xref: /linux/include/linux/blk-mq.h (revision 84b9b44b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14 
15 #define BLKDEV_MIN_RQ	4
16 #define BLKDEV_DEFAULT_RQ	128
17 
18 enum rq_end_io_ret {
19 	RQ_END_IO_NONE,
20 	RQ_END_IO_FREE,
21 };
22 
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24 
25 /*
26  * request flags */
27 typedef __u32 __bitwise req_flags_t;
28 
29 /* drive already may have started this one */
30 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
31 /* may not be passed by ioscheduler */
32 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
33 /* request for flush sequence */
34 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
35 /* merge of different types, fail separately */
36 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
37 /* track inflight for MQ */
38 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
39 /* don't call prep for this one */
40 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
41 /* vaguely specified driver internal error.  Ignored by the block layer */
42 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
43 /* don't warn about errors */
44 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
45 /* elevator private data attached */
46 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM			((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS		((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
56    bio chain. */
57 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
60 /* ->timeout has been called, don't expire again */
61 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
62 /* queue has elevator attached */
63 #define RQF_ELV			((__force req_flags_t)(1 << 22))
64 #define RQF_RESV			((__force req_flags_t)(1 << 23))
65 
66 /* flags that prevent us from merging requests: */
67 #define RQF_NOMERGE_FLAGS \
68 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
69 
70 enum mq_rq_state {
71 	MQ_RQ_IDLE		= 0,
72 	MQ_RQ_IN_FLIGHT		= 1,
73 	MQ_RQ_COMPLETE		= 2,
74 };
75 
76 /*
77  * Try to put the fields that are referenced together in the same cacheline.
78  *
79  * If you modify this structure, make sure to update blk_rq_init() and
80  * especially blk_mq_rq_ctx_init() to take care of the added fields.
81  */
82 struct request {
83 	struct request_queue *q;
84 	struct blk_mq_ctx *mq_ctx;
85 	struct blk_mq_hw_ctx *mq_hctx;
86 
87 	blk_opf_t cmd_flags;		/* op and common flags */
88 	req_flags_t rq_flags;
89 
90 	int tag;
91 	int internal_tag;
92 
93 	unsigned int timeout;
94 
95 	/* the following two fields are internal, NEVER access directly */
96 	unsigned int __data_len;	/* total data len */
97 	sector_t __sector;		/* sector cursor */
98 
99 	struct bio *bio;
100 	struct bio *biotail;
101 
102 	union {
103 		struct list_head queuelist;
104 		struct request *rq_next;
105 	};
106 
107 	struct block_device *part;
108 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
109 	/* Time that the first bio started allocating this request. */
110 	u64 alloc_time_ns;
111 #endif
112 	/* Time that this request was allocated for this IO. */
113 	u64 start_time_ns;
114 	/* Time that I/O was submitted to the device. */
115 	u64 io_start_time_ns;
116 
117 #ifdef CONFIG_BLK_WBT
118 	unsigned short wbt_flags;
119 #endif
120 	/*
121 	 * rq sectors used for blk stats. It has the same value
122 	 * with blk_rq_sectors(rq), except that it never be zeroed
123 	 * by completion.
124 	 */
125 	unsigned short stats_sectors;
126 
127 	/*
128 	 * Number of scatter-gather DMA addr+len pairs after
129 	 * physical address coalescing is performed.
130 	 */
131 	unsigned short nr_phys_segments;
132 
133 #ifdef CONFIG_BLK_DEV_INTEGRITY
134 	unsigned short nr_integrity_segments;
135 #endif
136 
137 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
138 	struct bio_crypt_ctx *crypt_ctx;
139 	struct blk_crypto_keyslot *crypt_keyslot;
140 #endif
141 
142 	unsigned short ioprio;
143 
144 	enum mq_rq_state state;
145 	atomic_t ref;
146 
147 	unsigned long deadline;
148 
149 	/*
150 	 * The hash is used inside the scheduler, and killed once the
151 	 * request reaches the dispatch list. The ipi_list is only used
152 	 * to queue the request for softirq completion, which is long
153 	 * after the request has been unhashed (and even removed from
154 	 * the dispatch list).
155 	 */
156 	union {
157 		struct hlist_node hash;	/* merge hash */
158 		struct llist_node ipi_list;
159 	};
160 
161 	/*
162 	 * The rb_node is only used inside the io scheduler, requests
163 	 * are pruned when moved to the dispatch queue. So let the
164 	 * completion_data share space with the rb_node.
165 	 */
166 	union {
167 		struct rb_node rb_node;	/* sort/lookup */
168 		struct bio_vec special_vec;
169 		void *completion_data;
170 	};
171 
172 
173 	/*
174 	 * Three pointers are available for the IO schedulers, if they need
175 	 * more they have to dynamically allocate it.  Flush requests are
176 	 * never put on the IO scheduler. So let the flush fields share
177 	 * space with the elevator data.
178 	 */
179 	union {
180 		struct {
181 			struct io_cq		*icq;
182 			void			*priv[2];
183 		} elv;
184 
185 		struct {
186 			unsigned int		seq;
187 			struct list_head	list;
188 			rq_end_io_fn		*saved_end_io;
189 		} flush;
190 	};
191 
192 	union {
193 		struct __call_single_data csd;
194 		u64 fifo_time;
195 	};
196 
197 	/*
198 	 * completion callback.
199 	 */
200 	rq_end_io_fn *end_io;
201 	void *end_io_data;
202 };
203 
204 static inline enum req_op req_op(const struct request *req)
205 {
206 	return req->cmd_flags & REQ_OP_MASK;
207 }
208 
209 static inline bool blk_rq_is_passthrough(struct request *rq)
210 {
211 	return blk_op_is_passthrough(req_op(rq));
212 }
213 
214 static inline unsigned short req_get_ioprio(struct request *req)
215 {
216 	return req->ioprio;
217 }
218 
219 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
220 
221 #define rq_dma_dir(rq) \
222 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
223 
224 #define rq_list_add(listptr, rq)	do {		\
225 	(rq)->rq_next = *(listptr);			\
226 	*(listptr) = rq;				\
227 } while (0)
228 
229 #define rq_list_add_tail(lastpptr, rq)	do {		\
230 	(rq)->rq_next = NULL;				\
231 	**(lastpptr) = rq;				\
232 	*(lastpptr) = &rq->rq_next;			\
233 } while (0)
234 
235 #define rq_list_pop(listptr)				\
236 ({							\
237 	struct request *__req = NULL;			\
238 	if ((listptr) && *(listptr))	{		\
239 		__req = *(listptr);			\
240 		*(listptr) = __req->rq_next;		\
241 	}						\
242 	__req;						\
243 })
244 
245 #define rq_list_peek(listptr)				\
246 ({							\
247 	struct request *__req = NULL;			\
248 	if ((listptr) && *(listptr))			\
249 		__req = *(listptr);			\
250 	__req;						\
251 })
252 
253 #define rq_list_for_each(listptr, pos)			\
254 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
255 
256 #define rq_list_for_each_safe(listptr, pos, nxt)			\
257 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
258 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
259 
260 #define rq_list_next(rq)	(rq)->rq_next
261 #define rq_list_empty(list)	((list) == (struct request *) NULL)
262 
263 /**
264  * rq_list_move() - move a struct request from one list to another
265  * @src: The source list @rq is currently in
266  * @dst: The destination list that @rq will be appended to
267  * @rq: The request to move
268  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
269  */
270 static inline void rq_list_move(struct request **src, struct request **dst,
271 				struct request *rq, struct request *prev)
272 {
273 	if (prev)
274 		prev->rq_next = rq->rq_next;
275 	else
276 		*src = rq->rq_next;
277 	rq_list_add(dst, rq);
278 }
279 
280 /**
281  * enum blk_eh_timer_return - How the timeout handler should proceed
282  * @BLK_EH_DONE: The block driver completed the command or will complete it at
283  *	a later time.
284  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
285  *	request to complete.
286  */
287 enum blk_eh_timer_return {
288 	BLK_EH_DONE,
289 	BLK_EH_RESET_TIMER,
290 };
291 
292 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
293 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
294 
295 /**
296  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
297  * block device
298  */
299 struct blk_mq_hw_ctx {
300 	struct {
301 		/** @lock: Protects the dispatch list. */
302 		spinlock_t		lock;
303 		/**
304 		 * @dispatch: Used for requests that are ready to be
305 		 * dispatched to the hardware but for some reason (e.g. lack of
306 		 * resources) could not be sent to the hardware. As soon as the
307 		 * driver can send new requests, requests at this list will
308 		 * be sent first for a fairer dispatch.
309 		 */
310 		struct list_head	dispatch;
311 		 /**
312 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
313 		  * queue (active, scheduled to restart, stopped).
314 		  */
315 		unsigned long		state;
316 	} ____cacheline_aligned_in_smp;
317 
318 	/**
319 	 * @run_work: Used for scheduling a hardware queue run at a later time.
320 	 */
321 	struct delayed_work	run_work;
322 	/** @cpumask: Map of available CPUs where this hctx can run. */
323 	cpumask_var_t		cpumask;
324 	/**
325 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
326 	 * selection from @cpumask.
327 	 */
328 	int			next_cpu;
329 	/**
330 	 * @next_cpu_batch: Counter of how many works left in the batch before
331 	 * changing to the next CPU.
332 	 */
333 	int			next_cpu_batch;
334 
335 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
336 	unsigned long		flags;
337 
338 	/**
339 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
340 	 * queue. It's up to the IO scheduler how to use this pointer.
341 	 */
342 	void			*sched_data;
343 	/**
344 	 * @queue: Pointer to the request queue that owns this hardware context.
345 	 */
346 	struct request_queue	*queue;
347 	/** @fq: Queue of requests that need to perform a flush operation. */
348 	struct blk_flush_queue	*fq;
349 
350 	/**
351 	 * @driver_data: Pointer to data owned by the block driver that created
352 	 * this hctx
353 	 */
354 	void			*driver_data;
355 
356 	/**
357 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
358 	 * pending request in that software queue.
359 	 */
360 	struct sbitmap		ctx_map;
361 
362 	/**
363 	 * @dispatch_from: Software queue to be used when no scheduler was
364 	 * selected.
365 	 */
366 	struct blk_mq_ctx	*dispatch_from;
367 	/**
368 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
369 	 * decide if the hw_queue is busy using Exponential Weighted Moving
370 	 * Average algorithm.
371 	 */
372 	unsigned int		dispatch_busy;
373 
374 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
375 	unsigned short		type;
376 	/** @nr_ctx: Number of software queues. */
377 	unsigned short		nr_ctx;
378 	/** @ctxs: Array of software queues. */
379 	struct blk_mq_ctx	**ctxs;
380 
381 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
382 	spinlock_t		dispatch_wait_lock;
383 	/**
384 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
385 	 * available at the moment, to wait for another try in the future.
386 	 */
387 	wait_queue_entry_t	dispatch_wait;
388 
389 	/**
390 	 * @wait_index: Index of next available dispatch_wait queue to insert
391 	 * requests.
392 	 */
393 	atomic_t		wait_index;
394 
395 	/**
396 	 * @tags: Tags owned by the block driver. A tag at this set is only
397 	 * assigned when a request is dispatched from a hardware queue.
398 	 */
399 	struct blk_mq_tags	*tags;
400 	/**
401 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
402 	 * scheduler associated with a request queue, a tag is assigned when
403 	 * that request is allocated. Else, this member is not used.
404 	 */
405 	struct blk_mq_tags	*sched_tags;
406 
407 	/** @queued: Number of queued requests. */
408 	unsigned long		queued;
409 	/** @run: Number of dispatched requests. */
410 	unsigned long		run;
411 
412 	/** @numa_node: NUMA node the storage adapter has been connected to. */
413 	unsigned int		numa_node;
414 	/** @queue_num: Index of this hardware queue. */
415 	unsigned int		queue_num;
416 
417 	/**
418 	 * @nr_active: Number of active requests. Only used when a tag set is
419 	 * shared across request queues.
420 	 */
421 	atomic_t		nr_active;
422 
423 	/** @cpuhp_online: List to store request if CPU is going to die */
424 	struct hlist_node	cpuhp_online;
425 	/** @cpuhp_dead: List to store request if some CPU die. */
426 	struct hlist_node	cpuhp_dead;
427 	/** @kobj: Kernel object for sysfs. */
428 	struct kobject		kobj;
429 
430 #ifdef CONFIG_BLK_DEBUG_FS
431 	/**
432 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
433 	 * as cpu<cpu_number>.
434 	 */
435 	struct dentry		*debugfs_dir;
436 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
437 	struct dentry		*sched_debugfs_dir;
438 #endif
439 
440 	/**
441 	 * @hctx_list: if this hctx is not in use, this is an entry in
442 	 * q->unused_hctx_list.
443 	 */
444 	struct list_head	hctx_list;
445 };
446 
447 /**
448  * struct blk_mq_queue_map - Map software queues to hardware queues
449  * @mq_map:       CPU ID to hardware queue index map. This is an array
450  *	with nr_cpu_ids elements. Each element has a value in the range
451  *	[@queue_offset, @queue_offset + @nr_queues).
452  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
453  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
454  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
455  *	set of hardware queues.
456  */
457 struct blk_mq_queue_map {
458 	unsigned int *mq_map;
459 	unsigned int nr_queues;
460 	unsigned int queue_offset;
461 };
462 
463 /**
464  * enum hctx_type - Type of hardware queue
465  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
466  * @HCTX_TYPE_READ:	Just for READ I/O.
467  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
468  * @HCTX_MAX_TYPES:	Number of types of hctx.
469  */
470 enum hctx_type {
471 	HCTX_TYPE_DEFAULT,
472 	HCTX_TYPE_READ,
473 	HCTX_TYPE_POLL,
474 
475 	HCTX_MAX_TYPES,
476 };
477 
478 /**
479  * struct blk_mq_tag_set - tag set that can be shared between request queues
480  * @ops:	   Pointers to functions that implement block driver behavior.
481  * @map:	   One or more ctx -> hctx mappings. One map exists for each
482  *		   hardware queue type (enum hctx_type) that the driver wishes
483  *		   to support. There are no restrictions on maps being of the
484  *		   same size, and it's perfectly legal to share maps between
485  *		   types.
486  * @nr_maps:	   Number of elements in the @map array. A number in the range
487  *		   [1, HCTX_MAX_TYPES].
488  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
489  *		   owns this data structure.
490  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
491  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
492  *		   allocations.
493  * @cmd_size:	   Number of additional bytes to allocate per request. The block
494  *		   driver owns these additional bytes.
495  * @numa_node:	   NUMA node the storage adapter has been connected to.
496  * @timeout:	   Request processing timeout in jiffies.
497  * @flags:	   Zero or more BLK_MQ_F_* flags.
498  * @driver_data:   Pointer to data owned by the block driver that created this
499  *		   tag set.
500  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
501  *		   elements.
502  * @shared_tags:
503  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
504  *		   shared by all @tags.
505  * @tag_list_lock: Serializes tag_list accesses.
506  * @tag_list:	   List of the request queues that use this tag set. See also
507  *		   request_queue.tag_set_list.
508  * @srcu:	   Use as lock when type of the request queue is blocking
509  *		   (BLK_MQ_F_BLOCKING).
510  */
511 struct blk_mq_tag_set {
512 	const struct blk_mq_ops	*ops;
513 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
514 	unsigned int		nr_maps;
515 	unsigned int		nr_hw_queues;
516 	unsigned int		queue_depth;
517 	unsigned int		reserved_tags;
518 	unsigned int		cmd_size;
519 	int			numa_node;
520 	unsigned int		timeout;
521 	unsigned int		flags;
522 	void			*driver_data;
523 
524 	struct blk_mq_tags	**tags;
525 
526 	struct blk_mq_tags	*shared_tags;
527 
528 	struct mutex		tag_list_lock;
529 	struct list_head	tag_list;
530 	struct srcu_struct	*srcu;
531 };
532 
533 /**
534  * struct blk_mq_queue_data - Data about a request inserted in a queue
535  *
536  * @rq:   Request pointer.
537  * @last: If it is the last request in the queue.
538  */
539 struct blk_mq_queue_data {
540 	struct request *rq;
541 	bool last;
542 };
543 
544 typedef bool (busy_tag_iter_fn)(struct request *, void *);
545 
546 /**
547  * struct blk_mq_ops - Callback functions that implements block driver
548  * behaviour.
549  */
550 struct blk_mq_ops {
551 	/**
552 	 * @queue_rq: Queue a new request from block IO.
553 	 */
554 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
555 				 const struct blk_mq_queue_data *);
556 
557 	/**
558 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
559 	 * requests to hardware, it must define this function. In case of errors
560 	 * that make us stop issuing further requests, this hook serves the
561 	 * purpose of kicking the hardware (which the last request otherwise
562 	 * would have done).
563 	 */
564 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
565 
566 	/**
567 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
568 	 * that each request belongs to the same queue. If the driver doesn't
569 	 * empty the @rqlist completely, then the rest will be queued
570 	 * individually by the block layer upon return.
571 	 */
572 	void (*queue_rqs)(struct request **rqlist);
573 
574 	/**
575 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
576 	 * run, it is driver's responsibility to release the
577 	 * reserved budget. Also we have to handle failure case
578 	 * of .get_budget for avoiding I/O deadlock.
579 	 */
580 	int (*get_budget)(struct request_queue *);
581 
582 	/**
583 	 * @put_budget: Release the reserved budget.
584 	 */
585 	void (*put_budget)(struct request_queue *, int);
586 
587 	/**
588 	 * @set_rq_budget_token: store rq's budget token
589 	 */
590 	void (*set_rq_budget_token)(struct request *, int);
591 	/**
592 	 * @get_rq_budget_token: retrieve rq's budget token
593 	 */
594 	int (*get_rq_budget_token)(struct request *);
595 
596 	/**
597 	 * @timeout: Called on request timeout.
598 	 */
599 	enum blk_eh_timer_return (*timeout)(struct request *);
600 
601 	/**
602 	 * @poll: Called to poll for completion of a specific tag.
603 	 */
604 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
605 
606 	/**
607 	 * @complete: Mark the request as complete.
608 	 */
609 	void (*complete)(struct request *);
610 
611 	/**
612 	 * @init_hctx: Called when the block layer side of a hardware queue has
613 	 * been set up, allowing the driver to allocate/init matching
614 	 * structures.
615 	 */
616 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
617 	/**
618 	 * @exit_hctx: Ditto for exit/teardown.
619 	 */
620 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
621 
622 	/**
623 	 * @init_request: Called for every command allocated by the block layer
624 	 * to allow the driver to set up driver specific data.
625 	 *
626 	 * Tag greater than or equal to queue_depth is for setting up
627 	 * flush request.
628 	 */
629 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
630 			    unsigned int, unsigned int);
631 	/**
632 	 * @exit_request: Ditto for exit/teardown.
633 	 */
634 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
635 			     unsigned int);
636 
637 	/**
638 	 * @cleanup_rq: Called before freeing one request which isn't completed
639 	 * yet, and usually for freeing the driver private data.
640 	 */
641 	void (*cleanup_rq)(struct request *);
642 
643 	/**
644 	 * @busy: If set, returns whether or not this queue currently is busy.
645 	 */
646 	bool (*busy)(struct request_queue *);
647 
648 	/**
649 	 * @map_queues: This allows drivers specify their own queue mapping by
650 	 * overriding the setup-time function that builds the mq_map.
651 	 */
652 	void (*map_queues)(struct blk_mq_tag_set *set);
653 
654 #ifdef CONFIG_BLK_DEBUG_FS
655 	/**
656 	 * @show_rq: Used by the debugfs implementation to show driver-specific
657 	 * information about a request.
658 	 */
659 	void (*show_rq)(struct seq_file *m, struct request *rq);
660 #endif
661 };
662 
663 enum {
664 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
665 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
666 	/*
667 	 * Set when this device requires underlying blk-mq device for
668 	 * completing IO:
669 	 */
670 	BLK_MQ_F_STACKING	= 1 << 2,
671 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
672 	BLK_MQ_F_BLOCKING	= 1 << 5,
673 	/* Do not allow an I/O scheduler to be configured. */
674 	BLK_MQ_F_NO_SCHED	= 1 << 6,
675 	/*
676 	 * Select 'none' during queue registration in case of a single hwq
677 	 * or shared hwqs instead of 'mq-deadline'.
678 	 */
679 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
680 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
681 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
682 
683 	BLK_MQ_S_STOPPED	= 0,
684 	BLK_MQ_S_TAG_ACTIVE	= 1,
685 	BLK_MQ_S_SCHED_RESTART	= 2,
686 
687 	/* hw queue is inactive after all its CPUs become offline */
688 	BLK_MQ_S_INACTIVE	= 3,
689 
690 	BLK_MQ_MAX_DEPTH	= 10240,
691 
692 	BLK_MQ_CPU_WORK_BATCH	= 8,
693 };
694 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
695 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
696 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
697 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
698 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
699 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
700 
701 #define BLK_MQ_NO_HCTX_IDX	(-1U)
702 
703 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
704 		struct lock_class_key *lkclass);
705 #define blk_mq_alloc_disk(set, queuedata)				\
706 ({									\
707 	static struct lock_class_key __key;				\
708 									\
709 	__blk_mq_alloc_disk(set, queuedata, &__key);			\
710 })
711 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
712 		struct lock_class_key *lkclass);
713 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
714 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
715 		struct request_queue *q);
716 void blk_mq_destroy_queue(struct request_queue *);
717 
718 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
719 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
720 		const struct blk_mq_ops *ops, unsigned int queue_depth,
721 		unsigned int set_flags);
722 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
723 
724 void blk_mq_free_request(struct request *rq);
725 
726 bool blk_mq_queue_inflight(struct request_queue *q);
727 
728 enum {
729 	/* return when out of requests */
730 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
731 	/* allocate from reserved pool */
732 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
733 	/* set RQF_PM */
734 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
735 };
736 
737 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
738 		blk_mq_req_flags_t flags);
739 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
740 		blk_opf_t opf, blk_mq_req_flags_t flags,
741 		unsigned int hctx_idx);
742 
743 /*
744  * Tag address space map.
745  */
746 struct blk_mq_tags {
747 	unsigned int nr_tags;
748 	unsigned int nr_reserved_tags;
749 
750 	atomic_t active_queues;
751 
752 	struct sbitmap_queue bitmap_tags;
753 	struct sbitmap_queue breserved_tags;
754 
755 	struct request **rqs;
756 	struct request **static_rqs;
757 	struct list_head page_list;
758 
759 	/*
760 	 * used to clear request reference in rqs[] before freeing one
761 	 * request pool
762 	 */
763 	spinlock_t lock;
764 };
765 
766 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
767 					       unsigned int tag)
768 {
769 	if (tag < tags->nr_tags) {
770 		prefetch(tags->rqs[tag]);
771 		return tags->rqs[tag];
772 	}
773 
774 	return NULL;
775 }
776 
777 enum {
778 	BLK_MQ_UNIQUE_TAG_BITS = 16,
779 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
780 };
781 
782 u32 blk_mq_unique_tag(struct request *rq);
783 
784 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
785 {
786 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
787 }
788 
789 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
790 {
791 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
792 }
793 
794 /**
795  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
796  * @rq: target request.
797  */
798 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
799 {
800 	return READ_ONCE(rq->state);
801 }
802 
803 static inline int blk_mq_request_started(struct request *rq)
804 {
805 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
806 }
807 
808 static inline int blk_mq_request_completed(struct request *rq)
809 {
810 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
811 }
812 
813 /*
814  *
815  * Set the state to complete when completing a request from inside ->queue_rq.
816  * This is used by drivers that want to ensure special complete actions that
817  * need access to the request are called on failure, e.g. by nvme for
818  * multipathing.
819  */
820 static inline void blk_mq_set_request_complete(struct request *rq)
821 {
822 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
823 }
824 
825 /*
826  * Complete the request directly instead of deferring it to softirq or
827  * completing it another CPU. Useful in preemptible instead of an interrupt.
828  */
829 static inline void blk_mq_complete_request_direct(struct request *rq,
830 		   void (*complete)(struct request *rq))
831 {
832 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
833 	complete(rq);
834 }
835 
836 void blk_mq_start_request(struct request *rq);
837 void blk_mq_end_request(struct request *rq, blk_status_t error);
838 void __blk_mq_end_request(struct request *rq, blk_status_t error);
839 void blk_mq_end_request_batch(struct io_comp_batch *ib);
840 
841 /*
842  * Only need start/end time stamping if we have iostat or
843  * blk stats enabled, or using an IO scheduler.
844  */
845 static inline bool blk_mq_need_time_stamp(struct request *rq)
846 {
847 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
848 }
849 
850 static inline bool blk_mq_is_reserved_rq(struct request *rq)
851 {
852 	return rq->rq_flags & RQF_RESV;
853 }
854 
855 /*
856  * Batched completions only work when there is no I/O error and no special
857  * ->end_io handler.
858  */
859 static inline bool blk_mq_add_to_batch(struct request *req,
860 				       struct io_comp_batch *iob, int ioerror,
861 				       void (*complete)(struct io_comp_batch *))
862 {
863 	if (!iob || (req->rq_flags & RQF_ELV) || ioerror ||
864 			(req->end_io && !blk_rq_is_passthrough(req)))
865 		return false;
866 
867 	if (!iob->complete)
868 		iob->complete = complete;
869 	else if (iob->complete != complete)
870 		return false;
871 	iob->need_ts |= blk_mq_need_time_stamp(req);
872 	rq_list_add(&iob->req_list, req);
873 	return true;
874 }
875 
876 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
877 void blk_mq_kick_requeue_list(struct request_queue *q);
878 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
879 void blk_mq_complete_request(struct request *rq);
880 bool blk_mq_complete_request_remote(struct request *rq);
881 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
882 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
883 void blk_mq_stop_hw_queues(struct request_queue *q);
884 void blk_mq_start_hw_queues(struct request_queue *q);
885 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
886 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
887 void blk_mq_quiesce_queue(struct request_queue *q);
888 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
889 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
890 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
891 void blk_mq_unquiesce_queue(struct request_queue *q);
892 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
893 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
894 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
895 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
896 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
897 		busy_tag_iter_fn *fn, void *priv);
898 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
899 void blk_mq_freeze_queue(struct request_queue *q);
900 void blk_mq_unfreeze_queue(struct request_queue *q);
901 void blk_freeze_queue_start(struct request_queue *q);
902 void blk_mq_freeze_queue_wait(struct request_queue *q);
903 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
904 				     unsigned long timeout);
905 
906 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
907 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
908 
909 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
910 
911 unsigned int blk_mq_rq_cpu(struct request *rq);
912 
913 bool __blk_should_fake_timeout(struct request_queue *q);
914 static inline bool blk_should_fake_timeout(struct request_queue *q)
915 {
916 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
917 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
918 		return __blk_should_fake_timeout(q);
919 	return false;
920 }
921 
922 /**
923  * blk_mq_rq_from_pdu - cast a PDU to a request
924  * @pdu: the PDU (Protocol Data Unit) to be casted
925  *
926  * Return: request
927  *
928  * Driver command data is immediately after the request. So subtract request
929  * size to get back to the original request.
930  */
931 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
932 {
933 	return pdu - sizeof(struct request);
934 }
935 
936 /**
937  * blk_mq_rq_to_pdu - cast a request to a PDU
938  * @rq: the request to be casted
939  *
940  * Return: pointer to the PDU
941  *
942  * Driver command data is immediately after the request. So add request to get
943  * the PDU.
944  */
945 static inline void *blk_mq_rq_to_pdu(struct request *rq)
946 {
947 	return rq + 1;
948 }
949 
950 #define queue_for_each_hw_ctx(q, hctx, i)				\
951 	xa_for_each(&(q)->hctx_table, (i), (hctx))
952 
953 #define hctx_for_each_ctx(hctx, ctx, i)					\
954 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
955 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
956 
957 static inline void blk_mq_cleanup_rq(struct request *rq)
958 {
959 	if (rq->q->mq_ops->cleanup_rq)
960 		rq->q->mq_ops->cleanup_rq(rq);
961 }
962 
963 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
964 		unsigned int nr_segs)
965 {
966 	rq->nr_phys_segments = nr_segs;
967 	rq->__data_len = bio->bi_iter.bi_size;
968 	rq->bio = rq->biotail = bio;
969 	rq->ioprio = bio_prio(bio);
970 }
971 
972 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
973 		struct lock_class_key *key);
974 
975 static inline bool rq_is_sync(struct request *rq)
976 {
977 	return op_is_sync(rq->cmd_flags);
978 }
979 
980 void blk_rq_init(struct request_queue *q, struct request *rq);
981 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
982 		struct bio_set *bs, gfp_t gfp_mask,
983 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
984 void blk_rq_unprep_clone(struct request *rq);
985 blk_status_t blk_insert_cloned_request(struct request *rq);
986 
987 struct rq_map_data {
988 	struct page **pages;
989 	unsigned long offset;
990 	unsigned short page_order;
991 	unsigned short nr_entries;
992 	bool null_mapped;
993 	bool from_user;
994 };
995 
996 int blk_rq_map_user(struct request_queue *, struct request *,
997 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
998 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
999 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
1000 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1001 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1002 int blk_rq_unmap_user(struct bio *);
1003 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1004 		unsigned int, gfp_t);
1005 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1006 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1007 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1008 bool blk_rq_is_poll(struct request *rq);
1009 
1010 struct req_iterator {
1011 	struct bvec_iter iter;
1012 	struct bio *bio;
1013 };
1014 
1015 #define __rq_for_each_bio(_bio, rq)	\
1016 	if ((rq->bio))			\
1017 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1018 
1019 #define rq_for_each_segment(bvl, _rq, _iter)			\
1020 	__rq_for_each_bio(_iter.bio, _rq)			\
1021 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1022 
1023 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1024 	__rq_for_each_bio(_iter.bio, _rq)			\
1025 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1026 
1027 #define rq_iter_last(bvec, _iter)				\
1028 		(_iter.bio->bi_next == NULL &&			\
1029 		 bio_iter_last(bvec, _iter.iter))
1030 
1031 /*
1032  * blk_rq_pos()			: the current sector
1033  * blk_rq_bytes()		: bytes left in the entire request
1034  * blk_rq_cur_bytes()		: bytes left in the current segment
1035  * blk_rq_sectors()		: sectors left in the entire request
1036  * blk_rq_cur_sectors()		: sectors left in the current segment
1037  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1038  */
1039 static inline sector_t blk_rq_pos(const struct request *rq)
1040 {
1041 	return rq->__sector;
1042 }
1043 
1044 static inline unsigned int blk_rq_bytes(const struct request *rq)
1045 {
1046 	return rq->__data_len;
1047 }
1048 
1049 static inline int blk_rq_cur_bytes(const struct request *rq)
1050 {
1051 	if (!rq->bio)
1052 		return 0;
1053 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1054 		return rq->bio->bi_iter.bi_size;
1055 	return bio_iovec(rq->bio).bv_len;
1056 }
1057 
1058 static inline unsigned int blk_rq_sectors(const struct request *rq)
1059 {
1060 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1061 }
1062 
1063 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1064 {
1065 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1066 }
1067 
1068 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1069 {
1070 	return rq->stats_sectors;
1071 }
1072 
1073 /*
1074  * Some commands like WRITE SAME have a payload or data transfer size which
1075  * is different from the size of the request.  Any driver that supports such
1076  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1077  * calculate the data transfer size.
1078  */
1079 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1080 {
1081 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1082 		return rq->special_vec.bv_len;
1083 	return blk_rq_bytes(rq);
1084 }
1085 
1086 /*
1087  * Return the first full biovec in the request.  The caller needs to check that
1088  * there are any bvecs before calling this helper.
1089  */
1090 static inline struct bio_vec req_bvec(struct request *rq)
1091 {
1092 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1093 		return rq->special_vec;
1094 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1095 }
1096 
1097 static inline unsigned int blk_rq_count_bios(struct request *rq)
1098 {
1099 	unsigned int nr_bios = 0;
1100 	struct bio *bio;
1101 
1102 	__rq_for_each_bio(bio, rq)
1103 		nr_bios++;
1104 
1105 	return nr_bios;
1106 }
1107 
1108 void blk_steal_bios(struct bio_list *list, struct request *rq);
1109 
1110 /*
1111  * Request completion related functions.
1112  *
1113  * blk_update_request() completes given number of bytes and updates
1114  * the request without completing it.
1115  */
1116 bool blk_update_request(struct request *rq, blk_status_t error,
1117 			       unsigned int nr_bytes);
1118 void blk_abort_request(struct request *);
1119 
1120 /*
1121  * Number of physical segments as sent to the device.
1122  *
1123  * Normally this is the number of discontiguous data segments sent by the
1124  * submitter.  But for data-less command like discard we might have no
1125  * actual data segments submitted, but the driver might have to add it's
1126  * own special payload.  In that case we still return 1 here so that this
1127  * special payload will be mapped.
1128  */
1129 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1130 {
1131 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1132 		return 1;
1133 	return rq->nr_phys_segments;
1134 }
1135 
1136 /*
1137  * Number of discard segments (or ranges) the driver needs to fill in.
1138  * Each discard bio merged into a request is counted as one segment.
1139  */
1140 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1141 {
1142 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1143 }
1144 
1145 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1146 		struct scatterlist *sglist, struct scatterlist **last_sg);
1147 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1148 		struct scatterlist *sglist)
1149 {
1150 	struct scatterlist *last_sg = NULL;
1151 
1152 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1153 }
1154 void blk_dump_rq_flags(struct request *, char *);
1155 
1156 #ifdef CONFIG_BLK_DEV_ZONED
1157 static inline unsigned int blk_rq_zone_no(struct request *rq)
1158 {
1159 	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1160 }
1161 
1162 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1163 {
1164 	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1165 }
1166 
1167 bool blk_req_needs_zone_write_lock(struct request *rq);
1168 bool blk_req_zone_write_trylock(struct request *rq);
1169 void __blk_req_zone_write_lock(struct request *rq);
1170 void __blk_req_zone_write_unlock(struct request *rq);
1171 
1172 static inline void blk_req_zone_write_lock(struct request *rq)
1173 {
1174 	if (blk_req_needs_zone_write_lock(rq))
1175 		__blk_req_zone_write_lock(rq);
1176 }
1177 
1178 static inline void blk_req_zone_write_unlock(struct request *rq)
1179 {
1180 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1181 		__blk_req_zone_write_unlock(rq);
1182 }
1183 
1184 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1185 {
1186 	return rq->q->disk->seq_zones_wlock &&
1187 		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1188 }
1189 
1190 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1191 {
1192 	if (!blk_req_needs_zone_write_lock(rq))
1193 		return true;
1194 	return !blk_req_zone_is_write_locked(rq);
1195 }
1196 #else /* CONFIG_BLK_DEV_ZONED */
1197 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1198 {
1199 	return false;
1200 }
1201 
1202 static inline void blk_req_zone_write_lock(struct request *rq)
1203 {
1204 }
1205 
1206 static inline void blk_req_zone_write_unlock(struct request *rq)
1207 {
1208 }
1209 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1210 {
1211 	return false;
1212 }
1213 
1214 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1215 {
1216 	return true;
1217 }
1218 #endif /* CONFIG_BLK_DEV_ZONED */
1219 
1220 #endif /* BLK_MQ_H */
1221