xref: /linux/include/linux/bpf_verifier.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 /* size of type_str_buf in bpf_verifier. */
22 #define TYPE_STR_BUF_LEN 64
23 
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25  * Read marks propagate upwards until they find a write mark; they record that
26  * "one of this state's descendants read this reg" (and therefore the reg is
27  * relevant for states_equal() checks).
28  * Write marks collect downwards and do not propagate; they record that "the
29  * straight-line code that reached this state (from its parent) wrote this reg"
30  * (and therefore that reads propagated from this state or its descendants
31  * should not propagate to its parent).
32  * A state with a write mark can receive read marks; it just won't propagate
33  * them to its parent, since the write mark is a property, not of the state,
34  * but of the link between it and its parent.  See mark_reg_read() and
35  * mark_stack_slot_read() in kernel/bpf/verifier.c.
36  */
37 enum bpf_reg_liveness {
38 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
40 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
41 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
42 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
43 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
44 };
45 
46 struct bpf_reg_state {
47 	/* Ordering of fields matters.  See states_equal() */
48 	enum bpf_reg_type type;
49 	/* Fixed part of pointer offset, pointer types only */
50 	s32 off;
51 	union {
52 		/* valid when type == PTR_TO_PACKET */
53 		int range;
54 
55 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
56 		 *   PTR_TO_MAP_VALUE_OR_NULL
57 		 */
58 		struct {
59 			struct bpf_map *map_ptr;
60 			/* To distinguish map lookups from outer map
61 			 * the map_uid is non-zero for registers
62 			 * pointing to inner maps.
63 			 */
64 			u32 map_uid;
65 		};
66 
67 		/* for PTR_TO_BTF_ID */
68 		struct {
69 			struct btf *btf;
70 			u32 btf_id;
71 		};
72 
73 		u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
74 
75 		/* Max size from any of the above. */
76 		struct {
77 			unsigned long raw1;
78 			unsigned long raw2;
79 		} raw;
80 
81 		u32 subprogno; /* for PTR_TO_FUNC */
82 	};
83 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
84 	 * offset, so they can share range knowledge.
85 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
86 	 * came from, when one is tested for != NULL.
87 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
88 	 * for the purpose of tracking that it's freed.
89 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
90 	 * same reference to the socket, to determine proper reference freeing.
91 	 */
92 	u32 id;
93 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
94 	 * from a pointer-cast helper, bpf_sk_fullsock() and
95 	 * bpf_tcp_sock().
96 	 *
97 	 * Consider the following where "sk" is a reference counted
98 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
99 	 *
100 	 * 1: sk = bpf_sk_lookup_tcp();
101 	 * 2: if (!sk) { return 0; }
102 	 * 3: fullsock = bpf_sk_fullsock(sk);
103 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
104 	 * 5: tp = bpf_tcp_sock(fullsock);
105 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
106 	 * 7: bpf_sk_release(sk);
107 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
108 	 *
109 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
110 	 * "tp" ptr should be invalidated also.  In order to do that,
111 	 * the reg holding "fullsock" and "sk" need to remember
112 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
113 	 * such that the verifier can reset all regs which have
114 	 * ref_obj_id matching the sk_reg->id.
115 	 *
116 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
117 	 * sk_reg->id will stay as NULL-marking purpose only.
118 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
119 	 *
120 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
121 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
122 	 *
123 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
124 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
125 	 * which is the same as sk_reg->ref_obj_id.
126 	 *
127 	 * From the verifier perspective, if sk, fullsock and tp
128 	 * are not NULL, they are the same ptr with different
129 	 * reg->type.  In particular, bpf_sk_release(tp) is also
130 	 * allowed and has the same effect as bpf_sk_release(sk).
131 	 */
132 	u32 ref_obj_id;
133 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
134 	 * the actual value.
135 	 * For pointer types, this represents the variable part of the offset
136 	 * from the pointed-to object, and is shared with all bpf_reg_states
137 	 * with the same id as us.
138 	 */
139 	struct tnum var_off;
140 	/* Used to determine if any memory access using this register will
141 	 * result in a bad access.
142 	 * These refer to the same value as var_off, not necessarily the actual
143 	 * contents of the register.
144 	 */
145 	s64 smin_value; /* minimum possible (s64)value */
146 	s64 smax_value; /* maximum possible (s64)value */
147 	u64 umin_value; /* minimum possible (u64)value */
148 	u64 umax_value; /* maximum possible (u64)value */
149 	s32 s32_min_value; /* minimum possible (s32)value */
150 	s32 s32_max_value; /* maximum possible (s32)value */
151 	u32 u32_min_value; /* minimum possible (u32)value */
152 	u32 u32_max_value; /* maximum possible (u32)value */
153 	/* parentage chain for liveness checking */
154 	struct bpf_reg_state *parent;
155 	/* Inside the callee two registers can be both PTR_TO_STACK like
156 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
157 	 * while another to the caller's stack. To differentiate them 'frameno'
158 	 * is used which is an index in bpf_verifier_state->frame[] array
159 	 * pointing to bpf_func_state.
160 	 */
161 	u32 frameno;
162 	/* Tracks subreg definition. The stored value is the insn_idx of the
163 	 * writing insn. This is safe because subreg_def is used before any insn
164 	 * patching which only happens after main verification finished.
165 	 */
166 	s32 subreg_def;
167 	enum bpf_reg_liveness live;
168 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
169 	bool precise;
170 };
171 
172 enum bpf_stack_slot_type {
173 	STACK_INVALID,    /* nothing was stored in this stack slot */
174 	STACK_SPILL,      /* register spilled into stack */
175 	STACK_MISC,	  /* BPF program wrote some data into this slot */
176 	STACK_ZERO,	  /* BPF program wrote constant zero */
177 };
178 
179 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
180 
181 struct bpf_stack_state {
182 	struct bpf_reg_state spilled_ptr;
183 	u8 slot_type[BPF_REG_SIZE];
184 };
185 
186 struct bpf_reference_state {
187 	/* Track each reference created with a unique id, even if the same
188 	 * instruction creates the reference multiple times (eg, via CALL).
189 	 */
190 	int id;
191 	/* Instruction where the allocation of this reference occurred. This
192 	 * is used purely to inform the user of a reference leak.
193 	 */
194 	int insn_idx;
195 };
196 
197 /* state of the program:
198  * type of all registers and stack info
199  */
200 struct bpf_func_state {
201 	struct bpf_reg_state regs[MAX_BPF_REG];
202 	/* index of call instruction that called into this func */
203 	int callsite;
204 	/* stack frame number of this function state from pov of
205 	 * enclosing bpf_verifier_state.
206 	 * 0 = main function, 1 = first callee.
207 	 */
208 	u32 frameno;
209 	/* subprog number == index within subprog_info
210 	 * zero == main subprog
211 	 */
212 	u32 subprogno;
213 	/* Every bpf_timer_start will increment async_entry_cnt.
214 	 * It's used to distinguish:
215 	 * void foo(void) { for(;;); }
216 	 * void foo(void) { bpf_timer_set_callback(,foo); }
217 	 */
218 	u32 async_entry_cnt;
219 	bool in_callback_fn;
220 	bool in_async_callback_fn;
221 
222 	/* The following fields should be last. See copy_func_state() */
223 	int acquired_refs;
224 	struct bpf_reference_state *refs;
225 	int allocated_stack;
226 	struct bpf_stack_state *stack;
227 };
228 
229 struct bpf_idx_pair {
230 	u32 prev_idx;
231 	u32 idx;
232 };
233 
234 struct bpf_id_pair {
235 	u32 old;
236 	u32 cur;
237 };
238 
239 /* Maximum number of register states that can exist at once */
240 #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
241 #define MAX_CALL_FRAMES 8
242 struct bpf_verifier_state {
243 	/* call stack tracking */
244 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
245 	struct bpf_verifier_state *parent;
246 	/*
247 	 * 'branches' field is the number of branches left to explore:
248 	 * 0 - all possible paths from this state reached bpf_exit or
249 	 * were safely pruned
250 	 * 1 - at least one path is being explored.
251 	 * This state hasn't reached bpf_exit
252 	 * 2 - at least two paths are being explored.
253 	 * This state is an immediate parent of two children.
254 	 * One is fallthrough branch with branches==1 and another
255 	 * state is pushed into stack (to be explored later) also with
256 	 * branches==1. The parent of this state has branches==1.
257 	 * The verifier state tree connected via 'parent' pointer looks like:
258 	 * 1
259 	 * 1
260 	 * 2 -> 1 (first 'if' pushed into stack)
261 	 * 1
262 	 * 2 -> 1 (second 'if' pushed into stack)
263 	 * 1
264 	 * 1
265 	 * 1 bpf_exit.
266 	 *
267 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
268 	 * and the verifier state tree will look:
269 	 * 1
270 	 * 1
271 	 * 2 -> 1 (first 'if' pushed into stack)
272 	 * 1
273 	 * 1 -> 1 (second 'if' pushed into stack)
274 	 * 0
275 	 * 0
276 	 * 0 bpf_exit.
277 	 * After pop_stack() the do_check() will resume at second 'if'.
278 	 *
279 	 * If is_state_visited() sees a state with branches > 0 it means
280 	 * there is a loop. If such state is exactly equal to the current state
281 	 * it's an infinite loop. Note states_equal() checks for states
282 	 * equvalency, so two states being 'states_equal' does not mean
283 	 * infinite loop. The exact comparison is provided by
284 	 * states_maybe_looping() function. It's a stronger pre-check and
285 	 * much faster than states_equal().
286 	 *
287 	 * This algorithm may not find all possible infinite loops or
288 	 * loop iteration count may be too high.
289 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
290 	 */
291 	u32 branches;
292 	u32 insn_idx;
293 	u32 curframe;
294 	u32 active_spin_lock;
295 	bool speculative;
296 
297 	/* first and last insn idx of this verifier state */
298 	u32 first_insn_idx;
299 	u32 last_insn_idx;
300 	/* jmp history recorded from first to last.
301 	 * backtracking is using it to go from last to first.
302 	 * For most states jmp_history_cnt is [0-3].
303 	 * For loops can go up to ~40.
304 	 */
305 	struct bpf_idx_pair *jmp_history;
306 	u32 jmp_history_cnt;
307 };
308 
309 #define bpf_get_spilled_reg(slot, frame)				\
310 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
311 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
312 	 ? &frame->stack[slot].spilled_ptr : NULL)
313 
314 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
315 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
316 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
317 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
318 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
319 
320 /* linked list of verifier states used to prune search */
321 struct bpf_verifier_state_list {
322 	struct bpf_verifier_state state;
323 	struct bpf_verifier_state_list *next;
324 	int miss_cnt, hit_cnt;
325 };
326 
327 /* Possible states for alu_state member. */
328 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
329 #define BPF_ALU_SANITIZE_DST		(1U << 1)
330 #define BPF_ALU_NEG_VALUE		(1U << 2)
331 #define BPF_ALU_NON_POINTER		(1U << 3)
332 #define BPF_ALU_IMMEDIATE		(1U << 4)
333 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
334 					 BPF_ALU_SANITIZE_DST)
335 
336 struct bpf_insn_aux_data {
337 	union {
338 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
339 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
340 		s32 call_imm;			/* saved imm field of call insn */
341 		u32 alu_limit;			/* limit for add/sub register with pointer */
342 		struct {
343 			u32 map_index;		/* index into used_maps[] */
344 			u32 map_off;		/* offset from value base address */
345 		};
346 		struct {
347 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
348 			union {
349 				struct {
350 					struct btf *btf;
351 					u32 btf_id;	/* btf_id for struct typed var */
352 				};
353 				u32 mem_size;	/* mem_size for non-struct typed var */
354 			};
355 		} btf_var;
356 	};
357 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
358 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
359 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
360 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
361 	bool zext_dst; /* this insn zero extends dst reg */
362 	u8 alu_state; /* used in combination with alu_limit */
363 
364 	/* below fields are initialized once */
365 	unsigned int orig_idx; /* original instruction index */
366 	bool prune_point;
367 };
368 
369 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
370 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
371 
372 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
373 
374 struct bpf_verifier_log {
375 	u32 level;
376 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
377 	char __user *ubuf;
378 	u32 len_used;
379 	u32 len_total;
380 };
381 
382 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
383 {
384 	return log->len_used >= log->len_total - 1;
385 }
386 
387 #define BPF_LOG_LEVEL1	1
388 #define BPF_LOG_LEVEL2	2
389 #define BPF_LOG_STATS	4
390 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
391 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
392 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
393 #define BPF_LOG_MIN_ALIGNMENT 8U
394 #define BPF_LOG_ALIGNMENT 40U
395 
396 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
397 {
398 	return log &&
399 		((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
400 		 log->level == BPF_LOG_KERNEL);
401 }
402 
403 static inline bool
404 bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log)
405 {
406 	return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 &&
407 	       log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK);
408 }
409 
410 #define BPF_MAX_SUBPROGS 256
411 
412 struct bpf_subprog_info {
413 	/* 'start' has to be the first field otherwise find_subprog() won't work */
414 	u32 start; /* insn idx of function entry point */
415 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
416 	u16 stack_depth; /* max. stack depth used by this function */
417 	bool has_tail_call;
418 	bool tail_call_reachable;
419 	bool has_ld_abs;
420 	bool is_async_cb;
421 };
422 
423 /* single container for all structs
424  * one verifier_env per bpf_check() call
425  */
426 struct bpf_verifier_env {
427 	u32 insn_idx;
428 	u32 prev_insn_idx;
429 	struct bpf_prog *prog;		/* eBPF program being verified */
430 	const struct bpf_verifier_ops *ops;
431 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
432 	int stack_size;			/* number of states to be processed */
433 	bool strict_alignment;		/* perform strict pointer alignment checks */
434 	bool test_state_freq;		/* test verifier with different pruning frequency */
435 	struct bpf_verifier_state *cur_state; /* current verifier state */
436 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
437 	struct bpf_verifier_state_list *free_list;
438 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
439 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
440 	u32 used_map_cnt;		/* number of used maps */
441 	u32 used_btf_cnt;		/* number of used BTF objects */
442 	u32 id_gen;			/* used to generate unique reg IDs */
443 	bool explore_alu_limits;
444 	bool allow_ptr_leaks;
445 	bool allow_uninit_stack;
446 	bool allow_ptr_to_map_access;
447 	bool bpf_capable;
448 	bool bypass_spec_v1;
449 	bool bypass_spec_v4;
450 	bool seen_direct_write;
451 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
452 	const struct bpf_line_info *prev_linfo;
453 	struct bpf_verifier_log log;
454 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
455 	struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
456 	struct {
457 		int *insn_state;
458 		int *insn_stack;
459 		int cur_stack;
460 	} cfg;
461 	u32 pass_cnt; /* number of times do_check() was called */
462 	u32 subprog_cnt;
463 	/* number of instructions analyzed by the verifier */
464 	u32 prev_insn_processed, insn_processed;
465 	/* number of jmps, calls, exits analyzed so far */
466 	u32 prev_jmps_processed, jmps_processed;
467 	/* total verification time */
468 	u64 verification_time;
469 	/* maximum number of verifier states kept in 'branching' instructions */
470 	u32 max_states_per_insn;
471 	/* total number of allocated verifier states */
472 	u32 total_states;
473 	/* some states are freed during program analysis.
474 	 * this is peak number of states. this number dominates kernel
475 	 * memory consumption during verification
476 	 */
477 	u32 peak_states;
478 	/* longest register parentage chain walked for liveness marking */
479 	u32 longest_mark_read_walk;
480 	bpfptr_t fd_array;
481 
482 	/* bit mask to keep track of whether a register has been accessed
483 	 * since the last time the function state was printed
484 	 */
485 	u32 scratched_regs;
486 	/* Same as scratched_regs but for stack slots */
487 	u64 scratched_stack_slots;
488 	u32 prev_log_len, prev_insn_print_len;
489 	/* buffer used in reg_type_str() to generate reg_type string */
490 	char type_str_buf[TYPE_STR_BUF_LEN];
491 };
492 
493 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
494 				      const char *fmt, va_list args);
495 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
496 					   const char *fmt, ...);
497 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
498 			    const char *fmt, ...);
499 
500 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
501 {
502 	struct bpf_verifier_state *cur = env->cur_state;
503 
504 	return cur->frame[cur->curframe];
505 }
506 
507 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
508 {
509 	return cur_func(env)->regs;
510 }
511 
512 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
513 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
514 				 int insn_idx, int prev_insn_idx);
515 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
516 void
517 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
518 			      struct bpf_insn *insn);
519 void
520 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
521 
522 int check_ptr_off_reg(struct bpf_verifier_env *env,
523 		      const struct bpf_reg_state *reg, int regno);
524 int check_func_arg_reg_off(struct bpf_verifier_env *env,
525 			   const struct bpf_reg_state *reg, int regno,
526 			   enum bpf_arg_type arg_type,
527 			   bool is_release_func);
528 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
529 			     u32 regno);
530 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
531 		   u32 regno, u32 mem_size);
532 
533 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
534 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
535 					     struct btf *btf, u32 btf_id)
536 {
537 	if (tgt_prog)
538 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
539 	else
540 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
541 }
542 
543 /* unpack the IDs from the key as constructed above */
544 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
545 {
546 	if (obj_id)
547 		*obj_id = key >> 32;
548 	if (btf_id)
549 		*btf_id = key & 0x7FFFFFFF;
550 }
551 
552 int bpf_check_attach_target(struct bpf_verifier_log *log,
553 			    const struct bpf_prog *prog,
554 			    const struct bpf_prog *tgt_prog,
555 			    u32 btf_id,
556 			    struct bpf_attach_target_info *tgt_info);
557 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
558 
559 #define BPF_BASE_TYPE_MASK	GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
560 
561 /* extract base type from bpf_{arg, return, reg}_type. */
562 static inline u32 base_type(u32 type)
563 {
564 	return type & BPF_BASE_TYPE_MASK;
565 }
566 
567 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
568 static inline u32 type_flag(u32 type)
569 {
570 	return type & ~BPF_BASE_TYPE_MASK;
571 }
572 
573 /* only use after check_attach_btf_id() */
574 static inline enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
575 {
576 	return prog->type == BPF_PROG_TYPE_EXT ?
577 		prog->aux->dst_prog->type : prog->type;
578 }
579 
580 #endif /* _LINUX_BPF_VERIFIER_H */
581