xref: /linux/fs/nfs/dir.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		list_add(&ctx->list, &nfsi->open_files);
84 		spin_unlock(&dir->i_lock);
85 		return ctx;
86 	}
87 	return  ERR_PTR(-ENOMEM);
88 }
89 
90 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
91 {
92 	spin_lock(&dir->i_lock);
93 	list_del(&ctx->list);
94 	spin_unlock(&dir->i_lock);
95 	put_cred(ctx->cred);
96 	kfree(ctx);
97 }
98 
99 /*
100  * Open file
101  */
102 static int
103 nfs_opendir(struct inode *inode, struct file *filp)
104 {
105 	int res = 0;
106 	struct nfs_open_dir_context *ctx;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
113 	if (IS_ERR(ctx)) {
114 		res = PTR_ERR(ctx);
115 		goto out;
116 	}
117 	filp->private_data = ctx;
118 out:
119 	return res;
120 }
121 
122 static int
123 nfs_closedir(struct inode *inode, struct file *filp)
124 {
125 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
126 	return 0;
127 }
128 
129 struct nfs_cache_array_entry {
130 	u64 cookie;
131 	u64 ino;
132 	struct qstr string;
133 	unsigned char d_type;
134 };
135 
136 struct nfs_cache_array {
137 	int size;
138 	int eof_index;
139 	u64 last_cookie;
140 	struct nfs_cache_array_entry array[0];
141 };
142 
143 struct readdirvec {
144 	unsigned long nr;
145 	unsigned long index;
146 	struct page *pages[NFS_MAX_READDIR_RAPAGES];
147 };
148 
149 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
150 typedef struct {
151 	struct file	*file;
152 	struct page	*page;
153 	struct dir_context *ctx;
154 	unsigned long	page_index;
155 	struct readdirvec pvec;
156 	u64		*dir_cookie;
157 	u64		last_cookie;
158 	loff_t		current_index;
159 	decode_dirent_t	decode;
160 
161 	unsigned long	timestamp;
162 	unsigned long	gencount;
163 	unsigned int	cache_entry_index;
164 	bool plus;
165 	bool eof;
166 } nfs_readdir_descriptor_t;
167 
168 /*
169  * we are freeing strings created by nfs_add_to_readdir_array()
170  */
171 static
172 void nfs_readdir_clear_array(struct page *page)
173 {
174 	struct nfs_cache_array *array;
175 	int i;
176 
177 	array = kmap_atomic(page);
178 	for (i = 0; i < array->size; i++)
179 		kfree(array->array[i].string.name);
180 	kunmap_atomic(array);
181 }
182 
183 /*
184  * the caller is responsible for freeing qstr.name
185  * when called by nfs_readdir_add_to_array, the strings will be freed in
186  * nfs_clear_readdir_array()
187  */
188 static
189 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
190 {
191 	string->len = len;
192 	string->name = kmemdup(name, len, GFP_KERNEL);
193 	if (string->name == NULL)
194 		return -ENOMEM;
195 	/*
196 	 * Avoid a kmemleak false positive. The pointer to the name is stored
197 	 * in a page cache page which kmemleak does not scan.
198 	 */
199 	kmemleak_not_leak(string->name);
200 	string->hash = full_name_hash(NULL, name, len);
201 	return 0;
202 }
203 
204 static
205 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
206 {
207 	struct nfs_cache_array *array = kmap(page);
208 	struct nfs_cache_array_entry *cache_entry;
209 	int ret;
210 
211 	cache_entry = &array->array[array->size];
212 
213 	/* Check that this entry lies within the page bounds */
214 	ret = -ENOSPC;
215 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
216 		goto out;
217 
218 	cache_entry->cookie = entry->prev_cookie;
219 	cache_entry->ino = entry->ino;
220 	cache_entry->d_type = entry->d_type;
221 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
222 	if (ret)
223 		goto out;
224 	array->last_cookie = entry->cookie;
225 	array->size++;
226 	if (entry->eof != 0)
227 		array->eof_index = array->size;
228 out:
229 	kunmap(page);
230 	return ret;
231 }
232 
233 static
234 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
235 {
236 	loff_t diff = desc->ctx->pos - desc->current_index;
237 	unsigned int index;
238 
239 	if (diff < 0)
240 		goto out_eof;
241 	if (diff >= array->size) {
242 		if (array->eof_index >= 0)
243 			goto out_eof;
244 		return -EAGAIN;
245 	}
246 
247 	index = (unsigned int)diff;
248 	*desc->dir_cookie = array->array[index].cookie;
249 	desc->cache_entry_index = index;
250 	return 0;
251 out_eof:
252 	desc->eof = true;
253 	return -EBADCOOKIE;
254 }
255 
256 static bool
257 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
258 {
259 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
260 		return false;
261 	smp_rmb();
262 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
263 }
264 
265 static
266 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
267 {
268 	int i;
269 	loff_t new_pos;
270 	int status = -EAGAIN;
271 
272 	for (i = 0; i < array->size; i++) {
273 		if (array->array[i].cookie == *desc->dir_cookie) {
274 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
275 			struct nfs_open_dir_context *ctx = desc->file->private_data;
276 
277 			new_pos = desc->current_index + i;
278 			if (ctx->attr_gencount != nfsi->attr_gencount ||
279 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
280 				ctx->duped = 0;
281 				ctx->attr_gencount = nfsi->attr_gencount;
282 			} else if (new_pos < desc->ctx->pos) {
283 				if (ctx->duped > 0
284 				    && ctx->dup_cookie == *desc->dir_cookie) {
285 					if (printk_ratelimit()) {
286 						pr_notice("NFS: directory %pD2 contains a readdir loop."
287 								"Please contact your server vendor.  "
288 								"The file: %.*s has duplicate cookie %llu\n",
289 								desc->file, array->array[i].string.len,
290 								array->array[i].string.name, *desc->dir_cookie);
291 					}
292 					status = -ELOOP;
293 					goto out;
294 				}
295 				ctx->dup_cookie = *desc->dir_cookie;
296 				ctx->duped = -1;
297 			}
298 			desc->ctx->pos = new_pos;
299 			desc->cache_entry_index = i;
300 			return 0;
301 		}
302 	}
303 	if (array->eof_index >= 0) {
304 		status = -EBADCOOKIE;
305 		if (*desc->dir_cookie == array->last_cookie)
306 			desc->eof = true;
307 	}
308 out:
309 	return status;
310 }
311 
312 static
313 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
314 {
315 	struct nfs_cache_array *array;
316 	int status;
317 
318 	array = kmap(desc->page);
319 
320 	if (*desc->dir_cookie == 0)
321 		status = nfs_readdir_search_for_pos(array, desc);
322 	else
323 		status = nfs_readdir_search_for_cookie(array, desc);
324 
325 	if (status == -EAGAIN) {
326 		desc->last_cookie = array->last_cookie;
327 		desc->current_index += array->size;
328 		desc->page_index++;
329 	}
330 	kunmap(desc->page);
331 	return status;
332 }
333 
334 /* Fill a page with xdr information before transferring to the cache page */
335 static
336 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
337 			struct nfs_entry *entry, struct file *file, struct inode *inode)
338 {
339 	struct nfs_open_dir_context *ctx = file->private_data;
340 	const struct cred *cred = ctx->cred;
341 	unsigned long	timestamp, gencount;
342 	int		error;
343 
344  again:
345 	timestamp = jiffies;
346 	gencount = nfs_inc_attr_generation_counter();
347 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
348 					  NFS_SERVER(inode)->dtsize, desc->plus);
349 	if (error < 0) {
350 		/* We requested READDIRPLUS, but the server doesn't grok it */
351 		if (error == -ENOTSUPP && desc->plus) {
352 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
353 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
354 			desc->plus = false;
355 			goto again;
356 		}
357 		goto error;
358 	}
359 	desc->timestamp = timestamp;
360 	desc->gencount = gencount;
361 error:
362 	return error;
363 }
364 
365 static int xdr_decode(nfs_readdir_descriptor_t *desc,
366 		      struct nfs_entry *entry, struct xdr_stream *xdr)
367 {
368 	int error;
369 
370 	error = desc->decode(xdr, entry, desc->plus);
371 	if (error)
372 		return error;
373 	entry->fattr->time_start = desc->timestamp;
374 	entry->fattr->gencount = desc->gencount;
375 	return 0;
376 }
377 
378 /* Match file and dirent using either filehandle or fileid
379  * Note: caller is responsible for checking the fsid
380  */
381 static
382 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
383 {
384 	struct inode *inode;
385 	struct nfs_inode *nfsi;
386 
387 	if (d_really_is_negative(dentry))
388 		return 0;
389 
390 	inode = d_inode(dentry);
391 	if (is_bad_inode(inode) || NFS_STALE(inode))
392 		return 0;
393 
394 	nfsi = NFS_I(inode);
395 	if (entry->fattr->fileid != nfsi->fileid)
396 		return 0;
397 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
398 		return 0;
399 	return 1;
400 }
401 
402 static
403 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
404 {
405 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
406 		return false;
407 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
408 		return true;
409 	if (ctx->pos == 0)
410 		return true;
411 	return false;
412 }
413 
414 /*
415  * This function is called by the lookup and getattr code to request the
416  * use of readdirplus to accelerate any future lookups in the same
417  * directory.
418  */
419 void nfs_advise_use_readdirplus(struct inode *dir)
420 {
421 	struct nfs_inode *nfsi = NFS_I(dir);
422 
423 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
424 	    !list_empty(&nfsi->open_files))
425 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
426 }
427 
428 /*
429  * This function is mainly for use by nfs_getattr().
430  *
431  * If this is an 'ls -l', we want to force use of readdirplus.
432  * Do this by checking if there is an active file descriptor
433  * and calling nfs_advise_use_readdirplus, then forcing a
434  * cache flush.
435  */
436 void nfs_force_use_readdirplus(struct inode *dir)
437 {
438 	struct nfs_inode *nfsi = NFS_I(dir);
439 
440 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
441 	    !list_empty(&nfsi->open_files)) {
442 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
443 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
444 	}
445 }
446 
447 static
448 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
449 {
450 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
451 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
452 	struct dentry *dentry;
453 	struct dentry *alias;
454 	struct inode *dir = d_inode(parent);
455 	struct inode *inode;
456 	int status;
457 
458 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
459 		return;
460 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
461 		return;
462 	if (filename.len == 0)
463 		return;
464 	/* Validate that the name doesn't contain any illegal '\0' */
465 	if (strnlen(filename.name, filename.len) != filename.len)
466 		return;
467 	/* ...or '/' */
468 	if (strnchr(filename.name, filename.len, '/'))
469 		return;
470 	if (filename.name[0] == '.') {
471 		if (filename.len == 1)
472 			return;
473 		if (filename.len == 2 && filename.name[1] == '.')
474 			return;
475 	}
476 	filename.hash = full_name_hash(parent, filename.name, filename.len);
477 
478 	dentry = d_lookup(parent, &filename);
479 again:
480 	if (!dentry) {
481 		dentry = d_alloc_parallel(parent, &filename, &wq);
482 		if (IS_ERR(dentry))
483 			return;
484 	}
485 	if (!d_in_lookup(dentry)) {
486 		/* Is there a mountpoint here? If so, just exit */
487 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
488 					&entry->fattr->fsid))
489 			goto out;
490 		if (nfs_same_file(dentry, entry)) {
491 			if (!entry->fh->size)
492 				goto out;
493 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
494 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
495 			if (!status)
496 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
497 			goto out;
498 		} else {
499 			d_invalidate(dentry);
500 			dput(dentry);
501 			dentry = NULL;
502 			goto again;
503 		}
504 	}
505 	if (!entry->fh->size) {
506 		d_lookup_done(dentry);
507 		goto out;
508 	}
509 
510 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
511 	alias = d_splice_alias(inode, dentry);
512 	d_lookup_done(dentry);
513 	if (alias) {
514 		if (IS_ERR(alias))
515 			goto out;
516 		dput(dentry);
517 		dentry = alias;
518 	}
519 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
520 out:
521 	dput(dentry);
522 }
523 
524 /* Perform conversion from xdr to cache array */
525 static
526 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
527 				struct page **xdr_pages, struct page *page, unsigned int buflen)
528 {
529 	struct xdr_stream stream;
530 	struct xdr_buf buf;
531 	struct page *scratch;
532 	struct nfs_cache_array *array;
533 	unsigned int count = 0;
534 	int status;
535 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
536 
537 	desc->pvec.index = desc->page_index;
538 	desc->pvec.nr = 0;
539 
540 	scratch = alloc_page(GFP_KERNEL);
541 	if (scratch == NULL)
542 		return -ENOMEM;
543 
544 	if (buflen == 0)
545 		goto out_nopages;
546 
547 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
548 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
549 
550 	do {
551 		status = xdr_decode(desc, entry, &stream);
552 		if (status != 0) {
553 			if (status == -EAGAIN)
554 				status = 0;
555 			break;
556 		}
557 
558 		count++;
559 
560 		if (desc->plus)
561 			nfs_prime_dcache(file_dentry(desc->file), entry);
562 
563 		status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
564 		if (status == -ENOSPC) {
565 			desc->pvec.nr++;
566 			if (desc->pvec.nr == max_rapages)
567 				break;
568 			status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
569 		}
570 		if (status != 0)
571 			break;
572 	} while (!entry->eof);
573 
574 	/*
575 	 * page and desc->pvec.pages[0] are valid, don't need to check
576 	 * whether or not to be NULL.
577 	 */
578 	copy_highpage(page, desc->pvec.pages[0]);
579 
580 out_nopages:
581 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
582 		array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]);
583 		array->eof_index = array->size;
584 		status = 0;
585 		kunmap_atomic(array);
586 	}
587 
588 	put_page(scratch);
589 
590 	/*
591 	 * desc->pvec.nr > 0 means at least one page was completely filled,
592 	 * we should return -ENOSPC. Otherwise function
593 	 * nfs_readdir_xdr_to_array will enter infinite loop.
594 	 */
595 	if (desc->pvec.nr > 0)
596 		return -ENOSPC;
597 	return status;
598 }
599 
600 static
601 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
602 {
603 	unsigned int i;
604 	for (i = 0; i < npages; i++)
605 		put_page(pages[i]);
606 }
607 
608 /*
609  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
610  * to nfs_readdir_free_pages()
611  */
612 static
613 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
614 {
615 	unsigned int i;
616 
617 	for (i = 0; i < npages; i++) {
618 		struct page *page = alloc_page(GFP_KERNEL);
619 		if (page == NULL)
620 			goto out_freepages;
621 		pages[i] = page;
622 	}
623 	return 0;
624 
625 out_freepages:
626 	nfs_readdir_free_pages(pages, i);
627 	return -ENOMEM;
628 }
629 
630 /*
631  * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure.
632  */
633 static
634 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc)
635 {
636 	struct nfs_cache_array *array;
637 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
638 	int index;
639 
640 	for (index = 0; index < max_rapages; index++) {
641 		array = kmap_atomic(desc->pvec.pages[index]);
642 		memset(array, 0, sizeof(struct nfs_cache_array));
643 		array->eof_index = -1;
644 		kunmap_atomic(array);
645 	}
646 }
647 
648 static
649 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
650 {
651 	struct page *pages[NFS_MAX_READDIR_PAGES];
652 	struct nfs_entry entry;
653 	struct file	*file = desc->file;
654 	struct nfs_cache_array *array;
655 	int status = -ENOMEM;
656 	unsigned int array_size = ARRAY_SIZE(pages);
657 
658 	/*
659 	 * This means we hit readdir rdpages miss, the preallocated rdpages
660 	 * are useless, the preallocate rdpages should be reinitialized.
661 	 */
662 	nfs_readdir_rapages_init(desc);
663 
664 	entry.prev_cookie = 0;
665 	entry.cookie = desc->last_cookie;
666 	entry.eof = 0;
667 	entry.fh = nfs_alloc_fhandle();
668 	entry.fattr = nfs_alloc_fattr();
669 	entry.server = NFS_SERVER(inode);
670 	if (entry.fh == NULL || entry.fattr == NULL)
671 		goto out;
672 
673 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
674 	if (IS_ERR(entry.label)) {
675 		status = PTR_ERR(entry.label);
676 		goto out;
677 	}
678 
679 	array = kmap(page);
680 	memset(array, 0, sizeof(struct nfs_cache_array));
681 	array->eof_index = -1;
682 
683 	status = nfs_readdir_alloc_pages(pages, array_size);
684 	if (status < 0)
685 		goto out_release_array;
686 	do {
687 		unsigned int pglen;
688 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
689 
690 		if (status < 0)
691 			break;
692 		pglen = status;
693 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
694 		if (status < 0) {
695 			if (status == -ENOSPC)
696 				status = 0;
697 			break;
698 		}
699 	} while (array->eof_index < 0);
700 
701 	nfs_readdir_free_pages(pages, array_size);
702 out_release_array:
703 	kunmap(page);
704 	nfs4_label_free(entry.label);
705 out:
706 	nfs_free_fattr(entry.fattr);
707 	nfs_free_fhandle(entry.fh);
708 	return status;
709 }
710 
711 /*
712  * Now we cache directories properly, by converting xdr information
713  * to an array that can be used for lookups later.  This results in
714  * fewer cache pages, since we can store more information on each page.
715  * We only need to convert from xdr once so future lookups are much simpler
716  */
717 static
718 int nfs_readdir_filler(void *data, struct page* page)
719 {
720 	nfs_readdir_descriptor_t *desc = data;
721 	struct inode	*inode = file_inode(desc->file);
722 	int ret;
723 
724 	/*
725 	 * If desc->page_index in range desc->pvec.index and
726 	 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit.
727 	 */
728 	if (desc->page_index >= desc->pvec.index &&
729 		desc->page_index < (desc->pvec.index + desc->pvec.nr)) {
730 		/*
731 		 * page and desc->pvec.pages[x] are valid, don't need to check
732 		 * whether or not to be NULL.
733 		 */
734 		copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]);
735 		ret = 0;
736 	} else {
737 		ret = nfs_readdir_xdr_to_array(desc, page, inode);
738 		if (ret < 0)
739 			goto error;
740 	}
741 
742 	SetPageUptodate(page);
743 
744 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
745 		/* Should never happen */
746 		nfs_zap_mapping(inode, inode->i_mapping);
747 	}
748 	unlock_page(page);
749 	return 0;
750  error:
751 	unlock_page(page);
752 	return ret;
753 }
754 
755 static
756 void cache_page_release(nfs_readdir_descriptor_t *desc)
757 {
758 	if (!desc->page->mapping)
759 		nfs_readdir_clear_array(desc->page);
760 	put_page(desc->page);
761 	desc->page = NULL;
762 }
763 
764 static
765 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
766 {
767 	return read_cache_page(desc->file->f_mapping, desc->page_index,
768 			nfs_readdir_filler, desc);
769 }
770 
771 /*
772  * Returns 0 if desc->dir_cookie was found on page desc->page_index
773  */
774 static
775 int find_cache_page(nfs_readdir_descriptor_t *desc)
776 {
777 	int res;
778 
779 	desc->page = get_cache_page(desc);
780 	if (IS_ERR(desc->page))
781 		return PTR_ERR(desc->page);
782 
783 	res = nfs_readdir_search_array(desc);
784 	if (res != 0)
785 		cache_page_release(desc);
786 	return res;
787 }
788 
789 /* Search for desc->dir_cookie from the beginning of the page cache */
790 static inline
791 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
792 {
793 	int res;
794 
795 	if (desc->page_index == 0) {
796 		desc->current_index = 0;
797 		desc->last_cookie = 0;
798 	}
799 	do {
800 		res = find_cache_page(desc);
801 	} while (res == -EAGAIN);
802 	return res;
803 }
804 
805 /*
806  * Once we've found the start of the dirent within a page: fill 'er up...
807  */
808 static
809 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
810 {
811 	struct file	*file = desc->file;
812 	int i = 0;
813 	int res = 0;
814 	struct nfs_cache_array *array = NULL;
815 	struct nfs_open_dir_context *ctx = file->private_data;
816 
817 	array = kmap(desc->page);
818 	for (i = desc->cache_entry_index; i < array->size; i++) {
819 		struct nfs_cache_array_entry *ent;
820 
821 		ent = &array->array[i];
822 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
823 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
824 			desc->eof = true;
825 			break;
826 		}
827 		desc->ctx->pos++;
828 		if (i < (array->size-1))
829 			*desc->dir_cookie = array->array[i+1].cookie;
830 		else
831 			*desc->dir_cookie = array->last_cookie;
832 		if (ctx->duped != 0)
833 			ctx->duped = 1;
834 	}
835 	if (array->eof_index >= 0)
836 		desc->eof = true;
837 
838 	kunmap(desc->page);
839 	cache_page_release(desc);
840 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
841 			(unsigned long long)*desc->dir_cookie, res);
842 	return res;
843 }
844 
845 /*
846  * If we cannot find a cookie in our cache, we suspect that this is
847  * because it points to a deleted file, so we ask the server to return
848  * whatever it thinks is the next entry. We then feed this to filldir.
849  * If all goes well, we should then be able to find our way round the
850  * cache on the next call to readdir_search_pagecache();
851  *
852  * NOTE: we cannot add the anonymous page to the pagecache because
853  *	 the data it contains might not be page aligned. Besides,
854  *	 we should already have a complete representation of the
855  *	 directory in the page cache by the time we get here.
856  */
857 static inline
858 int uncached_readdir(nfs_readdir_descriptor_t *desc)
859 {
860 	struct page	*page = NULL;
861 	int		status;
862 	struct inode *inode = file_inode(desc->file);
863 	struct nfs_open_dir_context *ctx = desc->file->private_data;
864 
865 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
866 			(unsigned long long)*desc->dir_cookie);
867 
868 	page = alloc_page(GFP_HIGHUSER);
869 	if (!page) {
870 		status = -ENOMEM;
871 		goto out;
872 	}
873 
874 	desc->page_index = 0;
875 	desc->last_cookie = *desc->dir_cookie;
876 	desc->page = page;
877 	ctx->duped = 0;
878 
879 	status = nfs_readdir_xdr_to_array(desc, page, inode);
880 	if (status < 0)
881 		goto out_release;
882 
883 	status = nfs_do_filldir(desc);
884 
885  out:
886 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
887 			__func__, status);
888 	return status;
889  out_release:
890 	cache_page_release(desc);
891 	goto out;
892 }
893 
894 /* The file offset position represents the dirent entry number.  A
895    last cookie cache takes care of the common case of reading the
896    whole directory.
897  */
898 static int nfs_readdir(struct file *file, struct dir_context *ctx)
899 {
900 	struct dentry	*dentry = file_dentry(file);
901 	struct inode	*inode = d_inode(dentry);
902 	nfs_readdir_descriptor_t my_desc,
903 			*desc = &my_desc;
904 	struct nfs_open_dir_context *dir_ctx = file->private_data;
905 	int res = 0;
906 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
907 
908 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
909 			file, (long long)ctx->pos);
910 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
911 
912 	/*
913 	 * ctx->pos points to the dirent entry number.
914 	 * *desc->dir_cookie has the cookie for the next entry. We have
915 	 * to either find the entry with the appropriate number or
916 	 * revalidate the cookie.
917 	 */
918 	memset(desc, 0, sizeof(*desc));
919 
920 	desc->file = file;
921 	desc->ctx = ctx;
922 	desc->dir_cookie = &dir_ctx->dir_cookie;
923 	desc->decode = NFS_PROTO(inode)->decode_dirent;
924 	desc->plus = nfs_use_readdirplus(inode, ctx);
925 
926 	res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages);
927 	if (res < 0)
928 		return -ENOMEM;
929 
930 	nfs_readdir_rapages_init(desc);
931 
932 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
933 		res = nfs_revalidate_mapping(inode, file->f_mapping);
934 	if (res < 0)
935 		goto out;
936 
937 	do {
938 		res = readdir_search_pagecache(desc);
939 
940 		if (res == -EBADCOOKIE) {
941 			res = 0;
942 			/* This means either end of directory */
943 			if (*desc->dir_cookie && !desc->eof) {
944 				/* Or that the server has 'lost' a cookie */
945 				res = uncached_readdir(desc);
946 				if (res == 0)
947 					continue;
948 			}
949 			break;
950 		}
951 		if (res == -ETOOSMALL && desc->plus) {
952 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
953 			nfs_zap_caches(inode);
954 			desc->page_index = 0;
955 			desc->plus = false;
956 			desc->eof = false;
957 			continue;
958 		}
959 		if (res < 0)
960 			break;
961 
962 		res = nfs_do_filldir(desc);
963 		if (res < 0)
964 			break;
965 	} while (!desc->eof);
966 out:
967 	nfs_readdir_free_pages(desc->pvec.pages, max_rapages);
968 	if (res > 0)
969 		res = 0;
970 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
971 	return res;
972 }
973 
974 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
975 {
976 	struct inode *inode = file_inode(filp);
977 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
978 
979 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
980 			filp, offset, whence);
981 
982 	switch (whence) {
983 	default:
984 		return -EINVAL;
985 	case SEEK_SET:
986 		if (offset < 0)
987 			return -EINVAL;
988 		inode_lock(inode);
989 		break;
990 	case SEEK_CUR:
991 		if (offset == 0)
992 			return filp->f_pos;
993 		inode_lock(inode);
994 		offset += filp->f_pos;
995 		if (offset < 0) {
996 			inode_unlock(inode);
997 			return -EINVAL;
998 		}
999 	}
1000 	if (offset != filp->f_pos) {
1001 		filp->f_pos = offset;
1002 		dir_ctx->dir_cookie = 0;
1003 		dir_ctx->duped = 0;
1004 	}
1005 	inode_unlock(inode);
1006 	return offset;
1007 }
1008 
1009 /*
1010  * All directory operations under NFS are synchronous, so fsync()
1011  * is a dummy operation.
1012  */
1013 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1014 			 int datasync)
1015 {
1016 	struct inode *inode = file_inode(filp);
1017 
1018 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1019 
1020 	inode_lock(inode);
1021 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1022 	inode_unlock(inode);
1023 	return 0;
1024 }
1025 
1026 /**
1027  * nfs_force_lookup_revalidate - Mark the directory as having changed
1028  * @dir: pointer to directory inode
1029  *
1030  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1031  * full lookup on all child dentries of 'dir' whenever a change occurs
1032  * on the server that might have invalidated our dcache.
1033  *
1034  * The caller should be holding dir->i_lock
1035  */
1036 void nfs_force_lookup_revalidate(struct inode *dir)
1037 {
1038 	NFS_I(dir)->cache_change_attribute++;
1039 }
1040 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1041 
1042 /*
1043  * A check for whether or not the parent directory has changed.
1044  * In the case it has, we assume that the dentries are untrustworthy
1045  * and may need to be looked up again.
1046  * If rcu_walk prevents us from performing a full check, return 0.
1047  */
1048 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1049 			      int rcu_walk)
1050 {
1051 	if (IS_ROOT(dentry))
1052 		return 1;
1053 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1054 		return 0;
1055 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1056 		return 0;
1057 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1058 	if (nfs_mapping_need_revalidate_inode(dir)) {
1059 		if (rcu_walk)
1060 			return 0;
1061 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1062 			return 0;
1063 	}
1064 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1065 		return 0;
1066 	return 1;
1067 }
1068 
1069 /*
1070  * Use intent information to check whether or not we're going to do
1071  * an O_EXCL create using this path component.
1072  */
1073 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1074 {
1075 	if (NFS_PROTO(dir)->version == 2)
1076 		return 0;
1077 	return flags & LOOKUP_EXCL;
1078 }
1079 
1080 /*
1081  * Inode and filehandle revalidation for lookups.
1082  *
1083  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1084  * or if the intent information indicates that we're about to open this
1085  * particular file and the "nocto" mount flag is not set.
1086  *
1087  */
1088 static
1089 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1090 {
1091 	struct nfs_server *server = NFS_SERVER(inode);
1092 	int ret;
1093 
1094 	if (IS_AUTOMOUNT(inode))
1095 		return 0;
1096 
1097 	if (flags & LOOKUP_OPEN) {
1098 		switch (inode->i_mode & S_IFMT) {
1099 		case S_IFREG:
1100 			/* A NFSv4 OPEN will revalidate later */
1101 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1102 				goto out;
1103 			/* Fallthrough */
1104 		case S_IFDIR:
1105 			if (server->flags & NFS_MOUNT_NOCTO)
1106 				break;
1107 			/* NFS close-to-open cache consistency validation */
1108 			goto out_force;
1109 		}
1110 	}
1111 
1112 	/* VFS wants an on-the-wire revalidation */
1113 	if (flags & LOOKUP_REVAL)
1114 		goto out_force;
1115 out:
1116 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1117 out_force:
1118 	if (flags & LOOKUP_RCU)
1119 		return -ECHILD;
1120 	ret = __nfs_revalidate_inode(server, inode);
1121 	if (ret != 0)
1122 		return ret;
1123 	goto out;
1124 }
1125 
1126 /*
1127  * We judge how long we want to trust negative
1128  * dentries by looking at the parent inode mtime.
1129  *
1130  * If parent mtime has changed, we revalidate, else we wait for a
1131  * period corresponding to the parent's attribute cache timeout value.
1132  *
1133  * If LOOKUP_RCU prevents us from performing a full check, return 1
1134  * suggesting a reval is needed.
1135  *
1136  * Note that when creating a new file, or looking up a rename target,
1137  * then it shouldn't be necessary to revalidate a negative dentry.
1138  */
1139 static inline
1140 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1141 		       unsigned int flags)
1142 {
1143 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1144 		return 0;
1145 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1146 		return 1;
1147 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1148 }
1149 
1150 static int
1151 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1152 			   struct inode *inode, int error)
1153 {
1154 	switch (error) {
1155 	case 1:
1156 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1157 			__func__, dentry);
1158 		return 1;
1159 	case 0:
1160 		nfs_mark_for_revalidate(dir);
1161 		if (inode && S_ISDIR(inode->i_mode)) {
1162 			/* Purge readdir caches. */
1163 			nfs_zap_caches(inode);
1164 			/*
1165 			 * We can't d_drop the root of a disconnected tree:
1166 			 * its d_hash is on the s_anon list and d_drop() would hide
1167 			 * it from shrink_dcache_for_unmount(), leading to busy
1168 			 * inodes on unmount and further oopses.
1169 			 */
1170 			if (IS_ROOT(dentry))
1171 				return 1;
1172 		}
1173 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1174 				__func__, dentry);
1175 		return 0;
1176 	}
1177 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1178 				__func__, dentry, error);
1179 	return error;
1180 }
1181 
1182 static int
1183 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1184 			       unsigned int flags)
1185 {
1186 	int ret = 1;
1187 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1188 		if (flags & LOOKUP_RCU)
1189 			return -ECHILD;
1190 		ret = 0;
1191 	}
1192 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1193 }
1194 
1195 static int
1196 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1197 				struct inode *inode)
1198 {
1199 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1200 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1201 }
1202 
1203 static int
1204 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1205 			     struct inode *inode)
1206 {
1207 	struct nfs_fh *fhandle;
1208 	struct nfs_fattr *fattr;
1209 	struct nfs4_label *label;
1210 	int ret;
1211 
1212 	ret = -ENOMEM;
1213 	fhandle = nfs_alloc_fhandle();
1214 	fattr = nfs_alloc_fattr();
1215 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1216 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1217 		goto out;
1218 
1219 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1220 	if (ret < 0) {
1221 		if (ret == -ESTALE || ret == -ENOENT)
1222 			ret = 0;
1223 		goto out;
1224 	}
1225 	ret = 0;
1226 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1227 		goto out;
1228 	if (nfs_refresh_inode(inode, fattr) < 0)
1229 		goto out;
1230 
1231 	nfs_setsecurity(inode, fattr, label);
1232 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1233 
1234 	/* set a readdirplus hint that we had a cache miss */
1235 	nfs_force_use_readdirplus(dir);
1236 	ret = 1;
1237 out:
1238 	nfs_free_fattr(fattr);
1239 	nfs_free_fhandle(fhandle);
1240 	nfs4_label_free(label);
1241 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1242 }
1243 
1244 /*
1245  * This is called every time the dcache has a lookup hit,
1246  * and we should check whether we can really trust that
1247  * lookup.
1248  *
1249  * NOTE! The hit can be a negative hit too, don't assume
1250  * we have an inode!
1251  *
1252  * If the parent directory is seen to have changed, we throw out the
1253  * cached dentry and do a new lookup.
1254  */
1255 static int
1256 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1257 			 unsigned int flags)
1258 {
1259 	struct inode *inode;
1260 	int error;
1261 
1262 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1263 	inode = d_inode(dentry);
1264 
1265 	if (!inode)
1266 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1267 
1268 	if (is_bad_inode(inode)) {
1269 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1270 				__func__, dentry);
1271 		goto out_bad;
1272 	}
1273 
1274 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1275 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1276 
1277 	/* Force a full look up iff the parent directory has changed */
1278 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1279 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1280 		error = nfs_lookup_verify_inode(inode, flags);
1281 		if (error) {
1282 			if (error == -ESTALE)
1283 				nfs_zap_caches(dir);
1284 			goto out_bad;
1285 		}
1286 		nfs_advise_use_readdirplus(dir);
1287 		goto out_valid;
1288 	}
1289 
1290 	if (flags & LOOKUP_RCU)
1291 		return -ECHILD;
1292 
1293 	if (NFS_STALE(inode))
1294 		goto out_bad;
1295 
1296 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1297 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1298 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1299 	return error;
1300 out_valid:
1301 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1302 out_bad:
1303 	if (flags & LOOKUP_RCU)
1304 		return -ECHILD;
1305 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1306 }
1307 
1308 static int
1309 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1310 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1311 {
1312 	struct dentry *parent;
1313 	struct inode *dir;
1314 	int ret;
1315 
1316 	if (flags & LOOKUP_RCU) {
1317 		parent = READ_ONCE(dentry->d_parent);
1318 		dir = d_inode_rcu(parent);
1319 		if (!dir)
1320 			return -ECHILD;
1321 		ret = reval(dir, dentry, flags);
1322 		if (parent != READ_ONCE(dentry->d_parent))
1323 			return -ECHILD;
1324 	} else {
1325 		parent = dget_parent(dentry);
1326 		ret = reval(d_inode(parent), dentry, flags);
1327 		dput(parent);
1328 	}
1329 	return ret;
1330 }
1331 
1332 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1333 {
1334 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1335 }
1336 
1337 /*
1338  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1339  * when we don't really care about the dentry name. This is called when a
1340  * pathwalk ends on a dentry that was not found via a normal lookup in the
1341  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1342  *
1343  * In this situation, we just want to verify that the inode itself is OK
1344  * since the dentry might have changed on the server.
1345  */
1346 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1347 {
1348 	struct inode *inode = d_inode(dentry);
1349 	int error = 0;
1350 
1351 	/*
1352 	 * I believe we can only get a negative dentry here in the case of a
1353 	 * procfs-style symlink. Just assume it's correct for now, but we may
1354 	 * eventually need to do something more here.
1355 	 */
1356 	if (!inode) {
1357 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1358 				__func__, dentry);
1359 		return 1;
1360 	}
1361 
1362 	if (is_bad_inode(inode)) {
1363 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1364 				__func__, dentry);
1365 		return 0;
1366 	}
1367 
1368 	error = nfs_lookup_verify_inode(inode, flags);
1369 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1370 			__func__, inode->i_ino, error ? "invalid" : "valid");
1371 	return !error;
1372 }
1373 
1374 /*
1375  * This is called from dput() when d_count is going to 0.
1376  */
1377 static int nfs_dentry_delete(const struct dentry *dentry)
1378 {
1379 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1380 		dentry, dentry->d_flags);
1381 
1382 	/* Unhash any dentry with a stale inode */
1383 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1384 		return 1;
1385 
1386 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1387 		/* Unhash it, so that ->d_iput() would be called */
1388 		return 1;
1389 	}
1390 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1391 		/* Unhash it, so that ancestors of killed async unlink
1392 		 * files will be cleaned up during umount */
1393 		return 1;
1394 	}
1395 	return 0;
1396 
1397 }
1398 
1399 /* Ensure that we revalidate inode->i_nlink */
1400 static void nfs_drop_nlink(struct inode *inode)
1401 {
1402 	spin_lock(&inode->i_lock);
1403 	/* drop the inode if we're reasonably sure this is the last link */
1404 	if (inode->i_nlink > 0)
1405 		drop_nlink(inode);
1406 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1407 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1408 		| NFS_INO_INVALID_CTIME
1409 		| NFS_INO_INVALID_OTHER
1410 		| NFS_INO_REVAL_FORCED;
1411 	spin_unlock(&inode->i_lock);
1412 }
1413 
1414 /*
1415  * Called when the dentry loses inode.
1416  * We use it to clean up silly-renamed files.
1417  */
1418 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1419 {
1420 	if (S_ISDIR(inode->i_mode))
1421 		/* drop any readdir cache as it could easily be old */
1422 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1423 
1424 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1425 		nfs_complete_unlink(dentry, inode);
1426 		nfs_drop_nlink(inode);
1427 	}
1428 	iput(inode);
1429 }
1430 
1431 static void nfs_d_release(struct dentry *dentry)
1432 {
1433 	/* free cached devname value, if it survived that far */
1434 	if (unlikely(dentry->d_fsdata)) {
1435 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1436 			WARN_ON(1);
1437 		else
1438 			kfree(dentry->d_fsdata);
1439 	}
1440 }
1441 
1442 const struct dentry_operations nfs_dentry_operations = {
1443 	.d_revalidate	= nfs_lookup_revalidate,
1444 	.d_weak_revalidate	= nfs_weak_revalidate,
1445 	.d_delete	= nfs_dentry_delete,
1446 	.d_iput		= nfs_dentry_iput,
1447 	.d_automount	= nfs_d_automount,
1448 	.d_release	= nfs_d_release,
1449 };
1450 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1451 
1452 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1453 {
1454 	struct dentry *res;
1455 	struct inode *inode = NULL;
1456 	struct nfs_fh *fhandle = NULL;
1457 	struct nfs_fattr *fattr = NULL;
1458 	struct nfs4_label *label = NULL;
1459 	int error;
1460 
1461 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1462 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1463 
1464 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1465 		return ERR_PTR(-ENAMETOOLONG);
1466 
1467 	/*
1468 	 * If we're doing an exclusive create, optimize away the lookup
1469 	 * but don't hash the dentry.
1470 	 */
1471 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1472 		return NULL;
1473 
1474 	res = ERR_PTR(-ENOMEM);
1475 	fhandle = nfs_alloc_fhandle();
1476 	fattr = nfs_alloc_fattr();
1477 	if (fhandle == NULL || fattr == NULL)
1478 		goto out;
1479 
1480 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1481 	if (IS_ERR(label))
1482 		goto out;
1483 
1484 	trace_nfs_lookup_enter(dir, dentry, flags);
1485 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1486 	if (error == -ENOENT)
1487 		goto no_entry;
1488 	if (error < 0) {
1489 		res = ERR_PTR(error);
1490 		goto out_label;
1491 	}
1492 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1493 	res = ERR_CAST(inode);
1494 	if (IS_ERR(res))
1495 		goto out_label;
1496 
1497 	/* Notify readdir to use READDIRPLUS */
1498 	nfs_force_use_readdirplus(dir);
1499 
1500 no_entry:
1501 	res = d_splice_alias(inode, dentry);
1502 	if (res != NULL) {
1503 		if (IS_ERR(res))
1504 			goto out_label;
1505 		dentry = res;
1506 	}
1507 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1508 out_label:
1509 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1510 	nfs4_label_free(label);
1511 out:
1512 	nfs_free_fattr(fattr);
1513 	nfs_free_fhandle(fhandle);
1514 	return res;
1515 }
1516 EXPORT_SYMBOL_GPL(nfs_lookup);
1517 
1518 #if IS_ENABLED(CONFIG_NFS_V4)
1519 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1520 
1521 const struct dentry_operations nfs4_dentry_operations = {
1522 	.d_revalidate	= nfs4_lookup_revalidate,
1523 	.d_weak_revalidate	= nfs_weak_revalidate,
1524 	.d_delete	= nfs_dentry_delete,
1525 	.d_iput		= nfs_dentry_iput,
1526 	.d_automount	= nfs_d_automount,
1527 	.d_release	= nfs_d_release,
1528 };
1529 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1530 
1531 static fmode_t flags_to_mode(int flags)
1532 {
1533 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1534 	if ((flags & O_ACCMODE) != O_WRONLY)
1535 		res |= FMODE_READ;
1536 	if ((flags & O_ACCMODE) != O_RDONLY)
1537 		res |= FMODE_WRITE;
1538 	return res;
1539 }
1540 
1541 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1542 {
1543 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1544 }
1545 
1546 static int do_open(struct inode *inode, struct file *filp)
1547 {
1548 	nfs_fscache_open_file(inode, filp);
1549 	return 0;
1550 }
1551 
1552 static int nfs_finish_open(struct nfs_open_context *ctx,
1553 			   struct dentry *dentry,
1554 			   struct file *file, unsigned open_flags)
1555 {
1556 	int err;
1557 
1558 	err = finish_open(file, dentry, do_open);
1559 	if (err)
1560 		goto out;
1561 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1562 		nfs_file_set_open_context(file, ctx);
1563 	else
1564 		err = -ESTALE;
1565 out:
1566 	return err;
1567 }
1568 
1569 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1570 		    struct file *file, unsigned open_flags,
1571 		    umode_t mode)
1572 {
1573 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1574 	struct nfs_open_context *ctx;
1575 	struct dentry *res;
1576 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1577 	struct inode *inode;
1578 	unsigned int lookup_flags = 0;
1579 	bool switched = false;
1580 	int created = 0;
1581 	int err;
1582 
1583 	/* Expect a negative dentry */
1584 	BUG_ON(d_inode(dentry));
1585 
1586 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1587 			dir->i_sb->s_id, dir->i_ino, dentry);
1588 
1589 	err = nfs_check_flags(open_flags);
1590 	if (err)
1591 		return err;
1592 
1593 	/* NFS only supports OPEN on regular files */
1594 	if ((open_flags & O_DIRECTORY)) {
1595 		if (!d_in_lookup(dentry)) {
1596 			/*
1597 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1598 			 * revalidated and is fine, no need to perform lookup
1599 			 * again
1600 			 */
1601 			return -ENOENT;
1602 		}
1603 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1604 		goto no_open;
1605 	}
1606 
1607 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1608 		return -ENAMETOOLONG;
1609 
1610 	if (open_flags & O_CREAT) {
1611 		struct nfs_server *server = NFS_SERVER(dir);
1612 
1613 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1614 			mode &= ~current_umask();
1615 
1616 		attr.ia_valid |= ATTR_MODE;
1617 		attr.ia_mode = mode;
1618 	}
1619 	if (open_flags & O_TRUNC) {
1620 		attr.ia_valid |= ATTR_SIZE;
1621 		attr.ia_size = 0;
1622 	}
1623 
1624 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1625 		d_drop(dentry);
1626 		switched = true;
1627 		dentry = d_alloc_parallel(dentry->d_parent,
1628 					  &dentry->d_name, &wq);
1629 		if (IS_ERR(dentry))
1630 			return PTR_ERR(dentry);
1631 		if (unlikely(!d_in_lookup(dentry)))
1632 			return finish_no_open(file, dentry);
1633 	}
1634 
1635 	ctx = create_nfs_open_context(dentry, open_flags, file);
1636 	err = PTR_ERR(ctx);
1637 	if (IS_ERR(ctx))
1638 		goto out;
1639 
1640 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1641 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1642 	if (created)
1643 		file->f_mode |= FMODE_CREATED;
1644 	if (IS_ERR(inode)) {
1645 		err = PTR_ERR(inode);
1646 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1647 		put_nfs_open_context(ctx);
1648 		d_drop(dentry);
1649 		switch (err) {
1650 		case -ENOENT:
1651 			d_splice_alias(NULL, dentry);
1652 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1653 			break;
1654 		case -EISDIR:
1655 		case -ENOTDIR:
1656 			goto no_open;
1657 		case -ELOOP:
1658 			if (!(open_flags & O_NOFOLLOW))
1659 				goto no_open;
1660 			break;
1661 			/* case -EINVAL: */
1662 		default:
1663 			break;
1664 		}
1665 		goto out;
1666 	}
1667 
1668 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1669 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1670 	put_nfs_open_context(ctx);
1671 out:
1672 	if (unlikely(switched)) {
1673 		d_lookup_done(dentry);
1674 		dput(dentry);
1675 	}
1676 	return err;
1677 
1678 no_open:
1679 	res = nfs_lookup(dir, dentry, lookup_flags);
1680 	if (switched) {
1681 		d_lookup_done(dentry);
1682 		if (!res)
1683 			res = dentry;
1684 		else
1685 			dput(dentry);
1686 	}
1687 	if (IS_ERR(res))
1688 		return PTR_ERR(res);
1689 	return finish_no_open(file, res);
1690 }
1691 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1692 
1693 static int
1694 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1695 			  unsigned int flags)
1696 {
1697 	struct inode *inode;
1698 
1699 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1700 		goto full_reval;
1701 	if (d_mountpoint(dentry))
1702 		goto full_reval;
1703 
1704 	inode = d_inode(dentry);
1705 
1706 	/* We can't create new files in nfs_open_revalidate(), so we
1707 	 * optimize away revalidation of negative dentries.
1708 	 */
1709 	if (inode == NULL)
1710 		goto full_reval;
1711 
1712 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1713 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1714 
1715 	/* NFS only supports OPEN on regular files */
1716 	if (!S_ISREG(inode->i_mode))
1717 		goto full_reval;
1718 
1719 	/* We cannot do exclusive creation on a positive dentry */
1720 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1721 		goto reval_dentry;
1722 
1723 	/* Check if the directory changed */
1724 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1725 		goto reval_dentry;
1726 
1727 	/* Let f_op->open() actually open (and revalidate) the file */
1728 	return 1;
1729 reval_dentry:
1730 	if (flags & LOOKUP_RCU)
1731 		return -ECHILD;
1732 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1733 
1734 full_reval:
1735 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1736 }
1737 
1738 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1739 {
1740 	return __nfs_lookup_revalidate(dentry, flags,
1741 			nfs4_do_lookup_revalidate);
1742 }
1743 
1744 #endif /* CONFIG_NFSV4 */
1745 
1746 /*
1747  * Code common to create, mkdir, and mknod.
1748  */
1749 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1750 				struct nfs_fattr *fattr,
1751 				struct nfs4_label *label)
1752 {
1753 	struct dentry *parent = dget_parent(dentry);
1754 	struct inode *dir = d_inode(parent);
1755 	struct inode *inode;
1756 	struct dentry *d;
1757 	int error = -EACCES;
1758 
1759 	d_drop(dentry);
1760 
1761 	/* We may have been initialized further down */
1762 	if (d_really_is_positive(dentry))
1763 		goto out;
1764 	if (fhandle->size == 0) {
1765 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1766 		if (error)
1767 			goto out_error;
1768 	}
1769 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1770 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1771 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1772 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1773 				fattr, NULL, NULL);
1774 		if (error < 0)
1775 			goto out_error;
1776 	}
1777 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1778 	d = d_splice_alias(inode, dentry);
1779 	if (IS_ERR(d)) {
1780 		error = PTR_ERR(d);
1781 		goto out_error;
1782 	}
1783 	dput(d);
1784 out:
1785 	dput(parent);
1786 	return 0;
1787 out_error:
1788 	nfs_mark_for_revalidate(dir);
1789 	dput(parent);
1790 	return error;
1791 }
1792 EXPORT_SYMBOL_GPL(nfs_instantiate);
1793 
1794 /*
1795  * Following a failed create operation, we drop the dentry rather
1796  * than retain a negative dentry. This avoids a problem in the event
1797  * that the operation succeeded on the server, but an error in the
1798  * reply path made it appear to have failed.
1799  */
1800 int nfs_create(struct inode *dir, struct dentry *dentry,
1801 		umode_t mode, bool excl)
1802 {
1803 	struct iattr attr;
1804 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1805 	int error;
1806 
1807 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1808 			dir->i_sb->s_id, dir->i_ino, dentry);
1809 
1810 	attr.ia_mode = mode;
1811 	attr.ia_valid = ATTR_MODE;
1812 
1813 	trace_nfs_create_enter(dir, dentry, open_flags);
1814 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1815 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1816 	if (error != 0)
1817 		goto out_err;
1818 	return 0;
1819 out_err:
1820 	d_drop(dentry);
1821 	return error;
1822 }
1823 EXPORT_SYMBOL_GPL(nfs_create);
1824 
1825 /*
1826  * See comments for nfs_proc_create regarding failed operations.
1827  */
1828 int
1829 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1830 {
1831 	struct iattr attr;
1832 	int status;
1833 
1834 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1835 			dir->i_sb->s_id, dir->i_ino, dentry);
1836 
1837 	attr.ia_mode = mode;
1838 	attr.ia_valid = ATTR_MODE;
1839 
1840 	trace_nfs_mknod_enter(dir, dentry);
1841 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1842 	trace_nfs_mknod_exit(dir, dentry, status);
1843 	if (status != 0)
1844 		goto out_err;
1845 	return 0;
1846 out_err:
1847 	d_drop(dentry);
1848 	return status;
1849 }
1850 EXPORT_SYMBOL_GPL(nfs_mknod);
1851 
1852 /*
1853  * See comments for nfs_proc_create regarding failed operations.
1854  */
1855 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1856 {
1857 	struct iattr attr;
1858 	int error;
1859 
1860 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1861 			dir->i_sb->s_id, dir->i_ino, dentry);
1862 
1863 	attr.ia_valid = ATTR_MODE;
1864 	attr.ia_mode = mode | S_IFDIR;
1865 
1866 	trace_nfs_mkdir_enter(dir, dentry);
1867 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1868 	trace_nfs_mkdir_exit(dir, dentry, error);
1869 	if (error != 0)
1870 		goto out_err;
1871 	return 0;
1872 out_err:
1873 	d_drop(dentry);
1874 	return error;
1875 }
1876 EXPORT_SYMBOL_GPL(nfs_mkdir);
1877 
1878 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1879 {
1880 	if (simple_positive(dentry))
1881 		d_delete(dentry);
1882 }
1883 
1884 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1885 {
1886 	int error;
1887 
1888 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1889 			dir->i_sb->s_id, dir->i_ino, dentry);
1890 
1891 	trace_nfs_rmdir_enter(dir, dentry);
1892 	if (d_really_is_positive(dentry)) {
1893 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1894 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1895 		/* Ensure the VFS deletes this inode */
1896 		switch (error) {
1897 		case 0:
1898 			clear_nlink(d_inode(dentry));
1899 			break;
1900 		case -ENOENT:
1901 			nfs_dentry_handle_enoent(dentry);
1902 		}
1903 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1904 	} else
1905 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1906 	trace_nfs_rmdir_exit(dir, dentry, error);
1907 
1908 	return error;
1909 }
1910 EXPORT_SYMBOL_GPL(nfs_rmdir);
1911 
1912 /*
1913  * Remove a file after making sure there are no pending writes,
1914  * and after checking that the file has only one user.
1915  *
1916  * We invalidate the attribute cache and free the inode prior to the operation
1917  * to avoid possible races if the server reuses the inode.
1918  */
1919 static int nfs_safe_remove(struct dentry *dentry)
1920 {
1921 	struct inode *dir = d_inode(dentry->d_parent);
1922 	struct inode *inode = d_inode(dentry);
1923 	int error = -EBUSY;
1924 
1925 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1926 
1927 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1928 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1929 		error = 0;
1930 		goto out;
1931 	}
1932 
1933 	trace_nfs_remove_enter(dir, dentry);
1934 	if (inode != NULL) {
1935 		error = NFS_PROTO(dir)->remove(dir, dentry);
1936 		if (error == 0)
1937 			nfs_drop_nlink(inode);
1938 	} else
1939 		error = NFS_PROTO(dir)->remove(dir, dentry);
1940 	if (error == -ENOENT)
1941 		nfs_dentry_handle_enoent(dentry);
1942 	trace_nfs_remove_exit(dir, dentry, error);
1943 out:
1944 	return error;
1945 }
1946 
1947 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1948  *  belongs to an active ".nfs..." file and we return -EBUSY.
1949  *
1950  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1951  */
1952 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1953 {
1954 	int error;
1955 	int need_rehash = 0;
1956 
1957 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1958 		dir->i_ino, dentry);
1959 
1960 	trace_nfs_unlink_enter(dir, dentry);
1961 	spin_lock(&dentry->d_lock);
1962 	if (d_count(dentry) > 1) {
1963 		spin_unlock(&dentry->d_lock);
1964 		/* Start asynchronous writeout of the inode */
1965 		write_inode_now(d_inode(dentry), 0);
1966 		error = nfs_sillyrename(dir, dentry);
1967 		goto out;
1968 	}
1969 	if (!d_unhashed(dentry)) {
1970 		__d_drop(dentry);
1971 		need_rehash = 1;
1972 	}
1973 	spin_unlock(&dentry->d_lock);
1974 	error = nfs_safe_remove(dentry);
1975 	if (!error || error == -ENOENT) {
1976 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1977 	} else if (need_rehash)
1978 		d_rehash(dentry);
1979 out:
1980 	trace_nfs_unlink_exit(dir, dentry, error);
1981 	return error;
1982 }
1983 EXPORT_SYMBOL_GPL(nfs_unlink);
1984 
1985 /*
1986  * To create a symbolic link, most file systems instantiate a new inode,
1987  * add a page to it containing the path, then write it out to the disk
1988  * using prepare_write/commit_write.
1989  *
1990  * Unfortunately the NFS client can't create the in-core inode first
1991  * because it needs a file handle to create an in-core inode (see
1992  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1993  * symlink request has completed on the server.
1994  *
1995  * So instead we allocate a raw page, copy the symname into it, then do
1996  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1997  * now have a new file handle and can instantiate an in-core NFS inode
1998  * and move the raw page into its mapping.
1999  */
2000 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2001 {
2002 	struct page *page;
2003 	char *kaddr;
2004 	struct iattr attr;
2005 	unsigned int pathlen = strlen(symname);
2006 	int error;
2007 
2008 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2009 		dir->i_ino, dentry, symname);
2010 
2011 	if (pathlen > PAGE_SIZE)
2012 		return -ENAMETOOLONG;
2013 
2014 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2015 	attr.ia_valid = ATTR_MODE;
2016 
2017 	page = alloc_page(GFP_USER);
2018 	if (!page)
2019 		return -ENOMEM;
2020 
2021 	kaddr = page_address(page);
2022 	memcpy(kaddr, symname, pathlen);
2023 	if (pathlen < PAGE_SIZE)
2024 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2025 
2026 	trace_nfs_symlink_enter(dir, dentry);
2027 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2028 	trace_nfs_symlink_exit(dir, dentry, error);
2029 	if (error != 0) {
2030 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2031 			dir->i_sb->s_id, dir->i_ino,
2032 			dentry, symname, error);
2033 		d_drop(dentry);
2034 		__free_page(page);
2035 		return error;
2036 	}
2037 
2038 	/*
2039 	 * No big deal if we can't add this page to the page cache here.
2040 	 * READLINK will get the missing page from the server if needed.
2041 	 */
2042 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2043 							GFP_KERNEL)) {
2044 		SetPageUptodate(page);
2045 		unlock_page(page);
2046 		/*
2047 		 * add_to_page_cache_lru() grabs an extra page refcount.
2048 		 * Drop it here to avoid leaking this page later.
2049 		 */
2050 		put_page(page);
2051 	} else
2052 		__free_page(page);
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(nfs_symlink);
2057 
2058 int
2059 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2060 {
2061 	struct inode *inode = d_inode(old_dentry);
2062 	int error;
2063 
2064 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2065 		old_dentry, dentry);
2066 
2067 	trace_nfs_link_enter(inode, dir, dentry);
2068 	d_drop(dentry);
2069 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2070 	if (error == 0) {
2071 		ihold(inode);
2072 		d_add(dentry, inode);
2073 	}
2074 	trace_nfs_link_exit(inode, dir, dentry, error);
2075 	return error;
2076 }
2077 EXPORT_SYMBOL_GPL(nfs_link);
2078 
2079 /*
2080  * RENAME
2081  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2082  * different file handle for the same inode after a rename (e.g. when
2083  * moving to a different directory). A fail-safe method to do so would
2084  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2085  * rename the old file using the sillyrename stuff. This way, the original
2086  * file in old_dir will go away when the last process iput()s the inode.
2087  *
2088  * FIXED.
2089  *
2090  * It actually works quite well. One needs to have the possibility for
2091  * at least one ".nfs..." file in each directory the file ever gets
2092  * moved or linked to which happens automagically with the new
2093  * implementation that only depends on the dcache stuff instead of
2094  * using the inode layer
2095  *
2096  * Unfortunately, things are a little more complicated than indicated
2097  * above. For a cross-directory move, we want to make sure we can get
2098  * rid of the old inode after the operation.  This means there must be
2099  * no pending writes (if it's a file), and the use count must be 1.
2100  * If these conditions are met, we can drop the dentries before doing
2101  * the rename.
2102  */
2103 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2104 	       struct inode *new_dir, struct dentry *new_dentry,
2105 	       unsigned int flags)
2106 {
2107 	struct inode *old_inode = d_inode(old_dentry);
2108 	struct inode *new_inode = d_inode(new_dentry);
2109 	struct dentry *dentry = NULL, *rehash = NULL;
2110 	struct rpc_task *task;
2111 	int error = -EBUSY;
2112 
2113 	if (flags)
2114 		return -EINVAL;
2115 
2116 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2117 		 old_dentry, new_dentry,
2118 		 d_count(new_dentry));
2119 
2120 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2121 	/*
2122 	 * For non-directories, check whether the target is busy and if so,
2123 	 * make a copy of the dentry and then do a silly-rename. If the
2124 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2125 	 * the new target.
2126 	 */
2127 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2128 		/*
2129 		 * To prevent any new references to the target during the
2130 		 * rename, we unhash the dentry in advance.
2131 		 */
2132 		if (!d_unhashed(new_dentry)) {
2133 			d_drop(new_dentry);
2134 			rehash = new_dentry;
2135 		}
2136 
2137 		if (d_count(new_dentry) > 2) {
2138 			int err;
2139 
2140 			/* copy the target dentry's name */
2141 			dentry = d_alloc(new_dentry->d_parent,
2142 					 &new_dentry->d_name);
2143 			if (!dentry)
2144 				goto out;
2145 
2146 			/* silly-rename the existing target ... */
2147 			err = nfs_sillyrename(new_dir, new_dentry);
2148 			if (err)
2149 				goto out;
2150 
2151 			new_dentry = dentry;
2152 			rehash = NULL;
2153 			new_inode = NULL;
2154 		}
2155 	}
2156 
2157 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2158 	if (IS_ERR(task)) {
2159 		error = PTR_ERR(task);
2160 		goto out;
2161 	}
2162 
2163 	error = rpc_wait_for_completion_task(task);
2164 	if (error != 0) {
2165 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2166 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2167 		smp_wmb();
2168 	} else
2169 		error = task->tk_status;
2170 	rpc_put_task(task);
2171 	/* Ensure the inode attributes are revalidated */
2172 	if (error == 0) {
2173 		spin_lock(&old_inode->i_lock);
2174 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2175 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2176 			| NFS_INO_INVALID_CTIME
2177 			| NFS_INO_REVAL_FORCED;
2178 		spin_unlock(&old_inode->i_lock);
2179 	}
2180 out:
2181 	if (rehash)
2182 		d_rehash(rehash);
2183 	trace_nfs_rename_exit(old_dir, old_dentry,
2184 			new_dir, new_dentry, error);
2185 	if (!error) {
2186 		if (new_inode != NULL)
2187 			nfs_drop_nlink(new_inode);
2188 		/*
2189 		 * The d_move() should be here instead of in an async RPC completion
2190 		 * handler because we need the proper locks to move the dentry.  If
2191 		 * we're interrupted by a signal, the async RPC completion handler
2192 		 * should mark the directories for revalidation.
2193 		 */
2194 		d_move(old_dentry, new_dentry);
2195 		nfs_set_verifier(old_dentry,
2196 					nfs_save_change_attribute(new_dir));
2197 	} else if (error == -ENOENT)
2198 		nfs_dentry_handle_enoent(old_dentry);
2199 
2200 	/* new dentry created? */
2201 	if (dentry)
2202 		dput(dentry);
2203 	return error;
2204 }
2205 EXPORT_SYMBOL_GPL(nfs_rename);
2206 
2207 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2208 static LIST_HEAD(nfs_access_lru_list);
2209 static atomic_long_t nfs_access_nr_entries;
2210 
2211 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2212 module_param(nfs_access_max_cachesize, ulong, 0644);
2213 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2214 
2215 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2216 {
2217 	put_cred(entry->cred);
2218 	kfree_rcu(entry, rcu_head);
2219 	smp_mb__before_atomic();
2220 	atomic_long_dec(&nfs_access_nr_entries);
2221 	smp_mb__after_atomic();
2222 }
2223 
2224 static void nfs_access_free_list(struct list_head *head)
2225 {
2226 	struct nfs_access_entry *cache;
2227 
2228 	while (!list_empty(head)) {
2229 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2230 		list_del(&cache->lru);
2231 		nfs_access_free_entry(cache);
2232 	}
2233 }
2234 
2235 static unsigned long
2236 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2237 {
2238 	LIST_HEAD(head);
2239 	struct nfs_inode *nfsi, *next;
2240 	struct nfs_access_entry *cache;
2241 	long freed = 0;
2242 
2243 	spin_lock(&nfs_access_lru_lock);
2244 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2245 		struct inode *inode;
2246 
2247 		if (nr_to_scan-- == 0)
2248 			break;
2249 		inode = &nfsi->vfs_inode;
2250 		spin_lock(&inode->i_lock);
2251 		if (list_empty(&nfsi->access_cache_entry_lru))
2252 			goto remove_lru_entry;
2253 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2254 				struct nfs_access_entry, lru);
2255 		list_move(&cache->lru, &head);
2256 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2257 		freed++;
2258 		if (!list_empty(&nfsi->access_cache_entry_lru))
2259 			list_move_tail(&nfsi->access_cache_inode_lru,
2260 					&nfs_access_lru_list);
2261 		else {
2262 remove_lru_entry:
2263 			list_del_init(&nfsi->access_cache_inode_lru);
2264 			smp_mb__before_atomic();
2265 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2266 			smp_mb__after_atomic();
2267 		}
2268 		spin_unlock(&inode->i_lock);
2269 	}
2270 	spin_unlock(&nfs_access_lru_lock);
2271 	nfs_access_free_list(&head);
2272 	return freed;
2273 }
2274 
2275 unsigned long
2276 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2277 {
2278 	int nr_to_scan = sc->nr_to_scan;
2279 	gfp_t gfp_mask = sc->gfp_mask;
2280 
2281 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2282 		return SHRINK_STOP;
2283 	return nfs_do_access_cache_scan(nr_to_scan);
2284 }
2285 
2286 
2287 unsigned long
2288 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2289 {
2290 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2291 }
2292 
2293 static void
2294 nfs_access_cache_enforce_limit(void)
2295 {
2296 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2297 	unsigned long diff;
2298 	unsigned int nr_to_scan;
2299 
2300 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2301 		return;
2302 	nr_to_scan = 100;
2303 	diff = nr_entries - nfs_access_max_cachesize;
2304 	if (diff < nr_to_scan)
2305 		nr_to_scan = diff;
2306 	nfs_do_access_cache_scan(nr_to_scan);
2307 }
2308 
2309 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2310 {
2311 	struct rb_root *root_node = &nfsi->access_cache;
2312 	struct rb_node *n;
2313 	struct nfs_access_entry *entry;
2314 
2315 	/* Unhook entries from the cache */
2316 	while ((n = rb_first(root_node)) != NULL) {
2317 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2318 		rb_erase(n, root_node);
2319 		list_move(&entry->lru, head);
2320 	}
2321 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2322 }
2323 
2324 void nfs_access_zap_cache(struct inode *inode)
2325 {
2326 	LIST_HEAD(head);
2327 
2328 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2329 		return;
2330 	/* Remove from global LRU init */
2331 	spin_lock(&nfs_access_lru_lock);
2332 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2333 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2334 
2335 	spin_lock(&inode->i_lock);
2336 	__nfs_access_zap_cache(NFS_I(inode), &head);
2337 	spin_unlock(&inode->i_lock);
2338 	spin_unlock(&nfs_access_lru_lock);
2339 	nfs_access_free_list(&head);
2340 }
2341 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2342 
2343 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2344 {
2345 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2346 
2347 	while (n != NULL) {
2348 		struct nfs_access_entry *entry =
2349 			rb_entry(n, struct nfs_access_entry, rb_node);
2350 		int cmp = cred_fscmp(cred, entry->cred);
2351 
2352 		if (cmp < 0)
2353 			n = n->rb_left;
2354 		else if (cmp > 0)
2355 			n = n->rb_right;
2356 		else
2357 			return entry;
2358 	}
2359 	return NULL;
2360 }
2361 
2362 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2363 {
2364 	struct nfs_inode *nfsi = NFS_I(inode);
2365 	struct nfs_access_entry *cache;
2366 	bool retry = true;
2367 	int err;
2368 
2369 	spin_lock(&inode->i_lock);
2370 	for(;;) {
2371 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2372 			goto out_zap;
2373 		cache = nfs_access_search_rbtree(inode, cred);
2374 		err = -ENOENT;
2375 		if (cache == NULL)
2376 			goto out;
2377 		/* Found an entry, is our attribute cache valid? */
2378 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2379 			break;
2380 		err = -ECHILD;
2381 		if (!may_block)
2382 			goto out;
2383 		if (!retry)
2384 			goto out_zap;
2385 		spin_unlock(&inode->i_lock);
2386 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2387 		if (err)
2388 			return err;
2389 		spin_lock(&inode->i_lock);
2390 		retry = false;
2391 	}
2392 	res->cred = cache->cred;
2393 	res->mask = cache->mask;
2394 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2395 	err = 0;
2396 out:
2397 	spin_unlock(&inode->i_lock);
2398 	return err;
2399 out_zap:
2400 	spin_unlock(&inode->i_lock);
2401 	nfs_access_zap_cache(inode);
2402 	return -ENOENT;
2403 }
2404 
2405 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2406 {
2407 	/* Only check the most recently returned cache entry,
2408 	 * but do it without locking.
2409 	 */
2410 	struct nfs_inode *nfsi = NFS_I(inode);
2411 	struct nfs_access_entry *cache;
2412 	int err = -ECHILD;
2413 	struct list_head *lh;
2414 
2415 	rcu_read_lock();
2416 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2417 		goto out;
2418 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2419 	cache = list_entry(lh, struct nfs_access_entry, lru);
2420 	if (lh == &nfsi->access_cache_entry_lru ||
2421 	    cred != cache->cred)
2422 		cache = NULL;
2423 	if (cache == NULL)
2424 		goto out;
2425 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2426 		goto out;
2427 	res->cred = cache->cred;
2428 	res->mask = cache->mask;
2429 	err = 0;
2430 out:
2431 	rcu_read_unlock();
2432 	return err;
2433 }
2434 
2435 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2436 {
2437 	struct nfs_inode *nfsi = NFS_I(inode);
2438 	struct rb_root *root_node = &nfsi->access_cache;
2439 	struct rb_node **p = &root_node->rb_node;
2440 	struct rb_node *parent = NULL;
2441 	struct nfs_access_entry *entry;
2442 	int cmp;
2443 
2444 	spin_lock(&inode->i_lock);
2445 	while (*p != NULL) {
2446 		parent = *p;
2447 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2448 		cmp = cred_fscmp(set->cred, entry->cred);
2449 
2450 		if (cmp < 0)
2451 			p = &parent->rb_left;
2452 		else if (cmp > 0)
2453 			p = &parent->rb_right;
2454 		else
2455 			goto found;
2456 	}
2457 	rb_link_node(&set->rb_node, parent, p);
2458 	rb_insert_color(&set->rb_node, root_node);
2459 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2460 	spin_unlock(&inode->i_lock);
2461 	return;
2462 found:
2463 	rb_replace_node(parent, &set->rb_node, root_node);
2464 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2465 	list_del(&entry->lru);
2466 	spin_unlock(&inode->i_lock);
2467 	nfs_access_free_entry(entry);
2468 }
2469 
2470 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2471 {
2472 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2473 	if (cache == NULL)
2474 		return;
2475 	RB_CLEAR_NODE(&cache->rb_node);
2476 	cache->cred = get_cred(set->cred);
2477 	cache->mask = set->mask;
2478 
2479 	/* The above field assignments must be visible
2480 	 * before this item appears on the lru.  We cannot easily
2481 	 * use rcu_assign_pointer, so just force the memory barrier.
2482 	 */
2483 	smp_wmb();
2484 	nfs_access_add_rbtree(inode, cache);
2485 
2486 	/* Update accounting */
2487 	smp_mb__before_atomic();
2488 	atomic_long_inc(&nfs_access_nr_entries);
2489 	smp_mb__after_atomic();
2490 
2491 	/* Add inode to global LRU list */
2492 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2493 		spin_lock(&nfs_access_lru_lock);
2494 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2495 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2496 					&nfs_access_lru_list);
2497 		spin_unlock(&nfs_access_lru_lock);
2498 	}
2499 	nfs_access_cache_enforce_limit();
2500 }
2501 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2502 
2503 #define NFS_MAY_READ (NFS_ACCESS_READ)
2504 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2505 		NFS_ACCESS_EXTEND | \
2506 		NFS_ACCESS_DELETE)
2507 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2508 		NFS_ACCESS_EXTEND)
2509 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2510 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2511 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2512 static int
2513 nfs_access_calc_mask(u32 access_result, umode_t umode)
2514 {
2515 	int mask = 0;
2516 
2517 	if (access_result & NFS_MAY_READ)
2518 		mask |= MAY_READ;
2519 	if (S_ISDIR(umode)) {
2520 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2521 			mask |= MAY_WRITE;
2522 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2523 			mask |= MAY_EXEC;
2524 	} else if (S_ISREG(umode)) {
2525 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2526 			mask |= MAY_WRITE;
2527 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2528 			mask |= MAY_EXEC;
2529 	} else if (access_result & NFS_MAY_WRITE)
2530 			mask |= MAY_WRITE;
2531 	return mask;
2532 }
2533 
2534 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2535 {
2536 	entry->mask = access_result;
2537 }
2538 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2539 
2540 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2541 {
2542 	struct nfs_access_entry cache;
2543 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2544 	int cache_mask;
2545 	int status;
2546 
2547 	trace_nfs_access_enter(inode);
2548 
2549 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2550 	if (status != 0)
2551 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2552 	if (status == 0)
2553 		goto out_cached;
2554 
2555 	status = -ECHILD;
2556 	if (!may_block)
2557 		goto out;
2558 
2559 	/*
2560 	 * Determine which access bits we want to ask for...
2561 	 */
2562 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2563 	if (S_ISDIR(inode->i_mode))
2564 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2565 	else
2566 		cache.mask |= NFS_ACCESS_EXECUTE;
2567 	cache.cred = cred;
2568 	status = NFS_PROTO(inode)->access(inode, &cache);
2569 	if (status != 0) {
2570 		if (status == -ESTALE) {
2571 			nfs_zap_caches(inode);
2572 			if (!S_ISDIR(inode->i_mode))
2573 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2574 		}
2575 		goto out;
2576 	}
2577 	nfs_access_add_cache(inode, &cache);
2578 out_cached:
2579 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2580 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2581 		status = -EACCES;
2582 out:
2583 	trace_nfs_access_exit(inode, status);
2584 	return status;
2585 }
2586 
2587 static int nfs_open_permission_mask(int openflags)
2588 {
2589 	int mask = 0;
2590 
2591 	if (openflags & __FMODE_EXEC) {
2592 		/* ONLY check exec rights */
2593 		mask = MAY_EXEC;
2594 	} else {
2595 		if ((openflags & O_ACCMODE) != O_WRONLY)
2596 			mask |= MAY_READ;
2597 		if ((openflags & O_ACCMODE) != O_RDONLY)
2598 			mask |= MAY_WRITE;
2599 	}
2600 
2601 	return mask;
2602 }
2603 
2604 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2605 {
2606 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2607 }
2608 EXPORT_SYMBOL_GPL(nfs_may_open);
2609 
2610 static int nfs_execute_ok(struct inode *inode, int mask)
2611 {
2612 	struct nfs_server *server = NFS_SERVER(inode);
2613 	int ret = 0;
2614 
2615 	if (S_ISDIR(inode->i_mode))
2616 		return 0;
2617 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2618 		if (mask & MAY_NOT_BLOCK)
2619 			return -ECHILD;
2620 		ret = __nfs_revalidate_inode(server, inode);
2621 	}
2622 	if (ret == 0 && !execute_ok(inode))
2623 		ret = -EACCES;
2624 	return ret;
2625 }
2626 
2627 int nfs_permission(struct inode *inode, int mask)
2628 {
2629 	const struct cred *cred = current_cred();
2630 	int res = 0;
2631 
2632 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2633 
2634 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2635 		goto out;
2636 	/* Is this sys_access() ? */
2637 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2638 		goto force_lookup;
2639 
2640 	switch (inode->i_mode & S_IFMT) {
2641 		case S_IFLNK:
2642 			goto out;
2643 		case S_IFREG:
2644 			if ((mask & MAY_OPEN) &&
2645 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2646 				return 0;
2647 			break;
2648 		case S_IFDIR:
2649 			/*
2650 			 * Optimize away all write operations, since the server
2651 			 * will check permissions when we perform the op.
2652 			 */
2653 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2654 				goto out;
2655 	}
2656 
2657 force_lookup:
2658 	if (!NFS_PROTO(inode)->access)
2659 		goto out_notsup;
2660 
2661 	/* Always try fast lookups first */
2662 	rcu_read_lock();
2663 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2664 	rcu_read_unlock();
2665 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2666 		/* Fast lookup failed, try the slow way */
2667 		res = nfs_do_access(inode, cred, mask);
2668 	}
2669 out:
2670 	if (!res && (mask & MAY_EXEC))
2671 		res = nfs_execute_ok(inode, mask);
2672 
2673 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2674 		inode->i_sb->s_id, inode->i_ino, mask, res);
2675 	return res;
2676 out_notsup:
2677 	if (mask & MAY_NOT_BLOCK)
2678 		return -ECHILD;
2679 
2680 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2681 	if (res == 0)
2682 		res = generic_permission(inode, mask);
2683 	goto out;
2684 }
2685 EXPORT_SYMBOL_GPL(nfs_permission);
2686 
2687 /*
2688  * Local variables:
2689  *  version-control: t
2690  *  kept-new-versions: 5
2691  * End:
2692  */
2693