xref: /linux/fs/xfs/libxfs/xfs_inode_fork.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_trace.h"
22 #include "xfs_da_format.h"
23 #include "xfs_da_btree.h"
24 #include "xfs_dir2_priv.h"
25 #include "xfs_attr_leaf.h"
26 #include "xfs_types.h"
27 #include "xfs_errortag.h"
28 #include "xfs_health.h"
29 #include "xfs_symlink_remote.h"
30 
31 struct kmem_cache *xfs_ifork_cache;
32 
33 void
34 xfs_init_local_fork(
35 	struct xfs_inode	*ip,
36 	int			whichfork,
37 	const void		*data,
38 	int64_t			size)
39 {
40 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
41 	int			mem_size = size;
42 	bool			zero_terminate;
43 
44 	/*
45 	 * If we are using the local fork to store a symlink body we need to
46 	 * zero-terminate it so that we can pass it back to the VFS directly.
47 	 * Overallocate the in-memory fork by one for that and add a zero
48 	 * to terminate it below.
49 	 */
50 	zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
51 	if (zero_terminate)
52 		mem_size++;
53 
54 	if (size) {
55 		char *new_data = kmalloc(mem_size,
56 				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
57 
58 		memcpy(new_data, data, size);
59 		if (zero_terminate)
60 			new_data[size] = '\0';
61 
62 		ifp->if_data = new_data;
63 	} else {
64 		ifp->if_data = NULL;
65 	}
66 
67 	ifp->if_bytes = size;
68 }
69 
70 /*
71  * The file is in-lined in the on-disk inode.
72  */
73 STATIC int
74 xfs_iformat_local(
75 	struct xfs_inode	*ip,
76 	struct xfs_dinode	*dip,
77 	int			whichfork,
78 	int			size)
79 {
80 	/*
81 	 * If the size is unreasonable, then something
82 	 * is wrong and we just bail out rather than crash in
83 	 * kmalloc() or memcpy() below.
84 	 */
85 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
86 		xfs_warn(ip->i_mount,
87 	"corrupt inode %llu (bad size %d for local fork, size = %zd).",
88 			(unsigned long long) ip->i_ino, size,
89 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
90 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
91 				"xfs_iformat_local", dip, sizeof(*dip),
92 				__this_address);
93 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
94 		return -EFSCORRUPTED;
95 	}
96 
97 	xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
98 	return 0;
99 }
100 
101 /*
102  * The file consists of a set of extents all of which fit into the on-disk
103  * inode.
104  */
105 STATIC int
106 xfs_iformat_extents(
107 	struct xfs_inode	*ip,
108 	struct xfs_dinode	*dip,
109 	int			whichfork)
110 {
111 	struct xfs_mount	*mp = ip->i_mount;
112 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
113 	int			state = xfs_bmap_fork_to_state(whichfork);
114 	xfs_extnum_t		nex = xfs_dfork_nextents(dip, whichfork);
115 	int			size = nex * sizeof(xfs_bmbt_rec_t);
116 	struct xfs_iext_cursor	icur;
117 	struct xfs_bmbt_rec	*dp;
118 	struct xfs_bmbt_irec	new;
119 	int			i;
120 
121 	/*
122 	 * If the number of extents is unreasonable, then something is wrong and
123 	 * we just bail out rather than crash in kmalloc() or memcpy() below.
124 	 */
125 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
126 		xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
127 			ip->i_ino, nex);
128 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
129 				"xfs_iformat_extents(1)", dip, sizeof(*dip),
130 				__this_address);
131 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
132 		return -EFSCORRUPTED;
133 	}
134 
135 	ifp->if_bytes = 0;
136 	ifp->if_data = NULL;
137 	ifp->if_height = 0;
138 	if (size) {
139 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
140 
141 		xfs_iext_first(ifp, &icur);
142 		for (i = 0; i < nex; i++, dp++) {
143 			xfs_failaddr_t	fa;
144 
145 			xfs_bmbt_disk_get_all(dp, &new);
146 			fa = xfs_bmap_validate_extent(ip, whichfork, &new);
147 			if (fa) {
148 				xfs_inode_verifier_error(ip, -EFSCORRUPTED,
149 						"xfs_iformat_extents(2)",
150 						dp, sizeof(*dp), fa);
151 				xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
152 				return xfs_bmap_complain_bad_rec(ip, whichfork,
153 						fa, &new);
154 			}
155 
156 			xfs_iext_insert(ip, &icur, &new, state);
157 			trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
158 			xfs_iext_next(ifp, &icur);
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * The file has too many extents to fit into
166  * the inode, so they are in B-tree format.
167  * Allocate a buffer for the root of the B-tree
168  * and copy the root into it.  The i_extents
169  * field will remain NULL until all of the
170  * extents are read in (when they are needed).
171  */
172 STATIC int
173 xfs_iformat_btree(
174 	struct xfs_inode	*ip,
175 	struct xfs_dinode	*dip,
176 	int			whichfork)
177 {
178 	struct xfs_mount	*mp = ip->i_mount;
179 	xfs_bmdr_block_t	*dfp;
180 	struct xfs_ifork	*ifp;
181 	/* REFERENCED */
182 	int			nrecs;
183 	int			size;
184 	int			level;
185 
186 	ifp = xfs_ifork_ptr(ip, whichfork);
187 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
188 	size = XFS_BMAP_BROOT_SPACE(mp, dfp);
189 	nrecs = be16_to_cpu(dfp->bb_numrecs);
190 	level = be16_to_cpu(dfp->bb_level);
191 
192 	/*
193 	 * blow out if -- fork has less extents than can fit in
194 	 * fork (fork shouldn't be a btree format), root btree
195 	 * block has more records than can fit into the fork,
196 	 * or the number of extents is greater than the number of
197 	 * blocks.
198 	 */
199 	if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
200 		     nrecs == 0 ||
201 		     XFS_BMDR_SPACE_CALC(nrecs) >
202 					XFS_DFORK_SIZE(dip, mp, whichfork) ||
203 		     ifp->if_nextents > ip->i_nblocks) ||
204 		     level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
205 		xfs_warn(mp, "corrupt inode %llu (btree).",
206 					(unsigned long long) ip->i_ino);
207 		xfs_inode_verifier_error(ip, -EFSCORRUPTED,
208 				"xfs_iformat_btree", dfp, size,
209 				__this_address);
210 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
211 		return -EFSCORRUPTED;
212 	}
213 
214 	ifp->if_broot_bytes = size;
215 	ifp->if_broot = kmalloc(size,
216 				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
217 	ASSERT(ifp->if_broot != NULL);
218 	/*
219 	 * Copy and convert from the on-disk structure
220 	 * to the in-memory structure.
221 	 */
222 	xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
223 			 ifp->if_broot, size);
224 
225 	ifp->if_bytes = 0;
226 	ifp->if_data = NULL;
227 	ifp->if_height = 0;
228 	return 0;
229 }
230 
231 int
232 xfs_iformat_data_fork(
233 	struct xfs_inode	*ip,
234 	struct xfs_dinode	*dip)
235 {
236 	struct inode		*inode = VFS_I(ip);
237 	int			error;
238 
239 	/*
240 	 * Initialize the extent count early, as the per-format routines may
241 	 * depend on it.  Use release semantics to set needextents /after/ we
242 	 * set the format. This ensures that we can use acquire semantics on
243 	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
244 	 * valid format value after that load.
245 	 */
246 	ip->i_df.if_format = dip->di_format;
247 	ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
248 	smp_store_release(&ip->i_df.if_needextents,
249 			   ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
250 
251 	switch (inode->i_mode & S_IFMT) {
252 	case S_IFIFO:
253 	case S_IFCHR:
254 	case S_IFBLK:
255 	case S_IFSOCK:
256 		ip->i_disk_size = 0;
257 		inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
258 		return 0;
259 	case S_IFREG:
260 	case S_IFLNK:
261 	case S_IFDIR:
262 		switch (ip->i_df.if_format) {
263 		case XFS_DINODE_FMT_LOCAL:
264 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
265 					be64_to_cpu(dip->di_size));
266 			if (!error)
267 				error = xfs_ifork_verify_local_data(ip);
268 			return error;
269 		case XFS_DINODE_FMT_EXTENTS:
270 			return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
271 		case XFS_DINODE_FMT_BTREE:
272 			return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
273 		default:
274 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
275 					dip, sizeof(*dip), __this_address);
276 			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
277 			return -EFSCORRUPTED;
278 		}
279 		break;
280 	default:
281 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
282 				sizeof(*dip), __this_address);
283 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
284 		return -EFSCORRUPTED;
285 	}
286 }
287 
288 static uint16_t
289 xfs_dfork_attr_shortform_size(
290 	struct xfs_dinode		*dip)
291 {
292 	struct xfs_attr_sf_hdr		*sf = XFS_DFORK_APTR(dip);
293 
294 	return be16_to_cpu(sf->totsize);
295 }
296 
297 void
298 xfs_ifork_init_attr(
299 	struct xfs_inode	*ip,
300 	enum xfs_dinode_fmt	format,
301 	xfs_extnum_t		nextents)
302 {
303 	/*
304 	 * Initialize the extent count early, as the per-format routines may
305 	 * depend on it.  Use release semantics to set needextents /after/ we
306 	 * set the format. This ensures that we can use acquire semantics on
307 	 * needextents in xfs_need_iread_extents() and be guaranteed to see a
308 	 * valid format value after that load.
309 	 */
310 	ip->i_af.if_format = format;
311 	ip->i_af.if_nextents = nextents;
312 	smp_store_release(&ip->i_af.if_needextents,
313 			   ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
314 }
315 
316 void
317 xfs_ifork_zap_attr(
318 	struct xfs_inode	*ip)
319 {
320 	xfs_idestroy_fork(&ip->i_af);
321 	memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
322 	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
323 }
324 
325 int
326 xfs_iformat_attr_fork(
327 	struct xfs_inode	*ip,
328 	struct xfs_dinode	*dip)
329 {
330 	xfs_extnum_t		naextents = xfs_dfork_attr_extents(dip);
331 	int			error = 0;
332 
333 	/*
334 	 * Initialize the extent count early, as the per-format routines may
335 	 * depend on it.
336 	 */
337 	xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
338 
339 	switch (ip->i_af.if_format) {
340 	case XFS_DINODE_FMT_LOCAL:
341 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
342 				xfs_dfork_attr_shortform_size(dip));
343 		if (!error)
344 			error = xfs_ifork_verify_local_attr(ip);
345 		break;
346 	case XFS_DINODE_FMT_EXTENTS:
347 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
348 		break;
349 	case XFS_DINODE_FMT_BTREE:
350 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
351 		break;
352 	default:
353 		xfs_inode_verifier_error(ip, error, __func__, dip,
354 				sizeof(*dip), __this_address);
355 		xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
356 		error = -EFSCORRUPTED;
357 		break;
358 	}
359 
360 	if (error)
361 		xfs_ifork_zap_attr(ip);
362 	return error;
363 }
364 
365 /*
366  * Reallocate the space for if_broot based on the number of records
367  * being added or deleted as indicated in rec_diff.  Move the records
368  * and pointers in if_broot to fit the new size.  When shrinking this
369  * will eliminate holes between the records and pointers created by
370  * the caller.  When growing this will create holes to be filled in
371  * by the caller.
372  *
373  * The caller must not request to add more records than would fit in
374  * the on-disk inode root.  If the if_broot is currently NULL, then
375  * if we are adding records, one will be allocated.  The caller must also
376  * not request that the number of records go below zero, although
377  * it can go to zero.
378  *
379  * ip -- the inode whose if_broot area is changing
380  * ext_diff -- the change in the number of records, positive or negative,
381  *	 requested for the if_broot array.
382  */
383 void
384 xfs_iroot_realloc(
385 	xfs_inode_t		*ip,
386 	int			rec_diff,
387 	int			whichfork)
388 {
389 	struct xfs_mount	*mp = ip->i_mount;
390 	int			cur_max;
391 	struct xfs_ifork	*ifp;
392 	struct xfs_btree_block	*new_broot;
393 	int			new_max;
394 	size_t			new_size;
395 	char			*np;
396 	char			*op;
397 
398 	/*
399 	 * Handle the degenerate case quietly.
400 	 */
401 	if (rec_diff == 0) {
402 		return;
403 	}
404 
405 	ifp = xfs_ifork_ptr(ip, whichfork);
406 	if (rec_diff > 0) {
407 		/*
408 		 * If there wasn't any memory allocated before, just
409 		 * allocate it now and get out.
410 		 */
411 		if (ifp->if_broot_bytes == 0) {
412 			new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
413 			ifp->if_broot = kmalloc(new_size,
414 						GFP_KERNEL | __GFP_NOFAIL);
415 			ifp->if_broot_bytes = (int)new_size;
416 			return;
417 		}
418 
419 		/*
420 		 * If there is already an existing if_broot, then we need
421 		 * to realloc() it and shift the pointers to their new
422 		 * location.  The records don't change location because
423 		 * they are kept butted up against the btree block header.
424 		 */
425 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
426 		new_max = cur_max + rec_diff;
427 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
428 		ifp->if_broot = krealloc(ifp->if_broot, new_size,
429 					 GFP_KERNEL | __GFP_NOFAIL);
430 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
431 						     ifp->if_broot_bytes);
432 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
433 						     (int)new_size);
434 		ifp->if_broot_bytes = (int)new_size;
435 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
436 			xfs_inode_fork_size(ip, whichfork));
437 		memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
438 		return;
439 	}
440 
441 	/*
442 	 * rec_diff is less than 0.  In this case, we are shrinking the
443 	 * if_broot buffer.  It must already exist.  If we go to zero
444 	 * records, just get rid of the root and clear the status bit.
445 	 */
446 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
447 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
448 	new_max = cur_max + rec_diff;
449 	ASSERT(new_max >= 0);
450 	if (new_max > 0)
451 		new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
452 	else
453 		new_size = 0;
454 	if (new_size > 0) {
455 		new_broot = kmalloc(new_size, GFP_KERNEL | __GFP_NOFAIL);
456 		/*
457 		 * First copy over the btree block header.
458 		 */
459 		memcpy(new_broot, ifp->if_broot,
460 			XFS_BMBT_BLOCK_LEN(ip->i_mount));
461 	} else {
462 		new_broot = NULL;
463 	}
464 
465 	/*
466 	 * Only copy the records and pointers if there are any.
467 	 */
468 	if (new_max > 0) {
469 		/*
470 		 * First copy the records.
471 		 */
472 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
473 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
474 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
475 
476 		/*
477 		 * Then copy the pointers.
478 		 */
479 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
480 						     ifp->if_broot_bytes);
481 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
482 						     (int)new_size);
483 		memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
484 	}
485 	kfree(ifp->if_broot);
486 	ifp->if_broot = new_broot;
487 	ifp->if_broot_bytes = (int)new_size;
488 	if (ifp->if_broot)
489 		ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
490 			xfs_inode_fork_size(ip, whichfork));
491 	return;
492 }
493 
494 
495 /*
496  * This is called when the amount of space needed for if_data
497  * is increased or decreased.  The change in size is indicated by
498  * the number of bytes that need to be added or deleted in the
499  * byte_diff parameter.
500  *
501  * If the amount of space needed has decreased below the size of the
502  * inline buffer, then switch to using the inline buffer.  Otherwise,
503  * use krealloc() or kmalloc() to adjust the size of the buffer
504  * to what is needed.
505  *
506  * ip -- the inode whose if_data area is changing
507  * byte_diff -- the change in the number of bytes, positive or negative,
508  *	 requested for the if_data array.
509  */
510 void *
511 xfs_idata_realloc(
512 	struct xfs_inode	*ip,
513 	int64_t			byte_diff,
514 	int			whichfork)
515 {
516 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
517 	int64_t			new_size = ifp->if_bytes + byte_diff;
518 
519 	ASSERT(new_size >= 0);
520 	ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
521 
522 	if (byte_diff) {
523 		ifp->if_data = krealloc(ifp->if_data, new_size,
524 					GFP_KERNEL | __GFP_NOFAIL);
525 		if (new_size == 0)
526 			ifp->if_data = NULL;
527 		ifp->if_bytes = new_size;
528 	}
529 
530 	return ifp->if_data;
531 }
532 
533 /* Free all memory and reset a fork back to its initial state. */
534 void
535 xfs_idestroy_fork(
536 	struct xfs_ifork	*ifp)
537 {
538 	if (ifp->if_broot != NULL) {
539 		kfree(ifp->if_broot);
540 		ifp->if_broot = NULL;
541 	}
542 
543 	switch (ifp->if_format) {
544 	case XFS_DINODE_FMT_LOCAL:
545 		kfree(ifp->if_data);
546 		ifp->if_data = NULL;
547 		break;
548 	case XFS_DINODE_FMT_EXTENTS:
549 	case XFS_DINODE_FMT_BTREE:
550 		if (ifp->if_height)
551 			xfs_iext_destroy(ifp);
552 		break;
553 	}
554 }
555 
556 /*
557  * Convert in-core extents to on-disk form
558  *
559  * In the case of the data fork, the in-core and on-disk fork sizes can be
560  * different due to delayed allocation extents. We only copy on-disk extents
561  * here, so callers must always use the physical fork size to determine the
562  * size of the buffer passed to this routine.  We will return the size actually
563  * used.
564  */
565 int
566 xfs_iextents_copy(
567 	struct xfs_inode	*ip,
568 	struct xfs_bmbt_rec	*dp,
569 	int			whichfork)
570 {
571 	int			state = xfs_bmap_fork_to_state(whichfork);
572 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
573 	struct xfs_iext_cursor	icur;
574 	struct xfs_bmbt_irec	rec;
575 	int64_t			copied = 0;
576 
577 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
578 	ASSERT(ifp->if_bytes > 0);
579 
580 	for_each_xfs_iext(ifp, &icur, &rec) {
581 		if (isnullstartblock(rec.br_startblock))
582 			continue;
583 		ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
584 		xfs_bmbt_disk_set_all(dp, &rec);
585 		trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
586 		copied += sizeof(struct xfs_bmbt_rec);
587 		dp++;
588 	}
589 
590 	ASSERT(copied > 0);
591 	ASSERT(copied <= ifp->if_bytes);
592 	return copied;
593 }
594 
595 /*
596  * Each of the following cases stores data into the same region
597  * of the on-disk inode, so only one of them can be valid at
598  * any given time. While it is possible to have conflicting formats
599  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
600  * in EXTENTS format, this can only happen when the fork has
601  * changed formats after being modified but before being flushed.
602  * In these cases, the format always takes precedence, because the
603  * format indicates the current state of the fork.
604  */
605 void
606 xfs_iflush_fork(
607 	struct xfs_inode	*ip,
608 	struct xfs_dinode	*dip,
609 	struct xfs_inode_log_item *iip,
610 	int			whichfork)
611 {
612 	char			*cp;
613 	struct xfs_ifork	*ifp;
614 	xfs_mount_t		*mp;
615 	static const short	brootflag[2] =
616 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
617 	static const short	dataflag[2] =
618 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
619 	static const short	extflag[2] =
620 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
621 
622 	if (!iip)
623 		return;
624 	ifp = xfs_ifork_ptr(ip, whichfork);
625 	/*
626 	 * This can happen if we gave up in iformat in an error path,
627 	 * for the attribute fork.
628 	 */
629 	if (!ifp) {
630 		ASSERT(whichfork == XFS_ATTR_FORK);
631 		return;
632 	}
633 	cp = XFS_DFORK_PTR(dip, whichfork);
634 	mp = ip->i_mount;
635 	switch (ifp->if_format) {
636 	case XFS_DINODE_FMT_LOCAL:
637 		if ((iip->ili_fields & dataflag[whichfork]) &&
638 		    (ifp->if_bytes > 0)) {
639 			ASSERT(ifp->if_data != NULL);
640 			ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
641 			memcpy(cp, ifp->if_data, ifp->if_bytes);
642 		}
643 		break;
644 
645 	case XFS_DINODE_FMT_EXTENTS:
646 		if ((iip->ili_fields & extflag[whichfork]) &&
647 		    (ifp->if_bytes > 0)) {
648 			ASSERT(ifp->if_nextents > 0);
649 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
650 				whichfork);
651 		}
652 		break;
653 
654 	case XFS_DINODE_FMT_BTREE:
655 		if ((iip->ili_fields & brootflag[whichfork]) &&
656 		    (ifp->if_broot_bytes > 0)) {
657 			ASSERT(ifp->if_broot != NULL);
658 			ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
659 			        xfs_inode_fork_size(ip, whichfork));
660 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
661 				(xfs_bmdr_block_t *)cp,
662 				XFS_DFORK_SIZE(dip, mp, whichfork));
663 		}
664 		break;
665 
666 	case XFS_DINODE_FMT_DEV:
667 		if (iip->ili_fields & XFS_ILOG_DEV) {
668 			ASSERT(whichfork == XFS_DATA_FORK);
669 			xfs_dinode_put_rdev(dip,
670 					linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
671 		}
672 		break;
673 
674 	default:
675 		ASSERT(0);
676 		break;
677 	}
678 }
679 
680 /* Convert bmap state flags to an inode fork. */
681 struct xfs_ifork *
682 xfs_iext_state_to_fork(
683 	struct xfs_inode	*ip,
684 	int			state)
685 {
686 	if (state & BMAP_COWFORK)
687 		return ip->i_cowfp;
688 	else if (state & BMAP_ATTRFORK)
689 		return &ip->i_af;
690 	return &ip->i_df;
691 }
692 
693 /*
694  * Initialize an inode's copy-on-write fork.
695  */
696 void
697 xfs_ifork_init_cow(
698 	struct xfs_inode	*ip)
699 {
700 	if (ip->i_cowfp)
701 		return;
702 
703 	ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
704 				GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
705 	ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
706 }
707 
708 /* Verify the inline contents of the data fork of an inode. */
709 int
710 xfs_ifork_verify_local_data(
711 	struct xfs_inode	*ip)
712 {
713 	xfs_failaddr_t		fa = NULL;
714 
715 	switch (VFS_I(ip)->i_mode & S_IFMT) {
716 	case S_IFDIR: {
717 		struct xfs_mount	*mp = ip->i_mount;
718 		struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
719 		struct xfs_dir2_sf_hdr	*sfp = ifp->if_data;
720 
721 		fa = xfs_dir2_sf_verify(mp, sfp, ifp->if_bytes);
722 		break;
723 	}
724 	case S_IFLNK: {
725 		struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
726 
727 		fa = xfs_symlink_shortform_verify(ifp->if_data, ifp->if_bytes);
728 		break;
729 	}
730 	default:
731 		break;
732 	}
733 
734 	if (fa) {
735 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
736 				ip->i_df.if_data, ip->i_df.if_bytes, fa);
737 		return -EFSCORRUPTED;
738 	}
739 
740 	return 0;
741 }
742 
743 /* Verify the inline contents of the attr fork of an inode. */
744 int
745 xfs_ifork_verify_local_attr(
746 	struct xfs_inode	*ip)
747 {
748 	struct xfs_ifork	*ifp = &ip->i_af;
749 	xfs_failaddr_t		fa;
750 
751 	if (!xfs_inode_has_attr_fork(ip)) {
752 		fa = __this_address;
753 	} else {
754 		struct xfs_ifork		*ifp = &ip->i_af;
755 
756 		ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
757 		fa = xfs_attr_shortform_verify(ifp->if_data, ifp->if_bytes);
758 	}
759 	if (fa) {
760 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
761 				ifp->if_data, ifp->if_bytes, fa);
762 		return -EFSCORRUPTED;
763 	}
764 
765 	return 0;
766 }
767 
768 int
769 xfs_iext_count_may_overflow(
770 	struct xfs_inode	*ip,
771 	int			whichfork,
772 	int			nr_to_add)
773 {
774 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
775 	uint64_t		max_exts;
776 	uint64_t		nr_exts;
777 
778 	if (whichfork == XFS_COW_FORK)
779 		return 0;
780 
781 	max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
782 				whichfork);
783 
784 	if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
785 		max_exts = 10;
786 
787 	nr_exts = ifp->if_nextents + nr_to_add;
788 	if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
789 		return -EFBIG;
790 
791 	return 0;
792 }
793 
794 /*
795  * Upgrade this inode's extent counter fields to be able to handle a potential
796  * increase in the extent count by nr_to_add.  Normally this is the same
797  * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
798  */
799 int
800 xfs_iext_count_upgrade(
801 	struct xfs_trans	*tp,
802 	struct xfs_inode	*ip,
803 	uint			nr_to_add)
804 {
805 	ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
806 
807 	if (!xfs_has_large_extent_counts(ip->i_mount) ||
808 	    xfs_inode_has_large_extent_counts(ip) ||
809 	    XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
810 		return -EFBIG;
811 
812 	ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
813 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
814 
815 	return 0;
816 }
817 
818 /* Decide if a file mapping is on the realtime device or not. */
819 bool
820 xfs_ifork_is_realtime(
821 	struct xfs_inode	*ip,
822 	int			whichfork)
823 {
824 	return XFS_IS_REALTIME_INODE(ip) && whichfork != XFS_ATTR_FORK;
825 }
826