xref: /linux/include/linux/filter.h (revision 1e525507)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26 
27 #include <net/sch_generic.h>
28 
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31 
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41 
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1	BPF_REG_1
47 #define BPF_REG_ARG2	BPF_REG_2
48 #define BPF_REG_ARG3	BPF_REG_3
49 #define BPF_REG_ARG4	BPF_REG_4
50 #define BPF_REG_ARG5	BPF_REG_5
51 #define BPF_REG_CTX	BPF_REG_6
52 #define BPF_REG_FP	BPF_REG_10
53 
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A	BPF_REG_0
56 #define BPF_REG_X	BPF_REG_7
57 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
58 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
59 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
60 
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX		MAX_BPF_REG
63 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
65 
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL	0xf0
68 
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM	0x20
71 
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX	0x40
74 
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32	0xa0
77 
78 /* unused opcode to mark call to interpreter with arguments */
79 #define BPF_CALL_ARGS	0xe0
80 
81 /* unused opcode to mark speculation barrier for mitigating
82  * Speculative Store Bypass
83  */
84 #define BPF_NOSPEC	0xc0
85 
86 /* As per nm, we expose JITed images as text (code) section for
87  * kallsyms. That way, tools like perf can find it to match
88  * addresses.
89  */
90 #define BPF_SYM_ELF_TYPE	't'
91 
92 /* BPF program can access up to 512 bytes of stack space. */
93 #define MAX_BPF_STACK	512
94 
95 /* Helper macros for filter block array initializers. */
96 
97 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
98 
99 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)			\
100 	((struct bpf_insn) {					\
101 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
102 		.dst_reg = DST,					\
103 		.src_reg = SRC,					\
104 		.off   = OFF,					\
105 		.imm   = 0 })
106 
107 #define BPF_ALU64_REG(OP, DST, SRC)				\
108 	BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
109 
110 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)			\
111 	((struct bpf_insn) {					\
112 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
113 		.dst_reg = DST,					\
114 		.src_reg = SRC,					\
115 		.off   = OFF,					\
116 		.imm   = 0 })
117 
118 #define BPF_ALU32_REG(OP, DST, SRC)				\
119 	BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
120 
121 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
122 
123 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)			\
124 	((struct bpf_insn) {					\
125 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
126 		.dst_reg = DST,					\
127 		.src_reg = 0,					\
128 		.off   = OFF,					\
129 		.imm   = IMM })
130 #define BPF_ALU64_IMM(OP, DST, IMM)				\
131 	BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
132 
133 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)			\
134 	((struct bpf_insn) {					\
135 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
136 		.dst_reg = DST,					\
137 		.src_reg = 0,					\
138 		.off   = OFF,					\
139 		.imm   = IMM })
140 #define BPF_ALU32_IMM(OP, DST, IMM)				\
141 	BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
142 
143 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
144 
145 #define BPF_ENDIAN(TYPE, DST, LEN)				\
146 	((struct bpf_insn) {					\
147 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
148 		.dst_reg = DST,					\
149 		.src_reg = 0,					\
150 		.off   = 0,					\
151 		.imm   = LEN })
152 
153 /* Byte Swap, bswap16/32/64 */
154 
155 #define BPF_BSWAP(DST, LEN)					\
156 	((struct bpf_insn) {					\
157 		.code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),	\
158 		.dst_reg = DST,					\
159 		.src_reg = 0,					\
160 		.off   = 0,					\
161 		.imm   = LEN })
162 
163 /* Short form of mov, dst_reg = src_reg */
164 
165 #define BPF_MOV64_REG(DST, SRC)					\
166 	((struct bpf_insn) {					\
167 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
168 		.dst_reg = DST,					\
169 		.src_reg = SRC,					\
170 		.off   = 0,					\
171 		.imm   = 0 })
172 
173 #define BPF_MOV32_REG(DST, SRC)					\
174 	((struct bpf_insn) {					\
175 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
176 		.dst_reg = DST,					\
177 		.src_reg = SRC,					\
178 		.off   = 0,					\
179 		.imm   = 0 })
180 
181 /* Short form of mov, dst_reg = imm32 */
182 
183 #define BPF_MOV64_IMM(DST, IMM)					\
184 	((struct bpf_insn) {					\
185 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
186 		.dst_reg = DST,					\
187 		.src_reg = 0,					\
188 		.off   = 0,					\
189 		.imm   = IMM })
190 
191 #define BPF_MOV32_IMM(DST, IMM)					\
192 	((struct bpf_insn) {					\
193 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
194 		.dst_reg = DST,					\
195 		.src_reg = 0,					\
196 		.off   = 0,					\
197 		.imm   = IMM })
198 
199 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
200 
201 #define BPF_MOVSX64_REG(DST, SRC, OFF)				\
202 	((struct bpf_insn) {					\
203 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
204 		.dst_reg = DST,					\
205 		.src_reg = SRC,					\
206 		.off   = OFF,					\
207 		.imm   = 0 })
208 
209 #define BPF_MOVSX32_REG(DST, SRC, OFF)				\
210 	((struct bpf_insn) {					\
211 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
212 		.dst_reg = DST,					\
213 		.src_reg = SRC,					\
214 		.off   = OFF,					\
215 		.imm   = 0 })
216 
217 /* Special form of mov32, used for doing explicit zero extension on dst. */
218 #define BPF_ZEXT_REG(DST)					\
219 	((struct bpf_insn) {					\
220 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
221 		.dst_reg = DST,					\
222 		.src_reg = DST,					\
223 		.off   = 0,					\
224 		.imm   = 1 })
225 
226 static inline bool insn_is_zext(const struct bpf_insn *insn)
227 {
228 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
229 }
230 
231 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
232 #define BPF_LD_IMM64(DST, IMM)					\
233 	BPF_LD_IMM64_RAW(DST, 0, IMM)
234 
235 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
236 	((struct bpf_insn) {					\
237 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
238 		.dst_reg = DST,					\
239 		.src_reg = SRC,					\
240 		.off   = 0,					\
241 		.imm   = (__u32) (IMM) }),			\
242 	((struct bpf_insn) {					\
243 		.code  = 0, /* zero is reserved opcode */	\
244 		.dst_reg = 0,					\
245 		.src_reg = 0,					\
246 		.off   = 0,					\
247 		.imm   = ((__u64) (IMM)) >> 32 })
248 
249 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
250 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
251 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
252 
253 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
254 
255 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
256 	((struct bpf_insn) {					\
257 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
258 		.dst_reg = DST,					\
259 		.src_reg = SRC,					\
260 		.off   = 0,					\
261 		.imm   = IMM })
262 
263 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
264 	((struct bpf_insn) {					\
265 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
266 		.dst_reg = DST,					\
267 		.src_reg = SRC,					\
268 		.off   = 0,					\
269 		.imm   = IMM })
270 
271 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
272 
273 #define BPF_LD_ABS(SIZE, IMM)					\
274 	((struct bpf_insn) {					\
275 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
276 		.dst_reg = 0,					\
277 		.src_reg = 0,					\
278 		.off   = 0,					\
279 		.imm   = IMM })
280 
281 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
282 
283 #define BPF_LD_IND(SIZE, SRC, IMM)				\
284 	((struct bpf_insn) {					\
285 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
286 		.dst_reg = 0,					\
287 		.src_reg = SRC,					\
288 		.off   = 0,					\
289 		.imm   = IMM })
290 
291 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
292 
293 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
294 	((struct bpf_insn) {					\
295 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
296 		.dst_reg = DST,					\
297 		.src_reg = SRC,					\
298 		.off   = OFF,					\
299 		.imm   = 0 })
300 
301 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
302 
303 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)			\
304 	((struct bpf_insn) {					\
305 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,	\
306 		.dst_reg = DST,					\
307 		.src_reg = SRC,					\
308 		.off   = OFF,					\
309 		.imm   = 0 })
310 
311 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
312 
313 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
314 	((struct bpf_insn) {					\
315 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
316 		.dst_reg = DST,					\
317 		.src_reg = SRC,					\
318 		.off   = OFF,					\
319 		.imm   = 0 })
320 
321 
322 /*
323  * Atomic operations:
324  *
325  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
326  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
327  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
328  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
329  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
330  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
331  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
332  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
333  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
334  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
335  */
336 
337 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)			\
338 	((struct bpf_insn) {					\
339 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC,	\
340 		.dst_reg = DST,					\
341 		.src_reg = SRC,					\
342 		.off   = OFF,					\
343 		.imm   = OP })
344 
345 /* Legacy alias */
346 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
347 
348 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
349 
350 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
351 	((struct bpf_insn) {					\
352 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
353 		.dst_reg = DST,					\
354 		.src_reg = 0,					\
355 		.off   = OFF,					\
356 		.imm   = IMM })
357 
358 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
359 
360 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
361 	((struct bpf_insn) {					\
362 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
363 		.dst_reg = DST,					\
364 		.src_reg = SRC,					\
365 		.off   = OFF,					\
366 		.imm   = 0 })
367 
368 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
369 
370 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
371 	((struct bpf_insn) {					\
372 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
373 		.dst_reg = DST,					\
374 		.src_reg = 0,					\
375 		.off   = OFF,					\
376 		.imm   = IMM })
377 
378 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
379 
380 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
381 	((struct bpf_insn) {					\
382 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
383 		.dst_reg = DST,					\
384 		.src_reg = SRC,					\
385 		.off   = OFF,					\
386 		.imm   = 0 })
387 
388 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
389 
390 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
391 	((struct bpf_insn) {					\
392 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
393 		.dst_reg = DST,					\
394 		.src_reg = 0,					\
395 		.off   = OFF,					\
396 		.imm   = IMM })
397 
398 /* Unconditional jumps, goto pc + off16 */
399 
400 #define BPF_JMP_A(OFF)						\
401 	((struct bpf_insn) {					\
402 		.code  = BPF_JMP | BPF_JA,			\
403 		.dst_reg = 0,					\
404 		.src_reg = 0,					\
405 		.off   = OFF,					\
406 		.imm   = 0 })
407 
408 /* Relative call */
409 
410 #define BPF_CALL_REL(TGT)					\
411 	((struct bpf_insn) {					\
412 		.code  = BPF_JMP | BPF_CALL,			\
413 		.dst_reg = 0,					\
414 		.src_reg = BPF_PSEUDO_CALL,			\
415 		.off   = 0,					\
416 		.imm   = TGT })
417 
418 /* Convert function address to BPF immediate */
419 
420 #define BPF_CALL_IMM(x)	((void *)(x) - (void *)__bpf_call_base)
421 
422 #define BPF_EMIT_CALL(FUNC)					\
423 	((struct bpf_insn) {					\
424 		.code  = BPF_JMP | BPF_CALL,			\
425 		.dst_reg = 0,					\
426 		.src_reg = 0,					\
427 		.off   = 0,					\
428 		.imm   = BPF_CALL_IMM(FUNC) })
429 
430 /* Raw code statement block */
431 
432 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
433 	((struct bpf_insn) {					\
434 		.code  = CODE,					\
435 		.dst_reg = DST,					\
436 		.src_reg = SRC,					\
437 		.off   = OFF,					\
438 		.imm   = IMM })
439 
440 /* Program exit */
441 
442 #define BPF_EXIT_INSN()						\
443 	((struct bpf_insn) {					\
444 		.code  = BPF_JMP | BPF_EXIT,			\
445 		.dst_reg = 0,					\
446 		.src_reg = 0,					\
447 		.off   = 0,					\
448 		.imm   = 0 })
449 
450 /* Speculation barrier */
451 
452 #define BPF_ST_NOSPEC()						\
453 	((struct bpf_insn) {					\
454 		.code  = BPF_ST | BPF_NOSPEC,			\
455 		.dst_reg = 0,					\
456 		.src_reg = 0,					\
457 		.off   = 0,					\
458 		.imm   = 0 })
459 
460 /* Internal classic blocks for direct assignment */
461 
462 #define __BPF_STMT(CODE, K)					\
463 	((struct sock_filter) BPF_STMT(CODE, K))
464 
465 #define __BPF_JUMP(CODE, K, JT, JF)				\
466 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
467 
468 #define bytes_to_bpf_size(bytes)				\
469 ({								\
470 	int bpf_size = -EINVAL;					\
471 								\
472 	if (bytes == sizeof(u8))				\
473 		bpf_size = BPF_B;				\
474 	else if (bytes == sizeof(u16))				\
475 		bpf_size = BPF_H;				\
476 	else if (bytes == sizeof(u32))				\
477 		bpf_size = BPF_W;				\
478 	else if (bytes == sizeof(u64))				\
479 		bpf_size = BPF_DW;				\
480 								\
481 	bpf_size;						\
482 })
483 
484 #define bpf_size_to_bytes(bpf_size)				\
485 ({								\
486 	int bytes = -EINVAL;					\
487 								\
488 	if (bpf_size == BPF_B)					\
489 		bytes = sizeof(u8);				\
490 	else if (bpf_size == BPF_H)				\
491 		bytes = sizeof(u16);				\
492 	else if (bpf_size == BPF_W)				\
493 		bytes = sizeof(u32);				\
494 	else if (bpf_size == BPF_DW)				\
495 		bytes = sizeof(u64);				\
496 								\
497 	bytes;							\
498 })
499 
500 #define BPF_SIZEOF(type)					\
501 	({							\
502 		const int __size = bytes_to_bpf_size(sizeof(type)); \
503 		BUILD_BUG_ON(__size < 0);			\
504 		__size;						\
505 	})
506 
507 #define BPF_FIELD_SIZEOF(type, field)				\
508 	({							\
509 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
510 		BUILD_BUG_ON(__size < 0);			\
511 		__size;						\
512 	})
513 
514 #define BPF_LDST_BYTES(insn)					\
515 	({							\
516 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
517 		WARN_ON(__size < 0);				\
518 		__size;						\
519 	})
520 
521 #define __BPF_MAP_0(m, v, ...) v
522 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
523 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
524 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
525 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
526 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
527 
528 #define __BPF_REG_0(...) __BPF_PAD(5)
529 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
530 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
531 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
532 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
533 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
534 
535 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
536 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
537 
538 #define __BPF_CAST(t, a)						       \
539 	(__force t)							       \
540 	(__force							       \
541 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
542 				      (unsigned long)0, (t)0))) a
543 #define __BPF_V void
544 #define __BPF_N
545 
546 #define __BPF_DECL_ARGS(t, a) t   a
547 #define __BPF_DECL_REGS(t, a) u64 a
548 
549 #define __BPF_PAD(n)							       \
550 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
551 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
552 
553 #define BPF_CALL_x(x, attr, name, ...)					       \
554 	static __always_inline						       \
555 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
556 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
557 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
558 	attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
559 	{								       \
560 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
561 	}								       \
562 	static __always_inline						       \
563 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
564 
565 #define __NOATTR
566 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
567 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
568 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
569 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
570 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
571 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
572 
573 #define NOTRACE_BPF_CALL_1(name, ...)	BPF_CALL_x(1, notrace, name, __VA_ARGS__)
574 
575 #define bpf_ctx_range(TYPE, MEMBER)						\
576 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
577 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
578 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
579 #if BITS_PER_LONG == 64
580 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
581 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
582 #else
583 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
584 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
585 #endif /* BITS_PER_LONG == 64 */
586 
587 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
588 	({									\
589 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
590 		*(PTR_SIZE) = (SIZE);						\
591 		offsetof(TYPE, MEMBER);						\
592 	})
593 
594 /* A struct sock_filter is architecture independent. */
595 struct compat_sock_fprog {
596 	u16		len;
597 	compat_uptr_t	filter;	/* struct sock_filter * */
598 };
599 
600 struct sock_fprog_kern {
601 	u16			len;
602 	struct sock_filter	*filter;
603 };
604 
605 /* Some arches need doubleword alignment for their instructions and/or data */
606 #define BPF_IMAGE_ALIGNMENT 8
607 
608 struct bpf_binary_header {
609 	u32 size;
610 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
611 };
612 
613 struct bpf_prog_stats {
614 	u64_stats_t cnt;
615 	u64_stats_t nsecs;
616 	u64_stats_t misses;
617 	struct u64_stats_sync syncp;
618 } __aligned(2 * sizeof(u64));
619 
620 struct sk_filter {
621 	refcount_t	refcnt;
622 	struct rcu_head	rcu;
623 	struct bpf_prog	*prog;
624 };
625 
626 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
627 
628 extern struct mutex nf_conn_btf_access_lock;
629 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
630 				     const struct bpf_reg_state *reg,
631 				     int off, int size);
632 
633 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
634 					  const struct bpf_insn *insnsi,
635 					  unsigned int (*bpf_func)(const void *,
636 								   const struct bpf_insn *));
637 
638 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
639 					  const void *ctx,
640 					  bpf_dispatcher_fn dfunc)
641 {
642 	u32 ret;
643 
644 	cant_migrate();
645 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
646 		struct bpf_prog_stats *stats;
647 		u64 start = sched_clock();
648 		unsigned long flags;
649 
650 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
651 		stats = this_cpu_ptr(prog->stats);
652 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
653 		u64_stats_inc(&stats->cnt);
654 		u64_stats_add(&stats->nsecs, sched_clock() - start);
655 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
656 	} else {
657 		ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
658 	}
659 	return ret;
660 }
661 
662 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
663 {
664 	return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
665 }
666 
667 /*
668  * Use in preemptible and therefore migratable context to make sure that
669  * the execution of the BPF program runs on one CPU.
670  *
671  * This uses migrate_disable/enable() explicitly to document that the
672  * invocation of a BPF program does not require reentrancy protection
673  * against a BPF program which is invoked from a preempting task.
674  */
675 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
676 					  const void *ctx)
677 {
678 	u32 ret;
679 
680 	migrate_disable();
681 	ret = bpf_prog_run(prog, ctx);
682 	migrate_enable();
683 	return ret;
684 }
685 
686 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
687 
688 struct bpf_skb_data_end {
689 	struct qdisc_skb_cb qdisc_cb;
690 	void *data_meta;
691 	void *data_end;
692 };
693 
694 struct bpf_nh_params {
695 	u32 nh_family;
696 	union {
697 		u32 ipv4_nh;
698 		struct in6_addr ipv6_nh;
699 	};
700 };
701 
702 struct bpf_redirect_info {
703 	u64 tgt_index;
704 	void *tgt_value;
705 	struct bpf_map *map;
706 	u32 flags;
707 	u32 kern_flags;
708 	u32 map_id;
709 	enum bpf_map_type map_type;
710 	struct bpf_nh_params nh;
711 };
712 
713 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
714 
715 /* flags for bpf_redirect_info kern_flags */
716 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
717 
718 /* Compute the linear packet data range [data, data_end) which
719  * will be accessed by various program types (cls_bpf, act_bpf,
720  * lwt, ...). Subsystems allowing direct data access must (!)
721  * ensure that cb[] area can be written to when BPF program is
722  * invoked (otherwise cb[] save/restore is necessary).
723  */
724 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
725 {
726 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
727 
728 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
729 	cb->data_meta = skb->data - skb_metadata_len(skb);
730 	cb->data_end  = skb->data + skb_headlen(skb);
731 }
732 
733 /* Similar to bpf_compute_data_pointers(), except that save orginal
734  * data in cb->data and cb->meta_data for restore.
735  */
736 static inline void bpf_compute_and_save_data_end(
737 	struct sk_buff *skb, void **saved_data_end)
738 {
739 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
740 
741 	*saved_data_end = cb->data_end;
742 	cb->data_end  = skb->data + skb_headlen(skb);
743 }
744 
745 /* Restore data saved by bpf_compute_and_save_data_end(). */
746 static inline void bpf_restore_data_end(
747 	struct sk_buff *skb, void *saved_data_end)
748 {
749 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
750 
751 	cb->data_end = saved_data_end;
752 }
753 
754 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
755 {
756 	/* eBPF programs may read/write skb->cb[] area to transfer meta
757 	 * data between tail calls. Since this also needs to work with
758 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
759 	 *
760 	 * In some socket filter cases, the cb unfortunately needs to be
761 	 * saved/restored so that protocol specific skb->cb[] data won't
762 	 * be lost. In any case, due to unpriviledged eBPF programs
763 	 * attached to sockets, we need to clear the bpf_skb_cb() area
764 	 * to not leak previous contents to user space.
765 	 */
766 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
767 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
768 		     sizeof_field(struct qdisc_skb_cb, data));
769 
770 	return qdisc_skb_cb(skb)->data;
771 }
772 
773 /* Must be invoked with migration disabled */
774 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
775 					 const void *ctx)
776 {
777 	const struct sk_buff *skb = ctx;
778 	u8 *cb_data = bpf_skb_cb(skb);
779 	u8 cb_saved[BPF_SKB_CB_LEN];
780 	u32 res;
781 
782 	if (unlikely(prog->cb_access)) {
783 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
784 		memset(cb_data, 0, sizeof(cb_saved));
785 	}
786 
787 	res = bpf_prog_run(prog, skb);
788 
789 	if (unlikely(prog->cb_access))
790 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
791 
792 	return res;
793 }
794 
795 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
796 				       struct sk_buff *skb)
797 {
798 	u32 res;
799 
800 	migrate_disable();
801 	res = __bpf_prog_run_save_cb(prog, skb);
802 	migrate_enable();
803 	return res;
804 }
805 
806 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
807 					struct sk_buff *skb)
808 {
809 	u8 *cb_data = bpf_skb_cb(skb);
810 	u32 res;
811 
812 	if (unlikely(prog->cb_access))
813 		memset(cb_data, 0, BPF_SKB_CB_LEN);
814 
815 	res = bpf_prog_run_pin_on_cpu(prog, skb);
816 	return res;
817 }
818 
819 DECLARE_BPF_DISPATCHER(xdp)
820 
821 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
822 
823 u32 xdp_master_redirect(struct xdp_buff *xdp);
824 
825 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
826 
827 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
828 {
829 	return prog->len * sizeof(struct bpf_insn);
830 }
831 
832 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
833 {
834 	return round_up(bpf_prog_insn_size(prog) +
835 			sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
836 }
837 
838 static inline unsigned int bpf_prog_size(unsigned int proglen)
839 {
840 	return max(sizeof(struct bpf_prog),
841 		   offsetof(struct bpf_prog, insns[proglen]));
842 }
843 
844 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
845 {
846 	/* When classic BPF programs have been loaded and the arch
847 	 * does not have a classic BPF JIT (anymore), they have been
848 	 * converted via bpf_migrate_filter() to eBPF and thus always
849 	 * have an unspec program type.
850 	 */
851 	return prog->type == BPF_PROG_TYPE_UNSPEC;
852 }
853 
854 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
855 {
856 	const u32 size_machine = sizeof(unsigned long);
857 
858 	if (size > size_machine && size % size_machine == 0)
859 		size = size_machine;
860 
861 	return size;
862 }
863 
864 static inline bool
865 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
866 {
867 	return size <= size_default && (size & (size - 1)) == 0;
868 }
869 
870 static inline u8
871 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
872 {
873 	u8 access_off = off & (size_default - 1);
874 
875 #ifdef __LITTLE_ENDIAN
876 	return access_off;
877 #else
878 	return size_default - (access_off + size);
879 #endif
880 }
881 
882 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
883 	(size == sizeof(__u64) &&					\
884 	off >= offsetof(type, field) &&					\
885 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
886 	off % sizeof(__u64) == 0)
887 
888 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
889 
890 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
891 {
892 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
893 	if (!fp->jited) {
894 		set_vm_flush_reset_perms(fp);
895 		set_memory_ro((unsigned long)fp, fp->pages);
896 	}
897 #endif
898 }
899 
900 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
901 {
902 	set_vm_flush_reset_perms(hdr);
903 	set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
904 }
905 
906 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
907 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
908 {
909 	return sk_filter_trim_cap(sk, skb, 1);
910 }
911 
912 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
913 void bpf_prog_free(struct bpf_prog *fp);
914 
915 bool bpf_opcode_in_insntable(u8 code);
916 
917 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
918 			       const u32 *insn_to_jit_off);
919 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
920 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
921 
922 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
923 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
924 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
925 				  gfp_t gfp_extra_flags);
926 void __bpf_prog_free(struct bpf_prog *fp);
927 
928 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
929 {
930 	__bpf_prog_free(fp);
931 }
932 
933 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
934 				       unsigned int flen);
935 
936 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
937 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
938 			      bpf_aux_classic_check_t trans, bool save_orig);
939 void bpf_prog_destroy(struct bpf_prog *fp);
940 
941 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
942 int sk_attach_bpf(u32 ufd, struct sock *sk);
943 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
944 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
945 void sk_reuseport_prog_free(struct bpf_prog *prog);
946 int sk_detach_filter(struct sock *sk);
947 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
948 
949 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
950 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
951 
952 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
953 #define __bpf_call_base_args \
954 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
955 	 (void *)__bpf_call_base)
956 
957 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
958 void bpf_jit_compile(struct bpf_prog *prog);
959 bool bpf_jit_needs_zext(void);
960 bool bpf_jit_supports_subprog_tailcalls(void);
961 bool bpf_jit_supports_kfunc_call(void);
962 bool bpf_jit_supports_far_kfunc_call(void);
963 bool bpf_jit_supports_exceptions(void);
964 bool bpf_jit_supports_ptr_xchg(void);
965 bool bpf_jit_supports_arena(void);
966 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
967 bool bpf_helper_changes_pkt_data(void *func);
968 
969 static inline bool bpf_dump_raw_ok(const struct cred *cred)
970 {
971 	/* Reconstruction of call-sites is dependent on kallsyms,
972 	 * thus make dump the same restriction.
973 	 */
974 	return kallsyms_show_value(cred);
975 }
976 
977 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
978 				       const struct bpf_insn *patch, u32 len);
979 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
980 
981 void bpf_clear_redirect_map(struct bpf_map *map);
982 
983 static inline bool xdp_return_frame_no_direct(void)
984 {
985 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
986 
987 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
988 }
989 
990 static inline void xdp_set_return_frame_no_direct(void)
991 {
992 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
993 
994 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
995 }
996 
997 static inline void xdp_clear_return_frame_no_direct(void)
998 {
999 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1000 
1001 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1002 }
1003 
1004 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1005 				 unsigned int pktlen)
1006 {
1007 	unsigned int len;
1008 
1009 	if (unlikely(!(fwd->flags & IFF_UP)))
1010 		return -ENETDOWN;
1011 
1012 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1013 	if (pktlen > len)
1014 		return -EMSGSIZE;
1015 
1016 	return 0;
1017 }
1018 
1019 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1020  * same cpu context. Further for best results no more than a single map
1021  * for the do_redirect/do_flush pair should be used. This limitation is
1022  * because we only track one map and force a flush when the map changes.
1023  * This does not appear to be a real limitation for existing software.
1024  */
1025 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1026 			    struct xdp_buff *xdp, struct bpf_prog *prog);
1027 int xdp_do_redirect(struct net_device *dev,
1028 		    struct xdp_buff *xdp,
1029 		    struct bpf_prog *prog);
1030 int xdp_do_redirect_frame(struct net_device *dev,
1031 			  struct xdp_buff *xdp,
1032 			  struct xdp_frame *xdpf,
1033 			  struct bpf_prog *prog);
1034 void xdp_do_flush(void);
1035 
1036 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1037 
1038 #ifdef CONFIG_INET
1039 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1040 				  struct bpf_prog *prog, struct sk_buff *skb,
1041 				  struct sock *migrating_sk,
1042 				  u32 hash);
1043 #else
1044 static inline struct sock *
1045 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1046 		     struct bpf_prog *prog, struct sk_buff *skb,
1047 		     struct sock *migrating_sk,
1048 		     u32 hash)
1049 {
1050 	return NULL;
1051 }
1052 #endif
1053 
1054 #ifdef CONFIG_BPF_JIT
1055 extern int bpf_jit_enable;
1056 extern int bpf_jit_harden;
1057 extern int bpf_jit_kallsyms;
1058 extern long bpf_jit_limit;
1059 extern long bpf_jit_limit_max;
1060 
1061 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1062 
1063 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1064 
1065 struct bpf_binary_header *
1066 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1067 		     unsigned int alignment,
1068 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
1069 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1070 u64 bpf_jit_alloc_exec_limit(void);
1071 void *bpf_jit_alloc_exec(unsigned long size);
1072 void bpf_jit_free_exec(void *addr);
1073 void bpf_jit_free(struct bpf_prog *fp);
1074 struct bpf_binary_header *
1075 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1076 
1077 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1078 void bpf_prog_pack_free(void *ptr, u32 size);
1079 
1080 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1081 {
1082 	return list_empty(&fp->aux->ksym.lnode) ||
1083 	       fp->aux->ksym.lnode.prev == LIST_POISON2;
1084 }
1085 
1086 struct bpf_binary_header *
1087 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1088 			  unsigned int alignment,
1089 			  struct bpf_binary_header **rw_hdr,
1090 			  u8 **rw_image,
1091 			  bpf_jit_fill_hole_t bpf_fill_ill_insns);
1092 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1093 				 struct bpf_binary_header *ro_header,
1094 				 struct bpf_binary_header *rw_header);
1095 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1096 			      struct bpf_binary_header *rw_header);
1097 
1098 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1099 				struct bpf_jit_poke_descriptor *poke);
1100 
1101 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1102 			  const struct bpf_insn *insn, bool extra_pass,
1103 			  u64 *func_addr, bool *func_addr_fixed);
1104 
1105 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1106 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1107 
1108 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1109 				u32 pass, void *image)
1110 {
1111 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1112 	       proglen, pass, image, current->comm, task_pid_nr(current));
1113 
1114 	if (image)
1115 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1116 			       16, 1, image, proglen, false);
1117 }
1118 
1119 static inline bool bpf_jit_is_ebpf(void)
1120 {
1121 # ifdef CONFIG_HAVE_EBPF_JIT
1122 	return true;
1123 # else
1124 	return false;
1125 # endif
1126 }
1127 
1128 static inline bool ebpf_jit_enabled(void)
1129 {
1130 	return bpf_jit_enable && bpf_jit_is_ebpf();
1131 }
1132 
1133 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1134 {
1135 	return fp->jited && bpf_jit_is_ebpf();
1136 }
1137 
1138 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1139 {
1140 	/* These are the prerequisites, should someone ever have the
1141 	 * idea to call blinding outside of them, we make sure to
1142 	 * bail out.
1143 	 */
1144 	if (!bpf_jit_is_ebpf())
1145 		return false;
1146 	if (!prog->jit_requested)
1147 		return false;
1148 	if (!bpf_jit_harden)
1149 		return false;
1150 	if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1151 		return false;
1152 
1153 	return true;
1154 }
1155 
1156 static inline bool bpf_jit_kallsyms_enabled(void)
1157 {
1158 	/* There are a couple of corner cases where kallsyms should
1159 	 * not be enabled f.e. on hardening.
1160 	 */
1161 	if (bpf_jit_harden)
1162 		return false;
1163 	if (!bpf_jit_kallsyms)
1164 		return false;
1165 	if (bpf_jit_kallsyms == 1)
1166 		return true;
1167 
1168 	return false;
1169 }
1170 
1171 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1172 				 unsigned long *off, char *sym);
1173 bool is_bpf_text_address(unsigned long addr);
1174 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1175 		    char *sym);
1176 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1177 
1178 static inline const char *
1179 bpf_address_lookup(unsigned long addr, unsigned long *size,
1180 		   unsigned long *off, char **modname, char *sym)
1181 {
1182 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1183 
1184 	if (ret && modname)
1185 		*modname = NULL;
1186 	return ret;
1187 }
1188 
1189 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1190 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1191 
1192 #else /* CONFIG_BPF_JIT */
1193 
1194 static inline bool ebpf_jit_enabled(void)
1195 {
1196 	return false;
1197 }
1198 
1199 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1200 {
1201 	return false;
1202 }
1203 
1204 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1205 {
1206 	return false;
1207 }
1208 
1209 static inline int
1210 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1211 			    struct bpf_jit_poke_descriptor *poke)
1212 {
1213 	return -ENOTSUPP;
1214 }
1215 
1216 static inline void bpf_jit_free(struct bpf_prog *fp)
1217 {
1218 	bpf_prog_unlock_free(fp);
1219 }
1220 
1221 static inline bool bpf_jit_kallsyms_enabled(void)
1222 {
1223 	return false;
1224 }
1225 
1226 static inline const char *
1227 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1228 		     unsigned long *off, char *sym)
1229 {
1230 	return NULL;
1231 }
1232 
1233 static inline bool is_bpf_text_address(unsigned long addr)
1234 {
1235 	return false;
1236 }
1237 
1238 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1239 				  char *type, char *sym)
1240 {
1241 	return -ERANGE;
1242 }
1243 
1244 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1245 {
1246 	return NULL;
1247 }
1248 
1249 static inline const char *
1250 bpf_address_lookup(unsigned long addr, unsigned long *size,
1251 		   unsigned long *off, char **modname, char *sym)
1252 {
1253 	return NULL;
1254 }
1255 
1256 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1257 {
1258 }
1259 
1260 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1261 {
1262 }
1263 
1264 #endif /* CONFIG_BPF_JIT */
1265 
1266 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1267 
1268 #define BPF_ANC		BIT(15)
1269 
1270 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1271 {
1272 	switch (first->code) {
1273 	case BPF_RET | BPF_K:
1274 	case BPF_LD | BPF_W | BPF_LEN:
1275 		return false;
1276 
1277 	case BPF_LD | BPF_W | BPF_ABS:
1278 	case BPF_LD | BPF_H | BPF_ABS:
1279 	case BPF_LD | BPF_B | BPF_ABS:
1280 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1281 			return true;
1282 		return false;
1283 
1284 	default:
1285 		return true;
1286 	}
1287 }
1288 
1289 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1290 {
1291 	BUG_ON(ftest->code & BPF_ANC);
1292 
1293 	switch (ftest->code) {
1294 	case BPF_LD | BPF_W | BPF_ABS:
1295 	case BPF_LD | BPF_H | BPF_ABS:
1296 	case BPF_LD | BPF_B | BPF_ABS:
1297 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1298 				return BPF_ANC | SKF_AD_##CODE
1299 		switch (ftest->k) {
1300 		BPF_ANCILLARY(PROTOCOL);
1301 		BPF_ANCILLARY(PKTTYPE);
1302 		BPF_ANCILLARY(IFINDEX);
1303 		BPF_ANCILLARY(NLATTR);
1304 		BPF_ANCILLARY(NLATTR_NEST);
1305 		BPF_ANCILLARY(MARK);
1306 		BPF_ANCILLARY(QUEUE);
1307 		BPF_ANCILLARY(HATYPE);
1308 		BPF_ANCILLARY(RXHASH);
1309 		BPF_ANCILLARY(CPU);
1310 		BPF_ANCILLARY(ALU_XOR_X);
1311 		BPF_ANCILLARY(VLAN_TAG);
1312 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1313 		BPF_ANCILLARY(PAY_OFFSET);
1314 		BPF_ANCILLARY(RANDOM);
1315 		BPF_ANCILLARY(VLAN_TPID);
1316 		}
1317 		fallthrough;
1318 	default:
1319 		return ftest->code;
1320 	}
1321 }
1322 
1323 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1324 					   int k, unsigned int size);
1325 
1326 static inline int bpf_tell_extensions(void)
1327 {
1328 	return SKF_AD_MAX;
1329 }
1330 
1331 struct bpf_sock_addr_kern {
1332 	struct sock *sk;
1333 	struct sockaddr *uaddr;
1334 	/* Temporary "register" to make indirect stores to nested structures
1335 	 * defined above. We need three registers to make such a store, but
1336 	 * only two (src and dst) are available at convert_ctx_access time
1337 	 */
1338 	u64 tmp_reg;
1339 	void *t_ctx;	/* Attach type specific context. */
1340 	u32 uaddrlen;
1341 };
1342 
1343 struct bpf_sock_ops_kern {
1344 	struct	sock *sk;
1345 	union {
1346 		u32 args[4];
1347 		u32 reply;
1348 		u32 replylong[4];
1349 	};
1350 	struct sk_buff	*syn_skb;
1351 	struct sk_buff	*skb;
1352 	void	*skb_data_end;
1353 	u8	op;
1354 	u8	is_fullsock;
1355 	u8	remaining_opt_len;
1356 	u64	temp;			/* temp and everything after is not
1357 					 * initialized to 0 before calling
1358 					 * the BPF program. New fields that
1359 					 * should be initialized to 0 should
1360 					 * be inserted before temp.
1361 					 * temp is scratch storage used by
1362 					 * sock_ops_convert_ctx_access
1363 					 * as temporary storage of a register.
1364 					 */
1365 };
1366 
1367 struct bpf_sysctl_kern {
1368 	struct ctl_table_header *head;
1369 	struct ctl_table *table;
1370 	void *cur_val;
1371 	size_t cur_len;
1372 	void *new_val;
1373 	size_t new_len;
1374 	int new_updated;
1375 	int write;
1376 	loff_t *ppos;
1377 	/* Temporary "register" for indirect stores to ppos. */
1378 	u64 tmp_reg;
1379 };
1380 
1381 #define BPF_SOCKOPT_KERN_BUF_SIZE	32
1382 struct bpf_sockopt_buf {
1383 	u8		data[BPF_SOCKOPT_KERN_BUF_SIZE];
1384 };
1385 
1386 struct bpf_sockopt_kern {
1387 	struct sock	*sk;
1388 	u8		*optval;
1389 	u8		*optval_end;
1390 	s32		level;
1391 	s32		optname;
1392 	s32		optlen;
1393 	/* for retval in struct bpf_cg_run_ctx */
1394 	struct task_struct *current_task;
1395 	/* Temporary "register" for indirect stores to ppos. */
1396 	u64		tmp_reg;
1397 };
1398 
1399 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1400 
1401 struct bpf_sk_lookup_kern {
1402 	u16		family;
1403 	u16		protocol;
1404 	__be16		sport;
1405 	u16		dport;
1406 	struct {
1407 		__be32 saddr;
1408 		__be32 daddr;
1409 	} v4;
1410 	struct {
1411 		const struct in6_addr *saddr;
1412 		const struct in6_addr *daddr;
1413 	} v6;
1414 	struct sock	*selected_sk;
1415 	u32		ingress_ifindex;
1416 	bool		no_reuseport;
1417 };
1418 
1419 extern struct static_key_false bpf_sk_lookup_enabled;
1420 
1421 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1422  *
1423  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1424  * SK_DROP. Their meaning is as follows:
1425  *
1426  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1427  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1428  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1429  *
1430  * This macro aggregates return values and selected sockets from
1431  * multiple BPF programs according to following rules in order:
1432  *
1433  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1434  *     macro result is SK_PASS and last ctx.selected_sk is used.
1435  *  2. If any program returned SK_DROP return value,
1436  *     macro result is SK_DROP.
1437  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1438  *
1439  * Caller must ensure that the prog array is non-NULL, and that the
1440  * array as well as the programs it contains remain valid.
1441  */
1442 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)			\
1443 	({								\
1444 		struct bpf_sk_lookup_kern *_ctx = &(ctx);		\
1445 		struct bpf_prog_array_item *_item;			\
1446 		struct sock *_selected_sk = NULL;			\
1447 		bool _no_reuseport = false;				\
1448 		struct bpf_prog *_prog;					\
1449 		bool _all_pass = true;					\
1450 		u32 _ret;						\
1451 									\
1452 		migrate_disable();					\
1453 		_item = &(array)->items[0];				\
1454 		while ((_prog = READ_ONCE(_item->prog))) {		\
1455 			/* restore most recent selection */		\
1456 			_ctx->selected_sk = _selected_sk;		\
1457 			_ctx->no_reuseport = _no_reuseport;		\
1458 									\
1459 			_ret = func(_prog, _ctx);			\
1460 			if (_ret == SK_PASS && _ctx->selected_sk) {	\
1461 				/* remember last non-NULL socket */	\
1462 				_selected_sk = _ctx->selected_sk;	\
1463 				_no_reuseport = _ctx->no_reuseport;	\
1464 			} else if (_ret == SK_DROP && _all_pass) {	\
1465 				_all_pass = false;			\
1466 			}						\
1467 			_item++;					\
1468 		}							\
1469 		_ctx->selected_sk = _selected_sk;			\
1470 		_ctx->no_reuseport = _no_reuseport;			\
1471 		migrate_enable();					\
1472 		_all_pass || _selected_sk ? SK_PASS : SK_DROP;		\
1473 	 })
1474 
1475 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1476 					const __be32 saddr, const __be16 sport,
1477 					const __be32 daddr, const u16 dport,
1478 					const int ifindex, struct sock **psk)
1479 {
1480 	struct bpf_prog_array *run_array;
1481 	struct sock *selected_sk = NULL;
1482 	bool no_reuseport = false;
1483 
1484 	rcu_read_lock();
1485 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1486 	if (run_array) {
1487 		struct bpf_sk_lookup_kern ctx = {
1488 			.family		= AF_INET,
1489 			.protocol	= protocol,
1490 			.v4.saddr	= saddr,
1491 			.v4.daddr	= daddr,
1492 			.sport		= sport,
1493 			.dport		= dport,
1494 			.ingress_ifindex	= ifindex,
1495 		};
1496 		u32 act;
1497 
1498 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1499 		if (act == SK_PASS) {
1500 			selected_sk = ctx.selected_sk;
1501 			no_reuseport = ctx.no_reuseport;
1502 		} else {
1503 			selected_sk = ERR_PTR(-ECONNREFUSED);
1504 		}
1505 	}
1506 	rcu_read_unlock();
1507 	*psk = selected_sk;
1508 	return no_reuseport;
1509 }
1510 
1511 #if IS_ENABLED(CONFIG_IPV6)
1512 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1513 					const struct in6_addr *saddr,
1514 					const __be16 sport,
1515 					const struct in6_addr *daddr,
1516 					const u16 dport,
1517 					const int ifindex, struct sock **psk)
1518 {
1519 	struct bpf_prog_array *run_array;
1520 	struct sock *selected_sk = NULL;
1521 	bool no_reuseport = false;
1522 
1523 	rcu_read_lock();
1524 	run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1525 	if (run_array) {
1526 		struct bpf_sk_lookup_kern ctx = {
1527 			.family		= AF_INET6,
1528 			.protocol	= protocol,
1529 			.v6.saddr	= saddr,
1530 			.v6.daddr	= daddr,
1531 			.sport		= sport,
1532 			.dport		= dport,
1533 			.ingress_ifindex	= ifindex,
1534 		};
1535 		u32 act;
1536 
1537 		act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1538 		if (act == SK_PASS) {
1539 			selected_sk = ctx.selected_sk;
1540 			no_reuseport = ctx.no_reuseport;
1541 		} else {
1542 			selected_sk = ERR_PTR(-ECONNREFUSED);
1543 		}
1544 	}
1545 	rcu_read_unlock();
1546 	*psk = selected_sk;
1547 	return no_reuseport;
1548 }
1549 #endif /* IS_ENABLED(CONFIG_IPV6) */
1550 
1551 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1552 						   u64 flags, const u64 flag_mask,
1553 						   void *lookup_elem(struct bpf_map *map, u32 key))
1554 {
1555 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1556 	const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1557 
1558 	/* Lower bits of the flags are used as return code on lookup failure */
1559 	if (unlikely(flags & ~(action_mask | flag_mask)))
1560 		return XDP_ABORTED;
1561 
1562 	ri->tgt_value = lookup_elem(map, index);
1563 	if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1564 		/* If the lookup fails we want to clear out the state in the
1565 		 * redirect_info struct completely, so that if an eBPF program
1566 		 * performs multiple lookups, the last one always takes
1567 		 * precedence.
1568 		 */
1569 		ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1570 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
1571 		return flags & action_mask;
1572 	}
1573 
1574 	ri->tgt_index = index;
1575 	ri->map_id = map->id;
1576 	ri->map_type = map->map_type;
1577 
1578 	if (flags & BPF_F_BROADCAST) {
1579 		WRITE_ONCE(ri->map, map);
1580 		ri->flags = flags;
1581 	} else {
1582 		WRITE_ONCE(ri->map, NULL);
1583 		ri->flags = 0;
1584 	}
1585 
1586 	return XDP_REDIRECT;
1587 }
1588 
1589 #ifdef CONFIG_NET
1590 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1591 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1592 			  u32 len, u64 flags);
1593 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1594 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1595 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1596 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1597 		      void *buf, unsigned long len, bool flush);
1598 #else /* CONFIG_NET */
1599 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1600 				       void *to, u32 len)
1601 {
1602 	return -EOPNOTSUPP;
1603 }
1604 
1605 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1606 					const void *from, u32 len, u64 flags)
1607 {
1608 	return -EOPNOTSUPP;
1609 }
1610 
1611 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1612 				       void *buf, u32 len)
1613 {
1614 	return -EOPNOTSUPP;
1615 }
1616 
1617 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1618 					void *buf, u32 len)
1619 {
1620 	return -EOPNOTSUPP;
1621 }
1622 
1623 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1624 {
1625 	return NULL;
1626 }
1627 
1628 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1629 				    unsigned long len, bool flush)
1630 {
1631 }
1632 #endif /* CONFIG_NET */
1633 
1634 #endif /* __LINUX_FILTER_H__ */
1635