags &= ~LOOKUP_PARENT;
2657 
2658 	if (unlikely(nd->last_type != LAST_NORM)) {
2659 		error = handle_dots(nd, nd->last_type);
2660 		if (error)
2661 			return error;
2662 		path.dentry = dget(nd->path.dentry);
2663 	} else {
2664 		path.dentry = d_lookup(dir, &nd->last);
2665 		if (!path.dentry) {
2666 			/*
2667 			 * No cached dentry. Mounted dentries are pinned in the
2668 			 * cache, so that means that this dentry is probably
2669 			 * a symlink or the path doesn't actually point
2670 			 * to a mounted dentry.
2671 			 */
2672 			path.dentry = lookup_slow(&nd->last, dir,
2673 					     nd->flags | LOOKUP_NO_REVAL);
2674 			if (IS_ERR(path.dentry))
2675 				return PTR_ERR(path.dentry);
2676 		}
2677 	}
2678 	if (d_flags_negative(smp_load_acquire(&path.dentry->d_flags))) {
2679 		dput(path.dentry);
2680 		return -ENOENT;
2681 	}
2682 	path.mnt = nd->path.mnt;
2683 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2684 }
2685 
2686 /**
2687  * path_mountpoint - look up a path to be umounted
2688  * @nd:		lookup context
2689  * @flags:	lookup flags
2690  * @path:	pointer to container for result
2691  *
2692  * Look up the given name, but don't attempt to revalidate the last component.
2693  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2694  */
2695 static int
2696 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2697 {
2698 	const char *s = path_init(nd, flags);
2699 	int err;
2700 
2701 	while (!(err = link_path_walk(s, nd)) &&
2702 		(err = mountpoint_last(nd)) > 0) {
2703 		s = trailing_symlink(nd);
2704 	}
2705 	if (!err) {
2706 		*path = nd->path;
2707 		nd->path.mnt = NULL;
2708 		nd->path.dentry = NULL;
2709 		follow_mount(path);
2710 	}
2711 	terminate_walk(nd);
2712 	return err;
2713 }
2714 
2715 static int
2716 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2717 			unsigned int flags)
2718 {
2719 	struct nameidata nd;
2720 	int error;
2721 	if (IS_ERR(name))
2722 		return PTR_ERR(name);
2723 	set_nameidata(&nd, dfd, name);
2724 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2725 	if (unlikely(error == -ECHILD))
2726 		error = path_mountpoint(&nd, flags, path);
2727 	if (unlikely(error == -ESTALE))
2728 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2729 	if (likely(!error))
2730 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2731 	restore_nameidata();
2732 	putname(name);
2733 	return error;
2734 }
2735 
2736 /**
2737  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2738  * @dfd:	directory file descriptor
2739  * @name:	pathname from userland
2740  * @flags:	lookup flags
2741  * @path:	pointer to container to hold result
2742  *
2743  * A umount is a special case for path walking. We're not actually interested
2744  * in the inode in this situation, and ESTALE errors can be a problem. We
2745  * simply want track down the dentry and vfsmount attached at the mountpoint
2746  * and avoid revalidating the last component.
2747  *
2748  * Returns 0 and populates "path" on success.
2749  */
2750 int
2751 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2752 			struct path *path)
2753 {
2754 	return filename_mountpoint(dfd, getname(name), path, flags);
2755 }
2756 
2757 int
2758 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2759 			unsigned int flags)
2760 {
2761 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2762 }
2763 EXPORT_SYMBOL(kern_path_mountpoint);
2764 
2765 int __check_sticky(struct inode *dir, struct inode *inode)
2766 {
2767 	kuid_t fsuid = current_fsuid();
2768 
2769 	if (uid_eq(inode->i_uid, fsuid))
2770 		return 0;
2771 	if (uid_eq(dir->i_uid, fsuid))
2772 		return 0;
2773 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2774 }
2775 EXPORT_SYMBOL(__check_sticky);
2776 
2777 /*
2778  *	Check whether we can remove a link victim from directory dir, check
2779  *  whether the type of victim is right.
2780  *  1. We can't do it if dir is read-only (done in permission())
2781  *  2. We should have write and exec permissions on dir
2782  *  3. We can't remove anything from append-only dir
2783  *  4. We can't do anything with immutable dir (done in permission())
2784  *  5. If the sticky bit on dir is set we should either
2785  *	a. be owner of dir, or
2786  *	b. be owner of victim, or
2787  *	c. have CAP_FOWNER capability
2788  *  6. If the victim is append-only or immutable we can't do antyhing with
2789  *     links pointing to it.
2790  *  7. If the victim has an unknown uid or gid we can't change the inode.
2791  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2792  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2793  * 10. We can't remove a root or mountpoint.
2794  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2795  *     nfs_async_unlink().
2796  */
2797 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2798 {
2799 	struct inode *inode = d_backing_inode(victim);
2800 	int error;
2801 
2802 	if (d_is_negative(victim))
2803 		return -ENOENT;
2804 	BUG_ON(!inode);
2805 
2806 	BUG_ON(victim->d_parent->d_inode != dir);
2807 
2808 	/* Inode writeback is not safe when the uid or gid are invalid. */
2809 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2810 		return -EOVERFLOW;
2811 
2812 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2813 
2814 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2815 	if (error)
2816 		return error;
2817 	if (IS_APPEND(dir))
2818 		return -EPERM;
2819 
2820 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2821 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2822 		return -EPERM;
2823 	if (isdir) {
2824 		if (!d_is_dir(victim))
2825 			return -ENOTDIR;
2826 		if (IS_ROOT(victim))
2827 			return -EBUSY;
2828 	} else if (d_is_dir(victim))
2829 		return -EISDIR;
2830 	if (IS_DEADDIR(dir))
2831 		return -ENOENT;
2832 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2833 		return -EBUSY;
2834 	return 0;
2835 }
2836 
2837 /*	Check whether we can create an object with dentry child in directory
2838  *  dir.
2839  *  1. We can't do it if child already exists (open has special treatment for
2840  *     this case, but since we are inlined it's OK)
2841  *  2. We can't do it if dir is read-only (done in permission())
2842  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2843  *  4. We should have write and exec permissions on dir
2844  *  5. We can't do it if dir is immutable (done in permission())
2845  */
2846 static inline int may_create(struct inode *dir, struct dentry *child)
2847 {
2848 	struct user_namespace *s_user_ns;
2849 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2850 	if (child->d_inode)
2851 		return -EEXIST;
2852 	if (IS_DEADDIR(dir))
2853 		return -ENOENT;
2854 	s_user_ns = dir->i_sb->s_user_ns;
2855 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2856 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2857 		return -EOVERFLOW;
2858 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2859 }
2860 
2861 /*
2862  * p1 and p2 should be directories on the same fs.
2863  */
2864 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2865 {
2866 	struct dentry *p;
2867 
2868 	if (p1 == p2) {
2869 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2870 		return NULL;
2871 	}
2872 
2873 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2874 
2875 	p = d_ancestor(p2, p1);
2876 	if (p) {
2877 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2878 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2879 		return p;
2880 	}
2881 
2882 	p = d_ancestor(p1, p2);
2883 	if (p) {
2884 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2885 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2886 		return p;
2887 	}
2888 
2889 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2890 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2891 	return NULL;
2892 }
2893 EXPORT_SYMBOL(lock_rename);
2894 
2895 void unlock_rename(struct dentry *p1, struct dentry *p2)
2896 {
2897 	inode_unlock(p1->d_inode);
2898 	if (p1 != p2) {
2899 		inode_unlock(p2->d_inode);
2900 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2901 	}
2902 }
2903 EXPORT_SYMBOL(unlock_rename);
2904 
2905 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2906 		bool want_excl)
2907 {
2908 	int error = may_create(dir, dentry);
2909 	if (error)
2910 		return error;
2911 
2912 	if (!dir->i_op->create)
2913 		return -EACCES;	/* shouldn't it be ENOSYS? */
2914 	mode &= S_IALLUGO;
2915 	mode |= S_IFREG;
2916 	error = security_inode_create(dir, dentry, mode);
2917 	if (error)
2918 		return error;
2919 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2920 	if (!error)
2921 		fsnotify_create(dir, dentry);
2922 	return error;
2923 }
2924 EXPORT_SYMBOL(vfs_create);
2925 
2926 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2927 		int (*f)(struct dentry *, umode_t, void *),
2928 		void *arg)
2929 {
2930 	struct inode *dir = dentry->d_parent->d_inode;
2931 	int error = may_create(dir, dentry);
2932 	if (error)
2933 		return error;
2934 
2935 	mode &= S_IALLUGO;
2936 	mode |= S_IFREG;
2937 	error = security_inode_create(dir, dentry, mode);
2938 	if (error)
2939 		return error;
2940 	error = f(dentry, mode, arg);
2941 	if (!error)
2942 		fsnotify_create(dir, dentry);
2943 	return error;
2944 }
2945 EXPORT_SYMBOL(vfs_mkobj);
2946 
2947 bool may_open_dev(const struct path *path)
2948 {
2949 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2950 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2951 }
2952 
2953 static int may_open(const struct path *path, int acc_mode, int flag)
2954 {
2955 	struct dentry *dentry = path->dentry;
2956 	struct inode *inode = dentry->d_inode;
2957 	int error;
2958 
2959 	if (!inode)
2960 		return -ENOENT;
2961 
2962 	switch (inode->i_mode & S_IFMT) {
2963 	case S_IFLNK:
2964 		return -ELOOP;
2965 	case S_IFDIR:
2966 		if (acc_mode & MAY_WRITE)
2967 			return -EISDIR;
2968 		break;
2969 	case S_IFBLK:
2970 	case S_IFCHR:
2971 		if (!may_open_dev(path))
2972 			return -EACCES;
2973 		/*FALLTHRU*/
2974 	case S_IFIFO:
2975 	case S_IFSOCK:
2976 		flag &= ~O_TRUNC;
2977 		break;
2978 	}
2979 
2980 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2981 	if (error)
2982 		return error;
2983 
2984 	/*
2985 	 * An append-only file must be opened in append mode for writing.
2986 	 */
2987 	if (IS_APPEND(inode)) {
2988 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2989 			return -EPERM;
2990 		if (flag & O_TRUNC)
2991 			return -EPERM;
2992 	}
2993 
2994 	/* O_NOATIME can only be set by the owner or superuser */
2995 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2996 		return -EPERM;
2997 
2998 	return 0;
2999 }
3000 
3001 static int handle_truncate(struct file *filp)
3002 {
3003 	const struct path *path = &filp->f_path;
3004 	struct inode *inode = path->dentry->d_inode;
3005 	int error = get_write_access(inode);
3006 	if (error)
3007 		return error;
3008 	/*
3009 	 * Refuse to truncate files with mandatory locks held on them.
3010 	 */
3011 	error = locks_verify_locked(filp);
3012 	if (!error)
3013 		error = security_path_truncate(path);
3014 	if (!error) {
3015 		error = do_truncate(path->dentry, 0,
3016 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3017 				    filp);
3018 	}
3019 	put_write_access(inode);
3020 	return error;
3021 }
3022 
3023 static inline int open_to_namei_flags(int flag)
3024 {
3025 	if ((flag & O_ACCMODE) == 3)
3026 		flag--;
3027 	return flag;
3028 }
3029 
3030 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3031 {
3032 	struct user_namespace *s_user_ns;
3033 	int error = security_path_mknod(dir, dentry, mode, 0);
3034 	if (error)
3035 		return error;
3036 
3037 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3038 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3039 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3040 		return -EOVERFLOW;
3041 
3042 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3043 	if (error)
3044 		return error;
3045 
3046 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3047 }
3048 
3049 /*
3050  * Attempt to atomically look up, create and open a file from a negative
3051  * dentry.
3052  *
3053  * Returns 0 if successful.  The file will have been created and attached to
3054  * @file by the filesystem calling finish_open().
3055  *
3056  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3057  * be set.  The caller will need to perform the open themselves.  @path will
3058  * have been updated to point to the new dentry.  This may be negative.
3059  *
3060  * Returns an error code otherwise.
3061  */
3062 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3063 			struct path *path, struct file *file,
3064 			const struct open_flags *op,
3065 			int open_flag, umode_t mode)
3066 {
3067 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3068 	struct inode *dir =  nd->path.dentry->d_inode;
3069 	int error;
3070 
3071 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3072 		open_flag &= ~O_TRUNC;
3073 
3074 	if (nd->flags & LOOKUP_DIRECTORY)
3075 		open_flag |= O_DIRECTORY;
3076 
3077 	file->f_path.dentry = DENTRY_NOT_SET;
3078 	file->f_path.mnt = nd->path.mnt;
3079 	error = dir->i_op->atomic_open(dir, dentry, file,
3080 				       open_to_namei_flags(open_flag), mode);
3081 	d_lookup_done(dentry);
3082 	if (!error) {
3083 		if (file->f_mode & FMODE_OPENED) {
3084 			/*
3085 			 * We didn't have the inode before the open, so check open
3086 			 * permission here.
3087 			 */
3088 			int acc_mode = op->acc_mode;
3089 			if (file->f_mode & FMODE_CREATED) {
3090 				WARN_ON(!(open_flag & O_CREAT));
3091 				fsnotify_create(dir, dentry);
3092 				acc_mode = 0;
3093 			}
3094 			error = may_open(&file->f_path, acc_mode, open_flag);
3095 			if (WARN_ON(error > 0))
3096 				error = -EINVAL;
3097 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3098 			error = -EIO;
3099 		} else {
3100 			if (file->f_path.dentry) {
3101 				dput(dentry);
3102 				dentry = file->f_path.dentry;
3103 			}
3104 			if (file->f_mode & FMODE_CREATED)
3105 				fsnotify_create(dir, dentry);
3106 			if (unlikely(d_is_negative(dentry))) {
3107 				error = -ENOENT;
3108 			} else {
3109 				path->dentry = dentry;
3110 				path->mnt = nd->path.mnt;
3111 				return 0;
3112 			}
3113 		}
3114 	}
3115 	dput(dentry);
3116 	return error;
3117 }
3118 
3119 /*
3120  * Look up and maybe create and open the last component.
3121  *
3122  * Must be called with parent locked (exclusive in O_CREAT case).
3123  *
3124  * Returns 0 on success, that is, if
3125  *  the file was successfully atomically created (if necessary) and opened, or
3126  *  the file was not completely opened at this time, though lookups and
3127  *  creations were performed.
3128  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3129  * In the latter case dentry returned in @path might be negative if O_CREAT
3130  * hadn't been specified.
3131  *
3132  * An error code is returned on failure.
3133  */
3134 static int lookup_open(struct nameidata *nd, struct path *path,
3135 			struct file *file,
3136 			const struct open_flags *op,
3137 			bool got_write)
3138 {
3139 	struct dentry *dir = nd->path.dentry;
3140 	struct inode *dir_inode = dir->d_inode;
3141 	int open_flag = op->open_flag;
3142 	struct dentry *dentry;
3143 	int error, create_error = 0;
3144 	umode_t mode = op->mode;
3145 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3146 
3147 	if (unlikely(IS_DEADDIR(dir_inode)))
3148 		return -ENOENT;
3149 
3150 	file->f_mode &= ~FMODE_CREATED;
3151 	dentry = d_lookup(dir, &nd->last);
3152 	for (;;) {
3153 		if (!dentry) {
3154 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3155 			if (IS_ERR(dentry))
3156 				return PTR_ERR(dentry);
3157 		}
3158 		if (d_in_lookup(dentry))
3159 			break;
3160 
3161 		error = d_revalidate(dentry, nd->flags);
3162 		if (likely(error > 0))
3163 			break;
3164 		if (error)
3165 			goto out_dput;
3166 		d_invalidate(dentry);
3167 		dput(dentry);
3168 		dentry = NULL;
3169 	}
3170 	if (dentry->d_inode) {
3171 		/* Cached positive dentry: will open in f_op->open */
3172 		goto out_no_open;
3173 	}
3174 
3175 	/*
3176 	 * Checking write permission is tricky, bacuse we don't know if we are
3177 	 * going to actually need it: O_CREAT opens should work as long as the
3178 	 * file exists.  But checking existence breaks atomicity.  The trick is
3179 	 * to check access and if not granted clear O_CREAT from the flags.
3180 	 *
3181 	 * Another problem is returing the "right" error value (e.g. for an
3182 	 * O_EXCL open we want to return EEXIST not EROFS).
3183 	 */
3184 	if (open_flag & O_CREAT) {
3185 		if (!IS_POSIXACL(dir->d_inode))
3186 			mode &= ~current_umask();
3187 		if (unlikely(!got_write)) {
3188 			create_error = -EROFS;
3189 			open_flag &= ~O_CREAT;
3190 			if (open_flag & (O_EXCL | O_TRUNC))
3191 				goto no_open;
3192 			/* No side effects, safe to clear O_CREAT */
3193 		} else {
3194 			create_error = may_o_create(&nd->path, dentry, mode);
3195 			if (create_error) {
3196 				open_flag &= ~O_CREAT;
3197 				if (open_flag & O_EXCL)
3198 					goto no_open;
3199 			}
3200 		}
3201 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3202 		   unlikely(!got_write)) {
3203 		/*
3204 		 * No O_CREATE -> atomicity not a requirement -> fall
3205 		 * back to lookup + open
3206 		 */
3207 		goto no_open;
3208 	}
3209 
3210 	if (dir_inode->i_op->atomic_open) {
3211 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3212 				    mode);
3213 		if (unlikely(error == -ENOENT) && create_error)
3214 			error = create_error;
3215 		return error;
3216 	}
3217 
3218 no_open:
3219 	if (d_in_lookup(dentry)) {
3220 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3221 							     nd->flags);
3222 		d_lookup_done(dentry);
3223 		if (unlikely(res)) {
3224 			if (IS_ERR(res)) {
3225 				error = PTR_ERR(res);
3226 				goto out_dput;
3227 			}
3228 			dput(dentry);
3229 			dentry = res;
3230 		}
3231 	}
3232 
3233 	/* Negative dentry, just create the file */
3234 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3235 		file->f_mode |= FMODE_CREATED;
3236 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3237 		if (!dir_inode->i_op->create) {
3238 			error = -EACCES;
3239 			goto out_dput;
3240 		}
3241 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3242 						open_flag & O_EXCL);
3243 		if (error)
3244 			goto out_dput;
3245 		fsnotify_create(dir_inode, dentry);
3246 	}
3247 	if (unlikely(create_error) && !dentry->d_inode) {
3248 		error = create_error;
3249 		goto out_dput;
3250 	}
3251 out_no_open:
3252 	path->dentry = dentry;
3253 	path->mnt = nd->path.mnt;
3254 	return 0;
3255 
3256 out_dput:
3257 	dput(dentry);
3258 	return error;
3259 }
3260 
3261 /*
3262  * Handle the last step of open()
3263  */
3264 static int do_last(struct nameidata *nd,
3265 		   struct file *file, const struct open_flags *op)
3266 {
3267 	struct dentry *dir = nd->path.dentry;
3268 	int open_flag = op->open_flag;
3269 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3270 	bool got_write = false;
3271 	int acc_mode = op->acc_mode;
3272 	unsigned seq;
3273 	struct inode *inode;
3274 	struct path path;
3275 	int error;
3276 
3277 	nd->flags &= ~LOOKUP_PARENT;
3278 	nd->flags |= op->intent;
3279 
3280 	if (nd->last_type != LAST_NORM) {
3281 		error = handle_dots(nd, nd->last_type);
3282 		if (unlikely(error))
3283 			return error;
3284 		goto finish_open;
3285 	}
3286 
3287 	if (!(open_flag & O_CREAT)) {
3288 		if (nd->last.name[nd->last.len])
3289 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3290 		/* we _can_ be in RCU mode here */
3291 		error = lookup_fast(nd, &path, &inode, &seq);
3292 		if (likely(error > 0))
3293 			goto finish_lookup;
3294 
3295 		if (error < 0)
3296 			return error;
3297 
3298 		BUG_ON(nd->inode != dir->d_inode);
3299 		BUG_ON(nd->flags & LOOKUP_RCU);
3300 	} else {
3301 		/* create side of things */
3302 		/*
3303 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3304 		 * has been cleared when we got to the last component we are
3305 		 * about to look up
3306 		 */
3307 		error = complete_walk(nd);
3308 		if (error)
3309 			return error;
3310 
3311 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3312 		/* trailing slashes? */
3313 		if (unlikely(nd->last.name[nd->last.len]))
3314 			return -EISDIR;
3315 	}
3316 
3317 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3318 		error = mnt_want_write(nd->path.mnt);
3319 		if (!error)
3320 			got_write = true;
3321 		/*
3322 		 * do _not_ fail yet - we might not need that or fail with
3323 		 * a different error; let lookup_open() decide; we'll be
3324 		 * dropping this one anyway.
3325 		 */
3326 	}
3327 	if (open_flag & O_CREAT)
3328 		inode_lock(dir->d_inode);
3329 	else
3330 		inode_lock_shared(dir->d_inode);
3331 	error = lookup_open(nd, &path, file, op, got_write);
3332 	if (open_flag & O_CREAT)
3333 		inode_unlock(dir->d_inode);
3334 	else
3335 		inode_unlock_shared(dir->d_inode);
3336 
3337 	if (error)
3338 		goto out;
3339 
3340 	if (file->f_mode & FMODE_OPENED) {
3341 		if ((file->f_mode & FMODE_CREATED) ||
3342 		    !S_ISREG(file_inode(file)->i_mode))
3343 			will_truncate = false;
3344 
3345 		audit_inode(nd->name, file->f_path.dentry, 0);
3346 		goto opened;
3347 	}
3348 
3349 	if (file->f_mode & FMODE_CREATED) {
3350 		/* Don't check for write permission, don't truncate */
3351 		open_flag &= ~O_TRUNC;
3352 		will_truncate = false;
3353 		acc_mode = 0;
3354 		path_to_nameidata(&path, nd);
3355 		goto finish_open_created;
3356 	}
3357 
3358 	/*
3359 	 * If atomic_open() acquired write access it is dropped now due to
3360 	 * possible mount and symlink following (this might be optimized away if
3361 	 * necessary...)
3362 	 */
3363 	if (got_write) {
3364 		mnt_drop_write(nd->path.mnt);
3365 		got_write = false;
3366 	}
3367 
3368 	error = follow_managed(&path, nd);
3369 	if (unlikely(error < 0))
3370 		return error;
3371 
3372 	/*
3373 	 * create/update audit record if it already exists.
3374 	 */
3375 	audit_inode(nd->name, path.dentry, 0);
3376 
3377 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3378 		path_to_nameidata(&path, nd);
3379 		return -EEXIST;
3380 	}
3381 
3382 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3383 	inode = d_backing_inode(path.dentry);
3384 finish_lookup:
3385 	error = step_into(nd, &path, 0, inode, seq);
3386 	if (unlikely(error))
3387 		return error;
3388 finish_open:
3389 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3390 	error = complete_walk(nd);
3391 	if (error)
3392 		return error;
3393 	audit_inode(nd->name, nd->path.dentry, 0);
3394 	if (open_flag & O_CREAT) {
3395 		error = -EISDIR;
3396 		if (d_is_dir(nd->path.dentry))
3397 			goto out;
3398 		error = may_create_in_sticky(dir,
3399 					     d_backing_inode(nd->path.dentry));
3400 		if (unlikely(error))
3401 			goto out;
3402 	}
3403 	error = -ENOTDIR;
3404 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3405 		goto out;
3406 	if (!d_is_reg(nd->path.dentry))
3407 		will_truncate = false;
3408 
3409 	if (will_truncate) {
3410 		error = mnt_want_write(nd->path.mnt);
3411 		if (error)
3412 			goto out;
3413 		got_write = true;
3414 	}
3415 finish_open_created:
3416 	error = may_open(&nd->path, acc_mode, open_flag);
3417 	if (error)
3418 		goto out;
3419 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3420 	error = vfs_open(&nd->path, file);
3421 	if (error)
3422 		goto out;
3423 opened:
3424 	error = ima_file_check(file, op->acc_mode);
3425 	if (!error && will_truncate)
3426 		error = handle_truncate(file);
3427 out:
3428 	if (unlikely(error > 0)) {
3429 		WARN_ON(1);
3430 		error = -EINVAL;
3431 	}
3432 	if (got_write)
3433 		mnt_drop_write(nd->path.mnt);
3434 	return error;
3435 }
3436 
3437 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3438 {
3439 	struct dentry *child = NULL;
3440 	struct inode *dir = dentry->d_inode;
3441 	struct inode *inode;
3442 	int error;
3443 
3444 	/* we want directory to be writable */
3445 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3446 	if (error)
3447 		goto out_err;
3448 	error = -EOPNOTSUPP;
3449 	if (!dir->i_op->tmpfile)
3450 		goto out_err;
3451 	error = -ENOMEM;
3452 	child = d_alloc(dentry, &slash_name);
3453 	if (unlikely(!child))
3454 		goto out_err;
3455 	error = dir->i_op->tmpfile(dir, child, mode);
3456 	if (error)
3457 		goto out_err;
3458 	error = -ENOENT;
3459 	inode = child->d_inode;
3460 	if (unlikely(!inode))
3461 		goto out_err;
3462 	if (!(open_flag & O_EXCL)) {
3463 		spin_lock(&inode->i_lock);
3464 		inode->i_state |= I_LINKABLE;
3465 		spin_unlock(&inode->i_lock);
3466 	}
3467 	ima_post_create_tmpfile(inode);
3468 	return child;
3469 
3470 out_err:
3471 	dput(child);
3472 	return ERR_PTR(error);
3473 }
3474 EXPORT_SYMBOL(vfs_tmpfile);
3475 
3476 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3477 		const struct open_flags *op,
3478 		struct file *file)
3479 {
3480 	struct dentry *child;
3481 	struct path path;
3482 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3483 	if (unlikely(error))
3484 		return error;
3485 	error = mnt_want_write(path.mnt);
3486 	if (unlikely(error))
3487 		goto out;
3488 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3489 	error = PTR_ERR(child);
3490 	if (IS_ERR(child))
3491 		goto out2;
3492 	dput(path.dentry);
3493 	path.dentry = child;
3494 	audit_inode(nd->name, child, 0);
3495 	/* Don't check for other permissions, the inode was just created */
3496 	error = may_open(&path, 0, op->open_flag);
3497 	if (error)
3498 		goto out2;
3499 	file->f_path.mnt = path.mnt;
3500 	error = finish_open(file, child, NULL);
3501 out2:
3502 	mnt_drop_write(path.mnt);
3503 out:
3504 	path_put(&path);
3505 	return error;
3506 }
3507 
3508 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3509 {
3510 	struct path path;
3511 	int error = path_lookupat(nd, flags, &path);
3512 	if (!error) {
3513 		audit_inode(nd->name, path.dentry, 0);
3514 		error = vfs_open(&path, file);
3515 		path_put(&path);
3516 	}
3517 	return error;
3518 }
3519 
3520 static struct file *path_openat(struct nameidata *nd,
3521 			const struct open_flags *op, unsigned flags)
3522 {
3523 	struct file *file;
3524 	int error;
3525 
3526 	file = alloc_empty_file(op->open_flag, current_cred());
3527 	if (IS_ERR(file))
3528 		return file;
3529 
3530 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3531 		error = do_tmpfile(nd, flags, op, file);
3532 	} else if (unlikely(file->f_flags & O_PATH)) {
3533 		error = do_o_path(nd, flags, file);
3534 	} else {
3535 		const char *s = path_init(nd, flags);
3536 		while (!(error = link_path_walk(s, nd)) &&
3537 			(error = do_last(nd, file, op)) > 0) {
3538 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3539 			s = trailing_symlink(nd);
3540 		}
3541 		terminate_walk(nd);
3542 	}
3543 	if (likely(!error)) {
3544 		if (likely(file->f_mode & FMODE_OPENED))
3545 			return file;
3546 		WARN_ON(1);
3547 		error = -EINVAL;
3548 	}
3549 	fput(file);
3550 	if (error == -EOPENSTALE) {
3551 		if (flags & LOOKUP_RCU)
3552 			error = -ECHILD;
3553 		else
3554 			error = -ESTALE;
3555 	}
3556 	return ERR_PTR(error);
3557 }
3558 
3559 struct file *do_filp_open(int dfd, struct filename *pathname,
3560 		const struct open_flags *op)
3561 {
3562 	struct nameidata nd;
3563 	int flags = op->lookup_flags;
3564 	struct file *filp;
3565 
3566 	set_nameidata(&nd, dfd, pathname);
3567 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3568 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3569 		filp = path_openat(&nd, op, flags);
3570 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3571 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3572 	restore_nameidata();
3573 	return filp;
3574 }
3575 
3576 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3577 		const char *name, const struct open_flags *op)
3578 {
3579 	struct nameidata nd;
3580 	struct file *file;
3581 	struct filename *filename;
3582 	int flags = op->lookup_flags | LOOKUP_ROOT;
3583 
3584 	nd.root.mnt = mnt;
3585 	nd.root.dentry = dentry;
3586 
3587 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3588 		return ERR_PTR(-ELOOP);
3589 
3590 	filename = getname_kernel(name);
3591 	if (IS_ERR(filename))
3592 		return ERR_CAST(filename);
3593 
3594 	set_nameidata(&nd, -1, filename);
3595 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3596 	if (unlikely(file == ERR_PTR(-ECHILD)))
3597 		file = path_openat(&nd, op, flags);
3598 	if (unlikely(file == ERR_PTR(-ESTALE)))
3599 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3600 	restore_nameidata();
3601 	putname(filename);
3602 	return file;
3603 }
3604 
3605 static struct dentry *filename_create(int dfd, struct filename *name,
3606 				struct path *path, unsigned int lookup_flags)
3607 {
3608 	struct dentry *dentry = ERR_PTR(-EEXIST);
3609 	struct qstr last;
3610 	int type;
3611 	int err2;
3612 	int error;
3613 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3614 
3615 	/*
3616 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3617 	 * other flags passed in are ignored!
3618 	 */
3619 	lookup_flags &= LOOKUP_REVAL;
3620 
3621 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3622 	if (IS_ERR(name))
3623 		return ERR_CAST(name);
3624 
3625 	/*
3626 	 * Yucky last component or no last component at all?
3627 	 * (foo/., foo/.., /////)
3628 	 */
3629 	if (unlikely(type != LAST_NORM))
3630 		goto out;
3631 
3632 	/* don't fail immediately if it's r/o, at least try to report other errors */
3633 	err2 = mnt_want_write(path->mnt);
3634 	/*
3635 	 * Do the final lookup.
3636 	 */
3637 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3638 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3639 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3640 	if (IS_ERR(dentry))
3641 		goto unlock;
3642 
3643 	error = -EEXIST;
3644 	if (d_is_positive(dentry))
3645 		goto fail;
3646 
3647 	/*
3648 	 * Special case - lookup gave negative, but... we had foo/bar/
3649 	 * From the vfs_mknod() POV we just have a negative dentry -
3650 	 * all is fine. Let's be bastards - you had / on the end, you've
3651 	 * been asking for (non-existent) directory. -ENOENT for you.
3652 	 */
3653 	if (unlikely(!is_dir && last.name[last.len])) {
3654 		error = -ENOENT;
3655 		goto fail;
3656 	}
3657 	if (unlikely(err2)) {
3658 		error = err2;
3659 		goto fail;
3660 	}
3661 	putname(name);
3662 	return dentry;
3663 fail:
3664 	dput(dentry);
3665 	dentry = ERR_PTR(error);
3666 unlock:
3667 	inode_unlock(path->dentry->d_inode);
3668 	if (!err2)
3669 		mnt_drop_write(path->mnt);
3670 out:
3671 	path_put(path);
3672 	putname(name);
3673 	return dentry;
3674 }
3675 
3676 struct dentry *kern_path_create(int dfd, const char *pathname,
3677 				struct path *path, unsigned int lookup_flags)
3678 {
3679 	return filename_create(dfd, getname_kernel(pathname),
3680 				path, lookup_flags);
3681 }
3682 EXPORT_SYMBOL(kern_path_create);
3683 
3684 void done_path_create(struct path *path, struct dentry *dentry)
3685 {
3686 	dput(dentry);
3687 	inode_unlock(path->dentry->d_inode);
3688 	mnt_drop_write(path->mnt);
3689 	path_put(path);
3690 }
3691 EXPORT_SYMBOL(done_path_create);
3692 
3693 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3694 				struct path *path, unsigned int lookup_flags)
3695 {
3696 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3697 }
3698 EXPORT_SYMBOL(user_path_create);
3699 
3700 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3701 {
3702 	int error = may_create(dir, dentry);
3703 
3704 	if (error)
3705 		return error;
3706 
3707 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3708 		return -EPERM;
3709 
3710 	if (!dir->i_op->mknod)
3711 		return -EPERM;
3712 
3713 	error = devcgroup_inode_mknod(mode, dev);
3714 	if (error)
3715 		return error;
3716 
3717 	error = security_inode_mknod(dir, dentry, mode, dev);
3718 	if (error)
3719 		return error;
3720 
3721 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3722 	if (!error)
3723 		fsnotify_create(dir, dentry);
3724 	return error;
3725 }
3726 EXPORT_SYMBOL(vfs_mknod);
3727 
3728 static int may_mknod(umode_t mode)
3729 {
3730 	switch (mode & S_IFMT) {
3731 	case S_IFREG:
3732 	case S_IFCHR:
3733 	case S_IFBLK:
3734 	case S_IFIFO:
3735 	case S_IFSOCK:
3736 	case 0: /* zero mode translates to S_IFREG */
3737 		return 0;
3738 	case S_IFDIR:
3739 		return -EPERM;
3740 	default:
3741 		return -EINVAL;
3742 	}
3743 }
3744 
3745 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3746 		unsigned int dev)
3747 {
3748 	struct dentry *dentry;
3749 	struct path path;
3750 	int error;
3751 	unsigned int lookup_flags = 0;
3752 
3753 	error = may_mknod(mode);
3754 	if (error)
3755 		return error;
3756 retry:
3757 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3758 	if (IS_ERR(dentry))
3759 		return PTR_ERR(dentry);
3760 
3761 	if (!IS_POSIXACL(path.dentry->d_inode))
3762 		mode &= ~current_umask();
3763 	error = security_path_mknod(&path, dentry, mode, dev);
3764 	if (error)
3765 		goto out;
3766 	switch (mode & S_IFMT) {
3767 		case 0: case S_IFREG:
3768 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3769 			if (!error)
3770 				ima_post_path_mknod(dentry);
3771 			break;
3772 		case S_IFCHR: case S_IFBLK:
3773 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3774 					new_decode_dev(dev));
3775 			break;
3776 		case S_IFIFO: case S_IFSOCK:
3777 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3778 			break;
3779 	}
3780 out:
3781 	done_path_create(&path, dentry);
3782 	if (retry_estale(error, lookup_flags)) {
3783 		lookup_flags |= LOOKUP_REVAL;
3784 		goto retry;
3785 	}
3786 	return error;
3787 }
3788 
3789 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3790 		unsigned int, dev)
3791 {
3792 	return do_mknodat(dfd, filename, mode, dev);
3793 }
3794 
3795 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3796 {
3797 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3798 }
3799 
3800 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3801 {
3802 	int error = may_create(dir, dentry);
3803 	unsigned max_links = dir->i_sb->s_max_links;
3804 
3805 	if (error)
3806 		return error;
3807 
3808 	if (!dir->i_op->mkdir)
3809 		return -EPERM;
3810 
3811 	mode &= (S_IRWXUGO|S_ISVTX);
3812 	error = security_inode_mkdir(dir, dentry, mode);
3813 	if (error)
3814 		return error;
3815 
3816 	if (max_links && dir->i_nlink >= max_links)
3817 		return -EMLINK;
3818 
3819 	error = dir->i_op->mkdir(dir, dentry, mode);
3820 	if (!error)
3821 		fsnotify_mkdir(dir, dentry);
3822 	return error;
3823 }
3824 EXPORT_SYMBOL(vfs_mkdir);
3825 
3826 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3827 {
3828 	struct dentry *dentry;
3829 	struct path path;
3830 	int error;
3831 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3832 
3833 retry:
3834 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3835 	if (IS_ERR(dentry))
3836 		return PTR_ERR(dentry);
3837 
3838 	if (!IS_POSIXACL(path.dentry->d_inode))
3839 		mode &= ~current_umask();
3840 	error = security_path_mkdir(&path, dentry, mode);
3841 	if (!error)
3842 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3843 	done_path_create(&path, dentry);
3844 	if (retry_estale(error, lookup_flags)) {
3845 		lookup_flags |= LOOKUP_REVAL;
3846 		goto retry;
3847 	}
3848 	return error;
3849 }
3850 
3851 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3852 {
3853 	return do_mkdirat(dfd, pathname, mode);
3854 }
3855 
3856 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3857 {
3858 	return do_mkdirat(AT_FDCWD, pathname, mode);
3859 }
3860 
3861 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3862 {
3863 	int error = may_delete(dir, dentry, 1);
3864 
3865 	if (error)
3866 		return error;
3867 
3868 	if (!dir->i_op->rmdir)
3869 		return -EPERM;
3870 
3871 	dget(dentry);
3872 	inode_lock(dentry->d_inode);
3873 
3874 	error = -EBUSY;
3875 	if (is_local_mountpoint(dentry))
3876 		goto out;
3877 
3878 	error = security_inode_rmdir(dir, dentry);
3879 	if (error)
3880 		goto out;
3881 
3882 	error = dir->i_op->rmdir(dir, dentry);
3883 	if (error)
3884 		goto out;
3885 
3886 	shrink_dcache_parent(dentry);
3887 	dentry->d_inode->i_flags |= S_DEAD;
3888 	dont_mount(dentry);
3889 	detach_mounts(dentry);
3890 	fsnotify_rmdir(dir, dentry);
3891 
3892 out:
3893 	inode_unlock(dentry->d_inode);
3894 	dput(dentry);
3895 	if (!error)
3896 		d_delete(dentry);
3897 	return error;
3898 }
3899 EXPORT_SYMBOL(vfs_rmdir);
3900 
3901 long do_rmdir(int dfd, const char __user *pathname)
3902 {
3903 	int error = 0;
3904 	struct filename *name;
3905 	struct dentry *dentry;
3906 	struct path path;
3907 	struct qstr last;
3908 	int type;
3909 	unsigned int lookup_flags = 0;
3910 retry:
3911 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3912 				&path, &last, &type);
3913 	if (IS_ERR(name))
3914 		return PTR_ERR(name);
3915 
3916 	switch (type) {
3917 	case LAST_DOTDOT:
3918 		error = -ENOTEMPTY;
3919 		goto exit1;
3920 	case LAST_DOT:
3921 		error = -EINVAL;
3922 		goto exit1;
3923 	case LAST_ROOT:
3924 		error = -EBUSY;
3925 		goto exit1;
3926 	}
3927 
3928 	error = mnt_want_write(path.mnt);
3929 	if (error)
3930 		goto exit1;
3931 
3932 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3933 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3934 	error = PTR_ERR(dentry);
3935 	if (IS_ERR(dentry))
3936 		goto exit2;
3937 	if (!dentry->d_inode) {
3938 		error = -ENOENT;
3939 		goto exit3;
3940 	}
3941 	error = security_path_rmdir(&path, dentry);
3942 	if (error)
3943 		goto exit3;
3944 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3945 exit3:
3946 	dput(dentry);
3947 exit2:
3948 	inode_unlock(path.dentry->d_inode);
3949 	mnt_drop_write(path.mnt);
3950 exit1:
3951 	path_put(&path);
3952 	putname(name);
3953 	if (retry_estale(error, lookup_flags)) {
3954 		lookup_flags |= LOOKUP_REVAL;
3955 		goto retry;
3956 	}
3957 	return error;
3958 }
3959 
3960 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3961 {
3962 	return do_rmdir(AT_FDCWD, pathname);
3963 }
3964 
3965 /**
3966  * vfs_unlink - unlink a filesystem object
3967  * @dir:	parent directory
3968  * @dentry:	victim
3969  * @delegated_inode: returns victim inode, if the inode is delegated.
3970  *
3971  * The caller must hold dir->i_mutex.
3972  *
3973  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3974  * return a reference to the inode in delegated_inode.  The caller
3975  * should then break the delegation on that inode and retry.  Because
3976  * breaking a delegation may take a long time, the caller should drop
3977  * dir->i_mutex before doing so.
3978  *
3979  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3980  * be appropriate for callers that expect the underlying filesystem not
3981  * to be NFS exported.
3982  */
3983 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3984 {
3985 	struct inode *target = dentry->d_inode;
3986 	int error = may_delete(dir, dentry, 0);
3987 
3988 	if (error)
3989 		return error;
3990 
3991 	if (!dir->i_op->unlink)
3992 		return -EPERM;
3993 
3994 	inode_lock(target);
3995 	if (is_local_mountpoint(dentry))
3996 		error = -EBUSY;
3997 	else {
3998 		error = security_inode_unlink(dir, dentry);
3999 		if (!error) {
4000 			error = try_break_deleg(target, delegated_inode);
4001 			if (error)
4002 				goto out;
4003 			error = dir->i_op->unlink(dir, dentry);
4004 			if (!error) {
4005 				dont_mount(dentry);
4006 				detach_mounts(dentry);
4007 				fsnotify_unlink(dir, dentry);
4008 			}
4009 		}
4010 	}
4011 out:
4012 	inode_unlock(target);
4013 
4014 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4015 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4016 		fsnotify_link_count(target);
4017 		d_delete(dentry);
4018 	}
4019 
4020 	return error;
4021 }
4022 EXPORT_SYMBOL(vfs_unlink);
4023 
4024 /*
4025  * Make sure that the actual truncation of the file will occur outside its
4026  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4027  * writeout happening, and we don't want to prevent access to the directory
4028  * while waiting on the I/O.
4029  */
4030 long do_unlinkat(int dfd, struct filename *name)
4031 {
4032 	int error;
4033 	struct dentry *dentry;
4034 	struct path path;
4035 	struct qstr last;
4036 	int type;
4037 	struct inode *inode = NULL;
4038 	struct inode *delegated_inode = NULL;
4039 	unsigned int lookup_flags = 0;
4040 retry:
4041 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4042 	if (IS_ERR(name))
4043 		return PTR_ERR(name);
4044 
4045 	error = -EISDIR;
4046 	if (type != LAST_NORM)
4047 		goto exit1;
4048 
4049 	error = mnt_want_write(path.mnt);
4050 	if (error)
4051 		goto exit1;
4052 retry_deleg:
4053 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4054 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4055 	error = PTR_ERR(dentry);
4056 	if (!IS_ERR(dentry)) {
4057 		/* Why not before? Because we want correct error value */
4058 		if (last.name[last.len])
4059 			goto slashes;
4060 		inode = dentry->d_inode;
4061 		if (d_is_negative(dentry))
4062 			goto slashes;
4063 		ihold(inode);
4064 		error = security_path_unlink(&path, dentry);
4065 		if (error)
4066 			goto exit2;
4067 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4068 exit2:
4069 		dput(dentry);
4070 	}
4071 	inode_unlock(path.dentry->d_inode);
4072 	if (inode)
4073 		iput(inode);	/* truncate the inode here */
4074 	inode = NULL;
4075 	if (delegated_inode) {
4076 		error = break_deleg_wait(&delegated_inode);
4077 		if (!error)
4078 			goto retry_deleg;
4079 	}
4080 	mnt_drop_write(path.mnt);
4081 exit1:
4082 	path_put(&path);
4083 	if (retry_estale(error, lookup_flags)) {
4084 		lookup_flags |= LOOKUP_REVAL;
4085 		inode = NULL;
4086 		goto retry;
4087 	}
4088 	putname(name);
4089 	return error;
4090 
4091 slashes:
4092 	if (d_is_negative(dentry))
4093 		error = -ENOENT;
4094 	else if (d_is_dir(dentry))
4095 		error = -EISDIR;
4096 	else
4097 		error = -ENOTDIR;
4098 	goto exit2;
4099 }
4100 
4101 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4102 {
4103 	if ((flag & ~AT_REMOVEDIR) != 0)
4104 		return -EINVAL;
4105 
4106 	if (flag & AT_REMOVEDIR)
4107 		return do_rmdir(dfd, pathname);
4108 
4109 	return do_unlinkat(dfd, getname(pathname));
4110 }
4111 
4112 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4113 {
4114 	return do_unlinkat(AT_FDCWD, getname(pathname));
4115 }
4116 
4117 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4118 {
4119 	int error = may_create(dir, dentry);
4120 
4121 	if (error)
4122 		return error;
4123 
4124 	if (!dir->i_op->symlink)
4125 		return -EPERM;
4126 
4127 	error = security_inode_symlink(dir, dentry, oldname);
4128 	if (error)
4129 		return error;
4130 
4131 	error = dir->i_op->symlink(dir, dentry, oldname);
4132 	if (!error)
4133 		fsnotify_create(dir, dentry);
4134 	return error;
4135 }
4136 EXPORT_SYMBOL(vfs_symlink);
4137 
4138 long do_symlinkat(const char __user *oldname, int newdfd,
4139 		  const char __user *newname)
4140 {
4141 	int error;
4142 	struct filename *from;
4143 	struct dentry *dentry;
4144 	struct path path;
4145 	unsigned int lookup_flags = 0;
4146 
4147 	from = getname(oldname);
4148 	if (IS_ERR(from))
4149 		return PTR_ERR(from);
4150 retry:
4151 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4152 	error = PTR_ERR(dentry);
4153 	if (IS_ERR(dentry))
4154 		goto out_putname;
4155 
4156 	error = security_path_symlink(&path, dentry, from->name);
4157 	if (!error)
4158 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4159 	done_path_create(&path, dentry);
4160 	if (retry_estale(error, lookup_flags)) {
4161 		lookup_flags |= LOOKUP_REVAL;
4162 		goto retry;
4163 	}
4164 out_putname:
4165 	putname(from);
4166 	return error;
4167 }
4168 
4169 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4170 		int, newdfd, const char __user *, newname)
4171 {
4172 	return do_symlinkat(oldname, newdfd, newname);
4173 }
4174 
4175 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4176 {
4177 	return do_symlinkat(oldname, AT_FDCWD, newname);
4178 }
4179 
4180 /**
4181  * vfs_link - create a new link
4182  * @old_dentry:	object to be linked
4183  * @dir:	new parent
4184  * @new_dentry:	where to create the new link
4185  * @delegated_inode: returns inode needing a delegation break
4186  *
4187  * The caller must hold dir->i_mutex
4188  *
4189  * If vfs_link discovers a delegation on the to-be-linked file in need
4190  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4191  * inode in delegated_inode.  The caller should then break the delegation
4192  * and retry.  Because breaking a delegation may take a long time, the
4193  * caller should drop the i_mutex before doing so.
4194  *
4195  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4196  * be appropriate for callers that expect the underlying filesystem not
4197  * to be NFS exported.
4198  */
4199 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4200 {
4201 	struct inode *inode = old_dentry->d_inode;
4202 	unsigned max_links = dir->i_sb->s_max_links;
4203 	int error;
4204 
4205 	if (!inode)
4206 		return -ENOENT;
4207 
4208 	error = may_create(dir, new_dentry);
4209 	if (error)
4210 		return error;
4211 
4212 	if (dir->i_sb != inode->i_sb)
4213 		return -EXDEV;
4214 
4215 	/*
4216 	 * A link to an append-only or immutable file cannot be created.
4217 	 */
4218 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4219 		return -EPERM;
4220 	/*
4221 	 * Updating the link count will likely cause i_uid and i_gid to
4222 	 * be writen back improperly if their true value is unknown to
4223 	 * the vfs.
4224 	 */
4225 	if (HAS_UNMAPPED_ID(inode))
4226 		return -EPERM;
4227 	if (!dir->i_op->link)
4228 		return -EPERM;
4229 	if (S_ISDIR(inode->i_mode))
4230 		return -EPERM;
4231 
4232 	error = security_inode_link(old_dentry, dir, new_dentry);
4233 	if (error)
4234 		return error;
4235 
4236 	inode_lock(inode);
4237 	/* Make sure we don't allow creating hardlink to an unlinked file */
4238 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4239 		error =  -ENOENT;
4240 	else if (max_links && inode->i_nlink >= max_links)
4241 		error = -EMLINK;
4242 	else {
4243 		error = try_break_deleg(inode, delegated_inode);
4244 		if (!error)
4245 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4246 	}
4247 
4248 	if (!error && (inode->i_state & I_LINKABLE)) {
4249 		spin_lock(&inode->i_lock);
4250 		inode->i_state &= ~I_LINKABLE;
4251 		spin_unlock(&inode->i_lock);
4252 	}
4253 	inode_unlock(inode);
4254 	if (!error)
4255 		fsnotify_link(dir, inode, new_dentry);
4256 	return error;
4257 }
4258 EXPORT_SYMBOL(vfs_link);
4259 
4260 /*
4261  * Hardlinks are often used in delicate situations.  We avoid
4262  * security-related surprises by not following symlinks on the
4263  * newname.  --KAB
4264  *
4265  * We don't follow them on the oldname either to be compatible
4266  * with linux 2.0, and to avoid hard-linking to directories
4267  * and other special files.  --ADM
4268  */
4269 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4270 	      const char __user *newname, int flags)
4271 {
4272 	struct dentry *new_dentry;
4273 	struct path old_path, new_path;
4274 	struct inode *delegated_inode = NULL;
4275 	int how = 0;
4276 	int error;
4277 
4278 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4279 		return -EINVAL;
4280 	/*
4281 	 * To use null names we require CAP_DAC_READ_SEARCH
4282 	 * This ensures that not everyone will be able to create
4283 	 * handlink using the passed filedescriptor.
4284 	 */
4285 	if (flags & AT_EMPTY_PATH) {
4286 		if (!capable(CAP_DAC_READ_SEARCH))
4287 			return -ENOENT;
4288 		how = LOOKUP_EMPTY;
4289 	}
4290 
4291 	if (flags & AT_SYMLINK_FOLLOW)
4292 		how |= LOOKUP_FOLLOW;
4293 retry:
4294 	error = user_path_at(olddfd, oldname, how, &old_path);
4295 	if (error)
4296 		return error;
4297 
4298 	new_dentry = user_path_create(newdfd, newname, &new_path,
4299 					(how & LOOKUP_REVAL));
4300 	error = PTR_ERR(new_dentry);
4301 	if (IS_ERR(new_dentry))
4302 		goto out;
4303 
4304 	error = -EXDEV;
4305 	if (old_path.mnt != new_path.mnt)
4306 		goto out_dput;
4307 	error = may_linkat(&old_path);
4308 	if (unlikely(error))
4309 		goto out_dput;
4310 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4311 	if (error)
4312 		goto out_dput;
4313 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4314 out_dput:
4315 	done_path_create(&new_path, new_dentry);
4316 	if (delegated_inode) {
4317 		error = break_deleg_wait(&delegated_inode);
4318 		if (!error) {
4319 			path_put(&old_path);
4320 			goto retry;
4321 		}
4322 	}
4323 	if (retry_estale(error, how)) {
4324 		path_put(&old_path);
4325 		how |= LOOKUP_REVAL;
4326 		goto retry;
4327 	}
4328 out:
4329 	path_put(&old_path);
4330 
4331 	return error;
4332 }
4333 
4334 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4335 		int, newdfd, const char __user *, newname, int, flags)
4336 {
4337 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4338 }
4339 
4340 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4341 {
4342 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4343 }
4344 
4345 /**
4346  * vfs_rename - rename a filesystem object
4347  * @old_dir:	parent of source
4348  * @old_dentry:	source
4349  * @new_dir:	parent of destination
4350  * @new_dentry:	destination
4351  * @delegated_inode: returns an inode needing a delegation break
4352  * @flags:	rename flags
4353  *
4354  * The caller must hold multiple mutexes--see lock_rename()).
4355  *
4356  * If vfs_rename discovers a delegation in need of breaking at either
4357  * the source or destination, it will return -EWOULDBLOCK and return a
4358  * reference to the inode in delegated_inode.  The caller should then
4359  * break the delegation and retry.  Because breaking a delegation may
4360  * take a long time, the caller should drop all locks before doing
4361  * so.
4362  *
4363  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4364  * be appropriate for callers that expect the underlying filesystem not
4365  * to be NFS exported.
4366  *
4367  * The worst of all namespace operations - renaming directory. "Perverted"
4368  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4369  * Problems:
4370  *
4371  *	a) we can get into loop creation.
4372  *	b) race potential - two innocent renames can create a loop together.
4373  *	   That's where 4.4 screws up. Current fix: serialization on
4374  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4375  *	   story.
4376  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4377  *	   and source (if it is not a directory).
4378  *	   And that - after we got ->i_mutex on parents (until then we don't know
4379  *	   whether the target exists).  Solution: try to be smart with locking
4380  *	   order for inodes.  We rely on the fact that tree topology may change
4381  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4382  *	   move will be locked.  Thus we can rank directories by the tree
4383  *	   (ancestors first) and rank all non-directories after them.
4384  *	   That works since everybody except rename does "lock parent, lookup,
4385  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4386  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4387  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4388  *	   we'd better make sure that there's no link(2) for them.
4389  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4390  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4391  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4392  *	   ->i_mutex on parents, which works but leads to some truly excessive
4393  *	   locking].
4394  */
4395 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4396 	       struct inode *new_dir, struct dentry *new_dentry,
4397 	       struct inode **delegated_inode, unsigned int flags)
4398 {
4399 	int error;
4400 	bool is_dir = d_is_dir(old_dentry);
4401 	struct inode *source = old_dentry->d_inode;
4402 	struct inode *target = new_dentry->d_inode;
4403 	bool new_is_dir = false;
4404 	unsigned max_links = new_dir->i_sb->s_max_links;
4405 	struct name_snapshot old_name;
4406 
4407 	if (source == target)
4408 		return 0;
4409 
4410 	error = may_delete(old_dir, old_dentry, is_dir);
4411 	if (error)
4412 		return error;
4413 
4414 	if (!target) {
4415 		error = may_create(new_dir, new_dentry);
4416 	} else {
4417 		new_is_dir = d_is_dir(new_dentry);
4418 
4419 		if (!(flags & RENAME_EXCHANGE))
4420 			error = may_delete(new_dir, new_dentry, is_dir);
4421 		else
4422 			error = may_delete(new_dir, new_dentry, new_is_dir);
4423 	}
4424 	if (error)
4425 		return error;
4426 
4427 	if (!old_dir->i_op->rename)
4428 		return -EPERM;
4429 
4430 	/*
4431 	 * If we are going to change the parent - check write permissions,
4432 	 * we'll need to flip '..'.
4433 	 */
4434 	if (new_dir != old_dir) {
4435 		if (is_dir) {
4436 			error = inode_permission(source, MAY_WRITE);
4437 			if (error)
4438 				return error;
4439 		}
4440 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4441 			error = inode_permission(target, MAY_WRITE);
4442 			if (error)
4443 				return error;
4444 		}
4445 	}
4446 
4447 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4448 				      flags);
4449 	if (error)
4450 		return error;
4451 
4452 	take_dentry_name_snapshot(&old_name, old_dentry);
4453 	dget(new_dentry);
4454 	if (!is_dir || (flags & RENAME_EXCHANGE))
4455 		lock_two_nondirectories(source, target);
4456 	else if (target)
4457 		inode_lock(target);
4458 
4459 	error = -EBUSY;
4460 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4461 		goto out;
4462 
4463 	if (max_links && new_dir != old_dir) {
4464 		error = -EMLINK;
4465 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4466 			goto out;
4467 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4468 		    old_dir->i_nlink >= max_links)
4469 			goto out;
4470 	}
4471 	if (!is_dir) {
4472 		error = try_break_deleg(source, delegated_inode);
4473 		if (error)
4474 			goto out;
4475 	}
4476 	if (target && !new_is_dir) {
4477 		error = try_break_deleg(target, delegated_inode);
4478 		if (error)
4479 			goto out;
4480 	}
4481 	error = old_dir->i_op->rename(old_dir, old_dentry,
4482 				       new_dir, new_dentry, flags);
4483 	if (error)
4484 		goto out;
4485 
4486 	if (!(flags & RENAME_EXCHANGE) && target) {
4487 		if (is_dir) {
4488 			shrink_dcache_parent(new_dentry);
4489 			target->i_flags |= S_DEAD;
4490 		}
4491 		dont_mount(new_dentry);
4492 		detach_mounts(new_dentry);
4493 	}
4494 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4495 		if (!(flags & RENAME_EXCHANGE))
4496 			d_move(old_dentry, new_dentry);
4497 		else
4498 			d_exchange(old_dentry, new_dentry);
4499 	}
4500 out:
4501 	if (!is_dir || (flags & RENAME_EXCHANGE))
4502 		unlock_two_nondirectories(source, target);
4503 	else if (target)
4504 		inode_unlock(target);
4505 	dput(new_dentry);
4506 	if (!error) {
4507 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4508 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4509 		if (flags & RENAME_EXCHANGE) {
4510 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4511 				      new_is_dir, NULL, new_dentry);
4512 		}
4513 	}
4514 	release_dentry_name_snapshot(&old_name);
4515 
4516 	return error;
4517 }
4518 EXPORT_SYMBOL(vfs_rename);
4519 
4520 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4521 			const char __user *newname, unsigned int flags)
4522 {
4523 	struct dentry *old_dentry, *new_dentry;
4524 	struct dentry *trap;
4525 	struct path old_path, new_path;
4526 	struct qstr old_last, new_last;
4527 	int old_type, new_type;
4528 	struct inode *delegated_inode = NULL;
4529 	struct filename *from;
4530 	struct filename *to;
4531 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4532 	bool should_retry = false;
4533 	int error;
4534 
4535 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4536 		return -EINVAL;
4537 
4538 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4539 	    (flags & RENAME_EXCHANGE))
4540 		return -EINVAL;
4541 
4542 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4543 		return -EPERM;
4544 
4545 	if (flags & RENAME_EXCHANGE)
4546 		target_flags = 0;
4547 
4548 retry:
4549 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4550 				&old_path, &old_last, &old_type);
4551 	if (IS_ERR(from)) {
4552 		error = PTR_ERR(from);
4553 		goto exit;
4554 	}
4555 
4556 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4557 				&new_path, &new_last, &new_type);
4558 	if (IS_ERR(to)) {
4559 		error = PTR_ERR(to);
4560 		goto exit1;
4561 	}
4562 
4563 	error = -EXDEV;
4564 	if (old_path.mnt != new_path.mnt)
4565 		goto exit2;
4566 
4567 	error = -EBUSY;
4568 	if (old_type != LAST_NORM)
4569 		goto exit2;
4570 
4571 	if (flags & RENAME_NOREPLACE)
4572 		error = -EEXIST;
4573 	if (new_type != LAST_NORM)
4574 		goto exit2;
4575 
4576 	error = mnt_want_write(old_path.mnt);
4577 	if (error)
4578 		goto exit2;
4579 
4580 retry_deleg:
4581 	trap = lock_rename(new_path.dentry, old_path.dentry);
4582 
4583 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4584 	error = PTR_ERR(old_dentry);
4585 	if (IS_ERR(old_dentry))
4586 		goto exit3;
4587 	/* source must exist */
4588 	error = -ENOENT;
4589 	if (d_is_negative(old_dentry))
4590 		goto exit4;
4591 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4592 	error = PTR_ERR(new_dentry);
4593 	if (IS_ERR(new_dentry))
4594 		goto exit4;
4595 	error = -EEXIST;
4596 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4597 		goto exit5;
4598 	if (flags & RENAME_EXCHANGE) {
4599 		error = -ENOENT;
4600 		if (d_is_negative(new_dentry))
4601 			goto exit5;
4602 
4603 		if (!d_is_dir(new_dentry)) {
4604 			error = -ENOTDIR;
4605 			if (new_last.name[new_last.len])
4606 				goto exit5;
4607 		}
4608 	}
4609 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4610 	if (!d_is_dir(old_dentry)) {
4611 		error = -ENOTDIR;
4612 		if (old_last.name[old_last.len])
4613 			goto exit5;
4614 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4615 			goto exit5;
4616 	}
4617 	/* source should not be ancestor of target */
4618 	error = -EINVAL;
4619 	if (old_dentry == trap)
4620 		goto exit5;
4621 	/* target should not be an ancestor of source */
4622 	if (!(flags & RENAME_EXCHANGE))
4623 		error = -ENOTEMPTY;
4624 	if (new_dentry == trap)
4625 		goto exit5;
4626 
4627 	error = security_path_rename(&old_path, old_dentry,
4628 				     &new_path, new_dentry, flags);
4629 	if (error)
4630 		goto exit5;
4631 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4632 			   new_path.dentry->d_inode, new_dentry,
4633 			   &delegated_inode, flags);
4634 exit5:
4635 	dput(new_dentry);
4636 exit4:
4637 	dput(old_dentry);
4638 exit3:
4639 	unlock_rename(new_path.dentry, old_path.dentry);
4640 	if (delegated_inode) {
4641 		error = break_deleg_wait(&delegated_inode);
4642 		if (!error)
4643 			goto retry_deleg;
4644 	}
4645 	mnt_drop_write(old_path.mnt);
4646 exit2:
4647 	if (retry_estale(error, lookup_flags))
4648 		should_retry = true;
4649 	path_put(&new_path);
4650 	putname(to);
4651 exit1:
4652 	path_put(&old_path);
4653 	putname(from);
4654 	if (should_retry) {
4655 		should_retry = false;
4656 		lookup_flags |= LOOKUP_REVAL;
4657 		goto retry;
4658 	}
4659 exit:
4660 	return error;
4661 }
4662 
4663 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4664 		int, newdfd, const char __user *, newname, unsigned int, flags)
4665 {
4666 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4667 }
4668 
4669 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4670 		int, newdfd, const char __user *, newname)
4671 {
4672 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4673 }
4674 
4675 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4676 {
4677 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4678 }
4679 
4680 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4681 {
4682 	int error = may_create(dir, dentry);
4683 	if (error)
4684 		return error;
4685 
4686 	if (!dir->i_op->mknod)
4687 		return -EPERM;
4688 
4689 	return dir->i_op->mknod(dir, dentry,
4690 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4691 }
4692 EXPORT_SYMBOL(vfs_whiteout);
4693 
4694 int readlink_copy(char __user *buffer, int buflen, const char *link)
4695 {
4696 	int len = PTR_ERR(link);
4697 	if (IS_ERR(link))
4698 		goto out;
4699 
4700 	len = strlen(link);
4701 	if (len > (unsigned) buflen)
4702 		len = buflen;
4703 	if (copy_to_user(buffer, link, len))
4704 		len = -EFAULT;
4705 out:
4706 	return len;
4707 }
4708 
4709 /**
4710  * vfs_readlink - copy symlink body into userspace buffer
4711  * @dentry: dentry on which to get symbolic link
4712  * @buffer: user memory pointer
4713  * @buflen: size of buffer
4714  *
4715  * Does not touch atime.  That's up to the caller if necessary
4716  *
4717  * Does not call security hook.
4718  */
4719 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4720 {
4721 	struct inode *inode = d_inode(dentry);
4722 	DEFINE_DELAYED_CALL(done);
4723 	const char *link;
4724 	int res;
4725 
4726 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4727 		if (unlikely(inode->i_op->readlink))
4728 			return inode->i_op->readlink(dentry, buffer, buflen);
4729 
4730 		if (!d_is_symlink(dentry))
4731 			return -EINVAL;
4732 
4733 		spin_lock(&inode->i_lock);
4734 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4735 		spin_unlock(&inode->i_lock);
4736 	}
4737 
4738 	link = READ_ONCE(inode->i_link);
4739 	if (!link) {
4740 		link = inode->i_op->get_link(dentry, inode, &done);
4741 		if (IS_ERR(link))
4742 			return PTR_ERR(link);
4743 	}
4744 	res = readlink_copy(buffer, buflen, link);
4745 	do_delayed_call(&done);
4746 	return res;
4747 }
4748 EXPORT_SYMBOL(vfs_readlink);
4749 
4750 /**
4751  * vfs_get_link - get symlink body
4752  * @dentry: dentry on which to get symbolic link
4753  * @done: caller needs to free returned data with this
4754  *
4755  * Calls security hook and i_op->get_link() on the supplied inode.
4756  *
4757  * It does not touch atime.  That's up to the caller if necessary.
4758  *
4759  * Does not work on "special" symlinks like /proc/$$/fd/N
4760  */
4761 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4762 {
4763 	const char *res = ERR_PTR(-EINVAL);
4764 	struct inode *inode = d_inode(dentry);
4765 
4766 	if (d_is_symlink(dentry)) {
4767 		res = ERR_PTR(security_inode_readlink(dentry));
4768 		if (!res)
4769 			res = inode->i_op->get_link(dentry, inode, done);
4770 	}
4771 	return res;
4772 }
4773 EXPORT_SYMBOL(vfs_get_link);
4774 
4775 /* get the link contents into pagecache */
4776 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4777 			  struct delayed_call *callback)
4778 {
4779 	char *kaddr;
4780 	struct page *page;
4781 	struct address_space *mapping = inode->i_mapping;
4782 
4783 	if (!dentry) {
4784 		page = find_get_page(mapping, 0);
4785 		if (!page)
4786 			return ERR_PTR(-ECHILD);
4787 		if (!PageUptodate(page)) {
4788 			put_page(page);
4789 			return ERR_PTR(-ECHILD);
4790 		}
4791 	} else {
4792 		page = read_mapping_page(mapping, 0, NULL);
4793 		if (IS_ERR(page))
4794 			return (char*)page;
4795 	}
4796 	set_delayed_call(callback, page_put_link, page);
4797 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4798 	kaddr = page_address(page);
4799 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4800 	return kaddr;
4801 }
4802 
4803 EXPORT_SYMBOL(page_get_link);
4804 
4805 void page_put_link(void *arg)
4806 {
4807 	put_page(arg);
4808 }
4809 EXPORT_SYMBOL(page_put_link);
4810 
4811 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4812 {
4813 	DEFINE_DELAYED_CALL(done);
4814 	int res = readlink_copy(buffer, buflen,
4815 				page_get_link(dentry, d_inode(dentry),
4816 					      &done));
4817 	do_delayed_call(&done);
4818 	return res;
4819 }
4820 EXPORT_SYMBOL(page_readlink);
4821 
4822 /*
4823  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4824  */
4825 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4826 {
4827 	struct address_space *mapping = inode->i_mapping;
4828 	struct page *page;
4829 	void *fsdata;
4830 	int err;
4831 	unsigned int flags = 0;
4832 	if (nofs)
4833 		flags |= AOP_FLAG_NOFS;
4834 
4835 retry:
4836 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4837 				flags, &page, &fsdata);
4838 	if (err)
4839 		goto fail;
4840 
4841 	memcpy(page_address(page), symname, len-1);
4842 
4843 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4844 							page, fsdata);
4845 	if (err < 0)
4846 		goto fail;
4847 	if (err < len-1)
4848 		goto retry;
4849 
4850 	mark_inode_dirty(inode);
4851 	return 0;
4852 fail:
4853 	return err;
4854 }
4855 EXPORT_SYMBOL(__page_symlink);
4856 
4857 int page_symlink(struct inode *inode, const char *symname, int len)
4858 {
4859 	return __page_symlink(inode, symname, len,
4860 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4861 }
4862 EXPORT_SYMBOL(page_symlink);
4863 
4864 const struct inode_operations page_symlink_inode_operations = {
4865 	.get_link	= page_get_link,
4866 };
4867 EXPORT_SYMBOL(page_symlink_inode_operations);
4868