xref: /linux/fs/super.c (revision d642ef71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/fscrypt.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
40 #include "internal.h"
41 
42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
43 
44 static LIST_HEAD(super_blocks);
45 static DEFINE_SPINLOCK(sb_lock);
46 
47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
48 	"sb_writers",
49 	"sb_pagefaults",
50 	"sb_internal",
51 };
52 
53 static inline void __super_lock(struct super_block *sb, bool excl)
54 {
55 	if (excl)
56 		down_write(&sb->s_umount);
57 	else
58 		down_read(&sb->s_umount);
59 }
60 
61 static inline void super_unlock(struct super_block *sb, bool excl)
62 {
63 	if (excl)
64 		up_write(&sb->s_umount);
65 	else
66 		up_read(&sb->s_umount);
67 }
68 
69 static inline void __super_lock_excl(struct super_block *sb)
70 {
71 	__super_lock(sb, true);
72 }
73 
74 static inline void super_unlock_excl(struct super_block *sb)
75 {
76 	super_unlock(sb, true);
77 }
78 
79 static inline void super_unlock_shared(struct super_block *sb)
80 {
81 	super_unlock(sb, false);
82 }
83 
84 static inline bool wait_born(struct super_block *sb)
85 {
86 	unsigned int flags;
87 
88 	/*
89 	 * Pairs with smp_store_release() in super_wake() and ensures
90 	 * that we see SB_BORN or SB_DYING after we're woken.
91 	 */
92 	flags = smp_load_acquire(&sb->s_flags);
93 	return flags & (SB_BORN | SB_DYING);
94 }
95 
96 /**
97  * super_lock - wait for superblock to become ready and lock it
98  * @sb: superblock to wait for
99  * @excl: whether exclusive access is required
100  *
101  * If the superblock has neither passed through vfs_get_tree() or
102  * generic_shutdown_super() yet wait for it to happen. Either superblock
103  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
104  * woken and we'll see SB_DYING.
105  *
106  * The caller must have acquired a temporary reference on @sb->s_count.
107  *
108  * Return: This returns true if SB_BORN was set, false if SB_DYING was
109  *         set. The function acquires s_umount and returns with it held.
110  */
111 static __must_check bool super_lock(struct super_block *sb, bool excl)
112 {
113 
114 	lockdep_assert_not_held(&sb->s_umount);
115 
116 relock:
117 	__super_lock(sb, excl);
118 
119 	/*
120 	 * Has gone through generic_shutdown_super() in the meantime.
121 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
122 	 * grab a reference to this. Tell them so.
123 	 */
124 	if (sb->s_flags & SB_DYING)
125 		return false;
126 
127 	/* Has called ->get_tree() successfully. */
128 	if (sb->s_flags & SB_BORN)
129 		return true;
130 
131 	super_unlock(sb, excl);
132 
133 	/* wait until the superblock is ready or dying */
134 	wait_var_event(&sb->s_flags, wait_born(sb));
135 
136 	/*
137 	 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
138 	 * Just reacquire @sb->s_umount for the caller.
139 	 */
140 	goto relock;
141 }
142 
143 /* wait and acquire read-side of @sb->s_umount */
144 static inline bool super_lock_shared(struct super_block *sb)
145 {
146 	return super_lock(sb, false);
147 }
148 
149 /* wait and acquire write-side of @sb->s_umount */
150 static inline bool super_lock_excl(struct super_block *sb)
151 {
152 	return super_lock(sb, true);
153 }
154 
155 /* wake waiters */
156 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
157 static void super_wake(struct super_block *sb, unsigned int flag)
158 {
159 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
160 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
161 
162 	/*
163 	 * Pairs with smp_load_acquire() in super_lock() to make sure
164 	 * all initializations in the superblock are seen by the user
165 	 * seeing SB_BORN sent.
166 	 */
167 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
168 	/*
169 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
170 	 * ___wait_var_event() either sees SB_BORN set or
171 	 * waitqueue_active() check in wake_up_var() sees the waiter.
172 	 */
173 	smp_mb();
174 	wake_up_var(&sb->s_flags);
175 }
176 
177 /*
178  * One thing we have to be careful of with a per-sb shrinker is that we don't
179  * drop the last active reference to the superblock from within the shrinker.
180  * If that happens we could trigger unregistering the shrinker from within the
181  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
182  * take a passive reference to the superblock to avoid this from occurring.
183  */
184 static unsigned long super_cache_scan(struct shrinker *shrink,
185 				      struct shrink_control *sc)
186 {
187 	struct super_block *sb;
188 	long	fs_objects = 0;
189 	long	total_objects;
190 	long	freed = 0;
191 	long	dentries;
192 	long	inodes;
193 
194 	sb = shrink->private_data;
195 
196 	/*
197 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
198 	 * to recurse into the FS that called us in clear_inode() and friends..
199 	 */
200 	if (!(sc->gfp_mask & __GFP_FS))
201 		return SHRINK_STOP;
202 
203 	if (!super_trylock_shared(sb))
204 		return SHRINK_STOP;
205 
206 	if (sb->s_op->nr_cached_objects)
207 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
208 
209 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
210 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
211 	total_objects = dentries + inodes + fs_objects + 1;
212 	if (!total_objects)
213 		total_objects = 1;
214 
215 	/* proportion the scan between the caches */
216 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
217 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
218 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
219 
220 	/*
221 	 * prune the dcache first as the icache is pinned by it, then
222 	 * prune the icache, followed by the filesystem specific caches
223 	 *
224 	 * Ensure that we always scan at least one object - memcg kmem
225 	 * accounting uses this to fully empty the caches.
226 	 */
227 	sc->nr_to_scan = dentries + 1;
228 	freed = prune_dcache_sb(sb, sc);
229 	sc->nr_to_scan = inodes + 1;
230 	freed += prune_icache_sb(sb, sc);
231 
232 	if (fs_objects) {
233 		sc->nr_to_scan = fs_objects + 1;
234 		freed += sb->s_op->free_cached_objects(sb, sc);
235 	}
236 
237 	super_unlock_shared(sb);
238 	return freed;
239 }
240 
241 static unsigned long super_cache_count(struct shrinker *shrink,
242 				       struct shrink_control *sc)
243 {
244 	struct super_block *sb;
245 	long	total_objects = 0;
246 
247 	sb = shrink->private_data;
248 
249 	/*
250 	 * We don't call super_trylock_shared() here as it is a scalability
251 	 * bottleneck, so we're exposed to partial setup state. The shrinker
252 	 * rwsem does not protect filesystem operations backing
253 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
254 	 * change between super_cache_count and super_cache_scan, so we really
255 	 * don't need locks here.
256 	 *
257 	 * However, if we are currently mounting the superblock, the underlying
258 	 * filesystem might be in a state of partial construction and hence it
259 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
260 	 * to avoid this situation, so do the same here. The memory barrier is
261 	 * matched with the one in mount_fs() as we don't hold locks here.
262 	 */
263 	if (!(sb->s_flags & SB_BORN))
264 		return 0;
265 	smp_rmb();
266 
267 	if (sb->s_op && sb->s_op->nr_cached_objects)
268 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
269 
270 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
271 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
272 
273 	if (!total_objects)
274 		return SHRINK_EMPTY;
275 
276 	total_objects = vfs_pressure_ratio(total_objects);
277 	return total_objects;
278 }
279 
280 static void destroy_super_work(struct work_struct *work)
281 {
282 	struct super_block *s = container_of(work, struct super_block,
283 							destroy_work);
284 	int i;
285 
286 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
287 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
288 	kfree(s);
289 }
290 
291 static void destroy_super_rcu(struct rcu_head *head)
292 {
293 	struct super_block *s = container_of(head, struct super_block, rcu);
294 	INIT_WORK(&s->destroy_work, destroy_super_work);
295 	schedule_work(&s->destroy_work);
296 }
297 
298 /* Free a superblock that has never been seen by anyone */
299 static void destroy_unused_super(struct super_block *s)
300 {
301 	if (!s)
302 		return;
303 	super_unlock_excl(s);
304 	list_lru_destroy(&s->s_dentry_lru);
305 	list_lru_destroy(&s->s_inode_lru);
306 	security_sb_free(s);
307 	put_user_ns(s->s_user_ns);
308 	kfree(s->s_subtype);
309 	shrinker_free(s->s_shrink);
310 	/* no delays needed */
311 	destroy_super_work(&s->destroy_work);
312 }
313 
314 /**
315  *	alloc_super	-	create new superblock
316  *	@type:	filesystem type superblock should belong to
317  *	@flags: the mount flags
318  *	@user_ns: User namespace for the super_block
319  *
320  *	Allocates and initializes a new &struct super_block.  alloc_super()
321  *	returns a pointer new superblock or %NULL if allocation had failed.
322  */
323 static struct super_block *alloc_super(struct file_system_type *type, int flags,
324 				       struct user_namespace *user_ns)
325 {
326 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
327 	static const struct super_operations default_op;
328 	int i;
329 
330 	if (!s)
331 		return NULL;
332 
333 	INIT_LIST_HEAD(&s->s_mounts);
334 	s->s_user_ns = get_user_ns(user_ns);
335 	init_rwsem(&s->s_umount);
336 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
337 	/*
338 	 * sget() can have s_umount recursion.
339 	 *
340 	 * When it cannot find a suitable sb, it allocates a new
341 	 * one (this one), and tries again to find a suitable old
342 	 * one.
343 	 *
344 	 * In case that succeeds, it will acquire the s_umount
345 	 * lock of the old one. Since these are clearly distrinct
346 	 * locks, and this object isn't exposed yet, there's no
347 	 * risk of deadlocks.
348 	 *
349 	 * Annotate this by putting this lock in a different
350 	 * subclass.
351 	 */
352 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
353 
354 	if (security_sb_alloc(s))
355 		goto fail;
356 
357 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
358 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
359 					sb_writers_name[i],
360 					&type->s_writers_key[i]))
361 			goto fail;
362 	}
363 	s->s_bdi = &noop_backing_dev_info;
364 	s->s_flags = flags;
365 	if (s->s_user_ns != &init_user_ns)
366 		s->s_iflags |= SB_I_NODEV;
367 	INIT_HLIST_NODE(&s->s_instances);
368 	INIT_HLIST_BL_HEAD(&s->s_roots);
369 	mutex_init(&s->s_sync_lock);
370 	INIT_LIST_HEAD(&s->s_inodes);
371 	spin_lock_init(&s->s_inode_list_lock);
372 	INIT_LIST_HEAD(&s->s_inodes_wb);
373 	spin_lock_init(&s->s_inode_wblist_lock);
374 
375 	s->s_count = 1;
376 	atomic_set(&s->s_active, 1);
377 	mutex_init(&s->s_vfs_rename_mutex);
378 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
379 	init_rwsem(&s->s_dquot.dqio_sem);
380 	s->s_maxbytes = MAX_NON_LFS;
381 	s->s_op = &default_op;
382 	s->s_time_gran = 1000000000;
383 	s->s_time_min = TIME64_MIN;
384 	s->s_time_max = TIME64_MAX;
385 
386 	s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
387 				     "sb-%s", type->name);
388 	if (!s->s_shrink)
389 		goto fail;
390 
391 	s->s_shrink->scan_objects = super_cache_scan;
392 	s->s_shrink->count_objects = super_cache_count;
393 	s->s_shrink->batch = 1024;
394 	s->s_shrink->private_data = s;
395 
396 	if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
397 		goto fail;
398 	if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
399 		goto fail;
400 	return s;
401 
402 fail:
403 	destroy_unused_super(s);
404 	return NULL;
405 }
406 
407 /* Superblock refcounting  */
408 
409 /*
410  * Drop a superblock's refcount.  The caller must hold sb_lock.
411  */
412 static void __put_super(struct super_block *s)
413 {
414 	if (!--s->s_count) {
415 		list_del_init(&s->s_list);
416 		WARN_ON(s->s_dentry_lru.node);
417 		WARN_ON(s->s_inode_lru.node);
418 		WARN_ON(!list_empty(&s->s_mounts));
419 		security_sb_free(s);
420 		put_user_ns(s->s_user_ns);
421 		kfree(s->s_subtype);
422 		call_rcu(&s->rcu, destroy_super_rcu);
423 	}
424 }
425 
426 /**
427  *	put_super	-	drop a temporary reference to superblock
428  *	@sb: superblock in question
429  *
430  *	Drops a temporary reference, frees superblock if there's no
431  *	references left.
432  */
433 void put_super(struct super_block *sb)
434 {
435 	spin_lock(&sb_lock);
436 	__put_super(sb);
437 	spin_unlock(&sb_lock);
438 }
439 
440 static void kill_super_notify(struct super_block *sb)
441 {
442 	lockdep_assert_not_held(&sb->s_umount);
443 
444 	/* already notified earlier */
445 	if (sb->s_flags & SB_DEAD)
446 		return;
447 
448 	/*
449 	 * Remove it from @fs_supers so it isn't found by new
450 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
451 	 * managing to grab a temporary reference is guaranteed to
452 	 * already see SB_DYING and will wait until we notify them about
453 	 * SB_DEAD.
454 	 */
455 	spin_lock(&sb_lock);
456 	hlist_del_init(&sb->s_instances);
457 	spin_unlock(&sb_lock);
458 
459 	/*
460 	 * Let concurrent mounts know that this thing is really dead.
461 	 * We don't need @sb->s_umount here as every concurrent caller
462 	 * will see SB_DYING and either discard the superblock or wait
463 	 * for SB_DEAD.
464 	 */
465 	super_wake(sb, SB_DEAD);
466 }
467 
468 /**
469  *	deactivate_locked_super	-	drop an active reference to superblock
470  *	@s: superblock to deactivate
471  *
472  *	Drops an active reference to superblock, converting it into a temporary
473  *	one if there is no other active references left.  In that case we
474  *	tell fs driver to shut it down and drop the temporary reference we
475  *	had just acquired.
476  *
477  *	Caller holds exclusive lock on superblock; that lock is released.
478  */
479 void deactivate_locked_super(struct super_block *s)
480 {
481 	struct file_system_type *fs = s->s_type;
482 	if (atomic_dec_and_test(&s->s_active)) {
483 		shrinker_free(s->s_shrink);
484 		fs->kill_sb(s);
485 
486 		kill_super_notify(s);
487 
488 		/*
489 		 * Since list_lru_destroy() may sleep, we cannot call it from
490 		 * put_super(), where we hold the sb_lock. Therefore we destroy
491 		 * the lru lists right now.
492 		 */
493 		list_lru_destroy(&s->s_dentry_lru);
494 		list_lru_destroy(&s->s_inode_lru);
495 
496 		put_filesystem(fs);
497 		put_super(s);
498 	} else {
499 		super_unlock_excl(s);
500 	}
501 }
502 
503 EXPORT_SYMBOL(deactivate_locked_super);
504 
505 /**
506  *	deactivate_super	-	drop an active reference to superblock
507  *	@s: superblock to deactivate
508  *
509  *	Variant of deactivate_locked_super(), except that superblock is *not*
510  *	locked by caller.  If we are going to drop the final active reference,
511  *	lock will be acquired prior to that.
512  */
513 void deactivate_super(struct super_block *s)
514 {
515 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
516 		__super_lock_excl(s);
517 		deactivate_locked_super(s);
518 	}
519 }
520 
521 EXPORT_SYMBOL(deactivate_super);
522 
523 /**
524  *	grab_super - acquire an active reference
525  *	@s: reference we are trying to make active
526  *
527  *	Tries to acquire an active reference.  grab_super() is used when we
528  * 	had just found a superblock in super_blocks or fs_type->fs_supers
529  *	and want to turn it into a full-blown active reference.  grab_super()
530  *	is called with sb_lock held and drops it.  Returns 1 in case of
531  *	success, 0 if we had failed (superblock contents was already dead or
532  *	dying when grab_super() had been called).  Note that this is only
533  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
534  *	of their type), so increment of ->s_count is OK here.
535  */
536 static int grab_super(struct super_block *s) __releases(sb_lock)
537 {
538 	bool born;
539 
540 	s->s_count++;
541 	spin_unlock(&sb_lock);
542 	born = super_lock_excl(s);
543 	if (born && atomic_inc_not_zero(&s->s_active)) {
544 		put_super(s);
545 		return 1;
546 	}
547 	super_unlock_excl(s);
548 	put_super(s);
549 	return 0;
550 }
551 
552 static inline bool wait_dead(struct super_block *sb)
553 {
554 	unsigned int flags;
555 
556 	/*
557 	 * Pairs with memory barrier in super_wake() and ensures
558 	 * that we see SB_DEAD after we're woken.
559 	 */
560 	flags = smp_load_acquire(&sb->s_flags);
561 	return flags & SB_DEAD;
562 }
563 
564 /**
565  * grab_super_dead - acquire an active reference to a superblock
566  * @sb: superblock to acquire
567  *
568  * Acquire a temporary reference on a superblock and try to trade it for
569  * an active reference. This is used in sget{_fc}() to wait for a
570  * superblock to either become SB_BORN or for it to pass through
571  * sb->kill() and be marked as SB_DEAD.
572  *
573  * Return: This returns true if an active reference could be acquired,
574  *         false if not.
575  */
576 static bool grab_super_dead(struct super_block *sb)
577 {
578 
579 	sb->s_count++;
580 	if (grab_super(sb)) {
581 		put_super(sb);
582 		lockdep_assert_held(&sb->s_umount);
583 		return true;
584 	}
585 	wait_var_event(&sb->s_flags, wait_dead(sb));
586 	lockdep_assert_not_held(&sb->s_umount);
587 	put_super(sb);
588 	return false;
589 }
590 
591 /*
592  *	super_trylock_shared - try to grab ->s_umount shared
593  *	@sb: reference we are trying to grab
594  *
595  *	Try to prevent fs shutdown.  This is used in places where we
596  *	cannot take an active reference but we need to ensure that the
597  *	filesystem is not shut down while we are working on it. It returns
598  *	false if we cannot acquire s_umount or if we lose the race and
599  *	filesystem already got into shutdown, and returns true with the s_umount
600  *	lock held in read mode in case of success. On successful return,
601  *	the caller must drop the s_umount lock when done.
602  *
603  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
604  *	The reason why it's safe is that we are OK with doing trylock instead
605  *	of down_read().  There's a couple of places that are OK with that, but
606  *	it's very much not a general-purpose interface.
607  */
608 bool super_trylock_shared(struct super_block *sb)
609 {
610 	if (down_read_trylock(&sb->s_umount)) {
611 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
612 		    (sb->s_flags & SB_BORN))
613 			return true;
614 		super_unlock_shared(sb);
615 	}
616 
617 	return false;
618 }
619 
620 /**
621  *	retire_super	-	prevents superblock from being reused
622  *	@sb: superblock to retire
623  *
624  *	The function marks superblock to be ignored in superblock test, which
625  *	prevents it from being reused for any new mounts.  If the superblock has
626  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
627  *	of the superblock to prevent potential races.  The refcount is reduced
628  *	by generic_shutdown_super().  The function can not be called
629  *	concurrently with generic_shutdown_super().  It is safe to call the
630  *	function multiple times, subsequent calls have no effect.
631  *
632  *	The marker will affect the re-use only for block-device-based
633  *	superblocks.  Other superblocks will still get marked if this function
634  *	is used, but that will not affect their reusability.
635  */
636 void retire_super(struct super_block *sb)
637 {
638 	WARN_ON(!sb->s_bdev);
639 	__super_lock_excl(sb);
640 	if (sb->s_iflags & SB_I_PERSB_BDI) {
641 		bdi_unregister(sb->s_bdi);
642 		sb->s_iflags &= ~SB_I_PERSB_BDI;
643 	}
644 	sb->s_iflags |= SB_I_RETIRED;
645 	super_unlock_excl(sb);
646 }
647 EXPORT_SYMBOL(retire_super);
648 
649 /**
650  *	generic_shutdown_super	-	common helper for ->kill_sb()
651  *	@sb: superblock to kill
652  *
653  *	generic_shutdown_super() does all fs-independent work on superblock
654  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
655  *	that need destruction out of superblock, call generic_shutdown_super()
656  *	and release aforementioned objects.  Note: dentries and inodes _are_
657  *	taken care of and do not need specific handling.
658  *
659  *	Upon calling this function, the filesystem may no longer alter or
660  *	rearrange the set of dentries belonging to this super_block, nor may it
661  *	change the attachments of dentries to inodes.
662  */
663 void generic_shutdown_super(struct super_block *sb)
664 {
665 	const struct super_operations *sop = sb->s_op;
666 
667 	if (sb->s_root) {
668 		shrink_dcache_for_umount(sb);
669 		sync_filesystem(sb);
670 		sb->s_flags &= ~SB_ACTIVE;
671 
672 		cgroup_writeback_umount();
673 
674 		/* Evict all inodes with zero refcount. */
675 		evict_inodes(sb);
676 
677 		/*
678 		 * Clean up and evict any inodes that still have references due
679 		 * to fsnotify or the security policy.
680 		 */
681 		fsnotify_sb_delete(sb);
682 		security_sb_delete(sb);
683 
684 		/*
685 		 * Now that all potentially-encrypted inodes have been evicted,
686 		 * the fscrypt keyring can be destroyed.
687 		 */
688 		fscrypt_destroy_keyring(sb);
689 
690 		if (sb->s_dio_done_wq) {
691 			destroy_workqueue(sb->s_dio_done_wq);
692 			sb->s_dio_done_wq = NULL;
693 		}
694 
695 		if (sop->put_super)
696 			sop->put_super(sb);
697 
698 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
699 				"VFS: Busy inodes after unmount of %s (%s)",
700 				sb->s_id, sb->s_type->name)) {
701 			/*
702 			 * Adding a proper bailout path here would be hard, but
703 			 * we can at least make it more likely that a later
704 			 * iput_final() or such crashes cleanly.
705 			 */
706 			struct inode *inode;
707 
708 			spin_lock(&sb->s_inode_list_lock);
709 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
710 				inode->i_op = VFS_PTR_POISON;
711 				inode->i_sb = VFS_PTR_POISON;
712 				inode->i_mapping = VFS_PTR_POISON;
713 			}
714 			spin_unlock(&sb->s_inode_list_lock);
715 		}
716 	}
717 	/*
718 	 * Broadcast to everyone that grabbed a temporary reference to this
719 	 * superblock before we removed it from @fs_supers that the superblock
720 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
721 	 * discard this superblock and treat it as dead.
722 	 *
723 	 * We leave the superblock on @fs_supers so it can be found by
724 	 * sget{_fc}() until we passed sb->kill_sb().
725 	 */
726 	super_wake(sb, SB_DYING);
727 	super_unlock_excl(sb);
728 	if (sb->s_bdi != &noop_backing_dev_info) {
729 		if (sb->s_iflags & SB_I_PERSB_BDI)
730 			bdi_unregister(sb->s_bdi);
731 		bdi_put(sb->s_bdi);
732 		sb->s_bdi = &noop_backing_dev_info;
733 	}
734 }
735 
736 EXPORT_SYMBOL(generic_shutdown_super);
737 
738 bool mount_capable(struct fs_context *fc)
739 {
740 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
741 		return capable(CAP_SYS_ADMIN);
742 	else
743 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
744 }
745 
746 /**
747  * sget_fc - Find or create a superblock
748  * @fc:	Filesystem context.
749  * @test: Comparison callback
750  * @set: Setup callback
751  *
752  * Create a new superblock or find an existing one.
753  *
754  * The @test callback is used to find a matching existing superblock.
755  * Whether or not the requested parameters in @fc are taken into account
756  * is specific to the @test callback that is used. They may even be
757  * completely ignored.
758  *
759  * If an extant superblock is matched, it will be returned unless:
760  *
761  * (1) the namespace the filesystem context @fc and the extant
762  *     superblock's namespace differ
763  *
764  * (2) the filesystem context @fc has requested that reusing an extant
765  *     superblock is not allowed
766  *
767  * In both cases EBUSY will be returned.
768  *
769  * If no match is made, a new superblock will be allocated and basic
770  * initialisation will be performed (s_type, s_fs_info and s_id will be
771  * set and the @set callback will be invoked), the superblock will be
772  * published and it will be returned in a partially constructed state
773  * with SB_BORN and SB_ACTIVE as yet unset.
774  *
775  * Return: On success, an extant or newly created superblock is
776  *         returned. On failure an error pointer is returned.
777  */
778 struct super_block *sget_fc(struct fs_context *fc,
779 			    int (*test)(struct super_block *, struct fs_context *),
780 			    int (*set)(struct super_block *, struct fs_context *))
781 {
782 	struct super_block *s = NULL;
783 	struct super_block *old;
784 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
785 	int err;
786 
787 retry:
788 	spin_lock(&sb_lock);
789 	if (test) {
790 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
791 			if (test(old, fc))
792 				goto share_extant_sb;
793 		}
794 	}
795 	if (!s) {
796 		spin_unlock(&sb_lock);
797 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
798 		if (!s)
799 			return ERR_PTR(-ENOMEM);
800 		goto retry;
801 	}
802 
803 	s->s_fs_info = fc->s_fs_info;
804 	err = set(s, fc);
805 	if (err) {
806 		s->s_fs_info = NULL;
807 		spin_unlock(&sb_lock);
808 		destroy_unused_super(s);
809 		return ERR_PTR(err);
810 	}
811 	fc->s_fs_info = NULL;
812 	s->s_type = fc->fs_type;
813 	s->s_iflags |= fc->s_iflags;
814 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
815 	/*
816 	 * Make the superblock visible on @super_blocks and @fs_supers.
817 	 * It's in a nascent state and users should wait on SB_BORN or
818 	 * SB_DYING to be set.
819 	 */
820 	list_add_tail(&s->s_list, &super_blocks);
821 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
822 	spin_unlock(&sb_lock);
823 	get_filesystem(s->s_type);
824 	shrinker_register(s->s_shrink);
825 	return s;
826 
827 share_extant_sb:
828 	if (user_ns != old->s_user_ns || fc->exclusive) {
829 		spin_unlock(&sb_lock);
830 		destroy_unused_super(s);
831 		if (fc->exclusive)
832 			warnfc(fc, "reusing existing filesystem not allowed");
833 		else
834 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
835 		return ERR_PTR(-EBUSY);
836 	}
837 	if (!grab_super_dead(old))
838 		goto retry;
839 	destroy_unused_super(s);
840 	return old;
841 }
842 EXPORT_SYMBOL(sget_fc);
843 
844 /**
845  *	sget	-	find or create a superblock
846  *	@type:	  filesystem type superblock should belong to
847  *	@test:	  comparison callback
848  *	@set:	  setup callback
849  *	@flags:	  mount flags
850  *	@data:	  argument to each of them
851  */
852 struct super_block *sget(struct file_system_type *type,
853 			int (*test)(struct super_block *,void *),
854 			int (*set)(struct super_block *,void *),
855 			int flags,
856 			void *data)
857 {
858 	struct user_namespace *user_ns = current_user_ns();
859 	struct super_block *s = NULL;
860 	struct super_block *old;
861 	int err;
862 
863 	/* We don't yet pass the user namespace of the parent
864 	 * mount through to here so always use &init_user_ns
865 	 * until that changes.
866 	 */
867 	if (flags & SB_SUBMOUNT)
868 		user_ns = &init_user_ns;
869 
870 retry:
871 	spin_lock(&sb_lock);
872 	if (test) {
873 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
874 			if (!test(old, data))
875 				continue;
876 			if (user_ns != old->s_user_ns) {
877 				spin_unlock(&sb_lock);
878 				destroy_unused_super(s);
879 				return ERR_PTR(-EBUSY);
880 			}
881 			if (!grab_super_dead(old))
882 				goto retry;
883 			destroy_unused_super(s);
884 			return old;
885 		}
886 	}
887 	if (!s) {
888 		spin_unlock(&sb_lock);
889 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
890 		if (!s)
891 			return ERR_PTR(-ENOMEM);
892 		goto retry;
893 	}
894 
895 	err = set(s, data);
896 	if (err) {
897 		spin_unlock(&sb_lock);
898 		destroy_unused_super(s);
899 		return ERR_PTR(err);
900 	}
901 	s->s_type = type;
902 	strscpy(s->s_id, type->name, sizeof(s->s_id));
903 	list_add_tail(&s->s_list, &super_blocks);
904 	hlist_add_head(&s->s_instances, &type->fs_supers);
905 	spin_unlock(&sb_lock);
906 	get_filesystem(type);
907 	shrinker_register(s->s_shrink);
908 	return s;
909 }
910 EXPORT_SYMBOL(sget);
911 
912 void drop_super(struct super_block *sb)
913 {
914 	super_unlock_shared(sb);
915 	put_super(sb);
916 }
917 
918 EXPORT_SYMBOL(drop_super);
919 
920 void drop_super_exclusive(struct super_block *sb)
921 {
922 	super_unlock_excl(sb);
923 	put_super(sb);
924 }
925 EXPORT_SYMBOL(drop_super_exclusive);
926 
927 static void __iterate_supers(void (*f)(struct super_block *))
928 {
929 	struct super_block *sb, *p = NULL;
930 
931 	spin_lock(&sb_lock);
932 	list_for_each_entry(sb, &super_blocks, s_list) {
933 		/* Pairs with memory marrier in super_wake(). */
934 		if (smp_load_acquire(&sb->s_flags) & SB_DYING)
935 			continue;
936 		sb->s_count++;
937 		spin_unlock(&sb_lock);
938 
939 		f(sb);
940 
941 		spin_lock(&sb_lock);
942 		if (p)
943 			__put_super(p);
944 		p = sb;
945 	}
946 	if (p)
947 		__put_super(p);
948 	spin_unlock(&sb_lock);
949 }
950 /**
951  *	iterate_supers - call function for all active superblocks
952  *	@f: function to call
953  *	@arg: argument to pass to it
954  *
955  *	Scans the superblock list and calls given function, passing it
956  *	locked superblock and given argument.
957  */
958 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
959 {
960 	struct super_block *sb, *p = NULL;
961 
962 	spin_lock(&sb_lock);
963 	list_for_each_entry(sb, &super_blocks, s_list) {
964 		bool born;
965 
966 		sb->s_count++;
967 		spin_unlock(&sb_lock);
968 
969 		born = super_lock_shared(sb);
970 		if (born && sb->s_root)
971 			f(sb, arg);
972 		super_unlock_shared(sb);
973 
974 		spin_lock(&sb_lock);
975 		if (p)
976 			__put_super(p);
977 		p = sb;
978 	}
979 	if (p)
980 		__put_super(p);
981 	spin_unlock(&sb_lock);
982 }
983 
984 /**
985  *	iterate_supers_type - call function for superblocks of given type
986  *	@type: fs type
987  *	@f: function to call
988  *	@arg: argument to pass to it
989  *
990  *	Scans the superblock list and calls given function, passing it
991  *	locked superblock and given argument.
992  */
993 void iterate_supers_type(struct file_system_type *type,
994 	void (*f)(struct super_block *, void *), void *arg)
995 {
996 	struct super_block *sb, *p = NULL;
997 
998 	spin_lock(&sb_lock);
999 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
1000 		bool born;
1001 
1002 		sb->s_count++;
1003 		spin_unlock(&sb_lock);
1004 
1005 		born = super_lock_shared(sb);
1006 		if (born && sb->s_root)
1007 			f(sb, arg);
1008 		super_unlock_shared(sb);
1009 
1010 		spin_lock(&sb_lock);
1011 		if (p)
1012 			__put_super(p);
1013 		p = sb;
1014 	}
1015 	if (p)
1016 		__put_super(p);
1017 	spin_unlock(&sb_lock);
1018 }
1019 
1020 EXPORT_SYMBOL(iterate_supers_type);
1021 
1022 /**
1023  * get_active_super - get an active reference to the superblock of a device
1024  * @bdev: device to get the superblock for
1025  *
1026  * Scans the superblock list and finds the superblock of the file system
1027  * mounted on the device given.  Returns the superblock with an active
1028  * reference or %NULL if none was found.
1029  */
1030 struct super_block *get_active_super(struct block_device *bdev)
1031 {
1032 	struct super_block *sb;
1033 
1034 	if (!bdev)
1035 		return NULL;
1036 
1037 	spin_lock(&sb_lock);
1038 	list_for_each_entry(sb, &super_blocks, s_list) {
1039 		if (sb->s_bdev == bdev) {
1040 			if (!grab_super(sb))
1041 				return NULL;
1042 			super_unlock_excl(sb);
1043 			return sb;
1044 		}
1045 	}
1046 	spin_unlock(&sb_lock);
1047 	return NULL;
1048 }
1049 
1050 struct super_block *user_get_super(dev_t dev, bool excl)
1051 {
1052 	struct super_block *sb;
1053 
1054 	spin_lock(&sb_lock);
1055 	list_for_each_entry(sb, &super_blocks, s_list) {
1056 		if (sb->s_dev ==  dev) {
1057 			bool born;
1058 
1059 			sb->s_count++;
1060 			spin_unlock(&sb_lock);
1061 			/* still alive? */
1062 			born = super_lock(sb, excl);
1063 			if (born && sb->s_root)
1064 				return sb;
1065 			super_unlock(sb, excl);
1066 			/* nope, got unmounted */
1067 			spin_lock(&sb_lock);
1068 			__put_super(sb);
1069 			break;
1070 		}
1071 	}
1072 	spin_unlock(&sb_lock);
1073 	return NULL;
1074 }
1075 
1076 /**
1077  * reconfigure_super - asks filesystem to change superblock parameters
1078  * @fc: The superblock and configuration
1079  *
1080  * Alters the configuration parameters of a live superblock.
1081  */
1082 int reconfigure_super(struct fs_context *fc)
1083 {
1084 	struct super_block *sb = fc->root->d_sb;
1085 	int retval;
1086 	bool remount_ro = false;
1087 	bool remount_rw = false;
1088 	bool force = fc->sb_flags & SB_FORCE;
1089 
1090 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1091 		return -EINVAL;
1092 	if (sb->s_writers.frozen != SB_UNFROZEN)
1093 		return -EBUSY;
1094 
1095 	retval = security_sb_remount(sb, fc->security);
1096 	if (retval)
1097 		return retval;
1098 
1099 	if (fc->sb_flags_mask & SB_RDONLY) {
1100 #ifdef CONFIG_BLOCK
1101 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1102 		    bdev_read_only(sb->s_bdev))
1103 			return -EACCES;
1104 #endif
1105 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1106 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1107 	}
1108 
1109 	if (remount_ro) {
1110 		if (!hlist_empty(&sb->s_pins)) {
1111 			super_unlock_excl(sb);
1112 			group_pin_kill(&sb->s_pins);
1113 			__super_lock_excl(sb);
1114 			if (!sb->s_root)
1115 				return 0;
1116 			if (sb->s_writers.frozen != SB_UNFROZEN)
1117 				return -EBUSY;
1118 			remount_ro = !sb_rdonly(sb);
1119 		}
1120 	}
1121 	shrink_dcache_sb(sb);
1122 
1123 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1124 	 * make sure there are no files open for writing.
1125 	 */
1126 	if (remount_ro) {
1127 		if (force) {
1128 			sb_start_ro_state_change(sb);
1129 		} else {
1130 			retval = sb_prepare_remount_readonly(sb);
1131 			if (retval)
1132 				return retval;
1133 		}
1134 	} else if (remount_rw) {
1135 		/*
1136 		 * Protect filesystem's reconfigure code from writes from
1137 		 * userspace until reconfigure finishes.
1138 		 */
1139 		sb_start_ro_state_change(sb);
1140 	}
1141 
1142 	if (fc->ops->reconfigure) {
1143 		retval = fc->ops->reconfigure(fc);
1144 		if (retval) {
1145 			if (!force)
1146 				goto cancel_readonly;
1147 			/* If forced remount, go ahead despite any errors */
1148 			WARN(1, "forced remount of a %s fs returned %i\n",
1149 			     sb->s_type->name, retval);
1150 		}
1151 	}
1152 
1153 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1154 				 (fc->sb_flags & fc->sb_flags_mask)));
1155 	sb_end_ro_state_change(sb);
1156 
1157 	/*
1158 	 * Some filesystems modify their metadata via some other path than the
1159 	 * bdev buffer cache (eg. use a private mapping, or directories in
1160 	 * pagecache, etc). Also file data modifications go via their own
1161 	 * mappings. So If we try to mount readonly then copy the filesystem
1162 	 * from bdev, we could get stale data, so invalidate it to give a best
1163 	 * effort at coherency.
1164 	 */
1165 	if (remount_ro && sb->s_bdev)
1166 		invalidate_bdev(sb->s_bdev);
1167 	return 0;
1168 
1169 cancel_readonly:
1170 	sb_end_ro_state_change(sb);
1171 	return retval;
1172 }
1173 
1174 static void do_emergency_remount_callback(struct super_block *sb)
1175 {
1176 	bool born = super_lock_excl(sb);
1177 
1178 	if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1179 		struct fs_context *fc;
1180 
1181 		fc = fs_context_for_reconfigure(sb->s_root,
1182 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1183 		if (!IS_ERR(fc)) {
1184 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1185 				(void)reconfigure_super(fc);
1186 			put_fs_context(fc);
1187 		}
1188 	}
1189 	super_unlock_excl(sb);
1190 }
1191 
1192 static void do_emergency_remount(struct work_struct *work)
1193 {
1194 	__iterate_supers(do_emergency_remount_callback);
1195 	kfree(work);
1196 	printk("Emergency Remount complete\n");
1197 }
1198 
1199 void emergency_remount(void)
1200 {
1201 	struct work_struct *work;
1202 
1203 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1204 	if (work) {
1205 		INIT_WORK(work, do_emergency_remount);
1206 		schedule_work(work);
1207 	}
1208 }
1209 
1210 static void do_thaw_all_callback(struct super_block *sb)
1211 {
1212 	bool born = super_lock_excl(sb);
1213 
1214 	if (born && sb->s_root) {
1215 		if (IS_ENABLED(CONFIG_BLOCK))
1216 			while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
1217 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1218 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1219 	} else {
1220 		super_unlock_excl(sb);
1221 	}
1222 }
1223 
1224 static void do_thaw_all(struct work_struct *work)
1225 {
1226 	__iterate_supers(do_thaw_all_callback);
1227 	kfree(work);
1228 	printk(KERN_WARNING "Emergency Thaw complete\n");
1229 }
1230 
1231 /**
1232  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1233  *
1234  * Used for emergency unfreeze of all filesystems via SysRq
1235  */
1236 void emergency_thaw_all(void)
1237 {
1238 	struct work_struct *work;
1239 
1240 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1241 	if (work) {
1242 		INIT_WORK(work, do_thaw_all);
1243 		schedule_work(work);
1244 	}
1245 }
1246 
1247 static DEFINE_IDA(unnamed_dev_ida);
1248 
1249 /**
1250  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1251  * @p: Pointer to a dev_t.
1252  *
1253  * Filesystems which don't use real block devices can call this function
1254  * to allocate a virtual block device.
1255  *
1256  * Context: Any context.  Frequently called while holding sb_lock.
1257  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1258  * or -ENOMEM if memory allocation failed.
1259  */
1260 int get_anon_bdev(dev_t *p)
1261 {
1262 	int dev;
1263 
1264 	/*
1265 	 * Many userspace utilities consider an FSID of 0 invalid.
1266 	 * Always return at least 1 from get_anon_bdev.
1267 	 */
1268 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1269 			GFP_ATOMIC);
1270 	if (dev == -ENOSPC)
1271 		dev = -EMFILE;
1272 	if (dev < 0)
1273 		return dev;
1274 
1275 	*p = MKDEV(0, dev);
1276 	return 0;
1277 }
1278 EXPORT_SYMBOL(get_anon_bdev);
1279 
1280 void free_anon_bdev(dev_t dev)
1281 {
1282 	ida_free(&unnamed_dev_ida, MINOR(dev));
1283 }
1284 EXPORT_SYMBOL(free_anon_bdev);
1285 
1286 int set_anon_super(struct super_block *s, void *data)
1287 {
1288 	return get_anon_bdev(&s->s_dev);
1289 }
1290 EXPORT_SYMBOL(set_anon_super);
1291 
1292 void kill_anon_super(struct super_block *sb)
1293 {
1294 	dev_t dev = sb->s_dev;
1295 	generic_shutdown_super(sb);
1296 	kill_super_notify(sb);
1297 	free_anon_bdev(dev);
1298 }
1299 EXPORT_SYMBOL(kill_anon_super);
1300 
1301 void kill_litter_super(struct super_block *sb)
1302 {
1303 	if (sb->s_root)
1304 		d_genocide(sb->s_root);
1305 	kill_anon_super(sb);
1306 }
1307 EXPORT_SYMBOL(kill_litter_super);
1308 
1309 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1310 {
1311 	return set_anon_super(sb, NULL);
1312 }
1313 EXPORT_SYMBOL(set_anon_super_fc);
1314 
1315 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1316 {
1317 	return sb->s_fs_info == fc->s_fs_info;
1318 }
1319 
1320 static int test_single_super(struct super_block *s, struct fs_context *fc)
1321 {
1322 	return 1;
1323 }
1324 
1325 static int vfs_get_super(struct fs_context *fc,
1326 		int (*test)(struct super_block *, struct fs_context *),
1327 		int (*fill_super)(struct super_block *sb,
1328 				  struct fs_context *fc))
1329 {
1330 	struct super_block *sb;
1331 	int err;
1332 
1333 	sb = sget_fc(fc, test, set_anon_super_fc);
1334 	if (IS_ERR(sb))
1335 		return PTR_ERR(sb);
1336 
1337 	if (!sb->s_root) {
1338 		err = fill_super(sb, fc);
1339 		if (err)
1340 			goto error;
1341 
1342 		sb->s_flags |= SB_ACTIVE;
1343 	}
1344 
1345 	fc->root = dget(sb->s_root);
1346 	return 0;
1347 
1348 error:
1349 	deactivate_locked_super(sb);
1350 	return err;
1351 }
1352 
1353 int get_tree_nodev(struct fs_context *fc,
1354 		  int (*fill_super)(struct super_block *sb,
1355 				    struct fs_context *fc))
1356 {
1357 	return vfs_get_super(fc, NULL, fill_super);
1358 }
1359 EXPORT_SYMBOL(get_tree_nodev);
1360 
1361 int get_tree_single(struct fs_context *fc,
1362 		  int (*fill_super)(struct super_block *sb,
1363 				    struct fs_context *fc))
1364 {
1365 	return vfs_get_super(fc, test_single_super, fill_super);
1366 }
1367 EXPORT_SYMBOL(get_tree_single);
1368 
1369 int get_tree_keyed(struct fs_context *fc,
1370 		  int (*fill_super)(struct super_block *sb,
1371 				    struct fs_context *fc),
1372 		void *key)
1373 {
1374 	fc->s_fs_info = key;
1375 	return vfs_get_super(fc, test_keyed_super, fill_super);
1376 }
1377 EXPORT_SYMBOL(get_tree_keyed);
1378 
1379 static int set_bdev_super(struct super_block *s, void *data)
1380 {
1381 	s->s_dev = *(dev_t *)data;
1382 	return 0;
1383 }
1384 
1385 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1386 {
1387 	return set_bdev_super(s, fc->sget_key);
1388 }
1389 
1390 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1391 {
1392 	return !(s->s_iflags & SB_I_RETIRED) &&
1393 		s->s_dev == *(dev_t *)fc->sget_key;
1394 }
1395 
1396 /**
1397  * sget_dev - Find or create a superblock by device number
1398  * @fc: Filesystem context.
1399  * @dev: device number
1400  *
1401  * Find or create a superblock using the provided device number that
1402  * will be stored in fc->sget_key.
1403  *
1404  * If an extant superblock is matched, then that will be returned with
1405  * an elevated reference count that the caller must transfer or discard.
1406  *
1407  * If no match is made, a new superblock will be allocated and basic
1408  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1409  * be set). The superblock will be published and it will be returned in
1410  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1411  * unset.
1412  *
1413  * Return: an existing or newly created superblock on success, an error
1414  *         pointer on failure.
1415  */
1416 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1417 {
1418 	fc->sget_key = &dev;
1419 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1420 }
1421 EXPORT_SYMBOL(sget_dev);
1422 
1423 #ifdef CONFIG_BLOCK
1424 /*
1425  * Lock the superblock that is holder of the bdev. Returns the superblock
1426  * pointer if we successfully locked the superblock and it is alive. Otherwise
1427  * we return NULL and just unlock bdev->bd_holder_lock.
1428  *
1429  * The function must be called with bdev->bd_holder_lock and releases it.
1430  */
1431 static struct super_block *bdev_super_lock_shared(struct block_device *bdev)
1432 	__releases(&bdev->bd_holder_lock)
1433 {
1434 	struct super_block *sb = bdev->bd_holder;
1435 	bool born;
1436 
1437 	lockdep_assert_held(&bdev->bd_holder_lock);
1438 	lockdep_assert_not_held(&sb->s_umount);
1439 	lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1440 
1441 	/* Make sure sb doesn't go away from under us */
1442 	spin_lock(&sb_lock);
1443 	sb->s_count++;
1444 	spin_unlock(&sb_lock);
1445 	mutex_unlock(&bdev->bd_holder_lock);
1446 
1447 	born = super_lock_shared(sb);
1448 	if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1449 		super_unlock_shared(sb);
1450 		put_super(sb);
1451 		return NULL;
1452 	}
1453 	/*
1454 	 * The superblock is active and we hold s_umount, we can drop our
1455 	 * temporary reference now.
1456 	 */
1457 	put_super(sb);
1458 	return sb;
1459 }
1460 
1461 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1462 {
1463 	struct super_block *sb;
1464 
1465 	sb = bdev_super_lock_shared(bdev);
1466 	if (!sb)
1467 		return;
1468 
1469 	if (!surprise)
1470 		sync_filesystem(sb);
1471 	shrink_dcache_sb(sb);
1472 	invalidate_inodes(sb);
1473 	if (sb->s_op->shutdown)
1474 		sb->s_op->shutdown(sb);
1475 
1476 	super_unlock_shared(sb);
1477 }
1478 
1479 static void fs_bdev_sync(struct block_device *bdev)
1480 {
1481 	struct super_block *sb;
1482 
1483 	sb = bdev_super_lock_shared(bdev);
1484 	if (!sb)
1485 		return;
1486 	sync_filesystem(sb);
1487 	super_unlock_shared(sb);
1488 }
1489 
1490 const struct blk_holder_ops fs_holder_ops = {
1491 	.mark_dead		= fs_bdev_mark_dead,
1492 	.sync			= fs_bdev_sync,
1493 };
1494 EXPORT_SYMBOL_GPL(fs_holder_ops);
1495 
1496 int setup_bdev_super(struct super_block *sb, int sb_flags,
1497 		struct fs_context *fc)
1498 {
1499 	blk_mode_t mode = sb_open_mode(sb_flags);
1500 	struct bdev_handle *bdev_handle;
1501 	struct block_device *bdev;
1502 
1503 	bdev_handle = bdev_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1504 	if (IS_ERR(bdev_handle)) {
1505 		if (fc)
1506 			errorf(fc, "%s: Can't open blockdev", fc->source);
1507 		return PTR_ERR(bdev_handle);
1508 	}
1509 	bdev = bdev_handle->bdev;
1510 
1511 	/*
1512 	 * This really should be in blkdev_get_by_dev, but right now can't due
1513 	 * to legacy issues that require us to allow opening a block device node
1514 	 * writable from userspace even for a read-only block device.
1515 	 */
1516 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1517 		bdev_release(bdev_handle);
1518 		return -EACCES;
1519 	}
1520 
1521 	/*
1522 	 * Until SB_BORN flag is set, there can be no active superblock
1523 	 * references and thus no filesystem freezing. get_active_super() will
1524 	 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1525 	 *
1526 	 * It is enough to check bdev was not frozen before we set s_bdev.
1527 	 */
1528 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1529 	if (bdev->bd_fsfreeze_count > 0) {
1530 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1531 		if (fc)
1532 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1533 		bdev_release(bdev_handle);
1534 		return -EBUSY;
1535 	}
1536 	spin_lock(&sb_lock);
1537 	sb->s_bdev_handle = bdev_handle;
1538 	sb->s_bdev = bdev;
1539 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1540 	if (bdev_stable_writes(bdev))
1541 		sb->s_iflags |= SB_I_STABLE_WRITES;
1542 	spin_unlock(&sb_lock);
1543 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1544 
1545 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1546 	shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1547 				sb->s_id);
1548 	sb_set_blocksize(sb, block_size(bdev));
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(setup_bdev_super);
1552 
1553 /**
1554  * get_tree_bdev - Get a superblock based on a single block device
1555  * @fc: The filesystem context holding the parameters
1556  * @fill_super: Helper to initialise a new superblock
1557  */
1558 int get_tree_bdev(struct fs_context *fc,
1559 		int (*fill_super)(struct super_block *,
1560 				  struct fs_context *))
1561 {
1562 	struct super_block *s;
1563 	int error = 0;
1564 	dev_t dev;
1565 
1566 	if (!fc->source)
1567 		return invalf(fc, "No source specified");
1568 
1569 	error = lookup_bdev(fc->source, &dev);
1570 	if (error) {
1571 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
1572 		return error;
1573 	}
1574 
1575 	fc->sb_flags |= SB_NOSEC;
1576 	s = sget_dev(fc, dev);
1577 	if (IS_ERR(s))
1578 		return PTR_ERR(s);
1579 
1580 	if (s->s_root) {
1581 		/* Don't summarily change the RO/RW state. */
1582 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1583 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1584 			deactivate_locked_super(s);
1585 			return -EBUSY;
1586 		}
1587 	} else {
1588 		/*
1589 		 * We drop s_umount here because we need to open the bdev and
1590 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1591 		 * bdev_mark_dead()). It is safe because we have active sb
1592 		 * reference and SB_BORN is not set yet.
1593 		 */
1594 		super_unlock_excl(s);
1595 		error = setup_bdev_super(s, fc->sb_flags, fc);
1596 		__super_lock_excl(s);
1597 		if (!error)
1598 			error = fill_super(s, fc);
1599 		if (error) {
1600 			deactivate_locked_super(s);
1601 			return error;
1602 		}
1603 		s->s_flags |= SB_ACTIVE;
1604 	}
1605 
1606 	BUG_ON(fc->root);
1607 	fc->root = dget(s->s_root);
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL(get_tree_bdev);
1611 
1612 static int test_bdev_super(struct super_block *s, void *data)
1613 {
1614 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1615 }
1616 
1617 struct dentry *mount_bdev(struct file_system_type *fs_type,
1618 	int flags, const char *dev_name, void *data,
1619 	int (*fill_super)(struct super_block *, void *, int))
1620 {
1621 	struct super_block *s;
1622 	int error;
1623 	dev_t dev;
1624 
1625 	error = lookup_bdev(dev_name, &dev);
1626 	if (error)
1627 		return ERR_PTR(error);
1628 
1629 	flags |= SB_NOSEC;
1630 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1631 	if (IS_ERR(s))
1632 		return ERR_CAST(s);
1633 
1634 	if (s->s_root) {
1635 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1636 			deactivate_locked_super(s);
1637 			return ERR_PTR(-EBUSY);
1638 		}
1639 	} else {
1640 		/*
1641 		 * We drop s_umount here because we need to open the bdev and
1642 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1643 		 * bdev_mark_dead()). It is safe because we have active sb
1644 		 * reference and SB_BORN is not set yet.
1645 		 */
1646 		super_unlock_excl(s);
1647 		error = setup_bdev_super(s, flags, NULL);
1648 		__super_lock_excl(s);
1649 		if (!error)
1650 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1651 		if (error) {
1652 			deactivate_locked_super(s);
1653 			return ERR_PTR(error);
1654 		}
1655 
1656 		s->s_flags |= SB_ACTIVE;
1657 	}
1658 
1659 	return dget(s->s_root);
1660 }
1661 EXPORT_SYMBOL(mount_bdev);
1662 
1663 void kill_block_super(struct super_block *sb)
1664 {
1665 	struct block_device *bdev = sb->s_bdev;
1666 
1667 	generic_shutdown_super(sb);
1668 	if (bdev) {
1669 		sync_blockdev(bdev);
1670 		bdev_release(sb->s_bdev_handle);
1671 	}
1672 }
1673 
1674 EXPORT_SYMBOL(kill_block_super);
1675 #endif
1676 
1677 struct dentry *mount_nodev(struct file_system_type *fs_type,
1678 	int flags, void *data,
1679 	int (*fill_super)(struct super_block *, void *, int))
1680 {
1681 	int error;
1682 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1683 
1684 	if (IS_ERR(s))
1685 		return ERR_CAST(s);
1686 
1687 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1688 	if (error) {
1689 		deactivate_locked_super(s);
1690 		return ERR_PTR(error);
1691 	}
1692 	s->s_flags |= SB_ACTIVE;
1693 	return dget(s->s_root);
1694 }
1695 EXPORT_SYMBOL(mount_nodev);
1696 
1697 int reconfigure_single(struct super_block *s,
1698 		       int flags, void *data)
1699 {
1700 	struct fs_context *fc;
1701 	int ret;
1702 
1703 	/* The caller really need to be passing fc down into mount_single(),
1704 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1705 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1706 	 * mount should be rejected if the parameters are not compatible.
1707 	 */
1708 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1709 	if (IS_ERR(fc))
1710 		return PTR_ERR(fc);
1711 
1712 	ret = parse_monolithic_mount_data(fc, data);
1713 	if (ret < 0)
1714 		goto out;
1715 
1716 	ret = reconfigure_super(fc);
1717 out:
1718 	put_fs_context(fc);
1719 	return ret;
1720 }
1721 
1722 static int compare_single(struct super_block *s, void *p)
1723 {
1724 	return 1;
1725 }
1726 
1727 struct dentry *mount_single(struct file_system_type *fs_type,
1728 	int flags, void *data,
1729 	int (*fill_super)(struct super_block *, void *, int))
1730 {
1731 	struct super_block *s;
1732 	int error;
1733 
1734 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1735 	if (IS_ERR(s))
1736 		return ERR_CAST(s);
1737 	if (!s->s_root) {
1738 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1739 		if (!error)
1740 			s->s_flags |= SB_ACTIVE;
1741 	} else {
1742 		error = reconfigure_single(s, flags, data);
1743 	}
1744 	if (unlikely(error)) {
1745 		deactivate_locked_super(s);
1746 		return ERR_PTR(error);
1747 	}
1748 	return dget(s->s_root);
1749 }
1750 EXPORT_SYMBOL(mount_single);
1751 
1752 /**
1753  * vfs_get_tree - Get the mountable root
1754  * @fc: The superblock configuration context.
1755  *
1756  * The filesystem is invoked to get or create a superblock which can then later
1757  * be used for mounting.  The filesystem places a pointer to the root to be
1758  * used for mounting in @fc->root.
1759  */
1760 int vfs_get_tree(struct fs_context *fc)
1761 {
1762 	struct super_block *sb;
1763 	int error;
1764 
1765 	if (fc->root)
1766 		return -EBUSY;
1767 
1768 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1769 	 * on the superblock.
1770 	 */
1771 	error = fc->ops->get_tree(fc);
1772 	if (error < 0)
1773 		return error;
1774 
1775 	if (!fc->root) {
1776 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1777 		       fc->fs_type->name);
1778 		/* We don't know what the locking state of the superblock is -
1779 		 * if there is a superblock.
1780 		 */
1781 		BUG();
1782 	}
1783 
1784 	sb = fc->root->d_sb;
1785 	WARN_ON(!sb->s_bdi);
1786 
1787 	/*
1788 	 * super_wake() contains a memory barrier which also care of
1789 	 * ordering for super_cache_count(). We place it before setting
1790 	 * SB_BORN as the data dependency between the two functions is
1791 	 * the superblock structure contents that we just set up, not
1792 	 * the SB_BORN flag.
1793 	 */
1794 	super_wake(sb, SB_BORN);
1795 
1796 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1797 	if (unlikely(error)) {
1798 		fc_drop_locked(fc);
1799 		return error;
1800 	}
1801 
1802 	/*
1803 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1804 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1805 	 * this warning for a little while to try and catch filesystems that
1806 	 * violate this rule.
1807 	 */
1808 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1809 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1810 
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL(vfs_get_tree);
1814 
1815 /*
1816  * Setup private BDI for given superblock. It gets automatically cleaned up
1817  * in generic_shutdown_super().
1818  */
1819 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1820 {
1821 	struct backing_dev_info *bdi;
1822 	int err;
1823 	va_list args;
1824 
1825 	bdi = bdi_alloc(NUMA_NO_NODE);
1826 	if (!bdi)
1827 		return -ENOMEM;
1828 
1829 	va_start(args, fmt);
1830 	err = bdi_register_va(bdi, fmt, args);
1831 	va_end(args);
1832 	if (err) {
1833 		bdi_put(bdi);
1834 		return err;
1835 	}
1836 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1837 	sb->s_bdi = bdi;
1838 	sb->s_iflags |= SB_I_PERSB_BDI;
1839 
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL(super_setup_bdi_name);
1843 
1844 /*
1845  * Setup private BDI for given superblock. I gets automatically cleaned up
1846  * in generic_shutdown_super().
1847  */
1848 int super_setup_bdi(struct super_block *sb)
1849 {
1850 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1851 
1852 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1853 				    atomic_long_inc_return(&bdi_seq));
1854 }
1855 EXPORT_SYMBOL(super_setup_bdi);
1856 
1857 /**
1858  * sb_wait_write - wait until all writers to given file system finish
1859  * @sb: the super for which we wait
1860  * @level: type of writers we wait for (normal vs page fault)
1861  *
1862  * This function waits until there are no writers of given type to given file
1863  * system.
1864  */
1865 static void sb_wait_write(struct super_block *sb, int level)
1866 {
1867 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1868 }
1869 
1870 /*
1871  * We are going to return to userspace and forget about these locks, the
1872  * ownership goes to the caller of thaw_super() which does unlock().
1873  */
1874 static void lockdep_sb_freeze_release(struct super_block *sb)
1875 {
1876 	int level;
1877 
1878 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1879 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1880 }
1881 
1882 /*
1883  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1884  */
1885 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1886 {
1887 	int level;
1888 
1889 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1890 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1891 }
1892 
1893 static void sb_freeze_unlock(struct super_block *sb, int level)
1894 {
1895 	for (level--; level >= 0; level--)
1896 		percpu_up_write(sb->s_writers.rw_sem + level);
1897 }
1898 
1899 static int wait_for_partially_frozen(struct super_block *sb)
1900 {
1901 	int ret = 0;
1902 
1903 	do {
1904 		unsigned short old = sb->s_writers.frozen;
1905 
1906 		up_write(&sb->s_umount);
1907 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1908 					       sb->s_writers.frozen != old);
1909 		down_write(&sb->s_umount);
1910 	} while (ret == 0 &&
1911 		 sb->s_writers.frozen != SB_UNFROZEN &&
1912 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1913 
1914 	return ret;
1915 }
1916 
1917 /**
1918  * freeze_super - lock the filesystem and force it into a consistent state
1919  * @sb: the super to lock
1920  * @who: context that wants to freeze
1921  *
1922  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1923  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1924  * -EBUSY.
1925  *
1926  * @who should be:
1927  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1928  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1929  *
1930  * The @who argument distinguishes between the kernel and userspace trying to
1931  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
1932  * multiple userspace freezes in effect at any given time, the kernel and
1933  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
1934  * until there are no kernel or userspace freezes in effect.
1935  *
1936  * During this function, sb->s_writers.frozen goes through these values:
1937  *
1938  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1939  *
1940  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1941  * writes should be blocked, though page faults are still allowed. We wait for
1942  * all writes to complete and then proceed to the next stage.
1943  *
1944  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1945  * but internal fs threads can still modify the filesystem (although they
1946  * should not dirty new pages or inodes), writeback can run etc. After waiting
1947  * for all running page faults we sync the filesystem which will clean all
1948  * dirty pages and inodes (no new dirty pages or inodes can be created when
1949  * sync is running).
1950  *
1951  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1952  * modification are blocked (e.g. XFS preallocation truncation on inode
1953  * reclaim). This is usually implemented by blocking new transactions for
1954  * filesystems that have them and need this additional guard. After all
1955  * internal writers are finished we call ->freeze_fs() to finish filesystem
1956  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1957  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1958  *
1959  * sb->s_writers.frozen is protected by sb->s_umount.
1960  */
1961 int freeze_super(struct super_block *sb, enum freeze_holder who)
1962 {
1963 	int ret;
1964 
1965 	atomic_inc(&sb->s_active);
1966 	if (!super_lock_excl(sb))
1967 		WARN(1, "Dying superblock while freezing!");
1968 
1969 retry:
1970 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1971 		if (sb->s_writers.freeze_holders & who) {
1972 			deactivate_locked_super(sb);
1973 			return -EBUSY;
1974 		}
1975 
1976 		WARN_ON(sb->s_writers.freeze_holders == 0);
1977 
1978 		/*
1979 		 * Someone else already holds this type of freeze; share the
1980 		 * freeze and assign the active ref to the freeze.
1981 		 */
1982 		sb->s_writers.freeze_holders |= who;
1983 		super_unlock_excl(sb);
1984 		return 0;
1985 	}
1986 
1987 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1988 		ret = wait_for_partially_frozen(sb);
1989 		if (ret) {
1990 			deactivate_locked_super(sb);
1991 			return ret;
1992 		}
1993 
1994 		goto retry;
1995 	}
1996 
1997 	if (!(sb->s_flags & SB_BORN)) {
1998 		super_unlock_excl(sb);
1999 		return 0;	/* sic - it's "nothing to do" */
2000 	}
2001 
2002 	if (sb_rdonly(sb)) {
2003 		/* Nothing to do really... */
2004 		sb->s_writers.freeze_holders |= who;
2005 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2006 		wake_up_var(&sb->s_writers.frozen);
2007 		super_unlock_excl(sb);
2008 		return 0;
2009 	}
2010 
2011 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2012 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2013 	super_unlock_excl(sb);
2014 	sb_wait_write(sb, SB_FREEZE_WRITE);
2015 	if (!super_lock_excl(sb))
2016 		WARN(1, "Dying superblock while freezing!");
2017 
2018 	/* Now we go and block page faults... */
2019 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2020 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2021 
2022 	/* All writers are done so after syncing there won't be dirty data */
2023 	ret = sync_filesystem(sb);
2024 	if (ret) {
2025 		sb->s_writers.frozen = SB_UNFROZEN;
2026 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2027 		wake_up_var(&sb->s_writers.frozen);
2028 		deactivate_locked_super(sb);
2029 		return ret;
2030 	}
2031 
2032 	/* Now wait for internal filesystem counter */
2033 	sb->s_writers.frozen = SB_FREEZE_FS;
2034 	sb_wait_write(sb, SB_FREEZE_FS);
2035 
2036 	if (sb->s_op->freeze_fs) {
2037 		ret = sb->s_op->freeze_fs(sb);
2038 		if (ret) {
2039 			printk(KERN_ERR
2040 				"VFS:Filesystem freeze failed\n");
2041 			sb->s_writers.frozen = SB_UNFROZEN;
2042 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2043 			wake_up_var(&sb->s_writers.frozen);
2044 			deactivate_locked_super(sb);
2045 			return ret;
2046 		}
2047 	}
2048 	/*
2049 	 * For debugging purposes so that fs can warn if it sees write activity
2050 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2051 	 */
2052 	sb->s_writers.freeze_holders |= who;
2053 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2054 	wake_up_var(&sb->s_writers.frozen);
2055 	lockdep_sb_freeze_release(sb);
2056 	super_unlock_excl(sb);
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(freeze_super);
2060 
2061 /*
2062  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2063  * frozen both by userspace and the kernel, a thaw call from either source
2064  * removes that state without releasing the other state or unlocking the
2065  * filesystem.
2066  */
2067 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2068 {
2069 	int error;
2070 
2071 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2072 		if (!(sb->s_writers.freeze_holders & who)) {
2073 			super_unlock_excl(sb);
2074 			return -EINVAL;
2075 		}
2076 
2077 		/*
2078 		 * Freeze is shared with someone else.  Release our hold and
2079 		 * drop the active ref that freeze_super assigned to the
2080 		 * freezer.
2081 		 */
2082 		if (sb->s_writers.freeze_holders & ~who) {
2083 			sb->s_writers.freeze_holders &= ~who;
2084 			deactivate_locked_super(sb);
2085 			return 0;
2086 		}
2087 	} else {
2088 		super_unlock_excl(sb);
2089 		return -EINVAL;
2090 	}
2091 
2092 	if (sb_rdonly(sb)) {
2093 		sb->s_writers.freeze_holders &= ~who;
2094 		sb->s_writers.frozen = SB_UNFROZEN;
2095 		wake_up_var(&sb->s_writers.frozen);
2096 		goto out;
2097 	}
2098 
2099 	lockdep_sb_freeze_acquire(sb);
2100 
2101 	if (sb->s_op->unfreeze_fs) {
2102 		error = sb->s_op->unfreeze_fs(sb);
2103 		if (error) {
2104 			printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2105 			lockdep_sb_freeze_release(sb);
2106 			super_unlock_excl(sb);
2107 			return error;
2108 		}
2109 	}
2110 
2111 	sb->s_writers.freeze_holders &= ~who;
2112 	sb->s_writers.frozen = SB_UNFROZEN;
2113 	wake_up_var(&sb->s_writers.frozen);
2114 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2115 out:
2116 	deactivate_locked_super(sb);
2117 	return 0;
2118 }
2119 
2120 /**
2121  * thaw_super -- unlock filesystem
2122  * @sb: the super to thaw
2123  * @who: context that wants to freeze
2124  *
2125  * Unlocks the filesystem and marks it writeable again after freeze_super()
2126  * if there are no remaining freezes on the filesystem.
2127  *
2128  * @who should be:
2129  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2130  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2131  */
2132 int thaw_super(struct super_block *sb, enum freeze_holder who)
2133 {
2134 	if (!super_lock_excl(sb))
2135 		WARN(1, "Dying superblock while thawing!");
2136 	return thaw_super_locked(sb, who);
2137 }
2138 EXPORT_SYMBOL(thaw_super);
2139 
2140 /*
2141  * Create workqueue for deferred direct IO completions. We allocate the
2142  * workqueue when it's first needed. This avoids creating workqueue for
2143  * filesystems that don't need it and also allows us to create the workqueue
2144  * late enough so the we can include s_id in the name of the workqueue.
2145  */
2146 int sb_init_dio_done_wq(struct super_block *sb)
2147 {
2148 	struct workqueue_struct *old;
2149 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2150 						      WQ_MEM_RECLAIM, 0,
2151 						      sb->s_id);
2152 	if (!wq)
2153 		return -ENOMEM;
2154 	/*
2155 	 * This has to be atomic as more DIOs can race to create the workqueue
2156 	 */
2157 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2158 	/* Someone created workqueue before us? Free ours... */
2159 	if (old)
2160 		destroy_workqueue(wq);
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2164