xref: /linux/include/linux/energy_model.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/jump_label.h>
6 #include <linux/kobject.h>
7 #include <linux/rcupdate.h>
8 #include <linux/sched/cpufreq.h>
9 #include <linux/sched/topology.h>
10 #include <linux/types.h>
11 
12 #ifdef CONFIG_ENERGY_MODEL
13 /**
14  * em_cap_state - Capacity state of a performance domain
15  * @frequency:	The CPU frequency in KHz, for consistency with CPUFreq
16  * @power:	The power consumed by 1 CPU at this level, in milli-watts
17  * @cost:	The cost coefficient associated with this level, used during
18  *		energy calculation. Equal to: power * max_frequency / frequency
19  */
20 struct em_cap_state {
21 	unsigned long frequency;
22 	unsigned long power;
23 	unsigned long cost;
24 };
25 
26 /**
27  * em_perf_domain - Performance domain
28  * @table:		List of capacity states, in ascending order
29  * @nr_cap_states:	Number of capacity states
30  * @cpus:		Cpumask covering the CPUs of the domain
31  *
32  * A "performance domain" represents a group of CPUs whose performance is
33  * scaled together. All CPUs of a performance domain must have the same
34  * micro-architecture. Performance domains often have a 1-to-1 mapping with
35  * CPUFreq policies.
36  */
37 struct em_perf_domain {
38 	struct em_cap_state *table;
39 	int nr_cap_states;
40 	unsigned long cpus[0];
41 };
42 
43 #define EM_CPU_MAX_POWER 0xFFFF
44 
45 struct em_data_callback {
46 	/**
47 	 * active_power() - Provide power at the next capacity state of a CPU
48 	 * @power	: Active power at the capacity state in mW (modified)
49 	 * @freq	: Frequency at the capacity state in kHz (modified)
50 	 * @cpu		: CPU for which we do this operation
51 	 *
52 	 * active_power() must find the lowest capacity state of 'cpu' above
53 	 * 'freq' and update 'power' and 'freq' to the matching active power
54 	 * and frequency.
55 	 *
56 	 * The power is the one of a single CPU in the domain, expressed in
57 	 * milli-watts. It is expected to fit in the [0, EM_CPU_MAX_POWER]
58 	 * range.
59 	 *
60 	 * Return 0 on success.
61 	 */
62 	int (*active_power)(unsigned long *power, unsigned long *freq, int cpu);
63 };
64 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
65 
66 struct em_perf_domain *em_cpu_get(int cpu);
67 int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
68 						struct em_data_callback *cb);
69 
70 /**
71  * em_pd_energy() - Estimates the energy consumed by the CPUs of a perf. domain
72  * @pd		: performance domain for which energy has to be estimated
73  * @max_util	: highest utilization among CPUs of the domain
74  * @sum_util	: sum of the utilization of all CPUs in the domain
75  *
76  * Return: the sum of the energy consumed by the CPUs of the domain assuming
77  * a capacity state satisfying the max utilization of the domain.
78  */
79 static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
80 				unsigned long max_util, unsigned long sum_util)
81 {
82 	unsigned long freq, scale_cpu;
83 	struct em_cap_state *cs;
84 	int i, cpu;
85 
86 	/*
87 	 * In order to predict the capacity state, map the utilization of the
88 	 * most utilized CPU of the performance domain to a requested frequency,
89 	 * like schedutil.
90 	 */
91 	cpu = cpumask_first(to_cpumask(pd->cpus));
92 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
93 	cs = &pd->table[pd->nr_cap_states - 1];
94 	freq = map_util_freq(max_util, cs->frequency, scale_cpu);
95 
96 	/*
97 	 * Find the lowest capacity state of the Energy Model above the
98 	 * requested frequency.
99 	 */
100 	for (i = 0; i < pd->nr_cap_states; i++) {
101 		cs = &pd->table[i];
102 		if (cs->frequency >= freq)
103 			break;
104 	}
105 
106 	/*
107 	 * The capacity of a CPU in the domain at that capacity state (cs)
108 	 * can be computed as:
109 	 *
110 	 *             cs->freq * scale_cpu
111 	 *   cs->cap = --------------------                          (1)
112 	 *                 cpu_max_freq
113 	 *
114 	 * So, ignoring the costs of idle states (which are not available in
115 	 * the EM), the energy consumed by this CPU at that capacity state is
116 	 * estimated as:
117 	 *
118 	 *             cs->power * cpu_util
119 	 *   cpu_nrg = --------------------                          (2)
120 	 *                   cs->cap
121 	 *
122 	 * since 'cpu_util / cs->cap' represents its percentage of busy time.
123 	 *
124 	 *   NOTE: Although the result of this computation actually is in
125 	 *         units of power, it can be manipulated as an energy value
126 	 *         over a scheduling period, since it is assumed to be
127 	 *         constant during that interval.
128 	 *
129 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
130 	 * of two terms:
131 	 *
132 	 *             cs->power * cpu_max_freq   cpu_util
133 	 *   cpu_nrg = ------------------------ * ---------          (3)
134 	 *                    cs->freq            scale_cpu
135 	 *
136 	 * The first term is static, and is stored in the em_cap_state struct
137 	 * as 'cs->cost'.
138 	 *
139 	 * Since all CPUs of the domain have the same micro-architecture, they
140 	 * share the same 'cs->cost', and the same CPU capacity. Hence, the
141 	 * total energy of the domain (which is the simple sum of the energy of
142 	 * all of its CPUs) can be factorized as:
143 	 *
144 	 *            cs->cost * \Sum cpu_util
145 	 *   pd_nrg = ------------------------                       (4)
146 	 *                  scale_cpu
147 	 */
148 	return cs->cost * sum_util / scale_cpu;
149 }
150 
151 /**
152  * em_pd_nr_cap_states() - Get the number of capacity states of a perf. domain
153  * @pd		: performance domain for which this must be done
154  *
155  * Return: the number of capacity states in the performance domain table
156  */
157 static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
158 {
159 	return pd->nr_cap_states;
160 }
161 
162 #else
163 struct em_perf_domain {};
164 struct em_data_callback {};
165 #define EM_DATA_CB(_active_power_cb) { }
166 
167 static inline int em_register_perf_domain(cpumask_t *span,
168 			unsigned int nr_states, struct em_data_callback *cb)
169 {
170 	return -EINVAL;
171 }
172 static inline struct em_perf_domain *em_cpu_get(int cpu)
173 {
174 	return NULL;
175 }
176 static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
177 			unsigned long max_util, unsigned long sum_util)
178 {
179 	return 0;
180 }
181 static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
182 {
183 	return 0;
184 }
185 #endif
186 
187 #endif
188