xref: /linux/fs/nfs/direct.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/nfs/direct.c
4  *
5  * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6  *
7  * High-performance uncached I/O for the Linux NFS client
8  *
9  * There are important applications whose performance or correctness
10  * depends on uncached access to file data.  Database clusters
11  * (multiple copies of the same instance running on separate hosts)
12  * implement their own cache coherency protocol that subsumes file
13  * system cache protocols.  Applications that process datasets
14  * considerably larger than the client's memory do not always benefit
15  * from a local cache.  A streaming video server, for instance, has no
16  * need to cache the contents of a file.
17  *
18  * When an application requests uncached I/O, all read and write requests
19  * are made directly to the server; data stored or fetched via these
20  * requests is not cached in the Linux page cache.  The client does not
21  * correct unaligned requests from applications.  All requested bytes are
22  * held on permanent storage before a direct write system call returns to
23  * an application.
24  *
25  * Solaris implements an uncached I/O facility called directio() that
26  * is used for backups and sequential I/O to very large files.  Solaris
27  * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28  * an undocumented mount option.
29  *
30  * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31  * help from Andrew Morton.
32  *
33  * 18 Dec 2001	Initial implementation for 2.4  --cel
34  * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35  * 08 Jun 2003	Port to 2.5 APIs  --cel
36  * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37  * 15 Sep 2004	Parallel async reads  --cel
38  * 04 May 2005	support O_DIRECT with aio  --cel
39  *
40  */
41 
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51 
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55 
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58 
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62 
63 #define NFSDBG_FACILITY		NFSDBG_VFS
64 
65 static struct kmem_cache *nfs_direct_cachep;
66 
67 struct nfs_direct_req {
68 	struct kref		kref;		/* release manager */
69 
70 	/* I/O parameters */
71 	struct nfs_open_context	*ctx;		/* file open context info */
72 	struct nfs_lock_context *l_ctx;		/* Lock context info */
73 	struct kiocb *		iocb;		/* controlling i/o request */
74 	struct inode *		inode;		/* target file of i/o */
75 
76 	/* completion state */
77 	atomic_t		io_count;	/* i/os we're waiting for */
78 	spinlock_t		lock;		/* protect completion state */
79 
80 	loff_t			io_start;	/* Start offset for I/O */
81 	ssize_t			count,		/* bytes actually processed */
82 				max_count,	/* max expected count */
83 				bytes_left,	/* bytes left to be sent */
84 				error;		/* any reported error */
85 	struct completion	completion;	/* wait for i/o completion */
86 
87 	/* commit state */
88 	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
89 	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
90 	struct work_struct	work;
91 	int			flags;
92 	/* for write */
93 #define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
94 #define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
95 	/* for read */
96 #define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
97 	struct nfs_writeverf	verf;		/* unstable write verifier */
98 };
99 
100 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103 static void nfs_direct_write_schedule_work(struct work_struct *work);
104 
105 static inline void get_dreq(struct nfs_direct_req *dreq)
106 {
107 	atomic_inc(&dreq->io_count);
108 }
109 
110 static inline int put_dreq(struct nfs_direct_req *dreq)
111 {
112 	return atomic_dec_and_test(&dreq->io_count);
113 }
114 
115 static void
116 nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117 			    const struct nfs_pgio_header *hdr,
118 			    ssize_t dreq_len)
119 {
120 	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121 	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122 		return;
123 	if (dreq->max_count >= dreq_len) {
124 		dreq->max_count = dreq_len;
125 		if (dreq->count > dreq_len)
126 			dreq->count = dreq_len;
127 
128 		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129 			dreq->error = hdr->error;
130 		else /* Clear outstanding error if this is EOF */
131 			dreq->error = 0;
132 	}
133 }
134 
135 static void
136 nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137 		       const struct nfs_pgio_header *hdr)
138 {
139 	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140 	ssize_t dreq_len = 0;
141 
142 	if (hdr_end > dreq->io_start)
143 		dreq_len = hdr_end - dreq->io_start;
144 
145 	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146 
147 	if (dreq_len > dreq->max_count)
148 		dreq_len = dreq->max_count;
149 
150 	if (dreq->count < dreq_len)
151 		dreq->count = dreq_len;
152 }
153 
154 /*
155  * nfs_direct_select_verf - select the right verifier
156  * @dreq - direct request possibly spanning multiple servers
157  * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
158  * @commit_idx - commit bucket index for the DS
159  *
160  * returns the correct verifier to use given the role of the server
161  */
162 static struct nfs_writeverf *
163 nfs_direct_select_verf(struct nfs_direct_req *dreq,
164 		       struct nfs_client *ds_clp,
165 		       int commit_idx)
166 {
167 	struct nfs_writeverf *verfp = &dreq->verf;
168 
169 #ifdef CONFIG_NFS_V4_1
170 	/*
171 	 * pNFS is in use, use the DS verf except commit_through_mds is set
172 	 * for layout segment where nbuckets is zero.
173 	 */
174 	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
175 		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
176 			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
177 		else
178 			WARN_ON_ONCE(1);
179 	}
180 #endif
181 	return verfp;
182 }
183 
184 
185 /*
186  * nfs_direct_set_hdr_verf - set the write/commit verifier
187  * @dreq - direct request possibly spanning multiple servers
188  * @hdr - pageio header to validate against previously seen verfs
189  *
190  * Set the server's (MDS or DS) "seen" verifier
191  */
192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
193 				    struct nfs_pgio_header *hdr)
194 {
195 	struct nfs_writeverf *verfp;
196 
197 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
198 	WARN_ON_ONCE(verfp->committed >= 0);
199 	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
200 	WARN_ON_ONCE(verfp->committed < 0);
201 }
202 
203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
204 		const struct nfs_writeverf *v2)
205 {
206 	return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
207 }
208 
209 /*
210  * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
211  * @dreq - direct request possibly spanning multiple servers
212  * @hdr - pageio header to validate against previously seen verf
213  *
214  * set the server's "seen" verf if not initialized.
215  * returns result of comparison between @hdr->verf and the "seen"
216  * verf of the server used by @hdr (DS or MDS)
217  */
218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
219 					  struct nfs_pgio_header *hdr)
220 {
221 	struct nfs_writeverf *verfp;
222 
223 	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
224 	if (verfp->committed < 0) {
225 		nfs_direct_set_hdr_verf(dreq, hdr);
226 		return 0;
227 	}
228 	return nfs_direct_cmp_verf(verfp, &hdr->verf);
229 }
230 
231 /*
232  * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
233  * @dreq - direct request possibly spanning multiple servers
234  * @data - commit data to validate against previously seen verf
235  *
236  * returns result of comparison between @data->verf and the verf of
237  * the server used by @data (DS or MDS)
238  */
239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
240 					   struct nfs_commit_data *data)
241 {
242 	struct nfs_writeverf *verfp;
243 
244 	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
245 					 data->ds_commit_index);
246 
247 	/* verifier not set so always fail */
248 	if (verfp->committed < 0)
249 		return 1;
250 
251 	return nfs_direct_cmp_verf(verfp, &data->verf);
252 }
253 
254 /**
255  * nfs_direct_IO - NFS address space operation for direct I/O
256  * @iocb: target I/O control block
257  * @iter: I/O buffer
258  *
259  * The presence of this routine in the address space ops vector means
260  * the NFS client supports direct I/O. However, for most direct IO, we
261  * shunt off direct read and write requests before the VFS gets them,
262  * so this method is only ever called for swap.
263  */
264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
265 {
266 	struct inode *inode = iocb->ki_filp->f_mapping->host;
267 
268 	/* we only support swap file calling nfs_direct_IO */
269 	if (!IS_SWAPFILE(inode))
270 		return 0;
271 
272 	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
273 
274 	if (iov_iter_rw(iter) == READ)
275 		return nfs_file_direct_read(iocb, iter);
276 	return nfs_file_direct_write(iocb, iter);
277 }
278 
279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
280 {
281 	unsigned int i;
282 	for (i = 0; i < npages; i++)
283 		put_page(pages[i]);
284 }
285 
286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
287 			      struct nfs_direct_req *dreq)
288 {
289 	cinfo->inode = dreq->inode;
290 	cinfo->mds = &dreq->mds_cinfo;
291 	cinfo->ds = &dreq->ds_cinfo;
292 	cinfo->dreq = dreq;
293 	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
294 }
295 
296 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
297 {
298 	struct nfs_direct_req *dreq;
299 
300 	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
301 	if (!dreq)
302 		return NULL;
303 
304 	kref_init(&dreq->kref);
305 	kref_get(&dreq->kref);
306 	init_completion(&dreq->completion);
307 	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
308 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
309 	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
310 	spin_lock_init(&dreq->lock);
311 
312 	return dreq;
313 }
314 
315 static void nfs_direct_req_free(struct kref *kref)
316 {
317 	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
318 
319 	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
320 	if (dreq->l_ctx != NULL)
321 		nfs_put_lock_context(dreq->l_ctx);
322 	if (dreq->ctx != NULL)
323 		put_nfs_open_context(dreq->ctx);
324 	kmem_cache_free(nfs_direct_cachep, dreq);
325 }
326 
327 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
328 {
329 	kref_put(&dreq->kref, nfs_direct_req_free);
330 }
331 
332 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
333 {
334 	return dreq->bytes_left;
335 }
336 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
337 
338 /*
339  * Collects and returns the final error value/byte-count.
340  */
341 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
342 {
343 	ssize_t result = -EIOCBQUEUED;
344 
345 	/* Async requests don't wait here */
346 	if (dreq->iocb)
347 		goto out;
348 
349 	result = wait_for_completion_killable(&dreq->completion);
350 
351 	if (!result) {
352 		result = dreq->count;
353 		WARN_ON_ONCE(dreq->count < 0);
354 	}
355 	if (!result)
356 		result = dreq->error;
357 
358 out:
359 	return (ssize_t) result;
360 }
361 
362 /*
363  * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
364  * the iocb is still valid here if this is a synchronous request.
365  */
366 static void nfs_direct_complete(struct nfs_direct_req *dreq)
367 {
368 	struct inode *inode = dreq->inode;
369 
370 	inode_dio_end(inode);
371 
372 	if (dreq->iocb) {
373 		long res = (long) dreq->error;
374 		if (dreq->count != 0) {
375 			res = (long) dreq->count;
376 			WARN_ON_ONCE(dreq->count < 0);
377 		}
378 		dreq->iocb->ki_complete(dreq->iocb, res, 0);
379 	}
380 
381 	complete(&dreq->completion);
382 
383 	nfs_direct_req_release(dreq);
384 }
385 
386 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
387 {
388 	unsigned long bytes = 0;
389 	struct nfs_direct_req *dreq = hdr->dreq;
390 
391 	spin_lock(&dreq->lock);
392 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
393 		spin_unlock(&dreq->lock);
394 		goto out_put;
395 	}
396 
397 	nfs_direct_count_bytes(dreq, hdr);
398 	spin_unlock(&dreq->lock);
399 
400 	while (!list_empty(&hdr->pages)) {
401 		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
402 		struct page *page = req->wb_page;
403 
404 		if (!PageCompound(page) && bytes < hdr->good_bytes &&
405 		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
406 			set_page_dirty(page);
407 		bytes += req->wb_bytes;
408 		nfs_list_remove_request(req);
409 		nfs_release_request(req);
410 	}
411 out_put:
412 	if (put_dreq(dreq))
413 		nfs_direct_complete(dreq);
414 	hdr->release(hdr);
415 }
416 
417 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
418 {
419 	struct nfs_page *req;
420 
421 	while (!list_empty(head)) {
422 		req = nfs_list_entry(head->next);
423 		nfs_list_remove_request(req);
424 		nfs_release_request(req);
425 	}
426 }
427 
428 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
429 {
430 	get_dreq(hdr->dreq);
431 }
432 
433 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
434 	.error_cleanup = nfs_read_sync_pgio_error,
435 	.init_hdr = nfs_direct_pgio_init,
436 	.completion = nfs_direct_read_completion,
437 };
438 
439 /*
440  * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
441  * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
442  * bail and stop sending more reads.  Read length accounting is
443  * handled automatically by nfs_direct_read_result().  Otherwise, if
444  * no requests have been sent, just return an error.
445  */
446 
447 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
448 					      struct iov_iter *iter,
449 					      loff_t pos)
450 {
451 	struct nfs_pageio_descriptor desc;
452 	struct inode *inode = dreq->inode;
453 	ssize_t result = -EINVAL;
454 	size_t requested_bytes = 0;
455 	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
456 
457 	nfs_pageio_init_read(&desc, dreq->inode, false,
458 			     &nfs_direct_read_completion_ops);
459 	get_dreq(dreq);
460 	desc.pg_dreq = dreq;
461 	inode_dio_begin(inode);
462 
463 	while (iov_iter_count(iter)) {
464 		struct page **pagevec;
465 		size_t bytes;
466 		size_t pgbase;
467 		unsigned npages, i;
468 
469 		result = iov_iter_get_pages_alloc(iter, &pagevec,
470 						  rsize, &pgbase);
471 		if (result < 0)
472 			break;
473 
474 		bytes = result;
475 		iov_iter_advance(iter, bytes);
476 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
477 		for (i = 0; i < npages; i++) {
478 			struct nfs_page *req;
479 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
480 			/* XXX do we need to do the eof zeroing found in async_filler? */
481 			req = nfs_create_request(dreq->ctx, pagevec[i],
482 						 pgbase, req_len);
483 			if (IS_ERR(req)) {
484 				result = PTR_ERR(req);
485 				break;
486 			}
487 			req->wb_index = pos >> PAGE_SHIFT;
488 			req->wb_offset = pos & ~PAGE_MASK;
489 			if (!nfs_pageio_add_request(&desc, req)) {
490 				result = desc.pg_error;
491 				nfs_release_request(req);
492 				break;
493 			}
494 			pgbase = 0;
495 			bytes -= req_len;
496 			requested_bytes += req_len;
497 			pos += req_len;
498 			dreq->bytes_left -= req_len;
499 		}
500 		nfs_direct_release_pages(pagevec, npages);
501 		kvfree(pagevec);
502 		if (result < 0)
503 			break;
504 	}
505 
506 	nfs_pageio_complete(&desc);
507 
508 	/*
509 	 * If no bytes were started, return the error, and let the
510 	 * generic layer handle the completion.
511 	 */
512 	if (requested_bytes == 0) {
513 		inode_dio_end(inode);
514 		nfs_direct_req_release(dreq);
515 		return result < 0 ? result : -EIO;
516 	}
517 
518 	if (put_dreq(dreq))
519 		nfs_direct_complete(dreq);
520 	return requested_bytes;
521 }
522 
523 /**
524  * nfs_file_direct_read - file direct read operation for NFS files
525  * @iocb: target I/O control block
526  * @iter: vector of user buffers into which to read data
527  *
528  * We use this function for direct reads instead of calling
529  * generic_file_aio_read() in order to avoid gfar's check to see if
530  * the request starts before the end of the file.  For that check
531  * to work, we must generate a GETATTR before each direct read, and
532  * even then there is a window between the GETATTR and the subsequent
533  * READ where the file size could change.  Our preference is simply
534  * to do all reads the application wants, and the server will take
535  * care of managing the end of file boundary.
536  *
537  * This function also eliminates unnecessarily updating the file's
538  * atime locally, as the NFS server sets the file's atime, and this
539  * client must read the updated atime from the server back into its
540  * cache.
541  */
542 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
543 {
544 	struct file *file = iocb->ki_filp;
545 	struct address_space *mapping = file->f_mapping;
546 	struct inode *inode = mapping->host;
547 	struct nfs_direct_req *dreq;
548 	struct nfs_lock_context *l_ctx;
549 	ssize_t result = -EINVAL, requested;
550 	size_t count = iov_iter_count(iter);
551 	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
552 
553 	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
554 		file, count, (long long) iocb->ki_pos);
555 
556 	result = 0;
557 	if (!count)
558 		goto out;
559 
560 	task_io_account_read(count);
561 
562 	result = -ENOMEM;
563 	dreq = nfs_direct_req_alloc();
564 	if (dreq == NULL)
565 		goto out;
566 
567 	dreq->inode = inode;
568 	dreq->bytes_left = dreq->max_count = count;
569 	dreq->io_start = iocb->ki_pos;
570 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
571 	l_ctx = nfs_get_lock_context(dreq->ctx);
572 	if (IS_ERR(l_ctx)) {
573 		result = PTR_ERR(l_ctx);
574 		goto out_release;
575 	}
576 	dreq->l_ctx = l_ctx;
577 	if (!is_sync_kiocb(iocb))
578 		dreq->iocb = iocb;
579 
580 	if (iter_is_iovec(iter))
581 		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
582 
583 	nfs_start_io_direct(inode);
584 
585 	NFS_I(inode)->read_io += count;
586 	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
587 
588 	nfs_end_io_direct(inode);
589 
590 	if (requested > 0) {
591 		result = nfs_direct_wait(dreq);
592 		if (result > 0) {
593 			requested -= result;
594 			iocb->ki_pos += result;
595 		}
596 		iov_iter_revert(iter, requested);
597 	} else {
598 		result = requested;
599 	}
600 
601 out_release:
602 	nfs_direct_req_release(dreq);
603 out:
604 	return result;
605 }
606 
607 static void
608 nfs_direct_write_scan_commit_list(struct inode *inode,
609 				  struct list_head *list,
610 				  struct nfs_commit_info *cinfo)
611 {
612 	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
613 #ifdef CONFIG_NFS_V4_1
614 	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
615 		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
616 #endif
617 	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
618 	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
619 }
620 
621 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
622 {
623 	struct nfs_pageio_descriptor desc;
624 	struct nfs_page *req, *tmp;
625 	LIST_HEAD(reqs);
626 	struct nfs_commit_info cinfo;
627 	LIST_HEAD(failed);
628 
629 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
630 	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
631 
632 	dreq->count = 0;
633 	dreq->max_count = 0;
634 	list_for_each_entry(req, &reqs, wb_list)
635 		dreq->max_count += req->wb_bytes;
636 	dreq->verf.committed = NFS_INVALID_STABLE_HOW;
637 	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
638 	get_dreq(dreq);
639 
640 	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
641 			      &nfs_direct_write_completion_ops);
642 	desc.pg_dreq = dreq;
643 
644 	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
645 		/* Bump the transmission count */
646 		req->wb_nio++;
647 		if (!nfs_pageio_add_request(&desc, req)) {
648 			nfs_list_move_request(req, &failed);
649 			spin_lock(&cinfo.inode->i_lock);
650 			dreq->flags = 0;
651 			if (desc.pg_error < 0)
652 				dreq->error = desc.pg_error;
653 			else
654 				dreq->error = -EIO;
655 			spin_unlock(&cinfo.inode->i_lock);
656 		}
657 		nfs_release_request(req);
658 	}
659 	nfs_pageio_complete(&desc);
660 
661 	while (!list_empty(&failed)) {
662 		req = nfs_list_entry(failed.next);
663 		nfs_list_remove_request(req);
664 		nfs_unlock_and_release_request(req);
665 	}
666 
667 	if (put_dreq(dreq))
668 		nfs_direct_write_complete(dreq);
669 }
670 
671 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
672 {
673 	struct nfs_direct_req *dreq = data->dreq;
674 	struct nfs_commit_info cinfo;
675 	struct nfs_page *req;
676 	int status = data->task.tk_status;
677 
678 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
679 	if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
680 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
681 
682 	while (!list_empty(&data->pages)) {
683 		req = nfs_list_entry(data->pages.next);
684 		nfs_list_remove_request(req);
685 		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
686 			/*
687 			 * Despite the reboot, the write was successful,
688 			 * so reset wb_nio.
689 			 */
690 			req->wb_nio = 0;
691 			/* Note the rewrite will go through mds */
692 			nfs_mark_request_commit(req, NULL, &cinfo, 0);
693 		} else
694 			nfs_release_request(req);
695 		nfs_unlock_and_release_request(req);
696 	}
697 
698 	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
699 		nfs_direct_write_complete(dreq);
700 }
701 
702 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
703 		struct nfs_page *req)
704 {
705 	struct nfs_direct_req *dreq = cinfo->dreq;
706 
707 	spin_lock(&dreq->lock);
708 	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
709 	spin_unlock(&dreq->lock);
710 	nfs_mark_request_commit(req, NULL, cinfo, 0);
711 }
712 
713 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
714 	.completion = nfs_direct_commit_complete,
715 	.resched_write = nfs_direct_resched_write,
716 };
717 
718 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
719 {
720 	int res;
721 	struct nfs_commit_info cinfo;
722 	LIST_HEAD(mds_list);
723 
724 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
725 	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
726 	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
727 	if (res < 0) /* res == -ENOMEM */
728 		nfs_direct_write_reschedule(dreq);
729 }
730 
731 static void nfs_direct_write_schedule_work(struct work_struct *work)
732 {
733 	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
734 	int flags = dreq->flags;
735 
736 	dreq->flags = 0;
737 	switch (flags) {
738 		case NFS_ODIRECT_DO_COMMIT:
739 			nfs_direct_commit_schedule(dreq);
740 			break;
741 		case NFS_ODIRECT_RESCHED_WRITES:
742 			nfs_direct_write_reschedule(dreq);
743 			break;
744 		default:
745 			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
746 			nfs_direct_complete(dreq);
747 	}
748 }
749 
750 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
751 {
752 	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
753 }
754 
755 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
756 {
757 	struct nfs_direct_req *dreq = hdr->dreq;
758 	struct nfs_commit_info cinfo;
759 	bool request_commit = false;
760 	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
761 
762 	nfs_init_cinfo_from_dreq(&cinfo, dreq);
763 
764 	spin_lock(&dreq->lock);
765 	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
766 		spin_unlock(&dreq->lock);
767 		goto out_put;
768 	}
769 
770 	nfs_direct_count_bytes(dreq, hdr);
771 	if (hdr->good_bytes != 0) {
772 		if (nfs_write_need_commit(hdr)) {
773 			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
774 				request_commit = true;
775 			else if (dreq->flags == 0) {
776 				nfs_direct_set_hdr_verf(dreq, hdr);
777 				request_commit = true;
778 				dreq->flags = NFS_ODIRECT_DO_COMMIT;
779 			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
780 				request_commit = true;
781 				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
782 					dreq->flags =
783 						NFS_ODIRECT_RESCHED_WRITES;
784 			}
785 		}
786 	}
787 	spin_unlock(&dreq->lock);
788 
789 	while (!list_empty(&hdr->pages)) {
790 
791 		req = nfs_list_entry(hdr->pages.next);
792 		nfs_list_remove_request(req);
793 		if (request_commit) {
794 			kref_get(&req->wb_kref);
795 			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
796 				hdr->ds_commit_idx);
797 		}
798 		nfs_unlock_and_release_request(req);
799 	}
800 
801 out_put:
802 	if (put_dreq(dreq))
803 		nfs_direct_write_complete(dreq);
804 	hdr->release(hdr);
805 }
806 
807 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
808 {
809 	struct nfs_page *req;
810 
811 	while (!list_empty(head)) {
812 		req = nfs_list_entry(head->next);
813 		nfs_list_remove_request(req);
814 		nfs_unlock_and_release_request(req);
815 	}
816 }
817 
818 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
819 {
820 	struct nfs_direct_req *dreq = hdr->dreq;
821 
822 	spin_lock(&dreq->lock);
823 	if (dreq->error == 0) {
824 		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
825 		/* fake unstable write to let common nfs resend pages */
826 		hdr->verf.committed = NFS_UNSTABLE;
827 		hdr->good_bytes = hdr->args.count;
828 	}
829 	spin_unlock(&dreq->lock);
830 }
831 
832 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
833 	.error_cleanup = nfs_write_sync_pgio_error,
834 	.init_hdr = nfs_direct_pgio_init,
835 	.completion = nfs_direct_write_completion,
836 	.reschedule_io = nfs_direct_write_reschedule_io,
837 };
838 
839 
840 /*
841  * NB: Return the value of the first error return code.  Subsequent
842  *     errors after the first one are ignored.
843  */
844 /*
845  * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
846  * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
847  * bail and stop sending more writes.  Write length accounting is
848  * handled automatically by nfs_direct_write_result().  Otherwise, if
849  * no requests have been sent, just return an error.
850  */
851 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
852 					       struct iov_iter *iter,
853 					       loff_t pos)
854 {
855 	struct nfs_pageio_descriptor desc;
856 	struct inode *inode = dreq->inode;
857 	ssize_t result = 0;
858 	size_t requested_bytes = 0;
859 	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
860 
861 	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
862 			      &nfs_direct_write_completion_ops);
863 	desc.pg_dreq = dreq;
864 	get_dreq(dreq);
865 	inode_dio_begin(inode);
866 
867 	NFS_I(inode)->write_io += iov_iter_count(iter);
868 	while (iov_iter_count(iter)) {
869 		struct page **pagevec;
870 		size_t bytes;
871 		size_t pgbase;
872 		unsigned npages, i;
873 
874 		result = iov_iter_get_pages_alloc(iter, &pagevec,
875 						  wsize, &pgbase);
876 		if (result < 0)
877 			break;
878 
879 		bytes = result;
880 		iov_iter_advance(iter, bytes);
881 		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
882 		for (i = 0; i < npages; i++) {
883 			struct nfs_page *req;
884 			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
885 
886 			req = nfs_create_request(dreq->ctx, pagevec[i],
887 						 pgbase, req_len);
888 			if (IS_ERR(req)) {
889 				result = PTR_ERR(req);
890 				break;
891 			}
892 
893 			if (desc.pg_error < 0) {
894 				nfs_free_request(req);
895 				result = desc.pg_error;
896 				break;
897 			}
898 
899 			nfs_lock_request(req);
900 			req->wb_index = pos >> PAGE_SHIFT;
901 			req->wb_offset = pos & ~PAGE_MASK;
902 			if (!nfs_pageio_add_request(&desc, req)) {
903 				result = desc.pg_error;
904 				nfs_unlock_and_release_request(req);
905 				break;
906 			}
907 			pgbase = 0;
908 			bytes -= req_len;
909 			requested_bytes += req_len;
910 			pos += req_len;
911 			dreq->bytes_left -= req_len;
912 		}
913 		nfs_direct_release_pages(pagevec, npages);
914 		kvfree(pagevec);
915 		if (result < 0)
916 			break;
917 	}
918 	nfs_pageio_complete(&desc);
919 
920 	/*
921 	 * If no bytes were started, return the error, and let the
922 	 * generic layer handle the completion.
923 	 */
924 	if (requested_bytes == 0) {
925 		inode_dio_end(inode);
926 		nfs_direct_req_release(dreq);
927 		return result < 0 ? result : -EIO;
928 	}
929 
930 	if (put_dreq(dreq))
931 		nfs_direct_write_complete(dreq);
932 	return requested_bytes;
933 }
934 
935 /**
936  * nfs_file_direct_write - file direct write operation for NFS files
937  * @iocb: target I/O control block
938  * @iter: vector of user buffers from which to write data
939  *
940  * We use this function for direct writes instead of calling
941  * generic_file_aio_write() in order to avoid taking the inode
942  * semaphore and updating the i_size.  The NFS server will set
943  * the new i_size and this client must read the updated size
944  * back into its cache.  We let the server do generic write
945  * parameter checking and report problems.
946  *
947  * We eliminate local atime updates, see direct read above.
948  *
949  * We avoid unnecessary page cache invalidations for normal cached
950  * readers of this file.
951  *
952  * Note that O_APPEND is not supported for NFS direct writes, as there
953  * is no atomic O_APPEND write facility in the NFS protocol.
954  */
955 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
956 {
957 	ssize_t result = -EINVAL, requested;
958 	size_t count;
959 	struct file *file = iocb->ki_filp;
960 	struct address_space *mapping = file->f_mapping;
961 	struct inode *inode = mapping->host;
962 	struct nfs_direct_req *dreq;
963 	struct nfs_lock_context *l_ctx;
964 	loff_t pos, end;
965 
966 	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
967 		file, iov_iter_count(iter), (long long) iocb->ki_pos);
968 
969 	result = generic_write_checks(iocb, iter);
970 	if (result <= 0)
971 		return result;
972 	count = result;
973 	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
974 
975 	pos = iocb->ki_pos;
976 	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
977 
978 	task_io_account_write(count);
979 
980 	result = -ENOMEM;
981 	dreq = nfs_direct_req_alloc();
982 	if (!dreq)
983 		goto out;
984 
985 	dreq->inode = inode;
986 	dreq->bytes_left = dreq->max_count = count;
987 	dreq->io_start = pos;
988 	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
989 	l_ctx = nfs_get_lock_context(dreq->ctx);
990 	if (IS_ERR(l_ctx)) {
991 		result = PTR_ERR(l_ctx);
992 		goto out_release;
993 	}
994 	dreq->l_ctx = l_ctx;
995 	if (!is_sync_kiocb(iocb))
996 		dreq->iocb = iocb;
997 
998 	nfs_start_io_direct(inode);
999 
1000 	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1001 
1002 	if (mapping->nrpages) {
1003 		invalidate_inode_pages2_range(mapping,
1004 					      pos >> PAGE_SHIFT, end);
1005 	}
1006 
1007 	nfs_end_io_direct(inode);
1008 
1009 	if (requested > 0) {
1010 		result = nfs_direct_wait(dreq);
1011 		if (result > 0) {
1012 			requested -= result;
1013 			iocb->ki_pos = pos + result;
1014 			/* XXX: should check the generic_write_sync retval */
1015 			generic_write_sync(iocb, result);
1016 		}
1017 		iov_iter_revert(iter, requested);
1018 	} else {
1019 		result = requested;
1020 	}
1021 out_release:
1022 	nfs_direct_req_release(dreq);
1023 out:
1024 	return result;
1025 }
1026 
1027 /**
1028  * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1029  *
1030  */
1031 int __init nfs_init_directcache(void)
1032 {
1033 	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1034 						sizeof(struct nfs_direct_req),
1035 						0, (SLAB_RECLAIM_ACCOUNT|
1036 							SLAB_MEM_SPREAD),
1037 						NULL);
1038 	if (nfs_direct_cachep == NULL)
1039 		return -ENOMEM;
1040 
1041 	return 0;
1042 }
1043 
1044 /**
1045  * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1046  *
1047  */
1048 void nfs_destroy_directcache(void)
1049 {
1050 	kmem_cache_destroy(nfs_direct_cachep);
1051 }
1052