xref: /linux/fs/xfs/xfs_fsops.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_sb.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_error.h"
16 #include "xfs_alloc.h"
17 #include "xfs_fsops.h"
18 #include "xfs_trans_space.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_ag.h"
22 #include "xfs_ag_resv.h"
23 #include "xfs_trace.h"
24 
25 /*
26  * Write new AG headers to disk. Non-transactional, but need to be
27  * written and completed prior to the growfs transaction being logged.
28  * To do this, we use a delayed write buffer list and wait for
29  * submission and IO completion of the list as a whole. This allows the
30  * IO subsystem to merge all the AG headers in a single AG into a single
31  * IO and hide most of the latency of the IO from us.
32  *
33  * This also means that if we get an error whilst building the buffer
34  * list to write, we can cancel the entire list without having written
35  * anything.
36  */
37 static int
38 xfs_resizefs_init_new_ags(
39 	struct xfs_trans	*tp,
40 	struct aghdr_init_data	*id,
41 	xfs_agnumber_t		oagcount,
42 	xfs_agnumber_t		nagcount,
43 	xfs_rfsblock_t		delta,
44 	bool			*lastag_extended)
45 {
46 	struct xfs_mount	*mp = tp->t_mountp;
47 	xfs_rfsblock_t		nb = mp->m_sb.sb_dblocks + delta;
48 	int			error;
49 
50 	*lastag_extended = false;
51 
52 	INIT_LIST_HEAD(&id->buffer_list);
53 	for (id->agno = nagcount - 1;
54 	     id->agno >= oagcount;
55 	     id->agno--, delta -= id->agsize) {
56 
57 		if (id->agno == nagcount - 1)
58 			id->agsize = nb - (id->agno *
59 					(xfs_rfsblock_t)mp->m_sb.sb_agblocks);
60 		else
61 			id->agsize = mp->m_sb.sb_agblocks;
62 
63 		error = xfs_ag_init_headers(mp, id);
64 		if (error) {
65 			xfs_buf_delwri_cancel(&id->buffer_list);
66 			return error;
67 		}
68 	}
69 
70 	error = xfs_buf_delwri_submit(&id->buffer_list);
71 	if (error)
72 		return error;
73 
74 	if (delta) {
75 		*lastag_extended = true;
76 		error = xfs_ag_extend_space(mp, tp, id, delta);
77 	}
78 	return error;
79 }
80 
81 /*
82  * growfs operations
83  */
84 static int
85 xfs_growfs_data_private(
86 	struct xfs_mount	*mp,		/* mount point for filesystem */
87 	struct xfs_growfs_data	*in)		/* growfs data input struct */
88 {
89 	struct xfs_buf		*bp;
90 	int			error;
91 	xfs_agnumber_t		nagcount;
92 	xfs_agnumber_t		nagimax = 0;
93 	xfs_rfsblock_t		nb, nb_div, nb_mod;
94 	int64_t			delta;
95 	bool			lastag_extended;
96 	xfs_agnumber_t		oagcount;
97 	struct xfs_trans	*tp;
98 	struct aghdr_init_data	id = {};
99 
100 	nb = in->newblocks;
101 	error = xfs_sb_validate_fsb_count(&mp->m_sb, nb);
102 	if (error)
103 		return error;
104 
105 	if (nb > mp->m_sb.sb_dblocks) {
106 		error = xfs_buf_read_uncached(mp->m_ddev_targp,
107 				XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1),
108 				XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
109 		if (error)
110 			return error;
111 		xfs_buf_relse(bp);
112 	}
113 
114 	nb_div = nb;
115 	nb_mod = do_div(nb_div, mp->m_sb.sb_agblocks);
116 	nagcount = nb_div + (nb_mod != 0);
117 	if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) {
118 		nagcount--;
119 		nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks;
120 	}
121 	delta = nb - mp->m_sb.sb_dblocks;
122 	/*
123 	 * Reject filesystems with a single AG because they are not
124 	 * supported, and reject a shrink operation that would cause a
125 	 * filesystem to become unsupported.
126 	 */
127 	if (delta < 0 && nagcount < 2)
128 		return -EINVAL;
129 
130 	oagcount = mp->m_sb.sb_agcount;
131 
132 	/* allocate the new per-ag structures */
133 	if (nagcount > oagcount) {
134 		error = xfs_initialize_perag(mp, nagcount, &nagimax);
135 		if (error)
136 			return error;
137 	} else if (nagcount < oagcount) {
138 		/* TODO: shrinking the entire AGs hasn't yet completed */
139 		return -EINVAL;
140 	}
141 
142 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
143 			(delta > 0 ? XFS_GROWFS_SPACE_RES(mp) : -delta), 0,
144 			XFS_TRANS_RESERVE, &tp);
145 	if (error)
146 		return error;
147 
148 	if (delta > 0) {
149 		error = xfs_resizefs_init_new_ags(tp, &id, oagcount, nagcount,
150 						  delta, &lastag_extended);
151 	} else {
152 		static struct ratelimit_state shrink_warning = \
153 			RATELIMIT_STATE_INIT("shrink_warning", 86400 * HZ, 1);
154 		ratelimit_set_flags(&shrink_warning, RATELIMIT_MSG_ON_RELEASE);
155 
156 		if (__ratelimit(&shrink_warning))
157 			xfs_alert(mp,
158 	"EXPERIMENTAL online shrink feature in use. Use at your own risk!");
159 
160 		error = xfs_ag_shrink_space(mp, &tp, nagcount - 1, -delta);
161 	}
162 	if (error)
163 		goto out_trans_cancel;
164 
165 	/*
166 	 * Update changed superblock fields transactionally. These are not
167 	 * seen by the rest of the world until the transaction commit applies
168 	 * them atomically to the superblock.
169 	 */
170 	if (nagcount > oagcount)
171 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount);
172 	if (delta)
173 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, delta);
174 	if (id.nfree)
175 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree);
176 
177 	/*
178 	 * Sync sb counters now to reflect the updated values. This is
179 	 * particularly important for shrink because the write verifier
180 	 * will fail if sb_fdblocks is ever larger than sb_dblocks.
181 	 */
182 	if (xfs_has_lazysbcount(mp))
183 		xfs_log_sb(tp);
184 
185 	xfs_trans_set_sync(tp);
186 	error = xfs_trans_commit(tp);
187 	if (error)
188 		return error;
189 
190 	/* New allocation groups fully initialized, so update mount struct */
191 	if (nagimax)
192 		mp->m_maxagi = nagimax;
193 	xfs_set_low_space_thresholds(mp);
194 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
195 
196 	if (delta > 0) {
197 		/*
198 		 * If we expanded the last AG, free the per-AG reservation
199 		 * so we can reinitialize it with the new size.
200 		 */
201 		if (lastag_extended) {
202 			struct xfs_perag	*pag;
203 
204 			pag = xfs_perag_get(mp, id.agno);
205 			error = xfs_ag_resv_free(pag);
206 			xfs_perag_put(pag);
207 			if (error)
208 				return error;
209 		}
210 		/*
211 		 * Reserve AG metadata blocks. ENOSPC here does not mean there
212 		 * was a growfs failure, just that there still isn't space for
213 		 * new user data after the grow has been run.
214 		 */
215 		error = xfs_fs_reserve_ag_blocks(mp);
216 		if (error == -ENOSPC)
217 			error = 0;
218 	}
219 	return error;
220 
221 out_trans_cancel:
222 	xfs_trans_cancel(tp);
223 	return error;
224 }
225 
226 static int
227 xfs_growfs_log_private(
228 	struct xfs_mount	*mp,	/* mount point for filesystem */
229 	struct xfs_growfs_log	*in)	/* growfs log input struct */
230 {
231 	xfs_extlen_t		nb;
232 
233 	nb = in->newblocks;
234 	if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES))
235 		return -EINVAL;
236 	if (nb == mp->m_sb.sb_logblocks &&
237 	    in->isint == (mp->m_sb.sb_logstart != 0))
238 		return -EINVAL;
239 	/*
240 	 * Moving the log is hard, need new interfaces to sync
241 	 * the log first, hold off all activity while moving it.
242 	 * Can have shorter or longer log in the same space,
243 	 * or transform internal to external log or vice versa.
244 	 */
245 	return -ENOSYS;
246 }
247 
248 static int
249 xfs_growfs_imaxpct(
250 	struct xfs_mount	*mp,
251 	__u32			imaxpct)
252 {
253 	struct xfs_trans	*tp;
254 	int			dpct;
255 	int			error;
256 
257 	if (imaxpct > 100)
258 		return -EINVAL;
259 
260 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata,
261 			XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
262 	if (error)
263 		return error;
264 
265 	dpct = imaxpct - mp->m_sb.sb_imax_pct;
266 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct);
267 	xfs_trans_set_sync(tp);
268 	return xfs_trans_commit(tp);
269 }
270 
271 /*
272  * protected versions of growfs function acquire and release locks on the mount
273  * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG,
274  * XFS_IOC_FSGROWFSRT
275  */
276 int
277 xfs_growfs_data(
278 	struct xfs_mount	*mp,
279 	struct xfs_growfs_data	*in)
280 {
281 	int			error = 0;
282 
283 	if (!capable(CAP_SYS_ADMIN))
284 		return -EPERM;
285 	if (!mutex_trylock(&mp->m_growlock))
286 		return -EWOULDBLOCK;
287 
288 	/* update imaxpct separately to the physical grow of the filesystem */
289 	if (in->imaxpct != mp->m_sb.sb_imax_pct) {
290 		error = xfs_growfs_imaxpct(mp, in->imaxpct);
291 		if (error)
292 			goto out_error;
293 	}
294 
295 	if (in->newblocks != mp->m_sb.sb_dblocks) {
296 		error = xfs_growfs_data_private(mp, in);
297 		if (error)
298 			goto out_error;
299 	}
300 
301 	/* Post growfs calculations needed to reflect new state in operations */
302 	if (mp->m_sb.sb_imax_pct) {
303 		uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct;
304 		do_div(icount, 100);
305 		M_IGEO(mp)->maxicount = XFS_FSB_TO_INO(mp, icount);
306 	} else
307 		M_IGEO(mp)->maxicount = 0;
308 
309 	/* Update secondary superblocks now the physical grow has completed */
310 	error = xfs_update_secondary_sbs(mp);
311 
312 out_error:
313 	/*
314 	 * Increment the generation unconditionally, the error could be from
315 	 * updating the secondary superblocks, in which case the new size
316 	 * is live already.
317 	 */
318 	mp->m_generation++;
319 	mutex_unlock(&mp->m_growlock);
320 	return error;
321 }
322 
323 int
324 xfs_growfs_log(
325 	xfs_mount_t		*mp,
326 	struct xfs_growfs_log	*in)
327 {
328 	int error;
329 
330 	if (!capable(CAP_SYS_ADMIN))
331 		return -EPERM;
332 	if (!mutex_trylock(&mp->m_growlock))
333 		return -EWOULDBLOCK;
334 	error = xfs_growfs_log_private(mp, in);
335 	mutex_unlock(&mp->m_growlock);
336 	return error;
337 }
338 
339 /*
340  * exported through ioctl XFS_IOC_FSCOUNTS
341  */
342 
343 void
344 xfs_fs_counts(
345 	xfs_mount_t		*mp,
346 	xfs_fsop_counts_t	*cnt)
347 {
348 	cnt->allocino = percpu_counter_read_positive(&mp->m_icount);
349 	cnt->freeino = percpu_counter_read_positive(&mp->m_ifree);
350 	cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) -
351 						xfs_fdblocks_unavailable(mp);
352 
353 	spin_lock(&mp->m_sb_lock);
354 	cnt->freertx = mp->m_sb.sb_frextents;
355 	spin_unlock(&mp->m_sb_lock);
356 }
357 
358 /*
359  * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS
360  *
361  * xfs_reserve_blocks is called to set m_resblks
362  * in the in-core mount table. The number of unused reserved blocks
363  * is kept in m_resblks_avail.
364  *
365  * Reserve the requested number of blocks if available. Otherwise return
366  * as many as possible to satisfy the request. The actual number
367  * reserved are returned in outval
368  *
369  * A null inval pointer indicates that only the current reserved blocks
370  * available  should  be returned no settings are changed.
371  */
372 
373 int
374 xfs_reserve_blocks(
375 	xfs_mount_t             *mp,
376 	uint64_t              *inval,
377 	xfs_fsop_resblks_t      *outval)
378 {
379 	int64_t			lcounter, delta;
380 	int64_t			fdblks_delta = 0;
381 	uint64_t		request;
382 	int64_t			free;
383 	int			error = 0;
384 
385 	/* If inval is null, report current values and return */
386 	if (inval == (uint64_t *)NULL) {
387 		if (!outval)
388 			return -EINVAL;
389 		outval->resblks = mp->m_resblks;
390 		outval->resblks_avail = mp->m_resblks_avail;
391 		return 0;
392 	}
393 
394 	request = *inval;
395 
396 	/*
397 	 * With per-cpu counters, this becomes an interesting problem. we need
398 	 * to work out if we are freeing or allocation blocks first, then we can
399 	 * do the modification as necessary.
400 	 *
401 	 * We do this under the m_sb_lock so that if we are near ENOSPC, we will
402 	 * hold out any changes while we work out what to do. This means that
403 	 * the amount of free space can change while we do this, so we need to
404 	 * retry if we end up trying to reserve more space than is available.
405 	 */
406 	spin_lock(&mp->m_sb_lock);
407 
408 	/*
409 	 * If our previous reservation was larger than the current value,
410 	 * then move any unused blocks back to the free pool. Modify the resblks
411 	 * counters directly since we shouldn't have any problems unreserving
412 	 * space.
413 	 */
414 	if (mp->m_resblks > request) {
415 		lcounter = mp->m_resblks_avail - request;
416 		if (lcounter  > 0) {		/* release unused blocks */
417 			fdblks_delta = lcounter;
418 			mp->m_resblks_avail -= lcounter;
419 		}
420 		mp->m_resblks = request;
421 		if (fdblks_delta) {
422 			spin_unlock(&mp->m_sb_lock);
423 			error = xfs_mod_fdblocks(mp, fdblks_delta, 0);
424 			spin_lock(&mp->m_sb_lock);
425 		}
426 
427 		goto out;
428 	}
429 
430 	/*
431 	 * If the request is larger than the current reservation, reserve the
432 	 * blocks before we update the reserve counters. Sample m_fdblocks and
433 	 * perform a partial reservation if the request exceeds free space.
434 	 *
435 	 * The code below estimates how many blocks it can request from
436 	 * fdblocks to stash in the reserve pool.  This is a classic TOCTOU
437 	 * race since fdblocks updates are not always coordinated via
438 	 * m_sb_lock.  Set the reserve size even if there's not enough free
439 	 * space to fill it because mod_fdblocks will refill an undersized
440 	 * reserve when it can.
441 	 */
442 	free = percpu_counter_sum(&mp->m_fdblocks) -
443 						xfs_fdblocks_unavailable(mp);
444 	delta = request - mp->m_resblks;
445 	mp->m_resblks = request;
446 	if (delta > 0 && free > 0) {
447 		/*
448 		 * We'll either succeed in getting space from the free block
449 		 * count or we'll get an ENOSPC.  Don't set the reserved flag
450 		 * here - we don't want to reserve the extra reserve blocks
451 		 * from the reserve.
452 		 *
453 		 * The desired reserve size can change after we drop the lock.
454 		 * Use mod_fdblocks to put the space into the reserve or into
455 		 * fdblocks as appropriate.
456 		 */
457 		fdblks_delta = min(free, delta);
458 		spin_unlock(&mp->m_sb_lock);
459 		error = xfs_mod_fdblocks(mp, -fdblks_delta, 0);
460 		if (!error)
461 			xfs_mod_fdblocks(mp, fdblks_delta, 0);
462 		spin_lock(&mp->m_sb_lock);
463 	}
464 out:
465 	if (outval) {
466 		outval->resblks = mp->m_resblks;
467 		outval->resblks_avail = mp->m_resblks_avail;
468 	}
469 
470 	spin_unlock(&mp->m_sb_lock);
471 	return error;
472 }
473 
474 int
475 xfs_fs_goingdown(
476 	xfs_mount_t	*mp,
477 	uint32_t	inflags)
478 {
479 	switch (inflags) {
480 	case XFS_FSOP_GOING_FLAGS_DEFAULT: {
481 		if (!freeze_bdev(mp->m_super->s_bdev)) {
482 			xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
483 			thaw_bdev(mp->m_super->s_bdev);
484 		}
485 		break;
486 	}
487 	case XFS_FSOP_GOING_FLAGS_LOGFLUSH:
488 		xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT);
489 		break;
490 	case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH:
491 		xfs_force_shutdown(mp,
492 				SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR);
493 		break;
494 	default:
495 		return -EINVAL;
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * Force a shutdown of the filesystem instantly while keeping the filesystem
503  * consistent. We don't do an unmount here; just shutdown the shop, make sure
504  * that absolutely nothing persistent happens to this filesystem after this
505  * point.
506  *
507  * The shutdown state change is atomic, resulting in the first and only the
508  * first shutdown call processing the shutdown. This means we only shutdown the
509  * log once as it requires, and we don't spam the logs when multiple concurrent
510  * shutdowns race to set the shutdown flags.
511  */
512 void
513 xfs_do_force_shutdown(
514 	struct xfs_mount *mp,
515 	int		flags,
516 	char		*fname,
517 	int		lnnum)
518 {
519 	int		tag;
520 	const char	*why;
521 
522 
523 	if (test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &mp->m_opstate)) {
524 		xlog_shutdown_wait(mp->m_log);
525 		return;
526 	}
527 	if (mp->m_sb_bp)
528 		mp->m_sb_bp->b_flags |= XBF_DONE;
529 
530 	if (flags & SHUTDOWN_FORCE_UMOUNT)
531 		xfs_alert(mp, "User initiated shutdown received.");
532 
533 	if (xlog_force_shutdown(mp->m_log, flags)) {
534 		tag = XFS_PTAG_SHUTDOWN_LOGERROR;
535 		why = "Log I/O Error";
536 	} else if (flags & SHUTDOWN_CORRUPT_INCORE) {
537 		tag = XFS_PTAG_SHUTDOWN_CORRUPT;
538 		why = "Corruption of in-memory data";
539 	} else {
540 		tag = XFS_PTAG_SHUTDOWN_IOERROR;
541 		why = "Metadata I/O Error";
542 	}
543 
544 	trace_xfs_force_shutdown(mp, tag, flags, fname, lnnum);
545 
546 	xfs_alert_tag(mp, tag,
547 "%s (0x%x) detected at %pS (%s:%d).  Shutting down filesystem.",
548 			why, flags, __return_address, fname, lnnum);
549 	xfs_alert(mp,
550 		"Please unmount the filesystem and rectify the problem(s)");
551 	if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
552 		xfs_stack_trace();
553 }
554 
555 /*
556  * Reserve free space for per-AG metadata.
557  */
558 int
559 xfs_fs_reserve_ag_blocks(
560 	struct xfs_mount	*mp)
561 {
562 	xfs_agnumber_t		agno;
563 	struct xfs_perag	*pag;
564 	int			error = 0;
565 	int			err2;
566 
567 	mp->m_finobt_nores = false;
568 	for_each_perag(mp, agno, pag) {
569 		err2 = xfs_ag_resv_init(pag, NULL);
570 		if (err2 && !error)
571 			error = err2;
572 	}
573 
574 	if (error && error != -ENOSPC) {
575 		xfs_warn(mp,
576 	"Error %d reserving per-AG metadata reserve pool.", error);
577 		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
578 	}
579 
580 	return error;
581 }
582 
583 /*
584  * Free space reserved for per-AG metadata.
585  */
586 int
587 xfs_fs_unreserve_ag_blocks(
588 	struct xfs_mount	*mp)
589 {
590 	xfs_agnumber_t		agno;
591 	struct xfs_perag	*pag;
592 	int			error = 0;
593 	int			err2;
594 
595 	for_each_perag(mp, agno, pag) {
596 		err2 = xfs_ag_resv_free(pag);
597 		if (err2 && !error)
598 			error = err2;
599 	}
600 
601 	if (error)
602 		xfs_warn(mp,
603 	"Error %d freeing per-AG metadata reserve pool.", error);
604 
605 	return error;
606 }
607