xref: /linux/include/linux/blk-mq.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14 
15 #define BLKDEV_MIN_RQ	4
16 #define BLKDEV_DEFAULT_RQ	128
17 
18 enum rq_end_io_ret {
19 	RQ_END_IO_NONE,
20 	RQ_END_IO_FREE,
21 };
22 
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24 
25 /*
26  * request flags */
27 typedef __u32 __bitwise req_flags_t;
28 
29 /* drive already may have started this one */
30 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
31 /* may not be passed by ioscheduler */
32 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
33 /* request for flush sequence */
34 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
35 /* merge of different types, fail separately */
36 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
37 /* track inflight for MQ */
38 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
39 /* don't call prep for this one */
40 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
41 /* vaguely specified driver internal error.  Ignored by the block layer */
42 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
43 /* don't warn about errors */
44 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
45 /* elevator private data attached */
46 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM			((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS		((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
56    bio chain. */
57 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
60 /* already slept for hybrid poll */
61 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
62 /* ->timeout has been called, don't expire again */
63 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
64 /* queue has elevator attached */
65 #define RQF_ELV			((__force req_flags_t)(1 << 22))
66 #define RQF_RESV			((__force req_flags_t)(1 << 23))
67 
68 /* flags that prevent us from merging requests: */
69 #define RQF_NOMERGE_FLAGS \
70 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
71 
72 enum mq_rq_state {
73 	MQ_RQ_IDLE		= 0,
74 	MQ_RQ_IN_FLIGHT		= 1,
75 	MQ_RQ_COMPLETE		= 2,
76 };
77 
78 /*
79  * Try to put the fields that are referenced together in the same cacheline.
80  *
81  * If you modify this structure, make sure to update blk_rq_init() and
82  * especially blk_mq_rq_ctx_init() to take care of the added fields.
83  */
84 struct request {
85 	struct request_queue *q;
86 	struct blk_mq_ctx *mq_ctx;
87 	struct blk_mq_hw_ctx *mq_hctx;
88 
89 	blk_opf_t cmd_flags;		/* op and common flags */
90 	req_flags_t rq_flags;
91 
92 	int tag;
93 	int internal_tag;
94 
95 	unsigned int timeout;
96 
97 	/* the following two fields are internal, NEVER access directly */
98 	unsigned int __data_len;	/* total data len */
99 	sector_t __sector;		/* sector cursor */
100 
101 	struct bio *bio;
102 	struct bio *biotail;
103 
104 	union {
105 		struct list_head queuelist;
106 		struct request *rq_next;
107 	};
108 
109 	struct block_device *part;
110 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
111 	/* Time that the first bio started allocating this request. */
112 	u64 alloc_time_ns;
113 #endif
114 	/* Time that this request was allocated for this IO. */
115 	u64 start_time_ns;
116 	/* Time that I/O was submitted to the device. */
117 	u64 io_start_time_ns;
118 
119 #ifdef CONFIG_BLK_WBT
120 	unsigned short wbt_flags;
121 #endif
122 	/*
123 	 * rq sectors used for blk stats. It has the same value
124 	 * with blk_rq_sectors(rq), except that it never be zeroed
125 	 * by completion.
126 	 */
127 	unsigned short stats_sectors;
128 
129 	/*
130 	 * Number of scatter-gather DMA addr+len pairs after
131 	 * physical address coalescing is performed.
132 	 */
133 	unsigned short nr_phys_segments;
134 
135 #ifdef CONFIG_BLK_DEV_INTEGRITY
136 	unsigned short nr_integrity_segments;
137 #endif
138 
139 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
140 	struct bio_crypt_ctx *crypt_ctx;
141 	struct blk_crypto_keyslot *crypt_keyslot;
142 #endif
143 
144 	unsigned short ioprio;
145 
146 	enum mq_rq_state state;
147 	atomic_t ref;
148 
149 	unsigned long deadline;
150 
151 	/*
152 	 * The hash is used inside the scheduler, and killed once the
153 	 * request reaches the dispatch list. The ipi_list is only used
154 	 * to queue the request for softirq completion, which is long
155 	 * after the request has been unhashed (and even removed from
156 	 * the dispatch list).
157 	 */
158 	union {
159 		struct hlist_node hash;	/* merge hash */
160 		struct llist_node ipi_list;
161 	};
162 
163 	/*
164 	 * The rb_node is only used inside the io scheduler, requests
165 	 * are pruned when moved to the dispatch queue. So let the
166 	 * completion_data share space with the rb_node.
167 	 */
168 	union {
169 		struct rb_node rb_node;	/* sort/lookup */
170 		struct bio_vec special_vec;
171 		void *completion_data;
172 	};
173 
174 
175 	/*
176 	 * Three pointers are available for the IO schedulers, if they need
177 	 * more they have to dynamically allocate it.  Flush requests are
178 	 * never put on the IO scheduler. So let the flush fields share
179 	 * space with the elevator data.
180 	 */
181 	union {
182 		struct {
183 			struct io_cq		*icq;
184 			void			*priv[2];
185 		} elv;
186 
187 		struct {
188 			unsigned int		seq;
189 			struct list_head	list;
190 			rq_end_io_fn		*saved_end_io;
191 		} flush;
192 	};
193 
194 	union {
195 		struct __call_single_data csd;
196 		u64 fifo_time;
197 	};
198 
199 	/*
200 	 * completion callback.
201 	 */
202 	rq_end_io_fn *end_io;
203 	void *end_io_data;
204 };
205 
206 static inline enum req_op req_op(const struct request *req)
207 {
208 	return req->cmd_flags & REQ_OP_MASK;
209 }
210 
211 static inline bool blk_rq_is_passthrough(struct request *rq)
212 {
213 	return blk_op_is_passthrough(req_op(rq));
214 }
215 
216 static inline unsigned short req_get_ioprio(struct request *req)
217 {
218 	return req->ioprio;
219 }
220 
221 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
222 
223 #define rq_dma_dir(rq) \
224 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
225 
226 #define rq_list_add(listptr, rq)	do {		\
227 	(rq)->rq_next = *(listptr);			\
228 	*(listptr) = rq;				\
229 } while (0)
230 
231 #define rq_list_pop(listptr)				\
232 ({							\
233 	struct request *__req = NULL;			\
234 	if ((listptr) && *(listptr))	{		\
235 		__req = *(listptr);			\
236 		*(listptr) = __req->rq_next;		\
237 	}						\
238 	__req;						\
239 })
240 
241 #define rq_list_peek(listptr)				\
242 ({							\
243 	struct request *__req = NULL;			\
244 	if ((listptr) && *(listptr))			\
245 		__req = *(listptr);			\
246 	__req;						\
247 })
248 
249 #define rq_list_for_each(listptr, pos)			\
250 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
251 
252 #define rq_list_for_each_safe(listptr, pos, nxt)			\
253 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
254 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
255 
256 #define rq_list_next(rq)	(rq)->rq_next
257 #define rq_list_empty(list)	((list) == (struct request *) NULL)
258 
259 /**
260  * rq_list_move() - move a struct request from one list to another
261  * @src: The source list @rq is currently in
262  * @dst: The destination list that @rq will be appended to
263  * @rq: The request to move
264  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
265  */
266 static inline void rq_list_move(struct request **src, struct request **dst,
267 				struct request *rq, struct request *prev)
268 {
269 	if (prev)
270 		prev->rq_next = rq->rq_next;
271 	else
272 		*src = rq->rq_next;
273 	rq_list_add(dst, rq);
274 }
275 
276 /**
277  * enum blk_eh_timer_return - How the timeout handler should proceed
278  * @BLK_EH_DONE: The block driver completed the command or will complete it at
279  *	a later time.
280  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
281  *	request to complete.
282  */
283 enum blk_eh_timer_return {
284 	BLK_EH_DONE,
285 	BLK_EH_RESET_TIMER,
286 };
287 
288 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
289 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
290 
291 /**
292  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
293  * block device
294  */
295 struct blk_mq_hw_ctx {
296 	struct {
297 		/** @lock: Protects the dispatch list. */
298 		spinlock_t		lock;
299 		/**
300 		 * @dispatch: Used for requests that are ready to be
301 		 * dispatched to the hardware but for some reason (e.g. lack of
302 		 * resources) could not be sent to the hardware. As soon as the
303 		 * driver can send new requests, requests at this list will
304 		 * be sent first for a fairer dispatch.
305 		 */
306 		struct list_head	dispatch;
307 		 /**
308 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
309 		  * queue (active, scheduled to restart, stopped).
310 		  */
311 		unsigned long		state;
312 	} ____cacheline_aligned_in_smp;
313 
314 	/**
315 	 * @run_work: Used for scheduling a hardware queue run at a later time.
316 	 */
317 	struct delayed_work	run_work;
318 	/** @cpumask: Map of available CPUs where this hctx can run. */
319 	cpumask_var_t		cpumask;
320 	/**
321 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
322 	 * selection from @cpumask.
323 	 */
324 	int			next_cpu;
325 	/**
326 	 * @next_cpu_batch: Counter of how many works left in the batch before
327 	 * changing to the next CPU.
328 	 */
329 	int			next_cpu_batch;
330 
331 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
332 	unsigned long		flags;
333 
334 	/**
335 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
336 	 * queue. It's up to the IO scheduler how to use this pointer.
337 	 */
338 	void			*sched_data;
339 	/**
340 	 * @queue: Pointer to the request queue that owns this hardware context.
341 	 */
342 	struct request_queue	*queue;
343 	/** @fq: Queue of requests that need to perform a flush operation. */
344 	struct blk_flush_queue	*fq;
345 
346 	/**
347 	 * @driver_data: Pointer to data owned by the block driver that created
348 	 * this hctx
349 	 */
350 	void			*driver_data;
351 
352 	/**
353 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
354 	 * pending request in that software queue.
355 	 */
356 	struct sbitmap		ctx_map;
357 
358 	/**
359 	 * @dispatch_from: Software queue to be used when no scheduler was
360 	 * selected.
361 	 */
362 	struct blk_mq_ctx	*dispatch_from;
363 	/**
364 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
365 	 * decide if the hw_queue is busy using Exponential Weighted Moving
366 	 * Average algorithm.
367 	 */
368 	unsigned int		dispatch_busy;
369 
370 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
371 	unsigned short		type;
372 	/** @nr_ctx: Number of software queues. */
373 	unsigned short		nr_ctx;
374 	/** @ctxs: Array of software queues. */
375 	struct blk_mq_ctx	**ctxs;
376 
377 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
378 	spinlock_t		dispatch_wait_lock;
379 	/**
380 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
381 	 * available at the moment, to wait for another try in the future.
382 	 */
383 	wait_queue_entry_t	dispatch_wait;
384 
385 	/**
386 	 * @wait_index: Index of next available dispatch_wait queue to insert
387 	 * requests.
388 	 */
389 	atomic_t		wait_index;
390 
391 	/**
392 	 * @tags: Tags owned by the block driver. A tag at this set is only
393 	 * assigned when a request is dispatched from a hardware queue.
394 	 */
395 	struct blk_mq_tags	*tags;
396 	/**
397 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
398 	 * scheduler associated with a request queue, a tag is assigned when
399 	 * that request is allocated. Else, this member is not used.
400 	 */
401 	struct blk_mq_tags	*sched_tags;
402 
403 	/** @queued: Number of queued requests. */
404 	unsigned long		queued;
405 	/** @run: Number of dispatched requests. */
406 	unsigned long		run;
407 
408 	/** @numa_node: NUMA node the storage adapter has been connected to. */
409 	unsigned int		numa_node;
410 	/** @queue_num: Index of this hardware queue. */
411 	unsigned int		queue_num;
412 
413 	/**
414 	 * @nr_active: Number of active requests. Only used when a tag set is
415 	 * shared across request queues.
416 	 */
417 	atomic_t		nr_active;
418 
419 	/** @cpuhp_online: List to store request if CPU is going to die */
420 	struct hlist_node	cpuhp_online;
421 	/** @cpuhp_dead: List to store request if some CPU die. */
422 	struct hlist_node	cpuhp_dead;
423 	/** @kobj: Kernel object for sysfs. */
424 	struct kobject		kobj;
425 
426 #ifdef CONFIG_BLK_DEBUG_FS
427 	/**
428 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
429 	 * as cpu<cpu_number>.
430 	 */
431 	struct dentry		*debugfs_dir;
432 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
433 	struct dentry		*sched_debugfs_dir;
434 #endif
435 
436 	/**
437 	 * @hctx_list: if this hctx is not in use, this is an entry in
438 	 * q->unused_hctx_list.
439 	 */
440 	struct list_head	hctx_list;
441 };
442 
443 /**
444  * struct blk_mq_queue_map - Map software queues to hardware queues
445  * @mq_map:       CPU ID to hardware queue index map. This is an array
446  *	with nr_cpu_ids elements. Each element has a value in the range
447  *	[@queue_offset, @queue_offset + @nr_queues).
448  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
449  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
450  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
451  *	set of hardware queues.
452  */
453 struct blk_mq_queue_map {
454 	unsigned int *mq_map;
455 	unsigned int nr_queues;
456 	unsigned int queue_offset;
457 };
458 
459 /**
460  * enum hctx_type - Type of hardware queue
461  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
462  * @HCTX_TYPE_READ:	Just for READ I/O.
463  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
464  * @HCTX_MAX_TYPES:	Number of types of hctx.
465  */
466 enum hctx_type {
467 	HCTX_TYPE_DEFAULT,
468 	HCTX_TYPE_READ,
469 	HCTX_TYPE_POLL,
470 
471 	HCTX_MAX_TYPES,
472 };
473 
474 /**
475  * struct blk_mq_tag_set - tag set that can be shared between request queues
476  * @ops:	   Pointers to functions that implement block driver behavior.
477  * @map:	   One or more ctx -> hctx mappings. One map exists for each
478  *		   hardware queue type (enum hctx_type) that the driver wishes
479  *		   to support. There are no restrictions on maps being of the
480  *		   same size, and it's perfectly legal to share maps between
481  *		   types.
482  * @nr_maps:	   Number of elements in the @map array. A number in the range
483  *		   [1, HCTX_MAX_TYPES].
484  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
485  *		   owns this data structure.
486  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
487  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
488  *		   allocations.
489  * @cmd_size:	   Number of additional bytes to allocate per request. The block
490  *		   driver owns these additional bytes.
491  * @numa_node:	   NUMA node the storage adapter has been connected to.
492  * @timeout:	   Request processing timeout in jiffies.
493  * @flags:	   Zero or more BLK_MQ_F_* flags.
494  * @driver_data:   Pointer to data owned by the block driver that created this
495  *		   tag set.
496  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
497  *		   elements.
498  * @shared_tags:
499  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
500  *		   shared by all @tags.
501  * @tag_list_lock: Serializes tag_list accesses.
502  * @tag_list:	   List of the request queues that use this tag set. See also
503  *		   request_queue.tag_set_list.
504  * @srcu:	   Use as lock when type of the request queue is blocking
505  *		   (BLK_MQ_F_BLOCKING).
506  */
507 struct blk_mq_tag_set {
508 	const struct blk_mq_ops	*ops;
509 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
510 	unsigned int		nr_maps;
511 	unsigned int		nr_hw_queues;
512 	unsigned int		queue_depth;
513 	unsigned int		reserved_tags;
514 	unsigned int		cmd_size;
515 	int			numa_node;
516 	unsigned int		timeout;
517 	unsigned int		flags;
518 	void			*driver_data;
519 
520 	struct blk_mq_tags	**tags;
521 
522 	struct blk_mq_tags	*shared_tags;
523 
524 	struct mutex		tag_list_lock;
525 	struct list_head	tag_list;
526 	struct srcu_struct	*srcu;
527 };
528 
529 /**
530  * struct blk_mq_queue_data - Data about a request inserted in a queue
531  *
532  * @rq:   Request pointer.
533  * @last: If it is the last request in the queue.
534  */
535 struct blk_mq_queue_data {
536 	struct request *rq;
537 	bool last;
538 };
539 
540 typedef bool (busy_tag_iter_fn)(struct request *, void *);
541 
542 /**
543  * struct blk_mq_ops - Callback functions that implements block driver
544  * behaviour.
545  */
546 struct blk_mq_ops {
547 	/**
548 	 * @queue_rq: Queue a new request from block IO.
549 	 */
550 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
551 				 const struct blk_mq_queue_data *);
552 
553 	/**
554 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
555 	 * requests to hardware, it must define this function. In case of errors
556 	 * that make us stop issuing further requests, this hook serves the
557 	 * purpose of kicking the hardware (which the last request otherwise
558 	 * would have done).
559 	 */
560 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
561 
562 	/**
563 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
564 	 * that each request belongs to the same queue. If the driver doesn't
565 	 * empty the @rqlist completely, then the rest will be queued
566 	 * individually by the block layer upon return.
567 	 */
568 	void (*queue_rqs)(struct request **rqlist);
569 
570 	/**
571 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
572 	 * run, it is driver's responsibility to release the
573 	 * reserved budget. Also we have to handle failure case
574 	 * of .get_budget for avoiding I/O deadlock.
575 	 */
576 	int (*get_budget)(struct request_queue *);
577 
578 	/**
579 	 * @put_budget: Release the reserved budget.
580 	 */
581 	void (*put_budget)(struct request_queue *, int);
582 
583 	/**
584 	 * @set_rq_budget_token: store rq's budget token
585 	 */
586 	void (*set_rq_budget_token)(struct request *, int);
587 	/**
588 	 * @get_rq_budget_token: retrieve rq's budget token
589 	 */
590 	int (*get_rq_budget_token)(struct request *);
591 
592 	/**
593 	 * @timeout: Called on request timeout.
594 	 */
595 	enum blk_eh_timer_return (*timeout)(struct request *);
596 
597 	/**
598 	 * @poll: Called to poll for completion of a specific tag.
599 	 */
600 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
601 
602 	/**
603 	 * @complete: Mark the request as complete.
604 	 */
605 	void (*complete)(struct request *);
606 
607 	/**
608 	 * @init_hctx: Called when the block layer side of a hardware queue has
609 	 * been set up, allowing the driver to allocate/init matching
610 	 * structures.
611 	 */
612 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
613 	/**
614 	 * @exit_hctx: Ditto for exit/teardown.
615 	 */
616 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
617 
618 	/**
619 	 * @init_request: Called for every command allocated by the block layer
620 	 * to allow the driver to set up driver specific data.
621 	 *
622 	 * Tag greater than or equal to queue_depth is for setting up
623 	 * flush request.
624 	 */
625 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
626 			    unsigned int, unsigned int);
627 	/**
628 	 * @exit_request: Ditto for exit/teardown.
629 	 */
630 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
631 			     unsigned int);
632 
633 	/**
634 	 * @cleanup_rq: Called before freeing one request which isn't completed
635 	 * yet, and usually for freeing the driver private data.
636 	 */
637 	void (*cleanup_rq)(struct request *);
638 
639 	/**
640 	 * @busy: If set, returns whether or not this queue currently is busy.
641 	 */
642 	bool (*busy)(struct request_queue *);
643 
644 	/**
645 	 * @map_queues: This allows drivers specify their own queue mapping by
646 	 * overriding the setup-time function that builds the mq_map.
647 	 */
648 	void (*map_queues)(struct blk_mq_tag_set *set);
649 
650 #ifdef CONFIG_BLK_DEBUG_FS
651 	/**
652 	 * @show_rq: Used by the debugfs implementation to show driver-specific
653 	 * information about a request.
654 	 */
655 	void (*show_rq)(struct seq_file *m, struct request *rq);
656 #endif
657 };
658 
659 enum {
660 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
661 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
662 	/*
663 	 * Set when this device requires underlying blk-mq device for
664 	 * completing IO:
665 	 */
666 	BLK_MQ_F_STACKING	= 1 << 2,
667 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
668 	BLK_MQ_F_BLOCKING	= 1 << 5,
669 	/* Do not allow an I/O scheduler to be configured. */
670 	BLK_MQ_F_NO_SCHED	= 1 << 6,
671 	/*
672 	 * Select 'none' during queue registration in case of a single hwq
673 	 * or shared hwqs instead of 'mq-deadline'.
674 	 */
675 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
676 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
677 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
678 
679 	BLK_MQ_S_STOPPED	= 0,
680 	BLK_MQ_S_TAG_ACTIVE	= 1,
681 	BLK_MQ_S_SCHED_RESTART	= 2,
682 
683 	/* hw queue is inactive after all its CPUs become offline */
684 	BLK_MQ_S_INACTIVE	= 3,
685 
686 	BLK_MQ_MAX_DEPTH	= 10240,
687 
688 	BLK_MQ_CPU_WORK_BATCH	= 8,
689 };
690 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
691 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
692 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
693 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
694 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
695 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
696 
697 #define BLK_MQ_NO_HCTX_IDX	(-1U)
698 
699 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
700 		struct lock_class_key *lkclass);
701 #define blk_mq_alloc_disk(set, queuedata)				\
702 ({									\
703 	static struct lock_class_key __key;				\
704 									\
705 	__blk_mq_alloc_disk(set, queuedata, &__key);			\
706 })
707 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
708 		struct lock_class_key *lkclass);
709 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
710 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
711 		struct request_queue *q);
712 void blk_mq_destroy_queue(struct request_queue *);
713 
714 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
715 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
716 		const struct blk_mq_ops *ops, unsigned int queue_depth,
717 		unsigned int set_flags);
718 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
719 
720 void blk_mq_free_request(struct request *rq);
721 
722 bool blk_mq_queue_inflight(struct request_queue *q);
723 
724 enum {
725 	/* return when out of requests */
726 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
727 	/* allocate from reserved pool */
728 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
729 	/* set RQF_PM */
730 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
731 };
732 
733 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
734 		blk_mq_req_flags_t flags);
735 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
736 		blk_opf_t opf, blk_mq_req_flags_t flags,
737 		unsigned int hctx_idx);
738 
739 /*
740  * Tag address space map.
741  */
742 struct blk_mq_tags {
743 	unsigned int nr_tags;
744 	unsigned int nr_reserved_tags;
745 
746 	atomic_t active_queues;
747 
748 	struct sbitmap_queue bitmap_tags;
749 	struct sbitmap_queue breserved_tags;
750 
751 	struct request **rqs;
752 	struct request **static_rqs;
753 	struct list_head page_list;
754 
755 	/*
756 	 * used to clear request reference in rqs[] before freeing one
757 	 * request pool
758 	 */
759 	spinlock_t lock;
760 };
761 
762 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
763 					       unsigned int tag)
764 {
765 	if (tag < tags->nr_tags) {
766 		prefetch(tags->rqs[tag]);
767 		return tags->rqs[tag];
768 	}
769 
770 	return NULL;
771 }
772 
773 enum {
774 	BLK_MQ_UNIQUE_TAG_BITS = 16,
775 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
776 };
777 
778 u32 blk_mq_unique_tag(struct request *rq);
779 
780 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
781 {
782 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
783 }
784 
785 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
786 {
787 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
788 }
789 
790 /**
791  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
792  * @rq: target request.
793  */
794 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
795 {
796 	return READ_ONCE(rq->state);
797 }
798 
799 static inline int blk_mq_request_started(struct request *rq)
800 {
801 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
802 }
803 
804 static inline int blk_mq_request_completed(struct request *rq)
805 {
806 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
807 }
808 
809 /*
810  *
811  * Set the state to complete when completing a request from inside ->queue_rq.
812  * This is used by drivers that want to ensure special complete actions that
813  * need access to the request are called on failure, e.g. by nvme for
814  * multipathing.
815  */
816 static inline void blk_mq_set_request_complete(struct request *rq)
817 {
818 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
819 }
820 
821 /*
822  * Complete the request directly instead of deferring it to softirq or
823  * completing it another CPU. Useful in preemptible instead of an interrupt.
824  */
825 static inline void blk_mq_complete_request_direct(struct request *rq,
826 		   void (*complete)(struct request *rq))
827 {
828 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
829 	complete(rq);
830 }
831 
832 void blk_mq_start_request(struct request *rq);
833 void blk_mq_end_request(struct request *rq, blk_status_t error);
834 void __blk_mq_end_request(struct request *rq, blk_status_t error);
835 void blk_mq_end_request_batch(struct io_comp_batch *ib);
836 
837 /*
838  * Only need start/end time stamping if we have iostat or
839  * blk stats enabled, or using an IO scheduler.
840  */
841 static inline bool blk_mq_need_time_stamp(struct request *rq)
842 {
843 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
844 }
845 
846 static inline bool blk_mq_is_reserved_rq(struct request *rq)
847 {
848 	return rq->rq_flags & RQF_RESV;
849 }
850 
851 /*
852  * Batched completions only work when there is no I/O error and no special
853  * ->end_io handler.
854  */
855 static inline bool blk_mq_add_to_batch(struct request *req,
856 				       struct io_comp_batch *iob, int ioerror,
857 				       void (*complete)(struct io_comp_batch *))
858 {
859 	if (!iob || (req->rq_flags & RQF_ELV) || ioerror ||
860 			(req->end_io && !blk_rq_is_passthrough(req)))
861 		return false;
862 
863 	if (!iob->complete)
864 		iob->complete = complete;
865 	else if (iob->complete != complete)
866 		return false;
867 	iob->need_ts |= blk_mq_need_time_stamp(req);
868 	rq_list_add(&iob->req_list, req);
869 	return true;
870 }
871 
872 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
873 void blk_mq_kick_requeue_list(struct request_queue *q);
874 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
875 void blk_mq_complete_request(struct request *rq);
876 bool blk_mq_complete_request_remote(struct request *rq);
877 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
878 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
879 void blk_mq_stop_hw_queues(struct request_queue *q);
880 void blk_mq_start_hw_queues(struct request_queue *q);
881 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
882 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
883 void blk_mq_quiesce_queue(struct request_queue *q);
884 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
885 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
886 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
887 void blk_mq_unquiesce_queue(struct request_queue *q);
888 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
889 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
890 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
891 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
892 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
893 		busy_tag_iter_fn *fn, void *priv);
894 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
895 void blk_mq_freeze_queue(struct request_queue *q);
896 void blk_mq_unfreeze_queue(struct request_queue *q);
897 void blk_freeze_queue_start(struct request_queue *q);
898 void blk_mq_freeze_queue_wait(struct request_queue *q);
899 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
900 				     unsigned long timeout);
901 
902 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
903 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
904 
905 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
906 
907 unsigned int blk_mq_rq_cpu(struct request *rq);
908 
909 bool __blk_should_fake_timeout(struct request_queue *q);
910 static inline bool blk_should_fake_timeout(struct request_queue *q)
911 {
912 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
913 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
914 		return __blk_should_fake_timeout(q);
915 	return false;
916 }
917 
918 /**
919  * blk_mq_rq_from_pdu - cast a PDU to a request
920  * @pdu: the PDU (Protocol Data Unit) to be casted
921  *
922  * Return: request
923  *
924  * Driver command data is immediately after the request. So subtract request
925  * size to get back to the original request.
926  */
927 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
928 {
929 	return pdu - sizeof(struct request);
930 }
931 
932 /**
933  * blk_mq_rq_to_pdu - cast a request to a PDU
934  * @rq: the request to be casted
935  *
936  * Return: pointer to the PDU
937  *
938  * Driver command data is immediately after the request. So add request to get
939  * the PDU.
940  */
941 static inline void *blk_mq_rq_to_pdu(struct request *rq)
942 {
943 	return rq + 1;
944 }
945 
946 #define queue_for_each_hw_ctx(q, hctx, i)				\
947 	xa_for_each(&(q)->hctx_table, (i), (hctx))
948 
949 #define hctx_for_each_ctx(hctx, ctx, i)					\
950 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
951 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
952 
953 static inline void blk_mq_cleanup_rq(struct request *rq)
954 {
955 	if (rq->q->mq_ops->cleanup_rq)
956 		rq->q->mq_ops->cleanup_rq(rq);
957 }
958 
959 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
960 		unsigned int nr_segs)
961 {
962 	rq->nr_phys_segments = nr_segs;
963 	rq->__data_len = bio->bi_iter.bi_size;
964 	rq->bio = rq->biotail = bio;
965 	rq->ioprio = bio_prio(bio);
966 }
967 
968 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
969 		struct lock_class_key *key);
970 
971 static inline bool rq_is_sync(struct request *rq)
972 {
973 	return op_is_sync(rq->cmd_flags);
974 }
975 
976 void blk_rq_init(struct request_queue *q, struct request *rq);
977 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
978 		struct bio_set *bs, gfp_t gfp_mask,
979 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
980 void blk_rq_unprep_clone(struct request *rq);
981 blk_status_t blk_insert_cloned_request(struct request *rq);
982 
983 struct rq_map_data {
984 	struct page **pages;
985 	unsigned long offset;
986 	unsigned short page_order;
987 	unsigned short nr_entries;
988 	bool null_mapped;
989 	bool from_user;
990 };
991 
992 int blk_rq_map_user(struct request_queue *, struct request *,
993 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
994 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
995 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
996 int blk_rq_map_user_iov(struct request_queue *, struct request *,
997 		struct rq_map_data *, const struct iov_iter *, gfp_t);
998 int blk_rq_unmap_user(struct bio *);
999 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1000 		unsigned int, gfp_t);
1001 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1002 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1003 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1004 bool blk_rq_is_poll(struct request *rq);
1005 
1006 struct req_iterator {
1007 	struct bvec_iter iter;
1008 	struct bio *bio;
1009 };
1010 
1011 #define __rq_for_each_bio(_bio, rq)	\
1012 	if ((rq->bio))			\
1013 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1014 
1015 #define rq_for_each_segment(bvl, _rq, _iter)			\
1016 	__rq_for_each_bio(_iter.bio, _rq)			\
1017 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1018 
1019 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1020 	__rq_for_each_bio(_iter.bio, _rq)			\
1021 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1022 
1023 #define rq_iter_last(bvec, _iter)				\
1024 		(_iter.bio->bi_next == NULL &&			\
1025 		 bio_iter_last(bvec, _iter.iter))
1026 
1027 /*
1028  * blk_rq_pos()			: the current sector
1029  * blk_rq_bytes()		: bytes left in the entire request
1030  * blk_rq_cur_bytes()		: bytes left in the current segment
1031  * blk_rq_sectors()		: sectors left in the entire request
1032  * blk_rq_cur_sectors()		: sectors left in the current segment
1033  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1034  */
1035 static inline sector_t blk_rq_pos(const struct request *rq)
1036 {
1037 	return rq->__sector;
1038 }
1039 
1040 static inline unsigned int blk_rq_bytes(const struct request *rq)
1041 {
1042 	return rq->__data_len;
1043 }
1044 
1045 static inline int blk_rq_cur_bytes(const struct request *rq)
1046 {
1047 	if (!rq->bio)
1048 		return 0;
1049 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1050 		return rq->bio->bi_iter.bi_size;
1051 	return bio_iovec(rq->bio).bv_len;
1052 }
1053 
1054 static inline unsigned int blk_rq_sectors(const struct request *rq)
1055 {
1056 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1057 }
1058 
1059 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1060 {
1061 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1062 }
1063 
1064 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1065 {
1066 	return rq->stats_sectors;
1067 }
1068 
1069 /*
1070  * Some commands like WRITE SAME have a payload or data transfer size which
1071  * is different from the size of the request.  Any driver that supports such
1072  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1073  * calculate the data transfer size.
1074  */
1075 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1076 {
1077 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1078 		return rq->special_vec.bv_len;
1079 	return blk_rq_bytes(rq);
1080 }
1081 
1082 /*
1083  * Return the first full biovec in the request.  The caller needs to check that
1084  * there are any bvecs before calling this helper.
1085  */
1086 static inline struct bio_vec req_bvec(struct request *rq)
1087 {
1088 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1089 		return rq->special_vec;
1090 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1091 }
1092 
1093 static inline unsigned int blk_rq_count_bios(struct request *rq)
1094 {
1095 	unsigned int nr_bios = 0;
1096 	struct bio *bio;
1097 
1098 	__rq_for_each_bio(bio, rq)
1099 		nr_bios++;
1100 
1101 	return nr_bios;
1102 }
1103 
1104 void blk_steal_bios(struct bio_list *list, struct request *rq);
1105 
1106 /*
1107  * Request completion related functions.
1108  *
1109  * blk_update_request() completes given number of bytes and updates
1110  * the request without completing it.
1111  */
1112 bool blk_update_request(struct request *rq, blk_status_t error,
1113 			       unsigned int nr_bytes);
1114 void blk_abort_request(struct request *);
1115 
1116 /*
1117  * Number of physical segments as sent to the device.
1118  *
1119  * Normally this is the number of discontiguous data segments sent by the
1120  * submitter.  But for data-less command like discard we might have no
1121  * actual data segments submitted, but the driver might have to add it's
1122  * own special payload.  In that case we still return 1 here so that this
1123  * special payload will be mapped.
1124  */
1125 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1126 {
1127 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1128 		return 1;
1129 	return rq->nr_phys_segments;
1130 }
1131 
1132 /*
1133  * Number of discard segments (or ranges) the driver needs to fill in.
1134  * Each discard bio merged into a request is counted as one segment.
1135  */
1136 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1137 {
1138 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1139 }
1140 
1141 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1142 		struct scatterlist *sglist, struct scatterlist **last_sg);
1143 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1144 		struct scatterlist *sglist)
1145 {
1146 	struct scatterlist *last_sg = NULL;
1147 
1148 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1149 }
1150 void blk_dump_rq_flags(struct request *, char *);
1151 
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 static inline unsigned int blk_rq_zone_no(struct request *rq)
1154 {
1155 	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1156 }
1157 
1158 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1159 {
1160 	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1161 }
1162 
1163 bool blk_req_needs_zone_write_lock(struct request *rq);
1164 bool blk_req_zone_write_trylock(struct request *rq);
1165 void __blk_req_zone_write_lock(struct request *rq);
1166 void __blk_req_zone_write_unlock(struct request *rq);
1167 
1168 static inline void blk_req_zone_write_lock(struct request *rq)
1169 {
1170 	if (blk_req_needs_zone_write_lock(rq))
1171 		__blk_req_zone_write_lock(rq);
1172 }
1173 
1174 static inline void blk_req_zone_write_unlock(struct request *rq)
1175 {
1176 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1177 		__blk_req_zone_write_unlock(rq);
1178 }
1179 
1180 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1181 {
1182 	return rq->q->disk->seq_zones_wlock &&
1183 		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1184 }
1185 
1186 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1187 {
1188 	if (!blk_req_needs_zone_write_lock(rq))
1189 		return true;
1190 	return !blk_req_zone_is_write_locked(rq);
1191 }
1192 #else /* CONFIG_BLK_DEV_ZONED */
1193 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1194 {
1195 	return false;
1196 }
1197 
1198 static inline void blk_req_zone_write_lock(struct request *rq)
1199 {
1200 }
1201 
1202 static inline void blk_req_zone_write_unlock(struct request *rq)
1203 {
1204 }
1205 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1206 {
1207 	return false;
1208 }
1209 
1210 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1211 {
1212 	return true;
1213 }
1214 #endif /* CONFIG_BLK_DEV_ZONED */
1215 
1216 #endif /* BLK_MQ_H */
1217