xref: /linux/include/linux/avf/virtchnl.h (revision d642ef71)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2013-2022, Intel Corporation. */
3 
4 #ifndef _VIRTCHNL_H_
5 #define _VIRTCHNL_H_
6 
7 #include <linux/bitops.h>
8 #include <linux/overflow.h>
9 #include <uapi/linux/if_ether.h>
10 
11 /* Description:
12  * This header file describes the Virtual Function (VF) - Physical Function
13  * (PF) communication protocol used by the drivers for all devices starting
14  * from our 40G product line
15  *
16  * Admin queue buffer usage:
17  * desc->opcode is always aqc_opc_send_msg_to_pf
18  * flags, retval, datalen, and data addr are all used normally.
19  * The Firmware copies the cookie fields when sending messages between the
20  * PF and VF, but uses all other fields internally. Due to this limitation,
21  * we must send all messages as "indirect", i.e. using an external buffer.
22  *
23  * All the VSI indexes are relative to the VF. Each VF can have maximum of
24  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
25  * have a maximum of sixteen queues for all of its VSIs.
26  *
27  * The PF is required to return a status code in v_retval for all messages
28  * except RESET_VF, which does not require any response. The returned value
29  * is of virtchnl_status_code type, defined here.
30  *
31  * In general, VF driver initialization should roughly follow the order of
32  * these opcodes. The VF driver must first validate the API version of the
33  * PF driver, then request a reset, then get resources, then configure
34  * queues and interrupts. After these operations are complete, the VF
35  * driver may start its queues, optionally add MAC and VLAN filters, and
36  * process traffic.
37  */
38 
39 /* START GENERIC DEFINES
40  * Need to ensure the following enums and defines hold the same meaning and
41  * value in current and future projects
42  */
43 
44 /* Error Codes */
45 enum virtchnl_status_code {
46 	VIRTCHNL_STATUS_SUCCESS				= 0,
47 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
48 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
49 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
50 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
51 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
52 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
53 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
54 };
55 
56 /* Backward compatibility */
57 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
58 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
59 
60 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
61 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
62 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
63 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
64 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
65 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
66 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
67 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
68 
69 enum virtchnl_link_speed {
70 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
71 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
72 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
73 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
74 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
75 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
79 };
80 
81 /* for hsplit_0 field of Rx HMC context */
82 /* deprecated with AVF 1.0 */
83 enum virtchnl_rx_hsplit {
84 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
85 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
86 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
87 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
88 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
89 };
90 
91 /* END GENERIC DEFINES */
92 
93 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
94  * of the virtchnl_msg structure.
95  */
96 enum virtchnl_ops {
97 /* The PF sends status change events to VFs using
98  * the VIRTCHNL_OP_EVENT opcode.
99  * VFs send requests to the PF using the other ops.
100  * Use of "advanced opcode" features must be negotiated as part of capabilities
101  * exchange and are not considered part of base mode feature set.
102  */
103 	VIRTCHNL_OP_UNKNOWN = 0,
104 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
105 	VIRTCHNL_OP_RESET_VF = 2,
106 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
107 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
108 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
109 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
110 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
111 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
112 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
113 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
114 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
115 	VIRTCHNL_OP_ADD_VLAN = 12,
116 	VIRTCHNL_OP_DEL_VLAN = 13,
117 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
118 	VIRTCHNL_OP_GET_STATS = 15,
119 	VIRTCHNL_OP_RSVD = 16,
120 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
121 	/* opcode 19 is reserved */
122 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
123 	VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP,
124 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
125 	VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP,
126 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
127 	VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP,
128 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
129 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
130 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
131 	VIRTCHNL_OP_SET_RSS_HENA = 26,
132 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
133 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
134 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
135 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
136 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
137 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
138 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
139 	/* opcode 34 - 43 are reserved */
140 	VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
141 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
142 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
143 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
144 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
145 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
146 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
147 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
148 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
149 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
150 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
151 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
152 	VIRTCHNL_OP_MAX,
153 };
154 
155 /* These macros are used to generate compilation errors if a structure/union
156  * is not exactly the correct length. It gives a divide by zero error if the
157  * structure/union is not of the correct size, otherwise it creates an enum
158  * that is never used.
159  */
160 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
161 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
162 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
163 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
164 
165 /* Message descriptions and data structures. */
166 
167 /* VIRTCHNL_OP_VERSION
168  * VF posts its version number to the PF. PF responds with its version number
169  * in the same format, along with a return code.
170  * Reply from PF has its major/minor versions also in param0 and param1.
171  * If there is a major version mismatch, then the VF cannot operate.
172  * If there is a minor version mismatch, then the VF can operate but should
173  * add a warning to the system log.
174  *
175  * This enum element MUST always be specified as == 1, regardless of other
176  * changes in the API. The PF must always respond to this message without
177  * error regardless of version mismatch.
178  */
179 #define VIRTCHNL_VERSION_MAJOR		1
180 #define VIRTCHNL_VERSION_MINOR		1
181 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
182 
183 struct virtchnl_version_info {
184 	u32 major;
185 	u32 minor;
186 };
187 
188 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
189 
190 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
191 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
192 
193 /* VIRTCHNL_OP_RESET_VF
194  * VF sends this request to PF with no parameters
195  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
196  * until reset completion is indicated. The admin queue must be reinitialized
197  * after this operation.
198  *
199  * When reset is complete, PF must ensure that all queues in all VSIs associated
200  * with the VF are stopped, all queue configurations in the HMC are set to 0,
201  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
202  * are cleared.
203  */
204 
205 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
206  * vsi_type should always be 6 for backward compatibility. Add other fields
207  * as needed.
208  */
209 enum virtchnl_vsi_type {
210 	VIRTCHNL_VSI_TYPE_INVALID = 0,
211 	VIRTCHNL_VSI_SRIOV = 6,
212 };
213 
214 /* VIRTCHNL_OP_GET_VF_RESOURCES
215  * Version 1.0 VF sends this request to PF with no parameters
216  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
217  * PF responds with an indirect message containing
218  * virtchnl_vf_resource and one or more
219  * virtchnl_vsi_resource structures.
220  */
221 
222 struct virtchnl_vsi_resource {
223 	u16 vsi_id;
224 	u16 num_queue_pairs;
225 
226 	/* see enum virtchnl_vsi_type */
227 	s32 vsi_type;
228 	u16 qset_handle;
229 	u8 default_mac_addr[ETH_ALEN];
230 };
231 
232 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
233 
234 /* VF capability flags
235  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
236  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
237  */
238 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
239 #define VIRTCHNL_VF_OFFLOAD_RDMA		BIT(1)
240 #define VIRTCHNL_VF_CAP_RDMA			VIRTCHNL_VF_OFFLOAD_RDMA
241 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
242 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
243 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
244 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
245 /* used to negotiate communicating link speeds in Mbps */
246 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
247 #define  VIRTCHNL_VF_OFFLOAD_CRC		BIT(10)
248 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
249 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
250 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
251 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
252 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
253 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
254 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
255 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
256 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
257 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
258 #define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC	BIT(26)
259 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
260 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
261 
262 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
263 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
264 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
265 
266 struct virtchnl_vf_resource {
267 	u16 num_vsis;
268 	u16 num_queue_pairs;
269 	u16 max_vectors;
270 	u16 max_mtu;
271 
272 	u32 vf_cap_flags;
273 	u32 rss_key_size;
274 	u32 rss_lut_size;
275 
276 	struct virtchnl_vsi_resource vsi_res[];
277 };
278 
279 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_vf_resource);
280 #define virtchnl_vf_resource_LEGACY_SIZEOF	36
281 
282 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
283  * VF sends this message to set up parameters for one TX queue.
284  * External data buffer contains one instance of virtchnl_txq_info.
285  * PF configures requested queue and returns a status code.
286  */
287 
288 /* Tx queue config info */
289 struct virtchnl_txq_info {
290 	u16 vsi_id;
291 	u16 queue_id;
292 	u16 ring_len;		/* number of descriptors, multiple of 8 */
293 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
294 	u64 dma_ring_addr;
295 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
296 };
297 
298 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
299 
300 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
301  * VF sends this message to set up parameters for one RX queue.
302  * External data buffer contains one instance of virtchnl_rxq_info.
303  * PF configures requested queue and returns a status code. The
304  * crc_disable flag disables CRC stripping on the VF. Setting
305  * the crc_disable flag to 1 will disable CRC stripping for each
306  * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
307  * offload must have been set prior to sending this info or the PF
308  * will ignore the request. This flag should be set the same for
309  * all of the queues for a VF.
310  */
311 
312 /* Rx queue config info */
313 struct virtchnl_rxq_info {
314 	u16 vsi_id;
315 	u16 queue_id;
316 	u32 ring_len;		/* number of descriptors, multiple of 32 */
317 	u16 hdr_size;
318 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
319 	u32 databuffer_size;
320 	u32 max_pkt_size;
321 	u8 crc_disable;
322 	u8 rxdid;
323 	u8 pad1[2];
324 	u64 dma_ring_addr;
325 
326 	/* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */
327 	s32 rx_split_pos;
328 	u32 pad2;
329 };
330 
331 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
332 
333 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
334  * VF sends this message to set parameters for all active TX and RX queues
335  * associated with the specified VSI.
336  * PF configures queues and returns status.
337  * If the number of queues specified is greater than the number of queues
338  * associated with the VSI, an error is returned and no queues are configured.
339  * NOTE: The VF is not required to configure all queues in a single request.
340  * It may send multiple messages. PF drivers must correctly handle all VF
341  * requests.
342  */
343 struct virtchnl_queue_pair_info {
344 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
345 	struct virtchnl_txq_info txq;
346 	struct virtchnl_rxq_info rxq;
347 };
348 
349 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
350 
351 struct virtchnl_vsi_queue_config_info {
352 	u16 vsi_id;
353 	u16 num_queue_pairs;
354 	u32 pad;
355 	struct virtchnl_queue_pair_info qpair[];
356 };
357 
358 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vsi_queue_config_info);
359 #define virtchnl_vsi_queue_config_info_LEGACY_SIZEOF	72
360 
361 /* VIRTCHNL_OP_REQUEST_QUEUES
362  * VF sends this message to request the PF to allocate additional queues to
363  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
364  * additional queues must be negotiated.  This is a best effort request as it
365  * is possible the PF does not have enough queues left to support the request.
366  * If the PF cannot support the number requested it will respond with the
367  * maximum number it is able to support.  If the request is successful, PF will
368  * then reset the VF to institute required changes.
369  */
370 
371 /* VF resource request */
372 struct virtchnl_vf_res_request {
373 	u16 num_queue_pairs;
374 };
375 
376 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
377  * VF uses this message to map vectors to queues.
378  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
379  * are to be associated with the specified vector.
380  * The "other" causes are always mapped to vector 0. The VF may not request
381  * that vector 0 be used for traffic.
382  * PF configures interrupt mapping and returns status.
383  * NOTE: due to hardware requirements, all active queues (both TX and RX)
384  * should be mapped to interrupts, even if the driver intends to operate
385  * only in polling mode. In this case the interrupt may be disabled, but
386  * the ITR timer will still run to trigger writebacks.
387  */
388 struct virtchnl_vector_map {
389 	u16 vsi_id;
390 	u16 vector_id;
391 	u16 rxq_map;
392 	u16 txq_map;
393 	u16 rxitr_idx;
394 	u16 txitr_idx;
395 };
396 
397 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
398 
399 struct virtchnl_irq_map_info {
400 	u16 num_vectors;
401 	struct virtchnl_vector_map vecmap[];
402 };
403 
404 VIRTCHNL_CHECK_STRUCT_LEN(2, virtchnl_irq_map_info);
405 #define virtchnl_irq_map_info_LEGACY_SIZEOF	14
406 
407 /* VIRTCHNL_OP_ENABLE_QUEUES
408  * VIRTCHNL_OP_DISABLE_QUEUES
409  * VF sends these message to enable or disable TX/RX queue pairs.
410  * The queues fields are bitmaps indicating which queues to act upon.
411  * (Currently, we only support 16 queues per VF, but we make the field
412  * u32 to allow for expansion.)
413  * PF performs requested action and returns status.
414  * NOTE: The VF is not required to enable/disable all queues in a single
415  * request. It may send multiple messages.
416  * PF drivers must correctly handle all VF requests.
417  */
418 struct virtchnl_queue_select {
419 	u16 vsi_id;
420 	u16 pad;
421 	u32 rx_queues;
422 	u32 tx_queues;
423 };
424 
425 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
426 
427 /* VIRTCHNL_OP_ADD_ETH_ADDR
428  * VF sends this message in order to add one or more unicast or multicast
429  * address filters for the specified VSI.
430  * PF adds the filters and returns status.
431  */
432 
433 /* VIRTCHNL_OP_DEL_ETH_ADDR
434  * VF sends this message in order to remove one or more unicast or multicast
435  * filters for the specified VSI.
436  * PF removes the filters and returns status.
437  */
438 
439 /* VIRTCHNL_ETHER_ADDR_LEGACY
440  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
441  * bytes. Moving forward all VF drivers should not set type to
442  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
443  * behavior. The control plane function (i.e. PF) can use a best effort method
444  * of tracking the primary/device unicast in this case, but there is no
445  * guarantee and functionality depends on the implementation of the PF.
446  */
447 
448 /* VIRTCHNL_ETHER_ADDR_PRIMARY
449  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
450  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
451  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
452  * function (i.e. PF) to accurately track and use this MAC address for
453  * displaying on the host and for VM/function reset.
454  */
455 
456 /* VIRTCHNL_ETHER_ADDR_EXTRA
457  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
458  * unicast and/or multicast filters that are being added/deleted via
459  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
460  */
461 struct virtchnl_ether_addr {
462 	u8 addr[ETH_ALEN];
463 	u8 type;
464 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
465 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
466 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
467 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
468 	u8 pad;
469 };
470 
471 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
472 
473 struct virtchnl_ether_addr_list {
474 	u16 vsi_id;
475 	u16 num_elements;
476 	struct virtchnl_ether_addr list[];
477 };
478 
479 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_ether_addr_list);
480 #define virtchnl_ether_addr_list_LEGACY_SIZEOF	12
481 
482 /* VIRTCHNL_OP_ADD_VLAN
483  * VF sends this message to add one or more VLAN tag filters for receives.
484  * PF adds the filters and returns status.
485  * If a port VLAN is configured by the PF, this operation will return an
486  * error to the VF.
487  */
488 
489 /* VIRTCHNL_OP_DEL_VLAN
490  * VF sends this message to remove one or more VLAN tag filters for receives.
491  * PF removes the filters and returns status.
492  * If a port VLAN is configured by the PF, this operation will return an
493  * error to the VF.
494  */
495 
496 struct virtchnl_vlan_filter_list {
497 	u16 vsi_id;
498 	u16 num_elements;
499 	u16 vlan_id[];
500 };
501 
502 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_vlan_filter_list);
503 #define virtchnl_vlan_filter_list_LEGACY_SIZEOF	6
504 
505 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
506  * structures and opcodes.
507  *
508  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
509  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
510  *
511  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
512  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
513  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
514  *
515  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
516  * by the PF concurrently. For example, if the PF can support
517  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
518  * would OR the following bits:
519  *
520  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
521  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
522  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
523  *
524  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
525  * and 0x88A8 VLAN ethertypes.
526  *
527  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
528  * by the PF concurrently. For example if the PF can support
529  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
530  * offload it would OR the following bits:
531  *
532  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
533  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
534  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
535  *
536  * The VF would interpret this as VLAN stripping can be supported on either
537  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
538  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
539  * the previously set value.
540  *
541  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
542  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
543  *
544  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
545  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
546  *
547  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
548  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
549  *
550  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
551  * VLAN filtering if the underlying PF supports it.
552  *
553  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
554  * certain VLAN capability can be toggled. For example if the underlying PF/CP
555  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
556  * set this bit along with the supported ethertypes.
557  */
558 enum virtchnl_vlan_support {
559 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
560 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
561 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
562 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
563 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
564 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
565 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
566 	VIRTCHNL_VLAN_PRIO =			BIT(24),
567 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
568 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
569 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
570 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
571 };
572 
573 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
574  * for filtering, insertion, and stripping capabilities.
575  *
576  * If only outer capabilities are supported (for filtering, insertion, and/or
577  * stripping) then this refers to the outer most or single VLAN from the VF's
578  * perspective.
579  *
580  * If only inner capabilities are supported (for filtering, insertion, and/or
581  * stripping) then this refers to the outer most or single VLAN from the VF's
582  * perspective. Functionally this is the same as if only outer capabilities are
583  * supported. The VF driver is just forced to use the inner fields when
584  * adding/deleting filters and enabling/disabling offloads (if supported).
585  *
586  * If both outer and inner capabilities are supported (for filtering, insertion,
587  * and/or stripping) then outer refers to the outer most or single VLAN and
588  * inner refers to the second VLAN, if it exists, in the packet.
589  *
590  * There is no support for tunneled VLAN offloads, so outer or inner are never
591  * referring to a tunneled packet from the VF's perspective.
592  */
593 struct virtchnl_vlan_supported_caps {
594 	u32 outer;
595 	u32 inner;
596 };
597 
598 /* The PF populates these fields based on the supported VLAN filtering. If a
599  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
600  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
601  * the unsupported fields.
602  *
603  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
604  * VIRTCHNL_VLAN_TOGGLE bit is set.
605  *
606  * The ethertype(s) specified in the ethertype_init field are the ethertypes
607  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
608  * most VLAN from the VF's perspective. If both inner and outer filtering are
609  * allowed then ethertype_init only refers to the outer most VLAN as only
610  * VLAN ethertype supported for inner VLAN filtering is
611  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
612  * when both inner and outer filtering are allowed.
613  *
614  * The max_filters field tells the VF how many VLAN filters it's allowed to have
615  * at any one time. If it exceeds this amount and tries to add another filter,
616  * then the request will be rejected by the PF. To prevent failures, the VF
617  * should keep track of how many VLAN filters it has added and not attempt to
618  * add more than max_filters.
619  */
620 struct virtchnl_vlan_filtering_caps {
621 	struct virtchnl_vlan_supported_caps filtering_support;
622 	u32 ethertype_init;
623 	u16 max_filters;
624 	u8 pad[2];
625 };
626 
627 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
628 
629 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
630  * if the PF supports a different ethertype for stripping and insertion.
631  *
632  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
633  * for stripping affect the ethertype(s) specified for insertion and visa versa
634  * as well. If the VF tries to configure VLAN stripping via
635  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
636  * that will be the ethertype for both stripping and insertion.
637  *
638  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
639  * stripping do not affect the ethertype(s) specified for insertion and visa
640  * versa.
641  */
642 enum virtchnl_vlan_ethertype_match {
643 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
644 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
645 };
646 
647 /* The PF populates these fields based on the supported VLAN offloads. If a
648  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
649  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
650  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
651  *
652  * Also, a VF is only allowed to toggle its VLAN offload setting if the
653  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
654  *
655  * The VF driver needs to be aware of how the tags are stripped by hardware and
656  * inserted by the VF driver based on the level of offload support. The PF will
657  * populate these fields based on where the VLAN tags are expected to be
658  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
659  * interpret these fields. See the definition of the
660  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
661  * enumeration.
662  */
663 struct virtchnl_vlan_offload_caps {
664 	struct virtchnl_vlan_supported_caps stripping_support;
665 	struct virtchnl_vlan_supported_caps insertion_support;
666 	u32 ethertype_init;
667 	u8 ethertype_match;
668 	u8 pad[3];
669 };
670 
671 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
672 
673 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
674  * VF sends this message to determine its VLAN capabilities.
675  *
676  * PF will mark which capabilities it supports based on hardware support and
677  * current configuration. For example, if a port VLAN is configured the PF will
678  * not allow outer VLAN filtering, stripping, or insertion to be configured so
679  * it will block these features from the VF.
680  *
681  * The VF will need to cross reference its capabilities with the PFs
682  * capabilities in the response message from the PF to determine the VLAN
683  * support.
684  */
685 struct virtchnl_vlan_caps {
686 	struct virtchnl_vlan_filtering_caps filtering;
687 	struct virtchnl_vlan_offload_caps offloads;
688 };
689 
690 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
691 
692 struct virtchnl_vlan {
693 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
694 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
695 			 * filtering caps
696 			 */
697 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
698 			 * filtering caps. Note that tpid here does not refer to
699 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
700 			 * actual 2-byte VLAN TPID
701 			 */
702 	u8 pad[2];
703 };
704 
705 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
706 
707 struct virtchnl_vlan_filter {
708 	struct virtchnl_vlan inner;
709 	struct virtchnl_vlan outer;
710 	u8 pad[16];
711 };
712 
713 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
714 
715 /* VIRTCHNL_OP_ADD_VLAN_V2
716  * VIRTCHNL_OP_DEL_VLAN_V2
717  *
718  * VF sends these messages to add/del one or more VLAN tag filters for Rx
719  * traffic.
720  *
721  * The PF attempts to add the filters and returns status.
722  *
723  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
724  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
725  */
726 struct virtchnl_vlan_filter_list_v2 {
727 	u16 vport_id;
728 	u16 num_elements;
729 	u8 pad[4];
730 	struct virtchnl_vlan_filter filters[];
731 };
732 
733 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan_filter_list_v2);
734 #define virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF	40
735 
736 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
737  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
738  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
739  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
740  *
741  * VF sends this message to enable or disable VLAN stripping or insertion. It
742  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
743  * allowed and whether or not it's allowed to enable/disable the specific
744  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
745  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
746  * messages are allowed.
747  *
748  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
749  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
750  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
751  * case means the outer most or single VLAN from the VF's perspective. This is
752  * because no outer offloads are supported. See the comments above the
753  * virtchnl_vlan_supported_caps structure for more details.
754  *
755  * virtchnl_vlan_caps.offloads.stripping_support.inner =
756  *			VIRTCHNL_VLAN_TOGGLE |
757  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
758  *
759  * virtchnl_vlan_caps.offloads.insertion_support.inner =
760  *			VIRTCHNL_VLAN_TOGGLE |
761  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
762  *
763  * In order to enable inner (again note that in this case inner is the outer
764  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
765  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
766  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
767  *
768  * virtchnl_vlan_setting.inner_ethertype_setting =
769  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
770  *
771  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
772  * initialization.
773  *
774  * The reason that VLAN TPID(s) are not being used for the
775  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
776  * possible a device could support VLAN insertion and/or stripping offload on
777  * multiple ethertypes concurrently, so this method allows a VF to request
778  * multiple ethertypes in one message using the virtchnl_vlan_support
779  * enumeration.
780  *
781  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
782  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
783  * VLAN insertion and stripping simultaneously. The
784  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
785  * populated based on what the PF can support.
786  *
787  * virtchnl_vlan_caps.offloads.stripping_support.outer =
788  *			VIRTCHNL_VLAN_TOGGLE |
789  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
790  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
791  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
792  *
793  * virtchnl_vlan_caps.offloads.insertion_support.outer =
794  *			VIRTCHNL_VLAN_TOGGLE |
795  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
796  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
797  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
798  *
799  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
800  * would populate the virthcnl_vlan_offload_structure in the following manner
801  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
802  *
803  * virtchnl_vlan_setting.outer_ethertype_setting =
804  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
805  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
806  *
807  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
808  * initialization.
809  *
810  * There is also the case where a PF and the underlying hardware can support
811  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
812  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
813  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
814  * offloads. The ethertypes must match for stripping and insertion.
815  *
816  * virtchnl_vlan_caps.offloads.stripping_support.outer =
817  *			VIRTCHNL_VLAN_TOGGLE |
818  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
819  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
820  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
821  *
822  * virtchnl_vlan_caps.offloads.insertion_support.outer =
823  *			VIRTCHNL_VLAN_TOGGLE |
824  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
825  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
826  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
827  *
828  * virtchnl_vlan_caps.offloads.ethertype_match =
829  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
830  *
831  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
832  * populate the virtchnl_vlan_setting structure in the following manner and send
833  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
834  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
835  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
836  *
837  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
838  *
839  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
840  * initialization.
841  */
842 struct virtchnl_vlan_setting {
843 	u32 outer_ethertype_setting;
844 	u32 inner_ethertype_setting;
845 	u16 vport_id;
846 	u8 pad[6];
847 };
848 
849 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
850 
851 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
852  * VF sends VSI id and flags.
853  * PF returns status code in retval.
854  * Note: we assume that broadcast accept mode is always enabled.
855  */
856 struct virtchnl_promisc_info {
857 	u16 vsi_id;
858 	u16 flags;
859 };
860 
861 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
862 
863 #define FLAG_VF_UNICAST_PROMISC	0x00000001
864 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
865 
866 /* VIRTCHNL_OP_GET_STATS
867  * VF sends this message to request stats for the selected VSI. VF uses
868  * the virtchnl_queue_select struct to specify the VSI. The queue_id
869  * field is ignored by the PF.
870  *
871  * PF replies with struct eth_stats in an external buffer.
872  */
873 
874 /* VIRTCHNL_OP_CONFIG_RSS_KEY
875  * VIRTCHNL_OP_CONFIG_RSS_LUT
876  * VF sends these messages to configure RSS. Only supported if both PF
877  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
878  * configuration negotiation. If this is the case, then the RSS fields in
879  * the VF resource struct are valid.
880  * Both the key and LUT are initialized to 0 by the PF, meaning that
881  * RSS is effectively disabled until set up by the VF.
882  */
883 struct virtchnl_rss_key {
884 	u16 vsi_id;
885 	u16 key_len;
886 	u8 key[];          /* RSS hash key, packed bytes */
887 };
888 
889 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_key);
890 #define virtchnl_rss_key_LEGACY_SIZEOF	6
891 
892 struct virtchnl_rss_lut {
893 	u16 vsi_id;
894 	u16 lut_entries;
895 	u8 lut[];         /* RSS lookup table */
896 };
897 
898 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rss_lut);
899 #define virtchnl_rss_lut_LEGACY_SIZEOF	6
900 
901 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
902  * VIRTCHNL_OP_SET_RSS_HENA
903  * VF sends these messages to get and set the hash filter enable bits for RSS.
904  * By default, the PF sets these to all possible traffic types that the
905  * hardware supports. The VF can query this value if it wants to change the
906  * traffic types that are hashed by the hardware.
907  */
908 struct virtchnl_rss_hena {
909 	u64 hena;
910 };
911 
912 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
913 
914 /* VIRTCHNL_OP_ENABLE_CHANNELS
915  * VIRTCHNL_OP_DISABLE_CHANNELS
916  * VF sends these messages to enable or disable channels based on
917  * the user specified queue count and queue offset for each traffic class.
918  * This struct encompasses all the information that the PF needs from
919  * VF to create a channel.
920  */
921 struct virtchnl_channel_info {
922 	u16 count; /* number of queues in a channel */
923 	u16 offset; /* queues in a channel start from 'offset' */
924 	u32 pad;
925 	u64 max_tx_rate;
926 };
927 
928 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
929 
930 struct virtchnl_tc_info {
931 	u32	num_tc;
932 	u32	pad;
933 	struct virtchnl_channel_info list[];
934 };
935 
936 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_tc_info);
937 #define virtchnl_tc_info_LEGACY_SIZEOF	24
938 
939 /* VIRTCHNL_ADD_CLOUD_FILTER
940  * VIRTCHNL_DEL_CLOUD_FILTER
941  * VF sends these messages to add or delete a cloud filter based on the
942  * user specified match and action filters. These structures encompass
943  * all the information that the PF needs from the VF to add/delete a
944  * cloud filter.
945  */
946 
947 struct virtchnl_l4_spec {
948 	u8	src_mac[ETH_ALEN];
949 	u8	dst_mac[ETH_ALEN];
950 	__be16	vlan_id;
951 	__be16	pad; /* reserved for future use */
952 	__be32	src_ip[4];
953 	__be32	dst_ip[4];
954 	__be16	src_port;
955 	__be16	dst_port;
956 };
957 
958 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
959 
960 union virtchnl_flow_spec {
961 	struct	virtchnl_l4_spec tcp_spec;
962 	u8	buffer[128]; /* reserved for future use */
963 };
964 
965 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
966 
967 enum virtchnl_action {
968 	/* action types */
969 	VIRTCHNL_ACTION_DROP = 0,
970 	VIRTCHNL_ACTION_TC_REDIRECT,
971 	VIRTCHNL_ACTION_PASSTHRU,
972 	VIRTCHNL_ACTION_QUEUE,
973 	VIRTCHNL_ACTION_Q_REGION,
974 	VIRTCHNL_ACTION_MARK,
975 	VIRTCHNL_ACTION_COUNT,
976 };
977 
978 enum virtchnl_flow_type {
979 	/* flow types */
980 	VIRTCHNL_TCP_V4_FLOW = 0,
981 	VIRTCHNL_TCP_V6_FLOW,
982 };
983 
984 struct virtchnl_filter {
985 	union	virtchnl_flow_spec data;
986 	union	virtchnl_flow_spec mask;
987 
988 	/* see enum virtchnl_flow_type */
989 	s32	flow_type;
990 
991 	/* see enum virtchnl_action */
992 	s32	action;
993 	u32	action_meta;
994 	u8	field_flags;
995 	u8	pad[3];
996 };
997 
998 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
999 
1000 struct virtchnl_supported_rxdids {
1001 	u64 supported_rxdids;
1002 };
1003 
1004 /* VIRTCHNL_OP_EVENT
1005  * PF sends this message to inform the VF driver of events that may affect it.
1006  * No direct response is expected from the VF, though it may generate other
1007  * messages in response to this one.
1008  */
1009 enum virtchnl_event_codes {
1010 	VIRTCHNL_EVENT_UNKNOWN = 0,
1011 	VIRTCHNL_EVENT_LINK_CHANGE,
1012 	VIRTCHNL_EVENT_RESET_IMPENDING,
1013 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1014 };
1015 
1016 #define PF_EVENT_SEVERITY_INFO		0
1017 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
1018 
1019 struct virtchnl_pf_event {
1020 	/* see enum virtchnl_event_codes */
1021 	s32 event;
1022 	union {
1023 		/* If the PF driver does not support the new speed reporting
1024 		 * capabilities then use link_event else use link_event_adv to
1025 		 * get the speed and link information. The ability to understand
1026 		 * new speeds is indicated by setting the capability flag
1027 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1028 		 * in virtchnl_vf_resource struct and can be used to determine
1029 		 * which link event struct to use below.
1030 		 */
1031 		struct {
1032 			enum virtchnl_link_speed link_speed;
1033 			bool link_status;
1034 			u8 pad[3];
1035 		} link_event;
1036 		struct {
1037 			/* link_speed provided in Mbps */
1038 			u32 link_speed;
1039 			u8 link_status;
1040 			u8 pad[3];
1041 		} link_event_adv;
1042 	} event_data;
1043 
1044 	s32 severity;
1045 };
1046 
1047 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1048 
1049 /* used to specify if a ceq_idx or aeq_idx is invalid */
1050 #define VIRTCHNL_RDMA_INVALID_QUEUE_IDX	0xFFFF
1051 /* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP
1052  * VF uses this message to request PF to map RDMA vectors to RDMA queues.
1053  * The request for this originates from the VF RDMA driver through
1054  * a client interface between VF LAN and VF RDMA driver.
1055  * A vector could have an AEQ and CEQ attached to it although
1056  * there is a single AEQ per VF RDMA instance in which case
1057  * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid
1058  * idx for ceqs There will never be a case where there will be multiple CEQs
1059  * attached to a single vector.
1060  * PF configures interrupt mapping and returns status.
1061  */
1062 
1063 struct virtchnl_rdma_qv_info {
1064 	u32 v_idx; /* msix_vector */
1065 	u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1066 	u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */
1067 	u8 itr_idx;
1068 	u8 pad[3];
1069 };
1070 
1071 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info);
1072 
1073 struct virtchnl_rdma_qvlist_info {
1074 	u32 num_vectors;
1075 	struct virtchnl_rdma_qv_info qv_info[];
1076 };
1077 
1078 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_rdma_qvlist_info);
1079 #define virtchnl_rdma_qvlist_info_LEGACY_SIZEOF	16
1080 
1081 /* VF reset states - these are written into the RSTAT register:
1082  * VFGEN_RSTAT on the VF
1083  * When the PF initiates a reset, it writes 0
1084  * When the reset is complete, it writes 1
1085  * When the PF detects that the VF has recovered, it writes 2
1086  * VF checks this register periodically to determine if a reset has occurred,
1087  * then polls it to know when the reset is complete.
1088  * If either the PF or VF reads the register while the hardware
1089  * is in a reset state, it will return DEADBEEF, which, when masked
1090  * will result in 3.
1091  */
1092 enum virtchnl_vfr_states {
1093 	VIRTCHNL_VFR_INPROGRESS = 0,
1094 	VIRTCHNL_VFR_COMPLETED,
1095 	VIRTCHNL_VFR_VFACTIVE,
1096 };
1097 
1098 /* Type of RSS algorithm */
1099 enum virtchnl_rss_algorithm {
1100 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1101 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1102 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1103 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1104 };
1105 
1106 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1107 #define PROTO_HDR_SHIFT			5
1108 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1109 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1110 
1111 /* VF use these macros to configure each protocol header.
1112  * Specify which protocol headers and protocol header fields base on
1113  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1114  * @param hdr: a struct of virtchnl_proto_hdr
1115  * @param hdr_type: ETH/IPV4/TCP, etc
1116  * @param field: SRC/DST/TEID/SPI, etc
1117  */
1118 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1119 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1120 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1121 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1122 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1123 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1124 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1125 
1126 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1127 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1128 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1129 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1130 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1131 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1132 
1133 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1134 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1135 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1136 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1137 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1138 	((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT)))
1139 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1140 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1141 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1142 
1143 /* Protocol header type within a packet segment. A segment consists of one or
1144  * more protocol headers that make up a logical group of protocol headers. Each
1145  * logical group of protocol headers encapsulates or is encapsulated using/by
1146  * tunneling or encapsulation protocols for network virtualization.
1147  */
1148 enum virtchnl_proto_hdr_type {
1149 	VIRTCHNL_PROTO_HDR_NONE,
1150 	VIRTCHNL_PROTO_HDR_ETH,
1151 	VIRTCHNL_PROTO_HDR_S_VLAN,
1152 	VIRTCHNL_PROTO_HDR_C_VLAN,
1153 	VIRTCHNL_PROTO_HDR_IPV4,
1154 	VIRTCHNL_PROTO_HDR_IPV6,
1155 	VIRTCHNL_PROTO_HDR_TCP,
1156 	VIRTCHNL_PROTO_HDR_UDP,
1157 	VIRTCHNL_PROTO_HDR_SCTP,
1158 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1159 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1160 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1161 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1162 	VIRTCHNL_PROTO_HDR_PPPOE,
1163 	VIRTCHNL_PROTO_HDR_L2TPV3,
1164 	VIRTCHNL_PROTO_HDR_ESP,
1165 	VIRTCHNL_PROTO_HDR_AH,
1166 	VIRTCHNL_PROTO_HDR_PFCP,
1167 };
1168 
1169 /* Protocol header field within a protocol header. */
1170 enum virtchnl_proto_hdr_field {
1171 	/* ETHER */
1172 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1173 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1174 	VIRTCHNL_PROTO_HDR_ETH_DST,
1175 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1176 	/* S-VLAN */
1177 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1178 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1179 	/* C-VLAN */
1180 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1181 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1182 	/* IPV4 */
1183 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1184 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1185 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1186 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1187 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1188 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1189 	/* IPV6 */
1190 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1191 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1192 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1193 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1194 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1195 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1196 	/* TCP */
1197 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1198 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1199 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1200 	/* UDP */
1201 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1202 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1203 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1204 	/* SCTP */
1205 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1206 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1207 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1208 	/* GTPU_IP */
1209 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1210 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1211 	/* GTPU_EH */
1212 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1213 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1214 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1215 	/* PPPOE */
1216 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1217 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1218 	/* L2TPV3 */
1219 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1220 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1221 	/* ESP */
1222 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1223 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1224 	/* AH */
1225 	VIRTCHNL_PROTO_HDR_AH_SPI =
1226 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1227 	/* PFCP */
1228 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1229 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1230 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1231 };
1232 
1233 struct virtchnl_proto_hdr {
1234 	/* see enum virtchnl_proto_hdr_type */
1235 	s32 type;
1236 	u32 field_selector; /* a bit mask to select field for header type */
1237 	u8 buffer[64];
1238 	/**
1239 	 * binary buffer in network order for specific header type.
1240 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1241 	 * header is expected to be copied into the buffer.
1242 	 */
1243 };
1244 
1245 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1246 
1247 struct virtchnl_proto_hdrs {
1248 	u8 tunnel_level;
1249 	u8 pad[3];
1250 	/**
1251 	 * specify where protocol header start from.
1252 	 * 0 - from the outer layer
1253 	 * 1 - from the first inner layer
1254 	 * 2 - from the second inner layer
1255 	 * ....
1256 	 **/
1257 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1258 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1259 };
1260 
1261 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1262 
1263 struct virtchnl_rss_cfg {
1264 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1265 
1266 	/* see enum virtchnl_rss_algorithm; rss algorithm type */
1267 	s32 rss_algorithm;
1268 	u8 reserved[128];                          /* reserve for future */
1269 };
1270 
1271 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1272 
1273 /* action configuration for FDIR */
1274 struct virtchnl_filter_action {
1275 	/* see enum virtchnl_action type */
1276 	s32 type;
1277 	union {
1278 		/* used for queue and qgroup action */
1279 		struct {
1280 			u16 index;
1281 			u8 region;
1282 		} queue;
1283 		/* used for count action */
1284 		struct {
1285 			/* share counter ID with other flow rules */
1286 			u8 shared;
1287 			u32 id; /* counter ID */
1288 		} count;
1289 		/* used for mark action */
1290 		u32 mark_id;
1291 		u8 reserve[32];
1292 	} act_conf;
1293 };
1294 
1295 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1296 
1297 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1298 
1299 struct virtchnl_filter_action_set {
1300 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1301 	int count;
1302 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1303 };
1304 
1305 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1306 
1307 /* pattern and action for FDIR rule */
1308 struct virtchnl_fdir_rule {
1309 	struct virtchnl_proto_hdrs proto_hdrs;
1310 	struct virtchnl_filter_action_set action_set;
1311 };
1312 
1313 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1314 
1315 /* Status returned to VF after VF requests FDIR commands
1316  * VIRTCHNL_FDIR_SUCCESS
1317  * VF FDIR related request is successfully done by PF
1318  * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1319  *
1320  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1321  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1322  *
1323  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1324  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1325  *
1326  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1327  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1328  *
1329  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1330  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1331  *
1332  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1333  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1334  * or HW doesn't support.
1335  *
1336  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1337  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1338  * for programming.
1339  *
1340  * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1341  * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1342  * for example, VF query counter of a rule who has no counter action.
1343  */
1344 enum virtchnl_fdir_prgm_status {
1345 	VIRTCHNL_FDIR_SUCCESS = 0,
1346 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1347 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1348 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1349 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1350 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1351 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1352 	VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1353 };
1354 
1355 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1356  * VF sends this request to PF by filling out vsi_id,
1357  * validate_only and rule_cfg. PF will return flow_id
1358  * if the request is successfully done and return add_status to VF.
1359  */
1360 struct virtchnl_fdir_add {
1361 	u16 vsi_id;  /* INPUT */
1362 	/*
1363 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1364 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1365 	 */
1366 	u16 validate_only; /* INPUT */
1367 	u32 flow_id;       /* OUTPUT */
1368 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1369 
1370 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1371 	s32 status;
1372 };
1373 
1374 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1375 
1376 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1377  * VF sends this request to PF by filling out vsi_id
1378  * and flow_id. PF will return del_status to VF.
1379  */
1380 struct virtchnl_fdir_del {
1381 	u16 vsi_id;  /* INPUT */
1382 	u16 pad;
1383 	u32 flow_id; /* INPUT */
1384 
1385 	/* see enum virtchnl_fdir_prgm_status; OUTPUT */
1386 	s32 status;
1387 };
1388 
1389 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1390 
1391 #define __vss_byone(p, member, count, old)				      \
1392 	(struct_size(p, member, count) + (old - 1 - struct_size(p, member, 0)))
1393 
1394 #define __vss_byelem(p, member, count, old)				      \
1395 	(struct_size(p, member, count - 1) + (old - struct_size(p, member, 0)))
1396 
1397 #define __vss_full(p, member, count, old)				      \
1398 	(struct_size(p, member, count) + (old - struct_size(p, member, 0)))
1399 
1400 #define __vss(type, func, p, member, count)		\
1401 	struct type: func(p, member, count, type##_LEGACY_SIZEOF)
1402 
1403 #define virtchnl_struct_size(p, m, c)					      \
1404 	_Generic(*p,							      \
1405 		 __vss(virtchnl_vf_resource, __vss_full, p, m, c),	      \
1406 		 __vss(virtchnl_vsi_queue_config_info, __vss_full, p, m, c),  \
1407 		 __vss(virtchnl_irq_map_info, __vss_full, p, m, c),	      \
1408 		 __vss(virtchnl_ether_addr_list, __vss_full, p, m, c),	      \
1409 		 __vss(virtchnl_vlan_filter_list, __vss_full, p, m, c),	      \
1410 		 __vss(virtchnl_vlan_filter_list_v2, __vss_byelem, p, m, c),  \
1411 		 __vss(virtchnl_tc_info, __vss_byelem, p, m, c),	      \
1412 		 __vss(virtchnl_rdma_qvlist_info, __vss_byelem, p, m, c),     \
1413 		 __vss(virtchnl_rss_key, __vss_byone, p, m, c),		      \
1414 		 __vss(virtchnl_rss_lut, __vss_byone, p, m, c))
1415 
1416 /**
1417  * virtchnl_vc_validate_vf_msg
1418  * @ver: Virtchnl version info
1419  * @v_opcode: Opcode for the message
1420  * @msg: pointer to the msg buffer
1421  * @msglen: msg length
1422  *
1423  * validate msg format against struct for each opcode
1424  */
1425 static inline int
1426 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1427 			    u8 *msg, u16 msglen)
1428 {
1429 	bool err_msg_format = false;
1430 	u32 valid_len = 0;
1431 
1432 	/* Validate message length. */
1433 	switch (v_opcode) {
1434 	case VIRTCHNL_OP_VERSION:
1435 		valid_len = sizeof(struct virtchnl_version_info);
1436 		break;
1437 	case VIRTCHNL_OP_RESET_VF:
1438 		break;
1439 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1440 		if (VF_IS_V11(ver))
1441 			valid_len = sizeof(u32);
1442 		break;
1443 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1444 		valid_len = sizeof(struct virtchnl_txq_info);
1445 		break;
1446 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1447 		valid_len = sizeof(struct virtchnl_rxq_info);
1448 		break;
1449 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1450 		valid_len = virtchnl_vsi_queue_config_info_LEGACY_SIZEOF;
1451 		if (msglen >= valid_len) {
1452 			struct virtchnl_vsi_queue_config_info *vqc =
1453 			    (struct virtchnl_vsi_queue_config_info *)msg;
1454 			valid_len = virtchnl_struct_size(vqc, qpair,
1455 							 vqc->num_queue_pairs);
1456 			if (vqc->num_queue_pairs == 0)
1457 				err_msg_format = true;
1458 		}
1459 		break;
1460 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1461 		valid_len = virtchnl_irq_map_info_LEGACY_SIZEOF;
1462 		if (msglen >= valid_len) {
1463 			struct virtchnl_irq_map_info *vimi =
1464 			    (struct virtchnl_irq_map_info *)msg;
1465 			valid_len = virtchnl_struct_size(vimi, vecmap,
1466 							 vimi->num_vectors);
1467 			if (vimi->num_vectors == 0)
1468 				err_msg_format = true;
1469 		}
1470 		break;
1471 	case VIRTCHNL_OP_ENABLE_QUEUES:
1472 	case VIRTCHNL_OP_DISABLE_QUEUES:
1473 		valid_len = sizeof(struct virtchnl_queue_select);
1474 		break;
1475 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1476 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1477 		valid_len = virtchnl_ether_addr_list_LEGACY_SIZEOF;
1478 		if (msglen >= valid_len) {
1479 			struct virtchnl_ether_addr_list *veal =
1480 			    (struct virtchnl_ether_addr_list *)msg;
1481 			valid_len = virtchnl_struct_size(veal, list,
1482 							 veal->num_elements);
1483 			if (veal->num_elements == 0)
1484 				err_msg_format = true;
1485 		}
1486 		break;
1487 	case VIRTCHNL_OP_ADD_VLAN:
1488 	case VIRTCHNL_OP_DEL_VLAN:
1489 		valid_len = virtchnl_vlan_filter_list_LEGACY_SIZEOF;
1490 		if (msglen >= valid_len) {
1491 			struct virtchnl_vlan_filter_list *vfl =
1492 			    (struct virtchnl_vlan_filter_list *)msg;
1493 			valid_len = virtchnl_struct_size(vfl, vlan_id,
1494 							 vfl->num_elements);
1495 			if (vfl->num_elements == 0)
1496 				err_msg_format = true;
1497 		}
1498 		break;
1499 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1500 		valid_len = sizeof(struct virtchnl_promisc_info);
1501 		break;
1502 	case VIRTCHNL_OP_GET_STATS:
1503 		valid_len = sizeof(struct virtchnl_queue_select);
1504 		break;
1505 	case VIRTCHNL_OP_RDMA:
1506 		/* These messages are opaque to us and will be validated in
1507 		 * the RDMA client code. We just need to check for nonzero
1508 		 * length. The firmware will enforce max length restrictions.
1509 		 */
1510 		if (msglen)
1511 			valid_len = msglen;
1512 		else
1513 			err_msg_format = true;
1514 		break;
1515 	case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP:
1516 		break;
1517 	case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP:
1518 		valid_len = virtchnl_rdma_qvlist_info_LEGACY_SIZEOF;
1519 		if (msglen >= valid_len) {
1520 			struct virtchnl_rdma_qvlist_info *qv =
1521 				(struct virtchnl_rdma_qvlist_info *)msg;
1522 
1523 			valid_len = virtchnl_struct_size(qv, qv_info,
1524 							 qv->num_vectors);
1525 		}
1526 		break;
1527 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1528 		valid_len = virtchnl_rss_key_LEGACY_SIZEOF;
1529 		if (msglen >= valid_len) {
1530 			struct virtchnl_rss_key *vrk =
1531 				(struct virtchnl_rss_key *)msg;
1532 			valid_len = virtchnl_struct_size(vrk, key,
1533 							 vrk->key_len);
1534 		}
1535 		break;
1536 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1537 		valid_len = virtchnl_rss_lut_LEGACY_SIZEOF;
1538 		if (msglen >= valid_len) {
1539 			struct virtchnl_rss_lut *vrl =
1540 				(struct virtchnl_rss_lut *)msg;
1541 			valid_len = virtchnl_struct_size(vrl, lut,
1542 							 vrl->lut_entries);
1543 		}
1544 		break;
1545 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1546 		break;
1547 	case VIRTCHNL_OP_SET_RSS_HENA:
1548 		valid_len = sizeof(struct virtchnl_rss_hena);
1549 		break;
1550 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1551 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1552 		break;
1553 	case VIRTCHNL_OP_REQUEST_QUEUES:
1554 		valid_len = sizeof(struct virtchnl_vf_res_request);
1555 		break;
1556 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1557 		valid_len = virtchnl_tc_info_LEGACY_SIZEOF;
1558 		if (msglen >= valid_len) {
1559 			struct virtchnl_tc_info *vti =
1560 				(struct virtchnl_tc_info *)msg;
1561 			valid_len = virtchnl_struct_size(vti, list,
1562 							 vti->num_tc);
1563 			if (vti->num_tc == 0)
1564 				err_msg_format = true;
1565 		}
1566 		break;
1567 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1568 		break;
1569 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1570 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1571 		valid_len = sizeof(struct virtchnl_filter);
1572 		break;
1573 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
1574 		break;
1575 	case VIRTCHNL_OP_ADD_RSS_CFG:
1576 	case VIRTCHNL_OP_DEL_RSS_CFG:
1577 		valid_len = sizeof(struct virtchnl_rss_cfg);
1578 		break;
1579 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1580 		valid_len = sizeof(struct virtchnl_fdir_add);
1581 		break;
1582 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1583 		valid_len = sizeof(struct virtchnl_fdir_del);
1584 		break;
1585 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1586 		break;
1587 	case VIRTCHNL_OP_ADD_VLAN_V2:
1588 	case VIRTCHNL_OP_DEL_VLAN_V2:
1589 		valid_len = virtchnl_vlan_filter_list_v2_LEGACY_SIZEOF;
1590 		if (msglen >= valid_len) {
1591 			struct virtchnl_vlan_filter_list_v2 *vfl =
1592 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1593 
1594 			valid_len = virtchnl_struct_size(vfl, filters,
1595 							 vfl->num_elements);
1596 
1597 			if (vfl->num_elements == 0) {
1598 				err_msg_format = true;
1599 				break;
1600 			}
1601 		}
1602 		break;
1603 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1604 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1605 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1606 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1607 		valid_len = sizeof(struct virtchnl_vlan_setting);
1608 		break;
1609 	/* These are always errors coming from the VF. */
1610 	case VIRTCHNL_OP_EVENT:
1611 	case VIRTCHNL_OP_UNKNOWN:
1612 	default:
1613 		return VIRTCHNL_STATUS_ERR_PARAM;
1614 	}
1615 	/* few more checks */
1616 	if (err_msg_format || valid_len != msglen)
1617 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1618 
1619 	return 0;
1620 }
1621 #endif /* _VIRTCHNL_H_ */
1622