xref: /linux/include/linux/avf/virtchnl.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*******************************************************************************
3  *
4  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
5  * Copyright(c) 2013 - 2014 Intel Corporation.
6  *
7  * Contact Information:
8  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
9  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10  *
11  ******************************************************************************/
12 
13 #ifndef _VIRTCHNL_H_
14 #define _VIRTCHNL_H_
15 
16 /* Description:
17  * This header file describes the VF-PF communication protocol used
18  * by the drivers for all devices starting from our 40G product line
19  *
20  * Admin queue buffer usage:
21  * desc->opcode is always aqc_opc_send_msg_to_pf
22  * flags, retval, datalen, and data addr are all used normally.
23  * The Firmware copies the cookie fields when sending messages between the
24  * PF and VF, but uses all other fields internally. Due to this limitation,
25  * we must send all messages as "indirect", i.e. using an external buffer.
26  *
27  * All the VSI indexes are relative to the VF. Each VF can have maximum of
28  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
29  * have a maximum of sixteen queues for all of its VSIs.
30  *
31  * The PF is required to return a status code in v_retval for all messages
32  * except RESET_VF, which does not require any response. The return value
33  * is of status_code type, defined in the shared type.h.
34  *
35  * In general, VF driver initialization should roughly follow the order of
36  * these opcodes. The VF driver must first validate the API version of the
37  * PF driver, then request a reset, then get resources, then configure
38  * queues and interrupts. After these operations are complete, the VF
39  * driver may start its queues, optionally add MAC and VLAN filters, and
40  * process traffic.
41  */
42 
43 /* START GENERIC DEFINES
44  * Need to ensure the following enums and defines hold the same meaning and
45  * value in current and future projects
46  */
47 
48 /* Error Codes */
49 enum virtchnl_status_code {
50 	VIRTCHNL_STATUS_SUCCESS				= 0,
51 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
52 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
53 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
54 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
55 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
56 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
57 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
58 };
59 
60 /* Backward compatibility */
61 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
62 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
63 
64 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
65 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
66 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
67 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
68 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
69 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
70 
71 enum virtchnl_link_speed {
72 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
73 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
79 };
80 
81 /* for hsplit_0 field of Rx HMC context */
82 /* deprecated with AVF 1.0 */
83 enum virtchnl_rx_hsplit {
84 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
85 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
88 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
89 };
90 
91 /* END GENERIC DEFINES */
92 
93 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
94  * of the virtchnl_msg structure.
95  */
96 enum virtchnl_ops {
97 /* The PF sends status change events to VFs using
98  * the VIRTCHNL_OP_EVENT opcode.
99  * VFs send requests to the PF using the other ops.
100  * Use of "advanced opcode" features must be negotiated as part of capabilities
101  * exchange and are not considered part of base mode feature set.
102  */
103 	VIRTCHNL_OP_UNKNOWN = 0,
104 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
105 	VIRTCHNL_OP_RESET_VF = 2,
106 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
107 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
108 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
109 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
110 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
111 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
112 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
113 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
114 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
115 	VIRTCHNL_OP_ADD_VLAN = 12,
116 	VIRTCHNL_OP_DEL_VLAN = 13,
117 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
118 	VIRTCHNL_OP_GET_STATS = 15,
119 	VIRTCHNL_OP_RSVD = 16,
120 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
121 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
122 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
123 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
124 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
125 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
126 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
127 	VIRTCHNL_OP_SET_RSS_HENA = 26,
128 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
129 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
130 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
131 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
132 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
133 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
134 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
135 };
136 
137 /* These macros are used to generate compilation errors if a structure/union
138  * is not exactly the correct length. It gives a divide by zero error if the
139  * structure/union is not of the correct size, otherwise it creates an enum
140  * that is never used.
141  */
142 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
143 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
144 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
145 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
146 
147 /* Virtual channel message descriptor. This overlays the admin queue
148  * descriptor. All other data is passed in external buffers.
149  */
150 
151 struct virtchnl_msg {
152 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
153 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
154 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
155 	u32 vfid;			 /* used by PF when sending to VF */
156 };
157 
158 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
159 
160 /* Message descriptions and data structures. */
161 
162 /* VIRTCHNL_OP_VERSION
163  * VF posts its version number to the PF. PF responds with its version number
164  * in the same format, along with a return code.
165  * Reply from PF has its major/minor versions also in param0 and param1.
166  * If there is a major version mismatch, then the VF cannot operate.
167  * If there is a minor version mismatch, then the VF can operate but should
168  * add a warning to the system log.
169  *
170  * This enum element MUST always be specified as == 1, regardless of other
171  * changes in the API. The PF must always respond to this message without
172  * error regardless of version mismatch.
173  */
174 #define VIRTCHNL_VERSION_MAJOR		1
175 #define VIRTCHNL_VERSION_MINOR		1
176 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
177 
178 struct virtchnl_version_info {
179 	u32 major;
180 	u32 minor;
181 };
182 
183 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
184 
185 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
186 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
187 
188 /* VIRTCHNL_OP_RESET_VF
189  * VF sends this request to PF with no parameters
190  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
191  * until reset completion is indicated. The admin queue must be reinitialized
192  * after this operation.
193  *
194  * When reset is complete, PF must ensure that all queues in all VSIs associated
195  * with the VF are stopped, all queue configurations in the HMC are set to 0,
196  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
197  * are cleared.
198  */
199 
200 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
201  * vsi_type should always be 6 for backward compatibility. Add other fields
202  * as needed.
203  */
204 enum virtchnl_vsi_type {
205 	VIRTCHNL_VSI_TYPE_INVALID = 0,
206 	VIRTCHNL_VSI_SRIOV = 6,
207 };
208 
209 /* VIRTCHNL_OP_GET_VF_RESOURCES
210  * Version 1.0 VF sends this request to PF with no parameters
211  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
212  * PF responds with an indirect message containing
213  * virtchnl_vf_resource and one or more
214  * virtchnl_vsi_resource structures.
215  */
216 
217 struct virtchnl_vsi_resource {
218 	u16 vsi_id;
219 	u16 num_queue_pairs;
220 	enum virtchnl_vsi_type vsi_type;
221 	u16 qset_handle;
222 	u8 default_mac_addr[ETH_ALEN];
223 };
224 
225 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
226 
227 /* VF capability flags
228  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
229  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
230  */
231 #define VIRTCHNL_VF_OFFLOAD_L2			0x00000001
232 #define VIRTCHNL_VF_OFFLOAD_IWARP		0x00000002
233 #define VIRTCHNL_VF_OFFLOAD_RSVD		0x00000004
234 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		0x00000008
235 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		0x00000010
236 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		0x00000020
237 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		0x00000040
238 #define VIRTCHNL_VF_OFFLOAD_VLAN		0x00010000
239 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		0x00020000
240 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	0x00040000
241 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		0X00080000
242 #define VIRTCHNL_VF_OFFLOAD_ENCAP		0X00100000
243 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		0X00200000
244 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	0X00400000
245 #define VIRTCHNL_VF_OFFLOAD_ADQ			0X00800000
246 
247 /* Define below the capability flags that are not offloads */
248 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		0x00000080
249 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
250 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
251 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
252 
253 struct virtchnl_vf_resource {
254 	u16 num_vsis;
255 	u16 num_queue_pairs;
256 	u16 max_vectors;
257 	u16 max_mtu;
258 
259 	u32 vf_cap_flags;
260 	u32 rss_key_size;
261 	u32 rss_lut_size;
262 
263 	struct virtchnl_vsi_resource vsi_res[1];
264 };
265 
266 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
267 
268 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
269  * VF sends this message to set up parameters for one TX queue.
270  * External data buffer contains one instance of virtchnl_txq_info.
271  * PF configures requested queue and returns a status code.
272  */
273 
274 /* Tx queue config info */
275 struct virtchnl_txq_info {
276 	u16 vsi_id;
277 	u16 queue_id;
278 	u16 ring_len;		/* number of descriptors, multiple of 8 */
279 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
280 	u64 dma_ring_addr;
281 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
282 };
283 
284 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
285 
286 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
287  * VF sends this message to set up parameters for one RX queue.
288  * External data buffer contains one instance of virtchnl_rxq_info.
289  * PF configures requested queue and returns a status code.
290  */
291 
292 /* Rx queue config info */
293 struct virtchnl_rxq_info {
294 	u16 vsi_id;
295 	u16 queue_id;
296 	u32 ring_len;		/* number of descriptors, multiple of 32 */
297 	u16 hdr_size;
298 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
299 	u32 databuffer_size;
300 	u32 max_pkt_size;
301 	u32 pad1;
302 	u64 dma_ring_addr;
303 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
304 	u32 pad2;
305 };
306 
307 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
308 
309 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
310  * VF sends this message to set parameters for all active TX and RX queues
311  * associated with the specified VSI.
312  * PF configures queues and returns status.
313  * If the number of queues specified is greater than the number of queues
314  * associated with the VSI, an error is returned and no queues are configured.
315  */
316 struct virtchnl_queue_pair_info {
317 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
318 	struct virtchnl_txq_info txq;
319 	struct virtchnl_rxq_info rxq;
320 };
321 
322 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
323 
324 struct virtchnl_vsi_queue_config_info {
325 	u16 vsi_id;
326 	u16 num_queue_pairs;
327 	u32 pad;
328 	struct virtchnl_queue_pair_info qpair[1];
329 };
330 
331 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
332 
333 /* VIRTCHNL_OP_REQUEST_QUEUES
334  * VF sends this message to request the PF to allocate additional queues to
335  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
336  * additional queues must be negotiated.  This is a best effort request as it
337  * is possible the PF does not have enough queues left to support the request.
338  * If the PF cannot support the number requested it will respond with the
339  * maximum number it is able to support.  If the request is successful, PF will
340  * then reset the VF to institute required changes.
341  */
342 
343 /* VF resource request */
344 struct virtchnl_vf_res_request {
345 	u16 num_queue_pairs;
346 };
347 
348 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
349  * VF uses this message to map vectors to queues.
350  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
351  * are to be associated with the specified vector.
352  * The "other" causes are always mapped to vector 0.
353  * PF configures interrupt mapping and returns status.
354  */
355 struct virtchnl_vector_map {
356 	u16 vsi_id;
357 	u16 vector_id;
358 	u16 rxq_map;
359 	u16 txq_map;
360 	u16 rxitr_idx;
361 	u16 txitr_idx;
362 };
363 
364 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
365 
366 struct virtchnl_irq_map_info {
367 	u16 num_vectors;
368 	struct virtchnl_vector_map vecmap[1];
369 };
370 
371 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
372 
373 /* VIRTCHNL_OP_ENABLE_QUEUES
374  * VIRTCHNL_OP_DISABLE_QUEUES
375  * VF sends these message to enable or disable TX/RX queue pairs.
376  * The queues fields are bitmaps indicating which queues to act upon.
377  * (Currently, we only support 16 queues per VF, but we make the field
378  * u32 to allow for expansion.)
379  * PF performs requested action and returns status.
380  */
381 struct virtchnl_queue_select {
382 	u16 vsi_id;
383 	u16 pad;
384 	u32 rx_queues;
385 	u32 tx_queues;
386 };
387 
388 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
389 
390 /* VIRTCHNL_OP_ADD_ETH_ADDR
391  * VF sends this message in order to add one or more unicast or multicast
392  * address filters for the specified VSI.
393  * PF adds the filters and returns status.
394  */
395 
396 /* VIRTCHNL_OP_DEL_ETH_ADDR
397  * VF sends this message in order to remove one or more unicast or multicast
398  * filters for the specified VSI.
399  * PF removes the filters and returns status.
400  */
401 
402 struct virtchnl_ether_addr {
403 	u8 addr[ETH_ALEN];
404 	u8 pad[2];
405 };
406 
407 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
408 
409 struct virtchnl_ether_addr_list {
410 	u16 vsi_id;
411 	u16 num_elements;
412 	struct virtchnl_ether_addr list[1];
413 };
414 
415 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
416 
417 /* VIRTCHNL_OP_ADD_VLAN
418  * VF sends this message to add one or more VLAN tag filters for receives.
419  * PF adds the filters and returns status.
420  * If a port VLAN is configured by the PF, this operation will return an
421  * error to the VF.
422  */
423 
424 /* VIRTCHNL_OP_DEL_VLAN
425  * VF sends this message to remove one or more VLAN tag filters for receives.
426  * PF removes the filters and returns status.
427  * If a port VLAN is configured by the PF, this operation will return an
428  * error to the VF.
429  */
430 
431 struct virtchnl_vlan_filter_list {
432 	u16 vsi_id;
433 	u16 num_elements;
434 	u16 vlan_id[1];
435 };
436 
437 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
438 
439 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
440  * VF sends VSI id and flags.
441  * PF returns status code in retval.
442  * Note: we assume that broadcast accept mode is always enabled.
443  */
444 struct virtchnl_promisc_info {
445 	u16 vsi_id;
446 	u16 flags;
447 };
448 
449 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
450 
451 #define FLAG_VF_UNICAST_PROMISC	0x00000001
452 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
453 
454 /* VIRTCHNL_OP_GET_STATS
455  * VF sends this message to request stats for the selected VSI. VF uses
456  * the virtchnl_queue_select struct to specify the VSI. The queue_id
457  * field is ignored by the PF.
458  *
459  * PF replies with struct eth_stats in an external buffer.
460  */
461 
462 /* VIRTCHNL_OP_CONFIG_RSS_KEY
463  * VIRTCHNL_OP_CONFIG_RSS_LUT
464  * VF sends these messages to configure RSS. Only supported if both PF
465  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
466  * configuration negotiation. If this is the case, then the RSS fields in
467  * the VF resource struct are valid.
468  * Both the key and LUT are initialized to 0 by the PF, meaning that
469  * RSS is effectively disabled until set up by the VF.
470  */
471 struct virtchnl_rss_key {
472 	u16 vsi_id;
473 	u16 key_len;
474 	u8 key[1];         /* RSS hash key, packed bytes */
475 };
476 
477 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
478 
479 struct virtchnl_rss_lut {
480 	u16 vsi_id;
481 	u16 lut_entries;
482 	u8 lut[1];        /* RSS lookup table */
483 };
484 
485 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
486 
487 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
488  * VIRTCHNL_OP_SET_RSS_HENA
489  * VF sends these messages to get and set the hash filter enable bits for RSS.
490  * By default, the PF sets these to all possible traffic types that the
491  * hardware supports. The VF can query this value if it wants to change the
492  * traffic types that are hashed by the hardware.
493  */
494 struct virtchnl_rss_hena {
495 	u64 hena;
496 };
497 
498 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
499 
500 /* VIRTCHNL_OP_ENABLE_CHANNELS
501  * VIRTCHNL_OP_DISABLE_CHANNELS
502  * VF sends these messages to enable or disable channels based on
503  * the user specified queue count and queue offset for each traffic class.
504  * This struct encompasses all the information that the PF needs from
505  * VF to create a channel.
506  */
507 struct virtchnl_channel_info {
508 	u16 count; /* number of queues in a channel */
509 	u16 offset; /* queues in a channel start from 'offset' */
510 	u32 pad;
511 	u64 max_tx_rate;
512 };
513 
514 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
515 
516 struct virtchnl_tc_info {
517 	u32	num_tc;
518 	u32	pad;
519 	struct	virtchnl_channel_info list[1];
520 };
521 
522 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
523 
524 /* VIRTCHNL_ADD_CLOUD_FILTER
525  * VIRTCHNL_DEL_CLOUD_FILTER
526  * VF sends these messages to add or delete a cloud filter based on the
527  * user specified match and action filters. These structures encompass
528  * all the information that the PF needs from the VF to add/delete a
529  * cloud filter.
530  */
531 
532 struct virtchnl_l4_spec {
533 	u8	src_mac[ETH_ALEN];
534 	u8	dst_mac[ETH_ALEN];
535 	__be16	vlan_id;
536 	__be16	pad; /* reserved for future use */
537 	__be32	src_ip[4];
538 	__be32	dst_ip[4];
539 	__be16	src_port;
540 	__be16	dst_port;
541 };
542 
543 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
544 
545 union virtchnl_flow_spec {
546 	struct	virtchnl_l4_spec tcp_spec;
547 	u8	buffer[128]; /* reserved for future use */
548 };
549 
550 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
551 
552 enum virtchnl_action {
553 	/* action types */
554 	VIRTCHNL_ACTION_DROP = 0,
555 	VIRTCHNL_ACTION_TC_REDIRECT,
556 };
557 
558 enum virtchnl_flow_type {
559 	/* flow types */
560 	VIRTCHNL_TCP_V4_FLOW = 0,
561 	VIRTCHNL_TCP_V6_FLOW,
562 };
563 
564 struct virtchnl_filter {
565 	union	virtchnl_flow_spec data;
566 	union	virtchnl_flow_spec mask;
567 	enum	virtchnl_flow_type flow_type;
568 	enum	virtchnl_action action;
569 	u32	action_meta;
570 	u8	field_flags;
571 };
572 
573 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
574 
575 /* VIRTCHNL_OP_EVENT
576  * PF sends this message to inform the VF driver of events that may affect it.
577  * No direct response is expected from the VF, though it may generate other
578  * messages in response to this one.
579  */
580 enum virtchnl_event_codes {
581 	VIRTCHNL_EVENT_UNKNOWN = 0,
582 	VIRTCHNL_EVENT_LINK_CHANGE,
583 	VIRTCHNL_EVENT_RESET_IMPENDING,
584 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
585 };
586 
587 #define PF_EVENT_SEVERITY_INFO		0
588 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
589 
590 struct virtchnl_pf_event {
591 	enum virtchnl_event_codes event;
592 	union {
593 		/* If the PF driver does not support the new speed reporting
594 		 * capabilities then use link_event else use link_event_adv to
595 		 * get the speed and link information. The ability to understand
596 		 * new speeds is indicated by setting the capability flag
597 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
598 		 * in virtchnl_vf_resource struct and can be used to determine
599 		 * which link event struct to use below.
600 		 */
601 		struct {
602 			enum virtchnl_link_speed link_speed;
603 			bool link_status;
604 		} link_event;
605 		struct {
606 			/* link_speed provided in Mbps */
607 			u32 link_speed;
608 			u8 link_status;
609 		} link_event_adv;
610 	} event_data;
611 
612 	int severity;
613 };
614 
615 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
616 
617 /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
618  * VF uses this message to request PF to map IWARP vectors to IWARP queues.
619  * The request for this originates from the VF IWARP driver through
620  * a client interface between VF LAN and VF IWARP driver.
621  * A vector could have an AEQ and CEQ attached to it although
622  * there is a single AEQ per VF IWARP instance in which case
623  * most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
624  * There will never be a case where there will be multiple CEQs attached
625  * to a single vector.
626  * PF configures interrupt mapping and returns status.
627  */
628 
629 struct virtchnl_iwarp_qv_info {
630 	u32 v_idx; /* msix_vector */
631 	u16 ceq_idx;
632 	u16 aeq_idx;
633 	u8 itr_idx;
634 };
635 
636 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
637 
638 struct virtchnl_iwarp_qvlist_info {
639 	u32 num_vectors;
640 	struct virtchnl_iwarp_qv_info qv_info[1];
641 };
642 
643 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
644 
645 /* VF reset states - these are written into the RSTAT register:
646  * VFGEN_RSTAT on the VF
647  * When the PF initiates a reset, it writes 0
648  * When the reset is complete, it writes 1
649  * When the PF detects that the VF has recovered, it writes 2
650  * VF checks this register periodically to determine if a reset has occurred,
651  * then polls it to know when the reset is complete.
652  * If either the PF or VF reads the register while the hardware
653  * is in a reset state, it will return DEADBEEF, which, when masked
654  * will result in 3.
655  */
656 enum virtchnl_vfr_states {
657 	VIRTCHNL_VFR_INPROGRESS = 0,
658 	VIRTCHNL_VFR_COMPLETED,
659 	VIRTCHNL_VFR_VFACTIVE,
660 };
661 
662 /**
663  * virtchnl_vc_validate_vf_msg
664  * @ver: Virtchnl version info
665  * @v_opcode: Opcode for the message
666  * @msg: pointer to the msg buffer
667  * @msglen: msg length
668  *
669  * validate msg format against struct for each opcode
670  */
671 static inline int
672 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
673 			    u8 *msg, u16 msglen)
674 {
675 	bool err_msg_format = false;
676 	int valid_len = 0;
677 
678 	/* Validate message length. */
679 	switch (v_opcode) {
680 	case VIRTCHNL_OP_VERSION:
681 		valid_len = sizeof(struct virtchnl_version_info);
682 		break;
683 	case VIRTCHNL_OP_RESET_VF:
684 		break;
685 	case VIRTCHNL_OP_GET_VF_RESOURCES:
686 		if (VF_IS_V11(ver))
687 			valid_len = sizeof(u32);
688 		break;
689 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
690 		valid_len = sizeof(struct virtchnl_txq_info);
691 		break;
692 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
693 		valid_len = sizeof(struct virtchnl_rxq_info);
694 		break;
695 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
696 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
697 		if (msglen >= valid_len) {
698 			struct virtchnl_vsi_queue_config_info *vqc =
699 			    (struct virtchnl_vsi_queue_config_info *)msg;
700 			valid_len += (vqc->num_queue_pairs *
701 				      sizeof(struct
702 					     virtchnl_queue_pair_info));
703 			if (vqc->num_queue_pairs == 0)
704 				err_msg_format = true;
705 		}
706 		break;
707 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
708 		valid_len = sizeof(struct virtchnl_irq_map_info);
709 		if (msglen >= valid_len) {
710 			struct virtchnl_irq_map_info *vimi =
711 			    (struct virtchnl_irq_map_info *)msg;
712 			valid_len += (vimi->num_vectors *
713 				      sizeof(struct virtchnl_vector_map));
714 			if (vimi->num_vectors == 0)
715 				err_msg_format = true;
716 		}
717 		break;
718 	case VIRTCHNL_OP_ENABLE_QUEUES:
719 	case VIRTCHNL_OP_DISABLE_QUEUES:
720 		valid_len = sizeof(struct virtchnl_queue_select);
721 		break;
722 	case VIRTCHNL_OP_ADD_ETH_ADDR:
723 	case VIRTCHNL_OP_DEL_ETH_ADDR:
724 		valid_len = sizeof(struct virtchnl_ether_addr_list);
725 		if (msglen >= valid_len) {
726 			struct virtchnl_ether_addr_list *veal =
727 			    (struct virtchnl_ether_addr_list *)msg;
728 			valid_len += veal->num_elements *
729 			    sizeof(struct virtchnl_ether_addr);
730 			if (veal->num_elements == 0)
731 				err_msg_format = true;
732 		}
733 		break;
734 	case VIRTCHNL_OP_ADD_VLAN:
735 	case VIRTCHNL_OP_DEL_VLAN:
736 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
737 		if (msglen >= valid_len) {
738 			struct virtchnl_vlan_filter_list *vfl =
739 			    (struct virtchnl_vlan_filter_list *)msg;
740 			valid_len += vfl->num_elements * sizeof(u16);
741 			if (vfl->num_elements == 0)
742 				err_msg_format = true;
743 		}
744 		break;
745 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
746 		valid_len = sizeof(struct virtchnl_promisc_info);
747 		break;
748 	case VIRTCHNL_OP_GET_STATS:
749 		valid_len = sizeof(struct virtchnl_queue_select);
750 		break;
751 	case VIRTCHNL_OP_IWARP:
752 		/* These messages are opaque to us and will be validated in
753 		 * the RDMA client code. We just need to check for nonzero
754 		 * length. The firmware will enforce max length restrictions.
755 		 */
756 		if (msglen)
757 			valid_len = msglen;
758 		else
759 			err_msg_format = true;
760 		break;
761 	case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
762 		break;
763 	case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
764 		valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
765 		if (msglen >= valid_len) {
766 			struct virtchnl_iwarp_qvlist_info *qv =
767 				(struct virtchnl_iwarp_qvlist_info *)msg;
768 			if (qv->num_vectors == 0) {
769 				err_msg_format = true;
770 				break;
771 			}
772 			valid_len += ((qv->num_vectors - 1) *
773 				sizeof(struct virtchnl_iwarp_qv_info));
774 		}
775 		break;
776 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
777 		valid_len = sizeof(struct virtchnl_rss_key);
778 		if (msglen >= valid_len) {
779 			struct virtchnl_rss_key *vrk =
780 				(struct virtchnl_rss_key *)msg;
781 			valid_len += vrk->key_len - 1;
782 		}
783 		break;
784 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
785 		valid_len = sizeof(struct virtchnl_rss_lut);
786 		if (msglen >= valid_len) {
787 			struct virtchnl_rss_lut *vrl =
788 				(struct virtchnl_rss_lut *)msg;
789 			valid_len += vrl->lut_entries - 1;
790 		}
791 		break;
792 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
793 		break;
794 	case VIRTCHNL_OP_SET_RSS_HENA:
795 		valid_len = sizeof(struct virtchnl_rss_hena);
796 		break;
797 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
798 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
799 		break;
800 	case VIRTCHNL_OP_REQUEST_QUEUES:
801 		valid_len = sizeof(struct virtchnl_vf_res_request);
802 		break;
803 	case VIRTCHNL_OP_ENABLE_CHANNELS:
804 		valid_len = sizeof(struct virtchnl_tc_info);
805 		if (msglen >= valid_len) {
806 			struct virtchnl_tc_info *vti =
807 				(struct virtchnl_tc_info *)msg;
808 			valid_len += (vti->num_tc - 1) *
809 				     sizeof(struct virtchnl_channel_info);
810 			if (vti->num_tc == 0)
811 				err_msg_format = true;
812 		}
813 		break;
814 	case VIRTCHNL_OP_DISABLE_CHANNELS:
815 		break;
816 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
817 		valid_len = sizeof(struct virtchnl_filter);
818 		break;
819 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
820 		valid_len = sizeof(struct virtchnl_filter);
821 		break;
822 	/* These are always errors coming from the VF. */
823 	case VIRTCHNL_OP_EVENT:
824 	case VIRTCHNL_OP_UNKNOWN:
825 	default:
826 		return VIRTCHNL_STATUS_ERR_PARAM;
827 	}
828 	/* few more checks */
829 	if (err_msg_format || valid_len != msglen)
830 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
831 
832 	return 0;
833 }
834 #endif /* _VIRTCHNL_H_ */
835