xref: /linux/fs/reiserfs/inode.c (revision c6fbb759)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 
24 int reiserfs_commit_write(struct file *f, struct page *page,
25 			  unsigned from, unsigned to);
26 
27 void reiserfs_evict_inode(struct inode *inode)
28 {
29 	/*
30 	 * We need blocks for transaction + (user+group) quota
31 	 * update (possibly delete)
32 	 */
33 	int jbegin_count =
34 	    JOURNAL_PER_BALANCE_CNT * 2 +
35 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
36 	struct reiserfs_transaction_handle th;
37 	int err;
38 
39 	if (!inode->i_nlink && !is_bad_inode(inode))
40 		dquot_initialize(inode);
41 
42 	truncate_inode_pages_final(&inode->i_data);
43 	if (inode->i_nlink)
44 		goto no_delete;
45 
46 	/*
47 	 * The = 0 happens when we abort creating a new inode
48 	 * for some reason like lack of space..
49 	 * also handles bad_inode case
50 	 */
51 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
52 
53 		reiserfs_delete_xattrs(inode);
54 
55 		reiserfs_write_lock(inode->i_sb);
56 
57 		if (journal_begin(&th, inode->i_sb, jbegin_count))
58 			goto out;
59 		reiserfs_update_inode_transaction(inode);
60 
61 		reiserfs_discard_prealloc(&th, inode);
62 
63 		err = reiserfs_delete_object(&th, inode);
64 
65 		/*
66 		 * Do quota update inside a transaction for journaled quotas.
67 		 * We must do that after delete_object so that quota updates
68 		 * go into the same transaction as stat data deletion
69 		 */
70 		if (!err) {
71 			int depth = reiserfs_write_unlock_nested(inode->i_sb);
72 			dquot_free_inode(inode);
73 			reiserfs_write_lock_nested(inode->i_sb, depth);
74 		}
75 
76 		if (journal_end(&th))
77 			goto out;
78 
79 		/*
80 		 * check return value from reiserfs_delete_object after
81 		 * ending the transaction
82 		 */
83 		if (err)
84 		    goto out;
85 
86 		/*
87 		 * all items of file are deleted, so we can remove
88 		 * "save" link
89 		 * we can't do anything about an error here
90 		 */
91 		remove_save_link(inode, 0 /* not truncate */);
92 out:
93 		reiserfs_write_unlock(inode->i_sb);
94 	} else {
95 		/* no object items are in the tree */
96 		;
97 	}
98 
99 	/* note this must go after the journal_end to prevent deadlock */
100 	clear_inode(inode);
101 
102 	dquot_drop(inode);
103 	inode->i_blocks = 0;
104 	return;
105 
106 no_delete:
107 	clear_inode(inode);
108 	dquot_drop(inode);
109 }
110 
111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
112 			  __u32 objectid, loff_t offset, int type, int length)
113 {
114 	key->version = version;
115 
116 	key->on_disk_key.k_dir_id = dirid;
117 	key->on_disk_key.k_objectid = objectid;
118 	set_cpu_key_k_offset(key, offset);
119 	set_cpu_key_k_type(key, type);
120 	key->key_length = length;
121 }
122 
123 /*
124  * take base of inode_key (it comes from inode always) (dirid, objectid)
125  * and version from an inode, set offset and type of key
126  */
127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
128 		  int type, int length)
129 {
130 	_make_cpu_key(key, get_inode_item_key_version(inode),
131 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
132 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
133 		      length);
134 }
135 
136 /* when key is 0, do not set version and short key */
137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
138 			      int version,
139 			      loff_t offset, int type, int length,
140 			      int entry_count /*or ih_free_space */ )
141 {
142 	if (key) {
143 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
144 		ih->ih_key.k_objectid =
145 		    cpu_to_le32(key->on_disk_key.k_objectid);
146 	}
147 	put_ih_version(ih, version);
148 	set_le_ih_k_offset(ih, offset);
149 	set_le_ih_k_type(ih, type);
150 	put_ih_item_len(ih, length);
151 	/*    set_ih_free_space (ih, 0); */
152 	/*
153 	 * for directory items it is entry count, for directs and stat
154 	 * datas - 0xffff, for indirects - 0
155 	 */
156 	put_ih_entry_count(ih, entry_count);
157 }
158 
159 /*
160  * FIXME: we might cache recently accessed indirect item
161  * Ugh.  Not too eager for that....
162  * I cut the code until such time as I see a convincing argument (benchmark).
163  * I don't want a bloated inode struct..., and I don't like code complexity....
164  */
165 
166 /*
167  * cutting the code is fine, since it really isn't in use yet and is easy
168  * to add back in.  But, Vladimir has a really good idea here.  Think
169  * about what happens for reading a file.  For each page,
170  * The VFS layer calls reiserfs_read_folio, who searches the tree to find
171  * an indirect item.  This indirect item has X number of pointers, where
172  * X is a big number if we've done the block allocation right.  But,
173  * we only use one or two of these pointers during each call to read_folio,
174  * needlessly researching again later on.
175  *
176  * The size of the cache could be dynamic based on the size of the file.
177  *
178  * I'd also like to see us cache the location the stat data item, since
179  * we are needlessly researching for that frequently.
180  *
181  * --chris
182  */
183 
184 /*
185  * If this page has a file tail in it, and
186  * it was read in by get_block_create_0, the page data is valid,
187  * but tail is still sitting in a direct item, and we can't write to
188  * it.  So, look through this page, and check all the mapped buffers
189  * to make sure they have valid block numbers.  Any that don't need
190  * to be unmapped, so that __block_write_begin will correctly call
191  * reiserfs_get_block to convert the tail into an unformatted node
192  */
193 static inline void fix_tail_page_for_writing(struct page *page)
194 {
195 	struct buffer_head *head, *next, *bh;
196 
197 	if (page && page_has_buffers(page)) {
198 		head = page_buffers(page);
199 		bh = head;
200 		do {
201 			next = bh->b_this_page;
202 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
203 				reiserfs_unmap_buffer(bh);
204 			}
205 			bh = next;
206 		} while (bh != head);
207 	}
208 }
209 
210 /*
211  * reiserfs_get_block does not need to allocate a block only if it has been
212  * done already or non-hole position has been found in the indirect item
213  */
214 static inline int allocation_needed(int retval, b_blocknr_t allocated,
215 				    struct item_head *ih,
216 				    __le32 * item, int pos_in_item)
217 {
218 	if (allocated)
219 		return 0;
220 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
221 	    get_block_num(item, pos_in_item))
222 		return 0;
223 	return 1;
224 }
225 
226 static inline int indirect_item_found(int retval, struct item_head *ih)
227 {
228 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
229 }
230 
231 static inline void set_block_dev_mapped(struct buffer_head *bh,
232 					b_blocknr_t block, struct inode *inode)
233 {
234 	map_bh(bh, inode->i_sb, block);
235 }
236 
237 /*
238  * files which were created in the earlier version can not be longer,
239  * than 2 gb
240  */
241 static int file_capable(struct inode *inode, sector_t block)
242 {
243 	/* it is new file. */
244 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
245 	    /* old file, but 'block' is inside of 2gb */
246 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
247 		return 1;
248 
249 	return 0;
250 }
251 
252 static int restart_transaction(struct reiserfs_transaction_handle *th,
253 			       struct inode *inode, struct treepath *path)
254 {
255 	struct super_block *s = th->t_super;
256 	int err;
257 
258 	BUG_ON(!th->t_trans_id);
259 	BUG_ON(!th->t_refcount);
260 
261 	pathrelse(path);
262 
263 	/* we cannot restart while nested */
264 	if (th->t_refcount > 1) {
265 		return 0;
266 	}
267 	reiserfs_update_sd(th, inode);
268 	err = journal_end(th);
269 	if (!err) {
270 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
271 		if (!err)
272 			reiserfs_update_inode_transaction(inode);
273 	}
274 	return err;
275 }
276 
277 /*
278  * it is called by get_block when create == 0. Returns block number
279  * for 'block'-th logical block of file. When it hits direct item it
280  * returns 0 (being called from bmap) or read direct item into piece
281  * of page (bh_result)
282  * Please improve the english/clarity in the comment above, as it is
283  * hard to understand.
284  */
285 static int _get_block_create_0(struct inode *inode, sector_t block,
286 			       struct buffer_head *bh_result, int args)
287 {
288 	INITIALIZE_PATH(path);
289 	struct cpu_key key;
290 	struct buffer_head *bh;
291 	struct item_head *ih, tmp_ih;
292 	b_blocknr_t blocknr;
293 	char *p;
294 	int chars;
295 	int ret;
296 	int result;
297 	int done = 0;
298 	unsigned long offset;
299 
300 	/* prepare the key to look for the 'block'-th block of file */
301 	make_cpu_key(&key, inode,
302 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
303 		     3);
304 
305 	result = search_for_position_by_key(inode->i_sb, &key, &path);
306 	if (result != POSITION_FOUND) {
307 		pathrelse(&path);
308 		if (result == IO_ERROR)
309 			return -EIO;
310 		/*
311 		 * We do not return -ENOENT if there is a hole but page is
312 		 * uptodate, because it means that there is some MMAPED data
313 		 * associated with it that is yet to be written to disk.
314 		 */
315 		if ((args & GET_BLOCK_NO_HOLE)
316 		    && !PageUptodate(bh_result->b_page)) {
317 			return -ENOENT;
318 		}
319 		return 0;
320 	}
321 
322 	bh = get_last_bh(&path);
323 	ih = tp_item_head(&path);
324 	if (is_indirect_le_ih(ih)) {
325 		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
326 
327 		/*
328 		 * FIXME: here we could cache indirect item or part of it in
329 		 * the inode to avoid search_by_key in case of subsequent
330 		 * access to file
331 		 */
332 		blocknr = get_block_num(ind_item, path.pos_in_item);
333 		ret = 0;
334 		if (blocknr) {
335 			map_bh(bh_result, inode->i_sb, blocknr);
336 			if (path.pos_in_item ==
337 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
338 				set_buffer_boundary(bh_result);
339 			}
340 		} else
341 			/*
342 			 * We do not return -ENOENT if there is a hole but
343 			 * page is uptodate, because it means that there is
344 			 * some MMAPED data associated with it that is
345 			 * yet to be written to disk.
346 			 */
347 		if ((args & GET_BLOCK_NO_HOLE)
348 			    && !PageUptodate(bh_result->b_page)) {
349 			ret = -ENOENT;
350 		}
351 
352 		pathrelse(&path);
353 		return ret;
354 	}
355 	/* requested data are in direct item(s) */
356 	if (!(args & GET_BLOCK_READ_DIRECT)) {
357 		/*
358 		 * we are called by bmap. FIXME: we can not map block of file
359 		 * when it is stored in direct item(s)
360 		 */
361 		pathrelse(&path);
362 		return -ENOENT;
363 	}
364 
365 	/*
366 	 * if we've got a direct item, and the buffer or page was uptodate,
367 	 * we don't want to pull data off disk again.  skip to the
368 	 * end, where we map the buffer and return
369 	 */
370 	if (buffer_uptodate(bh_result)) {
371 		goto finished;
372 	} else
373 		/*
374 		 * grab_tail_page can trigger calls to reiserfs_get_block on
375 		 * up to date pages without any buffers.  If the page is up
376 		 * to date, we don't want read old data off disk.  Set the up
377 		 * to date bit on the buffer instead and jump to the end
378 		 */
379 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
380 		set_buffer_uptodate(bh_result);
381 		goto finished;
382 	}
383 	/* read file tail into part of page */
384 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
385 	copy_item_head(&tmp_ih, ih);
386 
387 	/*
388 	 * we only want to kmap if we are reading the tail into the page.
389 	 * this is not the common case, so we don't kmap until we are
390 	 * sure we need to.  But, this means the item might move if
391 	 * kmap schedules
392 	 */
393 	p = (char *)kmap(bh_result->b_page);
394 	p += offset;
395 	memset(p, 0, inode->i_sb->s_blocksize);
396 	do {
397 		if (!is_direct_le_ih(ih)) {
398 			BUG();
399 		}
400 		/*
401 		 * make sure we don't read more bytes than actually exist in
402 		 * the file.  This can happen in odd cases where i_size isn't
403 		 * correct, and when direct item padding results in a few
404 		 * extra bytes at the end of the direct item
405 		 */
406 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
407 			break;
408 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
409 			chars =
410 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
411 			    path.pos_in_item;
412 			done = 1;
413 		} else {
414 			chars = ih_item_len(ih) - path.pos_in_item;
415 		}
416 		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
417 
418 		if (done)
419 			break;
420 
421 		p += chars;
422 
423 		/*
424 		 * we done, if read direct item is not the last item of
425 		 * node FIXME: we could try to check right delimiting key
426 		 * to see whether direct item continues in the right
427 		 * neighbor or rely on i_size
428 		 */
429 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
430 			break;
431 
432 		/* update key to look for the next piece */
433 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
434 		result = search_for_position_by_key(inode->i_sb, &key, &path);
435 		if (result != POSITION_FOUND)
436 			/* i/o error most likely */
437 			break;
438 		bh = get_last_bh(&path);
439 		ih = tp_item_head(&path);
440 	} while (1);
441 
442 	flush_dcache_page(bh_result->b_page);
443 	kunmap(bh_result->b_page);
444 
445 finished:
446 	pathrelse(&path);
447 
448 	if (result == IO_ERROR)
449 		return -EIO;
450 
451 	/*
452 	 * this buffer has valid data, but isn't valid for io.  mapping it to
453 	 * block #0 tells the rest of reiserfs it just has a tail in it
454 	 */
455 	map_bh(bh_result, inode->i_sb, 0);
456 	set_buffer_uptodate(bh_result);
457 	return 0;
458 }
459 
460 /*
461  * this is called to create file map. So, _get_block_create_0 will not
462  * read direct item
463  */
464 static int reiserfs_bmap(struct inode *inode, sector_t block,
465 			 struct buffer_head *bh_result, int create)
466 {
467 	if (!file_capable(inode, block))
468 		return -EFBIG;
469 
470 	reiserfs_write_lock(inode->i_sb);
471 	/* do not read the direct item */
472 	_get_block_create_0(inode, block, bh_result, 0);
473 	reiserfs_write_unlock(inode->i_sb);
474 	return 0;
475 }
476 
477 /*
478  * special version of get_block that is only used by grab_tail_page right
479  * now.  It is sent to __block_write_begin, and when you try to get a
480  * block past the end of the file (or a block from a hole) it returns
481  * -ENOENT instead of a valid buffer.  __block_write_begin expects to
482  * be able to do i/o on the buffers returned, unless an error value
483  * is also returned.
484  *
485  * So, this allows __block_write_begin to be used for reading a single block
486  * in a page.  Where it does not produce a valid page for holes, or past the
487  * end of the file.  This turns out to be exactly what we need for reading
488  * tails for conversion.
489  *
490  * The point of the wrapper is forcing a certain value for create, even
491  * though the VFS layer is calling this function with create==1.  If you
492  * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
493  * don't use this function.
494 */
495 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
496 				       struct buffer_head *bh_result,
497 				       int create)
498 {
499 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
500 }
501 
502 /*
503  * This is special helper for reiserfs_get_block in case we are executing
504  * direct_IO request.
505  */
506 static int reiserfs_get_blocks_direct_io(struct inode *inode,
507 					 sector_t iblock,
508 					 struct buffer_head *bh_result,
509 					 int create)
510 {
511 	int ret;
512 
513 	bh_result->b_page = NULL;
514 
515 	/*
516 	 * We set the b_size before reiserfs_get_block call since it is
517 	 * referenced in convert_tail_for_hole() that may be called from
518 	 * reiserfs_get_block()
519 	 */
520 	bh_result->b_size = i_blocksize(inode);
521 
522 	ret = reiserfs_get_block(inode, iblock, bh_result,
523 				 create | GET_BLOCK_NO_DANGLE);
524 	if (ret)
525 		goto out;
526 
527 	/* don't allow direct io onto tail pages */
528 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
529 		/*
530 		 * make sure future calls to the direct io funcs for this
531 		 * offset in the file fail by unmapping the buffer
532 		 */
533 		clear_buffer_mapped(bh_result);
534 		ret = -EINVAL;
535 	}
536 
537 	/*
538 	 * Possible unpacked tail. Flush the data before pages have
539 	 * disappeared
540 	 */
541 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
542 		int err;
543 
544 		reiserfs_write_lock(inode->i_sb);
545 
546 		err = reiserfs_commit_for_inode(inode);
547 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
548 
549 		reiserfs_write_unlock(inode->i_sb);
550 
551 		if (err < 0)
552 			ret = err;
553 	}
554 out:
555 	return ret;
556 }
557 
558 /*
559  * helper function for when reiserfs_get_block is called for a hole
560  * but the file tail is still in a direct item
561  * bh_result is the buffer head for the hole
562  * tail_offset is the offset of the start of the tail in the file
563  *
564  * This calls prepare_write, which will start a new transaction
565  * you should not be in a transaction, or have any paths held when you
566  * call this.
567  */
568 static int convert_tail_for_hole(struct inode *inode,
569 				 struct buffer_head *bh_result,
570 				 loff_t tail_offset)
571 {
572 	unsigned long index;
573 	unsigned long tail_end;
574 	unsigned long tail_start;
575 	struct page *tail_page;
576 	struct page *hole_page = bh_result->b_page;
577 	int retval = 0;
578 
579 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
580 		return -EIO;
581 
582 	/* always try to read until the end of the block */
583 	tail_start = tail_offset & (PAGE_SIZE - 1);
584 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
585 
586 	index = tail_offset >> PAGE_SHIFT;
587 	/*
588 	 * hole_page can be zero in case of direct_io, we are sure
589 	 * that we cannot get here if we write with O_DIRECT into tail page
590 	 */
591 	if (!hole_page || index != hole_page->index) {
592 		tail_page = grab_cache_page(inode->i_mapping, index);
593 		retval = -ENOMEM;
594 		if (!tail_page) {
595 			goto out;
596 		}
597 	} else {
598 		tail_page = hole_page;
599 	}
600 
601 	/*
602 	 * we don't have to make sure the conversion did not happen while
603 	 * we were locking the page because anyone that could convert
604 	 * must first take i_mutex.
605 	 *
606 	 * We must fix the tail page for writing because it might have buffers
607 	 * that are mapped, but have a block number of 0.  This indicates tail
608 	 * data that has been read directly into the page, and
609 	 * __block_write_begin won't trigger a get_block in this case.
610 	 */
611 	fix_tail_page_for_writing(tail_page);
612 	retval = __reiserfs_write_begin(tail_page, tail_start,
613 				      tail_end - tail_start);
614 	if (retval)
615 		goto unlock;
616 
617 	/* tail conversion might change the data in the page */
618 	flush_dcache_page(tail_page);
619 
620 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
621 
622 unlock:
623 	if (tail_page != hole_page) {
624 		unlock_page(tail_page);
625 		put_page(tail_page);
626 	}
627 out:
628 	return retval;
629 }
630 
631 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
632 				  sector_t block,
633 				  struct inode *inode,
634 				  b_blocknr_t * allocated_block_nr,
635 				  struct treepath *path, int flags)
636 {
637 	BUG_ON(!th->t_trans_id);
638 
639 #ifdef REISERFS_PREALLOCATE
640 	if (!(flags & GET_BLOCK_NO_IMUX)) {
641 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
642 						  path, block);
643 	}
644 #endif
645 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
646 					 block);
647 }
648 
649 int reiserfs_get_block(struct inode *inode, sector_t block,
650 		       struct buffer_head *bh_result, int create)
651 {
652 	int repeat, retval = 0;
653 	/* b_blocknr_t is (unsigned) 32 bit int*/
654 	b_blocknr_t allocated_block_nr = 0;
655 	INITIALIZE_PATH(path);
656 	int pos_in_item;
657 	struct cpu_key key;
658 	struct buffer_head *bh, *unbh = NULL;
659 	struct item_head *ih, tmp_ih;
660 	__le32 *item;
661 	int done;
662 	int fs_gen;
663 	struct reiserfs_transaction_handle *th = NULL;
664 	/*
665 	 * space reserved in transaction batch:
666 	 * . 3 balancings in direct->indirect conversion
667 	 * . 1 block involved into reiserfs_update_sd()
668 	 * XXX in practically impossible worst case direct2indirect()
669 	 * can incur (much) more than 3 balancings.
670 	 * quota update for user, group
671 	 */
672 	int jbegin_count =
673 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
674 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
675 	int version;
676 	int dangle = 1;
677 	loff_t new_offset =
678 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
679 
680 	reiserfs_write_lock(inode->i_sb);
681 	version = get_inode_item_key_version(inode);
682 
683 	if (!file_capable(inode, block)) {
684 		reiserfs_write_unlock(inode->i_sb);
685 		return -EFBIG;
686 	}
687 
688 	/*
689 	 * if !create, we aren't changing the FS, so we don't need to
690 	 * log anything, so we don't need to start a transaction
691 	 */
692 	if (!(create & GET_BLOCK_CREATE)) {
693 		int ret;
694 		/* find number of block-th logical block of the file */
695 		ret = _get_block_create_0(inode, block, bh_result,
696 					  create | GET_BLOCK_READ_DIRECT);
697 		reiserfs_write_unlock(inode->i_sb);
698 		return ret;
699 	}
700 
701 	/*
702 	 * if we're already in a transaction, make sure to close
703 	 * any new transactions we start in this func
704 	 */
705 	if ((create & GET_BLOCK_NO_DANGLE) ||
706 	    reiserfs_transaction_running(inode->i_sb))
707 		dangle = 0;
708 
709 	/*
710 	 * If file is of such a size, that it might have a tail and
711 	 * tails are enabled  we should mark it as possibly needing
712 	 * tail packing on close
713 	 */
714 	if ((have_large_tails(inode->i_sb)
715 	     && inode->i_size < i_block_size(inode) * 4)
716 	    || (have_small_tails(inode->i_sb)
717 		&& inode->i_size < i_block_size(inode)))
718 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
719 
720 	/* set the key of the first byte in the 'block'-th block of file */
721 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
722 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
723 start_trans:
724 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
725 		if (!th) {
726 			retval = -ENOMEM;
727 			goto failure;
728 		}
729 		reiserfs_update_inode_transaction(inode);
730 	}
731 research:
732 
733 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
734 	if (retval == IO_ERROR) {
735 		retval = -EIO;
736 		goto failure;
737 	}
738 
739 	bh = get_last_bh(&path);
740 	ih = tp_item_head(&path);
741 	item = tp_item_body(&path);
742 	pos_in_item = path.pos_in_item;
743 
744 	fs_gen = get_generation(inode->i_sb);
745 	copy_item_head(&tmp_ih, ih);
746 
747 	if (allocation_needed
748 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
749 		/* we have to allocate block for the unformatted node */
750 		if (!th) {
751 			pathrelse(&path);
752 			goto start_trans;
753 		}
754 
755 		repeat =
756 		    _allocate_block(th, block, inode, &allocated_block_nr,
757 				    &path, create);
758 
759 		/*
760 		 * restart the transaction to give the journal a chance to free
761 		 * some blocks.  releases the path, so we have to go back to
762 		 * research if we succeed on the second try
763 		 */
764 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
765 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
766 			retval = restart_transaction(th, inode, &path);
767 			if (retval)
768 				goto failure;
769 			repeat =
770 			    _allocate_block(th, block, inode,
771 					    &allocated_block_nr, NULL, create);
772 
773 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
774 				goto research;
775 			}
776 			if (repeat == QUOTA_EXCEEDED)
777 				retval = -EDQUOT;
778 			else
779 				retval = -ENOSPC;
780 			goto failure;
781 		}
782 
783 		if (fs_changed(fs_gen, inode->i_sb)
784 		    && item_moved(&tmp_ih, &path)) {
785 			goto research;
786 		}
787 	}
788 
789 	if (indirect_item_found(retval, ih)) {
790 		b_blocknr_t unfm_ptr;
791 		/*
792 		 * 'block'-th block is in the file already (there is
793 		 * corresponding cell in some indirect item). But it may be
794 		 * zero unformatted node pointer (hole)
795 		 */
796 		unfm_ptr = get_block_num(item, pos_in_item);
797 		if (unfm_ptr == 0) {
798 			/* use allocated block to plug the hole */
799 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
800 			if (fs_changed(fs_gen, inode->i_sb)
801 			    && item_moved(&tmp_ih, &path)) {
802 				reiserfs_restore_prepared_buffer(inode->i_sb,
803 								 bh);
804 				goto research;
805 			}
806 			set_buffer_new(bh_result);
807 			if (buffer_dirty(bh_result)
808 			    && reiserfs_data_ordered(inode->i_sb))
809 				reiserfs_add_ordered_list(inode, bh_result);
810 			put_block_num(item, pos_in_item, allocated_block_nr);
811 			unfm_ptr = allocated_block_nr;
812 			journal_mark_dirty(th, bh);
813 			reiserfs_update_sd(th, inode);
814 		}
815 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
816 		pathrelse(&path);
817 		retval = 0;
818 		if (!dangle && th)
819 			retval = reiserfs_end_persistent_transaction(th);
820 
821 		reiserfs_write_unlock(inode->i_sb);
822 
823 		/*
824 		 * the item was found, so new blocks were not added to the file
825 		 * there is no need to make sure the inode is updated with this
826 		 * transaction
827 		 */
828 		return retval;
829 	}
830 
831 	if (!th) {
832 		pathrelse(&path);
833 		goto start_trans;
834 	}
835 
836 	/*
837 	 * desired position is not found or is in the direct item. We have
838 	 * to append file with holes up to 'block'-th block converting
839 	 * direct items to indirect one if necessary
840 	 */
841 	done = 0;
842 	do {
843 		if (is_statdata_le_ih(ih)) {
844 			__le32 unp = 0;
845 			struct cpu_key tmp_key;
846 
847 			/* indirect item has to be inserted */
848 			make_le_item_head(&tmp_ih, &key, version, 1,
849 					  TYPE_INDIRECT, UNFM_P_SIZE,
850 					  0 /* free_space */ );
851 
852 			/*
853 			 * we are going to add 'block'-th block to the file.
854 			 * Use allocated block for that
855 			 */
856 			if (cpu_key_k_offset(&key) == 1) {
857 				unp = cpu_to_le32(allocated_block_nr);
858 				set_block_dev_mapped(bh_result,
859 						     allocated_block_nr, inode);
860 				set_buffer_new(bh_result);
861 				done = 1;
862 			}
863 			tmp_key = key;	/* ;) */
864 			set_cpu_key_k_offset(&tmp_key, 1);
865 			PATH_LAST_POSITION(&path)++;
866 
867 			retval =
868 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
869 						 inode, (char *)&unp);
870 			if (retval) {
871 				reiserfs_free_block(th, inode,
872 						    allocated_block_nr, 1);
873 				/*
874 				 * retval == -ENOSPC, -EDQUOT or -EIO
875 				 * or -EEXIST
876 				 */
877 				goto failure;
878 			}
879 		} else if (is_direct_le_ih(ih)) {
880 			/* direct item has to be converted */
881 			loff_t tail_offset;
882 
883 			tail_offset =
884 			    ((le_ih_k_offset(ih) -
885 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
886 
887 			/*
888 			 * direct item we just found fits into block we have
889 			 * to map. Convert it into unformatted node: use
890 			 * bh_result for the conversion
891 			 */
892 			if (tail_offset == cpu_key_k_offset(&key)) {
893 				set_block_dev_mapped(bh_result,
894 						     allocated_block_nr, inode);
895 				unbh = bh_result;
896 				done = 1;
897 			} else {
898 				/*
899 				 * we have to pad file tail stored in direct
900 				 * item(s) up to block size and convert it
901 				 * to unformatted node. FIXME: this should
902 				 * also get into page cache
903 				 */
904 
905 				pathrelse(&path);
906 				/*
907 				 * ugly, but we can only end the transaction if
908 				 * we aren't nested
909 				 */
910 				BUG_ON(!th->t_refcount);
911 				if (th->t_refcount == 1) {
912 					retval =
913 					    reiserfs_end_persistent_transaction
914 					    (th);
915 					th = NULL;
916 					if (retval)
917 						goto failure;
918 				}
919 
920 				retval =
921 				    convert_tail_for_hole(inode, bh_result,
922 							  tail_offset);
923 				if (retval) {
924 					if (retval != -ENOSPC)
925 						reiserfs_error(inode->i_sb,
926 							"clm-6004",
927 							"convert tail failed "
928 							"inode %lu, error %d",
929 							inode->i_ino,
930 							retval);
931 					if (allocated_block_nr) {
932 						/*
933 						 * the bitmap, the super,
934 						 * and the stat data == 3
935 						 */
936 						if (!th)
937 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
938 						if (th)
939 							reiserfs_free_block(th,
940 									    inode,
941 									    allocated_block_nr,
942 									    1);
943 					}
944 					goto failure;
945 				}
946 				goto research;
947 			}
948 			retval =
949 			    direct2indirect(th, inode, &path, unbh,
950 					    tail_offset);
951 			if (retval) {
952 				reiserfs_unmap_buffer(unbh);
953 				reiserfs_free_block(th, inode,
954 						    allocated_block_nr, 1);
955 				goto failure;
956 			}
957 			/*
958 			 * it is important the set_buffer_uptodate is done
959 			 * after the direct2indirect.  The buffer might
960 			 * contain valid data newer than the data on disk
961 			 * (read by read_folio, changed, and then sent here by
962 			 * writepage).  direct2indirect needs to know if unbh
963 			 * was already up to date, so it can decide if the
964 			 * data in unbh needs to be replaced with data from
965 			 * the disk
966 			 */
967 			set_buffer_uptodate(unbh);
968 
969 			/*
970 			 * unbh->b_page == NULL in case of DIRECT_IO request,
971 			 * this means buffer will disappear shortly, so it
972 			 * should not be added to
973 			 */
974 			if (unbh->b_page) {
975 				/*
976 				 * we've converted the tail, so we must
977 				 * flush unbh before the transaction commits
978 				 */
979 				reiserfs_add_tail_list(inode, unbh);
980 
981 				/*
982 				 * mark it dirty now to prevent commit_write
983 				 * from adding this buffer to the inode's
984 				 * dirty buffer list
985 				 */
986 				/*
987 				 * AKPM: changed __mark_buffer_dirty to
988 				 * mark_buffer_dirty().  It's still atomic,
989 				 * but it sets the page dirty too, which makes
990 				 * it eligible for writeback at any time by the
991 				 * VM (which was also the case with
992 				 * __mark_buffer_dirty())
993 				 */
994 				mark_buffer_dirty(unbh);
995 			}
996 		} else {
997 			/*
998 			 * append indirect item with holes if needed, when
999 			 * appending pointer to 'block'-th block use block,
1000 			 * which is already allocated
1001 			 */
1002 			struct cpu_key tmp_key;
1003 			/*
1004 			 * We use this in case we need to allocate
1005 			 * only one block which is a fastpath
1006 			 */
1007 			unp_t unf_single = 0;
1008 			unp_t *un;
1009 			__u64 max_to_insert =
1010 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1011 			    UNFM_P_SIZE;
1012 			__u64 blocks_needed;
1013 
1014 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1015 			       "vs-804: invalid position for append");
1016 			/*
1017 			 * indirect item has to be appended,
1018 			 * set up key of that position
1019 			 * (key type is unimportant)
1020 			 */
1021 			make_cpu_key(&tmp_key, inode,
1022 				     le_key_k_offset(version,
1023 						     &ih->ih_key) +
1024 				     op_bytes_number(ih,
1025 						     inode->i_sb->s_blocksize),
1026 				     TYPE_INDIRECT, 3);
1027 
1028 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1029 			       "green-805: invalid offset");
1030 			blocks_needed =
1031 			    1 +
1032 			    ((cpu_key_k_offset(&key) -
1033 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1034 			     s_blocksize_bits);
1035 
1036 			if (blocks_needed == 1) {
1037 				un = &unf_single;
1038 			} else {
1039 				un = kcalloc(min(blocks_needed, max_to_insert),
1040 					     UNFM_P_SIZE, GFP_NOFS);
1041 				if (!un) {
1042 					un = &unf_single;
1043 					blocks_needed = 1;
1044 					max_to_insert = 0;
1045 				}
1046 			}
1047 			if (blocks_needed <= max_to_insert) {
1048 				/*
1049 				 * we are going to add target block to
1050 				 * the file. Use allocated block for that
1051 				 */
1052 				un[blocks_needed - 1] =
1053 				    cpu_to_le32(allocated_block_nr);
1054 				set_block_dev_mapped(bh_result,
1055 						     allocated_block_nr, inode);
1056 				set_buffer_new(bh_result);
1057 				done = 1;
1058 			} else {
1059 				/* paste hole to the indirect item */
1060 				/*
1061 				 * If kcalloc failed, max_to_insert becomes
1062 				 * zero and it means we only have space for
1063 				 * one block
1064 				 */
1065 				blocks_needed =
1066 				    max_to_insert ? max_to_insert : 1;
1067 			}
1068 			retval =
1069 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1070 						     (char *)un,
1071 						     UNFM_P_SIZE *
1072 						     blocks_needed);
1073 
1074 			if (blocks_needed != 1)
1075 				kfree(un);
1076 
1077 			if (retval) {
1078 				reiserfs_free_block(th, inode,
1079 						    allocated_block_nr, 1);
1080 				goto failure;
1081 			}
1082 			if (!done) {
1083 				/*
1084 				 * We need to mark new file size in case
1085 				 * this function will be interrupted/aborted
1086 				 * later on. And we may do this only for
1087 				 * holes.
1088 				 */
1089 				inode->i_size +=
1090 				    inode->i_sb->s_blocksize * blocks_needed;
1091 			}
1092 		}
1093 
1094 		if (done == 1)
1095 			break;
1096 
1097 		/*
1098 		 * this loop could log more blocks than we had originally
1099 		 * asked for.  So, we have to allow the transaction to end
1100 		 * if it is too big or too full.  Update the inode so things
1101 		 * are consistent if we crash before the function returns
1102 		 * release the path so that anybody waiting on the path before
1103 		 * ending their transaction will be able to continue.
1104 		 */
1105 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1106 			retval = restart_transaction(th, inode, &path);
1107 			if (retval)
1108 				goto failure;
1109 		}
1110 		/*
1111 		 * inserting indirect pointers for a hole can take a
1112 		 * long time.  reschedule if needed and also release the write
1113 		 * lock for others.
1114 		 */
1115 		reiserfs_cond_resched(inode->i_sb);
1116 
1117 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1118 		if (retval == IO_ERROR) {
1119 			retval = -EIO;
1120 			goto failure;
1121 		}
1122 		if (retval == POSITION_FOUND) {
1123 			reiserfs_warning(inode->i_sb, "vs-825",
1124 					 "%K should not be found", &key);
1125 			retval = -EEXIST;
1126 			if (allocated_block_nr)
1127 				reiserfs_free_block(th, inode,
1128 						    allocated_block_nr, 1);
1129 			pathrelse(&path);
1130 			goto failure;
1131 		}
1132 		bh = get_last_bh(&path);
1133 		ih = tp_item_head(&path);
1134 		item = tp_item_body(&path);
1135 		pos_in_item = path.pos_in_item;
1136 	} while (1);
1137 
1138 	retval = 0;
1139 
1140 failure:
1141 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1142 		int err;
1143 		if (th->t_trans_id)
1144 			reiserfs_update_sd(th, inode);
1145 		err = reiserfs_end_persistent_transaction(th);
1146 		if (err)
1147 			retval = err;
1148 	}
1149 
1150 	reiserfs_write_unlock(inode->i_sb);
1151 	reiserfs_check_path(&path);
1152 	return retval;
1153 }
1154 
1155 static void reiserfs_readahead(struct readahead_control *rac)
1156 {
1157 	mpage_readahead(rac, reiserfs_get_block);
1158 }
1159 
1160 /*
1161  * Compute real number of used bytes by file
1162  * Following three functions can go away when we'll have enough space in
1163  * stat item
1164  */
1165 static int real_space_diff(struct inode *inode, int sd_size)
1166 {
1167 	int bytes;
1168 	loff_t blocksize = inode->i_sb->s_blocksize;
1169 
1170 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1171 		return sd_size;
1172 
1173 	/*
1174 	 * End of file is also in full block with indirect reference, so round
1175 	 * up to the next block.
1176 	 *
1177 	 * there is just no way to know if the tail is actually packed
1178 	 * on the file, so we have to assume it isn't.  When we pack the
1179 	 * tail, we add 4 bytes to pretend there really is an unformatted
1180 	 * node pointer
1181 	 */
1182 	bytes =
1183 	    ((inode->i_size +
1184 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1185 	    sd_size;
1186 	return bytes;
1187 }
1188 
1189 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1190 					int sd_size)
1191 {
1192 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1193 		return inode->i_size +
1194 		    (loff_t) (real_space_diff(inode, sd_size));
1195 	}
1196 	return ((loff_t) real_space_diff(inode, sd_size)) +
1197 	    (((loff_t) blocks) << 9);
1198 }
1199 
1200 /* Compute number of blocks used by file in ReiserFS counting */
1201 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1202 {
1203 	loff_t bytes = inode_get_bytes(inode);
1204 	loff_t real_space = real_space_diff(inode, sd_size);
1205 
1206 	/* keeps fsck and non-quota versions of reiserfs happy */
1207 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1208 		bytes += (loff_t) 511;
1209 	}
1210 
1211 	/*
1212 	 * files from before the quota patch might i_blocks such that
1213 	 * bytes < real_space.  Deal with that here to prevent it from
1214 	 * going negative.
1215 	 */
1216 	if (bytes < real_space)
1217 		return 0;
1218 	return (bytes - real_space) >> 9;
1219 }
1220 
1221 /*
1222  * BAD: new directories have stat data of new type and all other items
1223  * of old type. Version stored in the inode says about body items, so
1224  * in update_stat_data we can not rely on inode, but have to check
1225  * item version directly
1226  */
1227 
1228 /* called by read_locked_inode */
1229 static void init_inode(struct inode *inode, struct treepath *path)
1230 {
1231 	struct buffer_head *bh;
1232 	struct item_head *ih;
1233 	__u32 rdev;
1234 
1235 	bh = PATH_PLAST_BUFFER(path);
1236 	ih = tp_item_head(path);
1237 
1238 	copy_key(INODE_PKEY(inode), &ih->ih_key);
1239 
1240 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1241 	REISERFS_I(inode)->i_flags = 0;
1242 	REISERFS_I(inode)->i_prealloc_block = 0;
1243 	REISERFS_I(inode)->i_prealloc_count = 0;
1244 	REISERFS_I(inode)->i_trans_id = 0;
1245 	REISERFS_I(inode)->i_jl = NULL;
1246 	reiserfs_init_xattr_rwsem(inode);
1247 
1248 	if (stat_data_v1(ih)) {
1249 		struct stat_data_v1 *sd =
1250 		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1251 		unsigned long blocks;
1252 
1253 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1254 		set_inode_sd_version(inode, STAT_DATA_V1);
1255 		inode->i_mode = sd_v1_mode(sd);
1256 		set_nlink(inode, sd_v1_nlink(sd));
1257 		i_uid_write(inode, sd_v1_uid(sd));
1258 		i_gid_write(inode, sd_v1_gid(sd));
1259 		inode->i_size = sd_v1_size(sd);
1260 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1261 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1262 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1263 		inode->i_atime.tv_nsec = 0;
1264 		inode->i_ctime.tv_nsec = 0;
1265 		inode->i_mtime.tv_nsec = 0;
1266 
1267 		inode->i_blocks = sd_v1_blocks(sd);
1268 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1269 		blocks = (inode->i_size + 511) >> 9;
1270 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1271 
1272 		/*
1273 		 * there was a bug in <=3.5.23 when i_blocks could take
1274 		 * negative values. Starting from 3.5.17 this value could
1275 		 * even be stored in stat data. For such files we set
1276 		 * i_blocks based on file size. Just 2 notes: this can be
1277 		 * wrong for sparse files. On-disk value will be only
1278 		 * updated if file's inode will ever change
1279 		 */
1280 		if (inode->i_blocks > blocks) {
1281 			inode->i_blocks = blocks;
1282 		}
1283 
1284 		rdev = sd_v1_rdev(sd);
1285 		REISERFS_I(inode)->i_first_direct_byte =
1286 		    sd_v1_first_direct_byte(sd);
1287 
1288 		/*
1289 		 * an early bug in the quota code can give us an odd
1290 		 * number for the block count.  This is incorrect, fix it here.
1291 		 */
1292 		if (inode->i_blocks & 1) {
1293 			inode->i_blocks++;
1294 		}
1295 		inode_set_bytes(inode,
1296 				to_real_used_space(inode, inode->i_blocks,
1297 						   SD_V1_SIZE));
1298 		/*
1299 		 * nopack is initially zero for v1 objects. For v2 objects,
1300 		 * nopack is initialised from sd_attrs
1301 		 */
1302 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1303 	} else {
1304 		/*
1305 		 * new stat data found, but object may have old items
1306 		 * (directories and symlinks)
1307 		 */
1308 		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1309 
1310 		inode->i_mode = sd_v2_mode(sd);
1311 		set_nlink(inode, sd_v2_nlink(sd));
1312 		i_uid_write(inode, sd_v2_uid(sd));
1313 		inode->i_size = sd_v2_size(sd);
1314 		i_gid_write(inode, sd_v2_gid(sd));
1315 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1316 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1317 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1318 		inode->i_ctime.tv_nsec = 0;
1319 		inode->i_mtime.tv_nsec = 0;
1320 		inode->i_atime.tv_nsec = 0;
1321 		inode->i_blocks = sd_v2_blocks(sd);
1322 		rdev = sd_v2_rdev(sd);
1323 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1324 			inode->i_generation =
1325 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1326 		else
1327 			inode->i_generation = sd_v2_generation(sd);
1328 
1329 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1330 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1331 		else
1332 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1333 		REISERFS_I(inode)->i_first_direct_byte = 0;
1334 		set_inode_sd_version(inode, STAT_DATA_V2);
1335 		inode_set_bytes(inode,
1336 				to_real_used_space(inode, inode->i_blocks,
1337 						   SD_V2_SIZE));
1338 		/*
1339 		 * read persistent inode attributes from sd and initialise
1340 		 * generic inode flags from them
1341 		 */
1342 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1343 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1344 	}
1345 
1346 	pathrelse(path);
1347 	if (S_ISREG(inode->i_mode)) {
1348 		inode->i_op = &reiserfs_file_inode_operations;
1349 		inode->i_fop = &reiserfs_file_operations;
1350 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1351 	} else if (S_ISDIR(inode->i_mode)) {
1352 		inode->i_op = &reiserfs_dir_inode_operations;
1353 		inode->i_fop = &reiserfs_dir_operations;
1354 	} else if (S_ISLNK(inode->i_mode)) {
1355 		inode->i_op = &reiserfs_symlink_inode_operations;
1356 		inode_nohighmem(inode);
1357 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1358 	} else {
1359 		inode->i_blocks = 0;
1360 		inode->i_op = &reiserfs_special_inode_operations;
1361 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1362 	}
1363 }
1364 
1365 /* update new stat data with inode fields */
1366 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1367 {
1368 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1369 
1370 	set_sd_v2_mode(sd_v2, inode->i_mode);
1371 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1372 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1373 	set_sd_v2_size(sd_v2, size);
1374 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1375 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1376 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1377 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1378 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1379 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1380 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1381 	else
1382 		set_sd_v2_generation(sd_v2, inode->i_generation);
1383 	set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs);
1384 }
1385 
1386 /* used to copy inode's fields to old stat data */
1387 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1388 {
1389 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1390 
1391 	set_sd_v1_mode(sd_v1, inode->i_mode);
1392 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1393 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1394 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1395 	set_sd_v1_size(sd_v1, size);
1396 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1397 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1398 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1399 
1400 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1401 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1402 	else
1403 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1404 
1405 	/* Sigh. i_first_direct_byte is back */
1406 	set_sd_v1_first_direct_byte(sd_v1,
1407 				    REISERFS_I(inode)->i_first_direct_byte);
1408 }
1409 
1410 /*
1411  * NOTE, you must prepare the buffer head before sending it here,
1412  * and then log it after the call
1413  */
1414 static void update_stat_data(struct treepath *path, struct inode *inode,
1415 			     loff_t size)
1416 {
1417 	struct buffer_head *bh;
1418 	struct item_head *ih;
1419 
1420 	bh = PATH_PLAST_BUFFER(path);
1421 	ih = tp_item_head(path);
1422 
1423 	if (!is_statdata_le_ih(ih))
1424 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1425 			       INODE_PKEY(inode), ih);
1426 
1427 	/* path points to old stat data */
1428 	if (stat_data_v1(ih)) {
1429 		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1430 	} else {
1431 		inode2sd(ih_item_body(bh, ih), inode, size);
1432 	}
1433 
1434 	return;
1435 }
1436 
1437 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1438 			     struct inode *inode, loff_t size)
1439 {
1440 	struct cpu_key key;
1441 	INITIALIZE_PATH(path);
1442 	struct buffer_head *bh;
1443 	int fs_gen;
1444 	struct item_head *ih, tmp_ih;
1445 	int retval;
1446 
1447 	BUG_ON(!th->t_trans_id);
1448 
1449 	/* key type is unimportant */
1450 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1451 
1452 	for (;;) {
1453 		int pos;
1454 		/* look for the object's stat data */
1455 		retval = search_item(inode->i_sb, &key, &path);
1456 		if (retval == IO_ERROR) {
1457 			reiserfs_error(inode->i_sb, "vs-13050",
1458 				       "i/o failure occurred trying to "
1459 				       "update %K stat data", &key);
1460 			return;
1461 		}
1462 		if (retval == ITEM_NOT_FOUND) {
1463 			pos = PATH_LAST_POSITION(&path);
1464 			pathrelse(&path);
1465 			if (inode->i_nlink == 0) {
1466 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1467 				return;
1468 			}
1469 			reiserfs_warning(inode->i_sb, "vs-13060",
1470 					 "stat data of object %k (nlink == %d) "
1471 					 "not found (pos %d)",
1472 					 INODE_PKEY(inode), inode->i_nlink,
1473 					 pos);
1474 			reiserfs_check_path(&path);
1475 			return;
1476 		}
1477 
1478 		/*
1479 		 * sigh, prepare_for_journal might schedule.  When it
1480 		 * schedules the FS might change.  We have to detect that,
1481 		 * and loop back to the search if the stat data item has moved
1482 		 */
1483 		bh = get_last_bh(&path);
1484 		ih = tp_item_head(&path);
1485 		copy_item_head(&tmp_ih, ih);
1486 		fs_gen = get_generation(inode->i_sb);
1487 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1488 
1489 		/* Stat_data item has been moved after scheduling. */
1490 		if (fs_changed(fs_gen, inode->i_sb)
1491 		    && item_moved(&tmp_ih, &path)) {
1492 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1493 			continue;
1494 		}
1495 		break;
1496 	}
1497 	update_stat_data(&path, inode, size);
1498 	journal_mark_dirty(th, bh);
1499 	pathrelse(&path);
1500 	return;
1501 }
1502 
1503 /*
1504  * reiserfs_read_locked_inode is called to read the inode off disk, and it
1505  * does a make_bad_inode when things go wrong.  But, we need to make sure
1506  * and clear the key in the private portion of the inode, otherwise a
1507  * corresponding iput might try to delete whatever object the inode last
1508  * represented.
1509  */
1510 static void reiserfs_make_bad_inode(struct inode *inode)
1511 {
1512 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1513 	make_bad_inode(inode);
1514 }
1515 
1516 /*
1517  * initially this function was derived from minix or ext2's analog and
1518  * evolved as the prototype did
1519  */
1520 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1521 {
1522 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1523 	inode->i_ino = args->objectid;
1524 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1525 	return 0;
1526 }
1527 
1528 /*
1529  * looks for stat data in the tree, and fills up the fields of in-core
1530  * inode stat data fields
1531  */
1532 void reiserfs_read_locked_inode(struct inode *inode,
1533 				struct reiserfs_iget_args *args)
1534 {
1535 	INITIALIZE_PATH(path_to_sd);
1536 	struct cpu_key key;
1537 	unsigned long dirino;
1538 	int retval;
1539 
1540 	dirino = args->dirid;
1541 
1542 	/*
1543 	 * set version 1, version 2 could be used too, because stat data
1544 	 * key is the same in both versions
1545 	 */
1546 	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1547 
1548 	/* look for the object's stat data */
1549 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1550 	if (retval == IO_ERROR) {
1551 		reiserfs_error(inode->i_sb, "vs-13070",
1552 			       "i/o failure occurred trying to find "
1553 			       "stat data of %K", &key);
1554 		reiserfs_make_bad_inode(inode);
1555 		return;
1556 	}
1557 
1558 	/* a stale NFS handle can trigger this without it being an error */
1559 	if (retval != ITEM_FOUND) {
1560 		pathrelse(&path_to_sd);
1561 		reiserfs_make_bad_inode(inode);
1562 		clear_nlink(inode);
1563 		return;
1564 	}
1565 
1566 	init_inode(inode, &path_to_sd);
1567 
1568 	/*
1569 	 * It is possible that knfsd is trying to access inode of a file
1570 	 * that is being removed from the disk by some other thread. As we
1571 	 * update sd on unlink all that is required is to check for nlink
1572 	 * here. This bug was first found by Sizif when debugging
1573 	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1574 	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1575 
1576 	 * More logical fix would require changes in fs/inode.c:iput() to
1577 	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1578 	 * in iget() to return NULL if I_FREEING inode is found in
1579 	 * hash-table.
1580 	 */
1581 
1582 	/*
1583 	 * Currently there is one place where it's ok to meet inode with
1584 	 * nlink==0: processing of open-unlinked and half-truncated files
1585 	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1586 	 */
1587 	if ((inode->i_nlink == 0) &&
1588 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1589 		reiserfs_warning(inode->i_sb, "vs-13075",
1590 				 "dead inode read from disk %K. "
1591 				 "This is likely to be race with knfsd. Ignore",
1592 				 &key);
1593 		reiserfs_make_bad_inode(inode);
1594 	}
1595 
1596 	/* init inode should be relsing */
1597 	reiserfs_check_path(&path_to_sd);
1598 
1599 	/*
1600 	 * Stat data v1 doesn't support ACLs.
1601 	 */
1602 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1603 		cache_no_acl(inode);
1604 }
1605 
1606 /*
1607  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1608  *
1609  * @inode:    inode from hash table to check
1610  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1611  *
1612  * This function is called by iget5_locked() to distinguish reiserfs inodes
1613  * having the same inode numbers. Such inodes can only exist due to some
1614  * error condition. One of them should be bad. Inodes with identical
1615  * inode numbers (objectids) are distinguished by parent directory ids.
1616  *
1617  */
1618 int reiserfs_find_actor(struct inode *inode, void *opaque)
1619 {
1620 	struct reiserfs_iget_args *args;
1621 
1622 	args = opaque;
1623 	/* args is already in CPU order */
1624 	return (inode->i_ino == args->objectid) &&
1625 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1626 }
1627 
1628 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1629 {
1630 	struct inode *inode;
1631 	struct reiserfs_iget_args args;
1632 	int depth;
1633 
1634 	args.objectid = key->on_disk_key.k_objectid;
1635 	args.dirid = key->on_disk_key.k_dir_id;
1636 	depth = reiserfs_write_unlock_nested(s);
1637 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1638 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1639 			     (void *)(&args));
1640 	reiserfs_write_lock_nested(s, depth);
1641 	if (!inode)
1642 		return ERR_PTR(-ENOMEM);
1643 
1644 	if (inode->i_state & I_NEW) {
1645 		reiserfs_read_locked_inode(inode, &args);
1646 		unlock_new_inode(inode);
1647 	}
1648 
1649 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1650 		/* either due to i/o error or a stale NFS handle */
1651 		iput(inode);
1652 		inode = NULL;
1653 	}
1654 	return inode;
1655 }
1656 
1657 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1658 	u32 objectid, u32 dir_id, u32 generation)
1659 
1660 {
1661 	struct cpu_key key;
1662 	struct inode *inode;
1663 
1664 	key.on_disk_key.k_objectid = objectid;
1665 	key.on_disk_key.k_dir_id = dir_id;
1666 	reiserfs_write_lock(sb);
1667 	inode = reiserfs_iget(sb, &key);
1668 	if (inode && !IS_ERR(inode) && generation != 0 &&
1669 	    generation != inode->i_generation) {
1670 		iput(inode);
1671 		inode = NULL;
1672 	}
1673 	reiserfs_write_unlock(sb);
1674 
1675 	return d_obtain_alias(inode);
1676 }
1677 
1678 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1679 		int fh_len, int fh_type)
1680 {
1681 	/*
1682 	 * fhtype happens to reflect the number of u32s encoded.
1683 	 * due to a bug in earlier code, fhtype might indicate there
1684 	 * are more u32s then actually fitted.
1685 	 * so if fhtype seems to be more than len, reduce fhtype.
1686 	 * Valid types are:
1687 	 *   2 - objectid + dir_id - legacy support
1688 	 *   3 - objectid + dir_id + generation
1689 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1690 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1691 	 *   6 - as above plus generation of directory
1692 	 * 6 does not fit in NFSv2 handles
1693 	 */
1694 	if (fh_type > fh_len) {
1695 		if (fh_type != 6 || fh_len != 5)
1696 			reiserfs_warning(sb, "reiserfs-13077",
1697 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1698 				fh_type, fh_len);
1699 		fh_type = fh_len;
1700 	}
1701 	if (fh_len < 2)
1702 		return NULL;
1703 
1704 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1705 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1706 }
1707 
1708 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1709 		int fh_len, int fh_type)
1710 {
1711 	if (fh_type > fh_len)
1712 		fh_type = fh_len;
1713 	if (fh_type < 4)
1714 		return NULL;
1715 
1716 	return reiserfs_get_dentry(sb,
1717 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1718 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1719 		(fh_type == 6) ? fid->raw[5] : 0);
1720 }
1721 
1722 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1723 		       struct inode *parent)
1724 {
1725 	int maxlen = *lenp;
1726 
1727 	if (parent && (maxlen < 5)) {
1728 		*lenp = 5;
1729 		return FILEID_INVALID;
1730 	} else if (maxlen < 3) {
1731 		*lenp = 3;
1732 		return FILEID_INVALID;
1733 	}
1734 
1735 	data[0] = inode->i_ino;
1736 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1737 	data[2] = inode->i_generation;
1738 	*lenp = 3;
1739 	if (parent) {
1740 		data[3] = parent->i_ino;
1741 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1742 		*lenp = 5;
1743 		if (maxlen >= 6) {
1744 			data[5] = parent->i_generation;
1745 			*lenp = 6;
1746 		}
1747 	}
1748 	return *lenp;
1749 }
1750 
1751 /*
1752  * looks for stat data, then copies fields to it, marks the buffer
1753  * containing stat data as dirty
1754  */
1755 /*
1756  * reiserfs inodes are never really dirty, since the dirty inode call
1757  * always logs them.  This call allows the VFS inode marking routines
1758  * to properly mark inodes for datasync and such, but only actually
1759  * does something when called for a synchronous update.
1760  */
1761 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1762 {
1763 	struct reiserfs_transaction_handle th;
1764 	int jbegin_count = 1;
1765 
1766 	if (sb_rdonly(inode->i_sb))
1767 		return -EROFS;
1768 	/*
1769 	 * memory pressure can sometimes initiate write_inode calls with
1770 	 * sync == 1,
1771 	 * these cases are just when the system needs ram, not when the
1772 	 * inode needs to reach disk for safety, and they can safely be
1773 	 * ignored because the altered inode has already been logged.
1774 	 */
1775 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1776 		reiserfs_write_lock(inode->i_sb);
1777 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1778 			reiserfs_update_sd(&th, inode);
1779 			journal_end_sync(&th);
1780 		}
1781 		reiserfs_write_unlock(inode->i_sb);
1782 	}
1783 	return 0;
1784 }
1785 
1786 /*
1787  * stat data of new object is inserted already, this inserts the item
1788  * containing "." and ".." entries
1789  */
1790 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1791 				  struct inode *inode,
1792 				  struct item_head *ih, struct treepath *path,
1793 				  struct inode *dir)
1794 {
1795 	struct super_block *sb = th->t_super;
1796 	char empty_dir[EMPTY_DIR_SIZE];
1797 	char *body = empty_dir;
1798 	struct cpu_key key;
1799 	int retval;
1800 
1801 	BUG_ON(!th->t_trans_id);
1802 
1803 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1804 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1805 		      TYPE_DIRENTRY, 3 /*key length */ );
1806 
1807 	/*
1808 	 * compose item head for new item. Directories consist of items of
1809 	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1810 	 * is done by reiserfs_new_inode
1811 	 */
1812 	if (old_format_only(sb)) {
1813 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1814 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1815 
1816 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1817 				       ih->ih_key.k_objectid,
1818 				       INODE_PKEY(dir)->k_dir_id,
1819 				       INODE_PKEY(dir)->k_objectid);
1820 	} else {
1821 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1822 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1823 
1824 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1825 				    ih->ih_key.k_objectid,
1826 				    INODE_PKEY(dir)->k_dir_id,
1827 				    INODE_PKEY(dir)->k_objectid);
1828 	}
1829 
1830 	/* look for place in the tree for new item */
1831 	retval = search_item(sb, &key, path);
1832 	if (retval == IO_ERROR) {
1833 		reiserfs_error(sb, "vs-13080",
1834 			       "i/o failure occurred creating new directory");
1835 		return -EIO;
1836 	}
1837 	if (retval == ITEM_FOUND) {
1838 		pathrelse(path);
1839 		reiserfs_warning(sb, "vs-13070",
1840 				 "object with this key exists (%k)",
1841 				 &(ih->ih_key));
1842 		return -EEXIST;
1843 	}
1844 
1845 	/* insert item, that is empty directory item */
1846 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1847 }
1848 
1849 /*
1850  * stat data of object has been inserted, this inserts the item
1851  * containing the body of symlink
1852  */
1853 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1854 				struct inode *inode,
1855 				struct item_head *ih,
1856 				struct treepath *path, const char *symname,
1857 				int item_len)
1858 {
1859 	struct super_block *sb = th->t_super;
1860 	struct cpu_key key;
1861 	int retval;
1862 
1863 	BUG_ON(!th->t_trans_id);
1864 
1865 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1866 		      le32_to_cpu(ih->ih_key.k_dir_id),
1867 		      le32_to_cpu(ih->ih_key.k_objectid),
1868 		      1, TYPE_DIRECT, 3 /*key length */ );
1869 
1870 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1871 			  0 /*free_space */ );
1872 
1873 	/* look for place in the tree for new item */
1874 	retval = search_item(sb, &key, path);
1875 	if (retval == IO_ERROR) {
1876 		reiserfs_error(sb, "vs-13080",
1877 			       "i/o failure occurred creating new symlink");
1878 		return -EIO;
1879 	}
1880 	if (retval == ITEM_FOUND) {
1881 		pathrelse(path);
1882 		reiserfs_warning(sb, "vs-13080",
1883 				 "object with this key exists (%k)",
1884 				 &(ih->ih_key));
1885 		return -EEXIST;
1886 	}
1887 
1888 	/* insert item, that is body of symlink */
1889 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1890 }
1891 
1892 /*
1893  * inserts the stat data into the tree, and then calls
1894  * reiserfs_new_directory (to insert ".", ".." item if new object is
1895  * directory) or reiserfs_new_symlink (to insert symlink body if new
1896  * object is symlink) or nothing (if new object is regular file)
1897 
1898  * NOTE! uid and gid must already be set in the inode.  If we return
1899  * non-zero due to an error, we have to drop the quota previously allocated
1900  * for the fresh inode.  This can only be done outside a transaction, so
1901  * if we return non-zero, we also end the transaction.
1902  *
1903  * @th: active transaction handle
1904  * @dir: parent directory for new inode
1905  * @mode: mode of new inode
1906  * @symname: symlink contents if inode is symlink
1907  * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1908  *         symlinks
1909  * @inode: inode to be filled
1910  * @security: optional security context to associate with this inode
1911  */
1912 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1913 		       struct inode *dir, umode_t mode, const char *symname,
1914 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1915 		          strlen (symname) for symlinks) */
1916 		       loff_t i_size, struct dentry *dentry,
1917 		       struct inode *inode,
1918 		       struct reiserfs_security_handle *security)
1919 {
1920 	struct super_block *sb = dir->i_sb;
1921 	struct reiserfs_iget_args args;
1922 	INITIALIZE_PATH(path_to_key);
1923 	struct cpu_key key;
1924 	struct item_head ih;
1925 	struct stat_data sd;
1926 	int retval;
1927 	int err;
1928 	int depth;
1929 
1930 	BUG_ON(!th->t_trans_id);
1931 
1932 	depth = reiserfs_write_unlock_nested(sb);
1933 	err = dquot_alloc_inode(inode);
1934 	reiserfs_write_lock_nested(sb, depth);
1935 	if (err)
1936 		goto out_end_trans;
1937 	if (!dir->i_nlink) {
1938 		err = -EPERM;
1939 		goto out_bad_inode;
1940 	}
1941 
1942 	/* item head of new item */
1943 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1944 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1945 	if (!ih.ih_key.k_objectid) {
1946 		err = -ENOMEM;
1947 		goto out_bad_inode;
1948 	}
1949 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1950 	if (old_format_only(sb))
1951 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1952 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1953 	else
1954 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1955 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1956 	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1957 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1958 
1959 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1960 	err = insert_inode_locked4(inode, args.objectid,
1961 			     reiserfs_find_actor, &args);
1962 	reiserfs_write_lock_nested(inode->i_sb, depth);
1963 	if (err) {
1964 		err = -EINVAL;
1965 		goto out_bad_inode;
1966 	}
1967 
1968 	if (old_format_only(sb))
1969 		/*
1970 		 * not a perfect generation count, as object ids can be reused,
1971 		 * but this is as good as reiserfs can do right now.
1972 		 * note that the private part of inode isn't filled in yet,
1973 		 * we have to use the directory.
1974 		 */
1975 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1976 	else
1977 #if defined( USE_INODE_GENERATION_COUNTER )
1978 		inode->i_generation =
1979 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1980 #else
1981 		inode->i_generation = ++event;
1982 #endif
1983 
1984 	/* fill stat data */
1985 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1986 
1987 	/* uid and gid must already be set by the caller for quota init */
1988 
1989 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1990 	inode->i_size = i_size;
1991 	inode->i_blocks = 0;
1992 	inode->i_bytes = 0;
1993 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1994 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1995 
1996 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1997 	REISERFS_I(inode)->i_flags = 0;
1998 	REISERFS_I(inode)->i_prealloc_block = 0;
1999 	REISERFS_I(inode)->i_prealloc_count = 0;
2000 	REISERFS_I(inode)->i_trans_id = 0;
2001 	REISERFS_I(inode)->i_jl = NULL;
2002 	REISERFS_I(inode)->i_attrs =
2003 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2004 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2005 	reiserfs_init_xattr_rwsem(inode);
2006 
2007 	/* key to search for correct place for new stat data */
2008 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2009 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2010 		      TYPE_STAT_DATA, 3 /*key length */ );
2011 
2012 	/* find proper place for inserting of stat data */
2013 	retval = search_item(sb, &key, &path_to_key);
2014 	if (retval == IO_ERROR) {
2015 		err = -EIO;
2016 		goto out_bad_inode;
2017 	}
2018 	if (retval == ITEM_FOUND) {
2019 		pathrelse(&path_to_key);
2020 		err = -EEXIST;
2021 		goto out_bad_inode;
2022 	}
2023 	if (old_format_only(sb)) {
2024 		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2025 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2026 			pathrelse(&path_to_key);
2027 			err = -EINVAL;
2028 			goto out_bad_inode;
2029 		}
2030 		inode2sd_v1(&sd, inode, inode->i_size);
2031 	} else {
2032 		inode2sd(&sd, inode, inode->i_size);
2033 	}
2034 	/*
2035 	 * store in in-core inode the key of stat data and version all
2036 	 * object items will have (directory items will have old offset
2037 	 * format, other new objects will consist of new items)
2038 	 */
2039 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2040 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2041 	else
2042 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2043 	if (old_format_only(sb))
2044 		set_inode_sd_version(inode, STAT_DATA_V1);
2045 	else
2046 		set_inode_sd_version(inode, STAT_DATA_V2);
2047 
2048 	/* insert the stat data into the tree */
2049 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2050 	if (REISERFS_I(dir)->new_packing_locality)
2051 		th->displace_new_blocks = 1;
2052 #endif
2053 	retval =
2054 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2055 				 (char *)(&sd));
2056 	if (retval) {
2057 		err = retval;
2058 		reiserfs_check_path(&path_to_key);
2059 		goto out_bad_inode;
2060 	}
2061 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2062 	if (!th->displace_new_blocks)
2063 		REISERFS_I(dir)->new_packing_locality = 0;
2064 #endif
2065 	if (S_ISDIR(mode)) {
2066 		/* insert item with "." and ".." */
2067 		retval =
2068 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2069 	}
2070 
2071 	if (S_ISLNK(mode)) {
2072 		/* insert body of symlink */
2073 		if (!old_format_only(sb))
2074 			i_size = ROUND_UP(i_size);
2075 		retval =
2076 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2077 					 i_size);
2078 	}
2079 	if (retval) {
2080 		err = retval;
2081 		reiserfs_check_path(&path_to_key);
2082 		journal_end(th);
2083 		goto out_inserted_sd;
2084 	}
2085 
2086 	/*
2087 	 * Mark it private if we're creating the privroot
2088 	 * or something under it.
2089 	 */
2090 	if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) {
2091 		inode->i_flags |= S_PRIVATE;
2092 		inode->i_opflags &= ~IOP_XATTR;
2093 	}
2094 
2095 	if (reiserfs_posixacl(inode->i_sb)) {
2096 		reiserfs_write_unlock(inode->i_sb);
2097 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2098 		reiserfs_write_lock(inode->i_sb);
2099 		if (retval) {
2100 			err = retval;
2101 			reiserfs_check_path(&path_to_key);
2102 			journal_end(th);
2103 			goto out_inserted_sd;
2104 		}
2105 	} else if (inode->i_sb->s_flags & SB_POSIXACL) {
2106 		reiserfs_warning(inode->i_sb, "jdm-13090",
2107 				 "ACLs aren't enabled in the fs, "
2108 				 "but vfs thinks they are!");
2109 	}
2110 
2111 	if (security->name) {
2112 		reiserfs_write_unlock(inode->i_sb);
2113 		retval = reiserfs_security_write(th, inode, security);
2114 		reiserfs_write_lock(inode->i_sb);
2115 		if (retval) {
2116 			err = retval;
2117 			reiserfs_check_path(&path_to_key);
2118 			retval = journal_end(th);
2119 			if (retval)
2120 				err = retval;
2121 			goto out_inserted_sd;
2122 		}
2123 	}
2124 
2125 	reiserfs_update_sd(th, inode);
2126 	reiserfs_check_path(&path_to_key);
2127 
2128 	return 0;
2129 
2130 out_bad_inode:
2131 	/* Invalidate the object, nothing was inserted yet */
2132 	INODE_PKEY(inode)->k_objectid = 0;
2133 
2134 	/* Quota change must be inside a transaction for journaling */
2135 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2136 	dquot_free_inode(inode);
2137 	reiserfs_write_lock_nested(inode->i_sb, depth);
2138 
2139 out_end_trans:
2140 	journal_end(th);
2141 	/*
2142 	 * Drop can be outside and it needs more credits so it's better
2143 	 * to have it outside
2144 	 */
2145 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2146 	dquot_drop(inode);
2147 	reiserfs_write_lock_nested(inode->i_sb, depth);
2148 	inode->i_flags |= S_NOQUOTA;
2149 	make_bad_inode(inode);
2150 
2151 out_inserted_sd:
2152 	clear_nlink(inode);
2153 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2154 	if (inode->i_state & I_NEW)
2155 		unlock_new_inode(inode);
2156 	iput(inode);
2157 	return err;
2158 }
2159 
2160 /*
2161  * finds the tail page in the page cache,
2162  * reads the last block in.
2163  *
2164  * On success, page_result is set to a locked, pinned page, and bh_result
2165  * is set to an up to date buffer for the last block in the file.  returns 0.
2166  *
2167  * tail conversion is not done, so bh_result might not be valid for writing
2168  * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2169  * trying to write the block.
2170  *
2171  * on failure, nonzero is returned, page_result and bh_result are untouched.
2172  */
2173 static int grab_tail_page(struct inode *inode,
2174 			  struct page **page_result,
2175 			  struct buffer_head **bh_result)
2176 {
2177 
2178 	/*
2179 	 * we want the page with the last byte in the file,
2180 	 * not the page that will hold the next byte for appending
2181 	 */
2182 	unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
2183 	unsigned long pos = 0;
2184 	unsigned long start = 0;
2185 	unsigned long blocksize = inode->i_sb->s_blocksize;
2186 	unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
2187 	struct buffer_head *bh;
2188 	struct buffer_head *head;
2189 	struct page *page;
2190 	int error;
2191 
2192 	/*
2193 	 * we know that we are only called with inode->i_size > 0.
2194 	 * we also know that a file tail can never be as big as a block
2195 	 * If i_size % blocksize == 0, our file is currently block aligned
2196 	 * and it won't need converting or zeroing after a truncate.
2197 	 */
2198 	if ((offset & (blocksize - 1)) == 0) {
2199 		return -ENOENT;
2200 	}
2201 	page = grab_cache_page(inode->i_mapping, index);
2202 	error = -ENOMEM;
2203 	if (!page) {
2204 		goto out;
2205 	}
2206 	/* start within the page of the last block in the file */
2207 	start = (offset / blocksize) * blocksize;
2208 
2209 	error = __block_write_begin(page, start, offset - start,
2210 				    reiserfs_get_block_create_0);
2211 	if (error)
2212 		goto unlock;
2213 
2214 	head = page_buffers(page);
2215 	bh = head;
2216 	do {
2217 		if (pos >= start) {
2218 			break;
2219 		}
2220 		bh = bh->b_this_page;
2221 		pos += blocksize;
2222 	} while (bh != head);
2223 
2224 	if (!buffer_uptodate(bh)) {
2225 		/*
2226 		 * note, this should never happen, prepare_write should be
2227 		 * taking care of this for us.  If the buffer isn't up to
2228 		 * date, I've screwed up the code to find the buffer, or the
2229 		 * code to call prepare_write
2230 		 */
2231 		reiserfs_error(inode->i_sb, "clm-6000",
2232 			       "error reading block %lu", bh->b_blocknr);
2233 		error = -EIO;
2234 		goto unlock;
2235 	}
2236 	*bh_result = bh;
2237 	*page_result = page;
2238 
2239 out:
2240 	return error;
2241 
2242 unlock:
2243 	unlock_page(page);
2244 	put_page(page);
2245 	return error;
2246 }
2247 
2248 /*
2249  * vfs version of truncate file.  Must NOT be called with
2250  * a transaction already started.
2251  *
2252  * some code taken from block_truncate_page
2253  */
2254 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2255 {
2256 	struct reiserfs_transaction_handle th;
2257 	/* we want the offset for the first byte after the end of the file */
2258 	unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
2259 	unsigned blocksize = inode->i_sb->s_blocksize;
2260 	unsigned length;
2261 	struct page *page = NULL;
2262 	int error;
2263 	struct buffer_head *bh = NULL;
2264 	int err2;
2265 
2266 	reiserfs_write_lock(inode->i_sb);
2267 
2268 	if (inode->i_size > 0) {
2269 		error = grab_tail_page(inode, &page, &bh);
2270 		if (error) {
2271 			/*
2272 			 * -ENOENT means we truncated past the end of the
2273 			 * file, and get_block_create_0 could not find a
2274 			 * block to read in, which is ok.
2275 			 */
2276 			if (error != -ENOENT)
2277 				reiserfs_error(inode->i_sb, "clm-6001",
2278 					       "grab_tail_page failed %d",
2279 					       error);
2280 			page = NULL;
2281 			bh = NULL;
2282 		}
2283 	}
2284 
2285 	/*
2286 	 * so, if page != NULL, we have a buffer head for the offset at
2287 	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2288 	 * then we have an unformatted node.  Otherwise, we have a direct item,
2289 	 * and no zeroing is required on disk.  We zero after the truncate,
2290 	 * because the truncate might pack the item anyway
2291 	 * (it will unmap bh if it packs).
2292 	 *
2293 	 * it is enough to reserve space in transaction for 2 balancings:
2294 	 * one for "save" link adding and another for the first
2295 	 * cut_from_item. 1 is for update_sd
2296 	 */
2297 	error = journal_begin(&th, inode->i_sb,
2298 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2299 	if (error)
2300 		goto out;
2301 	reiserfs_update_inode_transaction(inode);
2302 	if (update_timestamps)
2303 		/*
2304 		 * we are doing real truncate: if the system crashes
2305 		 * before the last transaction of truncating gets committed
2306 		 * - on reboot the file either appears truncated properly
2307 		 * or not truncated at all
2308 		 */
2309 		add_save_link(&th, inode, 1);
2310 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2311 	error = journal_end(&th);
2312 	if (error)
2313 		goto out;
2314 
2315 	/* check reiserfs_do_truncate after ending the transaction */
2316 	if (err2) {
2317 		error = err2;
2318   		goto out;
2319 	}
2320 
2321 	if (update_timestamps) {
2322 		error = remove_save_link(inode, 1 /* truncate */);
2323 		if (error)
2324 			goto out;
2325 	}
2326 
2327 	if (page) {
2328 		length = offset & (blocksize - 1);
2329 		/* if we are not on a block boundary */
2330 		if (length) {
2331 			length = blocksize - length;
2332 			zero_user(page, offset, length);
2333 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2334 				mark_buffer_dirty(bh);
2335 			}
2336 		}
2337 		unlock_page(page);
2338 		put_page(page);
2339 	}
2340 
2341 	reiserfs_write_unlock(inode->i_sb);
2342 
2343 	return 0;
2344 out:
2345 	if (page) {
2346 		unlock_page(page);
2347 		put_page(page);
2348 	}
2349 
2350 	reiserfs_write_unlock(inode->i_sb);
2351 
2352 	return error;
2353 }
2354 
2355 static int map_block_for_writepage(struct inode *inode,
2356 				   struct buffer_head *bh_result,
2357 				   unsigned long block)
2358 {
2359 	struct reiserfs_transaction_handle th;
2360 	int fs_gen;
2361 	struct item_head tmp_ih;
2362 	struct item_head *ih;
2363 	struct buffer_head *bh;
2364 	__le32 *item;
2365 	struct cpu_key key;
2366 	INITIALIZE_PATH(path);
2367 	int pos_in_item;
2368 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2369 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2370 	int retval;
2371 	int use_get_block = 0;
2372 	int bytes_copied = 0;
2373 	int copy_size;
2374 	int trans_running = 0;
2375 
2376 	/*
2377 	 * catch places below that try to log something without
2378 	 * starting a trans
2379 	 */
2380 	th.t_trans_id = 0;
2381 
2382 	if (!buffer_uptodate(bh_result)) {
2383 		return -EIO;
2384 	}
2385 
2386 	kmap(bh_result->b_page);
2387 start_over:
2388 	reiserfs_write_lock(inode->i_sb);
2389 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2390 
2391 research:
2392 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2393 	if (retval != POSITION_FOUND) {
2394 		use_get_block = 1;
2395 		goto out;
2396 	}
2397 
2398 	bh = get_last_bh(&path);
2399 	ih = tp_item_head(&path);
2400 	item = tp_item_body(&path);
2401 	pos_in_item = path.pos_in_item;
2402 
2403 	/* we've found an unformatted node */
2404 	if (indirect_item_found(retval, ih)) {
2405 		if (bytes_copied > 0) {
2406 			reiserfs_warning(inode->i_sb, "clm-6002",
2407 					 "bytes_copied %d", bytes_copied);
2408 		}
2409 		if (!get_block_num(item, pos_in_item)) {
2410 			/* crap, we are writing to a hole */
2411 			use_get_block = 1;
2412 			goto out;
2413 		}
2414 		set_block_dev_mapped(bh_result,
2415 				     get_block_num(item, pos_in_item), inode);
2416 	} else if (is_direct_le_ih(ih)) {
2417 		char *p;
2418 		p = page_address(bh_result->b_page);
2419 		p += (byte_offset - 1) & (PAGE_SIZE - 1);
2420 		copy_size = ih_item_len(ih) - pos_in_item;
2421 
2422 		fs_gen = get_generation(inode->i_sb);
2423 		copy_item_head(&tmp_ih, ih);
2424 
2425 		if (!trans_running) {
2426 			/* vs-3050 is gone, no need to drop the path */
2427 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2428 			if (retval)
2429 				goto out;
2430 			reiserfs_update_inode_transaction(inode);
2431 			trans_running = 1;
2432 			if (fs_changed(fs_gen, inode->i_sb)
2433 			    && item_moved(&tmp_ih, &path)) {
2434 				reiserfs_restore_prepared_buffer(inode->i_sb,
2435 								 bh);
2436 				goto research;
2437 			}
2438 		}
2439 
2440 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2441 
2442 		if (fs_changed(fs_gen, inode->i_sb)
2443 		    && item_moved(&tmp_ih, &path)) {
2444 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2445 			goto research;
2446 		}
2447 
2448 		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2449 		       copy_size);
2450 
2451 		journal_mark_dirty(&th, bh);
2452 		bytes_copied += copy_size;
2453 		set_block_dev_mapped(bh_result, 0, inode);
2454 
2455 		/* are there still bytes left? */
2456 		if (bytes_copied < bh_result->b_size &&
2457 		    (byte_offset + bytes_copied) < inode->i_size) {
2458 			set_cpu_key_k_offset(&key,
2459 					     cpu_key_k_offset(&key) +
2460 					     copy_size);
2461 			goto research;
2462 		}
2463 	} else {
2464 		reiserfs_warning(inode->i_sb, "clm-6003",
2465 				 "bad item inode %lu", inode->i_ino);
2466 		retval = -EIO;
2467 		goto out;
2468 	}
2469 	retval = 0;
2470 
2471 out:
2472 	pathrelse(&path);
2473 	if (trans_running) {
2474 		int err = journal_end(&th);
2475 		if (err)
2476 			retval = err;
2477 		trans_running = 0;
2478 	}
2479 	reiserfs_write_unlock(inode->i_sb);
2480 
2481 	/* this is where we fill in holes in the file. */
2482 	if (use_get_block) {
2483 		retval = reiserfs_get_block(inode, block, bh_result,
2484 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2485 					    | GET_BLOCK_NO_DANGLE);
2486 		if (!retval) {
2487 			if (!buffer_mapped(bh_result)
2488 			    || bh_result->b_blocknr == 0) {
2489 				/* get_block failed to find a mapped unformatted node. */
2490 				use_get_block = 0;
2491 				goto start_over;
2492 			}
2493 		}
2494 	}
2495 	kunmap(bh_result->b_page);
2496 
2497 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2498 		/*
2499 		 * we've copied data from the page into the direct item, so the
2500 		 * buffer in the page is now clean, mark it to reflect that.
2501 		 */
2502 		lock_buffer(bh_result);
2503 		clear_buffer_dirty(bh_result);
2504 		unlock_buffer(bh_result);
2505 	}
2506 	return retval;
2507 }
2508 
2509 /*
2510  * mason@suse.com: updated in 2.5.54 to follow the same general io
2511  * start/recovery path as __block_write_full_page, along with special
2512  * code to handle reiserfs tails.
2513  */
2514 static int reiserfs_write_full_page(struct page *page,
2515 				    struct writeback_control *wbc)
2516 {
2517 	struct inode *inode = page->mapping->host;
2518 	unsigned long end_index = inode->i_size >> PAGE_SHIFT;
2519 	int error = 0;
2520 	unsigned long block;
2521 	sector_t last_block;
2522 	struct buffer_head *head, *bh;
2523 	int partial = 0;
2524 	int nr = 0;
2525 	int checked = PageChecked(page);
2526 	struct reiserfs_transaction_handle th;
2527 	struct super_block *s = inode->i_sb;
2528 	int bh_per_page = PAGE_SIZE / s->s_blocksize;
2529 	th.t_trans_id = 0;
2530 
2531 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2532 	if (checked && (current->flags & PF_MEMALLOC)) {
2533 		redirty_page_for_writepage(wbc, page);
2534 		unlock_page(page);
2535 		return 0;
2536 	}
2537 
2538 	/*
2539 	 * The page dirty bit is cleared before writepage is called, which
2540 	 * means we have to tell create_empty_buffers to make dirty buffers
2541 	 * The page really should be up to date at this point, so tossing
2542 	 * in the BH_Uptodate is just a sanity check.
2543 	 */
2544 	if (!page_has_buffers(page)) {
2545 		create_empty_buffers(page, s->s_blocksize,
2546 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2547 	}
2548 	head = page_buffers(page);
2549 
2550 	/*
2551 	 * last page in the file, zero out any contents past the
2552 	 * last byte in the file
2553 	 */
2554 	if (page->index >= end_index) {
2555 		unsigned last_offset;
2556 
2557 		last_offset = inode->i_size & (PAGE_SIZE - 1);
2558 		/* no file contents in this page */
2559 		if (page->index >= end_index + 1 || !last_offset) {
2560 			unlock_page(page);
2561 			return 0;
2562 		}
2563 		zero_user_segment(page, last_offset, PAGE_SIZE);
2564 	}
2565 	bh = head;
2566 	block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
2567 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2568 	/* first map all the buffers, logging any direct items we find */
2569 	do {
2570 		if (block > last_block) {
2571 			/*
2572 			 * This can happen when the block size is less than
2573 			 * the page size.  The corresponding bytes in the page
2574 			 * were zero filled above
2575 			 */
2576 			clear_buffer_dirty(bh);
2577 			set_buffer_uptodate(bh);
2578 		} else if ((checked || buffer_dirty(bh)) &&
2579 			   (!buffer_mapped(bh) || bh->b_blocknr == 0)) {
2580 			/*
2581 			 * not mapped yet, or it points to a direct item, search
2582 			 * the btree for the mapping info, and log any direct
2583 			 * items found
2584 			 */
2585 			if ((error = map_block_for_writepage(inode, bh, block))) {
2586 				goto fail;
2587 			}
2588 		}
2589 		bh = bh->b_this_page;
2590 		block++;
2591 	} while (bh != head);
2592 
2593 	/*
2594 	 * we start the transaction after map_block_for_writepage,
2595 	 * because it can create holes in the file (an unbounded operation).
2596 	 * starting it here, we can make a reliable estimate for how many
2597 	 * blocks we're going to log
2598 	 */
2599 	if (checked) {
2600 		ClearPageChecked(page);
2601 		reiserfs_write_lock(s);
2602 		error = journal_begin(&th, s, bh_per_page + 1);
2603 		if (error) {
2604 			reiserfs_write_unlock(s);
2605 			goto fail;
2606 		}
2607 		reiserfs_update_inode_transaction(inode);
2608 	}
2609 	/* now go through and lock any dirty buffers on the page */
2610 	do {
2611 		get_bh(bh);
2612 		if (!buffer_mapped(bh))
2613 			continue;
2614 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2615 			continue;
2616 
2617 		if (checked) {
2618 			reiserfs_prepare_for_journal(s, bh, 1);
2619 			journal_mark_dirty(&th, bh);
2620 			continue;
2621 		}
2622 		/*
2623 		 * from this point on, we know the buffer is mapped to a
2624 		 * real block and not a direct item
2625 		 */
2626 		if (wbc->sync_mode != WB_SYNC_NONE) {
2627 			lock_buffer(bh);
2628 		} else {
2629 			if (!trylock_buffer(bh)) {
2630 				redirty_page_for_writepage(wbc, page);
2631 				continue;
2632 			}
2633 		}
2634 		if (test_clear_buffer_dirty(bh)) {
2635 			mark_buffer_async_write(bh);
2636 		} else {
2637 			unlock_buffer(bh);
2638 		}
2639 	} while ((bh = bh->b_this_page) != head);
2640 
2641 	if (checked) {
2642 		error = journal_end(&th);
2643 		reiserfs_write_unlock(s);
2644 		if (error)
2645 			goto fail;
2646 	}
2647 	BUG_ON(PageWriteback(page));
2648 	set_page_writeback(page);
2649 	unlock_page(page);
2650 
2651 	/*
2652 	 * since any buffer might be the only dirty buffer on the page,
2653 	 * the first submit_bh can bring the page out of writeback.
2654 	 * be careful with the buffers.
2655 	 */
2656 	do {
2657 		struct buffer_head *next = bh->b_this_page;
2658 		if (buffer_async_write(bh)) {
2659 			submit_bh(REQ_OP_WRITE, bh);
2660 			nr++;
2661 		}
2662 		put_bh(bh);
2663 		bh = next;
2664 	} while (bh != head);
2665 
2666 	error = 0;
2667 done:
2668 	if (nr == 0) {
2669 		/*
2670 		 * if this page only had a direct item, it is very possible for
2671 		 * no io to be required without there being an error.  Or,
2672 		 * someone else could have locked them and sent them down the
2673 		 * pipe without locking the page
2674 		 */
2675 		bh = head;
2676 		do {
2677 			if (!buffer_uptodate(bh)) {
2678 				partial = 1;
2679 				break;
2680 			}
2681 			bh = bh->b_this_page;
2682 		} while (bh != head);
2683 		if (!partial)
2684 			SetPageUptodate(page);
2685 		end_page_writeback(page);
2686 	}
2687 	return error;
2688 
2689 fail:
2690 	/*
2691 	 * catches various errors, we need to make sure any valid dirty blocks
2692 	 * get to the media.  The page is currently locked and not marked for
2693 	 * writeback
2694 	 */
2695 	ClearPageUptodate(page);
2696 	bh = head;
2697 	do {
2698 		get_bh(bh);
2699 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2700 			lock_buffer(bh);
2701 			mark_buffer_async_write(bh);
2702 		} else {
2703 			/*
2704 			 * clear any dirty bits that might have come from
2705 			 * getting attached to a dirty page
2706 			 */
2707 			clear_buffer_dirty(bh);
2708 		}
2709 		bh = bh->b_this_page;
2710 	} while (bh != head);
2711 	SetPageError(page);
2712 	BUG_ON(PageWriteback(page));
2713 	set_page_writeback(page);
2714 	unlock_page(page);
2715 	do {
2716 		struct buffer_head *next = bh->b_this_page;
2717 		if (buffer_async_write(bh)) {
2718 			clear_buffer_dirty(bh);
2719 			submit_bh(REQ_OP_WRITE, bh);
2720 			nr++;
2721 		}
2722 		put_bh(bh);
2723 		bh = next;
2724 	} while (bh != head);
2725 	goto done;
2726 }
2727 
2728 static int reiserfs_read_folio(struct file *f, struct folio *folio)
2729 {
2730 	return block_read_full_folio(folio, reiserfs_get_block);
2731 }
2732 
2733 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2734 {
2735 	struct inode *inode = page->mapping->host;
2736 	reiserfs_wait_on_write_block(inode->i_sb);
2737 	return reiserfs_write_full_page(page, wbc);
2738 }
2739 
2740 static void reiserfs_truncate_failed_write(struct inode *inode)
2741 {
2742 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2743 	reiserfs_truncate_file(inode, 0);
2744 }
2745 
2746 static int reiserfs_write_begin(struct file *file,
2747 				struct address_space *mapping,
2748 				loff_t pos, unsigned len,
2749 				struct page **pagep, void **fsdata)
2750 {
2751 	struct inode *inode;
2752 	struct page *page;
2753 	pgoff_t index;
2754 	int ret;
2755 	int old_ref = 0;
2756 
2757  	inode = mapping->host;
2758 	index = pos >> PAGE_SHIFT;
2759 	page = grab_cache_page_write_begin(mapping, index);
2760 	if (!page)
2761 		return -ENOMEM;
2762 	*pagep = page;
2763 
2764 	reiserfs_wait_on_write_block(inode->i_sb);
2765 	fix_tail_page_for_writing(page);
2766 	if (reiserfs_transaction_running(inode->i_sb)) {
2767 		struct reiserfs_transaction_handle *th;
2768 		th = (struct reiserfs_transaction_handle *)current->
2769 		    journal_info;
2770 		BUG_ON(!th->t_refcount);
2771 		BUG_ON(!th->t_trans_id);
2772 		old_ref = th->t_refcount;
2773 		th->t_refcount++;
2774 	}
2775 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2776 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2777 		struct reiserfs_transaction_handle *th = current->journal_info;
2778 		/*
2779 		 * this gets a little ugly.  If reiserfs_get_block returned an
2780 		 * error and left a transacstion running, we've got to close
2781 		 * it, and we've got to free handle if it was a persistent
2782 		 * transaction.
2783 		 *
2784 		 * But, if we had nested into an existing transaction, we need
2785 		 * to just drop the ref count on the handle.
2786 		 *
2787 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2788 		 * and it was a persistent trans.  Otherwise, it was nested
2789 		 * above.
2790 		 */
2791 		if (th->t_refcount > old_ref) {
2792 			if (old_ref)
2793 				th->t_refcount--;
2794 			else {
2795 				int err;
2796 				reiserfs_write_lock(inode->i_sb);
2797 				err = reiserfs_end_persistent_transaction(th);
2798 				reiserfs_write_unlock(inode->i_sb);
2799 				if (err)
2800 					ret = err;
2801 			}
2802 		}
2803 	}
2804 	if (ret) {
2805 		unlock_page(page);
2806 		put_page(page);
2807 		/* Truncate allocated blocks */
2808 		reiserfs_truncate_failed_write(inode);
2809 	}
2810 	return ret;
2811 }
2812 
2813 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2814 {
2815 	struct inode *inode = page->mapping->host;
2816 	int ret;
2817 	int old_ref = 0;
2818 	int depth;
2819 
2820 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2821 	reiserfs_wait_on_write_block(inode->i_sb);
2822 	reiserfs_write_lock_nested(inode->i_sb, depth);
2823 
2824 	fix_tail_page_for_writing(page);
2825 	if (reiserfs_transaction_running(inode->i_sb)) {
2826 		struct reiserfs_transaction_handle *th;
2827 		th = (struct reiserfs_transaction_handle *)current->
2828 		    journal_info;
2829 		BUG_ON(!th->t_refcount);
2830 		BUG_ON(!th->t_trans_id);
2831 		old_ref = th->t_refcount;
2832 		th->t_refcount++;
2833 	}
2834 
2835 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2836 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2837 		struct reiserfs_transaction_handle *th = current->journal_info;
2838 		/*
2839 		 * this gets a little ugly.  If reiserfs_get_block returned an
2840 		 * error and left a transacstion running, we've got to close
2841 		 * it, and we've got to free handle if it was a persistent
2842 		 * transaction.
2843 		 *
2844 		 * But, if we had nested into an existing transaction, we need
2845 		 * to just drop the ref count on the handle.
2846 		 *
2847 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2848 		 * and it was a persistent trans.  Otherwise, it was nested
2849 		 * above.
2850 		 */
2851 		if (th->t_refcount > old_ref) {
2852 			if (old_ref)
2853 				th->t_refcount--;
2854 			else {
2855 				int err;
2856 				reiserfs_write_lock(inode->i_sb);
2857 				err = reiserfs_end_persistent_transaction(th);
2858 				reiserfs_write_unlock(inode->i_sb);
2859 				if (err)
2860 					ret = err;
2861 			}
2862 		}
2863 	}
2864 	return ret;
2865 
2866 }
2867 
2868 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2869 {
2870 	return generic_block_bmap(as, block, reiserfs_bmap);
2871 }
2872 
2873 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2874 			      loff_t pos, unsigned len, unsigned copied,
2875 			      struct page *page, void *fsdata)
2876 {
2877 	struct inode *inode = page->mapping->host;
2878 	int ret = 0;
2879 	int update_sd = 0;
2880 	struct reiserfs_transaction_handle *th;
2881 	unsigned start;
2882 	bool locked = false;
2883 
2884 	reiserfs_wait_on_write_block(inode->i_sb);
2885 	if (reiserfs_transaction_running(inode->i_sb))
2886 		th = current->journal_info;
2887 	else
2888 		th = NULL;
2889 
2890 	start = pos & (PAGE_SIZE - 1);
2891 	if (unlikely(copied < len)) {
2892 		if (!PageUptodate(page))
2893 			copied = 0;
2894 
2895 		page_zero_new_buffers(page, start + copied, start + len);
2896 	}
2897 	flush_dcache_page(page);
2898 
2899 	reiserfs_commit_page(inode, page, start, start + copied);
2900 
2901 	/*
2902 	 * generic_commit_write does this for us, but does not update the
2903 	 * transaction tracking stuff when the size changes.  So, we have
2904 	 * to do the i_size updates here.
2905 	 */
2906 	if (pos + copied > inode->i_size) {
2907 		struct reiserfs_transaction_handle myth;
2908 		reiserfs_write_lock(inode->i_sb);
2909 		locked = true;
2910 		/*
2911 		 * If the file have grown beyond the border where it
2912 		 * can have a tail, unmark it as needing a tail
2913 		 * packing
2914 		 */
2915 		if ((have_large_tails(inode->i_sb)
2916 		     && inode->i_size > i_block_size(inode) * 4)
2917 		    || (have_small_tails(inode->i_sb)
2918 			&& inode->i_size > i_block_size(inode)))
2919 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2920 
2921 		ret = journal_begin(&myth, inode->i_sb, 1);
2922 		if (ret)
2923 			goto journal_error;
2924 
2925 		reiserfs_update_inode_transaction(inode);
2926 		inode->i_size = pos + copied;
2927 		/*
2928 		 * this will just nest into our transaction.  It's important
2929 		 * to use mark_inode_dirty so the inode gets pushed around on
2930 		 * the dirty lists, and so that O_SYNC works as expected
2931 		 */
2932 		mark_inode_dirty(inode);
2933 		reiserfs_update_sd(&myth, inode);
2934 		update_sd = 1;
2935 		ret = journal_end(&myth);
2936 		if (ret)
2937 			goto journal_error;
2938 	}
2939 	if (th) {
2940 		if (!locked) {
2941 			reiserfs_write_lock(inode->i_sb);
2942 			locked = true;
2943 		}
2944 		if (!update_sd)
2945 			mark_inode_dirty(inode);
2946 		ret = reiserfs_end_persistent_transaction(th);
2947 		if (ret)
2948 			goto out;
2949 	}
2950 
2951 out:
2952 	if (locked)
2953 		reiserfs_write_unlock(inode->i_sb);
2954 	unlock_page(page);
2955 	put_page(page);
2956 
2957 	if (pos + len > inode->i_size)
2958 		reiserfs_truncate_failed_write(inode);
2959 
2960 	return ret == 0 ? copied : ret;
2961 
2962 journal_error:
2963 	reiserfs_write_unlock(inode->i_sb);
2964 	locked = false;
2965 	if (th) {
2966 		if (!update_sd)
2967 			reiserfs_update_sd(th, inode);
2968 		ret = reiserfs_end_persistent_transaction(th);
2969 	}
2970 	goto out;
2971 }
2972 
2973 int reiserfs_commit_write(struct file *f, struct page *page,
2974 			  unsigned from, unsigned to)
2975 {
2976 	struct inode *inode = page->mapping->host;
2977 	loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
2978 	int ret = 0;
2979 	int update_sd = 0;
2980 	struct reiserfs_transaction_handle *th = NULL;
2981 	int depth;
2982 
2983 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2984 	reiserfs_wait_on_write_block(inode->i_sb);
2985 	reiserfs_write_lock_nested(inode->i_sb, depth);
2986 
2987 	if (reiserfs_transaction_running(inode->i_sb)) {
2988 		th = current->journal_info;
2989 	}
2990 	reiserfs_commit_page(inode, page, from, to);
2991 
2992 	/*
2993 	 * generic_commit_write does this for us, but does not update the
2994 	 * transaction tracking stuff when the size changes.  So, we have
2995 	 * to do the i_size updates here.
2996 	 */
2997 	if (pos > inode->i_size) {
2998 		struct reiserfs_transaction_handle myth;
2999 		/*
3000 		 * If the file have grown beyond the border where it
3001 		 * can have a tail, unmark it as needing a tail
3002 		 * packing
3003 		 */
3004 		if ((have_large_tails(inode->i_sb)
3005 		     && inode->i_size > i_block_size(inode) * 4)
3006 		    || (have_small_tails(inode->i_sb)
3007 			&& inode->i_size > i_block_size(inode)))
3008 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3009 
3010 		ret = journal_begin(&myth, inode->i_sb, 1);
3011 		if (ret)
3012 			goto journal_error;
3013 
3014 		reiserfs_update_inode_transaction(inode);
3015 		inode->i_size = pos;
3016 		/*
3017 		 * this will just nest into our transaction.  It's important
3018 		 * to use mark_inode_dirty so the inode gets pushed around
3019 		 * on the dirty lists, and so that O_SYNC works as expected
3020 		 */
3021 		mark_inode_dirty(inode);
3022 		reiserfs_update_sd(&myth, inode);
3023 		update_sd = 1;
3024 		ret = journal_end(&myth);
3025 		if (ret)
3026 			goto journal_error;
3027 	}
3028 	if (th) {
3029 		if (!update_sd)
3030 			mark_inode_dirty(inode);
3031 		ret = reiserfs_end_persistent_transaction(th);
3032 		if (ret)
3033 			goto out;
3034 	}
3035 
3036 out:
3037 	return ret;
3038 
3039 journal_error:
3040 	if (th) {
3041 		if (!update_sd)
3042 			reiserfs_update_sd(th, inode);
3043 		ret = reiserfs_end_persistent_transaction(th);
3044 	}
3045 
3046 	return ret;
3047 }
3048 
3049 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3050 {
3051 	if (reiserfs_attrs(inode->i_sb)) {
3052 		if (sd_attrs & REISERFS_SYNC_FL)
3053 			inode->i_flags |= S_SYNC;
3054 		else
3055 			inode->i_flags &= ~S_SYNC;
3056 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3057 			inode->i_flags |= S_IMMUTABLE;
3058 		else
3059 			inode->i_flags &= ~S_IMMUTABLE;
3060 		if (sd_attrs & REISERFS_APPEND_FL)
3061 			inode->i_flags |= S_APPEND;
3062 		else
3063 			inode->i_flags &= ~S_APPEND;
3064 		if (sd_attrs & REISERFS_NOATIME_FL)
3065 			inode->i_flags |= S_NOATIME;
3066 		else
3067 			inode->i_flags &= ~S_NOATIME;
3068 		if (sd_attrs & REISERFS_NOTAIL_FL)
3069 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3070 		else
3071 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3072 	}
3073 }
3074 
3075 /*
3076  * decide if this buffer needs to stay around for data logging or ordered
3077  * write purposes
3078  */
3079 static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh)
3080 {
3081 	int ret = 1;
3082 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3083 
3084 	lock_buffer(bh);
3085 	spin_lock(&j->j_dirty_buffers_lock);
3086 	if (!buffer_mapped(bh)) {
3087 		goto free_jh;
3088 	}
3089 	/*
3090 	 * the page is locked, and the only places that log a data buffer
3091 	 * also lock the page.
3092 	 */
3093 	if (reiserfs_file_data_log(inode)) {
3094 		/*
3095 		 * very conservative, leave the buffer pinned if
3096 		 * anyone might need it.
3097 		 */
3098 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3099 			ret = 0;
3100 		}
3101 	} else  if (buffer_dirty(bh)) {
3102 		struct reiserfs_journal_list *jl;
3103 		struct reiserfs_jh *jh = bh->b_private;
3104 
3105 		/*
3106 		 * why is this safe?
3107 		 * reiserfs_setattr updates i_size in the on disk
3108 		 * stat data before allowing vmtruncate to be called.
3109 		 *
3110 		 * If buffer was put onto the ordered list for this
3111 		 * transaction, we know for sure either this transaction
3112 		 * or an older one already has updated i_size on disk,
3113 		 * and this ordered data won't be referenced in the file
3114 		 * if we crash.
3115 		 *
3116 		 * if the buffer was put onto the ordered list for an older
3117 		 * transaction, we need to leave it around
3118 		 */
3119 		if (jh && (jl = jh->jl)
3120 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3121 			ret = 0;
3122 	}
3123 free_jh:
3124 	if (ret && bh->b_private) {
3125 		reiserfs_free_jh(bh);
3126 	}
3127 	spin_unlock(&j->j_dirty_buffers_lock);
3128 	unlock_buffer(bh);
3129 	return ret;
3130 }
3131 
3132 /* clm -- taken from fs/buffer.c:block_invalidate_folio */
3133 static void reiserfs_invalidate_folio(struct folio *folio, size_t offset,
3134 				    size_t length)
3135 {
3136 	struct buffer_head *head, *bh, *next;
3137 	struct inode *inode = folio->mapping->host;
3138 	unsigned int curr_off = 0;
3139 	unsigned int stop = offset + length;
3140 	int partial_page = (offset || length < folio_size(folio));
3141 	int ret = 1;
3142 
3143 	BUG_ON(!folio_test_locked(folio));
3144 
3145 	if (!partial_page)
3146 		folio_clear_checked(folio);
3147 
3148 	head = folio_buffers(folio);
3149 	if (!head)
3150 		goto out;
3151 
3152 	bh = head;
3153 	do {
3154 		unsigned int next_off = curr_off + bh->b_size;
3155 		next = bh->b_this_page;
3156 
3157 		if (next_off > stop)
3158 			goto out;
3159 
3160 		/*
3161 		 * is this block fully invalidated?
3162 		 */
3163 		if (offset <= curr_off) {
3164 			if (invalidate_folio_can_drop(inode, bh))
3165 				reiserfs_unmap_buffer(bh);
3166 			else
3167 				ret = 0;
3168 		}
3169 		curr_off = next_off;
3170 		bh = next;
3171 	} while (bh != head);
3172 
3173 	/*
3174 	 * We release buffers only if the entire page is being invalidated.
3175 	 * The get_block cached value has been unconditionally invalidated,
3176 	 * so real IO is not possible anymore.
3177 	 */
3178 	if (!partial_page && ret) {
3179 		ret = filemap_release_folio(folio, 0);
3180 		/* maybe should BUG_ON(!ret); - neilb */
3181 	}
3182 out:
3183 	return;
3184 }
3185 
3186 static bool reiserfs_dirty_folio(struct address_space *mapping,
3187 		struct folio *folio)
3188 {
3189 	if (reiserfs_file_data_log(mapping->host)) {
3190 		folio_set_checked(folio);
3191 		return filemap_dirty_folio(mapping, folio);
3192 	}
3193 	return block_dirty_folio(mapping, folio);
3194 }
3195 
3196 /*
3197  * Returns true if the folio's buffers were dropped.  The folio is locked.
3198  *
3199  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3200  * in the buffers at folio_buffers(folio).
3201  *
3202  * even in -o notail mode, we can't be sure an old mount without -o notail
3203  * didn't create files with tails.
3204  */
3205 static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
3206 {
3207 	struct inode *inode = folio->mapping->host;
3208 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3209 	struct buffer_head *head;
3210 	struct buffer_head *bh;
3211 	bool ret = true;
3212 
3213 	WARN_ON(folio_test_checked(folio));
3214 	spin_lock(&j->j_dirty_buffers_lock);
3215 	head = folio_buffers(folio);
3216 	bh = head;
3217 	do {
3218 		if (bh->b_private) {
3219 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3220 				reiserfs_free_jh(bh);
3221 			} else {
3222 				ret = false;
3223 				break;
3224 			}
3225 		}
3226 		bh = bh->b_this_page;
3227 	} while (bh != head);
3228 	if (ret)
3229 		ret = try_to_free_buffers(folio);
3230 	spin_unlock(&j->j_dirty_buffers_lock);
3231 	return ret;
3232 }
3233 
3234 /*
3235  * We thank Mingming Cao for helping us understand in great detail what
3236  * to do in this section of the code.
3237  */
3238 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3239 {
3240 	struct file *file = iocb->ki_filp;
3241 	struct inode *inode = file->f_mapping->host;
3242 	size_t count = iov_iter_count(iter);
3243 	ssize_t ret;
3244 
3245 	ret = blockdev_direct_IO(iocb, inode, iter,
3246 				 reiserfs_get_blocks_direct_io);
3247 
3248 	/*
3249 	 * In case of error extending write may have instantiated a few
3250 	 * blocks outside i_size. Trim these off again.
3251 	 */
3252 	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3253 		loff_t isize = i_size_read(inode);
3254 		loff_t end = iocb->ki_pos + count;
3255 
3256 		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3257 			truncate_setsize(inode, isize);
3258 			reiserfs_vfs_truncate_file(inode);
3259 		}
3260 	}
3261 
3262 	return ret;
3263 }
3264 
3265 int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3266 		     struct iattr *attr)
3267 {
3268 	struct inode *inode = d_inode(dentry);
3269 	unsigned int ia_valid;
3270 	int error;
3271 
3272 	error = setattr_prepare(&init_user_ns, dentry, attr);
3273 	if (error)
3274 		return error;
3275 
3276 	/* must be turned off for recursive notify_change calls */
3277 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3278 
3279 	if (is_quota_modification(mnt_userns, inode, attr)) {
3280 		error = dquot_initialize(inode);
3281 		if (error)
3282 			return error;
3283 	}
3284 	reiserfs_write_lock(inode->i_sb);
3285 	if (attr->ia_valid & ATTR_SIZE) {
3286 		/*
3287 		 * version 2 items will be caught by the s_maxbytes check
3288 		 * done for us in vmtruncate
3289 		 */
3290 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3291 		    attr->ia_size > MAX_NON_LFS) {
3292 			reiserfs_write_unlock(inode->i_sb);
3293 			error = -EFBIG;
3294 			goto out;
3295 		}
3296 
3297 		inode_dio_wait(inode);
3298 
3299 		/* fill in hole pointers in the expanding truncate case. */
3300 		if (attr->ia_size > inode->i_size) {
3301 			loff_t pos = attr->ia_size;
3302 
3303 			if ((pos & (inode->i_sb->s_blocksize - 1)) == 0)
3304 				pos++;
3305 			error = generic_cont_expand_simple(inode, pos);
3306 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3307 				int err;
3308 				struct reiserfs_transaction_handle th;
3309 				/* we're changing at most 2 bitmaps, inode + super */
3310 				err = journal_begin(&th, inode->i_sb, 4);
3311 				if (!err) {
3312 					reiserfs_discard_prealloc(&th, inode);
3313 					err = journal_end(&th);
3314 				}
3315 				if (err)
3316 					error = err;
3317 			}
3318 			if (error) {
3319 				reiserfs_write_unlock(inode->i_sb);
3320 				goto out;
3321 			}
3322 			/*
3323 			 * file size is changed, ctime and mtime are
3324 			 * to be updated
3325 			 */
3326 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3327 		}
3328 	}
3329 	reiserfs_write_unlock(inode->i_sb);
3330 
3331 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3332 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3333 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3334 		/* stat data of format v3.5 has 16 bit uid and gid */
3335 		error = -EINVAL;
3336 		goto out;
3337 	}
3338 
3339 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3340 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3341 		struct reiserfs_transaction_handle th;
3342 		int jbegin_count =
3343 		    2 *
3344 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3345 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3346 		    2;
3347 
3348 		error = reiserfs_chown_xattrs(inode, attr);
3349 
3350 		if (error)
3351 			return error;
3352 
3353 		/*
3354 		 * (user+group)*(old+new) structure - we count quota
3355 		 * info and , inode write (sb, inode)
3356 		 */
3357 		reiserfs_write_lock(inode->i_sb);
3358 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3359 		reiserfs_write_unlock(inode->i_sb);
3360 		if (error)
3361 			goto out;
3362 		error = dquot_transfer(mnt_userns, inode, attr);
3363 		reiserfs_write_lock(inode->i_sb);
3364 		if (error) {
3365 			journal_end(&th);
3366 			reiserfs_write_unlock(inode->i_sb);
3367 			goto out;
3368 		}
3369 
3370 		/*
3371 		 * Update corresponding info in inode so that everything
3372 		 * is in one transaction
3373 		 */
3374 		if (attr->ia_valid & ATTR_UID)
3375 			inode->i_uid = attr->ia_uid;
3376 		if (attr->ia_valid & ATTR_GID)
3377 			inode->i_gid = attr->ia_gid;
3378 		mark_inode_dirty(inode);
3379 		error = journal_end(&th);
3380 		reiserfs_write_unlock(inode->i_sb);
3381 		if (error)
3382 			goto out;
3383 	}
3384 
3385 	if ((attr->ia_valid & ATTR_SIZE) &&
3386 	    attr->ia_size != i_size_read(inode)) {
3387 		error = inode_newsize_ok(inode, attr->ia_size);
3388 		if (!error) {
3389 			/*
3390 			 * Could race against reiserfs_file_release
3391 			 * if called from NFS, so take tailpack mutex.
3392 			 */
3393 			mutex_lock(&REISERFS_I(inode)->tailpack);
3394 			truncate_setsize(inode, attr->ia_size);
3395 			reiserfs_truncate_file(inode, 1);
3396 			mutex_unlock(&REISERFS_I(inode)->tailpack);
3397 		}
3398 	}
3399 
3400 	if (!error) {
3401 		setattr_copy(&init_user_ns, inode, attr);
3402 		mark_inode_dirty(inode);
3403 	}
3404 
3405 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3406 		if (attr->ia_valid & ATTR_MODE)
3407 			error = reiserfs_acl_chmod(inode);
3408 	}
3409 
3410 out:
3411 	return error;
3412 }
3413 
3414 const struct address_space_operations reiserfs_address_space_operations = {
3415 	.writepage = reiserfs_writepage,
3416 	.read_folio = reiserfs_read_folio,
3417 	.readahead = reiserfs_readahead,
3418 	.release_folio = reiserfs_release_folio,
3419 	.invalidate_folio = reiserfs_invalidate_folio,
3420 	.write_begin = reiserfs_write_begin,
3421 	.write_end = reiserfs_write_end,
3422 	.bmap = reiserfs_aop_bmap,
3423 	.direct_IO = reiserfs_direct_IO,
3424 	.dirty_folio = reiserfs_dirty_folio,
3425 };
3426