xref: /linux/include/asm-generic/tlb.h (revision 908fc4c2)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* include/asm-generic/tlb.h
3  *
4  *	Generic TLB shootdown code
5  *
6  * Copyright 2001 Red Hat, Inc.
7  * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8  *
9  * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10  */
11 #ifndef _ASM_GENERIC__TLB_H
12 #define _ASM_GENERIC__TLB_H
13 
14 #include <linux/mmu_notifier.h>
15 #include <linux/swap.h>
16 #include <linux/hugetlb_inline.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19 
20 /*
21  * Blindly accessing user memory from NMI context can be dangerous
22  * if we're in the middle of switching the current user task or switching
23  * the loaded mm.
24  */
25 #ifndef nmi_uaccess_okay
26 # define nmi_uaccess_okay() true
27 #endif
28 
29 #ifdef CONFIG_MMU
30 
31 /*
32  * Generic MMU-gather implementation.
33  *
34  * The mmu_gather data structure is used by the mm code to implement the
35  * correct and efficient ordering of freeing pages and TLB invalidations.
36  *
37  * This correct ordering is:
38  *
39  *  1) unhook page
40  *  2) TLB invalidate page
41  *  3) free page
42  *
43  * That is, we must never free a page before we have ensured there are no live
44  * translations left to it. Otherwise it might be possible to observe (or
45  * worse, change) the page content after it has been reused.
46  *
47  * The mmu_gather API consists of:
48  *
49  *  - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50  *
51  *    start and finish a mmu_gather
52  *
53  *    Finish in particular will issue a (final) TLB invalidate and free
54  *    all (remaining) queued pages.
55  *
56  *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57  *
58  *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
59  *    there's large holes between the VMAs.
60  *
61  *  - tlb_remove_table()
62  *
63  *    tlb_remove_table() is the basic primitive to free page-table directories
64  *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
65  *    tlb_remove_page() below, for when page directories are pages and have no
66  *    additional constraints.
67  *
68  *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
69  *
70  *  - tlb_remove_page() / __tlb_remove_page()
71  *  - tlb_remove_page_size() / __tlb_remove_page_size()
72  *
73  *    __tlb_remove_page_size() is the basic primitive that queues a page for
74  *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
75  *    boolean indicating if the queue is (now) full and a call to
76  *    tlb_flush_mmu() is required.
77  *
78  *    tlb_remove_page() and tlb_remove_page_size() imply the call to
79  *    tlb_flush_mmu() when required and has no return value.
80  *
81  *  - tlb_change_page_size()
82  *
83  *    call before __tlb_remove_page*() to set the current page-size; implies a
84  *    possible tlb_flush_mmu() call.
85  *
86  *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
87  *
88  *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
89  *                              related state, like the range)
90  *
91  *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
92  *			whatever pages are still batched.
93  *
94  *  - mmu_gather::fullmm
95  *
96  *    A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
97  *    the entire mm; this allows a number of optimizations.
98  *
99  *    - We can ignore tlb_{start,end}_vma(); because we don't
100  *      care about ranges. Everything will be shot down.
101  *
102  *    - (RISC) architectures that use ASIDs can cycle to a new ASID
103  *      and delay the invalidation until ASID space runs out.
104  *
105  *  - mmu_gather::need_flush_all
106  *
107  *    A flag that can be set by the arch code if it wants to force
108  *    flush the entire TLB irrespective of the range. For instance
109  *    x86-PAE needs this when changing top-level entries.
110  *
111  * And allows the architecture to provide and implement tlb_flush():
112  *
113  * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114  * use of:
115  *
116  *  - mmu_gather::start / mmu_gather::end
117  *
118  *    which provides the range that needs to be flushed to cover the pages to
119  *    be freed.
120  *
121  *  - mmu_gather::freed_tables
122  *
123  *    set when we freed page table pages
124  *
125  *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
126  *
127  *    returns the smallest TLB entry size unmapped in this range.
128  *
129  * If an architecture does not provide tlb_flush() a default implementation
130  * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131  * specified, in which case we'll default to flush_tlb_mm().
132  *
133  * Additionally there are a few opt-in features:
134  *
135  *  MMU_GATHER_PAGE_SIZE
136  *
137  *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
138  *  changes the size and provides mmu_gather::page_size to tlb_flush().
139  *
140  *  This might be useful if your architecture has size specific TLB
141  *  invalidation instructions.
142  *
143  *  MMU_GATHER_TABLE_FREE
144  *
145  *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146  *  for page directores (__p*_free_tlb()).
147  *
148  *  Useful if your architecture has non-page page directories.
149  *
150  *  When used, an architecture is expected to provide __tlb_remove_table()
151  *  which does the actual freeing of these pages.
152  *
153  *  MMU_GATHER_RCU_TABLE_FREE
154  *
155  *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156  *  comment below).
157  *
158  *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
159  *  and therefore doesn't naturally serialize with software page-table walkers.
160  *
161  *  MMU_GATHER_NO_RANGE
162  *
163  *  Use this if your architecture lacks an efficient flush_tlb_range().
164  *
165  *  MMU_GATHER_NO_GATHER
166  *
167  *  If the option is set the mmu_gather will not track individual pages for
168  *  delayed page free anymore. A platform that enables the option needs to
169  *  provide its own implementation of the __tlb_remove_page_size() function to
170  *  free pages.
171  *
172  *  This is useful if your architecture already flushes TLB entries in the
173  *  various ptep_get_and_clear() functions.
174  */
175 
176 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
177 
178 struct mmu_table_batch {
179 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
180 	struct rcu_head		rcu;
181 #endif
182 	unsigned int		nr;
183 	void			*tables[];
184 };
185 
186 #define MAX_TABLE_BATCH		\
187 	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
188 
189 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
190 
191 #else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
192 
193 /*
194  * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
195  * page directories and we can use the normal page batching to free them.
196  */
197 #define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
198 
199 #endif /* CONFIG_MMU_GATHER_TABLE_FREE */
200 
201 #ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
202 /*
203  * This allows an architecture that does not use the linux page-tables for
204  * hardware to skip the TLBI when freeing page tables.
205  */
206 #ifndef tlb_needs_table_invalidate
207 #define tlb_needs_table_invalidate() (true)
208 #endif
209 
210 #else
211 
212 #ifdef tlb_needs_table_invalidate
213 #error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
214 #endif
215 
216 #endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
217 
218 
219 #ifndef CONFIG_MMU_GATHER_NO_GATHER
220 /*
221  * If we can't allocate a page to make a big batch of page pointers
222  * to work on, then just handle a few from the on-stack structure.
223  */
224 #define MMU_GATHER_BUNDLE	8
225 
226 struct mmu_gather_batch {
227 	struct mmu_gather_batch	*next;
228 	unsigned int		nr;
229 	unsigned int		max;
230 	struct page		*pages[];
231 };
232 
233 #define MAX_GATHER_BATCH	\
234 	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
235 
236 /*
237  * Limit the maximum number of mmu_gather batches to reduce a risk of soft
238  * lockups for non-preemptible kernels on huge machines when a lot of memory
239  * is zapped during unmapping.
240  * 10K pages freed at once should be safe even without a preemption point.
241  */
242 #define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
243 
244 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
245 				   int page_size);
246 #endif
247 
248 /*
249  * struct mmu_gather is an opaque type used by the mm code for passing around
250  * any data needed by arch specific code for tlb_remove_page.
251  */
252 struct mmu_gather {
253 	struct mm_struct	*mm;
254 
255 #ifdef CONFIG_MMU_GATHER_TABLE_FREE
256 	struct mmu_table_batch	*batch;
257 #endif
258 
259 	unsigned long		start;
260 	unsigned long		end;
261 	/*
262 	 * we are in the middle of an operation to clear
263 	 * a full mm and can make some optimizations
264 	 */
265 	unsigned int		fullmm : 1;
266 
267 	/*
268 	 * we have performed an operation which
269 	 * requires a complete flush of the tlb
270 	 */
271 	unsigned int		need_flush_all : 1;
272 
273 	/*
274 	 * we have removed page directories
275 	 */
276 	unsigned int		freed_tables : 1;
277 
278 	/*
279 	 * at which levels have we cleared entries?
280 	 */
281 	unsigned int		cleared_ptes : 1;
282 	unsigned int		cleared_pmds : 1;
283 	unsigned int		cleared_puds : 1;
284 	unsigned int		cleared_p4ds : 1;
285 
286 	/*
287 	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
288 	 */
289 	unsigned int		vma_exec : 1;
290 	unsigned int		vma_huge : 1;
291 
292 	unsigned int		batch_count;
293 
294 #ifndef CONFIG_MMU_GATHER_NO_GATHER
295 	struct mmu_gather_batch *active;
296 	struct mmu_gather_batch	local;
297 	struct page		*__pages[MMU_GATHER_BUNDLE];
298 
299 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
300 	unsigned int page_size;
301 #endif
302 #endif
303 };
304 
305 void tlb_flush_mmu(struct mmu_gather *tlb);
306 
307 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
308 				      unsigned long address,
309 				      unsigned int range_size)
310 {
311 	tlb->start = min(tlb->start, address);
312 	tlb->end = max(tlb->end, address + range_size);
313 }
314 
315 static inline void __tlb_reset_range(struct mmu_gather *tlb)
316 {
317 	if (tlb->fullmm) {
318 		tlb->start = tlb->end = ~0;
319 	} else {
320 		tlb->start = TASK_SIZE;
321 		tlb->end = 0;
322 	}
323 	tlb->freed_tables = 0;
324 	tlb->cleared_ptes = 0;
325 	tlb->cleared_pmds = 0;
326 	tlb->cleared_puds = 0;
327 	tlb->cleared_p4ds = 0;
328 	/*
329 	 * Do not reset mmu_gather::vma_* fields here, we do not
330 	 * call into tlb_start_vma() again to set them if there is an
331 	 * intermediate flush.
332 	 */
333 }
334 
335 #ifdef CONFIG_MMU_GATHER_NO_RANGE
336 
337 #if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
338 #error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
339 #endif
340 
341 /*
342  * When an architecture does not have efficient means of range flushing TLBs
343  * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
344  * range small. We equally don't have to worry about page granularity or other
345  * things.
346  *
347  * All we need to do is issue a full flush for any !0 range.
348  */
349 static inline void tlb_flush(struct mmu_gather *tlb)
350 {
351 	if (tlb->end)
352 		flush_tlb_mm(tlb->mm);
353 }
354 
355 static inline void
356 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
357 
358 #define tlb_end_vma tlb_end_vma
359 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
360 
361 #else /* CONFIG_MMU_GATHER_NO_RANGE */
362 
363 #ifndef tlb_flush
364 
365 #if defined(tlb_start_vma) || defined(tlb_end_vma)
366 #error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
367 #endif
368 
369 /*
370  * When an architecture does not provide its own tlb_flush() implementation
371  * but does have a reasonably efficient flush_vma_range() implementation
372  * use that.
373  */
374 static inline void tlb_flush(struct mmu_gather *tlb)
375 {
376 	if (tlb->fullmm || tlb->need_flush_all) {
377 		flush_tlb_mm(tlb->mm);
378 	} else if (tlb->end) {
379 		struct vm_area_struct vma = {
380 			.vm_mm = tlb->mm,
381 			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
382 				    (tlb->vma_huge ? VM_HUGETLB : 0),
383 		};
384 
385 		flush_tlb_range(&vma, tlb->start, tlb->end);
386 	}
387 }
388 
389 static inline void
390 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
391 {
392 	/*
393 	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
394 	 * mips-4k) flush only large pages.
395 	 *
396 	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
397 	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
398 	 * range.
399 	 *
400 	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
401 	 * these values the batch is empty.
402 	 */
403 	tlb->vma_huge = is_vm_hugetlb_page(vma);
404 	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
405 }
406 
407 #else
408 
409 static inline void
410 tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
411 
412 #endif
413 
414 #endif /* CONFIG_MMU_GATHER_NO_RANGE */
415 
416 static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
417 {
418 	/*
419 	 * Anything calling __tlb_adjust_range() also sets at least one of
420 	 * these bits.
421 	 */
422 	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
423 	      tlb->cleared_puds || tlb->cleared_p4ds))
424 		return;
425 
426 	tlb_flush(tlb);
427 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
428 	__tlb_reset_range(tlb);
429 }
430 
431 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
432 					struct page *page, int page_size)
433 {
434 	if (__tlb_remove_page_size(tlb, page, page_size))
435 		tlb_flush_mmu(tlb);
436 }
437 
438 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
439 {
440 	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
441 }
442 
443 /* tlb_remove_page
444  *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
445  *	required.
446  */
447 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
448 {
449 	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
450 }
451 
452 static inline void tlb_change_page_size(struct mmu_gather *tlb,
453 						     unsigned int page_size)
454 {
455 #ifdef CONFIG_MMU_GATHER_PAGE_SIZE
456 	if (tlb->page_size && tlb->page_size != page_size) {
457 		if (!tlb->fullmm && !tlb->need_flush_all)
458 			tlb_flush_mmu(tlb);
459 	}
460 
461 	tlb->page_size = page_size;
462 #endif
463 }
464 
465 static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
466 {
467 	if (tlb->cleared_ptes)
468 		return PAGE_SHIFT;
469 	if (tlb->cleared_pmds)
470 		return PMD_SHIFT;
471 	if (tlb->cleared_puds)
472 		return PUD_SHIFT;
473 	if (tlb->cleared_p4ds)
474 		return P4D_SHIFT;
475 
476 	return PAGE_SHIFT;
477 }
478 
479 static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
480 {
481 	return 1UL << tlb_get_unmap_shift(tlb);
482 }
483 
484 /*
485  * In the case of tlb vma handling, we can optimise these away in the
486  * case where we're doing a full MM flush.  When we're doing a munmap,
487  * the vmas are adjusted to only cover the region to be torn down.
488  */
489 #ifndef tlb_start_vma
490 static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
491 {
492 	if (tlb->fullmm)
493 		return;
494 
495 	tlb_update_vma_flags(tlb, vma);
496 	flush_cache_range(vma, vma->vm_start, vma->vm_end);
497 }
498 #endif
499 
500 #ifndef tlb_end_vma
501 static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
502 {
503 	if (tlb->fullmm)
504 		return;
505 
506 	/*
507 	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
508 	 * the ranges growing with the unused space between consecutive VMAs,
509 	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
510 	 * this.
511 	 */
512 	tlb_flush_mmu_tlbonly(tlb);
513 }
514 #endif
515 
516 /*
517  * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
518  * and set corresponding cleared_*.
519  */
520 static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
521 				     unsigned long address, unsigned long size)
522 {
523 	__tlb_adjust_range(tlb, address, size);
524 	tlb->cleared_ptes = 1;
525 }
526 
527 static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
528 				     unsigned long address, unsigned long size)
529 {
530 	__tlb_adjust_range(tlb, address, size);
531 	tlb->cleared_pmds = 1;
532 }
533 
534 static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
535 				     unsigned long address, unsigned long size)
536 {
537 	__tlb_adjust_range(tlb, address, size);
538 	tlb->cleared_puds = 1;
539 }
540 
541 static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
542 				     unsigned long address, unsigned long size)
543 {
544 	__tlb_adjust_range(tlb, address, size);
545 	tlb->cleared_p4ds = 1;
546 }
547 
548 #ifndef __tlb_remove_tlb_entry
549 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
550 #endif
551 
552 /**
553  * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
554  *
555  * Record the fact that pte's were really unmapped by updating the range,
556  * so we can later optimise away the tlb invalidate.   This helps when
557  * userspace is unmapping already-unmapped pages, which happens quite a lot.
558  */
559 #define tlb_remove_tlb_entry(tlb, ptep, address)		\
560 	do {							\
561 		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
562 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
563 	} while (0)
564 
565 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
566 	do {							\
567 		unsigned long _sz = huge_page_size(h);		\
568 		if (_sz >= P4D_SIZE)				\
569 			tlb_flush_p4d_range(tlb, address, _sz);	\
570 		else if (_sz >= PUD_SIZE)			\
571 			tlb_flush_pud_range(tlb, address, _sz);	\
572 		else if (_sz >= PMD_SIZE)			\
573 			tlb_flush_pmd_range(tlb, address, _sz);	\
574 		else						\
575 			tlb_flush_pte_range(tlb, address, _sz);	\
576 		__tlb_remove_tlb_entry(tlb, ptep, address);	\
577 	} while (0)
578 
579 /**
580  * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
581  * This is a nop so far, because only x86 needs it.
582  */
583 #ifndef __tlb_remove_pmd_tlb_entry
584 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
585 #endif
586 
587 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
588 	do {								\
589 		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
590 		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
591 	} while (0)
592 
593 /**
594  * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
595  * invalidation. This is a nop so far, because only x86 needs it.
596  */
597 #ifndef __tlb_remove_pud_tlb_entry
598 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
599 #endif
600 
601 #define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
602 	do {								\
603 		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
604 		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
605 	} while (0)
606 
607 /*
608  * For things like page tables caches (ie caching addresses "inside" the
609  * page tables, like x86 does), for legacy reasons, flushing an
610  * individual page had better flush the page table caches behind it. This
611  * is definitely how x86 works, for example. And if you have an
612  * architected non-legacy page table cache (which I'm not aware of
613  * anybody actually doing), you're going to have some architecturally
614  * explicit flushing for that, likely *separate* from a regular TLB entry
615  * flush, and thus you'd need more than just some range expansion..
616  *
617  * So if we ever find an architecture
618  * that would want something that odd, I think it is up to that
619  * architecture to do its own odd thing, not cause pain for others
620  * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
621  *
622  * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
623  */
624 
625 #ifndef pte_free_tlb
626 #define pte_free_tlb(tlb, ptep, address)			\
627 	do {							\
628 		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
629 		tlb->freed_tables = 1;				\
630 		__pte_free_tlb(tlb, ptep, address);		\
631 	} while (0)
632 #endif
633 
634 #ifndef pmd_free_tlb
635 #define pmd_free_tlb(tlb, pmdp, address)			\
636 	do {							\
637 		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
638 		tlb->freed_tables = 1;				\
639 		__pmd_free_tlb(tlb, pmdp, address);		\
640 	} while (0)
641 #endif
642 
643 #ifndef pud_free_tlb
644 #define pud_free_tlb(tlb, pudp, address)			\
645 	do {							\
646 		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
647 		tlb->freed_tables = 1;				\
648 		__pud_free_tlb(tlb, pudp, address);		\
649 	} while (0)
650 #endif
651 
652 #ifndef p4d_free_tlb
653 #define p4d_free_tlb(tlb, pudp, address)			\
654 	do {							\
655 		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
656 		tlb->freed_tables = 1;				\
657 		__p4d_free_tlb(tlb, pudp, address);		\
658 	} while (0)
659 #endif
660 
661 #ifndef pte_needs_flush
662 static inline bool pte_needs_flush(pte_t oldpte, pte_t newpte)
663 {
664 	return true;
665 }
666 #endif
667 
668 #ifndef huge_pmd_needs_flush
669 static inline bool huge_pmd_needs_flush(pmd_t oldpmd, pmd_t newpmd)
670 {
671 	return true;
672 }
673 #endif
674 
675 #endif /* CONFIG_MMU */
676 
677 #endif /* _ASM_GENERIC__TLB_H */
678