xref: /linux/include/linux/blkdev.h (revision dd093fb0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 
28 struct module;
29 struct request_queue;
30 struct elevator_queue;
31 struct blk_trace;
32 struct request;
33 struct sg_io_hdr;
34 struct blkcg_gq;
35 struct blk_flush_queue;
36 struct kiocb;
37 struct pr_ops;
38 struct rq_qos;
39 struct blk_queue_stats;
40 struct blk_stat_callback;
41 struct blk_crypto_profile;
42 
43 extern const struct device_type disk_type;
44 extern struct device_type part_type;
45 extern struct class block_class;
46 
47 /* Must be consistent with blk_mq_poll_stats_bkt() */
48 #define BLK_MQ_POLL_STATS_BKTS 16
49 
50 /* Doing classic polling */
51 #define BLK_MQ_POLL_CLASSIC -1
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		6
58 
59 #define DISK_MAX_PARTS			256
60 #define DISK_NAME_LEN			32
61 
62 #define PARTITION_META_INFO_VOLNAMELTH	64
63 /*
64  * Enough for the string representation of any kind of UUID plus NULL.
65  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
66  */
67 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
68 
69 struct partition_meta_info {
70 	char uuid[PARTITION_META_INFO_UUIDLTH];
71 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
72 };
73 
74 /**
75  * DOC: genhd capability flags
76  *
77  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
78  * removable media.  When set, the device remains present even when media is not
79  * inserted.  Shall not be set for devices which are removed entirely when the
80  * media is removed.
81  *
82  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
83  * doesn't appear in sysfs, and can't be opened from userspace or using
84  * blkdev_get*. Used for the underlying components of multipath devices.
85  *
86  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
87  * scan for partitions from add_disk, and users can't add partitions manually.
88  *
89  */
90 enum {
91 	GENHD_FL_REMOVABLE			= 1 << 0,
92 	GENHD_FL_HIDDEN				= 1 << 1,
93 	GENHD_FL_NO_PART			= 1 << 2,
94 };
95 
96 enum {
97 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
98 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
99 };
100 
101 enum {
102 	/* Poll even if events_poll_msecs is unset */
103 	DISK_EVENT_FLAG_POLL			= 1 << 0,
104 	/* Forward events to udev */
105 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
106 	/* Block event polling when open for exclusive write */
107 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
108 };
109 
110 struct disk_events;
111 struct badblocks;
112 
113 struct blk_integrity {
114 	const struct blk_integrity_profile	*profile;
115 	unsigned char				flags;
116 	unsigned char				tuple_size;
117 	unsigned char				interval_exp;
118 	unsigned char				tag_size;
119 };
120 
121 struct gendisk {
122 	/*
123 	 * major/first_minor/minors should not be set by any new driver, the
124 	 * block core will take care of allocating them automatically.
125 	 */
126 	int major;
127 	int first_minor;
128 	int minors;
129 
130 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
131 
132 	unsigned short events;		/* supported events */
133 	unsigned short event_flags;	/* flags related to event processing */
134 
135 	struct xarray part_tbl;
136 	struct block_device *part0;
137 
138 	const struct block_device_operations *fops;
139 	struct request_queue *queue;
140 	void *private_data;
141 
142 	struct bio_set bio_split;
143 
144 	int flags;
145 	unsigned long state;
146 #define GD_NEED_PART_SCAN		0
147 #define GD_READ_ONLY			1
148 #define GD_DEAD				2
149 #define GD_NATIVE_CAPACITY		3
150 #define GD_ADDED			4
151 #define GD_SUPPRESS_PART_SCAN		5
152 #define GD_OWNS_QUEUE			6
153 
154 	struct mutex open_mutex;	/* open/close mutex */
155 	unsigned open_partitions;	/* number of open partitions */
156 
157 	struct backing_dev_info	*bdi;
158 	struct kobject queue_kobj;	/* the queue/ directory */
159 	struct kobject *slave_dir;
160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
161 	struct list_head slave_bdevs;
162 #endif
163 	struct timer_rand_state *random;
164 	atomic_t sync_io;		/* RAID */
165 	struct disk_events *ev;
166 #ifdef  CONFIG_BLK_DEV_INTEGRITY
167 	struct kobject integrity_kobj;
168 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
169 
170 #ifdef CONFIG_BLK_DEV_ZONED
171 	/*
172 	 * Zoned block device information for request dispatch control.
173 	 * nr_zones is the total number of zones of the device. This is always
174 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
175 	 * bits which indicates if a zone is conventional (bit set) or
176 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
177 	 * bits which indicates if a zone is write locked, that is, if a write
178 	 * request targeting the zone was dispatched.
179 	 *
180 	 * Reads of this information must be protected with blk_queue_enter() /
181 	 * blk_queue_exit(). Modifying this information is only allowed while
182 	 * no requests are being processed. See also blk_mq_freeze_queue() and
183 	 * blk_mq_unfreeze_queue().
184 	 */
185 	unsigned int		nr_zones;
186 	unsigned int		max_open_zones;
187 	unsigned int		max_active_zones;
188 	unsigned long		*conv_zones_bitmap;
189 	unsigned long		*seq_zones_wlock;
190 #endif /* CONFIG_BLK_DEV_ZONED */
191 
192 #if IS_ENABLED(CONFIG_CDROM)
193 	struct cdrom_device_info *cdi;
194 #endif
195 	int node_id;
196 	struct badblocks *bb;
197 	struct lockdep_map lockdep_map;
198 	u64 diskseq;
199 
200 	/*
201 	 * Independent sector access ranges. This is always NULL for
202 	 * devices that do not have multiple independent access ranges.
203 	 */
204 	struct blk_independent_access_ranges *ia_ranges;
205 };
206 
207 static inline bool disk_live(struct gendisk *disk)
208 {
209 	return !inode_unhashed(disk->part0->bd_inode);
210 }
211 
212 /**
213  * disk_openers - returns how many openers are there for a disk
214  * @disk: disk to check
215  *
216  * This returns the number of openers for a disk.  Note that this value is only
217  * stable if disk->open_mutex is held.
218  *
219  * Note: Due to a quirk in the block layer open code, each open partition is
220  * only counted once even if there are multiple openers.
221  */
222 static inline unsigned int disk_openers(struct gendisk *disk)
223 {
224 	return atomic_read(&disk->part0->bd_openers);
225 }
226 
227 /*
228  * The gendisk is refcounted by the part0 block_device, and the bd_device
229  * therein is also used for device model presentation in sysfs.
230  */
231 #define dev_to_disk(device) \
232 	(dev_to_bdev(device)->bd_disk)
233 #define disk_to_dev(disk) \
234 	(&((disk)->part0->bd_device))
235 
236 #if IS_REACHABLE(CONFIG_CDROM)
237 #define disk_to_cdi(disk)	((disk)->cdi)
238 #else
239 #define disk_to_cdi(disk)	NULL
240 #endif
241 
242 static inline dev_t disk_devt(struct gendisk *disk)
243 {
244 	return MKDEV(disk->major, disk->first_minor);
245 }
246 
247 static inline int blk_validate_block_size(unsigned long bsize)
248 {
249 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
250 		return -EINVAL;
251 
252 	return 0;
253 }
254 
255 static inline bool blk_op_is_passthrough(blk_opf_t op)
256 {
257 	op &= REQ_OP_MASK;
258 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
259 }
260 
261 /*
262  * Zoned block device models (zoned limit).
263  *
264  * Note: This needs to be ordered from the least to the most severe
265  * restrictions for the inheritance in blk_stack_limits() to work.
266  */
267 enum blk_zoned_model {
268 	BLK_ZONED_NONE = 0,	/* Regular block device */
269 	BLK_ZONED_HA,		/* Host-aware zoned block device */
270 	BLK_ZONED_HM,		/* Host-managed zoned block device */
271 };
272 
273 /*
274  * BLK_BOUNCE_NONE:	never bounce (default)
275  * BLK_BOUNCE_HIGH:	bounce all highmem pages
276  */
277 enum blk_bounce {
278 	BLK_BOUNCE_NONE,
279 	BLK_BOUNCE_HIGH,
280 };
281 
282 struct queue_limits {
283 	enum blk_bounce		bounce;
284 	unsigned long		seg_boundary_mask;
285 	unsigned long		virt_boundary_mask;
286 
287 	unsigned int		max_hw_sectors;
288 	unsigned int		max_dev_sectors;
289 	unsigned int		chunk_sectors;
290 	unsigned int		max_sectors;
291 	unsigned int		max_user_sectors;
292 	unsigned int		max_segment_size;
293 	unsigned int		physical_block_size;
294 	unsigned int		logical_block_size;
295 	unsigned int		alignment_offset;
296 	unsigned int		io_min;
297 	unsigned int		io_opt;
298 	unsigned int		max_discard_sectors;
299 	unsigned int		max_hw_discard_sectors;
300 	unsigned int		max_secure_erase_sectors;
301 	unsigned int		max_write_zeroes_sectors;
302 	unsigned int		max_zone_append_sectors;
303 	unsigned int		discard_granularity;
304 	unsigned int		discard_alignment;
305 	unsigned int		zone_write_granularity;
306 
307 	unsigned short		max_segments;
308 	unsigned short		max_integrity_segments;
309 	unsigned short		max_discard_segments;
310 
311 	unsigned char		misaligned;
312 	unsigned char		discard_misaligned;
313 	unsigned char		raid_partial_stripes_expensive;
314 	enum blk_zoned_model	zoned;
315 
316 	/*
317 	 * Drivers that set dma_alignment to less than 511 must be prepared to
318 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
319 	 * due to possible offsets.
320 	 */
321 	unsigned int		dma_alignment;
322 };
323 
324 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
325 			       void *data);
326 
327 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
328 
329 #ifdef CONFIG_BLK_DEV_ZONED
330 
331 #define BLK_ALL_ZONES  ((unsigned int)-1)
332 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
333 			unsigned int nr_zones, report_zones_cb cb, void *data);
334 unsigned int bdev_nr_zones(struct block_device *bdev);
335 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
336 			    sector_t sectors, sector_t nr_sectors,
337 			    gfp_t gfp_mask);
338 int blk_revalidate_disk_zones(struct gendisk *disk,
339 			      void (*update_driver_data)(struct gendisk *disk));
340 
341 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
342 				     unsigned int cmd, unsigned long arg);
343 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
344 				  unsigned int cmd, unsigned long arg);
345 
346 #else /* CONFIG_BLK_DEV_ZONED */
347 
348 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
349 {
350 	return 0;
351 }
352 
353 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
354 					    fmode_t mode, unsigned int cmd,
355 					    unsigned long arg)
356 {
357 	return -ENOTTY;
358 }
359 
360 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
361 					 fmode_t mode, unsigned int cmd,
362 					 unsigned long arg)
363 {
364 	return -ENOTTY;
365 }
366 
367 #endif /* CONFIG_BLK_DEV_ZONED */
368 
369 /*
370  * Independent access ranges: struct blk_independent_access_range describes
371  * a range of contiguous sectors that can be accessed using device command
372  * execution resources that are independent from the resources used for
373  * other access ranges. This is typically found with single-LUN multi-actuator
374  * HDDs where each access range is served by a different set of heads.
375  * The set of independent ranges supported by the device is defined using
376  * struct blk_independent_access_ranges. The independent ranges must not overlap
377  * and must include all sectors within the disk capacity (no sector holes
378  * allowed).
379  * For a device with multiple ranges, requests targeting sectors in different
380  * ranges can be executed in parallel. A request can straddle an access range
381  * boundary.
382  */
383 struct blk_independent_access_range {
384 	struct kobject		kobj;
385 	sector_t		sector;
386 	sector_t		nr_sectors;
387 };
388 
389 struct blk_independent_access_ranges {
390 	struct kobject				kobj;
391 	bool					sysfs_registered;
392 	unsigned int				nr_ia_ranges;
393 	struct blk_independent_access_range	ia_range[];
394 };
395 
396 struct request_queue {
397 	struct request		*last_merge;
398 	struct elevator_queue	*elevator;
399 
400 	struct percpu_ref	q_usage_counter;
401 
402 	struct blk_queue_stats	*stats;
403 	struct rq_qos		*rq_qos;
404 
405 	const struct blk_mq_ops	*mq_ops;
406 
407 	/* sw queues */
408 	struct blk_mq_ctx __percpu	*queue_ctx;
409 
410 	unsigned int		queue_depth;
411 
412 	/* hw dispatch queues */
413 	struct xarray		hctx_table;
414 	unsigned int		nr_hw_queues;
415 
416 	/*
417 	 * The queue owner gets to use this for whatever they like.
418 	 * ll_rw_blk doesn't touch it.
419 	 */
420 	void			*queuedata;
421 
422 	/*
423 	 * various queue flags, see QUEUE_* below
424 	 */
425 	unsigned long		queue_flags;
426 	/*
427 	 * Number of contexts that have called blk_set_pm_only(). If this
428 	 * counter is above zero then only RQF_PM requests are processed.
429 	 */
430 	atomic_t		pm_only;
431 
432 	/*
433 	 * ida allocated id for this queue.  Used to index queues from
434 	 * ioctx.
435 	 */
436 	int			id;
437 
438 	spinlock_t		queue_lock;
439 
440 	struct gendisk		*disk;
441 
442 	refcount_t		refs;
443 
444 	/*
445 	 * mq queue kobject
446 	 */
447 	struct kobject *mq_kobj;
448 
449 #ifdef  CONFIG_BLK_DEV_INTEGRITY
450 	struct blk_integrity integrity;
451 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
452 
453 #ifdef CONFIG_PM
454 	struct device		*dev;
455 	enum rpm_status		rpm_status;
456 #endif
457 
458 	/*
459 	 * queue settings
460 	 */
461 	unsigned long		nr_requests;	/* Max # of requests */
462 
463 	unsigned int		dma_pad_mask;
464 
465 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
466 	struct blk_crypto_profile *crypto_profile;
467 	struct kobject *crypto_kobject;
468 #endif
469 
470 	unsigned int		rq_timeout;
471 	int			poll_nsec;
472 
473 	struct blk_stat_callback	*poll_cb;
474 	struct blk_rq_stat	*poll_stat;
475 
476 	struct timer_list	timeout;
477 	struct work_struct	timeout_work;
478 
479 	atomic_t		nr_active_requests_shared_tags;
480 
481 	struct blk_mq_tags	*sched_shared_tags;
482 
483 	struct list_head	icq_list;
484 #ifdef CONFIG_BLK_CGROUP
485 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
486 	struct blkcg_gq		*root_blkg;
487 	struct list_head	blkg_list;
488 	struct mutex		blkcg_mutex;
489 #endif
490 
491 	struct queue_limits	limits;
492 
493 	unsigned int		required_elevator_features;
494 
495 	int			node;
496 #ifdef CONFIG_BLK_DEV_IO_TRACE
497 	struct blk_trace __rcu	*blk_trace;
498 #endif
499 	/*
500 	 * for flush operations
501 	 */
502 	struct blk_flush_queue	*fq;
503 
504 	struct list_head	requeue_list;
505 	spinlock_t		requeue_lock;
506 	struct delayed_work	requeue_work;
507 
508 	struct mutex		sysfs_lock;
509 	struct mutex		sysfs_dir_lock;
510 
511 	/*
512 	 * for reusing dead hctx instance in case of updating
513 	 * nr_hw_queues
514 	 */
515 	struct list_head	unused_hctx_list;
516 	spinlock_t		unused_hctx_lock;
517 
518 	int			mq_freeze_depth;
519 
520 #ifdef CONFIG_BLK_DEV_THROTTLING
521 	/* Throttle data */
522 	struct throtl_data *td;
523 #endif
524 	struct rcu_head		rcu_head;
525 	wait_queue_head_t	mq_freeze_wq;
526 	/*
527 	 * Protect concurrent access to q_usage_counter by
528 	 * percpu_ref_kill() and percpu_ref_reinit().
529 	 */
530 	struct mutex		mq_freeze_lock;
531 
532 	int			quiesce_depth;
533 
534 	struct blk_mq_tag_set	*tag_set;
535 	struct list_head	tag_set_list;
536 
537 	struct dentry		*debugfs_dir;
538 	struct dentry		*sched_debugfs_dir;
539 	struct dentry		*rqos_debugfs_dir;
540 	/*
541 	 * Serializes all debugfs metadata operations using the above dentries.
542 	 */
543 	struct mutex		debugfs_mutex;
544 
545 	bool			mq_sysfs_init_done;
546 };
547 
548 /* Keep blk_queue_flag_name[] in sync with the definitions below */
549 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
550 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
551 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
552 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
553 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
554 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
555 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
556 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
557 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
558 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
559 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
560 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
561 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
562 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
563 #define QUEUE_FLAG_WC		17	/* Write back caching */
564 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
565 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
566 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
567 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
568 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
569 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
570 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
571 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
572 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
573 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
574 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
575 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE	31 /* quiesce_tagset skip the queue*/
576 
577 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
578 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
579 				 (1UL << QUEUE_FLAG_NOWAIT))
580 
581 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
582 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
583 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
584 
585 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
586 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
587 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
588 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
589 #define blk_queue_noxmerges(q)	\
590 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
591 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
592 #define blk_queue_stable_writes(q) \
593 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
594 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
595 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
596 #define blk_queue_zone_resetall(q)	\
597 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
598 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
599 #define blk_queue_pci_p2pdma(q)	\
600 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
601 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
602 #define blk_queue_rq_alloc_time(q)	\
603 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
604 #else
605 #define blk_queue_rq_alloc_time(q)	false
606 #endif
607 
608 #define blk_noretry_request(rq) \
609 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
610 			     REQ_FAILFAST_DRIVER))
611 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
612 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
613 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
614 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
615 #define blk_queue_skip_tagset_quiesce(q) \
616 	test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
617 
618 extern void blk_set_pm_only(struct request_queue *q);
619 extern void blk_clear_pm_only(struct request_queue *q);
620 
621 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
622 
623 #define dma_map_bvec(dev, bv, dir, attrs) \
624 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
625 	(dir), (attrs))
626 
627 static inline bool queue_is_mq(struct request_queue *q)
628 {
629 	return q->mq_ops;
630 }
631 
632 #ifdef CONFIG_PM
633 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
634 {
635 	return q->rpm_status;
636 }
637 #else
638 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
639 {
640 	return RPM_ACTIVE;
641 }
642 #endif
643 
644 static inline enum blk_zoned_model
645 blk_queue_zoned_model(struct request_queue *q)
646 {
647 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
648 		return q->limits.zoned;
649 	return BLK_ZONED_NONE;
650 }
651 
652 static inline bool blk_queue_is_zoned(struct request_queue *q)
653 {
654 	switch (blk_queue_zoned_model(q)) {
655 	case BLK_ZONED_HA:
656 	case BLK_ZONED_HM:
657 		return true;
658 	default:
659 		return false;
660 	}
661 }
662 
663 #ifdef CONFIG_BLK_DEV_ZONED
664 static inline unsigned int disk_nr_zones(struct gendisk *disk)
665 {
666 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
667 }
668 
669 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
670 {
671 	if (!blk_queue_is_zoned(disk->queue))
672 		return 0;
673 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
674 }
675 
676 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
677 {
678 	if (!blk_queue_is_zoned(disk->queue))
679 		return false;
680 	if (!disk->conv_zones_bitmap)
681 		return true;
682 	return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
683 }
684 
685 static inline void disk_set_max_open_zones(struct gendisk *disk,
686 		unsigned int max_open_zones)
687 {
688 	disk->max_open_zones = max_open_zones;
689 }
690 
691 static inline void disk_set_max_active_zones(struct gendisk *disk,
692 		unsigned int max_active_zones)
693 {
694 	disk->max_active_zones = max_active_zones;
695 }
696 
697 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
698 {
699 	return bdev->bd_disk->max_open_zones;
700 }
701 
702 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
703 {
704 	return bdev->bd_disk->max_active_zones;
705 }
706 
707 #else /* CONFIG_BLK_DEV_ZONED */
708 static inline unsigned int disk_nr_zones(struct gendisk *disk)
709 {
710 	return 0;
711 }
712 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
713 {
714 	return false;
715 }
716 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
717 {
718 	return 0;
719 }
720 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
721 {
722 	return 0;
723 }
724 
725 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
726 {
727 	return 0;
728 }
729 #endif /* CONFIG_BLK_DEV_ZONED */
730 
731 static inline unsigned int blk_queue_depth(struct request_queue *q)
732 {
733 	if (q->queue_depth)
734 		return q->queue_depth;
735 
736 	return q->nr_requests;
737 }
738 
739 /*
740  * default timeout for SG_IO if none specified
741  */
742 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
743 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
744 
745 /* This should not be used directly - use rq_for_each_segment */
746 #define for_each_bio(_bio)		\
747 	for (; _bio; _bio = _bio->bi_next)
748 
749 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
750 				 const struct attribute_group **groups);
751 static inline int __must_check add_disk(struct gendisk *disk)
752 {
753 	return device_add_disk(NULL, disk, NULL);
754 }
755 void del_gendisk(struct gendisk *gp);
756 void invalidate_disk(struct gendisk *disk);
757 void set_disk_ro(struct gendisk *disk, bool read_only);
758 void disk_uevent(struct gendisk *disk, enum kobject_action action);
759 
760 static inline int get_disk_ro(struct gendisk *disk)
761 {
762 	return disk->part0->bd_read_only ||
763 		test_bit(GD_READ_ONLY, &disk->state);
764 }
765 
766 static inline int bdev_read_only(struct block_device *bdev)
767 {
768 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
769 }
770 
771 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
772 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
773 
774 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
775 void rand_initialize_disk(struct gendisk *disk);
776 
777 static inline sector_t get_start_sect(struct block_device *bdev)
778 {
779 	return bdev->bd_start_sect;
780 }
781 
782 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
783 {
784 	return bdev->bd_nr_sectors;
785 }
786 
787 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
788 {
789 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
790 }
791 
792 static inline sector_t get_capacity(struct gendisk *disk)
793 {
794 	return bdev_nr_sectors(disk->part0);
795 }
796 
797 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
798 {
799 	return bdev_nr_sectors(sb->s_bdev) >>
800 		(sb->s_blocksize_bits - SECTOR_SHIFT);
801 }
802 
803 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
804 
805 void put_disk(struct gendisk *disk);
806 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
807 
808 /**
809  * blk_alloc_disk - allocate a gendisk structure
810  * @node_id: numa node to allocate on
811  *
812  * Allocate and pre-initialize a gendisk structure for use with BIO based
813  * drivers.
814  *
815  * Context: can sleep
816  */
817 #define blk_alloc_disk(node_id)						\
818 ({									\
819 	static struct lock_class_key __key;				\
820 									\
821 	__blk_alloc_disk(node_id, &__key);				\
822 })
823 
824 int __register_blkdev(unsigned int major, const char *name,
825 		void (*probe)(dev_t devt));
826 #define register_blkdev(major, name) \
827 	__register_blkdev(major, name, NULL)
828 void unregister_blkdev(unsigned int major, const char *name);
829 
830 bool bdev_check_media_change(struct block_device *bdev);
831 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
832 void set_capacity(struct gendisk *disk, sector_t size);
833 
834 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
835 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
836 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
837 #else
838 static inline int bd_link_disk_holder(struct block_device *bdev,
839 				      struct gendisk *disk)
840 {
841 	return 0;
842 }
843 static inline void bd_unlink_disk_holder(struct block_device *bdev,
844 					 struct gendisk *disk)
845 {
846 }
847 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
848 
849 dev_t part_devt(struct gendisk *disk, u8 partno);
850 void inc_diskseq(struct gendisk *disk);
851 dev_t blk_lookup_devt(const char *name, int partno);
852 void blk_request_module(dev_t devt);
853 
854 extern int blk_register_queue(struct gendisk *disk);
855 extern void blk_unregister_queue(struct gendisk *disk);
856 void submit_bio_noacct(struct bio *bio);
857 struct bio *bio_split_to_limits(struct bio *bio);
858 
859 extern int blk_lld_busy(struct request_queue *q);
860 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
861 extern void blk_queue_exit(struct request_queue *q);
862 extern void blk_sync_queue(struct request_queue *q);
863 
864 /* Helper to convert REQ_OP_XXX to its string format XXX */
865 extern const char *blk_op_str(enum req_op op);
866 
867 int blk_status_to_errno(blk_status_t status);
868 blk_status_t errno_to_blk_status(int errno);
869 
870 /* only poll the hardware once, don't continue until a completion was found */
871 #define BLK_POLL_ONESHOT		(1 << 0)
872 /* do not sleep to wait for the expected completion time */
873 #define BLK_POLL_NOSLEEP		(1 << 1)
874 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
875 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
876 			unsigned int flags);
877 
878 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
879 {
880 	return bdev->bd_queue;	/* this is never NULL */
881 }
882 
883 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
884 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
885 
886 static inline unsigned int bio_zone_no(struct bio *bio)
887 {
888 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
889 }
890 
891 static inline unsigned int bio_zone_is_seq(struct bio *bio)
892 {
893 	return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
894 }
895 
896 /*
897  * Return how much of the chunk is left to be used for I/O at a given offset.
898  */
899 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
900 		unsigned int chunk_sectors)
901 {
902 	if (unlikely(!is_power_of_2(chunk_sectors)))
903 		return chunk_sectors - sector_div(offset, chunk_sectors);
904 	return chunk_sectors - (offset & (chunk_sectors - 1));
905 }
906 
907 /*
908  * Access functions for manipulating queue properties
909  */
910 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
911 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
912 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
913 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
914 extern void blk_queue_max_discard_segments(struct request_queue *,
915 		unsigned short);
916 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
917 		unsigned int max_sectors);
918 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
919 extern void blk_queue_max_discard_sectors(struct request_queue *q,
920 		unsigned int max_discard_sectors);
921 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
922 		unsigned int max_write_same_sectors);
923 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
924 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
925 		unsigned int max_zone_append_sectors);
926 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
927 void blk_queue_zone_write_granularity(struct request_queue *q,
928 				      unsigned int size);
929 extern void blk_queue_alignment_offset(struct request_queue *q,
930 				       unsigned int alignment);
931 void disk_update_readahead(struct gendisk *disk);
932 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
933 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
934 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
935 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
936 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
937 extern void blk_set_stacking_limits(struct queue_limits *lim);
938 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
939 			    sector_t offset);
940 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
941 			      sector_t offset);
942 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
943 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
944 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
945 extern void blk_queue_dma_alignment(struct request_queue *, int);
946 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
947 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
948 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
949 
950 struct blk_independent_access_ranges *
951 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
952 void disk_set_independent_access_ranges(struct gendisk *disk,
953 				struct blk_independent_access_ranges *iars);
954 
955 /*
956  * Elevator features for blk_queue_required_elevator_features:
957  */
958 /* Supports zoned block devices sequential write constraint */
959 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
960 
961 extern void blk_queue_required_elevator_features(struct request_queue *q,
962 						 unsigned int features);
963 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
964 					      struct device *dev);
965 
966 bool __must_check blk_get_queue(struct request_queue *);
967 extern void blk_put_queue(struct request_queue *);
968 
969 void blk_mark_disk_dead(struct gendisk *disk);
970 
971 #ifdef CONFIG_BLOCK
972 /*
973  * blk_plug permits building a queue of related requests by holding the I/O
974  * fragments for a short period. This allows merging of sequential requests
975  * into single larger request. As the requests are moved from a per-task list to
976  * the device's request_queue in a batch, this results in improved scalability
977  * as the lock contention for request_queue lock is reduced.
978  *
979  * It is ok not to disable preemption when adding the request to the plug list
980  * or when attempting a merge. For details, please see schedule() where
981  * blk_flush_plug() is called.
982  */
983 struct blk_plug {
984 	struct request *mq_list; /* blk-mq requests */
985 
986 	/* if ios_left is > 1, we can batch tag/rq allocations */
987 	struct request *cached_rq;
988 	unsigned short nr_ios;
989 
990 	unsigned short rq_count;
991 
992 	bool multiple_queues;
993 	bool has_elevator;
994 	bool nowait;
995 
996 	struct list_head cb_list; /* md requires an unplug callback */
997 };
998 
999 struct blk_plug_cb;
1000 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1001 struct blk_plug_cb {
1002 	struct list_head list;
1003 	blk_plug_cb_fn callback;
1004 	void *data;
1005 };
1006 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1007 					     void *data, int size);
1008 extern void blk_start_plug(struct blk_plug *);
1009 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1010 extern void blk_finish_plug(struct blk_plug *);
1011 
1012 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1013 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1014 {
1015 	if (plug)
1016 		__blk_flush_plug(plug, async);
1017 }
1018 
1019 int blkdev_issue_flush(struct block_device *bdev);
1020 long nr_blockdev_pages(void);
1021 #else /* CONFIG_BLOCK */
1022 struct blk_plug {
1023 };
1024 
1025 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1026 					 unsigned short nr_ios)
1027 {
1028 }
1029 
1030 static inline void blk_start_plug(struct blk_plug *plug)
1031 {
1032 }
1033 
1034 static inline void blk_finish_plug(struct blk_plug *plug)
1035 {
1036 }
1037 
1038 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1039 {
1040 }
1041 
1042 static inline int blkdev_issue_flush(struct block_device *bdev)
1043 {
1044 	return 0;
1045 }
1046 
1047 static inline long nr_blockdev_pages(void)
1048 {
1049 	return 0;
1050 }
1051 #endif /* CONFIG_BLOCK */
1052 
1053 extern void blk_io_schedule(void);
1054 
1055 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1056 		sector_t nr_sects, gfp_t gfp_mask);
1057 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1058 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1059 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1060 		sector_t nr_sects, gfp_t gfp);
1061 
1062 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1063 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1064 
1065 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1066 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1067 		unsigned flags);
1068 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1069 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1070 
1071 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1072 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1073 {
1074 	return blkdev_issue_discard(sb->s_bdev,
1075 				    block << (sb->s_blocksize_bits -
1076 					      SECTOR_SHIFT),
1077 				    nr_blocks << (sb->s_blocksize_bits -
1078 						  SECTOR_SHIFT),
1079 				    gfp_mask);
1080 }
1081 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1082 		sector_t nr_blocks, gfp_t gfp_mask)
1083 {
1084 	return blkdev_issue_zeroout(sb->s_bdev,
1085 				    block << (sb->s_blocksize_bits -
1086 					      SECTOR_SHIFT),
1087 				    nr_blocks << (sb->s_blocksize_bits -
1088 						  SECTOR_SHIFT),
1089 				    gfp_mask, 0);
1090 }
1091 
1092 static inline bool bdev_is_partition(struct block_device *bdev)
1093 {
1094 	return bdev->bd_partno;
1095 }
1096 
1097 enum blk_default_limits {
1098 	BLK_MAX_SEGMENTS	= 128,
1099 	BLK_SAFE_MAX_SECTORS	= 255,
1100 	BLK_MAX_SEGMENT_SIZE	= 65536,
1101 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1102 };
1103 
1104 #define BLK_DEF_MAX_SECTORS 2560u
1105 
1106 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1107 {
1108 	return q->limits.seg_boundary_mask;
1109 }
1110 
1111 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1112 {
1113 	return q->limits.virt_boundary_mask;
1114 }
1115 
1116 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1117 {
1118 	return q->limits.max_sectors;
1119 }
1120 
1121 static inline unsigned int queue_max_bytes(struct request_queue *q)
1122 {
1123 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1124 }
1125 
1126 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1127 {
1128 	return q->limits.max_hw_sectors;
1129 }
1130 
1131 static inline unsigned short queue_max_segments(const struct request_queue *q)
1132 {
1133 	return q->limits.max_segments;
1134 }
1135 
1136 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1137 {
1138 	return q->limits.max_discard_segments;
1139 }
1140 
1141 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1142 {
1143 	return q->limits.max_segment_size;
1144 }
1145 
1146 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1147 {
1148 
1149 	const struct queue_limits *l = &q->limits;
1150 
1151 	return min(l->max_zone_append_sectors, l->max_sectors);
1152 }
1153 
1154 static inline unsigned int
1155 bdev_max_zone_append_sectors(struct block_device *bdev)
1156 {
1157 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1158 }
1159 
1160 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1161 {
1162 	return queue_max_segments(bdev_get_queue(bdev));
1163 }
1164 
1165 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1166 {
1167 	int retval = 512;
1168 
1169 	if (q && q->limits.logical_block_size)
1170 		retval = q->limits.logical_block_size;
1171 
1172 	return retval;
1173 }
1174 
1175 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1176 {
1177 	return queue_logical_block_size(bdev_get_queue(bdev));
1178 }
1179 
1180 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1181 {
1182 	return q->limits.physical_block_size;
1183 }
1184 
1185 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1186 {
1187 	return queue_physical_block_size(bdev_get_queue(bdev));
1188 }
1189 
1190 static inline unsigned int queue_io_min(const struct request_queue *q)
1191 {
1192 	return q->limits.io_min;
1193 }
1194 
1195 static inline int bdev_io_min(struct block_device *bdev)
1196 {
1197 	return queue_io_min(bdev_get_queue(bdev));
1198 }
1199 
1200 static inline unsigned int queue_io_opt(const struct request_queue *q)
1201 {
1202 	return q->limits.io_opt;
1203 }
1204 
1205 static inline int bdev_io_opt(struct block_device *bdev)
1206 {
1207 	return queue_io_opt(bdev_get_queue(bdev));
1208 }
1209 
1210 static inline unsigned int
1211 queue_zone_write_granularity(const struct request_queue *q)
1212 {
1213 	return q->limits.zone_write_granularity;
1214 }
1215 
1216 static inline unsigned int
1217 bdev_zone_write_granularity(struct block_device *bdev)
1218 {
1219 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1220 }
1221 
1222 int bdev_alignment_offset(struct block_device *bdev);
1223 unsigned int bdev_discard_alignment(struct block_device *bdev);
1224 
1225 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1226 {
1227 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1228 }
1229 
1230 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1231 {
1232 	return bdev_get_queue(bdev)->limits.discard_granularity;
1233 }
1234 
1235 static inline unsigned int
1236 bdev_max_secure_erase_sectors(struct block_device *bdev)
1237 {
1238 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1239 }
1240 
1241 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1242 {
1243 	struct request_queue *q = bdev_get_queue(bdev);
1244 
1245 	if (q)
1246 		return q->limits.max_write_zeroes_sectors;
1247 
1248 	return 0;
1249 }
1250 
1251 static inline bool bdev_nonrot(struct block_device *bdev)
1252 {
1253 	return blk_queue_nonrot(bdev_get_queue(bdev));
1254 }
1255 
1256 static inline bool bdev_stable_writes(struct block_device *bdev)
1257 {
1258 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1259 			&bdev_get_queue(bdev)->queue_flags);
1260 }
1261 
1262 static inline bool bdev_write_cache(struct block_device *bdev)
1263 {
1264 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1265 }
1266 
1267 static inline bool bdev_fua(struct block_device *bdev)
1268 {
1269 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1270 }
1271 
1272 static inline bool bdev_nowait(struct block_device *bdev)
1273 {
1274 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1275 }
1276 
1277 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1278 {
1279 	struct request_queue *q = bdev_get_queue(bdev);
1280 
1281 	if (q)
1282 		return blk_queue_zoned_model(q);
1283 
1284 	return BLK_ZONED_NONE;
1285 }
1286 
1287 static inline bool bdev_is_zoned(struct block_device *bdev)
1288 {
1289 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1290 }
1291 
1292 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1293 {
1294 	return disk_zone_no(bdev->bd_disk, sec);
1295 }
1296 
1297 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1298 					  blk_opf_t op)
1299 {
1300 	if (!bdev_is_zoned(bdev))
1301 		return false;
1302 
1303 	return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1304 }
1305 
1306 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1307 {
1308 	struct request_queue *q = bdev_get_queue(bdev);
1309 
1310 	if (!blk_queue_is_zoned(q))
1311 		return 0;
1312 	return q->limits.chunk_sectors;
1313 }
1314 
1315 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1316 						   sector_t sector)
1317 {
1318 	return sector & (bdev_zone_sectors(bdev) - 1);
1319 }
1320 
1321 static inline bool bdev_is_zone_start(struct block_device *bdev,
1322 				      sector_t sector)
1323 {
1324 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1325 }
1326 
1327 static inline int queue_dma_alignment(const struct request_queue *q)
1328 {
1329 	return q ? q->limits.dma_alignment : 511;
1330 }
1331 
1332 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1333 {
1334 	return queue_dma_alignment(bdev_get_queue(bdev));
1335 }
1336 
1337 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1338 					struct iov_iter *iter)
1339 {
1340 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1341 				   bdev_logical_block_size(bdev) - 1);
1342 }
1343 
1344 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1345 				 unsigned int len)
1346 {
1347 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1348 	return !(addr & alignment) && !(len & alignment);
1349 }
1350 
1351 /* assumes size > 256 */
1352 static inline unsigned int blksize_bits(unsigned int size)
1353 {
1354 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1355 }
1356 
1357 static inline unsigned int block_size(struct block_device *bdev)
1358 {
1359 	return 1 << bdev->bd_inode->i_blkbits;
1360 }
1361 
1362 int kblockd_schedule_work(struct work_struct *work);
1363 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1364 
1365 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1366 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1367 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1368 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1369 
1370 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1371 
1372 bool blk_crypto_register(struct blk_crypto_profile *profile,
1373 			 struct request_queue *q);
1374 
1375 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1376 
1377 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1378 				       struct request_queue *q)
1379 {
1380 	return true;
1381 }
1382 
1383 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1384 
1385 enum blk_unique_id {
1386 	/* these match the Designator Types specified in SPC */
1387 	BLK_UID_T10	= 1,
1388 	BLK_UID_EUI64	= 2,
1389 	BLK_UID_NAA	= 3,
1390 };
1391 
1392 #define NFL4_UFLG_MASK			0x0000003F
1393 
1394 struct block_device_operations {
1395 	void (*submit_bio)(struct bio *bio);
1396 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1397 			unsigned int flags);
1398 	int (*open) (struct block_device *, fmode_t);
1399 	void (*release) (struct gendisk *, fmode_t);
1400 	int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op);
1401 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1402 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1403 	unsigned int (*check_events) (struct gendisk *disk,
1404 				      unsigned int clearing);
1405 	void (*unlock_native_capacity) (struct gendisk *);
1406 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1407 	int (*set_read_only)(struct block_device *bdev, bool ro);
1408 	void (*free_disk)(struct gendisk *disk);
1409 	/* this callback is with swap_lock and sometimes page table lock held */
1410 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1411 	int (*report_zones)(struct gendisk *, sector_t sector,
1412 			unsigned int nr_zones, report_zones_cb cb, void *data);
1413 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1414 	/* returns the length of the identifier or a negative errno: */
1415 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1416 			enum blk_unique_id id_type);
1417 	struct module *owner;
1418 	const struct pr_ops *pr_ops;
1419 
1420 	/*
1421 	 * Special callback for probing GPT entry at a given sector.
1422 	 * Needed by Android devices, used by GPT scanner and MMC blk
1423 	 * driver.
1424 	 */
1425 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1426 };
1427 
1428 #ifdef CONFIG_COMPAT
1429 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1430 				      unsigned int, unsigned long);
1431 #else
1432 #define blkdev_compat_ptr_ioctl NULL
1433 #endif
1434 
1435 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1436 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1437 						struct writeback_control *);
1438 
1439 static inline void blk_wake_io_task(struct task_struct *waiter)
1440 {
1441 	/*
1442 	 * If we're polling, the task itself is doing the completions. For
1443 	 * that case, we don't need to signal a wakeup, it's enough to just
1444 	 * mark us as RUNNING.
1445 	 */
1446 	if (waiter == current)
1447 		__set_current_state(TASK_RUNNING);
1448 	else
1449 		wake_up_process(waiter);
1450 }
1451 
1452 unsigned long bdev_start_io_acct(struct block_device *bdev,
1453 				 unsigned int sectors, enum req_op op,
1454 				 unsigned long start_time);
1455 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1456 		unsigned long start_time);
1457 
1458 unsigned long bio_start_io_acct(struct bio *bio);
1459 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1460 		struct block_device *orig_bdev);
1461 
1462 /**
1463  * bio_end_io_acct - end I/O accounting for bio based drivers
1464  * @bio:	bio to end account for
1465  * @start_time:	start time returned by bio_start_io_acct()
1466  */
1467 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1468 {
1469 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1470 }
1471 
1472 int bdev_read_only(struct block_device *bdev);
1473 int set_blocksize(struct block_device *bdev, int size);
1474 
1475 int lookup_bdev(const char *pathname, dev_t *dev);
1476 
1477 void blkdev_show(struct seq_file *seqf, off_t offset);
1478 
1479 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1480 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1481 #ifdef CONFIG_BLOCK
1482 #define BLKDEV_MAJOR_MAX	512
1483 #else
1484 #define BLKDEV_MAJOR_MAX	0
1485 #endif
1486 
1487 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1488 		void *holder);
1489 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
1490 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
1491 void bd_abort_claiming(struct block_device *bdev, void *holder);
1492 void blkdev_put(struct block_device *bdev, fmode_t mode);
1493 
1494 /* just for blk-cgroup, don't use elsewhere */
1495 struct block_device *blkdev_get_no_open(dev_t dev);
1496 void blkdev_put_no_open(struct block_device *bdev);
1497 
1498 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
1499 void bdev_add(struct block_device *bdev, dev_t dev);
1500 struct block_device *I_BDEV(struct inode *inode);
1501 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
1502 		loff_t lend);
1503 
1504 #ifdef CONFIG_BLOCK
1505 void invalidate_bdev(struct block_device *bdev);
1506 int sync_blockdev(struct block_device *bdev);
1507 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1508 int sync_blockdev_nowait(struct block_device *bdev);
1509 void sync_bdevs(bool wait);
1510 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1511 void printk_all_partitions(void);
1512 #else
1513 static inline void invalidate_bdev(struct block_device *bdev)
1514 {
1515 }
1516 static inline int sync_blockdev(struct block_device *bdev)
1517 {
1518 	return 0;
1519 }
1520 static inline int sync_blockdev_nowait(struct block_device *bdev)
1521 {
1522 	return 0;
1523 }
1524 static inline void sync_bdevs(bool wait)
1525 {
1526 }
1527 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1528 {
1529 }
1530 static inline void printk_all_partitions(void)
1531 {
1532 }
1533 #endif /* CONFIG_BLOCK */
1534 
1535 int fsync_bdev(struct block_device *bdev);
1536 
1537 int freeze_bdev(struct block_device *bdev);
1538 int thaw_bdev(struct block_device *bdev);
1539 
1540 struct io_comp_batch {
1541 	struct request *req_list;
1542 	bool need_ts;
1543 	void (*complete)(struct io_comp_batch *);
1544 };
1545 
1546 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1547 
1548 #endif /* _LINUX_BLKDEV_H */
1549