xref: /linux/include/linux/bio.h (revision db10cb9b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4  */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7 
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12 
13 #define BIO_MAX_VECS		256U
14 
15 struct queue_limits;
16 
17 static inline unsigned int bio_max_segs(unsigned int nr_segs)
18 {
19 	return min(nr_segs, BIO_MAX_VECS);
20 }
21 
22 #define bio_prio(bio)			(bio)->bi_ioprio
23 #define bio_set_prio(bio, prio)		((bio)->bi_ioprio = prio)
24 
25 #define bio_iter_iovec(bio, iter)				\
26 	bvec_iter_bvec((bio)->bi_io_vec, (iter))
27 
28 #define bio_iter_page(bio, iter)				\
29 	bvec_iter_page((bio)->bi_io_vec, (iter))
30 #define bio_iter_len(bio, iter)					\
31 	bvec_iter_len((bio)->bi_io_vec, (iter))
32 #define bio_iter_offset(bio, iter)				\
33 	bvec_iter_offset((bio)->bi_io_vec, (iter))
34 
35 #define bio_page(bio)		bio_iter_page((bio), (bio)->bi_iter)
36 #define bio_offset(bio)		bio_iter_offset((bio), (bio)->bi_iter)
37 #define bio_iovec(bio)		bio_iter_iovec((bio), (bio)->bi_iter)
38 
39 #define bvec_iter_sectors(iter)	((iter).bi_size >> 9)
40 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41 
42 #define bio_sectors(bio)	bvec_iter_sectors((bio)->bi_iter)
43 #define bio_end_sector(bio)	bvec_iter_end_sector((bio)->bi_iter)
44 
45 /*
46  * Return the data direction, READ or WRITE.
47  */
48 #define bio_data_dir(bio) \
49 	(op_is_write(bio_op(bio)) ? WRITE : READ)
50 
51 /*
52  * Check whether this bio carries any data or not. A NULL bio is allowed.
53  */
54 static inline bool bio_has_data(struct bio *bio)
55 {
56 	if (bio &&
57 	    bio->bi_iter.bi_size &&
58 	    bio_op(bio) != REQ_OP_DISCARD &&
59 	    bio_op(bio) != REQ_OP_SECURE_ERASE &&
60 	    bio_op(bio) != REQ_OP_WRITE_ZEROES)
61 		return true;
62 
63 	return false;
64 }
65 
66 static inline bool bio_no_advance_iter(const struct bio *bio)
67 {
68 	return bio_op(bio) == REQ_OP_DISCARD ||
69 	       bio_op(bio) == REQ_OP_SECURE_ERASE ||
70 	       bio_op(bio) == REQ_OP_WRITE_ZEROES;
71 }
72 
73 static inline void *bio_data(struct bio *bio)
74 {
75 	if (bio_has_data(bio))
76 		return page_address(bio_page(bio)) + bio_offset(bio);
77 
78 	return NULL;
79 }
80 
81 static inline bool bio_next_segment(const struct bio *bio,
82 				    struct bvec_iter_all *iter)
83 {
84 	if (iter->idx >= bio->bi_vcnt)
85 		return false;
86 
87 	bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88 	return true;
89 }
90 
91 /*
92  * drivers should _never_ use the all version - the bio may have been split
93  * before it got to the driver and the driver won't own all of it
94  */
95 #define bio_for_each_segment_all(bvl, bio, iter) \
96 	for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97 
98 static inline void bio_advance_iter(const struct bio *bio,
99 				    struct bvec_iter *iter, unsigned int bytes)
100 {
101 	iter->bi_sector += bytes >> 9;
102 
103 	if (bio_no_advance_iter(bio))
104 		iter->bi_size -= bytes;
105 	else
106 		bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107 		/* TODO: It is reasonable to complete bio with error here. */
108 }
109 
110 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
111 static inline void bio_advance_iter_single(const struct bio *bio,
112 					   struct bvec_iter *iter,
113 					   unsigned int bytes)
114 {
115 	iter->bi_sector += bytes >> 9;
116 
117 	if (bio_no_advance_iter(bio))
118 		iter->bi_size -= bytes;
119 	else
120 		bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121 }
122 
123 void __bio_advance(struct bio *, unsigned bytes);
124 
125 /**
126  * bio_advance - increment/complete a bio by some number of bytes
127  * @bio:	bio to advance
128  * @nbytes:	number of bytes to complete
129  *
130  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132  * be updated on the last bvec as well.
133  *
134  * @bio will then represent the remaining, uncompleted portion of the io.
135  */
136 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137 {
138 	if (nbytes == bio->bi_iter.bi_size) {
139 		bio->bi_iter.bi_size = 0;
140 		return;
141 	}
142 	__bio_advance(bio, nbytes);
143 }
144 
145 #define __bio_for_each_segment(bvl, bio, iter, start)			\
146 	for (iter = (start);						\
147 	     (iter).bi_size &&						\
148 		((bvl = bio_iter_iovec((bio), (iter))), 1);		\
149 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150 
151 #define bio_for_each_segment(bvl, bio, iter)				\
152 	__bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153 
154 #define __bio_for_each_bvec(bvl, bio, iter, start)		\
155 	for (iter = (start);						\
156 	     (iter).bi_size &&						\
157 		((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158 	     bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159 
160 /* iterate over multi-page bvec */
161 #define bio_for_each_bvec(bvl, bio, iter)			\
162 	__bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163 
164 /*
165  * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166  * same reasons as bio_for_each_segment_all().
167  */
168 #define bio_for_each_bvec_all(bvl, bio, i)		\
169 	for (i = 0, bvl = bio_first_bvec_all(bio);	\
170 	     i < (bio)->bi_vcnt; i++, bvl++)
171 
172 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173 
174 static inline unsigned bio_segments(struct bio *bio)
175 {
176 	unsigned segs = 0;
177 	struct bio_vec bv;
178 	struct bvec_iter iter;
179 
180 	/*
181 	 * We special case discard/write same/write zeroes, because they
182 	 * interpret bi_size differently:
183 	 */
184 
185 	switch (bio_op(bio)) {
186 	case REQ_OP_DISCARD:
187 	case REQ_OP_SECURE_ERASE:
188 	case REQ_OP_WRITE_ZEROES:
189 		return 0;
190 	default:
191 		break;
192 	}
193 
194 	bio_for_each_segment(bv, bio, iter)
195 		segs++;
196 
197 	return segs;
198 }
199 
200 /*
201  * get a reference to a bio, so it won't disappear. the intended use is
202  * something like:
203  *
204  * bio_get(bio);
205  * submit_bio(rw, bio);
206  * if (bio->bi_flags ...)
207  *	do_something
208  * bio_put(bio);
209  *
210  * without the bio_get(), it could potentially complete I/O before submit_bio
211  * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212  * runs
213  */
214 static inline void bio_get(struct bio *bio)
215 {
216 	bio->bi_flags |= (1 << BIO_REFFED);
217 	smp_mb__before_atomic();
218 	atomic_inc(&bio->__bi_cnt);
219 }
220 
221 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222 {
223 	if (count != 1) {
224 		bio->bi_flags |= (1 << BIO_REFFED);
225 		smp_mb();
226 	}
227 	atomic_set(&bio->__bi_cnt, count);
228 }
229 
230 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231 {
232 	return bio->bi_flags & (1U << bit);
233 }
234 
235 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236 {
237 	bio->bi_flags |= (1U << bit);
238 }
239 
240 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241 {
242 	bio->bi_flags &= ~(1U << bit);
243 }
244 
245 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246 {
247 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248 	return bio->bi_io_vec;
249 }
250 
251 static inline struct page *bio_first_page_all(struct bio *bio)
252 {
253 	return bio_first_bvec_all(bio)->bv_page;
254 }
255 
256 static inline struct folio *bio_first_folio_all(struct bio *bio)
257 {
258 	return page_folio(bio_first_page_all(bio));
259 }
260 
261 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
262 {
263 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
264 	return &bio->bi_io_vec[bio->bi_vcnt - 1];
265 }
266 
267 /**
268  * struct folio_iter - State for iterating all folios in a bio.
269  * @folio: The current folio we're iterating.  NULL after the last folio.
270  * @offset: The byte offset within the current folio.
271  * @length: The number of bytes in this iteration (will not cross folio
272  *	boundary).
273  */
274 struct folio_iter {
275 	struct folio *folio;
276 	size_t offset;
277 	size_t length;
278 	/* private: for use by the iterator */
279 	struct folio *_next;
280 	size_t _seg_count;
281 	int _i;
282 };
283 
284 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
285 				   int i)
286 {
287 	struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
288 
289 	fi->folio = page_folio(bvec->bv_page);
290 	fi->offset = bvec->bv_offset +
291 			PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
292 	fi->_seg_count = bvec->bv_len;
293 	fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
294 	fi->_next = folio_next(fi->folio);
295 	fi->_i = i;
296 }
297 
298 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
299 {
300 	fi->_seg_count -= fi->length;
301 	if (fi->_seg_count) {
302 		fi->folio = fi->_next;
303 		fi->offset = 0;
304 		fi->length = min(folio_size(fi->folio), fi->_seg_count);
305 		fi->_next = folio_next(fi->folio);
306 	} else if (fi->_i + 1 < bio->bi_vcnt) {
307 		bio_first_folio(fi, bio, fi->_i + 1);
308 	} else {
309 		fi->folio = NULL;
310 	}
311 }
312 
313 /**
314  * bio_for_each_folio_all - Iterate over each folio in a bio.
315  * @fi: struct folio_iter which is updated for each folio.
316  * @bio: struct bio to iterate over.
317  */
318 #define bio_for_each_folio_all(fi, bio)				\
319 	for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
320 
321 enum bip_flags {
322 	BIP_BLOCK_INTEGRITY	= 1 << 0, /* block layer owns integrity data */
323 	BIP_MAPPED_INTEGRITY	= 1 << 1, /* ref tag has been remapped */
324 	BIP_CTRL_NOCHECK	= 1 << 2, /* disable HBA integrity checking */
325 	BIP_DISK_NOCHECK	= 1 << 3, /* disable disk integrity checking */
326 	BIP_IP_CHECKSUM		= 1 << 4, /* IP checksum */
327 };
328 
329 /*
330  * bio integrity payload
331  */
332 struct bio_integrity_payload {
333 	struct bio		*bip_bio;	/* parent bio */
334 
335 	struct bvec_iter	bip_iter;
336 
337 	unsigned short		bip_vcnt;	/* # of integrity bio_vecs */
338 	unsigned short		bip_max_vcnt;	/* integrity bio_vec slots */
339 	unsigned short		bip_flags;	/* control flags */
340 
341 	struct bvec_iter	bio_iter;	/* for rewinding parent bio */
342 
343 	struct work_struct	bip_work;	/* I/O completion */
344 
345 	struct bio_vec		*bip_vec;
346 	struct bio_vec		bip_inline_vecs[];/* embedded bvec array */
347 };
348 
349 #if defined(CONFIG_BLK_DEV_INTEGRITY)
350 
351 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
352 {
353 	if (bio->bi_opf & REQ_INTEGRITY)
354 		return bio->bi_integrity;
355 
356 	return NULL;
357 }
358 
359 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
360 {
361 	struct bio_integrity_payload *bip = bio_integrity(bio);
362 
363 	if (bip)
364 		return bip->bip_flags & flag;
365 
366 	return false;
367 }
368 
369 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
370 {
371 	return bip->bip_iter.bi_sector;
372 }
373 
374 static inline void bip_set_seed(struct bio_integrity_payload *bip,
375 				sector_t seed)
376 {
377 	bip->bip_iter.bi_sector = seed;
378 }
379 
380 #endif /* CONFIG_BLK_DEV_INTEGRITY */
381 
382 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
383 extern struct bio *bio_split(struct bio *bio, int sectors,
384 			     gfp_t gfp, struct bio_set *bs);
385 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
386 		unsigned *segs, struct bio_set *bs, unsigned max_bytes);
387 
388 /**
389  * bio_next_split - get next @sectors from a bio, splitting if necessary
390  * @bio:	bio to split
391  * @sectors:	number of sectors to split from the front of @bio
392  * @gfp:	gfp mask
393  * @bs:		bio set to allocate from
394  *
395  * Return: a bio representing the next @sectors of @bio - if the bio is smaller
396  * than @sectors, returns the original bio unchanged.
397  */
398 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
399 					 gfp_t gfp, struct bio_set *bs)
400 {
401 	if (sectors >= bio_sectors(bio))
402 		return bio;
403 
404 	return bio_split(bio, sectors, gfp, bs);
405 }
406 
407 enum {
408 	BIOSET_NEED_BVECS = BIT(0),
409 	BIOSET_NEED_RESCUER = BIT(1),
410 	BIOSET_PERCPU_CACHE = BIT(2),
411 };
412 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
413 extern void bioset_exit(struct bio_set *);
414 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
415 
416 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
417 			     blk_opf_t opf, gfp_t gfp_mask,
418 			     struct bio_set *bs);
419 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
420 extern void bio_put(struct bio *);
421 
422 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
423 		gfp_t gfp, struct bio_set *bs);
424 int bio_init_clone(struct block_device *bdev, struct bio *bio,
425 		struct bio *bio_src, gfp_t gfp);
426 
427 extern struct bio_set fs_bio_set;
428 
429 static inline struct bio *bio_alloc(struct block_device *bdev,
430 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
431 {
432 	return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
433 }
434 
435 void submit_bio(struct bio *bio);
436 
437 extern void bio_endio(struct bio *);
438 
439 static inline void bio_io_error(struct bio *bio)
440 {
441 	bio->bi_status = BLK_STS_IOERR;
442 	bio_endio(bio);
443 }
444 
445 static inline void bio_wouldblock_error(struct bio *bio)
446 {
447 	bio_set_flag(bio, BIO_QUIET);
448 	bio->bi_status = BLK_STS_AGAIN;
449 	bio_endio(bio);
450 }
451 
452 /*
453  * Calculate number of bvec segments that should be allocated to fit data
454  * pointed by @iter. If @iter is backed by bvec it's going to be reused
455  * instead of allocating a new one.
456  */
457 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
458 {
459 	if (iov_iter_is_bvec(iter))
460 		return 0;
461 	return iov_iter_npages(iter, max_segs);
462 }
463 
464 struct request_queue;
465 
466 extern int submit_bio_wait(struct bio *bio);
467 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
468 	      unsigned short max_vecs, blk_opf_t opf);
469 extern void bio_uninit(struct bio *);
470 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
471 void bio_chain(struct bio *, struct bio *);
472 
473 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
474 			      unsigned off);
475 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
476 				size_t len, size_t off);
477 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
478 			   unsigned int, unsigned int);
479 int bio_add_zone_append_page(struct bio *bio, struct page *page,
480 			     unsigned int len, unsigned int offset);
481 void __bio_add_page(struct bio *bio, struct page *page,
482 		unsigned int len, unsigned int off);
483 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
484 			  size_t off);
485 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
486 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
487 void __bio_release_pages(struct bio *bio, bool mark_dirty);
488 extern void bio_set_pages_dirty(struct bio *bio);
489 extern void bio_check_pages_dirty(struct bio *bio);
490 
491 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
492 			       struct bio *src, struct bvec_iter *src_iter);
493 extern void bio_copy_data(struct bio *dst, struct bio *src);
494 extern void bio_free_pages(struct bio *bio);
495 void guard_bio_eod(struct bio *bio);
496 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
497 
498 static inline void zero_fill_bio(struct bio *bio)
499 {
500 	zero_fill_bio_iter(bio, bio->bi_iter);
501 }
502 
503 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
504 {
505 	if (bio_flagged(bio, BIO_PAGE_PINNED))
506 		__bio_release_pages(bio, mark_dirty);
507 }
508 
509 #define bio_dev(bio) \
510 	disk_devt((bio)->bi_bdev->bd_disk)
511 
512 #ifdef CONFIG_BLK_CGROUP
513 void bio_associate_blkg(struct bio *bio);
514 void bio_associate_blkg_from_css(struct bio *bio,
515 				 struct cgroup_subsys_state *css);
516 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
517 void blkcg_punt_bio_submit(struct bio *bio);
518 #else	/* CONFIG_BLK_CGROUP */
519 static inline void bio_associate_blkg(struct bio *bio) { }
520 static inline void bio_associate_blkg_from_css(struct bio *bio,
521 					       struct cgroup_subsys_state *css)
522 { }
523 static inline void bio_clone_blkg_association(struct bio *dst,
524 					      struct bio *src) { }
525 static inline void blkcg_punt_bio_submit(struct bio *bio)
526 {
527 	submit_bio(bio);
528 }
529 #endif	/* CONFIG_BLK_CGROUP */
530 
531 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
532 {
533 	bio_clear_flag(bio, BIO_REMAPPED);
534 	if (bio->bi_bdev != bdev)
535 		bio_clear_flag(bio, BIO_BPS_THROTTLED);
536 	bio->bi_bdev = bdev;
537 	bio_associate_blkg(bio);
538 }
539 
540 /*
541  * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
542  *
543  * A bio_list anchors a singly-linked list of bios chained through the bi_next
544  * member of the bio.  The bio_list also caches the last list member to allow
545  * fast access to the tail.
546  */
547 struct bio_list {
548 	struct bio *head;
549 	struct bio *tail;
550 };
551 
552 static inline int bio_list_empty(const struct bio_list *bl)
553 {
554 	return bl->head == NULL;
555 }
556 
557 static inline void bio_list_init(struct bio_list *bl)
558 {
559 	bl->head = bl->tail = NULL;
560 }
561 
562 #define BIO_EMPTY_LIST	{ NULL, NULL }
563 
564 #define bio_list_for_each(bio, bl) \
565 	for (bio = (bl)->head; bio; bio = bio->bi_next)
566 
567 static inline unsigned bio_list_size(const struct bio_list *bl)
568 {
569 	unsigned sz = 0;
570 	struct bio *bio;
571 
572 	bio_list_for_each(bio, bl)
573 		sz++;
574 
575 	return sz;
576 }
577 
578 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
579 {
580 	bio->bi_next = NULL;
581 
582 	if (bl->tail)
583 		bl->tail->bi_next = bio;
584 	else
585 		bl->head = bio;
586 
587 	bl->tail = bio;
588 }
589 
590 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
591 {
592 	bio->bi_next = bl->head;
593 
594 	bl->head = bio;
595 
596 	if (!bl->tail)
597 		bl->tail = bio;
598 }
599 
600 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
601 {
602 	if (!bl2->head)
603 		return;
604 
605 	if (bl->tail)
606 		bl->tail->bi_next = bl2->head;
607 	else
608 		bl->head = bl2->head;
609 
610 	bl->tail = bl2->tail;
611 }
612 
613 static inline void bio_list_merge_head(struct bio_list *bl,
614 				       struct bio_list *bl2)
615 {
616 	if (!bl2->head)
617 		return;
618 
619 	if (bl->head)
620 		bl2->tail->bi_next = bl->head;
621 	else
622 		bl->tail = bl2->tail;
623 
624 	bl->head = bl2->head;
625 }
626 
627 static inline struct bio *bio_list_peek(struct bio_list *bl)
628 {
629 	return bl->head;
630 }
631 
632 static inline struct bio *bio_list_pop(struct bio_list *bl)
633 {
634 	struct bio *bio = bl->head;
635 
636 	if (bio) {
637 		bl->head = bl->head->bi_next;
638 		if (!bl->head)
639 			bl->tail = NULL;
640 
641 		bio->bi_next = NULL;
642 	}
643 
644 	return bio;
645 }
646 
647 static inline struct bio *bio_list_get(struct bio_list *bl)
648 {
649 	struct bio *bio = bl->head;
650 
651 	bl->head = bl->tail = NULL;
652 
653 	return bio;
654 }
655 
656 /*
657  * Increment chain count for the bio. Make sure the CHAIN flag update
658  * is visible before the raised count.
659  */
660 static inline void bio_inc_remaining(struct bio *bio)
661 {
662 	bio_set_flag(bio, BIO_CHAIN);
663 	smp_mb__before_atomic();
664 	atomic_inc(&bio->__bi_remaining);
665 }
666 
667 /*
668  * bio_set is used to allow other portions of the IO system to
669  * allocate their own private memory pools for bio and iovec structures.
670  * These memory pools in turn all allocate from the bio_slab
671  * and the bvec_slabs[].
672  */
673 #define BIO_POOL_SIZE 2
674 
675 struct bio_set {
676 	struct kmem_cache *bio_slab;
677 	unsigned int front_pad;
678 
679 	/*
680 	 * per-cpu bio alloc cache
681 	 */
682 	struct bio_alloc_cache __percpu *cache;
683 
684 	mempool_t bio_pool;
685 	mempool_t bvec_pool;
686 #if defined(CONFIG_BLK_DEV_INTEGRITY)
687 	mempool_t bio_integrity_pool;
688 	mempool_t bvec_integrity_pool;
689 #endif
690 
691 	unsigned int back_pad;
692 	/*
693 	 * Deadlock avoidance for stacking block drivers: see comments in
694 	 * bio_alloc_bioset() for details
695 	 */
696 	spinlock_t		rescue_lock;
697 	struct bio_list		rescue_list;
698 	struct work_struct	rescue_work;
699 	struct workqueue_struct	*rescue_workqueue;
700 
701 	/*
702 	 * Hot un-plug notifier for the per-cpu cache, if used
703 	 */
704 	struct hlist_node cpuhp_dead;
705 };
706 
707 static inline bool bioset_initialized(struct bio_set *bs)
708 {
709 	return bs->bio_slab != NULL;
710 }
711 
712 #if defined(CONFIG_BLK_DEV_INTEGRITY)
713 
714 #define bip_for_each_vec(bvl, bip, iter)				\
715 	for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
716 
717 #define bio_for_each_integrity_vec(_bvl, _bio, _iter)			\
718 	for_each_bio(_bio)						\
719 		bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
720 
721 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
722 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
723 extern bool bio_integrity_prep(struct bio *);
724 extern void bio_integrity_advance(struct bio *, unsigned int);
725 extern void bio_integrity_trim(struct bio *);
726 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
727 extern int bioset_integrity_create(struct bio_set *, int);
728 extern void bioset_integrity_free(struct bio_set *);
729 extern void bio_integrity_init(void);
730 
731 #else /* CONFIG_BLK_DEV_INTEGRITY */
732 
733 static inline void *bio_integrity(struct bio *bio)
734 {
735 	return NULL;
736 }
737 
738 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
739 {
740 	return 0;
741 }
742 
743 static inline void bioset_integrity_free (struct bio_set *bs)
744 {
745 	return;
746 }
747 
748 static inline bool bio_integrity_prep(struct bio *bio)
749 {
750 	return true;
751 }
752 
753 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
754 				      gfp_t gfp_mask)
755 {
756 	return 0;
757 }
758 
759 static inline void bio_integrity_advance(struct bio *bio,
760 					 unsigned int bytes_done)
761 {
762 	return;
763 }
764 
765 static inline void bio_integrity_trim(struct bio *bio)
766 {
767 	return;
768 }
769 
770 static inline void bio_integrity_init(void)
771 {
772 	return;
773 }
774 
775 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
776 {
777 	return false;
778 }
779 
780 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
781 								unsigned int nr)
782 {
783 	return ERR_PTR(-EINVAL);
784 }
785 
786 static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
787 					unsigned int len, unsigned int offset)
788 {
789 	return 0;
790 }
791 
792 #endif /* CONFIG_BLK_DEV_INTEGRITY */
793 
794 /*
795  * Mark a bio as polled. Note that for async polled IO, the caller must
796  * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
797  * We cannot block waiting for requests on polled IO, as those completions
798  * must be found by the caller. This is different than IRQ driven IO, where
799  * it's safe to wait for IO to complete.
800  */
801 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
802 {
803 	bio->bi_opf |= REQ_POLLED;
804 	if (kiocb->ki_flags & IOCB_NOWAIT)
805 		bio->bi_opf |= REQ_NOWAIT;
806 }
807 
808 static inline void bio_clear_polled(struct bio *bio)
809 {
810 	bio->bi_opf &= ~REQ_POLLED;
811 }
812 
813 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
814 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
815 
816 #endif /* __LINUX_BIO_H */
817