xref: /linux/fs/xfs/libxfs/xfs_btree_staging.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_btree_staging.h"
19 
20 /*
21  * Staging Cursors and Fake Roots for Btrees
22  * =========================================
23  *
24  * A staging btree cursor is a special type of btree cursor that callers must
25  * use to construct a new btree index using the btree bulk loader code.  The
26  * bulk loading code uses the staging btree cursor to abstract the details of
27  * initializing new btree blocks and filling them with records or key/ptr
28  * pairs.  Regular btree operations (e.g. queries and modifications) are not
29  * supported with staging cursors, and callers must not invoke them.
30  *
31  * Fake root structures contain all the information about a btree that is under
32  * construction by the bulk loading code.  Staging btree cursors point to fake
33  * root structures instead of the usual AG header or inode structure.
34  *
35  * Callers are expected to initialize a fake root structure and pass it into
36  * the _stage_cursor function for a specific btree type.  When bulk loading is
37  * complete, callers should call the _commit_staged_btree function for that
38  * specific btree type to commit the new btree into the filesystem.
39  */
40 
41 /*
42  * Don't allow staging cursors to be duplicated because they're supposed to be
43  * kept private to a single thread.
44  */
45 STATIC struct xfs_btree_cur *
46 xfs_btree_fakeroot_dup_cursor(
47 	struct xfs_btree_cur	*cur)
48 {
49 	ASSERT(0);
50 	return NULL;
51 }
52 
53 /*
54  * Don't allow block allocation for a staging cursor, because staging cursors
55  * do not support regular btree modifications.
56  *
57  * Bulk loading uses a separate callback to obtain new blocks from a
58  * preallocated list, which prevents ENOSPC failures during loading.
59  */
60 STATIC int
61 xfs_btree_fakeroot_alloc_block(
62 	struct xfs_btree_cur		*cur,
63 	const union xfs_btree_ptr	*start_bno,
64 	union xfs_btree_ptr		*new_bno,
65 	int				*stat)
66 {
67 	ASSERT(0);
68 	return -EFSCORRUPTED;
69 }
70 
71 /*
72  * Don't allow block freeing for a staging cursor, because staging cursors
73  * do not support regular btree modifications.
74  */
75 STATIC int
76 xfs_btree_fakeroot_free_block(
77 	struct xfs_btree_cur	*cur,
78 	struct xfs_buf		*bp)
79 {
80 	ASSERT(0);
81 	return -EFSCORRUPTED;
82 }
83 
84 /* Initialize a pointer to the root block from the fakeroot. */
85 STATIC void
86 xfs_btree_fakeroot_init_ptr_from_cur(
87 	struct xfs_btree_cur	*cur,
88 	union xfs_btree_ptr	*ptr)
89 {
90 	struct xbtree_afakeroot	*afake;
91 
92 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
93 
94 	afake = cur->bc_ag.afake;
95 	ptr->s = cpu_to_be32(afake->af_root);
96 }
97 
98 /*
99  * Bulk Loading for AG Btrees
100  * ==========================
101  *
102  * For a btree rooted in an AG header, pass a xbtree_afakeroot structure to the
103  * staging cursor.  Callers should initialize this to zero.
104  *
105  * The _stage_cursor() function for a specific btree type should call
106  * xfs_btree_stage_afakeroot to set up the in-memory cursor as a staging
107  * cursor.  The corresponding _commit_staged_btree() function should log the
108  * new root and call xfs_btree_commit_afakeroot() to transform the staging
109  * cursor into a regular btree cursor.
110  */
111 
112 /* Update the btree root information for a per-AG fake root. */
113 STATIC void
114 xfs_btree_afakeroot_set_root(
115 	struct xfs_btree_cur		*cur,
116 	const union xfs_btree_ptr	*ptr,
117 	int				inc)
118 {
119 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
120 
121 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
122 	afake->af_root = be32_to_cpu(ptr->s);
123 	afake->af_levels += inc;
124 }
125 
126 /*
127  * Initialize a AG-rooted btree cursor with the given AG btree fake root.
128  * The btree cursor's bc_ops will be overridden as needed to make the staging
129  * functionality work.
130  */
131 void
132 xfs_btree_stage_afakeroot(
133 	struct xfs_btree_cur		*cur,
134 	struct xbtree_afakeroot		*afake)
135 {
136 	struct xfs_btree_ops		*nops;
137 
138 	ASSERT(!(cur->bc_flags & XFS_BTREE_STAGING));
139 	ASSERT(!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE));
140 	ASSERT(cur->bc_tp == NULL);
141 
142 	nops = kmem_alloc(sizeof(struct xfs_btree_ops), KM_NOFS);
143 	memcpy(nops, cur->bc_ops, sizeof(struct xfs_btree_ops));
144 	nops->alloc_block = xfs_btree_fakeroot_alloc_block;
145 	nops->free_block = xfs_btree_fakeroot_free_block;
146 	nops->init_ptr_from_cur = xfs_btree_fakeroot_init_ptr_from_cur;
147 	nops->set_root = xfs_btree_afakeroot_set_root;
148 	nops->dup_cursor = xfs_btree_fakeroot_dup_cursor;
149 
150 	cur->bc_ag.afake = afake;
151 	cur->bc_nlevels = afake->af_levels;
152 	cur->bc_ops = nops;
153 	cur->bc_flags |= XFS_BTREE_STAGING;
154 }
155 
156 /*
157  * Transform an AG-rooted staging btree cursor back into a regular cursor by
158  * substituting a real btree root for the fake one and restoring normal btree
159  * cursor ops.  The caller must log the btree root change prior to calling
160  * this.
161  */
162 void
163 xfs_btree_commit_afakeroot(
164 	struct xfs_btree_cur		*cur,
165 	struct xfs_trans		*tp,
166 	struct xfs_buf			*agbp,
167 	const struct xfs_btree_ops	*ops)
168 {
169 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
170 	ASSERT(cur->bc_tp == NULL);
171 
172 	trace_xfs_btree_commit_afakeroot(cur);
173 
174 	kmem_free((void *)cur->bc_ops);
175 	cur->bc_ag.agbp = agbp;
176 	cur->bc_ops = ops;
177 	cur->bc_flags &= ~XFS_BTREE_STAGING;
178 	cur->bc_tp = tp;
179 }
180 
181 /*
182  * Bulk Loading for Inode-Rooted Btrees
183  * ====================================
184  *
185  * For a btree rooted in an inode fork, pass a xbtree_ifakeroot structure to
186  * the staging cursor.  This structure should be initialized as follows:
187  *
188  * - if_fork_size field should be set to the number of bytes available to the
189  *   fork in the inode.
190  *
191  * - if_fork should point to a freshly allocated struct xfs_ifork.
192  *
193  * - if_format should be set to the appropriate fork type (e.g.
194  *   XFS_DINODE_FMT_BTREE).
195  *
196  * All other fields must be zero.
197  *
198  * The _stage_cursor() function for a specific btree type should call
199  * xfs_btree_stage_ifakeroot to set up the in-memory cursor as a staging
200  * cursor.  The corresponding _commit_staged_btree() function should log the
201  * new root and call xfs_btree_commit_ifakeroot() to transform the staging
202  * cursor into a regular btree cursor.
203  */
204 
205 /*
206  * Initialize an inode-rooted btree cursor with the given inode btree fake
207  * root.  The btree cursor's bc_ops will be overridden as needed to make the
208  * staging functionality work.  If new_ops is not NULL, these new ops will be
209  * passed out to the caller for further overriding.
210  */
211 void
212 xfs_btree_stage_ifakeroot(
213 	struct xfs_btree_cur		*cur,
214 	struct xbtree_ifakeroot		*ifake,
215 	struct xfs_btree_ops		**new_ops)
216 {
217 	struct xfs_btree_ops		*nops;
218 
219 	ASSERT(!(cur->bc_flags & XFS_BTREE_STAGING));
220 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
221 	ASSERT(cur->bc_tp == NULL);
222 
223 	nops = kmem_alloc(sizeof(struct xfs_btree_ops), KM_NOFS);
224 	memcpy(nops, cur->bc_ops, sizeof(struct xfs_btree_ops));
225 	nops->alloc_block = xfs_btree_fakeroot_alloc_block;
226 	nops->free_block = xfs_btree_fakeroot_free_block;
227 	nops->init_ptr_from_cur = xfs_btree_fakeroot_init_ptr_from_cur;
228 	nops->dup_cursor = xfs_btree_fakeroot_dup_cursor;
229 
230 	cur->bc_ino.ifake = ifake;
231 	cur->bc_nlevels = ifake->if_levels;
232 	cur->bc_ops = nops;
233 	cur->bc_flags |= XFS_BTREE_STAGING;
234 
235 	if (new_ops)
236 		*new_ops = nops;
237 }
238 
239 /*
240  * Transform an inode-rooted staging btree cursor back into a regular cursor by
241  * substituting a real btree root for the fake one and restoring normal btree
242  * cursor ops.  The caller must log the btree root change prior to calling
243  * this.
244  */
245 void
246 xfs_btree_commit_ifakeroot(
247 	struct xfs_btree_cur		*cur,
248 	struct xfs_trans		*tp,
249 	int				whichfork,
250 	const struct xfs_btree_ops	*ops)
251 {
252 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
253 	ASSERT(cur->bc_tp == NULL);
254 
255 	trace_xfs_btree_commit_ifakeroot(cur);
256 
257 	kmem_free((void *)cur->bc_ops);
258 	cur->bc_ino.ifake = NULL;
259 	cur->bc_ino.whichfork = whichfork;
260 	cur->bc_ops = ops;
261 	cur->bc_flags &= ~XFS_BTREE_STAGING;
262 	cur->bc_tp = tp;
263 }
264 
265 /*
266  * Bulk Loading of Staged Btrees
267  * =============================
268  *
269  * This interface is used with a staged btree cursor to create a totally new
270  * btree with a large number of records (i.e. more than what would fit in a
271  * single root block).  When the creation is complete, the new root can be
272  * linked atomically into the filesystem by committing the staged cursor.
273  *
274  * Creation of a new btree proceeds roughly as follows:
275  *
276  * The first step is to initialize an appropriate fake btree root structure and
277  * then construct a staged btree cursor.  Refer to the block comments about
278  * "Bulk Loading for AG Btrees" and "Bulk Loading for Inode-Rooted Btrees" for
279  * more information about how to do this.
280  *
281  * The second step is to initialize a struct xfs_btree_bload context as
282  * documented in the structure definition.
283  *
284  * The third step is to call xfs_btree_bload_compute_geometry to compute the
285  * height of and the number of blocks needed to construct the btree.  See the
286  * section "Computing the Geometry of the New Btree" for details about this
287  * computation.
288  *
289  * In step four, the caller must allocate xfs_btree_bload.nr_blocks blocks and
290  * save them for later use by ->claim_block().  Bulk loading requires all
291  * blocks to be allocated beforehand to avoid ENOSPC failures midway through a
292  * rebuild, and to minimize seek distances of the new btree.
293  *
294  * Step five is to call xfs_btree_bload() to start constructing the btree.
295  *
296  * The final step is to commit the staging btree cursor, which logs the new
297  * btree root and turns the staging cursor into a regular cursor.  The caller
298  * is responsible for cleaning up the previous btree blocks, if any.
299  *
300  * Computing the Geometry of the New Btree
301  * =======================================
302  *
303  * The number of items placed in each btree block is computed via the following
304  * algorithm: For leaf levels, the number of items for the level is nr_records
305  * in the bload structure.  For node levels, the number of items for the level
306  * is the number of blocks in the next lower level of the tree.  For each
307  * level, the desired number of items per block is defined as:
308  *
309  * desired = max(minrecs, maxrecs - slack factor)
310  *
311  * The number of blocks for the level is defined to be:
312  *
313  * blocks = floor(nr_items / desired)
314  *
315  * Note this is rounded down so that the npb calculation below will never fall
316  * below minrecs.  The number of items that will actually be loaded into each
317  * btree block is defined as:
318  *
319  * npb =  nr_items / blocks
320  *
321  * Some of the leftmost blocks in the level will contain one extra record as
322  * needed to handle uneven division.  If the number of records in any block
323  * would exceed maxrecs for that level, blocks is incremented and npb is
324  * recalculated.
325  *
326  * In other words, we compute the number of blocks needed to satisfy a given
327  * loading level, then spread the items as evenly as possible.
328  *
329  * The height and number of fs blocks required to create the btree are computed
330  * and returned via btree_height and nr_blocks.
331  */
332 
333 /*
334  * Put a btree block that we're loading onto the ordered list and release it.
335  * The btree blocks will be written to disk when bulk loading is finished.
336  */
337 static void
338 xfs_btree_bload_drop_buf(
339 	struct list_head	*buffers_list,
340 	struct xfs_buf		**bpp)
341 {
342 	if (*bpp == NULL)
343 		return;
344 
345 	if (!xfs_buf_delwri_queue(*bpp, buffers_list))
346 		ASSERT(0);
347 
348 	xfs_buf_relse(*bpp);
349 	*bpp = NULL;
350 }
351 
352 /*
353  * Allocate and initialize one btree block for bulk loading.
354  *
355  * The new btree block will have its level and numrecs fields set to the values
356  * of the level and nr_this_block parameters, respectively.
357  *
358  * The caller should ensure that ptrp, bpp, and blockp refer to the left
359  * sibling of the new block, if there is any.  On exit, ptrp, bpp, and blockp
360  * will all point to the new block.
361  */
362 STATIC int
363 xfs_btree_bload_prep_block(
364 	struct xfs_btree_cur		*cur,
365 	struct xfs_btree_bload		*bbl,
366 	struct list_head		*buffers_list,
367 	unsigned int			level,
368 	unsigned int			nr_this_block,
369 	union xfs_btree_ptr		*ptrp, /* in/out */
370 	struct xfs_buf			**bpp, /* in/out */
371 	struct xfs_btree_block		**blockp, /* in/out */
372 	void				*priv)
373 {
374 	union xfs_btree_ptr		new_ptr;
375 	struct xfs_buf			*new_bp;
376 	struct xfs_btree_block		*new_block;
377 	int				ret;
378 
379 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
380 	    level == cur->bc_nlevels - 1) {
381 		struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
382 		size_t			new_size;
383 
384 		ASSERT(*bpp == NULL);
385 
386 		/* Allocate a new incore btree root block. */
387 		new_size = bbl->iroot_size(cur, nr_this_block, priv);
388 		ifp->if_broot = kmem_zalloc(new_size, 0);
389 		ifp->if_broot_bytes = (int)new_size;
390 
391 		/* Initialize it and send it out. */
392 		xfs_btree_init_block_int(cur->bc_mp, ifp->if_broot,
393 				XFS_BUF_DADDR_NULL, cur->bc_btnum, level,
394 				nr_this_block, cur->bc_ino.ip->i_ino,
395 				cur->bc_flags);
396 
397 		*bpp = NULL;
398 		*blockp = ifp->if_broot;
399 		xfs_btree_set_ptr_null(cur, ptrp);
400 		return 0;
401 	}
402 
403 	/* Claim one of the caller's preallocated blocks. */
404 	xfs_btree_set_ptr_null(cur, &new_ptr);
405 	ret = bbl->claim_block(cur, &new_ptr, priv);
406 	if (ret)
407 		return ret;
408 
409 	ASSERT(!xfs_btree_ptr_is_null(cur, &new_ptr));
410 
411 	ret = xfs_btree_get_buf_block(cur, &new_ptr, &new_block, &new_bp);
412 	if (ret)
413 		return ret;
414 
415 	/*
416 	 * The previous block (if any) is the left sibling of the new block,
417 	 * so set its right sibling pointer to the new block and drop it.
418 	 */
419 	if (*blockp)
420 		xfs_btree_set_sibling(cur, *blockp, &new_ptr, XFS_BB_RIGHTSIB);
421 	xfs_btree_bload_drop_buf(buffers_list, bpp);
422 
423 	/* Initialize the new btree block. */
424 	xfs_btree_init_block_cur(cur, new_bp, level, nr_this_block);
425 	xfs_btree_set_sibling(cur, new_block, ptrp, XFS_BB_LEFTSIB);
426 
427 	/* Set the out parameters. */
428 	*bpp = new_bp;
429 	*blockp = new_block;
430 	xfs_btree_copy_ptrs(cur, ptrp, &new_ptr, 1);
431 	return 0;
432 }
433 
434 /* Load one leaf block. */
435 STATIC int
436 xfs_btree_bload_leaf(
437 	struct xfs_btree_cur		*cur,
438 	unsigned int			recs_this_block,
439 	xfs_btree_bload_get_record_fn	get_record,
440 	struct xfs_btree_block		*block,
441 	void				*priv)
442 {
443 	unsigned int			j;
444 	int				ret;
445 
446 	/* Fill the leaf block with records. */
447 	for (j = 1; j <= recs_this_block; j++) {
448 		union xfs_btree_rec	*block_rec;
449 
450 		ret = get_record(cur, priv);
451 		if (ret)
452 			return ret;
453 		block_rec = xfs_btree_rec_addr(cur, j, block);
454 		cur->bc_ops->init_rec_from_cur(cur, block_rec);
455 	}
456 
457 	return 0;
458 }
459 
460 /*
461  * Load one node block with key/ptr pairs.
462  *
463  * child_ptr must point to a block within the next level down in the tree.  A
464  * key/ptr entry will be created in the new node block to the block pointed to
465  * by child_ptr.  On exit, child_ptr points to the next block on the child
466  * level that needs processing.
467  */
468 STATIC int
469 xfs_btree_bload_node(
470 	struct xfs_btree_cur	*cur,
471 	unsigned int		recs_this_block,
472 	union xfs_btree_ptr	*child_ptr,
473 	struct xfs_btree_block	*block)
474 {
475 	unsigned int		j;
476 	int			ret;
477 
478 	/* Fill the node block with keys and pointers. */
479 	for (j = 1; j <= recs_this_block; j++) {
480 		union xfs_btree_key	child_key;
481 		union xfs_btree_ptr	*block_ptr;
482 		union xfs_btree_key	*block_key;
483 		struct xfs_btree_block	*child_block;
484 		struct xfs_buf		*child_bp;
485 
486 		ASSERT(!xfs_btree_ptr_is_null(cur, child_ptr));
487 
488 		ret = xfs_btree_get_buf_block(cur, child_ptr, &child_block,
489 				&child_bp);
490 		if (ret)
491 			return ret;
492 
493 		block_ptr = xfs_btree_ptr_addr(cur, j, block);
494 		xfs_btree_copy_ptrs(cur, block_ptr, child_ptr, 1);
495 
496 		block_key = xfs_btree_key_addr(cur, j, block);
497 		xfs_btree_get_keys(cur, child_block, &child_key);
498 		xfs_btree_copy_keys(cur, block_key, &child_key, 1);
499 
500 		xfs_btree_get_sibling(cur, child_block, child_ptr,
501 				XFS_BB_RIGHTSIB);
502 		xfs_buf_relse(child_bp);
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * Compute the maximum number of records (or keyptrs) per block that we want to
510  * install at this level in the btree.  Caller is responsible for having set
511  * @cur->bc_ino.forksize to the desired fork size, if appropriate.
512  */
513 STATIC unsigned int
514 xfs_btree_bload_max_npb(
515 	struct xfs_btree_cur	*cur,
516 	struct xfs_btree_bload	*bbl,
517 	unsigned int		level)
518 {
519 	unsigned int		ret;
520 
521 	if (level == cur->bc_nlevels - 1 && cur->bc_ops->get_dmaxrecs)
522 		return cur->bc_ops->get_dmaxrecs(cur, level);
523 
524 	ret = cur->bc_ops->get_maxrecs(cur, level);
525 	if (level == 0)
526 		ret -= bbl->leaf_slack;
527 	else
528 		ret -= bbl->node_slack;
529 	return ret;
530 }
531 
532 /*
533  * Compute the desired number of records (or keyptrs) per block that we want to
534  * install at this level in the btree, which must be somewhere between minrecs
535  * and max_npb.  The caller is free to install fewer records per block.
536  */
537 STATIC unsigned int
538 xfs_btree_bload_desired_npb(
539 	struct xfs_btree_cur	*cur,
540 	struct xfs_btree_bload	*bbl,
541 	unsigned int		level)
542 {
543 	unsigned int		npb = xfs_btree_bload_max_npb(cur, bbl, level);
544 
545 	/* Root blocks are not subject to minrecs rules. */
546 	if (level == cur->bc_nlevels - 1)
547 		return max(1U, npb);
548 
549 	return max_t(unsigned int, cur->bc_ops->get_minrecs(cur, level), npb);
550 }
551 
552 /*
553  * Compute the number of records to be stored in each block at this level and
554  * the number of blocks for this level.  For leaf levels, we must populate an
555  * empty root block even if there are no records, so we have to have at least
556  * one block.
557  */
558 STATIC void
559 xfs_btree_bload_level_geometry(
560 	struct xfs_btree_cur	*cur,
561 	struct xfs_btree_bload	*bbl,
562 	unsigned int		level,
563 	uint64_t		nr_this_level,
564 	unsigned int		*avg_per_block,
565 	uint64_t		*blocks,
566 	uint64_t		*blocks_with_extra)
567 {
568 	uint64_t		npb;
569 	uint64_t		dontcare;
570 	unsigned int		desired_npb;
571 	unsigned int		maxnr;
572 
573 	maxnr = cur->bc_ops->get_maxrecs(cur, level);
574 
575 	/*
576 	 * Compute the number of blocks we need to fill each block with the
577 	 * desired number of records/keyptrs per block.  Because desired_npb
578 	 * could be minrecs, we use regular integer division (which rounds
579 	 * the block count down) so that in the next step the effective # of
580 	 * items per block will never be less than desired_npb.
581 	 */
582 	desired_npb = xfs_btree_bload_desired_npb(cur, bbl, level);
583 	*blocks = div64_u64_rem(nr_this_level, desired_npb, &dontcare);
584 	*blocks = max(1ULL, *blocks);
585 
586 	/*
587 	 * Compute the number of records that we will actually put in each
588 	 * block, assuming that we want to spread the records evenly between
589 	 * the blocks.  Take care that the effective # of items per block (npb)
590 	 * won't exceed maxrecs even for the blocks that get an extra record,
591 	 * since desired_npb could be maxrecs, and in the previous step we
592 	 * rounded the block count down.
593 	 */
594 	npb = div64_u64_rem(nr_this_level, *blocks, blocks_with_extra);
595 	if (npb > maxnr || (npb == maxnr && *blocks_with_extra > 0)) {
596 		(*blocks)++;
597 		npb = div64_u64_rem(nr_this_level, *blocks, blocks_with_extra);
598 	}
599 
600 	*avg_per_block = min_t(uint64_t, npb, nr_this_level);
601 
602 	trace_xfs_btree_bload_level_geometry(cur, level, nr_this_level,
603 			*avg_per_block, desired_npb, *blocks,
604 			*blocks_with_extra);
605 }
606 
607 /*
608  * Ensure a slack value is appropriate for the btree.
609  *
610  * If the slack value is negative, set slack so that we fill the block to
611  * halfway between minrecs and maxrecs.  Make sure the slack is never so large
612  * that we can underflow minrecs.
613  */
614 static void
615 xfs_btree_bload_ensure_slack(
616 	struct xfs_btree_cur	*cur,
617 	int			*slack,
618 	int			level)
619 {
620 	int			maxr;
621 	int			minr;
622 
623 	maxr = cur->bc_ops->get_maxrecs(cur, level);
624 	minr = cur->bc_ops->get_minrecs(cur, level);
625 
626 	/*
627 	 * If slack is negative, automatically set slack so that we load the
628 	 * btree block approximately halfway between minrecs and maxrecs.
629 	 * Generally, this will net us 75% loading.
630 	 */
631 	if (*slack < 0)
632 		*slack = maxr - ((maxr + minr) >> 1);
633 
634 	*slack = min(*slack, maxr - minr);
635 }
636 
637 /*
638  * Prepare a btree cursor for a bulk load operation by computing the geometry
639  * fields in bbl.  Caller must ensure that the btree cursor is a staging
640  * cursor.  This function can be called multiple times.
641  */
642 int
643 xfs_btree_bload_compute_geometry(
644 	struct xfs_btree_cur	*cur,
645 	struct xfs_btree_bload	*bbl,
646 	uint64_t		nr_records)
647 {
648 	uint64_t		nr_blocks = 0;
649 	uint64_t		nr_this_level;
650 
651 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
652 
653 	/*
654 	 * Make sure that the slack values make sense for traditional leaf and
655 	 * node blocks.  Inode-rooted btrees will return different minrecs and
656 	 * maxrecs values for the root block (bc_nlevels == level - 1).  We're
657 	 * checking levels 0 and 1 here, so set bc_nlevels such that the btree
658 	 * code doesn't interpret either as the root level.
659 	 */
660 	cur->bc_nlevels = cur->bc_maxlevels - 1;
661 	xfs_btree_bload_ensure_slack(cur, &bbl->leaf_slack, 0);
662 	xfs_btree_bload_ensure_slack(cur, &bbl->node_slack, 1);
663 
664 	bbl->nr_records = nr_this_level = nr_records;
665 	for (cur->bc_nlevels = 1; cur->bc_nlevels <= cur->bc_maxlevels;) {
666 		uint64_t	level_blocks;
667 		uint64_t	dontcare64;
668 		unsigned int	level = cur->bc_nlevels - 1;
669 		unsigned int	avg_per_block;
670 
671 		xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
672 				&avg_per_block, &level_blocks, &dontcare64);
673 
674 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
675 			/*
676 			 * If all the items we want to store at this level
677 			 * would fit in the inode root block, then we have our
678 			 * btree root and are done.
679 			 *
680 			 * Note that bmap btrees forbid records in the root.
681 			 */
682 			if (level != 0 && nr_this_level <= avg_per_block) {
683 				nr_blocks++;
684 				break;
685 			}
686 
687 			/*
688 			 * Otherwise, we have to store all the items for this
689 			 * level in traditional btree blocks and therefore need
690 			 * another level of btree to point to those blocks.
691 			 *
692 			 * We have to re-compute the geometry for each level of
693 			 * an inode-rooted btree because the geometry differs
694 			 * between a btree root in an inode fork and a
695 			 * traditional btree block.
696 			 *
697 			 * This distinction is made in the btree code based on
698 			 * whether level == bc_nlevels - 1.  Based on the
699 			 * previous root block size check against the root
700 			 * block geometry, we know that we aren't yet ready to
701 			 * populate the root.  Increment bc_nevels and
702 			 * recalculate the geometry for a traditional
703 			 * block-based btree level.
704 			 */
705 			cur->bc_nlevels++;
706 			ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
707 			xfs_btree_bload_level_geometry(cur, bbl, level,
708 					nr_this_level, &avg_per_block,
709 					&level_blocks, &dontcare64);
710 		} else {
711 			/*
712 			 * If all the items we want to store at this level
713 			 * would fit in a single root block, we're done.
714 			 */
715 			if (nr_this_level <= avg_per_block) {
716 				nr_blocks++;
717 				break;
718 			}
719 
720 			/* Otherwise, we need another level of btree. */
721 			cur->bc_nlevels++;
722 			ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
723 		}
724 
725 		nr_blocks += level_blocks;
726 		nr_this_level = level_blocks;
727 	}
728 
729 	if (cur->bc_nlevels > cur->bc_maxlevels)
730 		return -EOVERFLOW;
731 
732 	bbl->btree_height = cur->bc_nlevels;
733 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
734 		bbl->nr_blocks = nr_blocks - 1;
735 	else
736 		bbl->nr_blocks = nr_blocks;
737 	return 0;
738 }
739 
740 /* Bulk load a btree given the parameters and geometry established in bbl. */
741 int
742 xfs_btree_bload(
743 	struct xfs_btree_cur		*cur,
744 	struct xfs_btree_bload		*bbl,
745 	void				*priv)
746 {
747 	struct list_head		buffers_list;
748 	union xfs_btree_ptr		child_ptr;
749 	union xfs_btree_ptr		ptr;
750 	struct xfs_buf			*bp = NULL;
751 	struct xfs_btree_block		*block = NULL;
752 	uint64_t			nr_this_level = bbl->nr_records;
753 	uint64_t			blocks;
754 	uint64_t			i;
755 	uint64_t			blocks_with_extra;
756 	uint64_t			total_blocks = 0;
757 	unsigned int			avg_per_block;
758 	unsigned int			level = 0;
759 	int				ret;
760 
761 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
762 
763 	INIT_LIST_HEAD(&buffers_list);
764 	cur->bc_nlevels = bbl->btree_height;
765 	xfs_btree_set_ptr_null(cur, &child_ptr);
766 	xfs_btree_set_ptr_null(cur, &ptr);
767 
768 	xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
769 			&avg_per_block, &blocks, &blocks_with_extra);
770 
771 	/* Load each leaf block. */
772 	for (i = 0; i < blocks; i++) {
773 		unsigned int		nr_this_block = avg_per_block;
774 
775 		/*
776 		 * Due to rounding, btree blocks will not be evenly populated
777 		 * in most cases.  blocks_with_extra tells us how many blocks
778 		 * will receive an extra record to distribute the excess across
779 		 * the current level as evenly as possible.
780 		 */
781 		if (i < blocks_with_extra)
782 			nr_this_block++;
783 
784 		ret = xfs_btree_bload_prep_block(cur, bbl, &buffers_list, level,
785 				nr_this_block, &ptr, &bp, &block, priv);
786 		if (ret)
787 			goto out;
788 
789 		trace_xfs_btree_bload_block(cur, level, i, blocks, &ptr,
790 				nr_this_block);
791 
792 		ret = xfs_btree_bload_leaf(cur, nr_this_block, bbl->get_record,
793 				block, priv);
794 		if (ret)
795 			goto out;
796 
797 		/*
798 		 * Record the leftmost leaf pointer so we know where to start
799 		 * with the first node level.
800 		 */
801 		if (i == 0)
802 			xfs_btree_copy_ptrs(cur, &child_ptr, &ptr, 1);
803 	}
804 	total_blocks += blocks;
805 	xfs_btree_bload_drop_buf(&buffers_list, &bp);
806 
807 	/* Populate the internal btree nodes. */
808 	for (level = 1; level < cur->bc_nlevels; level++) {
809 		union xfs_btree_ptr	first_ptr;
810 
811 		nr_this_level = blocks;
812 		block = NULL;
813 		xfs_btree_set_ptr_null(cur, &ptr);
814 
815 		xfs_btree_bload_level_geometry(cur, bbl, level, nr_this_level,
816 				&avg_per_block, &blocks, &blocks_with_extra);
817 
818 		/* Load each node block. */
819 		for (i = 0; i < blocks; i++) {
820 			unsigned int	nr_this_block = avg_per_block;
821 
822 			if (i < blocks_with_extra)
823 				nr_this_block++;
824 
825 			ret = xfs_btree_bload_prep_block(cur, bbl,
826 					&buffers_list, level, nr_this_block,
827 					&ptr, &bp, &block, priv);
828 			if (ret)
829 				goto out;
830 
831 			trace_xfs_btree_bload_block(cur, level, i, blocks,
832 					&ptr, nr_this_block);
833 
834 			ret = xfs_btree_bload_node(cur, nr_this_block,
835 					&child_ptr, block);
836 			if (ret)
837 				goto out;
838 
839 			/*
840 			 * Record the leftmost node pointer so that we know
841 			 * where to start the next node level above this one.
842 			 */
843 			if (i == 0)
844 				xfs_btree_copy_ptrs(cur, &first_ptr, &ptr, 1);
845 		}
846 		total_blocks += blocks;
847 		xfs_btree_bload_drop_buf(&buffers_list, &bp);
848 		xfs_btree_copy_ptrs(cur, &child_ptr, &first_ptr, 1);
849 	}
850 
851 	/* Initialize the new root. */
852 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
853 		ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
854 		cur->bc_ino.ifake->if_levels = cur->bc_nlevels;
855 		cur->bc_ino.ifake->if_blocks = total_blocks - 1;
856 	} else {
857 		cur->bc_ag.afake->af_root = be32_to_cpu(ptr.s);
858 		cur->bc_ag.afake->af_levels = cur->bc_nlevels;
859 		cur->bc_ag.afake->af_blocks = total_blocks;
860 	}
861 
862 	/*
863 	 * Write the new blocks to disk.  If the ordered list isn't empty after
864 	 * that, then something went wrong and we have to fail.  This should
865 	 * never happen, but we'll check anyway.
866 	 */
867 	ret = xfs_buf_delwri_submit(&buffers_list);
868 	if (ret)
869 		goto out;
870 	if (!list_empty(&buffers_list)) {
871 		ASSERT(list_empty(&buffers_list));
872 		ret = -EIO;
873 	}
874 
875 out:
876 	xfs_buf_delwri_cancel(&buffers_list);
877 	if (bp)
878 		xfs_buf_relse(bp);
879 	return ret;
880 }
881