xref: /linux/fs/xfs/xfs_mount.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "scrub/stats.h"
38 
39 static DEFINE_MUTEX(xfs_uuid_table_mutex);
40 static int xfs_uuid_table_size;
41 static uuid_t *xfs_uuid_table;
42 
43 void
44 xfs_uuid_table_free(void)
45 {
46 	if (xfs_uuid_table_size == 0)
47 		return;
48 	kmem_free(xfs_uuid_table);
49 	xfs_uuid_table = NULL;
50 	xfs_uuid_table_size = 0;
51 }
52 
53 /*
54  * See if the UUID is unique among mounted XFS filesystems.
55  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56  */
57 STATIC int
58 xfs_uuid_mount(
59 	struct xfs_mount	*mp)
60 {
61 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
62 	int			hole, i;
63 
64 	/* Publish UUID in struct super_block */
65 	uuid_copy(&mp->m_super->s_uuid, uuid);
66 
67 	if (xfs_has_nouuid(mp))
68 		return 0;
69 
70 	if (uuid_is_null(uuid)) {
71 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
72 		return -EINVAL;
73 	}
74 
75 	mutex_lock(&xfs_uuid_table_mutex);
76 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77 		if (uuid_is_null(&xfs_uuid_table[i])) {
78 			hole = i;
79 			continue;
80 		}
81 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
82 			goto out_duplicate;
83 	}
84 
85 	if (hole < 0) {
86 		xfs_uuid_table = krealloc(xfs_uuid_table,
87 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88 			GFP_KERNEL | __GFP_NOFAIL);
89 		hole = xfs_uuid_table_size++;
90 	}
91 	xfs_uuid_table[hole] = *uuid;
92 	mutex_unlock(&xfs_uuid_table_mutex);
93 
94 	return 0;
95 
96  out_duplicate:
97 	mutex_unlock(&xfs_uuid_table_mutex);
98 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99 	return -EINVAL;
100 }
101 
102 STATIC void
103 xfs_uuid_unmount(
104 	struct xfs_mount	*mp)
105 {
106 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
107 	int			i;
108 
109 	if (xfs_has_nouuid(mp))
110 		return;
111 
112 	mutex_lock(&xfs_uuid_table_mutex);
113 	for (i = 0; i < xfs_uuid_table_size; i++) {
114 		if (uuid_is_null(&xfs_uuid_table[i]))
115 			continue;
116 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117 			continue;
118 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 		break;
120 	}
121 	ASSERT(i < xfs_uuid_table_size);
122 	mutex_unlock(&xfs_uuid_table_mutex);
123 }
124 
125 /*
126  * Check size of device based on the (data/realtime) block count.
127  * Note: this check is used by the growfs code as well as mount.
128  */
129 int
130 xfs_sb_validate_fsb_count(
131 	xfs_sb_t	*sbp,
132 	uint64_t	nblocks)
133 {
134 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
135 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
136 
137 	/* Limited by ULONG_MAX of page cache index */
138 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
139 		return -EFBIG;
140 	return 0;
141 }
142 
143 /*
144  * xfs_readsb
145  *
146  * Does the initial read of the superblock.
147  */
148 int
149 xfs_readsb(
150 	struct xfs_mount *mp,
151 	int		flags)
152 {
153 	unsigned int	sector_size;
154 	struct xfs_buf	*bp;
155 	struct xfs_sb	*sbp = &mp->m_sb;
156 	int		error;
157 	int		loud = !(flags & XFS_MFSI_QUIET);
158 	const struct xfs_buf_ops *buf_ops;
159 
160 	ASSERT(mp->m_sb_bp == NULL);
161 	ASSERT(mp->m_ddev_targp != NULL);
162 
163 	/*
164 	 * For the initial read, we must guess at the sector
165 	 * size based on the block device.  It's enough to
166 	 * get the sb_sectsize out of the superblock and
167 	 * then reread with the proper length.
168 	 * We don't verify it yet, because it may not be complete.
169 	 */
170 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
171 	buf_ops = NULL;
172 
173 	/*
174 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
175 	 * around at all times to optimize access to the superblock. Therefore,
176 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
177 	 * elevated.
178 	 */
179 reread:
180 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
181 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
182 				      buf_ops);
183 	if (error) {
184 		if (loud)
185 			xfs_warn(mp, "SB validate failed with error %d.", error);
186 		/* bad CRC means corrupted metadata */
187 		if (error == -EFSBADCRC)
188 			error = -EFSCORRUPTED;
189 		return error;
190 	}
191 
192 	/*
193 	 * Initialize the mount structure from the superblock.
194 	 */
195 	xfs_sb_from_disk(sbp, bp->b_addr);
196 
197 	/*
198 	 * If we haven't validated the superblock, do so now before we try
199 	 * to check the sector size and reread the superblock appropriately.
200 	 */
201 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
202 		if (loud)
203 			xfs_warn(mp, "Invalid superblock magic number");
204 		error = -EINVAL;
205 		goto release_buf;
206 	}
207 
208 	/*
209 	 * We must be able to do sector-sized and sector-aligned IO.
210 	 */
211 	if (sector_size > sbp->sb_sectsize) {
212 		if (loud)
213 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
214 				sector_size, sbp->sb_sectsize);
215 		error = -ENOSYS;
216 		goto release_buf;
217 	}
218 
219 	if (buf_ops == NULL) {
220 		/*
221 		 * Re-read the superblock so the buffer is correctly sized,
222 		 * and properly verified.
223 		 */
224 		xfs_buf_relse(bp);
225 		sector_size = sbp->sb_sectsize;
226 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
227 		goto reread;
228 	}
229 
230 	mp->m_features |= xfs_sb_version_to_features(sbp);
231 	xfs_reinit_percpu_counters(mp);
232 
233 	/* no need to be quiet anymore, so reset the buf ops */
234 	bp->b_ops = &xfs_sb_buf_ops;
235 
236 	mp->m_sb_bp = bp;
237 	xfs_buf_unlock(bp);
238 	return 0;
239 
240 release_buf:
241 	xfs_buf_relse(bp);
242 	return error;
243 }
244 
245 /*
246  * If the sunit/swidth change would move the precomputed root inode value, we
247  * must reject the ondisk change because repair will stumble over that.
248  * However, we allow the mount to proceed because we never rejected this
249  * combination before.  Returns true to update the sb, false otherwise.
250  */
251 static inline int
252 xfs_check_new_dalign(
253 	struct xfs_mount	*mp,
254 	int			new_dalign,
255 	bool			*update_sb)
256 {
257 	struct xfs_sb		*sbp = &mp->m_sb;
258 	xfs_ino_t		calc_ino;
259 
260 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
261 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
262 
263 	if (sbp->sb_rootino == calc_ino) {
264 		*update_sb = true;
265 		return 0;
266 	}
267 
268 	xfs_warn(mp,
269 "Cannot change stripe alignment; would require moving root inode.");
270 
271 	/*
272 	 * XXX: Next time we add a new incompat feature, this should start
273 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
274 	 * that we're ignoring the administrator's instructions.
275 	 */
276 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
277 	*update_sb = false;
278 	return 0;
279 }
280 
281 /*
282  * If we were provided with new sunit/swidth values as mount options, make sure
283  * that they pass basic alignment and superblock feature checks, and convert
284  * them into the same units (FSB) that everything else expects.  This step
285  * /must/ be done before computing the inode geometry.
286  */
287 STATIC int
288 xfs_validate_new_dalign(
289 	struct xfs_mount	*mp)
290 {
291 	if (mp->m_dalign == 0)
292 		return 0;
293 
294 	/*
295 	 * If stripe unit and stripe width are not multiples
296 	 * of the fs blocksize turn off alignment.
297 	 */
298 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
299 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
300 		xfs_warn(mp,
301 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
302 			mp->m_sb.sb_blocksize);
303 		return -EINVAL;
304 	}
305 
306 	/*
307 	 * Convert the stripe unit and width to FSBs.
308 	 */
309 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
310 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
311 		xfs_warn(mp,
312 	"alignment check failed: sunit/swidth vs. agsize(%d)",
313 			mp->m_sb.sb_agblocks);
314 		return -EINVAL;
315 	}
316 
317 	if (!mp->m_dalign) {
318 		xfs_warn(mp,
319 	"alignment check failed: sunit(%d) less than bsize(%d)",
320 			mp->m_dalign, mp->m_sb.sb_blocksize);
321 		return -EINVAL;
322 	}
323 
324 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
325 
326 	if (!xfs_has_dalign(mp)) {
327 		xfs_warn(mp,
328 "cannot change alignment: superblock does not support data alignment");
329 		return -EINVAL;
330 	}
331 
332 	return 0;
333 }
334 
335 /* Update alignment values based on mount options and sb values. */
336 STATIC int
337 xfs_update_alignment(
338 	struct xfs_mount	*mp)
339 {
340 	struct xfs_sb		*sbp = &mp->m_sb;
341 
342 	if (mp->m_dalign) {
343 		bool		update_sb;
344 		int		error;
345 
346 		if (sbp->sb_unit == mp->m_dalign &&
347 		    sbp->sb_width == mp->m_swidth)
348 			return 0;
349 
350 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
351 		if (error || !update_sb)
352 			return error;
353 
354 		sbp->sb_unit = mp->m_dalign;
355 		sbp->sb_width = mp->m_swidth;
356 		mp->m_update_sb = true;
357 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
358 		mp->m_dalign = sbp->sb_unit;
359 		mp->m_swidth = sbp->sb_width;
360 	}
361 
362 	return 0;
363 }
364 
365 /*
366  * precalculate the low space thresholds for dynamic speculative preallocation.
367  */
368 void
369 xfs_set_low_space_thresholds(
370 	struct xfs_mount	*mp)
371 {
372 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
373 	uint64_t		rtexts = mp->m_sb.sb_rextents;
374 	int			i;
375 
376 	do_div(dblocks, 100);
377 	do_div(rtexts, 100);
378 
379 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
380 		mp->m_low_space[i] = dblocks * (i + 1);
381 		mp->m_low_rtexts[i] = rtexts * (i + 1);
382 	}
383 }
384 
385 /*
386  * Check that the data (and log if separate) is an ok size.
387  */
388 STATIC int
389 xfs_check_sizes(
390 	struct xfs_mount *mp)
391 {
392 	struct xfs_buf	*bp;
393 	xfs_daddr_t	d;
394 	int		error;
395 
396 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
397 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
398 		xfs_warn(mp, "filesystem size mismatch detected");
399 		return -EFBIG;
400 	}
401 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
402 					d - XFS_FSS_TO_BB(mp, 1),
403 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
404 	if (error) {
405 		xfs_warn(mp, "last sector read failed");
406 		return error;
407 	}
408 	xfs_buf_relse(bp);
409 
410 	if (mp->m_logdev_targp == mp->m_ddev_targp)
411 		return 0;
412 
413 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
414 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
415 		xfs_warn(mp, "log size mismatch detected");
416 		return -EFBIG;
417 	}
418 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
419 					d - XFS_FSB_TO_BB(mp, 1),
420 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
421 	if (error) {
422 		xfs_warn(mp, "log device read failed");
423 		return error;
424 	}
425 	xfs_buf_relse(bp);
426 	return 0;
427 }
428 
429 /*
430  * Clear the quotaflags in memory and in the superblock.
431  */
432 int
433 xfs_mount_reset_sbqflags(
434 	struct xfs_mount	*mp)
435 {
436 	mp->m_qflags = 0;
437 
438 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
439 	if (mp->m_sb.sb_qflags == 0)
440 		return 0;
441 	spin_lock(&mp->m_sb_lock);
442 	mp->m_sb.sb_qflags = 0;
443 	spin_unlock(&mp->m_sb_lock);
444 
445 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
446 		return 0;
447 
448 	return xfs_sync_sb(mp, false);
449 }
450 
451 uint64_t
452 xfs_default_resblks(xfs_mount_t *mp)
453 {
454 	uint64_t resblks;
455 
456 	/*
457 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
458 	 * smaller.  This is intended to cover concurrent allocation
459 	 * transactions when we initially hit enospc. These each require a 4
460 	 * block reservation. Hence by default we cover roughly 2000 concurrent
461 	 * allocation reservations.
462 	 */
463 	resblks = mp->m_sb.sb_dblocks;
464 	do_div(resblks, 20);
465 	resblks = min_t(uint64_t, resblks, 8192);
466 	return resblks;
467 }
468 
469 /* Ensure the summary counts are correct. */
470 STATIC int
471 xfs_check_summary_counts(
472 	struct xfs_mount	*mp)
473 {
474 	int			error = 0;
475 
476 	/*
477 	 * The AG0 superblock verifier rejects in-progress filesystems,
478 	 * so we should never see the flag set this far into mounting.
479 	 */
480 	if (mp->m_sb.sb_inprogress) {
481 		xfs_err(mp, "sb_inprogress set after log recovery??");
482 		WARN_ON(1);
483 		return -EFSCORRUPTED;
484 	}
485 
486 	/*
487 	 * Now the log is mounted, we know if it was an unclean shutdown or
488 	 * not. If it was, with the first phase of recovery has completed, we
489 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
490 	 * but they are recovered transactionally in the second recovery phase
491 	 * later.
492 	 *
493 	 * If the log was clean when we mounted, we can check the summary
494 	 * counters.  If any of them are obviously incorrect, we can recompute
495 	 * them from the AGF headers in the next step.
496 	 */
497 	if (xfs_is_clean(mp) &&
498 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
499 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
500 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
501 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
502 
503 	/*
504 	 * We can safely re-initialise incore superblock counters from the
505 	 * per-ag data. These may not be correct if the filesystem was not
506 	 * cleanly unmounted, so we waited for recovery to finish before doing
507 	 * this.
508 	 *
509 	 * If the filesystem was cleanly unmounted or the previous check did
510 	 * not flag anything weird, then we can trust the values in the
511 	 * superblock to be correct and we don't need to do anything here.
512 	 * Otherwise, recalculate the summary counters.
513 	 */
514 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
515 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
516 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
517 		if (error)
518 			return error;
519 	}
520 
521 	/*
522 	 * Older kernels misused sb_frextents to reflect both incore
523 	 * reservations made by running transactions and the actual count of
524 	 * free rt extents in the ondisk metadata.  Transactions committed
525 	 * during runtime can therefore contain a superblock update that
526 	 * undercounts the number of free rt extents tracked in the rt bitmap.
527 	 * A clean unmount record will have the correct frextents value since
528 	 * there can be no other transactions running at that point.
529 	 *
530 	 * If we're mounting the rt volume after recovering the log, recompute
531 	 * frextents from the rtbitmap file to fix the inconsistency.
532 	 */
533 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
534 		error = xfs_rtalloc_reinit_frextents(mp);
535 		if (error)
536 			return error;
537 	}
538 
539 	return 0;
540 }
541 
542 static void
543 xfs_unmount_check(
544 	struct xfs_mount	*mp)
545 {
546 	if (xfs_is_shutdown(mp))
547 		return;
548 
549 	if (percpu_counter_sum(&mp->m_ifree) >
550 			percpu_counter_sum(&mp->m_icount)) {
551 		xfs_alert(mp, "ifree/icount mismatch at unmount");
552 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
553 	}
554 }
555 
556 /*
557  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
558  * internal inode structures can be sitting in the CIL and AIL at this point,
559  * so we need to unpin them, write them back and/or reclaim them before unmount
560  * can proceed.  In other words, callers are required to have inactivated all
561  * inodes.
562  *
563  * An inode cluster that has been freed can have its buffer still pinned in
564  * memory because the transaction is still sitting in a iclog. The stale inodes
565  * on that buffer will be pinned to the buffer until the transaction hits the
566  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
567  * may never see the pinned buffer, so nothing will push out the iclog and
568  * unpin the buffer.
569  *
570  * Hence we need to force the log to unpin everything first. However, log
571  * forces don't wait for the discards they issue to complete, so we have to
572  * explicitly wait for them to complete here as well.
573  *
574  * Then we can tell the world we are unmounting so that error handling knows
575  * that the filesystem is going away and we should error out anything that we
576  * have been retrying in the background.  This will prevent never-ending
577  * retries in AIL pushing from hanging the unmount.
578  *
579  * Finally, we can push the AIL to clean all the remaining dirty objects, then
580  * reclaim the remaining inodes that are still in memory at this point in time.
581  */
582 static void
583 xfs_unmount_flush_inodes(
584 	struct xfs_mount	*mp)
585 {
586 	xfs_log_force(mp, XFS_LOG_SYNC);
587 	xfs_extent_busy_wait_all(mp);
588 	flush_workqueue(xfs_discard_wq);
589 
590 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
591 
592 	xfs_ail_push_all_sync(mp->m_ail);
593 	xfs_inodegc_stop(mp);
594 	cancel_delayed_work_sync(&mp->m_reclaim_work);
595 	xfs_reclaim_inodes(mp);
596 	xfs_health_unmount(mp);
597 }
598 
599 static void
600 xfs_mount_setup_inode_geom(
601 	struct xfs_mount	*mp)
602 {
603 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
604 
605 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
606 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
607 
608 	xfs_ialloc_setup_geometry(mp);
609 }
610 
611 /* Compute maximum possible height for per-AG btree types for this fs. */
612 static inline void
613 xfs_agbtree_compute_maxlevels(
614 	struct xfs_mount	*mp)
615 {
616 	unsigned int		levels;
617 
618 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
619 	levels = max(levels, mp->m_rmap_maxlevels);
620 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
621 }
622 
623 /*
624  * This function does the following on an initial mount of a file system:
625  *	- reads the superblock from disk and init the mount struct
626  *	- if we're a 32-bit kernel, do a size check on the superblock
627  *		so we don't mount terabyte filesystems
628  *	- init mount struct realtime fields
629  *	- allocate inode hash table for fs
630  *	- init directory manager
631  *	- perform recovery and init the log manager
632  */
633 int
634 xfs_mountfs(
635 	struct xfs_mount	*mp)
636 {
637 	struct xfs_sb		*sbp = &(mp->m_sb);
638 	struct xfs_inode	*rip;
639 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
640 	uint			quotamount = 0;
641 	uint			quotaflags = 0;
642 	int			error = 0;
643 
644 	xfs_sb_mount_common(mp, sbp);
645 
646 	/*
647 	 * Check for a mismatched features2 values.  Older kernels read & wrote
648 	 * into the wrong sb offset for sb_features2 on some platforms due to
649 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 	 * which made older superblock reading/writing routines swap it as a
651 	 * 64-bit value.
652 	 *
653 	 * For backwards compatibility, we make both slots equal.
654 	 *
655 	 * If we detect a mismatched field, we OR the set bits into the existing
656 	 * features2 field in case it has already been modified; we don't want
657 	 * to lose any features.  We then update the bad location with the ORed
658 	 * value so that older kernels will see any features2 flags. The
659 	 * superblock writeback code ensures the new sb_features2 is copied to
660 	 * sb_bad_features2 before it is logged or written to disk.
661 	 */
662 	if (xfs_sb_has_mismatched_features2(sbp)) {
663 		xfs_warn(mp, "correcting sb_features alignment problem");
664 		sbp->sb_features2 |= sbp->sb_bad_features2;
665 		mp->m_update_sb = true;
666 	}
667 
668 
669 	/* always use v2 inodes by default now */
670 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 		mp->m_features |= XFS_FEAT_NLINK;
673 		mp->m_update_sb = true;
674 	}
675 
676 	/*
677 	 * If we were given new sunit/swidth options, do some basic validation
678 	 * checks and convert the incore dalign and swidth values to the
679 	 * same units (FSB) that everything else uses.  This /must/ happen
680 	 * before computing the inode geometry.
681 	 */
682 	error = xfs_validate_new_dalign(mp);
683 	if (error)
684 		goto out;
685 
686 	xfs_alloc_compute_maxlevels(mp);
687 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689 	xfs_mount_setup_inode_geom(mp);
690 	xfs_rmapbt_compute_maxlevels(mp);
691 	xfs_refcountbt_compute_maxlevels(mp);
692 
693 	xfs_agbtree_compute_maxlevels(mp);
694 
695 	/*
696 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
697 	 * is NOT aligned turn off m_dalign since allocator alignment is within
698 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
699 	 * we must compute the free space and rmap btree geometry before doing
700 	 * this.
701 	 */
702 	error = xfs_update_alignment(mp);
703 	if (error)
704 		goto out;
705 
706 	/* enable fail_at_unmount as default */
707 	mp->m_fail_unmount = true;
708 
709 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 			       NULL, mp->m_super->s_id);
711 	if (error)
712 		goto out;
713 
714 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 			       &mp->m_kobj, "stats");
716 	if (error)
717 		goto out_remove_sysfs;
718 
719 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
720 
721 	error = xfs_error_sysfs_init(mp);
722 	if (error)
723 		goto out_remove_scrub_stats;
724 
725 	error = xfs_errortag_init(mp);
726 	if (error)
727 		goto out_remove_error_sysfs;
728 
729 	error = xfs_uuid_mount(mp);
730 	if (error)
731 		goto out_remove_errortag;
732 
733 	/*
734 	 * Update the preferred write size based on the information from the
735 	 * on-disk superblock.
736 	 */
737 	mp->m_allocsize_log =
738 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
739 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
740 
741 	/* set the low space thresholds for dynamic preallocation */
742 	xfs_set_low_space_thresholds(mp);
743 
744 	/*
745 	 * If enabled, sparse inode chunk alignment is expected to match the
746 	 * cluster size. Full inode chunk alignment must match the chunk size,
747 	 * but that is checked on sb read verification...
748 	 */
749 	if (xfs_has_sparseinodes(mp) &&
750 	    mp->m_sb.sb_spino_align !=
751 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
752 		xfs_warn(mp,
753 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
754 			 mp->m_sb.sb_spino_align,
755 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
756 		error = -EINVAL;
757 		goto out_remove_uuid;
758 	}
759 
760 	/*
761 	 * Check that the data (and log if separate) is an ok size.
762 	 */
763 	error = xfs_check_sizes(mp);
764 	if (error)
765 		goto out_remove_uuid;
766 
767 	/*
768 	 * Initialize realtime fields in the mount structure
769 	 */
770 	error = xfs_rtmount_init(mp);
771 	if (error) {
772 		xfs_warn(mp, "RT mount failed");
773 		goto out_remove_uuid;
774 	}
775 
776 	/*
777 	 *  Copies the low order bits of the timestamp and the randomly
778 	 *  set "sequence" number out of a UUID.
779 	 */
780 	mp->m_fixedfsid[0] =
781 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
782 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
783 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
784 
785 	error = xfs_da_mount(mp);
786 	if (error) {
787 		xfs_warn(mp, "Failed dir/attr init: %d", error);
788 		goto out_remove_uuid;
789 	}
790 
791 	/*
792 	 * Initialize the precomputed transaction reservations values.
793 	 */
794 	xfs_trans_init(mp);
795 
796 	/*
797 	 * Allocate and initialize the per-ag data.
798 	 */
799 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
800 			&mp->m_maxagi);
801 	if (error) {
802 		xfs_warn(mp, "Failed per-ag init: %d", error);
803 		goto out_free_dir;
804 	}
805 
806 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
807 		xfs_warn(mp, "no log defined");
808 		error = -EFSCORRUPTED;
809 		goto out_free_perag;
810 	}
811 
812 	error = xfs_inodegc_register_shrinker(mp);
813 	if (error)
814 		goto out_fail_wait;
815 
816 	/*
817 	 * Log's mount-time initialization. The first part of recovery can place
818 	 * some items on the AIL, to be handled when recovery is finished or
819 	 * cancelled.
820 	 */
821 	error = xfs_log_mount(mp, mp->m_logdev_targp,
822 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
823 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
824 	if (error) {
825 		xfs_warn(mp, "log mount failed");
826 		goto out_inodegc_shrinker;
827 	}
828 
829 	/* Enable background inode inactivation workers. */
830 	xfs_inodegc_start(mp);
831 	xfs_blockgc_start(mp);
832 
833 	/*
834 	 * Now that we've recovered any pending superblock feature bit
835 	 * additions, we can finish setting up the attr2 behaviour for the
836 	 * mount. The noattr2 option overrides the superblock flag, so only
837 	 * check the superblock feature flag if the mount option is not set.
838 	 */
839 	if (xfs_has_noattr2(mp)) {
840 		mp->m_features &= ~XFS_FEAT_ATTR2;
841 	} else if (!xfs_has_attr2(mp) &&
842 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
843 		mp->m_features |= XFS_FEAT_ATTR2;
844 	}
845 
846 	/*
847 	 * Get and sanity-check the root inode.
848 	 * Save the pointer to it in the mount structure.
849 	 */
850 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
851 			 XFS_ILOCK_EXCL, &rip);
852 	if (error) {
853 		xfs_warn(mp,
854 			"Failed to read root inode 0x%llx, error %d",
855 			sbp->sb_rootino, -error);
856 		goto out_log_dealloc;
857 	}
858 
859 	ASSERT(rip != NULL);
860 
861 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
862 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
863 			(unsigned long long)rip->i_ino);
864 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
865 		error = -EFSCORRUPTED;
866 		goto out_rele_rip;
867 	}
868 	mp->m_rootip = rip;	/* save it */
869 
870 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 
872 	/*
873 	 * Initialize realtime inode pointers in the mount structure
874 	 */
875 	error = xfs_rtmount_inodes(mp);
876 	if (error) {
877 		/*
878 		 * Free up the root inode.
879 		 */
880 		xfs_warn(mp, "failed to read RT inodes");
881 		goto out_rele_rip;
882 	}
883 
884 	/* Make sure the summary counts are ok. */
885 	error = xfs_check_summary_counts(mp);
886 	if (error)
887 		goto out_rtunmount;
888 
889 	/*
890 	 * If this is a read-only mount defer the superblock updates until
891 	 * the next remount into writeable mode.  Otherwise we would never
892 	 * perform the update e.g. for the root filesystem.
893 	 */
894 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
895 		error = xfs_sync_sb(mp, false);
896 		if (error) {
897 			xfs_warn(mp, "failed to write sb changes");
898 			goto out_rtunmount;
899 		}
900 	}
901 
902 	/*
903 	 * Initialise the XFS quota management subsystem for this mount
904 	 */
905 	if (XFS_IS_QUOTA_ON(mp)) {
906 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
907 		if (error)
908 			goto out_rtunmount;
909 	} else {
910 		/*
911 		 * If a file system had quotas running earlier, but decided to
912 		 * mount without -o uquota/pquota/gquota options, revoke the
913 		 * quotachecked license.
914 		 */
915 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
916 			xfs_notice(mp, "resetting quota flags");
917 			error = xfs_mount_reset_sbqflags(mp);
918 			if (error)
919 				goto out_rtunmount;
920 		}
921 	}
922 
923 	/*
924 	 * Finish recovering the file system.  This part needed to be delayed
925 	 * until after the root and real-time bitmap inodes were consistently
926 	 * read in.  Temporarily create per-AG space reservations for metadata
927 	 * btree shape changes because space freeing transactions (for inode
928 	 * inactivation) require the per-AG reservation in lieu of reserving
929 	 * blocks.
930 	 */
931 	error = xfs_fs_reserve_ag_blocks(mp);
932 	if (error && error == -ENOSPC)
933 		xfs_warn(mp,
934 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
935 	error = xfs_log_mount_finish(mp);
936 	xfs_fs_unreserve_ag_blocks(mp);
937 	if (error) {
938 		xfs_warn(mp, "log mount finish failed");
939 		goto out_rtunmount;
940 	}
941 
942 	/*
943 	 * Now the log is fully replayed, we can transition to full read-only
944 	 * mode for read-only mounts. This will sync all the metadata and clean
945 	 * the log so that the recovery we just performed does not have to be
946 	 * replayed again on the next mount.
947 	 *
948 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
949 	 * semantically identical operations.
950 	 */
951 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
952 		xfs_log_clean(mp);
953 
954 	/*
955 	 * Complete the quota initialisation, post-log-replay component.
956 	 */
957 	if (quotamount) {
958 		ASSERT(mp->m_qflags == 0);
959 		mp->m_qflags = quotaflags;
960 
961 		xfs_qm_mount_quotas(mp);
962 	}
963 
964 	/*
965 	 * Now we are mounted, reserve a small amount of unused space for
966 	 * privileged transactions. This is needed so that transaction
967 	 * space required for critical operations can dip into this pool
968 	 * when at ENOSPC. This is needed for operations like create with
969 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
970 	 * are not allowed to use this reserved space.
971 	 *
972 	 * This may drive us straight to ENOSPC on mount, but that implies
973 	 * we were already there on the last unmount. Warn if this occurs.
974 	 */
975 	if (!xfs_is_readonly(mp)) {
976 		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
977 		if (error)
978 			xfs_warn(mp,
979 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
980 
981 		/* Reserve AG blocks for future btree expansion. */
982 		error = xfs_fs_reserve_ag_blocks(mp);
983 		if (error && error != -ENOSPC)
984 			goto out_agresv;
985 	}
986 
987 	return 0;
988 
989  out_agresv:
990 	xfs_fs_unreserve_ag_blocks(mp);
991 	xfs_qm_unmount_quotas(mp);
992  out_rtunmount:
993 	xfs_rtunmount_inodes(mp);
994  out_rele_rip:
995 	xfs_irele(rip);
996 	/* Clean out dquots that might be in memory after quotacheck. */
997 	xfs_qm_unmount(mp);
998 
999 	/*
1000 	 * Inactivate all inodes that might still be in memory after a log
1001 	 * intent recovery failure so that reclaim can free them.  Metadata
1002 	 * inodes and the root directory shouldn't need inactivation, but the
1003 	 * mount failed for some reason, so pull down all the state and flee.
1004 	 */
1005 	xfs_inodegc_flush(mp);
1006 
1007 	/*
1008 	 * Flush all inode reclamation work and flush the log.
1009 	 * We have to do this /after/ rtunmount and qm_unmount because those
1010 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1011 	 *
1012 	 * This is slightly different from the unmountfs call sequence
1013 	 * because we could be tearing down a partially set up mount.  In
1014 	 * particular, if log_mount_finish fails we bail out without calling
1015 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1016 	 * quota inodes.
1017 	 */
1018 	xfs_unmount_flush_inodes(mp);
1019  out_log_dealloc:
1020 	xfs_log_mount_cancel(mp);
1021  out_inodegc_shrinker:
1022 	shrinker_free(mp->m_inodegc_shrinker);
1023  out_fail_wait:
1024 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1025 		xfs_buftarg_drain(mp->m_logdev_targp);
1026 	xfs_buftarg_drain(mp->m_ddev_targp);
1027  out_free_perag:
1028 	xfs_free_perag(mp);
1029  out_free_dir:
1030 	xfs_da_unmount(mp);
1031  out_remove_uuid:
1032 	xfs_uuid_unmount(mp);
1033  out_remove_errortag:
1034 	xfs_errortag_del(mp);
1035  out_remove_error_sysfs:
1036 	xfs_error_sysfs_del(mp);
1037  out_remove_scrub_stats:
1038 	xchk_stats_unregister(mp->m_scrub_stats);
1039 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1040  out_remove_sysfs:
1041 	xfs_sysfs_del(&mp->m_kobj);
1042  out:
1043 	return error;
1044 }
1045 
1046 /*
1047  * This flushes out the inodes,dquots and the superblock, unmounts the
1048  * log and makes sure that incore structures are freed.
1049  */
1050 void
1051 xfs_unmountfs(
1052 	struct xfs_mount	*mp)
1053 {
1054 	int			error;
1055 
1056 	/*
1057 	 * Perform all on-disk metadata updates required to inactivate inodes
1058 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1059 	 * and discarding CoW fork preallocations can cause shape changes to
1060 	 * the free inode and refcount btrees, respectively, so we must finish
1061 	 * this before we discard the metadata space reservations.  Metadata
1062 	 * inodes and the root directory do not require inactivation.
1063 	 */
1064 	xfs_inodegc_flush(mp);
1065 
1066 	xfs_blockgc_stop(mp);
1067 	xfs_fs_unreserve_ag_blocks(mp);
1068 	xfs_qm_unmount_quotas(mp);
1069 	xfs_rtunmount_inodes(mp);
1070 	xfs_irele(mp->m_rootip);
1071 
1072 	xfs_unmount_flush_inodes(mp);
1073 
1074 	xfs_qm_unmount(mp);
1075 
1076 	/*
1077 	 * Unreserve any blocks we have so that when we unmount we don't account
1078 	 * the reserved free space as used. This is really only necessary for
1079 	 * lazy superblock counting because it trusts the incore superblock
1080 	 * counters to be absolutely correct on clean unmount.
1081 	 *
1082 	 * We don't bother correcting this elsewhere for lazy superblock
1083 	 * counting because on mount of an unclean filesystem we reconstruct the
1084 	 * correct counter value and this is irrelevant.
1085 	 *
1086 	 * For non-lazy counter filesystems, this doesn't matter at all because
1087 	 * we only every apply deltas to the superblock and hence the incore
1088 	 * value does not matter....
1089 	 */
1090 	error = xfs_reserve_blocks(mp, 0);
1091 	if (error)
1092 		xfs_warn(mp, "Unable to free reserved block pool. "
1093 				"Freespace may not be correct on next mount.");
1094 	xfs_unmount_check(mp);
1095 
1096 	xfs_log_unmount(mp);
1097 	xfs_da_unmount(mp);
1098 	xfs_uuid_unmount(mp);
1099 
1100 #if defined(DEBUG)
1101 	xfs_errortag_clearall(mp);
1102 #endif
1103 	shrinker_free(mp->m_inodegc_shrinker);
1104 	xfs_free_perag(mp);
1105 
1106 	xfs_errortag_del(mp);
1107 	xfs_error_sysfs_del(mp);
1108 	xchk_stats_unregister(mp->m_scrub_stats);
1109 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1110 	xfs_sysfs_del(&mp->m_kobj);
1111 }
1112 
1113 /*
1114  * Determine whether modifications can proceed. The caller specifies the minimum
1115  * freeze level for which modifications should not be allowed. This allows
1116  * certain operations to proceed while the freeze sequence is in progress, if
1117  * necessary.
1118  */
1119 bool
1120 xfs_fs_writable(
1121 	struct xfs_mount	*mp,
1122 	int			level)
1123 {
1124 	ASSERT(level > SB_UNFROZEN);
1125 	if ((mp->m_super->s_writers.frozen >= level) ||
1126 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1127 		return false;
1128 
1129 	return true;
1130 }
1131 
1132 /* Adjust m_fdblocks or m_frextents. */
1133 int
1134 xfs_mod_freecounter(
1135 	struct xfs_mount	*mp,
1136 	struct percpu_counter	*counter,
1137 	int64_t			delta,
1138 	bool			rsvd)
1139 {
1140 	int64_t			lcounter;
1141 	long long		res_used;
1142 	uint64_t		set_aside = 0;
1143 	s32			batch;
1144 	bool			has_resv_pool;
1145 
1146 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1147 	has_resv_pool = (counter == &mp->m_fdblocks);
1148 	if (rsvd)
1149 		ASSERT(has_resv_pool);
1150 
1151 	if (delta > 0) {
1152 		/*
1153 		 * If the reserve pool is depleted, put blocks back into it
1154 		 * first. Most of the time the pool is full.
1155 		 */
1156 		if (likely(!has_resv_pool ||
1157 			   mp->m_resblks == mp->m_resblks_avail)) {
1158 			percpu_counter_add(counter, delta);
1159 			return 0;
1160 		}
1161 
1162 		spin_lock(&mp->m_sb_lock);
1163 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1164 
1165 		if (res_used > delta) {
1166 			mp->m_resblks_avail += delta;
1167 		} else {
1168 			delta -= res_used;
1169 			mp->m_resblks_avail = mp->m_resblks;
1170 			percpu_counter_add(counter, delta);
1171 		}
1172 		spin_unlock(&mp->m_sb_lock);
1173 		return 0;
1174 	}
1175 
1176 	/*
1177 	 * Taking blocks away, need to be more accurate the closer we
1178 	 * are to zero.
1179 	 *
1180 	 * If the counter has a value of less than 2 * max batch size,
1181 	 * then make everything serialise as we are real close to
1182 	 * ENOSPC.
1183 	 */
1184 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1185 				     XFS_FDBLOCKS_BATCH) < 0)
1186 		batch = 1;
1187 	else
1188 		batch = XFS_FDBLOCKS_BATCH;
1189 
1190 	/*
1191 	 * Set aside allocbt blocks because these blocks are tracked as free
1192 	 * space but not available for allocation. Technically this means that a
1193 	 * single reservation cannot consume all remaining free space, but the
1194 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1195 	 * The tradeoff without this is that filesystems that maintain high
1196 	 * perag block reservations can over reserve physical block availability
1197 	 * and fail physical allocation, which leads to much more serious
1198 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1199 	 * slightly premature -ENOSPC.
1200 	 */
1201 	if (has_resv_pool)
1202 		set_aside = xfs_fdblocks_unavailable(mp);
1203 	percpu_counter_add_batch(counter, delta, batch);
1204 	if (__percpu_counter_compare(counter, set_aside,
1205 				     XFS_FDBLOCKS_BATCH) >= 0) {
1206 		/* we had space! */
1207 		return 0;
1208 	}
1209 
1210 	/*
1211 	 * lock up the sb for dipping into reserves before releasing the space
1212 	 * that took us to ENOSPC.
1213 	 */
1214 	spin_lock(&mp->m_sb_lock);
1215 	percpu_counter_add(counter, -delta);
1216 	if (!has_resv_pool || !rsvd)
1217 		goto fdblocks_enospc;
1218 
1219 	lcounter = (long long)mp->m_resblks_avail + delta;
1220 	if (lcounter >= 0) {
1221 		mp->m_resblks_avail = lcounter;
1222 		spin_unlock(&mp->m_sb_lock);
1223 		return 0;
1224 	}
1225 	xfs_warn_once(mp,
1226 "Reserve blocks depleted! Consider increasing reserve pool size.");
1227 
1228 fdblocks_enospc:
1229 	spin_unlock(&mp->m_sb_lock);
1230 	return -ENOSPC;
1231 }
1232 
1233 /*
1234  * Used to free the superblock along various error paths.
1235  */
1236 void
1237 xfs_freesb(
1238 	struct xfs_mount	*mp)
1239 {
1240 	struct xfs_buf		*bp = mp->m_sb_bp;
1241 
1242 	xfs_buf_lock(bp);
1243 	mp->m_sb_bp = NULL;
1244 	xfs_buf_relse(bp);
1245 }
1246 
1247 /*
1248  * If the underlying (data/log/rt) device is readonly, there are some
1249  * operations that cannot proceed.
1250  */
1251 int
1252 xfs_dev_is_read_only(
1253 	struct xfs_mount	*mp,
1254 	char			*message)
1255 {
1256 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1257 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1258 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1259 		xfs_notice(mp, "%s required on read-only device.", message);
1260 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1261 		return -EROFS;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /* Force the summary counters to be recalculated at next mount. */
1267 void
1268 xfs_force_summary_recalc(
1269 	struct xfs_mount	*mp)
1270 {
1271 	if (!xfs_has_lazysbcount(mp))
1272 		return;
1273 
1274 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1275 }
1276 
1277 /*
1278  * Enable a log incompat feature flag in the primary superblock.  The caller
1279  * cannot have any other transactions in progress.
1280  */
1281 int
1282 xfs_add_incompat_log_feature(
1283 	struct xfs_mount	*mp,
1284 	uint32_t		feature)
1285 {
1286 	struct xfs_dsb		*dsb;
1287 	int			error;
1288 
1289 	ASSERT(hweight32(feature) == 1);
1290 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1291 
1292 	/*
1293 	 * Force the log to disk and kick the background AIL thread to reduce
1294 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1295 	 * the primary superblock buffer.  This isn't a data integrity
1296 	 * operation, so we don't need a synchronous push.
1297 	 */
1298 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1299 	if (error)
1300 		return error;
1301 	xfs_ail_push_all(mp->m_ail);
1302 
1303 	/*
1304 	 * Lock the primary superblock buffer to serialize all callers that
1305 	 * are trying to set feature bits.
1306 	 */
1307 	xfs_buf_lock(mp->m_sb_bp);
1308 	xfs_buf_hold(mp->m_sb_bp);
1309 
1310 	if (xfs_is_shutdown(mp)) {
1311 		error = -EIO;
1312 		goto rele;
1313 	}
1314 
1315 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1316 		goto rele;
1317 
1318 	/*
1319 	 * Write the primary superblock to disk immediately, because we need
1320 	 * the log_incompat bit to be set in the primary super now to protect
1321 	 * the log items that we're going to commit later.
1322 	 */
1323 	dsb = mp->m_sb_bp->b_addr;
1324 	xfs_sb_to_disk(dsb, &mp->m_sb);
1325 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1326 	error = xfs_bwrite(mp->m_sb_bp);
1327 	if (error)
1328 		goto shutdown;
1329 
1330 	/*
1331 	 * Add the feature bits to the incore superblock before we unlock the
1332 	 * buffer.
1333 	 */
1334 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1335 	xfs_buf_relse(mp->m_sb_bp);
1336 
1337 	/* Log the superblock to disk. */
1338 	return xfs_sync_sb(mp, false);
1339 shutdown:
1340 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1341 rele:
1342 	xfs_buf_relse(mp->m_sb_bp);
1343 	return error;
1344 }
1345 
1346 /*
1347  * Clear all the log incompat flags from the superblock.
1348  *
1349  * The caller cannot be in a transaction, must ensure that the log does not
1350  * contain any log items protected by any log incompat bit, and must ensure
1351  * that there are no other threads that depend on the state of the log incompat
1352  * feature flags in the primary super.
1353  *
1354  * Returns true if the superblock is dirty.
1355  */
1356 bool
1357 xfs_clear_incompat_log_features(
1358 	struct xfs_mount	*mp)
1359 {
1360 	bool			ret = false;
1361 
1362 	if (!xfs_has_crc(mp) ||
1363 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1364 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1365 	    xfs_is_shutdown(mp))
1366 		return false;
1367 
1368 	/*
1369 	 * Update the incore superblock.  We synchronize on the primary super
1370 	 * buffer lock to be consistent with the add function, though at least
1371 	 * in theory this shouldn't be necessary.
1372 	 */
1373 	xfs_buf_lock(mp->m_sb_bp);
1374 	xfs_buf_hold(mp->m_sb_bp);
1375 
1376 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1377 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1378 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1379 		ret = true;
1380 	}
1381 
1382 	xfs_buf_relse(mp->m_sb_bp);
1383 	return ret;
1384 }
1385 
1386 /*
1387  * Update the in-core delayed block counter.
1388  *
1389  * We prefer to update the counter without having to take a spinlock for every
1390  * counter update (i.e. batching).  Each change to delayed allocation
1391  * reservations can change can easily exceed the default percpu counter
1392  * batching, so we use a larger batch factor here.
1393  *
1394  * Note that we don't currently have any callers requiring fast summation
1395  * (e.g. percpu_counter_read) so we can use a big batch value here.
1396  */
1397 #define XFS_DELALLOC_BATCH	(4096)
1398 void
1399 xfs_mod_delalloc(
1400 	struct xfs_mount	*mp,
1401 	int64_t			delta)
1402 {
1403 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1404 			XFS_DELALLOC_BATCH);
1405 }
1406